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Abstract 

The prediction of stock price and index level in a financial market is an interesting 

but highly complex and intricate topic. Advancements in prediction models leading 

to even a slight increase in performance can be very profitable. The number of studies 

investigating models in predicting actual levels of stocks and indices however, far 

exceed those predicting the direction of stocks and indices. This study evaluates the 

performance of ensemble prediction models in predicting the daily direction of the 

JSE All-Share index. The ensemble prediction models are benchmarked against three 

common prediction models in the domain of financial data prediction namely, support 

vector machines, logistic regression and k-nearest neighbour. The results indicate that 

the Boosted algorithm of the ensemble prediction model is able to predict the index 

direction the best, followed by k-nearest neighbour, logistic regression and support 

vector machines respectively. The study suggests that ensemble models be considered 

in all stock price and index prediction applications. 
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1.1 Introduction 

    The purpose of this chapter is to provide a broad introduction to the research 

report including the motivation for the research. The chapter is organised as follows: 

Section 1.2 presents the research background. Section 1.3 discusses the research 

problem. Section 1.4 follows from the research problem and identifies the gap in the 

literature. Section 1.5 outlines the two research objectives. Section 1.6 presents the 

benefits of the study. Section 1.7 presents the organisation of the entire report and 

chapter summary concludes the chapter. 

 

1.2 Background 

    The prediction of stock price direction is a topic of significant interest in the field 

of modern finance and investments. A great deal of literature presents arguments as 

to whether stock price behaviour is predictable or not. The task of predicting such 

movements however, prove both challenging and intricate in nature. The challenging 

nature of the prediction is as a result of multiple non-predictable factors like natural 

disasters, political instabilities, varying economic climates etc. Reasonably accurate 

predictions in stock price movements can however, result in high financial gains for 

speculators and arbitrageurs and can also assist to hedge against potential market 

risks (Kumar & Thenmozhi, 2006). In the area of automated trading, stock price 

predictive models often serve as the foundation of such intricate algorithms 

(Manojlovic & Stajduhar, 2015). 

    The Efficient Market Hypothesis (EMH) has, for a long time, been an accepted 

hypothesis by investors globally. The hypothesis states that no abnormal returns can 

be achieved by knowledge of the stock prices past behaviour and that all information 

about a stock is already incorporated in its price. It also states that one cannot 

constantly achieve returns in excess of the market average. At the dawn of the 21st 

century, some economists presented arguments to support the fact that stock prices 

are at least partially predictable (Malkiel, 2003). Since then, many researchers have 

explored a myriad of prediction algorithms, models and techniques in the quest to 

create a model that can accurately predict stock price behaviour. 
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    Investors generally have three options when it comes to analysis of a stock prior 

to buy or sell decisions. The first option is the fundamental analysis where the intrinsic 

value of the stock is determined in conjunction with the industry’s performance, the 

political and economic climate. The second option is a technical analysis where a 

stock’s value is determined by studying its detailed statistics. Technical analysis 

makes no attempts to measure a stocks intrinsic value. It merely uses vast quantities 

of statistical data to help identify trends and patterns that may be interpreted as 

predictors for future performance. To achieve such predictions, the historical time 

series data is used as an input to complex algorithms which attempt to model and 

then forecast the future time series e.g. auto regressive (AR), moving average (MA) 

and auto regressive integrated moving average (ARIMA) models. The third option 

involves machine learning and data mining (Hellstrom & Holmstromm, 1998). This 

option is often desired among analysts because one of the main challenges around 

stock price prediction involves working with large masses of data.  

 

1.3 Research Problem 

    Investors use various models to predict stock price direction. Single classifier 

models such as logistic regression (LR), neural networks (NN), k-nearest neighbour 

(KN) and support vector machines (SVM) are currently the most common and widely 

used machine learning models (Ballings et al., 2015). Although attempting to predict 

stock prices is in contravention of the EMH, many researchers e.g. Malkiel (2003) and 

Lo, Mamaysky & Wang (2000), reject the EMH and continue to explore complex 

machine learning algorithms with the aim of accurately modelling the complex 

dynamics that characterise financial data. de Oliveira, Nobre, & Zárate (2013) suggest 

that combining prediction models can achieve better performance than standalone 

models. 

    There exist a large number of single classifier machine prediction models for the 

purpose of stock or index direction and level prediction. The ensemble prediction 

models, however, are relatively unexplored in the domain of stock market trend 

prediction (Kumar & Thenmozhi, 2006; Kara, Boyacioglu, & Baykan, 2011; Ballings 

et al., 2015). Thus, we do not know whether ensemble prediction models can 

accurately predict the daily direction of the stock market especially in a relatively 

volatile emerging market like South Africa.  
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1.4 Gap in the Literature  

    It was found that emerging markets are generally more predictable than developed 

markets and that emerging market returns are more influenced by local information 

than developed markets (Harvey, 1995). This finding motivated this research into 

determining the predictability of the South African stock market index by evaluating 

prediction models that proved to perform in developed markets. This study is of 

significance as it evaluates prediction models that are relatively new to the field of 

technical analysis in the stock market.  

    Machine learning and data mining make available two ways of predicting stock 

market behaviour. The first way is to predict the actual future price of the stock. This 

is referred to as discrete analysis and a way of predicting exact stock prices (Ballings, 

Van Den Poel, Hespeels, & Gryp, 2015). The second way is based on predicting the 

actual future direction of the stock. This is where a prediction is made as to whether 

the future price of the stock will rise or fall in relation to the current known price. 

The models used to predict the price direction of stocks is commonly referred to as 

classification models. There are considerably fewer studies around stock price direction 

prediction than actual price prediction (Manojlovic & Stajduhar, 2015). In recent 

years, there has been a significant increase in the number studies looking at the 

direction or trends in financial markets (Imandoust & Bolandraftar, 2014). Literature 

also reveals that prediction of stock price direction is sufficient in producing profitable 

trading strategies (Cheung, Chinn, & Pascual, 2005). 

    In comparison to single classification prediction models, ensemble prediction 

models are far less utilised in stock market trend prediction (Kumar & Thenmozhi, 

2006; Kara, Boyacioglu, & Baykan, 2011; Ballings et al., 2015). Ensemble models 

proved to perform the best in predicting European stocks (Ballings et al., 2015) but 

failed to perform in the Indian stock market (Kumar & Thenmozhi, 2006) where SVM 

proved to perform the best. No published literature was found that evaluates the 

performance of ensemble prediction models in any financial time series from the 

African continent. It would therefore prove useful to evaluate the performance of 

ensemble prediction models in the South African market by attempting to predict the 

daily trend of the JSE All-Share index. 
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1.5 Research Objectives 

1. To investigate whether ensemble prediction models are able to predict the daily 

trend of the JSE All-Share index and determine the prediction accuracy. 

2. To compare the performance of ensemble prediction models with the 

performance of three most popular models (SVM, KNN and LR) in predicting 

the daily trend of the JSE All-Share index 

 

1.6 Benefits of the Study 

    The results from this study will help market analysts in making better decisions 

regarding choice of prediction models in their technical analysis. This will translate to 

better decision making in hedging against risks, developing efficient market trading 

strategies and even profiting from more accurate forecasts. The study will also provide 

insight into the technical characteristics of the South African JSE All-Share Index 

and establish the extent of its predictability using the models that worked best for 

developed markets and other developing markets. 

 

1.7 Organisation of the Report 

    This report is divided into five chapters. Chapter 2 reviews the extant literature 

relevant to the research. Chapter 3 presents the research methodology including the 

research design. Chapter 4 presents the research results and Chapter 5 discusses the 

research findings and concludes the report. 

 

Chapter Summary 

    This chapter provides a background to the field of financial time series prediction 

with regard to stock price and market indices. An introduction to the basic concepts 

of fundamental analysis and technical analysis is presented. Two research objectives 

is established and supported by a presentation of the gaps in the literature. The 

benefits of the study is then presented by establishing how financial analysts can 

capitalise from prediction models. In Chapter 2, the extant literature in the field of 

financial prediction models is presented.  
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2.1 Introduction 

    This chapter presents a summary of recent literature in the domain of stock price 

and stock index trend prediction. The chapter is organised as follows. Section 2.2 

discusses the literature on the efficient market hypothesis. Section 2.3 presents the 

literature on fundamental analysis. Section 2.4 presents the literature on technical 

analysis. Section 2.5 discusses machine prediction algorithms including the different 

models used. Chapter summary concludes the chapter. 

  

2.2 The Efficient Market Hypothesis 

    Market efficiency remains one of the most debated and controversial topics in 

modern investment theory. An efficient market is defined as one where the current 

market price of assets fully reflect the available information within the market (Firer 

et al., 2012). The efficient market hypothesis therefore states that one cannot 

consistently, beat the market. Fama (1991) argued that asset prices in an efficient 

market is subject to random behaviour. Jordan, Miller, & Dolvin (2015) state three 

economic forces that lead to market efficiency: one, investor rationality, two, 

independent deviations from rationality and three, arbitrage. At the start of the 21st 

century, Malkiel (2003) presented arguments by various economists that stock prices 

are indeed, partially predictable. This set the stage for prediction models and 

algorithms in the dynamic, complex and interelated financial markets. 

    There are numerous studies that aim to dispute the efficient market hypothesis by 

presenting empirical evidence from various financial markets. Hu et al., (2015) 

developed a hybrid trend following algorithm which combines the information inherent 

in the trend of a stock and extended classification theory. This results in a trading 

rule that identifies stocks via key indicators. Kao et al., (2013) suggested a stock 

forecasting model based on wavelet transforms, support vectors and regression splines 

to improve forecasting accuracy. Patel et al. (2015) introduced the concept of trending 

technical indicators to improve prediction model accuracy in predicting the CNX 

NIFTY and S&P BSE index. Booth, Gerding, & McGroarty (2014) proposed a 

machine learning technique using random forest to predict both risk and returns when 

considering seasonal events. Liao & Chou (2013) proposed association rules and cluster 

theory in describing the co-movements between the stock markets of China and 

Taiwan. 
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2.3 Fundamental Analysis 

    Fundamental analysis is a type of analysis where the intrinsic value of an asset is 

determined. This is performed by studying various financial and economic indicators. 

Equity prices generally follow movements in macroeconomic variables since firms 

dividends are directly linked to the macroeconomic environment. There are various 

authors that debate whether stock prices are reflected by fundamental factors. Black, 

Fraser, & Groenewold (2003), Becchetti, Rocci, & Trovato (2007) and Laopodis 

(2011), conclude that equity prices consistently deviate from their fundamental values. 

These findings corroborate the findings of Coakley & Fuertes (2006) and Manzan 

(2007) who found that stock prices do deviate from their fundamental values in the 

short run but revert to their fundamentals in the long run. In contrast, studies by 

Yuhn, Kim, & Nam (2015), Chen & Fraser (2010) and Pan (2007), all conclude that 

stock prices are priced in line with their fundamentals. 

    Velinova & Chen (2015) examined the role of macroeconomic fundamentals in 

relation to stock prices for six major industrialised countries using data from 1960 to 

2013. One of the main research questions of the study was to determine how stock 

prices reacted relative to its fundamentals directly after the 2008 global financial crisis. 

The analysis in the study was based on the conventional bivariate structural vector 

autoregressive (SVAR) model in order to differentiate between fundamental and non-

fundamental shocks to stock prices. The study revealed that stock prices increased 

steeply during the mid-1990s due to an undervaluation situation in the preceding 

period. After this mid-1990 period, the stocks became slightly overvalued with respect 

to their fundamentals. After the 2008 global financial crisis however, their value 

reverted back in line with their fundamentals. This reversion was particularly 

prominent in the US stock market. The study concluded that stock prices for the 

countries examined self-corrected toward their fundamental value in the long run. 

 

2.4 Technical Analysis 

    Technical analysis is a process that attempts to predict the movement of stock or 

any other financial series based on an interrogation of the quantitative characteristics 

of the data available. This interrogation of the financial data involves methods such 

as graphic analysis, various techniques of averaging or combinations of both. From a 

methodological standpoint, technical analysis often incorporates models from 
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econometrics, statistics and artificial intelligence (Cervelló-Royo, Guijarro, & 

Michniuk, 2015). Technical analysis is based on the assumption that past data may 

contain important information about the future behaviour of the data (Zhu & Zhou, 

2009). There are three assumptions presented by Murphy (1999) underlying the 

technical analysis and these are: One, prices reflect market events. Two, change in 

prices move in trends and last, historical prices tend to repeat. 

    Although technical analysis is in direct contravention of the EMH, many 

researchers have rejected this hypothesis on the basis of technical analysis. Silva, 

Neves, & Horta (2015) used a Multi-Objective Evolutionary Algorithm (MOEA) to 

optimise return and minimise risk. The study concluded that stocks with high 

valuation potential are characterised by low or average market capitalisation, low 

price earnings ratio, high revenue growth and high operating leverage. Cervelló-Royo 

et al. (2015) introduced a new trading rule based on a new breakout and consolidation 

flag pattern version which further challenge the efficacy of EMH. The trading rule 

defines when to buy and sell, the amount of profit pursued in each operation and 

maximum bearable loss. Cervelló-Royo et al. (2015) found that the returns generated 

when using the new trading rule were higher for the European indices compared to 

that of the US and, therefore, concluded the European markets suffered greater 

inefficiency than US markets.  

    There are also studies however, that reveal the low power of technical analysis. 

da Costa et al. (2015) analysed the performance of various averaging techniques in 

predicting stock behaviour in the Brazilian market. The study evaluated the 

performance of simple and exponential moving averages, moving average convergence 

divergence and triple screen techniques in actual trading of 198 Brazilian stocks. The 

study concluded that the investigated averaging and triple screen techniques had low 

power in predicting the Brazilian stock market and that the standard buy-and-hold 

strategy was responsible for the majority of the returns achieved in the investigation. 

 

2.5 Machine Prediction Algorithms 

    The literature review reveals that there are many machine prediction models and 

algorithms used to predict stock price direction and levels. These models can be 

classified according to their level of complexity and performance characteristics. The 

simpler prediction models such as the single decision tree, discriminant analysis and 
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Naïve Bayes have been replaced by newer and better performing single classifier 

models such as logistic regression, neural networks, support vector machines and k-

nearest neighbour. Ensemble models such as Random Forest (RF) or Bagged trees, 

Kernel Factory (KF) and AdaBoost (AB) or Boosted trees are still very much 

unexplored in the domain of stock price direction prediction (Ballings et al., 2015). 

Ballings et al. (2015) found that there is inadequate literature on ensemble prediction 

models in the domain of stock price direction prediction.  

    Figure 2.1 below illustrates the number of studies since 1990 for the four single 

classifier models and the three ensemble prediction models in the field of financial 

time series prediction (Ballings et al., 2015). From Figure 2.1, it is clear that ensemble 

prediction models are far less utilised in the domain of stock price and market index 

prediction compared to that of the single classifier prediction models.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Number of studies since 1990 for stock price prediction (Ballings et al., 2015). 

 

Single Classifier Models Ensemble Models 
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2.5.1  Ensemble Prediction Models 

    Ensemble prediction models solve problems that are statistical, computational and 

representational in nature. According to Ballings et al. (2015), only four studies exist 

in the domain of stock price direction prediction that utilises ensemble methods. 

Ensemble methods basically merge results from multiple weak methods in order to 

form one high quality prediction model. Many types or algorithm variations of 

ensemble prediction models exist and can be used in stock price and stock index 

direction prediction. Three of the most common types of ensemble algorithms are: 

One, Random Forest or Bagged trees. Two, Boosted trees and three, Subspace KNN. 

    The random forest ensemble method builds a collection of trees to improve upon 

the weak predictive capabilities of individual trees. Random forest was introduced by 

Leo Breiman in 2001 and proposed as an effective tool in any prediction application 

(Breiman, 2001). Rodriguez & Rodriguez (2004) predicted the daily movements of the 

Mexican, Malaysian and Brazilian market indices. Rodriguez & Rodriguez (2004) 

found that the ensemble prediction models performed the best among all the seven 

prediction models. Kumar & Thenmozhi (2006) however, found that the Random 

Forest ensemble prediction model underperforms against SVM in predicting the S&P 

CNX NIFTY index. Random Forest however, outperformed the other models (logistic 

regression, neural networks and Discriminant Analysis) in the study.  

    Patel et al. (2015) concluded that random forest outperforms the SVM, neural 

network and Naïve-Bayes models in predicting the CNX NIFTY and S&P BSE index 

movement. These results are in contrast with Kumar & Thenmozhi (2006) who found 

that SVM outperforms the ensemble models in predicting the CNX NIFTY market 

index. The reason for this difference in performance lies in the trend deterministic 

processing of the input data used by Patel et al. (2015) and the varying time periods 

of the index data used for each study. Ballings et al. (2015) findings ranked the 

prediction performance of three ensemble model algorithms in the following order: 

Random Forest, Kernel Factory and Boosted Trees, out of the seven models in the 

study in predicting stock price direction from 5767 publically listed European 

companies. The study was the first to make such a benchmark and highly encourage 

the use of ensemble methods in stock price direction prediction. 
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2.5.2  Support Vector Machines 

    SVMs are one of the most common machine learning algorithms in the field of 

stock price and stock index direction prediction. It appears to be one of the best 

performing algorithms in the financial world (Ballings et al., 2015). It is a specific 

type of machine learning algorithm that is characterised by the capacity control of 

the decision function, the use of kernel functions and sparsity of solution (Huang, 

Nakamori, & Wang, 2005). SVM uses a linear model to implement non-linear class 

boundaries via non-linear mapping of the input variables into a high-dimensional 

feature space (Kim, 2003). The accuracy of SVMs in financial forecasting and 

predictions are often measured by the deviations of the estimated values from the 

actual values. Predicting the actual values however, and using the errors as indicators 

of accuracy is of lesser importance and not as profitable to financial practitioners as 

accurate direction prediction. 

    Huang et al. (2005) investigated the predictability of the weekly movement of the 

NIKKEI 225 index, which indicated that the SVM outperformed other two 

classification models used in the study viz. the discriminant analysis model and back-

propagation neural network model. Huang et al. (2005) further recommended that all 

models be combined in the study to achieve the best performance. In a 2003 Korean 

study, the direction of the daily change of the Korean composite stock price index 

(KOSPI) was predicted using SVM. A total of 12 technical indicators were used in 

the prediction model. The results also confirmed that SVM performed better than the 

neural network model and the case based reasoning models that were benchmarked in 

the study (Kim, 2003).  

    Lee (2009) investigated the predictability of the NASDAQ index using SVM with 

a hybrid feature selection. The SVM prediction models performance was compared to 

that of the back-propagation neural network model using three common feature 

selection methods. The study revealed that the SVM prediction model outperformed 

the back-propagation neural network model. A similar investigation by Kumar & 

Thenmozhi (2006) in the evaluation of the models that best predicts the direction of 

the S&P CNX NIFTY index of the National Stock Exchange showed that the SVM 

also outperformed the neural network, ensemble and discriminate models 

benchmarked in the study. 
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2.5.3  Logistic Regression Prediction Models 

    The logistic regression prediction is a common technique used in stock price and 

market index direction prediction. It arises from the need to model class probabilities 

via linear functions in the explanatory variables. The logistic regression model will 

only produce accurate predictions in stock price or stock index movements if and only 

if the parameterised equation resembles that of the true function (Rodriguez & 

Rodriguez, 2004). Logistic regression is similar to linear regression with the main 

difference being that linear models are characterised by a continuous response variable 

whereas the logistic model is characterised by a binary response variable. The result 

of logistic models, thus, uses maximum likelihood as opposed to least squares (Huang, 

Yang, & Chuang, 2008). 

    Although logistic regression models are one of the most popular prediction models 

in literature, they were found by Ballings et al. (2015) to perform the worst among 

all models in the evaluation of prediction models for European stock market. An 

investigation by Senol & Ozturan (2008) compared the performance of the logistic 

regression prediction model to a neural network model using data from the Istanbul 

Stock Exchange. It was found that the neural network prediction methodology 

statistically outperformed the logistic regression methodology in predicting the 

direction of stock prices in the market. In a study by Subha & Nambi (2012), the 

BSE-SENSEX and NSE-NIFTY stock index movement was predicted using logistic 

regression and its performance was compared to the k-nearest neighbour prediction 

model. The study concluded that k-nearest neighbour model far outperformed the 

logistic regression model in classifying the movement of the BSE-SENSEX and NSE-

NIFTY stock indices. The study also found that the k-nearest neighbour outperformed 

the logistic regression model for all possible model evaluation parameters.  

    Ou & Wang (2009) compared the performance of ten classification techniques in 

predicting the price movement of the Hang Seng index of the Hong Kong stock market. 

In this study, the logistic regression model for predicting the stock price movement 

ranked third among the ten prediction models. The authors also argue that different 

stocks behave differently and recommend that all approaches and prediction models 

be explored in forecasting stock index movement. 
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2.5.4  Neural Network Prediction Models 

    The neural network is a common tool in the financial analysis arena particularly 

in the financial time series domain due to its broad applicability to business problems 

and its preeminent learning ability (Kumar & Thenmozhi, 2006). The neural network 

basically emulates the functioning of the human brain by forming a network of 

neurons. They are characterised by their learning capability and the ability to adjust 

their parameters by the use of a training set. A large number of successful financial 

applications have used neural networks in time series forecasting and stock market 

prediction. Neural networks, however exhibit inconsistent and unpredictable 

performance on noisy financial data and suffers in selecting from a large number of 

input financial variables (Huang et al, 2008). 

    According to de Oliveira et al. (2013), the first neural network model for predicting 

stock prices was by White (1988), where daily returns of the IBM stock was analysed 

in order to test the efficient market hypothesis. Although the model did not produce 

good predictive results, the research set the platform for further development of stock 

market predictive models using neural networks. The performance and comparisons 

of the traditional methods of stock prediction models to that of neural networks then 

began in the 1990s. Ballings et al. (2015) found that neural networks performed the 

fifth best out of a total of the seven stock price prediction models.  

    de Oliveira et al. (2013) found neural networks to be a feasible alternative to 

conventional techniques in predicting stock market direction and behaviour. The 

authors further suggest that neural networks prediction models be used in combination 

with other prediction models to achieve better predictive performance. In the study 

by Lee (2009), the NASDAQ index direction was predicted by comparing a hybrid 

version of an SVM model to a back-propagation neural network model. The study 

however favoured the SVM model over the neural network model in predicting the 

trend of the NASDAQ index. The authors suggest that their poor performance can be 

attributed to neural networks requiring large amounts of training data in order to 

formulate the distribution of the input data pattern. A neural networks over fitting 

nature also results in difficulties in generalising predictions. 
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Chapter Summary 

    In this chapter, the extant literature in the field of financial prediction models is 

presented. The literature relating to technical analysis, fundamental analysis and the 

EMH were reviewed. Machine prediction algorithms in the field of stock price and 

market index were discussed in detail. It was found that ensemble prediction models 

are not as popular in the fields of financial time series prediction as prediction models 

such as SVM, logistic regression, neural networks and k-nearest neighbour. Chapter 3 

presents a detailed description of the data and methodology used in evaluating the 

performance of the ensemble prediction model. It also presents the methodologies for 

evaluating and comparing the performance of the ensemble prediction model to the 

SVM, logistic regression and k-nearest neighbour prediction models. 
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Chapter 3 

Data and Methodology        
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3.1 Introduction 

    This chapter presents the methodologies used to test the efficacy of ensemble 

prediction models compared to other models. The chapter is organised as follows: 

Section 3.2 presents the data and the data sources by providing a detailed description 

of the JSE All-Share index time series data to be used in the study. Section 3.3 

provides a presentation and a description of the ten technical indicators that is 

computed directly from the index time series dataset. The technical indicators are 

pre-processed, resulting in model input data used in the training and evaluation of 

the prediction models. Section 3.4 presents the pre-processing of the ten technical 

indicators which results in two forms of representation of them i.e. the continuous and 

the trend deterministic representation. These two forms of representation of the input 

data are used directly to train and evaluate the prediction models. Section 3.5 presents 

the process of prediction model training and evaluation. Section 3.6 presents a 

description of the ensemble prediction model for the index trend prediction. 

Section 3.7 presents a description of the three most common prediction models in the 

domain of stock price and index trend prediction applications i.e. SVM, k-nearest 

neighbour and logistic regression. 

 

3.2 Data and Data Sources 

    The research data used in this empirical study is the daily data of the JSE All-

Share index obtained from Bloomberg. The data comprise of the open, high, low and 

close daily index values that spanned from 1st August 2002 to 15th July 2016, totalling 

3489 trading days of the JSE. Since this research evaluates prediction model 

performance in predicting the indices daily trend, each trading day closing index is 

compared to the previous day closing index. This comparison then yields a daily trend 

response assuming one of two values, up or down. As an example, the closing index 

value for the JSE All-Share on the 1st and 2nd of September 2011 was 31088.12 and 

30518.92 respectively. This is regarded as a down trend response for trading the day, 

2nd of September 2011, and this down trend is to be predicted on the 1st of September 

2011. 

    Table 3.1 presents the number of up and down movements for each year in the 

time period of the research data. The table also presents the percentage of up and 

down movements for each year giving an indication of the volatility of the index on 
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an annual basis. In the 3489 trading days of the research data, 1869 days recorded up 

movements while 1619 days recorded down movements. The number of up trends is, 

on average, 8% more than the number of down trends over the 15 years of the index 

data.  

    This result is coherent considering the index closing value increased from 9216.30 

on the 1st of August 2002 to 53088.46 on the 15th of July 2016, resulting in a 5.8 fold 

increase in the above time period. 

 

Table 3.1: Annual number of up and down movements on the All-Share index. 

Year   Down %   Up %   Total 

2002  54 52%  50 48%  104 

2003  123 49%  127 51%  250 

2004  115 46%  136 54%  251 

2005  105 42%  146 58%  251 

2006  108 44%  140 56%  248 

2007  108 43%  142 57%  250 

2008  133 53%  118 47%  251 

2009  114 46%  136 54%  250 

2010  116 46%  135 54%  251 

2011  121 49%  128 51%  249 

2012  107 43%  143 57%  250 

2013  114 46%  136 54%  250 

2014  124 50%  125 50%  249 

2015  121 48%  130 52%  251 

2016   56 42%   77 58%   133 

Total   1619 46%   1869 54%   3488 

 

3.3 The Technical Indicators 

    The raw index data described in Section 3.2 above was used to generate a set of 

technical indicators that served as inputs to the various index trend prediction models, 

i.e., ensemble, SVM, LR and KNN. A total of ten technical indicators were used in 

this study as described in Kara et al. (2011), Patel et al. (2015), Kim (2003) and 

Kumar & Thenmozhi (2006). These technical indicators are relavant in stock 

prediction as fund managers and investment professionals often use them in their 

analysis and predictions of levels and trends in financial data. Table 3.2 presents the 

ten technical indicators with their respective equations. A description of each technical 

indicator is as follows: 
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3.3.1  Moving Averages 

    The simple moving average (SMA) and the weighted moving average (WMA) are 

basic technical analysis tools that are commonly used to smoothen out time series 

serial data by computing average levels of the serial data on a daily basis. In the 

current study, a ten day average on the closing index values were taken as in Kara et 

al. (2011) and Patel et al. (2015). Thus, the value of n as used in Table 3.2 for 

computing all technical indicators is ten days. 

 

3.3.2  Momentum 

    Momentum (MOM), in the context of technical analysis on financial time series, is 

the difference between two price levels that is separated by a given number of periods, 

n. It is an indication of the rate of rise and fall of the market index. The momentum 

was calculated on the daily closing index values. 

 

3.3.3  Stochastic Oscillators 

    Stochastic K (STCK), Stochastic D (STKD) and Larry Williams R% (WILLR) are 

all stochastic oscillator technical indicators. These oscillators are used to indicate 

trends in serial data. Increasing stochastic oscillators for closing index levels generally 

indicate an expected increase in future levels and vice-a-versa (Patel et al., 2015). The 

stochastic technical indicators use the lowest low and highest high index levels for a 

given time period as well as the high and low index levels for a particular day. 

 

3.3.4  Relative Strength Index 

    Relative Strength Index (RSI) is a momentum indicator that measures a stock’s 

price relative to itself and its past performance. The RSI function requires the index 

movements that are based on closing index values. When applied to common stocks, 

the RSI can be used to identify overbought and oversold points. If the RSI exceeds 

70, it can be interpreted that the stock is overbought and its price is highly likely to 

drop in the near future. If the value falls below 30, it can be interpreted as the stock 

being oversold and its price is likely to go up in the near future (Patel et al., 2015). 
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Table 3.2: Technical indicators, their formulas and variable definition. 

 

 

Simple Moving Average (SMA)   

  

 

 

Weighted Moving Average (WMA)  

  

  
Momentum (MOM) 

 

  

 

 

Stochastic K% (STCK) 
 

  

 

 

Stochastic D% (STCD)  

  

 

 

Relative Strength Index (RSI) 
 

  

 

 

Moving Avg. Convergence Divergence (MACD) 
 

   

 
Larry Williams R% (WILLR)  

   

 
Accumulation Distribution Oscillator (ADO) 

 

  

 

 

Commodity Channel Index (CCI) 
 

  
 

Ct, Lt, Ht is the closing price, low price and the high price respectively at time t. 

DIFFt = EMA(12)t - EMA(26)t where EMA is an exponential moving average given by the equation: 

EMA(k)t = EMA(k)t-1 + α(Ct-EMA(k)t-1) 

where a smoothing factor α = 2/(k+1) and k is the time period of k-day exponential moving average. 

LLt and HHt is the lowest low and highest high level in the last t days. 

Mt = (Ht+Lt+Ct)/3 ;  SMt = (∑Mt-i-1)/n ; Dt = (∑|Mt-i-1 - SMt|)/n 

UPt and DWt is the upward and downward price change at time t respectively. 
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3.3.5  Moving Average Convergence Divergence 

    Moving Average Convergence Divergence (MACD) is a technical indicator that 

follows the trend of a stock. If MACD increases then the stock prices are expected to 

go up and vice-a-versa. MACD is computed from the closing index levels of the 

financial time series via the exponential moving average values. 

 

3.3.6  Accumulation Distribution Oscillator 

    The Accumulation Distribution Oscillator (ADO) is another oscillator technical 

indicator that follows the trend of an index. The ADO is computed using high, low 

and closing index levels of the index time series. 

 

3.3.7  Commodity Chanel Index 

    The Commodity Chanel Index (CCI) is another oscillator introduced in 1980 by 

Donald Lambert. It is widely used to identify cyclical trends in various financial time 

series applications. It does this by measuring the variation of a securities price from 

its statistical mean (Kim, 2003). The CCI is computed by first determining the typical 

price, the simple moving average and the mean absolute deviation of the typical price. 

The CCI is normally scaled by an inverse factor to ensure that about 80% of the 

values fall within the bounds of -100 and +100. 

    All technical indicators were computed from the JSE All-Share index daily data. 

Table 3.3 presents the summary statistics of the ten technical indicators generated 

from the JSE All-Share index data using the equations presented in Table 3.2. Each 

of the ten technical indicators are associated with a minimum value, a maximum 

value, a mean and a standard deviation. These statistical values of each technical 

indicator provide technical analysts insight into the technical characteristics of each 

technical indicator as well as that of the financial time series under study. 
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Table 3.3: Summary statistics of the technical indicators for the All-Share index. 

No. Technical Indicator Min. Max. Mean Std. Dev 

1 SMA 7561,85 54538,24 28916,00 13719,58 

2 WMA 7567,07 54631,17 28934,46 13722,84 

3 MOM -4870,80 4252,02 110,83 954,58 

4 STCK 0,00 100,00 58,79 31,56 

5 STCD 1,88 99,58 58,78 27,66 

6 MACD -1439,19 1076,04 86,88 326,88 

7 RSI 0,00 100,00 54,85 19,24 

8 WILLR -100,00 0,00 -41,21 31,56 

9 ADO -6,21 100,00 53,54 31,74 

10 CCI -285,08 299,62 11,59 83,17 

 

 

3.4 The Model Input Data 

    Technical indicators generated from the raw index data as described in Section 3.2 

is pre-processed before being used as the input data to train and evaluate the 

prediction models viz. ensemble, SVM, logistic regression and k-nearest neighbour. 

Two methods of pre-processing the technical indicators are used in this study. The 

first method is the continuous representation of the input data and the second method 

is the trend deterministic representation of the input data. Since this study involves 

predicting the direction of the next days index level, a binary categorical response 

variable form part of the input data. The response variable assumes one of two values, 

up or down. 

 

3.4.1  Continuous Input Representation 

    The continuous representation involves down-scaling of the technical indicators as 

in Kumar & Thenmozhi (2006), Kara et al. (2011) and Ballings et al. (2015). In this 

input representation method, the technical indicators are linearly normalised to the 

values in the range [-1; +1] and thereafter, used as inputs to the prediction models. 

This input method ensures that the higher magnitude technical indicators do not 

overpower smaller magnitude indicators within the various prediction algorithms. The 

max-min normalisation formula is presented in equation (3.1). 
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where 

� x	’ is the linearly normalised technical indicator variable. 

� x is the original, non-normalised technical indicator. 

� max(x) and min(x) is the maximum and minimum values of the non-

normalised technical indicators. 

� LimL and LimU is the lower and upper limit respectively of the required 

normalised values i.e. [-1; +1]. 

 

    Figure 3.1 illustrates the prediction model training process for a single training 

record using the continuous value representation of the ten linearly normalised 

technical indicators. The linear normalisation of each technical indicator is explained 

in Section 3.4.1 and computed using equation (3.1). Each of the linearly normalised 

technical indicators are computed using the index data of that particular day together 

with previous index data as described by the set of equations presented in Table 3.2. 

In Figure 3.1, all the technical indicators are computed using index data up to and 

including the 1st of September 2011. As this is the training process, a response variable 

must also be input to the model together with the continuous, linearly normalised 

technical indicators for that particular training record. The response variable will be 

computed using the next day’s closing index value. As an example, the closing value 

of the index on the 2nd of September 2011 was 30518.92. Since this was lower than the 

closing index value on 1st of September 2011 (i.e. 31088.12), the training response 

variable will assume the value down and this will be used as the input in the training 

record for the 1st of September 2011.  
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Figure 3.1: Illustration of the training process using continuous value technical indicators. 

 

3.4.2  Trend Deterministic Input Representation 

    The trend deterministic input representation of the technical indicators involve 

discretising each of the ten technical indicators in order for them to represent a trend. 

In this form of input representation, the technical indicators assume either a value of 

+1, representing an upward trend for that technical indicator, or -1, representing a 

downward trend for the technical indicator. This input method is in contrast with the 

continuous input method where each of the technical indicator inputs can assume an 

infinite set of values in the range [-1; +1]. Patel et al. (2015) compared this method 

of input against the continuous variable input method. The study revealed that the 

trend deterministic method outperformed the continuous variable method when tested 

with market index data from India. 

    A 10 day moving average was used in the computation of SMA and WMA. If the 

current closing price is higher than the current value of the SMA, the trend 

deterministic value for SMA is +1. If the current closing price is lower than the current 

value of the SMA, the trend deterministic value for SMA is -1. The same logic applies 

in computing the trend deterministic values for WMA. 
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    The three stochastic oscillators including STCK, STCD and WILLR are general 

trend indicators for financial time series data. When the value of these osillators at 

time t is greater than their value at time t-1, their trend deterministic value will be 

+1. If the value of the oscillator at time t is less than that of time t-1, then their 

trend deterministic value will be -1. 

    The MACD is a technical indicator that follows the trend of a stock. An increase 

in MACD is associated with an increase in the value of time series. Thus, if the value 

of MACD at time t is greater than its value at time t-1, its trend deterministic value 

will be +1. If the value of the MACD at time t is less than that of time t-1, then its 

trend deterministic value will be -1. 

    The RSI is generally used to identify overbought and oversold points. Values of 

RSI exceeding 70 indicate that stocks are overbought and as a result, prices are likely 

to decrease in future. In this case, the trend deterministic value for RSI will be -1. 

Values of RSI below 30 indicate that stocks are oversold and prices are likely to go 

up in future. In this case, the trend deterministic value for RSI will be +1. For values 

of RSI in the range [30; 70], if the value of RSI at time t is greater than its value at 

time t-1, its trend deterministic value will be +1 and vice-a-versa (Patel et al., 2015). 

    The CCI is also used to identify overbought and oversold levels. In this study, a 

CCI value exceeding +200 was used to indicate an overbought stock and is 

respresented by a trend deterministic value of -1. If the value of CCI is less than -200, 

the indication is that the stock is oversold and is respresented by a trend deterministic 

value of +1 (Patel et al., 2015). 

    The ADO is another oscillator that identifies trends. If its value at time t is greater 

than its value at time t-1, its trend deterministic value will be +1. If the value of 

ADO at time t is less than that of time t-1, then its trend deterministic value will be 

-1. 

    MOM is an indicator of the rate of rise and fall of stock prices. Trend deterministic 

values of MOM is determined from the sign of the MOM indicator only. If the value 

of MOM at time t is positive, then its trend deterministic value will be +1. If its value 

at time t is negative, then its trend deterministic value will be -1. 

    Figure 3.2 illustrates the model training process using trend deterministic technical 

indicators. The training process is similar to the training process for the continuous 
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value technical indicators. The difference here is that the previous day technical 

indicator and the current day technical indicator is used in determining the discrete 

trend indicator i.e. the trend indicator assuming a value of either -1 or +1. As an 

example, if the WMA on the 31st of August 2011 is 29984.79 and the WMA on the 1st 

of September 2011 is 30229.85, the WMA trend indicator for the 1st of September 2011 

will then be +1 indicating an upward trend in WMA. If, however, the WMA on the 

1st of September 2011 was less than the WMA on the 31st of August 2011, the WMA 

trend indicator for the 1st of September 2011 will then be -1 as this represents a 

downward trend in WMA for that particular trading day. The computations for the 

response variable is the same as for the response variable in the continuous input 

value training process where the closing index value of the following day was compared 

to that of the current day. Thus, for the trend deterministic indicator training model, 

both the technical indicators and the response variable are binary, i.e., each technical 

indicator assumes only one of two values, -1 indicating an downward trend and +1 

indicating an upward trend. The response variable assumes only one of two values, 

up or down. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Illustration of the training process using trend deterministic technical indicators. 
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3.5 Training and Evaluation  

    The process of training and evaluating the prediction models both require model 

input data as described in Section 3.4. The training process uses both the technical 

indicators and the response variable as inputs while the evaluation process uses just 

the technical indicators as inputs to the trained model and thereafter compares the 

models predicted response to the actual response. The general training and evaluation 

process is illustrated in Figure 3.3 and Figure 3.4 respectively.  

 

 

 

 

 

Figure 3.3: General prediction model training process. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: General prediction model evaluation process. 
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    The training and evaluation datasets were each equal portions of the total data 

available. The total dataset as presented in Table 3.1 was used to create three separate 

training and evaluation datasets each with a different thresholds for the response 

variable: 0%, 0.5% and 1.0%. As an example, the 0.5% threshold dataset will have 

the response variable equal to up only if the increase in the next day index value 

exceeds 0.5%, else the response variable will be equal to down. Each dataset for the 

three thresholds were divided equally into training and evaluation portions for each 

year as presented in three tables in Appendix A. Figure 3.5 below graphs the number 

of up and down movements for each threshold dataset. Figure 3.5 also shows that the 

proportion of down movements increases as the response threshold increases for the 

fixed total dataset size of 3488. This is due to the index value increasing 5.8 fold in 

the timespan of the dataset and thus a higher threshold level would result in more 

responses being regarded as down instead of up. 

 

 

 

 

 

 

 

 

Figure 3.5: Response variable ratio for the three levels of threshold. 

 

    The area under the receiver operating characteristic (ROC) curve is seen as an 

adequate and accurate measure of prediction model performance as used in Ballings 

et al. (2015), Patel et al. (2015), Kara et al. (2011) and Rodriguez & Rodriguez (2004). 

The ROC assumes values in the range of [0.5; 1.0] where 0.5 indicates that the 

prediction is no better than random and a value of 1.0 indicates a perfect predictor. 

The ROC is computed using equation (3.2). 
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where: 

� TP is the true positive (i.e. up) rate. 

� TN is the true negative (i.e. down) rate. 

� FP is the false positive rate. 

� FN is the false negative rate. 

� P is the number of positive events. 

� N is the number of negative events. 

 

    Another commonly used measure for prediction performance is the percent 

correctly classified (PCC) as in studies by Kumar & Thenmozhi (2006), Kim (2003) 

and Manojlovic & Stajduhar (2015). The PCC is computed using equation (3.3). 

 

��� =	 7� + 787� + 78 + "� + "8																																																																																	(3.3) 
 

    In this study, both the ROC and the PCC are computed but the ROC will be used 

as the performance evaluator and to rank the predictor models. Ballings & van den 

Poel (2013) stated than an advantage of the ROC over the PCC is that ROC includes 

all cut-off values in the computations of accuracy. 

 

3.6 The Ensemble Prediction Model Performance 

    Ensemble prediction models are decision tree based models that are able to predict 

outcomes by averaging the outcomes from multiple decision trees. Problems that are 

statistical, computational and representational in nature can be readily solved by 

ensemble prediction models (Dietterich, 2000). The rationale behind ensemble 

prediction models is that a single decision tree alone is insufficient in accurately 

predicting an outcome based on a subset of available data. As only a subset of the 

data is used to train a single decision tree, it may not be able to distinguish between 
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noise and a definite pattern in the data. Hence, the majority decision from n decision 

trees is considered as the final output of the ensemble prediction model.  

    In the financial index trend prediction application, each node of a decision tree in 

the ensemble is split with a technical indicator from a random sample of the ten 

available technical indicators. The choice of technical indicator performing the actual 

split is the one that generates the highest information gain, i.e., the one that separates 

the up and down movements in the most effective manner. Each tree alone is trained 

from a random sample with replacement of the available data. The general training 

process for an ensemble training process is shown in Figure 3.6 below. There are many 

variation algorithms for ensemble predictions models each differing in the way data is 

selected and used to train the decision trees within the collection. Five ensemble 

algorithms are evaluated in this study namely: Boosted, RUS-Boosted, Sub-Space 

Discriminant, Bagged Trees and Sub-Space KNN. Details of these ensemble prediction 

algorithms remain beyond the scope of this study, however, differences in the 

prediction speed, memory usage, interpretability and model flexibility is presented in 

detail in Table B.1 of Appendix B. 

   

 

 

 

 

 

 

 

 

 

 

Figure 3.6: General training process for ensemble prediction models. 
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3.7 Prediction Performance of Other Models   

    This study primarily aims to evaluate the efficiency of ensemble prediction models 

in predicting the daily trend of the JSE All-Share index compared to other three most 

common prediction models in recent literature. The same training and evaluation 

datasets are used for all four prediction models to ensure an unbiased evaluation and 

comparison. The three other prediction models used in the comparison are SVM, 

logistic regression and KNN. An array of algorithms for each prediction model are 

evaluated in order to provide a comprehensive evaluation of all models in predicting 

the JSE All-Share index. The details of the algorithms for each of the four prediction 

models are presented in Appendix B. These details are in terms of prediction speed, 

memory usage, model interpretability and model flexibility. 

 

3.7.1  SVM Prediction Models 

    The SVM prediction model was first developed by Vapnik (1999). It comprises of 

two categories: support vector classification (SVC) and support vector regression 

(SVR). The SVM model is characterised by high dimensional variable space and points 

are either classified as one of two disjoint half spaces or a higher dimensional feature 

space. The primary objective of the SVM algorithm is to establish a hyperplane that 

separates the data and maximises the margin of the hyperplane. The best hyperplane 

would therefore be one with the largest margin between the two classes of data. 

Support vectors are the points of data that lie closest to the hyperplane that separates 

the data. In the index trend scenario, the separating hyperplane would separate the 

up and down movements in two dimensions via any two of the ten available technical 

indicators. 

    Figure 3.7 below illustrates the two dimension case where two technical indicators 

are able to linearly separate the two classes of output, namely, the up and down daily 

trends. A separating margin is created from the datapoints of a class that is closest 

to the separating hyperplane. The support vectors are generated by the datapoints 

that lie on the margin at a variable distance away from the separating hyperplane. 
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Figure 3.7: SVM classification principle using the separating hyperplane. 

 

    A kernel function performs the mapping of the feature space in the SVM prediction 

model. In the index trend prediction application, a ten dimension feature space exists. 

A regularization parameter of the SVM algorithm accounts for misclassifications 

resulting from the trade-off arising between the separating margin and 

misclassification of the classes. The kernel function can be set in order to generate 

variations in the SVM models. Variation in the kernel functions result in linear, cubic, 

quadratic and gaussian variations of the SVM algorithm. The gaussian algorithm 

contains three sub-variations namely: fine gaussian, medium gaussian and coarse 

gaussian. Each of these variations differ in the way distinctions between classes are 

made within the algorithm. 

    In the two class prediction application, the set of input vectors are represented as 

xi ∈	Rd where i = 1,2,…,N with the corresponding class labels represented by yi ∈	{up, 
down}. The SVM attempts to generate a decision function that would result in a 

binary classifier from the available sample data. The SVM maps the input vectors 

into a high dimensional feature space Φ (xi) ∈	H thus creating an optimal seperating 

hyperplane that maximises the separating margin of the two classes within the feature 

space H (Kara, Boyacioglu, & Baykan, 2011; Patel et al., 2015). 
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    The mapping performed by the kernel function K(xi,xj) results in a classifier 

decision boundary as described in equation (3.4). Quadratic programming is then used 

to solve for the coefficients =� 	subject to the conditions given by equation (3.5) and 
equation (3.6) (Kara, Boyacioglu, & Baykan, 2011). 

 

>(') = 	sgn *BC�=� ∙
E
���

	�(', '�) + F0																																																																	(3.4) 
     

�-',+,HIB=�
E
���

− 12		BB=�
E
J��

E
���

=J ∙ C�CJ ∙ �K'� , 'JL																																									(3.5) 
 

where 0 ≤ =� ≤ c 
 

B=�
E
���

C� = 0																																																																																																																	(3.6) 
 

    The regularization parameter is defined by the constant c. The degree of kernel 

function is given by d (in the case of polynomial kernel function) and γ (in the case 
of radial basis kernel function). The choice of kernel function directly affects prediction 

quality. The polynomial kernel function is described by equation (3.7) and the radial 

basis kernel function is described by equation (3.8). 

 

�K'�, 'JL = 	 K'� ∙ 'J + 1LO																																																																																								(3.7) 
�K'�, 'JL = 	exp T−UV'� − 'JVWX																																																																											(3.8) 
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3.7.2  KNN Prediction Models 

    The k-nearest neighbour classification involves categorising points based on their 

distance to neighbour points within a training dataset. This classification method 

proves effective in the domain of pattern recognition, data-mining and machine 

learning and is comparable with even the state-of-the-art methods while still requiring 

unassuming computations (Atkeson, Moore, & Schaal, 1997). The KNN algorithm is 

based on the closest training example feature space (Huang et al., 2008; Kelly & Davis, 

1991). A single datapoint is classified to a class that is most common among its k 

nearest datapoints. During model training, the KNN algorithm stores both the feature 

vectors and the classification variables.  

    In the index trend prediction application, the feature vector is one consisting of 

the ten techncial indicators associated with the classification variable i.e. up or down. 

During the evaluation or classification phase, a new feature vector consisting of ten 

technical indicators is input to the prediction model. Distances from the new vector 

and the existing stored vectors is calculated and the k closest samples are then 

selected. The new vector is then classified according to the most frequent class within 

the vector set (Huang et al., 2008). 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: KNN classification principle using two technical indicators. 
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    Figure 3.8 shows an example of the KNN prediction principle for the market index 

trend application. A two dimensional representation of the training data is illustrated 

via two technical indicators, similar to that of the SVM classification model in Figure 

3.7. When a prediction is required, a new point within the ten dimensional technical 

indicator space is inserted. This new point can also be reflected in any set of the two 

dimensional technical indicator space as illustrated by an orange ? in Figure 3.8. Using 

a circular distance measure with the unknown point at the centre of the circle, the 

nearest six points is found with four of them belonging to the up class and two of 

them belonging to the down class. The unknown point is then classified into the up 

class by the prediction algorithm. 

    Various metrics are used to define the number of neighbours allowed within the 

prediction algorithm. The number of neighbours can be chosen via fixed KNN 

algorithms. The fine, medium and coarse KNN algorithms sets the number of 

neighbours to 1, 10 and 100 respectively. The distance metric can also be varied using 

the cosine, cubic and weighted distance metrics of the KNN algorithms. The distance 

between points is generally determined by a Euclidean parameter which defines the 

dissimilarity or distance d(i,j) between a point i and point j where d(i,j) is defined by 

equation (3.9), Rq is the range of any classified point q and p is the unclassified point. 

 

 	
9(,, [) = 	\]^'���J�^4� _W + ]^'�W�JW^4W _W+	. . . + ]^'�`�J`^4` _W 																														 (3.9) 
 

    A method is then selected that combines classifications generated from k nearest 

neighbours in classifying the point p. The most common method is the voting method 

where the class given to point p is the majority class within the defined neighbours. 

Another method that eliminates the effect of unequal class points is one that averages 

the distances between each class point. As an example, an unclassified point p is 

classified to class C1 (in a binary classification problem with classes C1 and C2), if the 

condition in equation (3.10) is satisfied. 
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1b� B 9(,, c)	
�	∈	de(`,f)

			< 					 1bW B 9(,, c)	
�	∈	dh(`,f)

																																																						(3.10) 
  

    k1 is the total points belonging to class C1 and k2 is the total points belonging to 

class C2 and k = k1 + k2. A third method is one that compares the total number of 

class points of each class within the k nearest neighbours. Similarly, in a binary 

classification example with classes C1 and C2, the unknown point p will be classified 

into class C1 if equation (3.11) is satisfied. 

 

B 9(,, c)				
�	∈	de(`,f)

<			 B 9(,, c)	
�	∈	dh(`,f)

																																																																(3.11) 
 

    In instances where the classes are highly asymmetric, the class with the higher 

number of data points will naturally be favoured. In such a case, k1 and k2 can e user 

defined parameter in the k nearest neighbour algorithm (Huang et al., 2008). 

 

3.7.3  LR Prediction Models 

    LR prediction models are statistical regression models which use binary dependant 

variables as the output. In the index trend prediction application, the dependant 

variable is the trend that assumes the value up or down. LR models applies the 

maximum likelihood estimation after the dependant variable is transformed into a 

logit variable (Ou & Wang, 2009). In this way, the LR prediction model estimates the 

probability of occurrence of the possible events. In the index trend prediction 

application, the goal of the LR model is to predict the following day trend into one of 

two classes. The regression output for the LR prediction model can be computed using 

equation (3.12) where Y represents the output of the prediction model, TI represents 

each of the ten technical indicators and the β is the regression coefficients. 
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i = j� + j�7!� + jW7!W+. . . +j��7!��																																																															(3.12)	
     

    A logistic response function is thereafter used to convert Y into a probability value. 

The probability function is computed using equation (3.13). An output classification 

can be made by simply providing a cut-off probability. The ten technical indicators 

serve as the independent variables while the prediction model output serve as the 

dependant variable that is binary assuming one of two values, up or down.  

 

� = 	 exp(j� + j�7!�+	.		.		. +j��7!��)1 + exp(j� + j�7!�+	.		.		. +j��7!��)																																																							(3.13) 
 

 

Chapter Summary 

    This chapter presented the methodologies used in the evaluation of the ensemble 

prediction models as well as the three comparative prediction models. A detailed 

description of the JSE All-Share index data was first presented. The index data was 

described in terms of the daily movement on a yearly basis. This was followed by the 

derivation and description of the ten technical indicators. These technical indicators 

were pre-processed to form two representations of the prediction model input data, 

i.e. the continuous and the trend deterministic representation. These two forms of 

representation of the technical indicators were then used to train and evaluate each 

prediction model using three threshold levels for the response variable. Chapter 4 

presents the evaluation results of the ensemble prediction model together with the 

results from the three comparative models, i.e. SVM, k-nearest neighbour and logistic 

regression.  
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Chapter 4 

Presentation of Results        
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4.1 Introduction 

    This chapter presents the results of the performance of ensemble prediction models 

in predicting the JSE All-Share index daily direction. The performance of the ensemble 

prediction model is then compared to the performance of three other commonly used 

prediction models used in financial time series prediction. The chapter is structured 

as follows: Section 4.2 presents the performance of the ensemble prediction models in 

predicting the daily direction of the JSE All-Share index. Section 4.3 presents the 

performance of the three comparative prediction models, i.e. support vector machine, 

k-nearest neighbour and logistic regression. Section 4.4 presents the overall evaluation 

results where each of the four prediction models is represented by its best performing 

algorithm. 

 

4.2 Ensemble Prediction Model Performance 

    The performance results of all five ensemble prediction model algorithms is 

presented in Table 4.1. The results are presented in terms of PCC and ROC and 

presented for each of the six possible data input method combinations i.e. continuous 

and trend deterministic inputs each based on 0%, 0.5% and 1.0% thresholds of the 

trend response variable.  

    The Boosted and RUS-Boosted ensemble algorithms both have the highest ROC 

value of 0.65 with a PCC of 82.80% for the Boosted algorithm and a PCC of 60.10% 

for the RUS-Boosted algorithm. These results are achieved with the continuous data 

input method and a 1.0% threshold of the response variable. Thus, the Boosted 

ensemble algorithm managed to correctly predict 82.80% of the trends in the 

evaluation dataset while the RUS-Boosted algorithm only managed to correctly 

predict 60.10% of the trends in the evaluation dataset. From the evaluation results 

provided in Table 4.1, it can be seen that as the threshold for the response variable 

increases from 0% to 1.0%, the ROC also increases for all five ensemble algorithms 

using both trend and continuous input data.  

    Figure 4.1 illustrates a bar graph of the ROC values from all five ensemble 

algorithms using the continuous input data method and 1.0% threshold in the response 

variable. This plot was chosen as it represents the best performance from all six input 

methods.  
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Table 4.1: Evaluation results for the ensemble prediction model algorithms. 

Input 

Method 

  
Threshold 

  Boosted  Bagged  Subspace Disc  Subspace KNN  RUS-Boosted 

    PCC ROC  PCC ROC  PCC ROC  PCC ROC  PCC ROC 

Continuous  0,00%  52,20% 0,50  53,30% 0,52  53,10% 0,52  49,30% 0,50  50,20% 0,50 

Continuous  0,50%  65,30% 0,55  63,00% 0,53  66,40% 0,57  61,80% 0,53  50,10% 0,54 

Continuous  1,00%  82,80% 0,65  81,80% 0,61  82,80% 0,62  80,80% 0,58  60,10% 0,65 

Trend  0,00%  53,10% 0,51  53,20% 0,51  53,60% 0,51  50,10% 0,52  51,00% 0,52 

Trend  0,50%  63,70% 0,51  62,70% 0,51  66,40% 0,53  51,20% 0,50  52,60% 0,51 

Trend   1,00%   82,60% 0,57  82,40% 0,53  82,80% 0,58  76,90% 0,55  62,90% 0,55 

 

 

 

 

 

 

 

 

Figure 4.1: Ensemble model performance results for each ensemble algorithm.
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4.3 Performance of Comparative Models  

    The detailed evaluation results for the three comparative prediction models, i.e., 

SVM, k-nearest neighbour and logistic regression is discussed below. The presentation 

of the results is similar to that of the ensemble prediction model where each models 

algorithm performance is represented by its ROC and PCC values. 

 

4.3.1  SVM Model Performance 

    Six SVM algorithms are trained and evaluated using same dataset used in the 

training and evaluation of the ensemble prediction model algorithms. The six SVM 

algorithms used in the evaluation are the linear, quadratic, cubic, fine gauss, medium 

gauss and the coarse gauss. Table 4.2 presents the detailed evaluation results for all 

six SVM algorithms. The results are presented for all six possible data input method 

combinations, i.e., continuous and trend deterministic inputs each based on 0%, 0.5% 

and 1.0% thresholds of the trend response variable.  

    Details of each SVM prediction algorithm in terms of prediction speed, memory 

usage, interpretability and model flexibility is presented in Table B.2 of Appendix B. 

The best performing SVM algorithm is the fine gauss with an ROC of 0.59 and a PCC 

of 82.60%. This result is achieved with the continuous data input method and a 1.0% 

threshold of the trend response variable. From the evaluation results in Table 4.2, it 

can be seen that each of the SVM algorithms performance, in terms of ROC, does not 

necessarily increase as the threshold of the response variable increases from 0% to 

1.0%. This is in contrast to the ensemble algorithms where the performance of all 

prediction algorithms increased as the response threshold increased. This best 

performing SVM algorithm, i.e. fine gauss with an ROC of 0.59, is only marginally 

better than the worst performing ensemble algorithm, i.e. Subspace KNN with an 

ROC of 0.58.  

    Figure 4.2 illustrates a bar graph of the ROC values from all six SVM algorithms 

using the continuous input data method and 1.0% threshold in the response variable. 

Similar to the ensemble algorithms, this was chosen as it represents the best 

performance from all six input methods. 

 



42 

 

Table 4.2: Evaluation results for the SVM prediction model algorithms. 

Input 

Method 

  
Threshold 

 Linear  Quadratic  Cubic  Fine Gauss  Med. Gauss  Coarse Gauss 

    PCC ROC  PCC ROC  PCC ROC  PCC ROC  PCC ROC  PCC ROC 

Continuous   0,00%   53,60% 0,52  53,00% 0,52  54,00% 0,52  52,10% 0,51  53,60% 0,53  53,60% 0,51 

Continuous   0,50%   66,40% 0,54  66,40% 0,53  64,60% 0,51  64,20% 0,54  66,40% 0,52  66,40% 0,50 

Continuous   1,00%   82,80% 0,49  82,80% 0,55  82,70% 0,55  82,60% 0,59  82,80% 0,56  82,80% 0,58 

Trend   0,00%   53,60% 0,49  52,20% 0,51  50,80% 0,51  51,60% 0,50  52,00% 0,50  53,60% 0,49 

Trend   0,50%   66,40% 0,53  66,40% 0,49  64,90% 0,52  65,60% 0,50  66,10% 0,51  66,40% 0,49 

Trend   1,00%   82,80% 0,46  82,80% 0,51  82,10% 0,50  82,50% 0,52  82,80% 0,51  82,80% 0,48 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: SVM model performance results for each SVM algorithm. 
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4.3.2  KNN Model Performance 

    Six KNN algorithms are also trained and evaluated using same dataset used in the 

training and evaluation of the ensemble and SVM prediction model algorithms. The 

six KNN algorithms used in the evaluation are the fine, medium, coarse, cosine, cubic 

and the weighted. Table 4.3 presents the detailed evaluation results for all six KNN 

algorithms. The results are presented for all six possible data input methods as for 

the ensemble and SVM algorithms. Details of each KNN prediction algorithm in terms 

of prediction speed, memory usage, interpretability and model flexibility is also 

presented in Table B.3 of Appendix B. The best performing KNN algorithm is the 

coarse algorithm with an ROC of 0.62 and a PCC of 82.80%. This best result is also 

achieved with the continuous data input method and a 1.0% threshold of the trend 

response variable, similar to that of the ensemble and SVM models.  

    From the evaluation results in Table 4.3, it can be seen that each of the KNN 

algorithms performance, in terms of ROC, increase as the threshold of the response 

variable increases from 0% to 1.0%. This increase in performance however, is only 

applicable to the continuous data input method. For the trend deterministic input 

method, an increase in the threshold of the response variable does not necessarily 

translate to an increase in model performance. As an example, in the fine KNN 

algorithm, the ROC for the trend deterministic input at a 0% response variable 

threshold is 0.52. At a 0.50% response variable threshold using trend deterministic 

input, the ROC decreased to 0.49. This result is similar to that of the SVM algorithms 

and in contrast to the ensemble algorithms where the performance increased as the 

response variable threshold increased. The exception is in the case of the coarse KNN 

algorithm where the ROC did not decrease as the response variable threshold 

increased from 0% to 1.0% with trend deterministic inputs. The ROC for the coarse 

KNN algorithm actually increased from 0.52 to 0.53 as the response threshold 

increased from 0% to 0.50% and remained at 0.53 for the response threshold increasing 

to 1.0%. 

    Figure 4.3 illustrates a bar graph of the ROC values from all six KNN algorithms 

using the continuous input data method and 1.0% threshold in the trend response. 

Similar to the ensemble and SVM algorithms, this was chosen as it results in the best 

performance from all six data input methods. 
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Table 4.3: Evaluation results for the KNN prediction model algorithms. 

Input 

Method 

  
Threshold 

  Fine  Medium  Coarse  Cosine  Cubic  Weighted 

    PCC ROC  PCC ROC  PCC ROC  PCC ROC  PCC ROC  PCC ROC 

Continuous   0,00%   50,00% 0,50  50,40% 0,50  51,80% 0,50  49,00% 0,49  49,20% 0,50  51,20% 0,50 

Continuous   0,50%   56,80% 0,51  64,10% 0,55  66,60% 0,57  64,20% 0,55  64,20% 0,55  63,40% 0,55 

Continuous   1,00%   73,20% 0,52  82,30% 0,60  82,80% 0,62  82,60% 0,58  82,20% 0,60  81,00% 0,60 

Trend   0,00%   51,60% 0,52  48,20% 0,51  51,60% 0,52  48,10% 0,51  48,20% 0,51  47,80% 0,50 

Trend   0,50%   50,80% 0,49  63,60% 0,51  66,40% 0,53  63,50% 0,51  63,60% 0,51  63,50% 0,51 

Trend   1,00%   72,20% 0,52  82,40% 0,50  82,80% 0,53  82,40% 0,50  82,40% 0,50  81,70% 0,50 

 

 

 

 

 

 

 

 

 

 Figure 4.3: KNN model performance results for each KNN algorithm.
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4.3.3  LR Model Performance 

    Since the LR model does not contain any algorithm variants or parameters to 

adjust the model, only a single set of results in terms of PCC and ROC is computed 

for each of the six forms of input data as presented in Table 4.4 below. The best 

performance of the LR prediction model is also achieved with the continuous input 

data representation and 1.0% threshold on the response variable. This yields an ROC 

of 0.61 and a PCC of 82.80%. It is also evident from Table 4.4, that the LR prediction 

model performance increases as the response threshold increases when using both the 

continuous and trend deterministic input data representation. This behaviour is 

similar to that of the ensemble prediction model algorithms. Figure 4.4 illustrates a 

bar graph of the ROC values for all six data input methods of the LR prediction 

model. 

 

Table 4.4: Evaluation results for the LR prediction model. 

Input Method 
  

Threshold 

 LR 

   PCC ROC 

Continuous   0,00%   53,80% 0,51 

Continuous  0,50%  66,40% 0,55 

Continuous  1,00%  82,80% 0,61 

Trend  0,00%  51,80% 0,51 

Trend  0,50%  66,40% 0,53 

Trend   1,00%   82,80% 0,58 

 

 

 

 

 

 

 

 

 

Figure 4.4: LR model performance results for the six data input methods. 
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4.4 Overall Model Evaluation 

    Figure 4.5 presents the overall evaluation result where each prediction model is 

represented by it best performing algorithm. The ROC for each model is based on 

continuous input technical data with 1.0% threshold of the response variable as this 

input and response combination resulted in the best overall performance in all 

prediction models. Figure 4.5 shows that the ensemble prediction model is the best 

performer of the four models, followed closely by KNN, LR and SVM. The ensemble 

prediction model is represented by the Boosted tree algorithm with an ROC of 0.65. 

The KNN model is represented by the coarse boundary algorithm with and ROC of 

0.62. The LR prediction model yields and ROC of 0.61 and the SVM prediction model 

represented by the fine gauss algorithm yields the lowest ROC of 0.59. 

 

 

 

 

 

 

 

 

Figure 4.5: Overall prediction model performance. 

 

Chapter Summary 

    This chapter presented the detailed evaluation results of all algorithms of each of 

the four prediction models. The evaluation results were presented in terms of PCC 

and ROC. Each prediction algorithm was evaluated with six data input methods thus 

providing a comprehensive evaluation of each prediction model. The ensemble 

prediction model represented by the boosted algorithm was found to be the best 

performer from the four models in predicting the JSE All-Share daily direction. 
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Chapter 5 

Discussion and Conclusion    
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5.1 Introduction 

    This chapter discusses the results obtained in Chapter 4. The chapter is organised 

as follows. Section 5.2 discusses the prediction model evaluation results. Section 5.3 

concludes the study and make suggestions for future work. 

 

5.2 Discussion 

    This research examines the predictability of the JSE All-Share index daily trend 

using ensemble prediction models. The prediction performance of ensemble models is 

then compared to that of commonly used models in the domain of stock index and 

stock price prediction, namely SVM, LR and KNN. Index data ranging from August 

2002 to July 2016 is used in model construction and evaluation. Multiple variations 

of each prediction model in the form of prediction algorithms is used in the 

investigation to ensure a comprehensive, unbiased model comparison and evaluation. 

Ten independent technical indicators reflecting the JSE All-Share index 

characteristics are used as predictors for each model. The technical indicators are used 

in the linearly normalised continuous form and the trend deterministic form, while 

the index response variable is computed according to three threshold levels namely, 

0%, 0.5% and 1.0%. 

    The results show that the Boosted algorithm of the ensemble prediction model 

performed the best out of the four models in the study in predicting the daily direction 

of the JSE All-Share index with an ROC of 0.65 and a PCC of 82.80%. This result is 

congruent to that achieved by Ballings et al. (2015) and Patel et al., (2015) where 

ensemble prediction models also outperformed the KNN, SVM and LR prediction 

models. It is also found that the linearly normalised continuous valued technical 

indicator inputs results in better prediction performance than the trend deterministic 

technical indicator inputs. This result is consistent in all four prediction models. This 

however, is in contrast to the results achieved by Patel et al., (2015) where the authors 

found that the trend deterministic data inputs resulted in better prediction 

performance compared to the continuous data inputs in all the prediction models 

investigated. The study also reveals that the Boosted ensemble algorithms 

performance increased by 14% when continuous valued inputs were used in place of 

trend deterministic inputs while using a 1.0% threshold in the response variable. The 

best performing KNN, LR and SVM algorithms resulted in performance increases of 
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16.9%, 5.17% and 13.4% respectively when continuous valued inputs were used instead 

of trend deterministic inputs while using a 1.0% response threshold. 

    The KNN prediction model ranked second, the LR prediction model ranked third 

and the SVM prediction model is found to perform the worst among the four models. 

This result is in contrast to that achieved by Kumar & Thenmozhi (2006) where SVM 

performed the best among ensemble, LR and neural networks in predicting the trend 

of the S&P CNX NIFTY market index. 

 

5.3 Conclusion and Future Research 

    Investors aim is always to profit from the stock market. However, various studies 

have indicated that this is impossible as, in terms of the EMH, the price of the stock 

is always valued. However, the findings in this study shows that investors can beat 

the market if they incorporate algorithms in their analysis to predict the direction of 

a stock or index with a prediction performance better than that of random. Ensemble 

prediction model outperforms the commonly used SVM, LR and KNN prediction 

models in predicting the daily trend of the JSE All-Share index. It is therefore strongly 

recommended that ensemble prediction models be included in the field of prediction 

and technical analysis on various financial time series such as market indices, stock 

prices and trends, exchange rates, etc.  

    The other three prediction models evaluated in this study should definitely not be 

excluded as their performance in this study is not significantly worse than that of the 

ensemble prediction models. It is also recommended that multiple prediction models 

be considered and evaluated in the field of financial time series prediction as each 

markets time series has its own unique technical and statistical characteristic and no 

single model should be regarded as a superior performer. Therefore, every market must 

evaluate and identify the best performing prediction model for each time series within 

that market. Using this approach, the best prediction model for the financial time 

series under investigation can be identified and utilised as one of the many tools in 

the domain of trading and investments. 

    In this study, a one day ahead prediction on the trend is made on a financial time 

series using thresholds of one percent and below. Future studies in predicting one 

month or one year ahead trends using technical indicators representative of an 
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appropriate period would certainly add value to the literature. Economic indicators 

instead of purely technical indicators in the above prediction models should also be 

explored in predicting trends in financial time series. 
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Appendix A 

 

Table A.1: Training and evaluation dataset quantities for 0% threshold of the response variable. 

Year 
  Training  Evaluation 
 Down Up Total  Down Up Total 

2002  27 25 52  27 25 52 

2003  62 64 126  61 63 124 

2004  58 68 126  57 68 125 

2005  53 73 126  52 73 125 

2006  54 70 124  54 70 124 

2007  54 71 125  54 71 125 

2008  67 59 126  66 59 125 

2009  57 68 125  57 68 125 

2010  58 68 126  58 67 125 

2011  61 64 125  60 64 124 

2012  54 72 126  53 71 124 

2013  57 68 125  57 68 125 

2014  62 63 125  62 62 124 

2015  61 65 126  60 65 125 

2016   28 39 67  28 38 66 

Total   813 937 1750  806 932 1738 

 

Table A.2: Training and evaluation dataset quantities for 0.5% threshold of the response variable. 

Year 
  Training  Evaluation 
 Down Up Total  Down Up Total 

2002  36 17 53  35 16 51 

2003  84 42 126  83 41 124 

2004  87 39 126  87 38 125 

2005  83 43 126  82 43 125 

2006  73 51 124  73 51 124 

2007  76 50 126  75 49 124 

2008  79 47 126  79 46 125 

2009  78 48 126  77 47 124 

2010  88 38 126  87 38 125 

2011  82 43 125  82 42 124 

2012  89 37 126  88 36 124 

2013  89 37 126  88 36 124 

2014  92 33 125  91 33 124 

2015  83 43 126  83 42 125 

2016   43 24 67  42 24 66 

Total   1162 592 1754  1152 582 1734 
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Table A.3: Training and evaluation dataset quantities for 1.0% threshold of the response variable. 

Year 
  Training  Evaluation 
 Down Up Total  Down Up Total 

2002  43 10 53  42 9 51 

2003  101 25 126  100 24 124 

2004  108 18 126  107 18 125 

2005  107 19 126  106 19 125 

2006  98 27 125  97 26 123 

2007  99 27 126  98 26 124 

2008  88 38 126  87 38 125 

2009  94 31 125  94 31 125 

2010  107 19 126  107 18 125 

2011  102 23 125  102 22 124 

2012  115 10 125  115 10 125 

2013  107 19 126  106 18 124 

2014  115 10 125  115 9 124 

2015  109 17 126  109 16 125 

2016   53 14 67  53 13 66 

Total   1446 307 1753  1438 297 1735 
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Appendix B 

 

Table B.1: Algorithms for ensemble prediction model. 

Ensemble Algorithm Prediction Speed Memory Usage Interpretability Ensemble Method Model Flexibility 

Boosted Trees Fast Low Hard ADABoost with Decision Trees Medium-High 

Bagged Trees Medium High Hard Random Forest High 

Subspace Discriminate Medium Low Hard Subspace with Discriminate Medium 

Subspace KNN Medium Medium Hard Subspace with k-Nearest Neighbour Medium 

RUSBoosted Trees Fast Low Hard RUSBoost with Decision Tree Medium 

 

 

Table B.2: Algorithms for SVM prediction model. 

SVM Algorithm Prediction Speed Memory Usage Interpretability Model Flexibility 

Linear Fast Medium Easy Low 

Quadratic Fast Medium Hard Medium 

Cubic Fast Medium Hard Medium 

Fine Gaussian Fast Medium Hard High 

Medium Gaussian Fast Medium Hard Medium 

Coarse Gaussian Fast Medium Hard Low 
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Table B.3: Algorithms for KNN prediction model. 

KNN Algorithm Prediction Speed Memory Usage Interpretability Model Flexibility 

Fine Medium Medium Hard Fine details between classes 

nneigh = 1 

Medium Medium Medium Hard Medium distinction between classes 

nneigh = 10 

Coarse Medium Medium Hard Coarse distinction between classes 

nneigh = 100 

Cosine Medium Medium Hard Medium distinction between classes 

Cosine distance metric 

nneigh = 10 

Cubic Slow Medium Hard Medium distinction between classes 

Cubic distance metric 

nneigh = 10 

Weighted Medium Medium Hard Medium distinction between classes 

Weighted distance metric 

nneigh = 10 

 

 

 

Table B.4: Algorithm for LR prediction model. 

LR Algorithm Prediction Speed Memory Usage Interpretability Model Flexibility 

Logistic Regression Fast Medium Easy Low (No control parameters) 

 

 


