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ABSTRACT 

Chronic infection with the hepatitis B virus (HBV) is a major risk factor for 

cirrhosis and hepatocellular carcinoma, which is the sixth most common cancer worldwide. 

Available treatment for chronic HBV infection has limited efficacy in preventing 

associated complications. The compact and multifunctional nature of the viral genome 

limits its mutability making HBV an ideal candidate for therapy based on nucleic acid 

hybridisation. The potent and specific gene silencing that can be achieved with RNA 

interference (RNAi) has fueled interest in exploiting this pathway as a therapeutic 

modality. Synthetic and expressed RNA sequences have been used to activate RNAi. 

These engineered sequences mimic natural substrates of the RNAi pathway, which allows 

them to enter and reprogramme the pathway to effect silencing of intended targets. 

Tradionally expressed RNAi activators have been transcribed as short hairpin RNA 

(shRNA) sequences from RNA polymerase III (Pol III) promoters. These shRNA mimic 

precursor microRNA (pre-miRNA) and consequently enter the RNAi pathway at a 

relatively late stage. Overexpression of shRNA sequences from Pol III promoters, 

specifically the U6 promoter, has been associated with toxic side effects and has raised 

concerns about the use of expressed RNAi activators. Another concern of developing 

therapeutic RNAi expression cassettes is the emergence of HBV mutants that are resistant 

to silencing by a single expressed RNAi effecter. These points have highlighted the need 

for the development expressed RNAi activators that are effective at low concentrations and 

capable of combinatorial silencing. To address these issues the aim of this study was to 

assess the feasibility of anti HBV effecter sequences that mimic an early substrate (viz. 

primary miRNA or pri-miRNA) of the RNAi pathway. Pri-miRNA expression is typically 

under the transcriptional control of Pol II promoters. Consequently RNAi activators that 
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mimic pri-miRNA, so-called pri-miR shuttles, may be expressed from Pol II promoters. 

Initially a panel of shRNA expression cassettes driven by a Pol III promoter was 

constructed and silencing of HBV replication assessed. Pri-miR shuttles were then 

designed by incorporating guide sequences of the most effective anti HBV U6 shRNA into 

naturally occurring pri-miR-122 and pri-miR-31. Potent inhibition of viral replication was 

observed with both Pol III and Pol II-driven pri-miR shuttle expression cassettes in vitro 

and in vivo. Subsequently liver-specific pri-miR-122 and multimeric pri-miR-31 shuttle 

expression cassettes were created. Pri-miR-122 shuttle sequences expressed from the 

alpha-1 antitrypsin promoter and HBV basic core promoter exhibited the best liver-specific 

silencing. Polycistronic pri-miR-31 shuttle sequences were shown to produce multiple 

RNAi activators capable of silencing multiple target sequences. Silencing by the pri-miR 

shuttle sequences was independent of toxic effects that arise from induction of the 

interferon response or saturation of the endogenous miRNA pathway. Pri-miR shuttles 

clearly represent an improved option for the use of expressed shRNA and brings 

therapeutic RNAi technology a step closer to clinical application. 
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1 INTRODUCTION 

1.1 HEPATITIS B VIRUS EPIDEMIOLOGY 

The hepatitis B virus (HBV) is a human pathogen that infects the liver and causes 

both acute and chronic hepatitis. An estimated 2 billion people worldwide have been 

exposed to this pathogen and 350 million individuals are chronic carriers of the virus (1). 

Virus spread is parenteral which may occur by perinatal transmission from an infected 

mother to the new-born, horizontally between children or through sexual contact between 

adults. Chronic HBV infection is endemic to sub-Saharan Africa, east and south east Asia 

and the western Pacific islands. Individuals chronically infected with HBV are at an 

increased risk of developing the severe complications of cirrhosis and hepatocellular 

carcinoma (HCC). Worldwide HCC is ranked as the sixth most common cancer, 

accounting for 5.7% of all new cancer cases (2). HCC prognosis is very poor and annual 

incidence is practically equal to annual mortality (3). In 2002, 95% of the total number of 

new HCC cases ended in mortality making it the third most common cause of cancer-

related death (2). Hepatocarcinogenesis is multifactorial and may be influenced by viral 

genotype and age and gender of chronic carriers. Sub-genotype A1 for example, which is 

hyperendemic to South Africa, is associated with an increased risk for the development of 

HCC (4). An effective anti HBV vaccine is available and universal vaccination of infants 

was first implemented in Taiwan in 1984 (5). Since the introduction of universal 

vaccination there has been a progressive decrease in HBV seroprevalence (5).  

Furthermore a steady decrease in the incidence of HCC in Taiwan since 1984 has also been 

reported and is attributed to the efficacy of the vaccination programme (6). South Africa 

introduced anti HBV vaccination into its Expanded Programme on Immunisation in 1995. 

A study to assess the impact of immunisation on HBV-associated nephropathy, which 
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equates to HBV incidence, demonstrated a reduction in disease burden in the post-

immunisation period (7). Progress in realising universal HBV vaccination however has 

been hampered and new cases of infection are still reported (8). Furthermore vaccination is 

prophylactic and offers little therapeutic benefit to existing chronic carriers. 

Immunomodulators and nucleotide and nucleoside analogues remain the only licensed 

therapies for management of chronic infections. Current treatment regimens though are 

plagued by expense, side effects, development of resistance and limited efficacy. The 

advancement of novel treatment strategies to limit severe sequelae of chronic HBV 

infection therefore remains an important medical goal. 

 

1.1.1 HBV biology 

HBV is a prototypical member of the Hepadnaviridae family of viruses (9). As the 

name suggests these viruses have DNA genomes and infect hepatocytes. The viral genome 

has a circular, partially double-stranded DNA (relaxed circular DNA or rcDNA) 

arrangement (10) (Figure 1.1). The long minus strand DNA is approximately 3.2 kilobases 

(kb) in length and covers the entire viral genome. The circular structure of the viral 

genome is maintained by the plus strand DNA which is variable in length and spans the 5’ 

and 3’ ends of the minus strand. Upon infection rcDNA is translocated to the nucleus 

where it is converted to covalently closed circular DNA (cccDNA) (11). 

 

Transcription from the cccDNA template is under the control of four viral 

promoters and two enhancer sequences (reviewed in (12)). Four major viral transcripts are 

produced during infection, three subgenomic mRNA (2.4, 2.1 and 0.9 kb species) and the 

greater than genome length pregenomic RNA (pgRNA). The large surface protein is 

translated from the 2.4 kb viral RNA and the middle and major surface proteins are
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Figure 1.1: HBV genome organisation. 

The partially double stranded genome is indicated with transcription regulatory elements 

and nucleotide co-ordinates. Viral open reading frames are shown as arrows immediately 

surrounding the genome. The outermost arrows represent the four major viral transcripts 

that terminate at a single polyadenylation site. 
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translated from the 2.1 kb mRNA. The HBV X protein (HBx) is translated from the 0.9 kb 

viral transcript. Replication of viral genomic DNA proceeds from reverse transcription of 

the 3.5 kb pgRNA. Encapsidation of polymerase bound pgRNA initiates reverse 

transcription to generate the minus strand. Additionally the 3.5 kb transcript may exist with 

a 5’ extension. These transcripts serve as template for the translation of core and precore 

proteins (13). Terminal repeat sequences at the 5’ and 3’ end of the pgRNA facilitate 

circularisation of the nascent reverse transcribed minus strand DNA permitting synthesis of 

the plus strand to proceed (14). Methods that interfere with the stability of pgRNA 

therefore have the potential to limit viral replication by disruption of viral genome 

formation. 

 

1.1.2 Current HBV treatment 

The chronic nature of HBV infection requires effective antiviral therapy to ideally 

exhibit a sustained effect. Currently immunomodulators (interferon-α (IFN-α) and 

polyethylene glycol (PEG)-modified IFN-α (PEG-IFN-α)), nucleoside (lamivudine, 

telbivudine and entecavir) and nucleotide (adefovir and tenofovir) analogues are the only 

licensed therapies for managing chronic HBV infection (15, 16). 

 

Once inside cells nucleoside and nucleotide analogues are phosphorylated and exert 

their antiviral effects by inhibiting viral DNA synthesis. As a result of structural 

similarities shared with naturally occurring nucleotides these analogues are incorporated 

into nascent viral DNA strands and cause termination of chain elongation. Advantages of 

the use of nucleoside and nucleotide analogues include tolerance and ease of 

administration (oral route), however long-term monotherapy is associated with the 

emergence of viral escape mutants (17, 18). Resistance to nucleoside and nucleotide 
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analogues commonly entails mutations within the viral polymerase sequence. Mutation of 

the YMDD (tyrosine-methionine-aspartate-aspartate) motif of HBV polymerase is one 

example often reported to confer resistance to lamivudine (19, 20). The YMDD motif 

represents the active site of the viral polymerase and mutations to this motif may confer 

resistance if binding of nucleoside or nucleotide analogues is impaired. 

 

A weak immune response to HBV is implicated in the development of chronicity 

(21). IFN-α has been used widely to augment anti HBV immune responses (22, 23) and 

was the first therapy to be licensed for the management of chronic viral infection (16). The 

therapeutic effect of IFN-α is thought to be two-fold. It exerts its antiviral effect by 

inducing antiviral genes and stimulating the immune cells to eradicate viral infection (24). 

Induction of the Protein Kinase R (PKR), RNase L and orthomyxovirus systems are some 

of the well known pathways of the innate immune system induced by IFN-α. 

Immunomodulatory effects of IFN-α include stimulation of B cells to secrete protective 

antibodies and cytotoxic T cells for the elimination of infected cells. Improvement in 

efficacy and long-term maintenance of a therapeutic effect has resulted in unmodified IFN-

α being supplanted with PEG-IFN-α. Side effects, which range from mild flu-like 

symptoms to bone marrow suppression, thyroid dysfunction and depression, associated 

with the use IFN-α and PEG- IFN-α have limited the use of these therapeutics (15). The 

development of innovative approaches to manage chronic HBV infection therefore remains 

an important medical objective. Exploiting the RNA interference (RNAi) pathway to 

achieve potent and specific gene silencing offers a potentially useful therapeutic modality 

for the management of chronic HBV infection. 
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1.2 RNA INTERFERENCE 

The RNAi regulatory pathway was first described in 1998 by Fire et al. (25). 

Injection of long double-stranded RNA (dsRNA) into the nematode worm, Caenorhabditis 

elegans effected potent and specific suppression of homologous genes. Remarkably the 

suppressive effect was observed throughout the body of injected animals and was also 

passed on to the first generation offspring. The discovery that dsRNA initiated genetic 

interference in C. elegans linked two previously described sequence-dependent gene-

silencing mechanisms (co-suppression in plants (26) and quelling in fungi (27)) with 

RNAi. Subsequent reports demonstrated that RNAi also exists in other metazoan 

organisms (28-30). Though evidence of the pathway existed in early mouse embryonic 

cells (31, 32) the applicability of RNAi in somatic mammalian cells remained in doubt. 

This is as a consequence of stimulation of the sequence non-specific IFN response in 

somatic mammalian cells by long dsRNA. Elucidation of the mechanism of RNAi in 

Drosophila embryo lysates identified the production of small RNA duplexes from 

introduced long dsRNA during RNAi (33-35). These RNA duplexes, termed small 

interfering RNA (siRNA), which were shown to be central to activating RNAi were 21-23 

nucleotides (nt) in length and characterised by 5’-terminal phosphates and 2 nt 3’ 

overhangs. These findings led to the landmark study that demonstrated induction of RNAi 

with chemically synthesised siRNA in somatic mammalian cells without stimulation of the 

innate immune system was possible (36). The small size of the chemically synthesised 

siRNA allowed these molecules to evade recognition by the IFN response. As a result of 

this study numerous investigators have exploited the use of synthetic siRNA or siRNA 

precursor expression systems to silence the expression of genes in mammalian systems. 
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 Similarities shared between siRNA and the previously described small temporal 

RNA (stRNA), lin-4 and let-7, led researchers to investigate a possible connection between 

these two classes of small RNA (37-39). Lin-4 and let-7 function in embryogenesis by 

targeting homologous mRNA for translational inhibition (40, 41). Findings indicated that 

stRNA and siRNA share the processing machinery of the RNAi pathway. These studies 

were soon followed by reports identifying a large number of endogenously encoded small 

RNA species called microRNA (miRNA) (42-44). It has since become evident that 

endogenous miRNA are the natural activators of the RNAi pathway. 

 

1.2.1 MicroRNA biogenesis 

Diverse biological functions ranging from developmental timing (40, 41) to 

haematopoiesis and differentiation (45, 46) to tumour suppression (47) are regulated by 

miRNA (reviewed in (48)). Biogenesis of these small RNA species (Figure 1.2) is effected 

in a two-step process which entails the sequential processing of an RNA polymerase (Pol) 

II-derived transcript to generate the final mature effecter sequences. miRNA are 

transcribed as class II gene products that contain single or multiple hairpin-motifs (the 

primary miRNA or pri-miRNA transcript) (49). Nuclear processing of pri-miRNA by the 

microprocessor complex yields an approximately 70 nt hairpin sequence called precursor 

miRNA (pre-miRNA) (50). The microprocessor, which comprises the nuclear RNase III 

Drosha and the dsRNA-binding protein DGCR8 (DiGeorge syndrome chromosomal region 

8) (50, 51), binds to the stem-loop structure of pri-miRNA and cleaves approximately two 

helical turns from the loop (~22 nt) to release the pre-miRNA (48). Export of the pre-

miRNA to the cytoplasm is mediated by the Ran-GTP dependent nuclear export factor, 

Exportin-5 (52, 53). In the cytoplasm pre-miRNA undergoes the second step of processing 

by the cytoplasmic RNase III Dicer and its dsRNA-binding partner TRBP (the HIV 
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Figure 1.2: MicroRNA biogenesis pathway.  

In the first of two steps ~70 nt pre-miRNA stem-loop sequences are derived from processing of the pri-miRNA transcripts. Exportin-5 

mediates export of the pre-miRNA to the cytoplasm where the second processing step produces the mature miRNA duplex. 

Incorporation of the duplex into RISC and activation of the complex follows. The strand that is retained guides RISC to target mRNA to 

effect silencing.  
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transactivating response RNA-binding protein) (54). Dicer cleaves the pre-miRNA two 

helical turns (~22 nt) from the 3’ end of the stem-loop to remove the loop and generate the 

mature miRNA duplex with 5’-terminal phosphates and 3’ overhangs of 2 nt (48). 

Following incorporation of the miRNA duplex into the RNA induced silencing complex 

(RISC) one strand (guide) is retained while the other strand (antiguide or passenger) is 

removed (55-57). Removal of the passenger strand activates RISC, which is directed to 

target mRNA that is complementary to the guide strand. Activated RISC effects silencing 

through degradation or suppressing translation of the target mRNA. Perfect 

complementarity between the guide strand and the target site is required to achieve 

transcript degradation (58, 59). The requirement for translational suppression is less 

rigorous. Hybridisation of nucleotides 2-8 of the guide sequence (the so-called seed region) 

to mRNA is sufficient for silencing through translational repression (60). Recent reports 

have provided insight into the mechanism of translational repression (61, 62). Localisation 

of miRNA-containing RISC together with target mRNA within cytoplasmic processing 

bodies (or P-bodies) has been shown to be important for translational repression. 

Furthermore translational repression was shown to be dependent on binding of Argonaute 

components of RISC to GW182, a subunit of P-bodies (62). Sequestration of target mRNA 

within P-bodies by the RNAi machinery is thought to lead to repression as the translational 

machinery cannot access P-bodies. 

 

1.2.2 RNAi as an antiviral strategy 

 Synthetic or expressed RNA sequences that mimic intermediates produced during 

miRNA biogenesis are typically utilised to reprogramme the RNAi pathway to achieve 

suppression of genes of interest (63). Numerous reports have demonstrated the utility of 

exploiting the RNAi pathway for potent and specific inhibition of various genes. 
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Investigation of the feasibility of RNAi as a therapeutic strategy has received considerable 

attention as it provides a tool against diseases that are not amenable to conventional 

therapy and could potentially improve on available treatments. Application of RNAi to 

limit pathology-causing viral elements is supported by evidence from plants where RNA 

silencing functions in antiviral defence (64). In theory all viruses can be targeted by RNAi-

based therapeutics (65). Viruses with RNA genomes or that employ RNA intermediates for 

replication may be targeted directly with RNAi. Alternatively, viruses may be targeted 

indirectly by silencing viral genes or host factors required for replication. Silencing DNA 

viruses with RNAi of necessity entails adopting such an indirect approach. As a 

consequence RNAi may effectively knock down replication of DNA viruses but have a 

limited effect on persistence of the viral genome. A number of early studies reporting on 

the potent antiviral effects of RNAi (66-70) have spurred research efforts in the therapeutic 

RNA field.  

 

1.3 RNAI AGAINST HBV 

 The HBV genome is extremely compact in nature with each of its four ORFs 

partially overlapping at least one other ORF (Figure 1.1 (above)). Together the four ORFs 

cover the entire viral genome and all viral regulatory elements are contained within protein 

coding regions (12). These properties severely limit the mutability of the virus making it a 

good target for therapy based on nucleic acid hybridisation. HBV is therefore an ideal 

candidate for the development of RNAi-based treatment strategies. Ultimately the success 

of such development efforts will depend heavily on the availability of model systems that 

simulate chronic HBV infection. The paucity of cell lines and convenient animal models 

infectable by HBV has necessitated the development of surrogate models of viral 
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replication. This is in the form of replication-competent plasmid vectors that recapitulate 

viral replication in cultured mammalian cells. To address the lack of in vivo models the 

murine hydrodynamic injection model of HBV replication and transgenic HBV mice have 

been developed. Hydrodynamic tail vein injection is an efficient way of delivering nucleic 

acids to mouse hepatocytes and entails rapid injection of a large volume (10% body 

weight) of nucleic acid-containing saline (71). This procedure has been adapted to deliver 

replication-competent HBV vectors to the livers of mice recreating viral replication in vivo 

(72). Since an episomal plasmid is used to drive viral gene expression the model by nature 

is transient. Additionally the procedure itself elicits an immune response complicating 

differentiation of the cause of inhibitory effects. Nevertheless the hydrodynamic model of 

HBV replication is convenient for short-term efficacy studies. In contrast, HBV transgenic 

mice have a copy of a replication-competent viral sequence integrated within their 

genomes. Consequently viral replication continues for the life-time of the mice which more 

closely resembles the chronic carrier state in human patients. As such the transgenic HBV 

mouse model is a more rigorous model for assessing potentially beneficial synthetic or 

expressed RNAi sequences (73, 74). 

 

1.3.1 Synthetic RNAi activators 

Both synthetic (75-79) and expressed (80-87) activators of the RNAi pathway have 

been used to silence HBV replication in vitro and in vivo. Advantages of the use of 

chemically synthesised siRNA include ease of cellular delivery and regulation of dose. 

Initial studies utilising chemically synthesised siRNA targeted to various regions of HBV 

efficiently limited viral replication demonstrating the utility of RNAi-based therapeutics 

(75-79). Importantly anti HBV activity of synthetic siRNA was observed in vivo using the 

murine hydrodynamic injection model (75, 77). Suppression was at the protein, DNA and 
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RNA levels indicating disruption not only of gene expression but also of viral replication. 

In contrast to the inhibitory effects of nucleotide and nucleoside analogues, RNAi-

mediated silencing did not require viral replication (75). This is not unexpected as 

nucleotide and nucleoside analogues need active replication to be incorporated into nascent 

viral DNA and exert their effect whereas the RNAi sequences exert their effects by 

targeting viral RNA. An additional advantage to targeting HBV with RNAi as opposed to 

nucleotide and nucleoside analogues is that a single RNAi effecter sequence can target 

multiple viral RNAs. This is as a consequence of the overlapping nature of the viral ORFs 

and the single polyadenylation signal which creates significant sequence commonality 

between the four major viral transcripts. Multiple viral transcripts that share the region 

targeted by a single siRNA were therefore silenced. However knockdown achieved with 

synthetic siRNA is transient, which is likely to be as a result of susceptibility to 

degradation by RNases. Subsequent research therefore explored chemical modification to 

improve stability and efficacy of synthetic siRNA. 

 

 Typically chemically synthesised siRNA are duplexed RNA molecules with a 19-

21 nt base sequence and 2 nt 3’ overhangs. These structural features are important for 

recognition by RISC and consequently play a significant role in the function of siRNA. 

Limited chemical modification of siRNA is tolerated as demonstrated by a loss of silencing 

upon complete substitution of ribonucleotides of either strand with 2’-deoxy or 2’-O-

methyl residues (88). Typically changes to the 2’ hydroxyl of the ribose moiety of 

ribonucleotides are used to improve stability, specificity and efficacy of siRNA (88-90). 

Interestingly various modifications to anti HBV siRNAs were shown to improve in vivo 

silencing efficacy in the murine injection model (89). Modifications included inverted 

abasic residues at the 5’ and 3’ ends of siRNA, phosphorothioate linkages, and substitution 
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of 2’ hydroxyl groups with flouro, methyl or H groups. Notably the combination of 

modifications that resulted in improved efficacy differed with siRNA sequence. 

Intravenous administration under normal pressure of these extensively modified naked 

siRNA caused significant suppression of viral replication, however the dose required to 

achieve silencing makes this approach impractical. To improve in vivo delivery of the 

modified siRNA, lipid encapsulation was used to form stable nucleic-acid-lipid particles 

(SNALPs) (91). Anti HBV SNALP formulations were administered to immune 

compromised mice that had received a replication-competent plasmid by the hydrodynamic 

injection procedure. The use of immune compromised mice allows HBV replication to 

proceed for an extended period of time. Suppression of viral replication was sustained for a 

period of 6 weeks. This represents a significant step towards the development of potent and 

long-lasting synthetic anti HBV siRNA sequences. Importantly the technology required for 

efficient hepatic delivery of synthetic RNAi effecter sequences have also developed 

rapidly. In addition to enhancing stability and efficacy of siRNA, chemical modifications 

have also proved to be important to limit off-target effects. 

 

Off-target effects may result from stimulation of the innate immune response or 

unintentional silencing of non-targeted genes. Immunostimulation by siRNA in a 

sequence-dependent and -independent manner has been described. Sequence-dependent 

stimulation generally occurs through interaction of siRNA with endosomal toll-like 

receptors (TLRs), specifically TLR7, TLR8 and TLR9 (92, 93). So-called danger motifs 

have been identified (5’ GUCCUUCAA 3’ (92) and 5’ UGUGU 3’ (93)) that confer potent 

immunostimulatory properties to siRNA. Immune stimulation however was abrogated by 

modifying siRNA with locked nucleic acids (92). A recent study demonstrated stimulation 

of the IFN response by naked siRNA in a sequence-independent manner through activation 
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of cell-surface TLR3 (94). Conventional 2’-O-methyl modification of siRNA did not 

alleviate immunostimulatory effects however cholesterol conjugation was shown to avoid 

TLR3 recognition by aiding cellular entry of siRNA and incorporation into RISC. Immune 

stimulation by synthetic siRNA needs to be taken into consideration if these sequences are 

to be used for therapeutic purposes. The safety profile of synthetic siRNA can further be 

improved with chemical modifications to limit unintentional silencing of non-target genes 

as a result of seed region complementarity and selection of passenger strand sequences. 

Incorporation of the passenger strand of an siRNA into RISC could potentially lead to off-

target silencing. The phosphorylation status of siRNA is an important factor for strand 

selection by RISC (95). Preventing phosphorylation of the terminal ribonucleotide through 

the introduction of a 5’-O-methyl group impaired incorporation of the modified strand into 

RISC. Asymmetric modification of an siRNA duplex therefore facilitates selection of the 

unmethylated guide strand. Chemical modification has also been shown to limit off-target 

silencing that results from seed region complementarity (96). Modification of the second 

ribonucleotide from the 5’ end of the guide sequence with a 2’-O-methyl group alleviates 

off-target silencing. Initially chemical modification of synthetic siRNA was explored as a 

means of improving stability and consequently efficacy of effecter sequences. While 

chemical modification of synthetic siRNA has achieved this purpose it has also proven to 

be beneficial towards improving the safety of potential therapeutic sequences. The 

convenience of using synthetic siRNA to achieve silencing of gene expression has 

certainly focused research efforts on this class of RNAi activator. Expressed effecter 

sequences belong to the other equally important class of RNAi activators and offer a 

number of advantages over the use of synthetic siRNA. 
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1.3.2 Expressed RNAi activators 

 DNA exhibits increased stability compared to RNA and continuous effecter 

production occurs from DNA cassettes. Consequently RNAi expression systems are 

capable of long-term silencing. Additionally expression cassettes are compatible with 

recombinant viral vectors. Utilisation of RNAi expression systems therefore offer 

sustained silencing and effective means of delivery. Pol III promoters such as the U6 small 

nuclear RNA (snRNA) and H1 RNA promoters are commonly used to generate expressed 

activators of the RNAi pathway (97, 98). Typically Pol III expression cassettes are 

designed to transcribe short hairpin RNA (shRNA) sequences which mimic pre-miRNA 

and enter the RNAi pathway as Dicer substrates. With the exception of the first transcribed 

nucleotide, the U6 and H1 promoters contain all cis regulatory elements upstream of the 

transcription start site (97-100). Furthermore termination of transcription can be easily 

achieved by inserting a poly dT sequence within the expression cassette. These properties 

are convenient for the transcription of precisely defined RNA sequences and have resulted 

in the preference for RNAi expression cassettes driven by Pol III promoters. An additional 

advantage of using DNA cassettes is that expression of RNAi sequences does not exhibit 

the same immunostimulatory effects seen with synthetic siRNA. Expressed RNAi 

activators do not enter the cell through endocytosis and are therefore unlikely to come in 

contact with endosomal TLRs and cause stimulation of the IFN response. Also, expressed 

sequences undergo processing by Dicer to yield products with characteristics of self RNA 

which are inherently non-immunostimulatory (101). The 2 nt 3’ overhangs produced by 

Dicer processing for example interfere with RNA helicase RIG-1 (retinoic-acid-inducible 

protein I) recognition and subsequent IFN activation. Though expressed RNAi effecter 

sequences may avoid the innate immune system plasmid-based expression vectors 

themselves may have immunostimulatory potential. Unmethylated CpG dinucleotide 
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motifs are common to bacterially derived DNA and activate the immune system by 

stimulating TLR9 (102). Complete elimination of CpG motifs from plasmid-based 

expression cassettes is necessary to avoid interferon stimulation and sustain transgene 

expression (103). DNA expression cassettes embedded within recombinant viral vectors 

naturally would not be subject to similar limitations. 

 

 Viral Vectors. The liver is a very good target for the delivery of therapeutic 

sequences and progress in this field of study has advanced at a rapid pace. Both viral and 

non-viral vectors have been utilised to deliver RNAi effecter sequences to the liver. Non-

viral vectors are typically used to deliver synthetic siRNA sequences as these vectors tend 

to be better at delivering siRNA than plasmid DNA. Adenoviruses and certain strains of 

adeno-associated viruses (AAVs) exhibit natural liver tropism and as a consequence have 

been extensively used as vehicles for the delivery of anti HBV expression cassettes. 

Adenoviruses are capable of efficiently infecting the liver but do not integrate into the host 

genome. These features make recombinant adenoviruses appealing for efficient delivery of 

therapeutic sequences to the liver without causing disruption of host gene expression upon 

integration. Typically as a precautionary measure recombinant viral vectors are designed to 

be replication defective. Removal of the E1 sequence generates recombinant adenoviral 

vectors that are capable of efficiently infecting target cells but are sterile (104). 

Propagation of these first generation recombinant adenoviruses is possible in HEK293 

cells that provide the E1 sequence in trans. Efficacy of expressed anti HBV sequences has 

been extended to an in vivo setting with the administration of recombinant adenoviruses 

containing U6-driven shRNA cassettes to transgenic HBV mice (105, 106)
1
. Potent and 

sustained suppression of viral DNA, RNA and antigen levels was achieved in mice that 

                                                      

1
 See Appendix A2 for reference 105 (Carmona et al.) 
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received anti HBV recombinant adenoviral vectors. These studies were significant in that 

effective silencing in vivo in a model that simulates persistent HBV infection was 

demonstrated. PEGylation of recombinant adenovirus has also been shown to reduce 

immune stimulation and thereby allow repeat administration (107). Exploring second and 

third generation adenoviruses for the delivery of therapeutic RNAi effecter sequences in 

terms of safety may offer a more preferable option. 

 

Further improvements to the first generation adenoviral vectors have been made by 

deletion of the E2b and E3 sequences (108). These second generation vectors provide an 

improved safety profile as recombination events that could reconstitute a replication 

competent virus are less likely to occur. Third generation or helper-dependent adenoviral 

vectors have most viral sequences deleted and are thought to exhibit fewer cytotoxic 

effects than first or second generation viruses. A single study thus far has employed a 

helper-dependent adenovirus to deliver an anti HBV shRNA sequence (109). A limitation 

of the study was that the anti HBV sequence used was not effective and little could be 

concluded about the feasibility of these vectors. As described earlier HBV therapy will 

most likely need to be maintained over a prolonged period of time. Since recombinant 

adenoviral vectors exhibit transient transgene expression repeated administration will in all 

probability be necessary. Adenoviruses however are potent stimulators of the immune 

system making repeated administration of recombinant adenoviral vectors problematic. 

This issue may be addressed by polyethylene glycol modification of recombinant 

adenoviruses to reduce the immunogenicity of these vectors and allow for repeated 

administration (107). 
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The low immunogenicity and improved safety of AAVs has garnered interest in 

these vectors for the delivery of therapeutic anti HBV sequences (110, 111). The 

commonly used AAV-2 genome has been pseudotyped with the capsid of the liver-specific 

AAV-8 to create hepatotropic recombinant AAV vectors. Pseudotyped AAV-2/8 vectors 

have been shown to efficiently deliver Pol III-driven expression cassettes to the livers of 

transgenic HBV mice and effect potent and persistent viral suppression (110). Eventual 

loss of suppressive activity was observed and attributed to clearance of recombinant virus 

from livers of mice by the immune response. Sequential administration of pseudotyped 

AAV-2/7 or AAV-2/9 to mice that were pre-immunised with AAV-2/8 was shown to 

overcome the adaptive immune response and further extend suppressive activity (111). 

Improving the safety profile of recombinant viral vectors is extremely important for the 

development of expressed therapeutic sequences. 

 

The preceding studies demonstrate potent and specific inhibition of viral replication 

when targeting single sites within the HBV genome. A single-targeted approach may 

create selective pressure that leads to the emergence of escape mutants and indeed several 

reports describe HIV-1, poliovirus and HCV mutants that evade RNAi-mediated silencing 

(112-114). Like retroviruses HBV replicates its genome by reverse transcription. Reverse 

transcriptase does not have proofreading activity resulting in a high error rate during 

replication (115, 116). However due to the overlapping nature of the viral ORFs not all 

mutants produced are viable and as such HBV is not as mutable as HIV, HCV or the 

poliovirus. To assess site-specific RNAi silencing Wu et al. identified and characterised a 

viable HBV mutant isolated from a chronically infected individual (117). A silent mutation 

within the polymerase and surface ORFs was shown to confer resistance to an H1 

promoter derived shRNA targeted to the region spanning the point mutation. The authors 
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demonstrated that the mutant isolate was selected over time from a heterogenous HBV 

population challenged with the H1 shRNA. Notably, mutating the H1 shRNA sequence to 

match the mutant target site perfectly restored silencing activity. This study underscores 

the importance of developing a multi-targeted RNAi-based therapeutic approach as a 

means to prevent the emergence of viral escape mutants. Improving efficacy of RNAi 

activators is an important objective however limiting toxic effects is equally important. 

 

 Safety concerns of the use of expressed RNA sequences to activate the RNAi 

pathway were raised by a recent study (118). Severe toxicity and eventually death were 

observed in HBV transgenic mice that received recombinant adeno-associated virus 

containing U6-driven anti HBV shRNA. Lethality was attributed to saturation of the RNAi 

pathway as a result of overexpression of the shRNA. Specifically saturation of Exportin-5 

was shown to cause dysregulation of miRNA biogenesis by disrupting export of pre-

miRNA to the cytoplasm. The loss of liver miRNA function resulted in liver failure and 

ultimately in the death of mice. Synthetic siRNA enter the RNAi pathway downstream of 

miRNA biogenesis and would therefore not be expected to cause any interference. Indeed 

synthetic siRNA delivered to the livers of mice does not disrupt endogenous miRNA levels 

(119). As such, avoiding saturation of the miRNA biogenesis pathway is mostly only of 

concern for the development of RNAi expression cassettes. Since saturation is a result of 

overexpression of shRNA sequences, ideally RNAi expression cassettes should be 

designed to produce effecter sequences at the lowest amount necessary to achieve 

knockdown. Consequently expressed RNAi activators have to be very potent to achieve 

desired silencing at relatively low effecter sequence levels. Additional safety concerns that 

need to be considered for the development of both synthetic and expressed RNAi 

activators include limiting unwanted off-target effects. Regulating levels and tissue 
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expression of RNAi activators could be of potential benefit to restricting off-target effects. 

The development of DNA expression cassettes under tight transcriptional control offers a 

means of achieving the goals of limiting off-target effects and circumventing saturation 

effects. Finally an important element of RNAi expression cassettes, particularly antiviral 

expression cassettes, is the ability to express multiple effecter sequences. In the context of 

antiviral therapy preventing the emergence of viral escape mutants is crucial for the 

ultimate success of the therapeutic sequences. 

 

1.4 AIMS 

  The objective of the current set of research endeavours has been the development 

of potent therapeutic sequences that exploit the RNAi pathway to silence HBV replication. 

This entailed the initial identification of effective RNAi activators that are targeted to HBV 

(or target sites within HBV that are especially susceptible to RNAi-mediated silencing). 

The generation of U6 shRNA cassettes offers reliable means to create a large panel of 

RNAi expression cassettes that can be used for the rapid identification of functional 

effecter sequences. U6 shRNA expression cassettes however have a number of limitations, 

which include constitutive and ubiquitous expression. Nevertheless the use of U6 shRNA 

expression cassettes is a necessary step to the identification of effective anti HBV RNAi 

effecter sequences. Once identified these sequences were subjected to further development 

to create expression systems that can be regulated temporally as well as tissue-specifically. 

Furthermore development of expression cassettes that are capable of producing multiple 

RNAi effecter sequences was also explored. Generation of these expression cassettes 

entailed exploiting characteristics of naturally occurring miRNA sequences to aid in Pol II-

driven effecter expression. Achieving effective RNAi activator expression from a Pol II 
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promoter is the first step in achieving regulatable and multi-effecter expression for RNAi-

based therapy of HBV infection to be realised.  
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2 Pol-III shRNA AND lhRNA EXPRESSION 

VECTORS 

2.1 INTRODUCTION 

 As with synthetic siRNA, Pol III-driven shRNA expression represents a very rapid 

and reliable method of identifying effective expressed RNAi effecter sequences. An 

effective synthetic siRNA sequence may not necessarily be effective as an expressed RNAi 

effecter. Development of expressed RNAi effecter sequences that are regulatable and 

multi-targeted is therefore dependent on the identification of effective expressed RNAi 

sequences. To this end a panel of 10 Pol III (U6)-driven anti HBV shRNA expression 

cassettes targeted to various regions within the HBx ORF was assessed for efficacy in 

silencing viral replication. As a consequence of overlapping viral sequences a number of 

regions of the HBV genome have multiple functions. The HBx sequence encodes the HBx 

protein, which has been associated with the development of hepatocellular carcinoma (120) 

and plays an important role in the establishment of viral infection in vivo (121). 

Additionally the HBx sequence overlaps the 3’ end of the viral polymerase ORF, sequences 

necessary for viral replication (direct repeats) and the basic core promoter. HBx is therefore 

a multifunctional sequence. Finally the HBx ORF is common to all viral transcripts as the 

single polyadenylation signal terminates transcription after the HBx sequence. All viral 

transcripts therefore may be silenced simultaneously by therapy targeted to HBx. These 

properties make the HBx sequence an ideal target for U6 shRNA-mediated gene silencing. 

These first generation U6 shRNA sequences may then be developed to further improve 

efficacy and safety of RNAi-based therapeutics. Furthermore two U6-driven anti HBV 

long hairpin RNA (lhRNA) cassettes were assessed as a multi-targeted approach for the
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inhibition of HBV gene expression. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Target and Reporter plasmids 

2.2.1.1 pCH-9/3091 

Construction of the target plasmid pCH-9/3091 has been described previously 

(122). pCH-9/3091 contains a wild-type HBV genome sequence with terminal repeats 

under control of the cytomegalovirus (CMV) immediate early promoter-enhancer. The 

terminal repeats functionally mimic the circular nature of the HBV genome such that 

transcription from the CMV promoter generates a greater that genome length pgRNA as 

would normally be transcribed from viral cccDNA. The pgRNA may then be reverse 

transcribed to propagate the virus in transfected cells. Transcription from pCH-9/3091 

therefore may be used to simulate HBV replication in transfected cells in culture or in vivo. 

2.2.1.2 pCH-eGFP 

 The reporter plasmid, pCH-eGFP, was generated by replacing the preS2/S ORF of 

pCH-9/3091 with a sequence encoding enhanced green fluorescent protein (eGFP) (123). 

 

2.2.2 Design of U6 shRNA expression vectors 

Complete genome sequences of South African HBV isolates were aligned against 

the full HBV genome sequence contained in pCH-9/3091 with the bioinformatics software 

GeneDoc (124). The most conserved sequences within the HBx ORF of HBV genotype A 

variants were chosen as potential target sites for RNAi effecter sequences. A panel of 10 
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shRNA was designed to target these conserved regions of the HBx ORF. The shRNA 

sequences were designed to be transcribed from a Pol III promoter (the U6 promoter) and 

encode a 25 bp stem and the loop sequence derived from miR-23. In addition expression 

cassettes were designed to produce shRNA with stem structures containing G:U or C:A 

mismatches. Introducing mismatches proved to be necessary to prevent primer sequences 

encoding the passenger strand from binding to the guide strand encoding sequences during 

PCR. To maintain complete complementarity between the intended guide strand of the 

shRNA and its target site within the HBx ORF, the sequence encoding the passenger strand 

was mutated to generate a mismatched stem. 

 

2.2.3 Construction of U6 shRNA expression vectors 

The PCR-based method used for the generation of the U6 shRNA cassettes was 

first described by Castanotto et al. (125). Each complete individual anti HBV shRNA 

sequence was encoded by two overlapping reverse primers (Table 2.1). The primers 

sequentially add the sequence encoding the shRNA and a Pol III terminator to the 3’ end of 

the U6 promoter in a two-step PCR protocol (Figure 2.1). A universal primer (5’- CTA 

ACT AGT GGC GCG CCA AGG TCG GGC AGG AAG AGG G -3’) binding to the 5’ 

end of the human U6 promoter was used as the forward primer in PCR for the generation 

of all anti HBV U6 shRNA cassettes. Oligonucleotides were synthesised by standard 

phosphoramidite chemistry (Inqaba Biotech, South Africa). 

 

 pU6 (125), which contains the human U6 promoter sequence, was used as template 

in the first round of PCR amplification. The first portion of the U6 shRNA expression 

cassettes were amplified using the universal U6 primer with the first of the shRNA reverse 

primers (U6 shRNA n.1). Purified fragments were used in a second round of PCR to
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Table 2.1: Oligonucleotide sequences used in the generation of shRNA expression constructs. 

 

Vector 

 

Primers 

 

 

Sequences 

 

pU6 shRNA 1 

HBx1168-1192
1
 

U6 shRNA 1.1 

U6 shRNA 1.2 

 

5’-TGACGTGACAGGAAGCGTTAGCAGACACTTGGCATAGGCCCGGTGTTTCGTCCTTTCCACA-3’ 

5’-CCCAGATCTACGCGTAAAAAAGGTCTGTGCCAAGTGTTTGCTGACGTGACAGGAAGCGTTA-3’ 

 

pU6 shRNA 2 

HBx1432-1456 

U6 shRNA 2.1 

U6 shRNA 2.2 

 

5’-GGACGTGACAGGAAGCGTTCGTGGGATTCAGCGTCGATGGCGGTGTTTCGTCCTTTCCACA-3’ 

5’-CCCAGATCTACGCGTAAAAAACCGTCGGCGCTGAATCCCGCGGACGTGACAGGAAGCGTTC-3’ 

 

pU6 shRNA 3 

HBx1514-1538 

U6 shRNA 3.1 

U6 shRNA 3.2 

 

5’-CTTTATGACAGGAAGCAAAGAGAGATGCGCCCCATGGCCGCGGTGTTTCGTCCTTTCCACA-3’ 

5’-CCCAGATCTACGCGTAAAAAACGACCACGGGGCGCACCTCTCTTTATGACAGGAAGTAAAG-3’ 

 

pU6 shRNA 4 

HBx1518-1542 

U6 shRNA 4.1 

U6 shRNA 4.2 

 

5’-ACGCGTGACAGGAAGCGTGTGAAGAGAGGTGTGCCCTGTGCGGTGTTTCGTCCTTTCCACA-3’ 

5’-CCCAGATCTACGCGTAAAAAACACGGGGCGCACCTCTCTTTACGCGTGACAGGAAGCGTGT-3’ 

 

pU6 shRNA 5 

HBx1575-1599 

U6 shRNA 5.1 

U6 shRNA 5.2 

 

5’-CTCTGTGACAGGAAGCAGAGGCGAAGCAAAGCGCACACGACGGTGTTTCGTCCTTTCCACA-3’ 

5’-CCCAGATCTACGCGTAAAAAACCGTGTGCACTTCGCTTCACCTCTGTGACAGGAAGCAGAG-3’ 

 

pU6 shRNA 6 

HBx1580-1604 

U6 shRNA 6.1 

U6 shRNA 6.2 

 

5’-CACGTTGACAGGAAGATGTGTAGAGGTGAAGCGAGGTGTACGGTGTTTCGTCCTTTCCACA-3’ 

5’-CCCAGATCTACGCGTAAAAAATGCACTTCGCTTCACCTCTGCACGTTGACAGGAAGATGTG-3’ 
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pU6 shRNA 7 

HBx1640-1664 

U6 shRNA 7.1 

U6 shRNA 7.2 

 

5’-GGACTTGACAGGAAGAGTTCTTTTATGTAGGACTTTGGGCCGGTGTTTCGTCCTTTCCACA-3’ 

5’-CCCAGATCTACGCGTAAAAAAGCCCAAGGTCTTACATAAGAGGACTTGACAGGAAGAGTTC-3’ 

 

pU6 shRNA 8 

HBx1678-1702 

U6 shRNA 8.1 

U6 shRNA 8.2 

 

5’-GAGGCTGACAGGAAGGCTTCAAGGTTGGTTGTTGACGTTGCGGTGTTTCGTCCTTTCCACA-3’ 

5’-CCCAGATCTACGCGTAAAAAACAATGTCAACGACCGACCTTGAGGCTGACAGGAAGGCTTC-3’ 

 

pU6 shRNA 9 

HBx1774-1798 

U6 shRNA 9.1 

U6 shRNA 9.2 

 

5’-TTGGTTGACAGGAAGACTAATTTGTGCCTACAGCTTCTTACGGTGTTTCGTCCTTTCCACA-3’ 

5’-CCCAGATCTACGCGTAAAAAATAGGAGGCTGTAGGCATAAATTGGTTGACAGGAAGACTAA-3’ 

 

pU6 shRNA 

10 

HBx1863-1887 

U6 shRNA 10.1 

U6 shRNA 10.2 

 

5’-CTTGGTGACAGGAAGCCAAAGCACAACTCGGAGGCTCGAACGGTGTTTCGTCCTTTCCACA-3’ 

5’-CCCAGATCTACGCGTAAAAAATTCAAGCCTCCAAGCTGTGCCTTGGTGACAGGAAGCCAAG-3’ 

 

1 
Numbers indicate co-ordinates on the HBV genome (accession number J02203.1). 

Overlapping sequences are indicated in bold. 

The region complementary to the U6 promoter is italicised. 

HBx target sites are underlined. 

 

 

 



Chapter 2  - 27 - 

Figure 2.1:  Diagrammatic representation of PCR-based method for the generation of U6 shRNA expression cassettes. 

The sequences encoding the shRNA were introduced immediately downstream of the U6 promoter by a two-step PCR amplification 

procedure. Transcription from the U6 expression cassette produces a transcript which folds on itself to form a shRNA with a 25 bp stem 

and miR-23 loop. 



Chapter 2  - 28 - 

generate the complete U6 shRNA expression cassettes with the universal U6 forward 

primer and the second of the shRNA reverse primers (U6 shRNA n.2). The amplicons were 

ligated into the PCR cloning vector pGEM®-T Easy (pGEM®-T and pGEM®-T Easy 

Vector Systems, Promega, WI, USA) to generate the pG-U6 shRNA vectors (pU6 shRNA 

1-10). The prepared plasmids were subjected to restriction enzyme digestion to screen for 

correct sized inserts (SpeI and BglII) and orientation (SpeI). Plasmids containing inserts of 

the expected size were sequenced by automated cycle sequencing (Inqaba Biotech, South 

Africa) to confirm sequence fidelity. 

 

2.2.4 Assessing efficacy of U6 shRNA expression vectors 

2.2.4.1 Transfection of cultured mammalian cells 

The human hepatoma cell line, Huh7 (126) was maintained in RPMI growth 

medium and cells seeded in 6-well tissue culture plates (Appendix A1-1). Three 

micrograms of the pU6 shRNA vectors was co-transfected with 6 µg pCH-9/3091 or pCH-

eGFP with Lipofectamine™ 2000 (Invitrogen, CA, USA) according to the manufacturer’s 

instructions (Appendix A1-1). 

2.2.4.2 HBsAg concentration 

Forty eight hours post-transfection the culture medium was collected from cells 

transfected with pCH-9/3091 and HBsAg concentration measured (National Health 

Laboratory Services, South Africa). HBsAg secretion was measured by the 

electrochemiluminescence immunoassay or ECLIA (Roche Diagnostics GmbH, Germany). 

Briefly, 50 µl of the growth medium was incubated with two HBsAg-specific monoclonal 

antibodies (the first antibody is biotinylated and the second monoclonal antibody is 

labelled with ruthenium) forming antibody-antigen complexes with HBsAg sandwiched 
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between the two antibodies. Streptavidin-coated microparticles were added to this mixture 

to bind the complexes to the microparticles via the biotin-streptavidin interactions. The 

microparticles are magnetically captured on the electrode of a measuring cell and 

chemiluminescence induced by applying an electrical current. The chemiluminescent 

emission was measured and HBsAg quantified. 

2.2.4.3 eGFP expression 

 Cells co-transfected with pCH-eGFP were replenished with RPMI growth medium 

24-hours post-transfection and incubated for an additional 24 hours. Forty eight hours post-

transfection growth medium was removed and cells washed with shaking in saline 

containing 0.01% EDTA at 37
°
C for 10 minutes. The saline was removed, 100 µl of 0.5× 

trypsin added and the cells incubated for an additional 5 minutes at 37
°
C. After the 5 

minute incubation, 900 µl of saline containing 1% foetal calf serum (FCS) was added and 

the cells aspirated repeatedly to ensure complete dissociation from culture plate. Cells were 

transferred to flow cytometry tubes and green fluorescent cells counted with a Beckman-

Coulter EPICS XL Flow cytometer (Beckman, CA, USA). Cells were identified by 

forward scatter and side scatter with the mean channel number within the 60-80 range. 

eGFP fluorescence was detected at 450 nm. 

 

2.2.5 Design of lhRNA expression vectors 

Two U6-driven lhRNA expression cassettes that are targeted to conserved regions 

within the HBx ORF were generated (127)
2
. Additionally a lhRNA expression cassette 

targeted to a sequence unrelated to HBV was constructed. The U6 lhRNA cassettes were 

designed according to methodologies similar to those described for the U6 shRNA 

                                                      

2
 Weinberg et al. (Appendix A2) 
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cassettes. The lhRNA sequences comprised a 62 bp stem with 12 G:U wobble base pairs 

interspersed within the stem. In addition to facilitating PCR-based construction of hairpin-

encoding DNA cassettes, incorporation of G:U wobble base pairing has been reported to 

allow lhRNA sequence to avoid inducing the IFN response (128). 

 

2.2.6 Generation of lhRNA expression vectors 

 The PCR-based method described in Section 2.2.3 for the generation of the U6 

shRNA expression cassettes was also used to construct the U6 lhRNA expression cassettes. 

pU6 was used as template in the initial round of PCR with the U6 universal primer together 

with the first lhRNA reverse primers (U6 lhRNA n.1) (Table 2.2). The amplicons were 

purified and used as template in the second round of PCR amplification with the U6 

universal primer and the second lhRNA reverse primers (U6 lhRNA n.2). PCR products 

from the second round of PCR were purified and ligated into the PCR cloning vector 

pTZ57R/T (InsTAclone™ PCR Cloning Kit, Fermentas, MD, USA) to create the lhRNA 

vectors (pU6 lhRNA 1-3). 

 

2.2.7 Assessing in vivo efficacy of lhRNA expression vectors 

The murine hydrodynamic injection procedure was used to assess in vivo efficacy 

of anti HBV lhRNA constructs. Animal experimentation was conducted in accordance with 

procedures approved by the University of the Witwatersrand Animal Ethics Screening 

Committee (Appendix A3). The procedure was carried out by injecting mice with a saline 

solution containing 10 µg pCH-9/3091, 10 µg anti HBV or control expression cassette and 

10 µg of pCI-neo eGFP. All plasmids were prepared using the EndoFree® Plasmid Maxi 

Kit (Qiagen, GmbH, Germany) (Appendix A1-2). As a positive control for the induction of 
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Table 2.2:  Oligonucleotide sequences used in the generation of lhRNA expression constructs. 

Vectors Primers Sequences 

 

 

pU6 lhRNA 1 

HBx1581–1640
1
 

U6 lhRNA 1.1 

 

U6 lhRNA 1.2 

 

5’- ACTCTCTTGAAGCGCAAAGGCGAAGCAAAGTACACACGATCCGACAGACGAGAAGACACAAA 

    CAGGAAGTCGGTGTTTCGTCCTTTCCACAA -3’ 

5’- GATCTCTAGAAAAAAGACTCCCCGTCTGTGCCTTCTCATCTGCCGGACCGTGTGCACTTCGC 

    TTCACCTCTGCACTCTCTTGAAGCGCAAAG -3’ 

 

 

pU6 lhRNA 2 

HBx1372-1431 

U6 lhRNA 2.1 

 

U6 lhRNA 2.2 

 

 

5’- CATCTCTTGAATGCCGGTACGCAAACAACTTACGCCCACAACCTCCCAGCACAAAGACCCTCA 

    ACCCAATCGGTGTTTCGTCCTTTCCACAA -3’ 

5’- GATCTCTAGAAAAAAGATTAGGTTAAAGGTCTTTGTACTAGGAGGCTGTAGGCATAAATTGT 

    CTGCGCACCAGCATCTCTTGAATGCCGGTA -3’ 

 

 

pU6 lhRNA 3 

Control 

U6 lhRNA 3.1 

 

U6 lhRNA 3.2 

 

 

5’- CCTCTCTTGAAGAGTCCCCTAAATAACCAGAGAACCCCCGGACTCAGATCCGGTCCACCCAGA 

    AAGAACCGGTGTTTCGTCCTTTCCACAA -3’ 

5’- GATCTCTAGAAAAAAGGGTCTCTCTAGGTAGACCAGATCTGAGCCCGGGAGCTCTCTGGCTAT 

    CTAGGGAACCCTCTCTTGAAGAGTCCCC--3’ 

 

1
 Numbers indicate HBV genome co-ordinates (accession number J02203.1). 

Overlapping regions are indicated in bold. 

The region complementary to the U6 promoter is italicised. 
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IFN response-related genes mice were injected with 100 µg of poly I:C using the 

hydrodynamic procedure. The saline solution comprised 10% of the mouse’s body weight 

and was injected via the tail-vein over a period of 5-10 seconds. Blood was collected from 

mice 2 and 5 days post-injection. 

2.2.7.1 Serum HBsAg concentration 

 Mouse serum was diluted 1:4 with saline and HBsAg levels quantified using the 

MONOLISA® HBs Ag Assay kit (Bio-Rad, CA, USA). Briefly, 100 µl of diluted mouse 

serum was added per well to an ELISA plate coated with mouse monoclonal anti-HBs 

antibodies. To each well 50 µl of Conjugate Solution was added containing monoclonal 

and polyclonal anti-HBs antibodies bound to peroxidase. The samples were incubated at 

37°C for 90 minutes to allow sandwich complexes to form. After the incubation period 

unbound antibodies were removed by washing the well with Washing Solution (Tris NaCl 

buffer, pH 7.4; 0.04% ProClin™ 300) at least 5 times. One hundred microlitres of 

Development Solution (Citric acid and Sodium acetate solution, pH 4.0; 0.015% H2O2; 4% 

DMSO and tetramethyl benzidine) was dispensed into each well and the plate incubated at 

room temperature in the dark for 30 minutes. The enzymatic reaction was stopped with the 

addition 100 µl of Stopping Solution (1 N H2SO4) and the optical density of the samples 

measured at 420/690 nm on a Bio-Rad Microplate Reader, Model 680 (Bio-Rad, CA, 

USA). 

2.2.7.2 Serum HBV DNA quantitation 

Total DNA was extracted from 50 µl of mouse serum using the Total Nucleic Acid 

Isolation Kit and MagNA Pure LC system (Roche Diagnostics, GmbH, Germany). Serum 

viral DNA levels were determined by real-time PCR analysis using SYBR® Green Taq 

ReadyMix™ (Sigma, MO, USA). The primer set, HBV surface forward (5’- TGC ACC 



Chapter 2  - 33 - 

TGT ATT CCC ATC -3’) and HBV surface reverse (5’- CTG AAA GCC AAA CAG TGG 

-3’) was used to amplify HBV DNA. PCR was carried out on the Roche Lightcycler v.2 

(Roche Diagnostics, GmbH, Germany) with the following thermocycling parameters: a 30 

second hotstart at 95°C and 50 cycles of annealing at 57°C for 10 seconds, extension at 72° 

for 7 seconds and denaturation at 95°C for 5 seconds. Melting curve analysis was 

performed on the PCR products to confirm specificity of amplification. Viral particle 

equivalents were calculated using a standard curve generated with the Eurohep HBV DNA 

standard (129). 

2.2.7.3 Quantitative reverse transcriptase PCR (qRT-PCR) of IFN response genes 

 Total RNA was extracted from mouse liver and reverse transcribed with the 

Sensiscript® Reverse Transcription Kit (Qiagen GmbH, Germany) and an oligo-dT primer. 

Primer sets described by Song et al. (130) were used for the amplification of murine 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 2’, 5’-oligoadenylate synthetase 1 

(OAS1) and IFN-β mRNA. SYBR® Green Taq ReadyMix™ was used for the PCRs and 

run on the Lightcycler v.2 using with the following cycling parameters: a hotstart at 95°C 

for 30 seconds and 50 cycles of annealing at 58°C for 10 seconds, extension at 72° for 7 

seconds and denaturation at 95°C for 5 seconds. Specificity of the amplicons was 

confirmed by melting curve analysis. IFN response-related gene mRNA levels were 

normalised to GAPDH mRNA.  
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2.3 RESULTS 

2.3.1 U6 shRNA expression vectors inhibit markers of HBV replication 

To assess the efficacy of the U6 shRNA expression cassettes targeted to the HBx 

ORF, Huh7 cells were co-transfected with the hairpin-producing vectors and pCH-9/3091. 

The panel of anti HBx shRNA exhibited variable knockdown efficiency of HBsAg 

secretion (Figure 2.2). Of the panel, U6 shRNA 4, U6 shRNA 5, U6 shRNA 6, U6 shRNA 

8 and U6 shRNA 9 were most efficient reducing HBsAg concentrations. U6 shRNA 10 did 

not significantly alter HBsAg secretion as compared to mock treated cells. A similar trend 

was observed when U6 hairpin vectors were co-transfected with the reporter plasmid, 

pCH-eGFP (Figure 2.3). The knockdown achieved against pCH-eGFP was not as marked 

as against pCH-9/3091 and reflects the stability of eGFP. Though the mRNA is efficiently 

targeted for degradation the eGFP protein is not turned over rapidly and the degree of 

knockdown underestimated. 

 

Northern blot analysis on RNA extracted from cells transiently transfected with 

shRNA expression vectors and HBV target plasmid (pCH-9/3091) confirmed reduction in 

HBV transcript levels (105)
3
. Furthermore the knockdown achieved was independent of 

immune stimulation as measured by induction of the IFN response genes IFN-β and OAS1. 

To assess processing of the shRNA sequences, radiolabelled oligonucleotides 

complementary to the putative guide and passenger strand sequences of shRNA 5 or 

shRNA 10 were hybridised to total RNA extracted from cells transfected with the relevant 

U6 expression vector and extended by reverse transcription. An extended product was 

generated from the primer complementary to the guide strand of shRNA 5 but not from the 

                                                      

3
 The data presented here was carried out by Dr S. Carmona (Carmona et al. Appendix A2) 
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Figure 2.2: Inhibition of HBsAg secretion from cultured cells.  

(A) Schematic representation of replication-competent plasmid, pCH-9/3091 showing 

ORFs. (B) HBsAg secretion was measured in the culture supernatant of cells co-

transfected with the indicated U6 shRNA constructs and the HBV replication-competent 

plasmid, pCH-9/3091. Measurements are indicated as averaged values from at least three 

independent transfections normalised to mock treated cells. Error bars indicate standard 

error of the mean (SEM).  
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Figure 2.3: Inhibition of eGFP reporter gene expression.  

(A) Diagrammatic representation of pCH-eGFP reporter plasmid, showing ORFs. (B) The 

number of eGFP positive cells as quantified by flow cytometry are shown after co-

transfection of the indicated expression cassettes with the HBV reporter plasmid, pCH-

eGFP. Triplicate experiments are shown normalised to the mock treated cells and with 

SEM indicated by error bars. 
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primer complementary to the passenger strand. In contrast, extended products were 

generated from primers complementary to both the guide and passenger strands of shRNA 

10. The primer extension analysis data demonstrates that processing of a shRNA sequence 

impacts on its ability to effect knockdown (105)
4
. In vivo analysis of efficacy using the 

hydrodynamic injection model and HBV transgenic mice corroborate knockdown data 

from cultured cells. Together the data presented here demonstrate that U6-driven shRNA 

expression cassettes are capable of efficient suppression of viral replication in vitro and in 

vivo. 

 

2.3.2 U6 lhRNA cassettes knock down HBV replication without inducing 

IFN response genes in vitro and in vivo 

 Co-transfection of Huh7 cells with anti HBV lhRNA expression vectors and pCH-

9/3091 or luciferase target vector caused significant knockdown of markers of viral 

replication (127)
5
. Knockdown achieved, as measured by HBsAg secretion and luciferase 

expression, with the anti HBV lhRNA cassettes was equivalent to that of the previously 

described U6 shRNA 5. Viral replication was not significantly different between mock-

treated cells and cells treated with the control lhRNA cassette targeted against a sequence 

unrelated to HBV. The observed knockdown was also demonstrated to be independent of 

stimulation of the IFN response genes OAS1, IFN-β or Myxovirus A (MxA). 

 

 Efficacy of the lhRNA cassettes were assessed in vivo using the hydrodynamic tail 

vein procedure to co-deliver HBV DNA and RNAi vectors to the livers of mice. HBsAg 

levels in the serum of mice that received U6 shRNA 5, U6 lhRNA 1 or U6 lhRNA 2 were 

                                                      

4
 Carmona et al. (Appendix A2) 

5
 Weinberg et al. (Appendix A2) 
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decreased 90% as compared to mock injected animals (Figure 2.4B). Mice that received 

the control lhRNA cassette (U6 lhRNA 3) did not differ significantly from mock treated 

mice with respect to HBsAg secretion. Similarly, serum viral particle equivalents, as 

quantified by real-time PCR, were also reduced in mice that received U6 shRNA 5 and U6 

lhRNA 1 (Figure 2.5B). Inhibitory effects on serum DNA concentrations by U6 lhRNA 2 

however were less robust. These observations were corroborated by qRT-PCR analysis of 

intrahepatic viral mRNA levels (127)
6
. HBV core and surface mRNA concentrations 

relative to GAPDH mRNA were reduced 60-70% in mice receiving anti HBV shRNA or 

lhRNA expression cassettes. Efficient knockdown using lhRNA expression cassettes was 

therefore demonstrated at protein, DNA and RNA levels. 

 

To determine if lhRNA cassettes stimulate the IFN response in vivo, OAS1 and 

IFN-β levels were measured by qRT-PCR on mouse liver samples 5 days after 

hydrodynamic injection. The positive control for induction of IFN response-related genes 

included hepatic RNA extracted from mouse livers 6 hours after hydrodynamic injection of 

poly (I:C). Quantitation at 6 hours post-injection proved necessary as IFN stimulation was 

not observed at 5 days after injection, which is likely to be a result of the transient effects 

of poly (I:C). An increase in OAS1 levels was observed in the mock injected group 6 hours 

after injection which may reflect the immunostimulatory effects of the injection procedure 

itself. Nevertheless, no significant induction of OAS1 or IFN-β was detected in any of the 

mice receiving shRNA or lhRNA cassettes (Figure 2.6). This indicates that the in vivo anti 

HBV effects of the lhRNA cassettes were not as a result of non-specific immune response. 

                                                      

6
 Weinberg et al. (Appendix A2) 
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Figure 2.4: In vivo inhibition of HBsAg serum concentrations by U6-driven lhRNA.  

(A) Schematic representation of pCH-9/3091. (B) Serum HBsAg concentrations were 

determined from mice 5 days after co-injection with HBV DNA (pCH-9/3091) and shRNA 

or lhRNA expression cassettes. Means from 5 independent experiments are shown with 

SEM.  
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Figure 2.5: Suppression of circulating HBV particle equivalents  

(A) Schematic representation of pCH-9/3091. (B) Viral particle equivalents were 

determined using real-time quantitative PCR from mouse serum samples collected 2 and 5 

days after hydrodynamic injection. Averages were normalised to the mock and are 

indicated with SEM. 
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Figure 2.6: Intrahepatic stimulation of IFN response-related genes.  

RNA extracted (6 hours or 5 days post-injection) from livers of mice injected with the 

indicated plasmids and controls was subjected quantitative RT-PCR to determine murine 

OAS1 and IFN-β mRNA levels and normalised to GAPDH mRNA. Average ratio of IFN 

response gene to housekeeping gene is shown with SEM. 
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2.3.3 U6 lhRNA produce multiple siRNA sequences 

 Long hairpins have the potential advantage to be processed into multiple siRNA 

sequences, which could theoretically silence multiple targets. To assess this, wild-type and 

mutant luciferase target vectors were generated (127)
7
. U6 shRNA 5 could only silence the 

wild-type reporter whereas U6 lhRNA 1 was able to silence expression from the wild-type 

and mutant vectors. These data indicated that multiple siRNA sequences were produced 

from a single lhRNA sequence. To confirm this observation Northern blot hybridisation 

was carried out to detect the three putative guide sequences that could be produced from 

lhRNA 1. Three oligonucleotide probes were designed to span the full-length sequence of 

the lhRNA. Northern blot analysis revealed that only two of the three potential siRNA 

guide sequences were produced (127). This and data presented elsewhere (131) suggested 

that siRNA closer to the loop end of the lhRNA sequences were inefficiently processed by 

Dicer. Indeed functional analysis of U6 lhRNA 1 against luciferase vectors containing sites 

along the entire extent of lhRNA sequence showed that silencing efficacy diminished from 

the base to the loop of the hairpin (127). Together the Northern blot and functional analysis 

data indicate that loss of processing along the stem base of the lhRNA correlates with loss 

of activity. 

 

2.4 DISCUSSION 

A panel of 10 anti HBV U6 shRNA was designed with stem regions of 25 bp and 

the loop sequence of human miR-23. shRNA with larger stem regions (up to 29 bp in 

length) have been demonstrated to exhibit improved processing by Dicer while 

                                                      

7
 Weinberg et al. (Appendix A2) 
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incorporation of a miRNA loop sequence in the design of a shRNA has been shown to 

improve cytoplasmic localisation of the effecter sequence (132). Effective inhibition of 

markers of HBV replication was achieved with a number of these U6 shRNA expression 

cassettes. These data demonstrate the reliability of the Pol III shRNA expression cassette 

approach for the generation of effective RNAi-mediated silencing sequences. The fact that 

these sequences exhibit potent antiviral activity in the transgenic mouse model of HBV 

replication (105)
8
 is particularly noteworthy. The data are very impressive and highlight 

the important feature of RNAi expression cassettes being compatible with recombinant 

viral vectors. The lack of in vitro and in vivo models of HBV infection however places 

limitations of studies of efficacy. Although assessing RNAi therapeutics in transgenic 

HBV mice yields data of substantial importance, emergence of viral escape mutants to 

administered therapeutics cannot be evaluated in this or any other model of HBV 

replication. Nevertheless developing expressed RNAi therapeutics that are capable of 

simultaneously targeting multiple sites within HBV is an important objective. 

 

Effective RNAi activator sequences identified from the panel of U6 shRNA 

constructs were further developed to create multi-targeting lhRNA cassettes. lhRNA 1 was 

designed to target the same region targeted by the U6 shRNA 5 and U6 shRNA 6 

sequences. As predicted this cassette caused silencing of viral expression equally 

efficiently when compared to its shRNA counterparts and suppression of markers of viral 

replication was observed in vitro and in vivo. Multiple siRNA could potentially be 

produced from a single lhRNA which can simultaneously target multiple sites within a 

virus. The need for a multi-targeted approach to silence HBV was highlighted by Wu et al. 

(117) who demonstrated emergence of a mutant virus resistant to a single RNAi effecter 

                                                      

8
 Carmona et al. (Appendix A2) 
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sequence. Though the anti HBV lhRNA 1 described here was able to inhibit wild-type and 

mutated viral sequences, loss of silencing activity was observed against targets 

complementary to the loop end of the lhRNA. The observed loss of functionality was as a 

result of inefficient processing of the entire lhRNA sequence. Improvements in the anti 

HBV effecter sequences identified from the panel of U6 shRNA is therefore still possible. 

 

The data presented here contributes significantly to the growing body of evidence 

that exploiting the RNAi pathway is a feasible approach for the development of novel anti 

HBV therapeutics. The study by Carmona et al. (105)
9
 was one of the first to demonstrate 

anti HBV efficacy in a clinically relevant model by recombinant adenoviral delivery of the 

shRNA expression cassettes described here. Also, although the lhRNA expression cassettes 

need further development, the data clearly indicate the potential for RNAi-based 

therapeutics to limit viral resistance. A shortcoming of U6-driven RNAi expression 

cassettes was demonstrated recently by fatality in mice as a consequence of saturation of 

the endogenous miRNA pathway (118). Consequently this has raised concerns about the 

safety of expression-based RNAi therapeutics, specifically of U6 shRNA expression 

cassettes. Endogenous miRNA are normally expressed from Pol II promoters and often as 

polycistronic transcripts. Exploiting characteristics of naturally occurring miRNA therefore 

offer new avenues for improving efficacy (through polycistronic expression) and 

importantly safety (by means of regulatable expression) of RNAi expression cassettes. The 

following Chapter will explore the adaptation of features of naturally occurring miRNA to 

the development of anti HBV expression cassettes as a means of improving expressed 

RNAi activators. 

                                                      

9
 Appendix A2 
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3 PRI-MIR SHUTTLE EXPRESSION VECTORS 

3.1 INTRODUCTION 

U6 promoter driven transcription yields RNA sequences of precisely defined size 

and sequence and for this reason has been the preferred method for the expression of 

shRNA. The preceding Chapter and reports by others (80-87) have demonstrated the utility 

of exploiting anti HBV shRNA expressed from Pol III promoters and more specifically the 

U6 promoter. Strong, constitutive shRNA expression from the U6 promoter may however 

not be desirable for therapeutic purposes. Pol II regulatory elements offer greater 

transcriptional control than Pol III promoters. Preliminary efforts to express an effective 

shRNA from a Pol II regulatory element however have met with limited success. 

Expressing the shRNA 5 sequence, which has been shown to be effective when expressed 

from the U6 promoter, from a CMV promoter results in poor anti HBV activity. This is 

likely as a result of sequences in the Pol II transcript that occur upstream and downstream 

of the shRNA which may impair processing. Naturally occurring miRNA are normally 

expressed from Pol II promoters (49) and therefore contain the necessary features for 

recognition and processing by the RNAi machinery. 

 

Exploiting sequence and structural elements of miRNA may offer the means to 

design effective Pol II-driven RNAi expression cassettes. To this end RNAi effecter 

sequences that mimic naturally occurring pri-miRNA (or pri-miR
10

 shuttles) were designed 

by embedding anti HBV guide sequences within pri-miR-31 (42, 133-135) and pri-miR-

122 (133, 136-138) sequences. In vitro characterisation of pri-miR-31 indicated that this 

                                                      

10
 Pri-miRNA, pre-miRNA and miRNA refer to naturally occurring sequences, whereas pri-miR and pre-miR 

refer to designed shuttle sequences. 
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sequence is efficiently processed by Drosha (134) and miR-122 is a well-established liver-

specific miRNA (133, 136-138). Efficacy of the pri-miR shuttles was initially assessed by 

expressing these sequences from the U6 promoter. Expression from a promoter that is 

known to drive transcription of effective RNAi effecters validated the design of the pri-

miR shuttle sequences. U6 shuttle cassettes efficiently silenced HBV expression which 

indicated that the design of the pri-miR were effective. Once validated the next goal was to 

create pri-miR shuttle sequences driven from a Pol II promoter. CMV promoter-driven pri-

miR shuttle expression cassettes were equally capable of suppressing viral gene expression 

as their U6 promoter counterparts. Both Pol III- and Pol II-driven pri-miR shuttle 

sequences were processed according to intended design. Processing indicated that 

concentrations of guide sequences derived from pri-miR shuttles was much lower than 

guide sequences derived from U6 shRNA. Moreover silencing was achieved without 

induction of the innate immune response or disruption of the miRNA biogenesis pathway. 

  

3.2 MATERIALS AND METHODS 

3.2.1 Design of Pol-III and Pol-II pri-miR shuttle cassettes 

To assess the functionality of anti HBV pri-miR shuttles, the major guide 

sequences of naturally occurring human pri-miR-31 and human pri-miR-122 were 

substituted with the guide sequences of anti HBx U6 shRNA (Figures 3.1 and 3.2). Pri-

miR-31/5, pri-miR-31/8 and pri-miR-31/9 shuttle sequences were designed by replacing 

the guide sequence of pri-miR-31 with guide sequences of U6 shRNA 5, U6 shRNA 8 and 

U6 shRNA 9, respectively. Similarly, the putative guide sequences of U6 shRNA 5, U6 

shRNA 6 and U6 shRNA 10 were used to the replace the guide sequence of pri-miR-122 to 

generate pri-miR-122/5, pri-miR-122/6 and pri-miR-122/10, respectively. The mature  
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Figure 3.1: Design of pri-miR-31 shuttle sequences. 

The putative guide sequence derived from the 5’ arm of hsa-miR-31 (indicated in purple) was replaced with anti HBV guide sequences (indicated 

in red). Wild-type pri-miR sequences were maintained so long as secondary structure of the pri-miR shuttle sequences were not compromised 

(nucleotides indicated in blue). Complete pri-miR shuttles contained 51 nt of wild-type pri-miRNA sequences flanking the pre-miR shuttle 

sequences.  
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Figure 3.2: Design of pri-miR-122 shuttles 

The putative guide sequence derived from the 5’ arm of hsa-miR-122 (indicated in purple) was replaced with anti HBV guide sequences 

(indicated in red). Wild-type pri-miR sequences were maintained so long as secondary structure of the pri-miR shuttle sequences were not 

compromised (nucleotides indicated in blue). Complete pri-miR shuttles contained 51 nt of wild-type pri-miRNA sequences flanking the pre-miR 

shuttle sequences. 
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human miR-31 (hsa-miR-31) is a 21 nt RNA sequence therefore only 21 nt of the U6 

shRNA guide were incorporated into the pri-miR-31 shuttles. Thus, pri-miR-31/5 is 

targeted to HBV co-ordinates 1575-1595, pri-miR-31/8 targets co-ordinates 1678-1698 and 

pri-miR-31/9 targets co-ordinates 1774-1794. In contrast, mature hsa-miR-122 is a 23 nt 

RNA sequence and therefore the pri-miR-122 shuttles contained 23 nt of the U6 shRNA 

guide. Accordingly, the HBV genomic co-ordinates 1575-1597 were targeted by pri-miR-

122/5, co-ordinates 1580-1602 were targeted by pri-miR-122/6 and co-ordinates 1863-

1885 were targeted by pri-miR-122/10. The pri-miR shuttles were designed to have 

incompletely complementary stem sequences such that the shuttles retained the secondary 

structure of the wild-type pri-miRNA as determined by in silico prediction (139, 140) (see 

Appendix A4-1).  

 

The presence of non-structured sequences flanking pre-miRNA hairpins has been 

demonstrated to be essential for efficient processing by Drosha (134). In cultured cells the 

most efficient processing was achieved when at least 51 nt of natural RNA sequences 

flanked each arm of a pre-miRNA hairpin (134). The complete pri-miR-31 and pri-miR-

122 shuttles therefore consisted of pre-miR-31 or pre-miR-122 hairpin shuttles flanked 5’ 

and 3’ by 51 nt of natural hsa-miR-31 or hsa-miR-122 sequence, respectively. A NheI 

restriction site was introduced 5’ and a SpeI site introduced 3’ of the pri-miR shuttle 

sequence to facilitate cloning. The Pol III pri-miR expression cassettes contained the 

shuttle sequences downstream of the U6 promoter whereas the Pol II pri-miR cassettes 

consisted of the shuttle sequences located within an exonic sequence of a CMV expression 

system. 
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3.2.2 Generation of Pol III and Pol-II pri-miR shuttle cassettes 

3.2.2.1 Generation of pri-miR sequences 

Oligonucleotides encoding pre-miR-31 or pre-miR-122 shuttle sequences were 

synthesised by standard phosphoramidite chemistry (Table 3.1). The pre-miR-31/n F and R 

and pre-miR-122/n F and R were subjected to primer extension to generate the pre-miR-

31/n and pre-miR-122/n shuttle sequences as double-stranded (dsDNA) (Figure 3.3). The 

primer extension reaction was performed as a PCR and contained 200 pmol of pre-miR 

forward and reverse primers. Purified pre-miR-31 and pre-miR-122 fragments were 

subsequently used for the PCR amplification of the pri-miR-31 and pri-miR-122 shuttle 

sequences using the relevant primer set (Table 3.1). The pri-miR-31 and pri-miR-122 

shuttle fragments were ligated to the PCR cloning vector pTZ57R/T according to the 

manufacturer’s instructions to generate pTZ-pri-miR-31 or pTZ-pri-miR-122 vectors. 

Plasmids containing inserts of the expected size and orientation (reverse with reference to 

the lacZ gene) were sequenced. 

3.2.2.2 Generation of U6 pri-miR expression vectors 

To generate Pol III driven pri-miR expression vectors the pri-miR-31 and pri-miR-

122 shuttle sequences were cloned downstream of the human U6 promoter. First the U6 

promoter sequence was cloned into the pTZ57R/T PCR cloning vector to create pTZ-U6. 

To this end oligonucleotides were designed to amplify the U6 promoter sequence and 

introduce a BglII restriction site and a NheI restriction site on its 5’ and 3’ ends, 

respectively. The U6 (BglII) F (5’- GAT CAG ATC TAA GGT CGG GCA GGA AGA 

GGG -3’) and U6 (NheI) R (5’- GAT CGC TAG CGG TGT TTC GTC CTT TCC ACA 

AG -3’) primers were synthesised by standard phosphoramidite chemistry (Inqaba Biotech, 

South Africa). The U6 promoter sequence from pU6 was amplified with the
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Table 3.1: Oligonucleotide sequences for the generation of pri-miR-31 and pri-miR-122 shuttle cassettes 

 

Primer  Oligonucleotide sequences Manufacturer 

HBx1575-1595
1
 

Pre-miR-31/5 F 

Pre-miR-31/5 R 

 

5’- GTAACTCGGAACTGGAGAGGGGTGAAGCGAAGTGCACACGGGTTGAACTGGGAACGACG -3’ 

5’- CTGCTGTCAGACAGGAAAGCCGTGAATCGATGTGCACACGTCGTTCCCAGTTCAACCCTG -3’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integrated DNA 

Technologies, CA, 

USA. 

HBx1678-1698 

Pre-miR-31/8 F 

Pre-miR-31/8 R 

 

5’- GTAACTCGGAACTGGAGAGGCAAGGTCGGTCGTTGACATTGGTTGAACTGGGAACGAAA -3’ 

5’- CTGCTGTCAGACAGGAAAGCTAAGGTTGGTTGTTGACATTTCGTTCCCAGTTCAACCAAT -3’ 

HBx1774-1794 

Pre-miR-31/9 F 

Pre-miR-31/9 R 

 

5’- GTAACTCGGAACTGGAGAGGATTTATGCCTACAGCCTCCTAGTTGAACTGGGAACGAAG -3’ 

5’- CTGCTGTCAGACAGGAAAGCCTTTATTCCTTCAGCCTCCTTCGTTCCCAGTTCAACTAGG -3’ 

 

Pri-miR-31 F 

Pri-miR-31 R 

 

5’- GCTAGCCATAACAACGAAGAGGGATGGTATTGCTCCTGTAACTCGGAACTGGAGAGG -3’  

5’- AAAAAAACTAGTAAGACAAGGAGGAACAGGACGGAGGTAGCCAAGCTGCTGTCAGACAGGAAGC -3’ 
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HBx1575-1597 

Pre-miR-122/5 F 

Pre-miR-122/5 R 

 

5’- GAGTTTCCTTAGCAGAGCTGGAGGTGAAGCGAAGTGCACACGGGTCTAAACTAACGTGTGCA -3’ 

5’- GGATTGCCTAGCAGTAGCTAGGTGTGAAGCTAAGTGCACACGTTAGTTTAGACCCGTGTGCA -3’ 

 

 

 

 

 

 

 

Inqaba Biotech, 

South Africa 

HBx1580-1602 

Pre-miR-122/6 F 

Pre-miR-122/6 R 

 

5’- GAGTTTCCTTAGCAGAGCTGGTGCAGAGGTGAAGCGAAGTGCAGTCTAAACAATGCACTTCG –3’ 

5’- GGATTGCCTAGCAGTAGCTAGGTCAGAGGTTAAGCGAAGTGCATTGTTTAGACTGCACTTCG -3’ 

HBx1863-1885 

Pre-miR-122/10 F 

Pre-miR-122/10 R 

 

5’- GAGTTTCCTTAGCAGAGCTGAGGCACAGCTTGGAGGCTTGAACGTCTAAACTATTTCAAGCC -3’  

5’- GGATTGCCTAGCAGTAGCTAATTCACAGCTGGGAGGCTTGAAATAGTTTAGACGTTCAAGCC -3’ 

 

Pri-miR-122 F 

Pri-miR-122 R 

 

5’- GACTGCTAGCTGGAGGTGAAGTTAACACCTTCGTGGCTACAGAGTTTCCTTAGCAGAGCTG -3’ 

5’- GATCACTAGTAAAAAAGCAAACGATGCCAAGACATTTATCGAGGGAAGGATTGCCTAGCAGTAGCTA -3’ 

 

1
 Numbers indicate co-ordinates on the HBV genome (accession number J02203.1) 
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Figure 3.3: Generation of pri-miR shuttle sequences. 

Pre-miR shuttle sequences were generated as dsDNA by primer extension of partially complementary oligonucleotides. Generic pri-

miR-31 or pri-miR-122 primer sets were used in the amplification of relevant pre-miR shuttle sequences to generate the complete pri-

miR shuttle cassettes. 
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aforementioned primers and ligated to the pTZ57R/T PCR cloning vector. Clones 

containing inserts of the correct size and desired orientation (reverse with reference to the 

lacZ gene) were sequenced. 

 

To clone the pri-miR-31 shuttle sequences downstream of the U6 promoter the 

pTZ-pri-miR-31 and pTZ-U6 vectors were digested with ScaI and NheI. The 1262 bp pri-

miR-31 fragments were ligated with the 2080 bp pTZ-U6 fragment to generate the pU6 

pri-miR-31 expression vectors. The pri-miR-122 shuttle sequences were inserted 

downstream of the U6 promoter of pTZ-U6 by first digesting the pTZ-pri-miR-122 vectors 

and pTZ-U6 with NheI and EcoRI. Finally, the pU6 pri-miR-122 expression vectors were 

generated by ligating the 211 bp pri-miR-122 fragments to the 3132 bp pTZ-U6 fragment. 

All plasmids were sequenced. 

3.2.2.3 Generation of CMV pri-miR expression vectors 

The Pol II pri-miR expression cassettes were generated by inserting the pri-miR-31 

and pri-miR-122 shuttle sequences into the exonic sequence of the CMV expression 

cassette contained in the mammalian expression vector, pCI-neo. To insert the pri-miR-31 

shuttle sequences into pCI-neo, the pTZ-pri-miR-31 vectors were digested with SalI and 

XbaI. The resultant pri-miR-31 fragments were ligated to compatible XhoI and XbaI sites 

of the pCI-neo backbone. The pri-miR-122 shuttle sequences were ligated to the NheI and 

XbaI sites of pCI-neo after restriction with NheI and BcuI (an isoschizomer of SpeI). 

Clones positive for correct insertion were sequenced. 
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3.2.3 Luciferase Reporter plasmid (pCH-FLuc) 

The pCH-FLuc reporter plasmid was generated by replacing the preS2/S ORF of 

pCH-9/3091 with a sequence encoding Firefly luciferase, which was similar to the 

procedure employed to propagate pCH-eGFP. Using PCR, a Firefly luciferase encoding 

sequence was amplified from the plasmid pGL4 (Promega, WI, USA) with primer 

sequences, FLuc F: 5’- ACT GCT CGA GGA TTG GGG ACC CTG CGC TGA ACA 

TGG AAG ACG CCA AAA AC -3’ and FLuc R: 5′- ACT GAC TAG TTT ACA CGG 

CGA TCT TTC C -3′. FLuc F spanned 31 nt of the HBV genome from the XhoI restriction 

site at position 129 to the initiation codon of the middle HBs protein at position 159 and 

finally ending with sequence complementary to the 5’ end of Firefly luciferase. The 

reverse primer was complementary to the 3’ end of the Firefly luciferase ORF and 

included the sequence for a SpeI restriction site. PCR-based amplification of pGL4 

(Promega, WI, USA) yielded a Firefly luciferase sequence with its initiation codon 

equivalent to that of the middle HBs protein. The PCR product was cloned into pTZ57R/T 

to generate pTZ-FLuc. The Firefly luciferase sequence was restricted from pTZ-FLuc with 

XhoI and SpeI and inserted into the XhoI and SpeI sites of pCH-9/3091 to generate pCH-

FLuc. 

 

3.2.4 Assessing efficacy of pri-miR shuttles in vitro 

3.2.4.1 Transfection of cultured mammalian cells 

Inhibition of markers of HBV replication 

 Huh7 cells were maintained as described (Appendix A1-1) and seeded in 24-well 

tissue culture plates (Nunclon™ ∆ Surface, Nunc, Denmark) on the day prior to 
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transfection. To assess effect on HBsAg secretion 80 ng of pCH-9/3091 was co-transfected 

with 800 ng of effecter plasmid and 20 ng of pCI-neo eGFP. In situ knockdown of 

luciferase expression was evaluated by co-transfecting Huh7 cells with 80 ng of pCH-

FLuc, 800 ng of RNAi effecter plasmid, 80 ng of the phRL-CMV plasmid (Promega, WI, 

USA) which expresses Renilla luciferase from a CMV promoter and 40 ng of pCI-neo 

eGFP. Lipofectamine™ 2000 was used for transfection of DNA according to 

manufacturer’s instructions (Appendix A1-1). Approximately 48 hours after transfection 

supernatant from cells transfected with pCH-9/3091 was assayed for HBsAg secretion and 

lysates from cells transfected with pCH-FLuc assayed for luciferase activity. 

3.2.4.2 Quantification of markers of viral replication 

Quantitation of HBsAg secretion 

 HBsAg secreted into the growth medium of cells transfected with pCH-9/3091 was 

quantified with the MONOLISA® HBs Ag ULTRA Assay kit following the previously 

described procedure (Section 2.2.7.1). One hundred microlitres of undiluted culture 

supernatant of each sample was used for the ELISA. 

Quantification of in situ target knockdown 

 Cells transfected with pCH-FLuc were assayed for in situ luciferase activity using 

the Dual-Luciferase® Assay System (Promega, WI, USA). Growth medium was removed 

and cells lysed with agitation for 15 minutes at room temperature in Passive Lysis Buffer. 

Ten microlitres of the lysates were dispensed per well into a Costar® 96-well assay plate 

(Corning Inc, NY, USA) and Firefly luciferase and Renilla luciferase activities measured 

with the Veritas Dual Injection Luminometer (Turner BioSystems, CA, USA). Firefly 

luciferase activity was measured immediately after 50 µl of Luciferase Assay Reagent II 
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was added to each sample. Addition of 50 µl of Stop & Glo® inhibits Firefly luciferase 

activity and allows the reaction catalysed by Renilla luciferase to be measured

independently. Firefly luciferase activity was normalised to Renilla luciferase activity. 

 

3.2.5 Evaluation of pri-miR shuttle processing 

3.2.5.1 Transfections 

 HEK293 cells were maintained in DMEM supplemented with 10% FCS, penicillin 

(100 000 U/ml) and streptomycin (100 µg/ml) as described in Appendix A1-1. Cells were 

seeded at 60% confluency in 10 cm
2
 Costar® tissue culture plates (Corning Inc, NY, USA) 

24 hours before transfection in antibiotic-free medium. Sixteen micrograms of each RNAi 

effecter plasmid was mixed with 3 µg of pCH-9/3091, 1 µg of pCI-neo eGFP and diluted 

in 500 µl of Opti-MEM I. The DNA was transfected into the cells with Lipofectamine™ 

2000 according to manufacturer’s instructions. The transfection mixes were left on the 

cells for 48 hours at 37°C and 5% CO2 in a humidified incubator.  

3.2.5.2 Polyacrylamide gel electrophoresis and Northern blot analysis 

 Total RNA was extracted from transfected cells using Tri-Reagent (Sigma, MO, 

USA) and approximately 25 µg separated on a 15% denaturing polyacrylamide gel. As a 

molecular weight marker 10 pmol each of 18 and 30 base deoxyoligonucleotides labelled 

with 20 µCi of [γ-
32

P]-ATP with T4 polynucleotide kinase (Fermentas, MD, USA). The 

polyacrylamide gel was stained in 0.5× Tris-Borate EDTA (TBE) containing ethidium 

bromide at a final concentration of 4 µg/ml for 5 minutes with shaking. RNA was 

visualised on a UV transilluminator to confirm equal loading and RNA quality. The RNA 

was transferred to a positively charged nylon membrane (Hybond-N+, Amersham, NJ, 

USA) by semi-dry blotting using the Semi-Dry Electroblotting Unit Z34,050-2 (Sigma-
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Aldrich, MO, USA). Electroblotting proceeded at 3.3 mA/cm
2
 for an hour at 4°C in 0.5× 

TBE. After RNA transfer the nylon membrane was crosslinked with 200 000 µJ/cm
2
 of 

energy using a UV crosslinker (UVP, Inc., CA, USA) and baked at 80°C for an hour. 

 

 The membranes were prehybridised in 10 ml/100 cm
2
 of Rapid-hyb (Amersham, 

NJ, USA) at 42°C for at least 15 minutes. Probes against putative 5, 6, 8, 9 and 10 guide 

sequences and the U6 snRNA sequence were prepared by labelling oligonucleotides (Table 

3.2) with 20 µCi of [γ-
32

P]-ATP using T4 polynucleotide kinase (Fermentas, MD, USA). 

After the prehybridisation step membranes were hybridised overnight at 42°C with the 

relevant probe at a final concentration of 10 ng/ml. Following overnight hybridisation 

membranes were subjected to a low stringency wash with a 5× SSC (20× SSC (3M NaCl, 

0.3M sodium citrate, pH 7.0)), 0.1% SDS solution at room temperature and 2 high 

stringency washes with a 1× SSC, 0.1% SDS solution at 42°C. The probed membranes 

were subjected to autoradiography for at least 7 days. Membranes were stripped and 

reprobed with a 
32

P labelled oligonucleotide to detect U6 snRNA. 

 

3.2.6 Assessing off-target effects of pri-miR shuttles 

3.2.6.1 IFN response assay 

 Transfection of IFN responsive cell line 

 HEK293 cells (human embryonic kidney cell line) were maintained as described 

(Appendix A1-1) and seeded into 24-well culture plates 24 hours before transfection. Cells 

were transfected with 800 ng of pCH-9/3091, 800 ng of RNAi effecter plasmid, 80 ng of 

pTZ57R and 40 ng of pCI-neo eGFP. As a positive control for induction of IFN genes 800 

ng of poly (I:C) (Sigma, MO, USA) was co-transfected with 80 ng of pCH-9/3091, 80 ng 
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Table 3.2: Oligonucleotides used as probes against putative shRNA and miR guide sequences and U6 snRNA 

 

Probe Sequence Manufacturer 

5 guide 5’- CCGTGTGCACTTCGCTTC -3’  

 

 

 

 

Inqaba Biotech, South 

Africa. 

6 guide 5’- TGCACTTCGCTTCACCTC -3’ 

8 guide 5’- CAATGTCAACGACCGACC -3’ 

9 guide 5’- TAGGAGGCTGTAGGCATA -3’ 

10 guide 5’- GTTCAAGCCTCCAAGCTG -3’ 

U6 snRNA guide 5’- TAGTATATGTGCTGCCGAAGCGAGCA -3’ 
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of pTZ57R and 40 ng of pCI-neo eGFP. Transfections were carried out with 

Lipofectamine™ 2000 (Appendix A1-1). 

IFN-β qRT-PCR  

 Total RNA was extracted from transfected cells with the aid of Tri-Reagent 

(Sigma, MO, USA) and treated with RQ1 RNase-free DNase (Promega, WI, USA). 

Approximately 30 ng of RNA was reverse transcribed with the Sensiscript® Reverse 

Transcription Kit and an oligo-dT primer. IFN-β and GAPDH mRNA were quantified by 

real-time PCR of cDNA samples in the Roche Lightcylcer v.2 using the SYBR® Green 

Jumpstart Taq Ready Mix (Sigma. MO, USA). The primer sequences were IFN-β F: 5’- 

TCC AAA TTG CTC TCC TGT TGT GCT -3’, IFN-β R: 5’- CCA CAG GAG CTT CTG 

ACA CTG AAA A -3’, GAPDH F: AGG GGT CAT TGA TGG CAA CAA TAT CCA -3’ 

and GAPDH R: 5’- TTT ACC AGA GTT AAA AGC AGC CCT GGT G -3’. qRT-PCR 

proceeded as described (Section 2.2.7.3). 

3.2.6.2 Saturation assay 

Assays were designed to assess saturation of the miRNA biogenesis pathway to 

determine potential toxic effects of the pri-miR shuttle sequences. Interference with the 

ability of an exogenous pri-miR shuttle (CMV pri-miR-31/8) or an endogenous miRNA 

(miR-16) to silence their respective targets was used as a measure of saturation. 

 Disruption of independent target silencing 

 Pri-miR-31/8 target plasmid (psiCHECK-8T) 

A pri-miR-31/8 luciferase target vector was generated by inserting the sequence 

corresponding to nucleotides 1678-1702 (i.e. target of guide 8) of the HBV genome 

(accession number J02203.1) downstream of the Renilla luciferase ORF of psiCHECK2.2. 
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PCR of pCH-9/3091 with 8T F (5’- CAA TGT CAA CGA CCG ACC TT -3’) and 8T R 

(5’- ACT AGT GCC TCA AGG TCG GT -3’) yielded the 8 target sequence with a SpeI 

site at its 3’ end. The amplicon was purified and ligated to the pTZ57R/T PCR cloning 

vector. Thereafter the target sequence was removed with SalI and SpeI and ligated to the 

XhoI and SpeI sites of psiCHECK2.2 to generate psiCHECK-8T. 

 Assessing saturation of an exogenous pri- 

miR in cultured cells 

 To assess potential disruption of pri-miR-31/8 target silencing by the pri-miR-31/5 

and pri-miR-122/5 shuttles Huh7 cells were co-transfected with 80 ng of psiCHECK-8T, 

40 ng of pCMV pri-miR-31/8 and 780 ng of pU6 shRNA 5, pU6 pri-miR-122/5, pCMV 

pri-miR-122/5, pU6 pri-miR-31/5 or pCMV pri-miR-31/5. Forty eight hours after 

transfection Renilla and Firefly luciferase activity was measured. 

Endogenous hsa-miR-16 saturation 

miR-16 sponge/target sequence 

 A sponge vector capable of expressing an RNA sequence that hybridises to and 

interferes with miR-16 function was generated to assess saturation of endogenous miRNA. 

Sponge and target sequences of hsa-miR-16 were designed as described by Ebert et al. 

(141). A U6 promoter-driven miR-16 sponge (pU6-miR-16S×7) was generated by cloning 

7 copies of an imperfectly complementary target of miR-16 within the U6+27 sequence 

(98, 142, 143). Inserting the same sequence into psiCHECK™-2 (Promega, WI, USA) 

created a miR-16 luciferase target vector (psi-miR-16T×7). Oligonucleotides encoding a 

single copy of the miR-16 target site (miR-16S) which anneal as dsDNA with 3’ adenine 

overhangs were synthesised by standard phosphoramidite chemistry (Inqaba Biotech, 

South Africa). The sequences of the oligonucleotides were miR-16S F: 5’- CTC GAG 
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CGC CAA TAT TAT GTG CTG CTA GTC GAC GCG GCC GCA -3’ and miR-16S R: 

5’- GCG GCC GCG TCG ACT AGC AGC ACA TAA TAT TGG CGC TCG AGA -3’. 

An XhoI restriction site occurs immediately upstream of the hsa-miR-16 target sequence 

while SalI and NotI restriction sites were introduced immediately downstream of the target 

site.  

 

The miR-16S F and miR-16S R oligonucleotides were annealed and ligated into 

pTZ57R/T to generate pTZ-miR-16S×1. Sequencing revealed a single clone with the insert 

in the reverse orientation with respect to the lacZ gene. To facilitate formation of tandem 

repeats of the miR-16S×1 sequence it was initially inserted into pGEM®-T Easy to 

generate pG-miR-16S×1 (Figure 3.4). pTZ-miR-16S×1 was digested with ApaI and PvuII 

to yield restriction fragments 2513 bp, 235 bp and 181 bp in size while digestion of pU6 

shRNA 5 with ApaI and HincII yielded 2936 and 443 bp fragments. The 181 bp miR-

16S×1 fragment was ligated into the 2936 bp pGEM®-T Easy fragment to produce pG-

miR-16S×1. 

 

To create a vector with tandem copies of the miR-16S sequence, pG-miR-16S×1 

was digested with XhoI and ScaI and separately with SalI and ScaI (Figue 3.5). XhoI-ScaI 

restriction gives rise to a 1962 bp fragment and a 1151 bp fragment whereas SalI-ScaI 

digestion yields fragments 1935 bp and 1178 bp in length. The 1962 bp and 1178 bp 

fragments were purified and ligated together to generate pG-miR-16S×2. By similar 

procedures pG-miR-16S×3 and pG-miR-16S×4 were generated. Finally the vectors 

containing 3 and 4 tandem copies of the miR-16S sequence were used to create pG-miR-

16S×7. 
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Figure 3.4: Strategy for generation of the miR-16 sponge. 

The miR-16S sequence was initially inserted into the pGEM-T Easy vector to produce pG-miR-16S×1. The miR-16-1 sequence was 

excised from pTZ-miR-16S×1 by ApaI and PvuII digestion and inserted into pG-U6 shRNA5 that had been digested with ApaI and 

HincII to create pG-miR-16S×1. 
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Figure 3. 5: Strategy for concatemerisation of the miR-16 sponge sequences. 

To create a plasmid with two copies of the sponge sequence, pG-miR-16S×1 was separately digested with ScaI and SalI or ScaI and 

XhoI. The two fragments from each restriction containing the sponge sequence were ligated together to form pG-miR-16S×2. Using 

similar procedures pG-miR-16S×3, pG-miR-16S×4 and ultimately pG-miR-16S×7 were constructed. 
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Generation of miR-16 sponge vector 

To create the U6 promoter-driven miR-16 sponge vector the U6+27 sequence was 

firstly cloned into pTZ57R/T. The U6+27 cassette (Figure 3.6) contains the entire U6 

promoter sequence including the first 27 nucleotides of the U6 snRNA, followed by two 

restriction sites (XhoI and XbaI), a strong stem sequence and a termination signal (98, 142, 

143). The U6+27 sequence was generated in a two-step PCR of the human U6 promoter. 

The primer sequences U6 (XbaI) F (5’- GAT CTC TAG AAA GGT CGG GCA GGA 

AGA GGG -3’), U6+27 R1 (5’- CTC GAG TAG TAT ATG TGC TGC CGA AGC GAG 

CAC GGT GTT TCG TCC TTT CCA C -3’) and U6+27 R2 (5’- GAT CAA AAA AGC 

GGA CCG AAG TCC GCT CTA GAC TCG AGT AGT ATA TGT GCT -3’) were 

synthesised by standard phosphoramidite chemistry. The U6+27 sequence was cloned into 

pTZ57R/T to generate pTZ-U6+27. The miR-16S×7 sequence was restricted from pG-

miR-16×7 with XhoI and SalI and cloned into pTZ-U6+27 that had been linearised with 

XhoI to produce pU6-miR-16S×7. 

miR-16 dual luciferase target vector 

The miR-16 target vector (psi-miR-16T×7) was generated by cloning the miR-

16S×7 sequence into the 3’ UTR of the Renilla luciferase ORF of psiCHECK™-2. pG-

miR-16S×7 was digested with XhoI and NotI and the miR-16S×7 fragment ligated into a 

psiCHECK™-2 fragment that had been linearised with XhoI and NotI. 

In vitro saturation assay 

 To assess whether any of the pri-miR shuttle sequences cause saturation of the 

endogenous miRNA biogenesis pathway, Huh7 cells were co-transfected with RNAi 

effecter expression cassettes and the miR-16 target vector, psi-miR-16T×7. Huh7 cells 

were seeded at a density of 50% in 24-well tissue culture plates (Appendix A1-1). Cells 



Chapter 3  - 66 - 

 

Figure 3.6: Diagrammatic representation of the U6+27 expression cassette and transcript. 

The U6+27 expression cassette was designed to express 27 nt of U6 snRNA followed by a sequence encoding a strong 3’ stem. XhoI 

and XbaI restriction sites were included between the two stem regions to facilitate insertion of miRNA sponge sequences. 
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were co-transfected with 80 ng of psi-miR-16T×7, 800 ng of RNAi effecter or sponge 

(pU6-miR-16S×7) vectors and 120 ng of pCI-neo eGFP using Lipofectamine™ 2000 

(Appendix A1-1). 

Luciferase Assay 

 Forty eight hours after transfection Firefly luciferase and Renilla luciferase 

activities in lysates of transfected cells were measured as described in Section 3.4.2.4. 

However, with these assays Renilla luciferase activity was normalised to Firefly luciferase 

activity. 

 

3.2.7 Assessment of in vivo efficacy of pri-miR shuttle sequences 

3.2.7.1 Delivery of HBV DNA and miR shuttle cassettes to mouse hepatocytes  

 The in vivo efficacy of the pri-miR shuttle sequences was assessed using the murine 

hydrodynamic model of HBV replication. Procedures for conducting animal 

experimentation were approved by the University of the Witwatersrand Animal Ethics 

Screening Committee (Appendix A3). Mice were co-injected with 5 µg of pCH-9/3091, 5 

µg of control (pTZ57R) or anti HBV expression vector (pU6 shRNA 5, pCMV pri-miR-

31/5 and pCMV pri-miR-122/5) and 5 µg of pCI-neo eGFP. Blood was collected from 

mice at 3 and 5 days post-injection. Mice were sacrificed on the fifth day after injection 

and livers harvested. 

3.2.7.2 Quantitation of markers of HBV replication 

 Serum HBsAg levels and viral particle equivalents were determined as described in 

Section 2.2.7.1 and 2.2.7.2, respectively.  

 Southern blot analysis 
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 Ten micrograms of total DNA was isolated from livers of mice and subjected to 

agarose gel electrophoresis. The DNA was transferred to a positively charged nylon 

membrane (Hybond-N+) by capillary transfer according to standard procedures (144). 

Following transfer the nylon membrane was crosslinked with 200 000 µJ/cm
2
 of energy 

and baked at 80°C for an hour. To prepare probe the HBx sequence was initially amplified 

from pCH-9/3091 with the HBx forward (5’- GAT CAA GCT TTC GCC AAC TTA CAA 

GGC CTT T -3′) and HBx reverse (5′-GAT CTC TAG AAC AGT AGC TCC AAA TTC 

TTT A-3′) primer set. The PCR product was purified and used as template for random-

primed labelling using the HexaLabel™ DNA Labeling Kit (Fermentas, MD, USA). The 

membrane with immobilised DNA was prehybridised at 65°C for at least 15 minutes 

followed by hybridisation with random-primed probes overnight. Post-hybridisation, the 

membrane was washed in a 5× SSC, 0.1% SDS solution at room temperature followed by 

2 washes in a 1× SSC, 0.1% SDS solution at 65°C. X-ray film was exposed to the DNA 

blot for 24 hours at -70°C and developed. 

 

3.3 RESULTS 

3.3.1 Pri-miR shuttle sequences effectively reduce markers of viral 

replication in vitro 

 To assess ability of the shuttle sequences to silence viral replication in vitro, Huh7 

cells were co-transfected with pri-miR-31 and pri-miR-122 expression vectors pCH-9/3091 

or pCH-FLuc. pU6 shRNA 5 was included as a positive control for knockdown. With the 

exception of the pri-miR-122/10 shuttle sequences significant inhibition of HBsAg 

secretion was observed with all Pol III- and Pol II-driven pri-miR shuttles (Figure 3.7). 

Poor efficacy of the pri-miR-122/10 shuttles was not unexpected as its shRNA counterpart 



Chapter 3  - 69 - 

(U6 shRNA 10) has been shown to be ineffective (Chapter 2). These data were 

corroborated using the reporter vector pCH-FLuc (Figure 3.8), which expresses Firefly 

luciferase as a measure of viral replication in situ. Firefly luciferase activity was 

significantly reduced in Huh7 cells co-transfected with the pri-miR shuttle expression 

vectors and pCH-FLuc. In accordance with assessment of HBsAg knockdown, the pri-

miR-122/10 shuttle sequences silenced reporter gene expression poorly. These data 

therefore demonstrate that incorporating effective guide sequences within naturally 

occurring pri-miR-31 and pri-miR-122 structures allows for the generation of RNAi 

effecter sequences capable of potent gene silencing. However, embedding guide sequences 

within a miRNA context does not necessarily lead to an improvement in efficacy as 

demonstrated by the pri-miR-122/10 shuttle sequences. Importantly pri-miR shuttle 

sequences allow expression of these sequences from Pol II promoters. 

 

3.3.2 Intended guide strands are processed from pri-miR shuttle 

sequences 

 Northern blot analysis was carried out on total RNA extracted from cells 

transfected with the pri-miR-31/5 and pri-miR-122/5 shuttle expression cassettes (Figure 

3.9). Analysis revealed that the predicted 21-23 nt guide sequences that correspond to the 

U6 shRNA 5 guide were produced from the pri-miR shuttle sequences. Interestingly, the 

concentrations of the putative guides processed from the pri-miR shuttle sequences were at 

least 85-fold lower than that produced from their U6 shRNA counterparts. This was true 

for shuttle sequences expressed from both the U6 and CMV promoter. Though the 

concentrations of pri-miR shuttle derived guides were significantly lower than that of the 

U6 shRNA 5 guide strand, equivalent knockdown was achieved with the pri-miR shuttle 
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Figure 3.7: Pri-miR shuttle vector mediated inhibition of HBsAg concentration.  

(A) Schematic representation of replication-competent plasmid, pCH-9/3091. HBsAg 

concentration was measured in culture supernatants of cells transfected with pCH-9/3091 

and pri-miR-122 shuttle vectors (B) or pri-miR-31 shuttle vectors (C). Average HBsAg 

levels from three independent experiments are shown with SEM. 
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Figure 3.8: Inhibition of viral replication in situ.  

(A) Diagrammatic representation of the Firefly luciferase reporter plasmid, pCH-FLuc. 

Firefly and Renilla luciferase activity was measured in the lysates of cells co-transfected 

pCH-FLuc, phRL-CMV and the pri-miR-122 shuttle vectors (B) or pri-miR-31 shuttle 

vectors (C). Ratio of Firefly to Renilla luciferase activity is shown with SEM. 
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Figure 3.9: Northern blot analysis of pri-miR shuttle sequences. 

Total RNA extracted from HEK293 cells transfected with the indicated plasmids was 

subjected to polyacrylamide electrophoresis, transferred to a positively charged membrane 

and immobilised. Membranes were probed for 5 guide sequence, stripped and reprobed for 

U6 snRNA to confirm equal loading and transfer of RNA. 
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sequence. This suggests that shRNA expression from the U6 promoter is in excess of the 

amount required to achieve effective silencing. Alternatively guide sequences derived from 

the pri-miR shuttles may enter the RNAi pathway more efficiently. Low guide sequence 

concentrations from the U6 pri-miR shuttle sequence also indicates that a mechanism other 

than promoter expression is responsible for the difference seen between the shuttle 

sequences and the shRNA sequences. One possibility is that Drosha processing of pri-miR 

shuttle transcripts limits the amount of substrate available for further processing thereby 

limiting amount of guide sequence produced. 

 

3.3.3 Pri-miR shuttles do not stimulate IFN response or cause saturation 

of the RNAi pathway 

3.3.3.1 Silencing is independent of immune stimulation 

 To rule out non-specific antiviral effects as a result of stimulation of the IFN 

response, qRT-PCR was used to determine IFN-β mRNA concentrations in cells 

transfected with the pri-miR shuttle cassettes. HEK293 cells transfected with the various 

anti HBV expression cassettes were not significantly elevated in IFN-β mRNA relative to 

GAPDH levels (Figure 3.10). In contrast, transfection of poly (I:C) resulted in strong 

induction of IFN-β mRNA levels. The pri-miR shuttle sequences therefore do not exhibit 

immunostimulatory behaviour. 

 

3.3.3.2 Pri-miR shuttle sequences do not saturate the RNAi pathway 

 Lethality in mice as a result of overexpression of shRNA sequences from the U6 

promoter has highlighted potential fatal consequences of saturating the endogenous
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Figure 3.10: IFN-β stimulation by pri-miR shuttle sequences.  

qRT-PCR analysis of IFN-β stimulation in HEK293 cells 48 hours after transfection with the indicated plasmids. Poly (I:C) was 

included as a positive control for stimulation of IFN-response genes. Average IFN-β mRNA levels from transfections performed in 

triplicate are shown normalised to GAPDH mRNA and with SEM. 
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miRNA pathway (118). Two assays were used to determine whether pri-miR shuttle 

sequences disrupt miRNA function. The first assay involved co-transfection of pCMV pri-

miR-31/8 and its dual luciferase target vector (psiCHECK-8T) with the shRNA 5, pri-miR-

31/5 or pri-miR-122/5 expression cassettes. Co-transfection of the pri-miR-31/5 or pri-

miR-122/5 shuttle sequences did not interfere with pri-miR-31/8 silencing (Figure 3.11) 

indicating that these sequences do not interfere with independent pri-miR-mediated 

silencing. U6 shRNA 5 expression however significantly derepressed pri-miR-31/8 

silencing, which is in accordance with the findings of Grimm et al. (118). 

 

The second assay was designed to assess saturation of the endogenous miRNA 

pathway by detecting perturbations in miR-16 function (i.e. the ability of endogenous miR-

16 to knock down an exogenous target sequence). A Renilla luciferase reporter containing 

7 copies of an imperfect miR-16 target (psi-miR-16T×7) was constructed to measure miR-

16 function. As a positive control for loss of miRNA function a miR-16 sponge (141), a 

stable RNA sequence containing 7 imperfect copies of the miR-16 target sequence, was 

also created. Co-transfection of the pri-miR shuttle expression cassettes with psi-miR-

16T×7 revealed no significant disruption of miR-16 function (Figure 3.12). In contrast the 

sponge vector caused a significant loss of miR-16 silencing activity. Though the U6 

promoter driven shRNA 5 sequence derepressed silencing of an exogenous miRNA (pri-

miR-31/8) it did not affect the activity of an endogenous miRNA (miR-16). Together the 

data from the two saturation assays indicate that the pri-miR shuttle design represents an 

improvement in terms of safety over the traditional U6 shRNA expression cassettes. 
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Figure 3.11: Saturation of an exogenous pri-miR effecter sequence.  

(A) Schematic representation of pri-miR-31/8 target plasmid, psiCHECK-8T. (B) Huh7 

cells were co-transfected with psiCHECK-8T, pCMV pri-miR-31/8 and the indicated 

expression vectors. Renilla to Firefly ratio was used to measure derepression of pri-miR-

31/8 silencing. 
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Figure 3.12: Saturation of the endogenous miRNA biogenesis pathway. 

(A) Schematic representation of miR-16 target plasmid, psi- miR-16T×7. (B) Huh7 cells were co-transfected with the indicated plasmids 

and psi-miR-16T×7. The ratio of Renilla to Firefly luciferase activity is indicative of effect of the various constructs on miR-16 

silencing. 
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3.3.4 Pri-miR shuttle sequences silence HBV in vivo 

In vivo efficacy of the pri-miR shuttle sequences was assessed in the hydrodynamic 

injection model of HBV replication. Serum HBsAg concentrations, measured at day 3 and 

5 post-injection, were significantly reduced in mice that received pCMV pri-miR-31/5 or 

pCMV pri-miR-122/5 as compared to mock-treated animals (Figure 3.13B). Though U6 

shRNA 5 exhibited the greatest degree of knockdown, the pri-miR shuttle sequences 

nevertheless achieved impressive silencing. Quantitative real-time PCR analysis of 

circulating viral particle equivalents supported HBsAg data (Figure 3.13C) and indicated 

significantly reduced serum HBV DNA levels 3 and 5 days post-injection. Southern blot 

analysis of intrahepatic HBV DNA levels also revealed significant suppression (Figure 

3.14). HBV DNA intermediates were only detectable in livers of mock-treated animals 5 

days post-injection. Although RNAi-mediated silencing only occurs at the viral mRNA 

level, suppression of HBV replication was observed at multiple levels (i.e. viral protein 

synthesis, viral particle formation and viral DNA synthesis). 
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Figure 3.13: Suppression of HBV replication in vivo.  

(A) Schematic representation of pCH-9/3091. Serum viral antigen (A) and DNA (B) 

determinations from mice 3 and 5 days after co-injection with pCH-9/3091 and the 

indicated plasmids. The columns indicate average readings taken from at least four mice 

and error bars show SEM. 
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Figure 3.14: Intrahepatic suppression of viral replicative intermediates.  

Total DNA extracted from livers of mice that were co-injected with pCH-9/3091 and the indicated vectors was subjected to Southern 

blot analysis to detect HBV DNA replicative intermediates.  
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3.4 DISCUSSION 

 Embedding anti HBV guide sequences within the structure of naturally occurring 

pri-miRNA allowed for the creation of pri-miR shuttle sequences that target HBV. The 

guide sequences of pri-miR-31 and pri-miR-122 were replaced with the guide sequence of 

previously described U6 shRNA (Chapter 2). The antiguide sequences of the pri-miR 

shuttle were redesigned to maintain wild-type secondary structure. To determine whether a 

functional RNAi effecter sequence was created by replacing the guide of an endogenous 

pri-miRNA with an anti HBV guide, transcription of these pri-miR shuttles was initially 

driven from the U6 promoter. The data demonstrated that Pol III-driven anti HBV pri-miR 

shuttle sequences are capable of efficiently knocking down viral replication. Similar results 

have been reported with U6-driven pre-miR-30 shuttle sequences (145, 146). Since the pri-

miR shuttle sequences mimic naturally occurring pri-miRNA, which are normally 

expressed as RNA Pol II transcripts, the efficacy of Pol II promoter-driven anti HBV pri-

miR shuttles were assessed. An RNAi expression cassette that enables expression from a 

Pol II promoter improves on current systems by allowing tissue-specific, inducible and 

multimeric effecter expression. Both pri-miR-31 and pri-miR-122 shuttle sequences 

incorporated within the exonic sequence of a CMV-derived transcript were capable of 

effective knockdown of markers of HBV replication. Furthermore the degree of 

knockdown achieved by the Pol III and Pol II pri-miR shuttle sequences was equivalent to 

that of the highly effective U6 shRNA 5 sequence. Northern blot analysis revealed that the 

pri-miR shuttles were processed to form 21-23 nt guide sequences. This clearly indicates 

that processing of the pri-miR shuttle sequences by the miRNA biogenesis pathway 

proceeded as intended and therefore that incorporation of an anti HBV guide within a 

miRNA backbone creates an effective RNAi activator. Interestingly, concentrations of 

guide sequences derived from U6 pri-miR shuttle cassettes were significantly lower than 
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their U6 shRNA derived counterparts. This correlates well with data from other groups 

employing pre-miR-30 shuttle expression cassettes (145, 146). Despite lower 

concentrations of guide sequence derived from the pri-miR shuttles silencing, efficacy was 

equivalent to the U6 shRNA, indicating that the guide sequences are especially potent. 

This has proved to be of particular importance as low levels of RNAi effecter sequences 

are crucial to avoid toxic side-effects that arise from saturation of the endogenous miRNA 

pathway. This represents a significant step in improving the safety of expressed RNAi 

effecters for eventual clinical application. 

 

Since the discovery of RNAi, significant progress has been made in the 

development of synthetic and expressed effecters as potential therapeutic sequences. 

Numerous studies have exploited and subsequently demonstrated efficacy of Pol III-driven 

shRNA expression cassettes to limit HBV gene expression in vitro and in vivo. However, 

to advance expressed RNAi activators as an antiviral therapeutic option, further 

improvements in safety (through dose regulation) and efficacy (limiting viral escape) of 

current systems is necessary. Demonstration that pri-miR shuttle sequences expressed from 

Pol II are capable of effecting potent gene silencing lays the foundation for further 

development of these RNAi effecters. Pri-miR shuttle sequences permit the creation of 

regulatable RNAi expression cassettes as Pol II promoters are amenable to tissue-specific 

and inducible expression. Expression cassettes such as these may potentially limit off-

target effects from constitutive expression but more importantly also avoid saturation of 

the RNAi pathway. Transcripts derived from Pol II transcription are typically large RNA 

molecules which makes it possible to incorporate multiple RNAi effecters within a single 

expression cassette. Indeed numerous endogenous miRNA are polycistronic and are 

expressed as a cluster on a single Pol II transcript. Employing a multi-targeted approach, 
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such as polycistronic pri-miR shuttles, to silence viral replication may prevent the 

emergence of viral escape mutants. In the following Chapter the feasibility of pri-miR-122 

shuttles expressed from liver-specific promoters and multimeric pri-miR-31 shuttles is 

explored. 
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4 LIVER-SPECIFIC AND MULTI-TARGETING 

PRI-MIR SHUTTLE EXPRESSION VECTORS 

4.1 INTRODUCTION 

The preceding Chapter demonstrated that embedding anti HBV guides into the 

backbone of hsa-pri-miR-31 or hsa-pri-miR-122 yielded RNAi effecters capable of 

efficient knockdown of markers of HBV replication in vitro and in vivo. Furthermore 

silencing efficacy was not compromised when the pri-miR shuttle sequences were 

transcribed from a Pol II promoter (specifically the CMV promoter). Demonstration that 

silencing efficacy is not compromised when a pri-miR shuttle sequence is expressed from a 

CMV promoter indicates that effective pri-miR shuttle sequences may be expressed from 

other Pol II promoters. From the data presented in Chapter 2 it can be inferred that pri-miR 

shuttle sequences are effectively processed within the context of a Pol II transcript. 

Sequences occurring upstream or downstream of the pri-miR shuttle sequence therefore do 

not interfere with processing of the shuttle sequences. It may be possible to include 

multiple shuttle sequences within a single pri-miR shuttle cassette, which will not interfere 

with processing of each individual effecter sequence. The aims of the next set of exercises 

were to generate pri-miR-122 shuttles under the transcriptional control of liver-specific 

promoters and multimeric pri-miR-31 shuttle expression cassettes. 

 

The liver-specific and liver-abundant expression of miR-122 is well characterised 

(136) and expressing anti HBV pri-miR-122 shuttle sequences could potentially benefit 

from tissue-specific properties of natural pri-miR-122 processing. The human Factor VIII 

(FVIII) and alpha-1-antitrypsin (A1AT) promoters and HBV preS2 and core promoters 
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were chosen as potential candidates to drive liver-specific expression of the pri-miR-122 

shuttle sequences. Typically liver-specific expression is conferred on promoters by 

sequence elements within promoters and enhancers that are recognised by transcription 

factors enriched in the liver. The promoter of FVIII for example contains sequence 

elements necessary for recognition by the liver-enriched transcription factor hepatocyte 

nuclear factor 1 (HNF-1) (147), which confers liver-specificity to the promoter. Similarly 

liver-specific expression of the A1AT promoter is regulated by the liver transcription 

factors HNF-1α and HNF-4 (148). FVIII is a glycoprotein cofactor with an important role 

in the coagulation process and mutation or deficiencies in FVIII leads to haemophilia A 

(reviewed in (149)). Evidence that the liver is a major site of FVIII production came in the 

form of clinical data which demonstrated that liver transplantation reverses heamohpilia 

(147, 150). A1AT belongs to a family of serine proteinase inhibitors (serpins) that are 

involved in diverse biological roles. The liver is the major site for the synthesis of this 

serpin and expression of A1AT is driven from a liver-specific promoter (reviewed in 

(148)). Although extra-hepatic expression of A1AT does take place, transcription in other 

tissues occurs from alternate promoters. The liver-specificity of the FVIII and A1AT 

promoters is well-characterised making these ideal candidates for assessing the tissue-

specific expression of pri-miR shuttle sequences. Similarly employing HBV regulatory 

elements for the liver-specific expression of pri-miR shuttle sequences is an appealing 

alternative as the liver tropism exhibited by HBV is conferred in part by its transcription 

regulatory elements (reviewed in (12)). 

 

The pri-miR-31 shuttle sequences were further developed as a multi-targeted 

approach to silence HBV replication. The initial description of miRNA indicated that 

approximately 50% of these sequences occur in close proximity to each other and raised 
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the possibility that these are transcribed as polycistronic units (48). Elucidation of the 

miRNA biogenesis pathway soon revealed that miRNA clusters are indeed expressed from 

a single transcriptional unit. The fact that miRNA are naturally expressed as Pol II 

transcripts (49) allows for polycistronic units which of necessity need to be large 

transcriptional products. The monocistronic miR-31 was chosen as the basis for creating a 

multimeric pri-miR shuttle expression cassette. This facilitates a more convenient modular 

approach to creating multimeric expression cassettes than to embed guide sequences within 

an existing miRNA cluster. 

 

 In this Chapter cassettes capable of the tissue-specific expression of a transgene 

were initially created as a precursor to the development of liver-specific pri-miR-122 

shuttle expression cassettes. Additionally the development of a modular, multimeric pri-

miR shuttle expression cassette is described. The efficacy and safety of these cassettes was 

initially assessed in vitro followed by demonstration of silencing efficacy in vivo. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Liver-specific promoter driven pri-miR-122 shuttle cassettes 

4.2.1.1 Generation of liver-specific expression vectors 

The human A1AT (Genbank accession number D38257.1) and FVIII (Genbank 

accession number NT167198.1) promoter sequences were amplified from total human 

genomic DNA extracted from Huh7 cells using the primer sets in Table 4.1. The viral 

Basic Core Promoter (BCP) and PreS2 promoter sequences (Genbank accession number 

J02203.1) were amplified from the plasmid pCH-9/3091 using the primer sets in Table 4.1. 
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All oligonucleotides were synthesised by standard phosphoramidite chemistry (Inqaba 

Biotech, South Africa). Primers were designed such that amplification introduced a BglII 

(BclI in the case of A1AT) site at the 5’ end and a HindIII site at the 3’ end of the 

amplicons. Promoter sequences were amplified using the Expand High Fidelity PCR
PLUS

 

System (Roche Diagnostics GmbH, Germany) according to manufacturer’s instructions. 

Purified amplicons were ligated to the linearised PCR cloning vector pTZ57R/T. Plasmids 

were subjected to restriction enzyme digestion and clones yielding desired results were 

sequenced (Inqaba Biotech, South Africa). 

 

Next, the CMV immediate early enhancer promoter sequence within pCI-neo was 

substituted with the sequences of the liver-specific promoters (Figure 4.1). The new 

expression vectors created would therefore initiate transcription from the liver-specific 

promoters instead of the ubiquitous CMV promoter. The sequences encoding the FVIII, 

BCP and PreS2 promoters were removed from their respective plasmids (pTZ-FVIII, pTZ-

BCP and pTZ-PreS2) with BglII and HindIII restriction. BclI is sensitive to methylation, 

therefore pTZ-A1AT was propagated through the dcm- and dam-methylase deficient strain 

of E.coli, GM2929.  The sequence encoding the A1AT promoter was then restricted from 

pTZ-A1AT with BclI and HindIII. pCI-neo was digested with HindIII and EcoRI to yield 

3815 bp, 1317 bp and 340 bp fragments. Secondly, pCI-neo was digested with EcoRI and 

BglII to yield 4371 and 1101 bp fragments. The liver-specific promoter sequences were 

ligated with the 340 bp HindIII-EcoRI and the 4371 bp EcoRI-BglII fragments to generate 

the new liver-specific expression vectors (pCI-A1AT, pCI-FVIII, pCI-BCP and pCI-

PreS2). BclI and BglII generated complementary overhangs thus allowing the A1AT 

promoter sequence to be ligated to the pCI-neo backbone. 
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Table 4. 1: Oligonucleotide sequences for amplification of liver-specific promoters 

 

 

Primer 

 

 

Oligonucleotide sequence 

 

A1AT F 

A1AT R 

 

5’- GATCTGATCATTCCCTGGTCTGAATGTGTG -3’ 

5’- GATCAAGCTTACTGTCCCAGGTCAGTGGTG -3’ 

 

FVIII F 

FVIII R 

 

5’- GATCAGATCTGAGCTCACCATGGCTACATT -3’ 

5’- GATCAAGCTTGACTTATTGCTACAAATGTTCAAC -3’ 

 

BCP F 

BCP R 

 

5’- GATCAGATCTGCATGGAGACCACCGTGAAC -3’ 

5’- GATCAAGCTTCACCCAAGGCACAGCTTGGA -3’ 

 

PreS2 F 

PreS2 R 

 

5’- GATCAGATCTGCCTTCAGAGCAAACACCGC -3’ 

5’- GATCAAGCTTACAGGCCTCTCACTCTGGGA -3’ 

 

Restriction sites are indicated in bold (BglII or BclI in the forward primer and HindIII in the reverse primers). 
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Figure 4.1: Schematic representation of cloning strategy for the generation of liver-specific expression vectors.  

The liver-specific promoter (A1AT, FVIII, BCP and PreS2) sequences that had been inserted into the pTZ57R/T vector and indicated as 

green arrows were excised with HindIII and BglII (or BclI in the case of the A1AT promoter). pCI-neo was digested with HindIII and 

EcoRI or BglII and EcoRI. The relevant fragments were combined in a 3-way ligation to generate the liver-specific expression vectors 

containing the A1AT, FVIII, BCP or PreS2 promoter sequences. 
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4.2.1.2 Assessing functionality and tissue-specificity of the chosen promoter 

sequences 

To assess the functionality and tissue-specificity of the designed expression vectors 

the sequence encoding Firefly luciferase was cloned downstream of the promoter 

sequences. First pCI-neo FLuc was generated by XhoI and SpeI restriction digestion of 

pTZ-FLuc and cloning the resultant DNA fragment into pCI-neo that had been digested 

with XhoI and XbaI. The Firefly luciferase sequence was then removed from pCI-neo FLuc 

with NheI and SmaI and ligated into the equivalent sites of the liver-specific expression 

vectors to generate pCI-A1AT FLuc, pCI-FVIII FLuc, pCI-BCP FLuc and pCI-PreS2 

FLuc. 

Transfections 

To assess functionality of liver-specific expression cassettes Huh7 cells and the 

HEK293-derived 116 cells were transfected with 100 ng of the different Firefly luciferase 

expression vectors, 100 ng of phRL-CMV and 100 ng of pCI-neo eGFP using 

Lipofectamine™ 2000 (Invitrogen, CA, USA) according to manufacturer’s instructions 

(Appendix A1-1). Firefly luciferase and Renilla luciferase activities were measured as 

described in Section 3.4.2.4. Firefly luciferase activity was normalised to Renilla luciferase 

activity. Detection of Firefly luciferase activity exclusive to the liver-derived cell line was 

taken as liver-specific expression. 

4.2.1.3 Generation of liver-specific pri-miR shuttle vectors 

To generate liver-specific shuttle cassettes the pri-miR-122 sequences were excised 

from pCMV pri-miR-122/5, pCMV pri-miR-122/6 and pCMV pri-miR-122/10 with NheI 

and SmaI and ligated to the equivalent sites of pCI-A1AT and pCI-BCP.  
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4.2.1.4 Assessing silencing of markers of HBV replication by liver-specific pri-

miR shuttles in vitro 

To assess the tissue-specificity of the liver-specific pri-miR shuttles Huh7 and 116 

cells were transfected with 80 ng of target plasmid (pCH-FLuc), 800 ng of the A1AT- and 

BCP-driven pri-miR shuttle vectors, 50 ng of phRL-CMV and 50 ng of pCI-neo eGFP. 

Plasmid DNA was made up to a total of 1 µg with pCI-neo and transfected with 

Lipofectamine™ 2000 (Appendix A1-1). Forty eight hours post-transfection cells were 

lysed and measurement of Firefly and Renilla luciferase activities was carried out as 

described in Section 3.4.2.4. 

4.2.1.5 Assessing saturation of the endogenous miRNA pathway 

 To assess disruption of the miRNA biogenesis pathway by the A1AT and BCP pri-

miR-122 shuttle expression cassettes the miR-16 saturation assay was carried out as 

described in Section 3.2.6.2. 

4.2.1.6 In vivo efficacy of liver-specific pri-miR shuttle sequences 

In vivo efficacy of the A1AT- and BCP-driven pri-miR-122 shuttle expression 

cassettes was further assessed in the hydrodynamic injection model of HBV replication. 

Five micrograms of anti HBV expression cassettes were co-injected with 5 µg each of 

pCH-9/3091 and pCI-neo eGFP. Blood samples were collected from mice 3 and 5 days 

post-injection and HBsAg concentrations determined by ELISA (Section 2.2.7.1). 
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4.2.2 Polycistronic pri-miR shuttles 

4.2.2.1 Generation of polycistronic pri-miR-31 expression cassettes 

 Polycistronic pri-miR-31 shuttle cassettes were generated by inserting 

combinations of pri-miR-31/5, pri-miR-31/8 and pri-miR-31/9 sequences downstream of 

the CMV immediate early promoter enhancer. A total of 6 trimeric cassettes were 

generated (pri-miR-31/5/8/9, pri-miR-5/9/8, pri-miR-8/5/9, pri-miR-8/9/5, pri-miR-9/5/8 

and pri-miR-9/8/5). To generate the pri-miR-31/5/8/9 cassette, the pri-miR-31/8 sequence 

was excised from pTZ pri-miR-31/8 with NheI and EcoRI and ligated into pTZ pri-miR-

31/5 that had been digested with SpeI and EcoRI to create pTZ pri-miR-31/5/8. 

Subsequently, the sequence encoding pri-miR-31/9 was excised from pTZ pri-miR-31/9 

with NheI and EcoRI and ligated into pTZ pri-miR-31/5/8 that had been digested with SpeI 

and EcoRI. Successful ligation generated pTZ pri-miR-31/5/8/9. The remaining 5 trimeric 

cassettes were constructed using a similar cloning strategy. The trimeric pri-miR-31 

cassettes were excised with NheI and XbaI and cloned into equivalent sites of pCI-neo to 

produce the CMV pri-miR-31 expression vectors. All plasmids were sequenced by 

automated sequencing (Inqaba Biotech, South Africa). 

4.2.2.2 Individual pri-miR target vectors 

 To assess the ability of the polycistronic pri-miR shuttles to create multiple effecter 

sequences, luciferase reporter vectors with individual target sites downstream of the 

Renilla luciferase ORF were made. Dual luciferase reporter plasmids containing a site 

targeted by pri-miR-31/5 or pri-miR-31/9 were generated as described in Section 3.2.5.2. 

Primers were designed to amplify HBV co-ordinates 1575-1599 (5T) (5T F 5’- CCG TGT 

GCA CTT CGC TTC AC -3’ and 5T R 5’- ACT AGT CAG AGG TGA AGC GA -3’) and 

co-ordinates 1774-1798 (9T) (9T F 5’- TAG GAG GCT GTA GGC ATA AA -3’ and 9T R 
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5’- TAG GAG GCT GTA GGC ATA AA -3’) and introduced a SpeI site at the 3’ end of 

the target sequences. The target sequences were amplified by PCR, purified then ligated to 

the pTZ57R/T PCR cloning vector. Subsequently, the target sequences were excised with 

SalI and SpeI and ligated to the XhoI and SpeI sites of psiCHECK2.2 to create psiCHECK-

5T and psiCHECK-9T. 

4.2.2.3 Knockdown of individual luciferase target sequences 

Huh7 cells were co-transfected with 80 ng of each individual target vector 

(psiCHECK-5T, psiCHECK-8T and psiCHECK-9T), 800 ng each polycistronic pri-miR-

31 shuttle vector and 100 ng of pCI-neo eGFP. Plasmid DNA was made up to a total of 1 

µg with pCI-neo and transfected using Lipofectamine™ 2000 (Appendix A1-1). Firefly 

and Renilla luciferase activities were determined as described in Section 3.4.2.4. 

4.2.2.4 Processing of polycistronic pri-miR shuttles 

HEK293 cells seeded in 10 cm
2
 culture dishes were transfected with 16 µg of U6 

shRNA or pri-miR-31 shuttle vectors, 3 µg of pCH-9/3091 and 1 µg of pCI-neo. 

Transfections proceeded as described (Appendix A1-1) using Lipofectamine™ 2000. Total 

RNA was isolated from cells 48 hours post-transfection using Tri-Reagent (Sigma, MO, 

USA). Northern blot analysis of extracted RNA was carried out as described in Section 

3.2.5.2. 

4.2.2.5 Assessing efficacy of polycistronic pri-miR shuttles in cultured cells 

Transfections 

  Huh7 cells were maintained in DMEM containing 10% FCS and antibiotics as 

described in Appendix A1-1. To assess knockdown of HBsAg secretion 80 ng of pCH-

9/3091 was diluted with 800 ng of RNAi effecter plasmid and 120 ng of pCI-neo eGFP and 
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transfected using Lipofectamine™ 2000 (Appendix A1-1). The effect of polycistronic pri-

miR shuttles on in situ viral marker expression was determined by co-transfection of 80 ng 

of pCH-FLuc with 800 ng of RNAi effecter plasmid, 80 ng of phRL-CMV and 40 ng of 

pCI-neo eGFP. HBsAg secretion into culture medium from cells transfected with pCH-

9/3091 was assessed 48 hours post-transfection as described in Section 2.2.7.1 using the 

MONOLISA® HBs Ag ULTRA Assay kit. Firefly and Renilla luciferase activity in lysates 

prepared from cells transfected with pCH-FLuc were determined as described previously 

(Section 3.4.2.4). Firefly luciferase activity was normalised to Renilla luciferase activity. 

4.2.2.6 Assessing efficacy of polycistronic shuttles against a mutant HBx  

 Target vectors 

 Generation of the luciferase reporter plasmid psiCHECK-HBx, which has the 

complete HBx sequence inserted downstream of the Renilla luciferase ORF of 

psiCHECK™-2, has been described before (127)
11

. A mutant luciferase reporter 

(psiCHECK-mHBx) was derived from the parental psiCHECK-HBx vector by PCR. 

Nucleotides 1882 to 2214 of psiCHECK-HBx were amplified with the mHBx F (5’- GAT 

CCG GTC CGT CTG CAG TTC GGT TGT CCT CTG CAC GTT GCA TGG AG -3’) and 

R (5’- GAT CGC GGC CGC CCG GGT CGA CTC -3’) primer set. The forward and 

reverse primers were designed to include the RsrII and NotI restriction sites of psiCHECK-

HBx, respectively. Amplification introduced five point mutations (underlined in mHBx F 

above) within the region targeted by anti HBV guide 5. The mHBx amplicon was inserted 

into the PCR cloning vector pTZ57R/T to produce pTZ-mHBx. After sequence 

verification, the mHBx sequence was excised from pTZ-mHBx with RsrII and NotI and 

inserted into equivalent sites of psiCHECK-HBx to generate psiCHECK-mHBx. 

                                                      

11
 Weinberg at al. (Appendix A2) 
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Substitution of nucleotides 1890 and 1895 converted the ApaLI restriction site in the wild-

type sequence to a PstI restriction site in the mutant sequence. Restriction of potential 

psiCHECK-mHBx clones with PstI was used to verify insertion of the mutant sequence. 

 Transfection of cultured mammalian cells 

 Huh7 cells were maintained in DMEM containing 10% FCS and antibiotics 

(Appendix A1-1). Knockdown of wild-type and mutant HBx sequences was assessed by 

co-transfecting 800 ng of polycistronic pri-miR-31 plasmids and 40 ng of pCI-neo eGFP 

with 80 ng of psiCHECK-HBx or psiCHECK-mHBx. Transfections were carried out with 

Lipofectamine™ 2000 (Appendix A1-1). Forty eight hours after transfection Firefly and 

Renilla luciferase activity in lysates of transfected cells was determined as described in 

Section 3.4.2.4. Renilla luciferase activity was normalised to Firefly luciferase activity. 

4.2.2.7 Assessing off-target effects of polycistronic pri-miR shuttle sequences 

IFN response assay 

To assess possible induction of interferon response genes qRT-PCR analysis was 

performed on total RNA extracted from HEK293 cells transfected with the polycistronic 

pri-miR shuttle expression cassettes. As a positive control for interferon induction cells 

were also transfected with poly I:C. Transfection and analysis was carried out as described 

in Section 3.2.5.1. 

Disruption of endogenous miR-16 function 

To assess potential disruption of the miRNA biogenesis pathway by the multimeric 

pri-miR shuttle expression vectors the miR-16 saturation assay was carried out as 

described in Section 3.2.6.2. 
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4.2.2.8 In vivo efficacy of polycistronic pri-miR-31 shuttle sequences 

 Efficacy of polycistronic pri-miR-31 shuttles was assessed in the hydrodynamic 

model of HBV replication. Ten micrograms of pCH-9/3091 was co-injected with 10 µg 

RNAi effecter plasmid and 10 µg of psiCHECK2.2. Blood was collected from mice 3 and 

5 days post-injection and HBsAg concentrations determined as described previously 

(Section 2.2.7.1). 

4.2.2.9 Generation of polycistronic pri-miR cassettes containing pri-miR-30a/8 

Design of pri-miR-30a/8 shuttle sequence 

 The pri-miR-30a/8 shuttle was designed along similar lines to the pri-miR-31/8 

sequence. The major guide sequence of human pri-miR-30a (42, 133) was substituted with 

the guide sequence of U6 shRNA 8 (Figure 4.2). Since the mature miR-30a guide sequence 

is 22 nt in length the same number nucleotides from the U6 shRNA 8 guide sequence was 

incorporated into the pri-miR-30a/8 shuttle. This shuttle is therefore targeted to HBV co-

ordinates 1575-1596. As described previously computer aided prediction ((139, 140) 

Appendix A4-1) was employed to design the stem sequence of the pri-miR-30a/8 shuttle 

sequence such that secondary structure of wild-type pri-miR-30a was retained. 

Construction of pri-miR-30a/8 shuttle sequence 

Oligonucleotides encoding the pri-miR-30a/8 shuttles were synthesised using 

standard phosphoramidite chemistry (Inqaba Biotech, South Africa). The pre-miR-30a/8 

sequence was generated as dsDNA by primer extension of pre-miR-30a/8 F (5’- TGC TGT 

TGA CAG TGA GCG ACT CAA GGT CGG TCG TTG ACA TTG CTG TGA AGC CAC 

AGA TGG GC -3’) and pre-miR-30a/8 R (5’- GAA GTC CGA GGC AGT AGG CAG 

CTC AAG GTC GGT TTG ACA TTG CCC ATC TGT GGC TTC ACA G  -3’) primer set 

(Figure 3.3 (above)). The primer extended product was used as template for the
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Figure 4.2: Design of pri-miR-30a/8 shuttle sequence. 

The major guide sequence derived from the 5’ arm of hsa-miR-30a (indicated in purple) was replaced with anti HBV guide sequence 8 

(indicated in red) and complementary sequences altered to retain the secondary structure of the wild-type pri-miRNA stem region. 

Complete pri-miR shuttles contained 51 nt of wild-type pri-miRNA sequences flanking the pre-miR shuttle sequences. 
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amplification of the pri-miR-30a/8 shuttle sequence with pri-miR-30a F (5’- GAT CGC 

TAG CTT AAC CCA ACA GAA GGC TAA AGA AGG TAT ATT GCT GTT GAC 

AGT GAG CGA C -3’) and pri-miR-30a R (5’- GAT CAC TAG TAA AAA ACA AGA 

TAA TTG CTC CTA AAG TAG CCC CTT GAA GTC CGA GGC AGT AGG CA -3’). 

The amplified pri-miR-30a shuttle sequence was inserted into the PCR cloning vector 

pTZ57R/T to produce pTZ-pri-miR-30a/8. Sequence of plasmid clones yielding correct 

restriction maps and that contained inserts in the desired orientation, reverse with respect to 

that of the lacZ gene, was verified by automated sequencing. 

Generation of CMV polycistronic pri-miR shuttle sequences containing pri-

miR-30a/8 

To assess whether substituting the pri-miR-31/8 sequence of pri-miR-31/5/9/8 with 

pri-miR-30a/8 restores silencing to the 8 guide sequence, pri-miR-31/5/9-30a/8 and pri-

miR-122/5-31/9-30a/8 trimers were constructed. First the pri-miR-31/5/9 and pri-miR-

122/5-31/9 shuttle sequences were generated by restricting pTZ-pri-miR-31/5 and pTZ-pri-

miR-122/5 with ScaI and SpeI and pTZ-pri-miR-31/9 with ScaI and NheI. Ligation of the 

fragments containing pri-miR-31/5 or pri-miR-122/5 with the fragments containing pri-

miR-31/9 yielded pTZ-pri-miR-31/5/9 or pTZ-pri-miR-122/5-31/9, respectively. Similarly 

fragments produced from restriction of pTZ-pri-miR-31/5/9 and pTZ-pri-miR-122/5-31/9 

with ScaI and SpeI were ligated with fragments from ScaI and NheI digestion of pTZ-pri-

miR-30a/8 to produce pTZ- pri-miR-31/5/9-30a/8 and pTZ-pri-miR-122/5-31/9-30a/8. 

Finally, the trimeric pri-miR shuttle sequences were excised with NheI and XbaI and 

inserted into equivalent sites of pCI-neo to produce pCMV pri-miR-31/5/9-30a/8 and 

pCMV pri-miR-122/5-31/9-30a/8. 
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Assessing silencing by the pri-miR-30a/8 shuttle sequence 

 Individual target 8 and mutant HBx target silencing 

 Knockdown of the individual luciferase target vector psiCHECK-8T and the wild-

type and mutant HBx sequences was used to determine whether the pri-miR-30a/8 shuttle 

sequence was effective within the context of a polycistron. Huh7 cells were maintained in 

DMEM supplemented with FCS and antibiotics (Appendix A1-1). Knockdown of the 

individual target was assessed by co-transfecting 800 ng of the effecter plasmids with 80 

ng of psiCHECK-8T and 40 ng of pCI-neo eGFP. Knockdown of wild-type and mutant 

HBx target sequences by the modified polycistronic shuttle sequences was determined by 

transfecting 800 ng of shuttle expression plasmids, 80 ng of psiCHECK-HBx or 

psiCHECK-mHBx and 40 ng of pCI-neo eGFP. Transfections were carried out with 

Lipofectamine™ 2000 (Appendix A1-1). Firefly and Renilla luciferase activity in lysates 

of transfected cells were determined 48 hours post-transfection (Section 3.4.2.4). Firefly 

luciferase activity was used as a normalisation control for Renilla luciferase activity. 

 

4.3 RESULTS 

4.3.1 Liver-specific pri-miR-122 shuttle expression cassettes 

4.3.1.1 Identified promoter sequences are functional and capable of tissue-

specific expression of a Firefly luciferase transgene 

 To establish whether the promoter sequences selected for eventual use in the liver-

specific pri-miR shuttle expression vectors are functional and exhibit tissue-specificity, the 

ability of these sequences to express a transgene that is easily quantifiable was first 

assessed. Quantification of Firefly luciferase may be achieved with relative ease and was 
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used as a surrogate to identify functional promoter sequences that may be used for the 

liver-specific expression of the pri-miR-122 shuttle sequences. The CMV immediate early 

promoter enhancer element of pCI-neo was replaced with the sequences encoding the liver-

specific promoters of human A1AT and FVIII and the HBV PreS2 and BCP/enhancer II 

sequences. Subsequently, the Firefly luciferase sequqnce was inserted downstream of the 

various Pol II promoters of pCI-neo, pCI-A1AT, pCI-FVIII, pCI-BCP and pCI-PreS2. 

Firefly luciferase activity was assessed in human liver-derived (Huh7) and human kidney-

derived (116) cells, which were transfected with the CMV-driven expression plasmid (pCI-

neo FLuc) and the liver-specific promoter-driven expression plasmids (pCI-A1AT FLuc, 

pCI-FVIII FLuc, pCI-BCP FLuc and pCI-PreS2 FLuc). Firefly luciferase was strongly 

expressed in both Huh7 and 116 cells transfected with pCI-neo FLuc (Figure 4.3). This is 

not unexpected as the ubiquitously active and powerful nature of the CMV immediate 

early promoter enhancer is well-characterised (151). The detection of Firefly luciferase in 

Huh7 cells transfected with the liver-specific expression plasmids indicated that these 

promoter sequences were functional. In contrast to the expression from the CMV 

immediate early promoter enhancer, which strongly expressed Firefly luciferase in Huh7 

and 116 cells, transgene activity was not detected in kidney-derived cells transfected when 

expressed from any of the liver-specific promoters indicating that these cassettes exhibited 

tissue-specific expression. The CMV promoter sequence however was significantly 

stronger than that of the liver-specific promoters. Indeed Firefly luciferase expression from 

the FVIII and PreS2 promoters was barely detectable. Consequently these promoters were 

excluded from further investigation as it is unlikely that sufficient levels of pri-miR shuttle 

sequence would be expressed from these promoters. 
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Figure 4.3: Expression of the Firefly luciferase transgene from the various promoter elements.  

The functionality and tissue-specificity of the putative liver-specific promoters was assessed by measuring expression of the Firefly 

luciferase transgene. Firefly luciferase activity was measured in liver-derived (Huh7) and kidney-derived (116) cells. Bars indicate 

means of relative Firefly to Renilla luciferase activity in Huh7 (black bars) and 116 (gray bars) cells. Error bars indicate SEM. 
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4.3.1.2 Pri-miR shuttle sequences driven from the A1AT and HBV core promoters 

are capable of tissue-specific inhibition of HBV gene expression 

 Demonstration that the A1AT and HBV core promoter sequences are able to 

express a transgene tissue-specifically indicated that these sequences could potentially be 

employed to achieve liver-specific expression of the pri-miR-122 shuttle sequence. A1AT- 

and BCP-driven shuttle cassettes were therefore generated to determine whether these 

cassettes could tissue-specifically express the pri-miR-122 sequences. Silencing of a 

marker of HBV gene expression (relative Firefly luciferase activity) was used as a measure 

of pri-miR-122 shuttle sequence expression (Figure 4.4). Whereas pri-miR-122/5 shuttle 

sequences expressed from the CMV promoter caused knockdown of HBV gene expression 

in liver- and kidney-derived cell lines, equivalent knockdown by the A1AT and BCP 

shuttle vector was only achieved in the liver-derived cell line. Knockdown in the kidney-

derived cell line by the tissue-specific pri-miR shuttle vectors was marginal but not 

comparable to knockdown by the CMV pri-miR shuttles. Interestingly CMV pri-miR-

122/6 did not cause significant silencing in the kidney-derived cell line and is likely as a 

result of the lower efficacy of the pri-miR-122/6 sequence. The pri-miR-122/10 shuttle 

sequence, which is known to be ineffective at achieving knockdown of HBV, was 

incapable of silencing irrespective of the promoter from which it was expressed. CMV pri-

miR-122/10 seemed to induce HBV expression and is in accordance with observations 

with U6 shRNA 10 (data not shown). Taken together these data indicate that expressing 

pri-miR shuttle sequences from liver-specific promoters limits silencing activity to liver-

derived cell lines. These constructs may be developed further to ultimately limit expression 

of therapeutic sequences to the liver. 
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Figure 4.4: Inhibitory activity of pri-miR-122 shuttle sequences expressed from various promoter sequences. 

(A) Schematic representation of pCH-FLuc. (B)  Efficacy of liver-specific pri-miR shuttles was assessed by co-transfection of Huh7 and 

116 cells with pCH-FLuc and the various Pol II expression cassettes. Bars indicate means of relative Firefly to Renilla luciferase 

activities from Huh7 (black bars) and 116 (grey bars) cells. Error bars indicate SEM. 
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4.3.1.3 Liver-specific pri-miR-122 shuttle expression cassettes do not disrupt the 

endogenous miRNA pathway 

 To assess whether the liver-specific pri-miR-122 shuttle expression cassettes cause 

disruption of the miRNA biogenesis pathway the previously described miR-16 saturation 

assay was carried out. Co-transfection of the miR-16 sponge plasmid, pU6 miR-16S×7, 

with the psi-miR-16T×7 target plasmid (Figure 4.5A) was included as a positive control for 

disruption of miR-16 function. pU6 miR-16S×7 co-transfected with psi-miR-16T×7 caused 

a significant increase in Renilla luciferase activity as compared to mock-transfected cells 

(Figure 4.5B) indicating that the sponge plasmid interfered with endogenous miR-16 

silencing of the Renilla luciferase target. In contrast, none of the liver-specific pri-miR 

shuttle sequence expression cassettes derepressed Renilla luciferase activity. The pri-miR 

shuttle sequences therefore do not interfere with endogenous miR-16 function. This result 

is not unexpected as the liver-specific promoters are not as powerful as the CMV promoter 

(Figure 4.3 (above)), which has previously been shown to not cause disruption of the 

miRNA biogenesis pathway. The relatively low levels of pri-miR shuttle sequences 

produced from the liver-specific promoters are therefore unlikely to outcompete naturally 

occurring miRNA for processing by the RNAi processing machinery. 

 

4.3.4 A1AT-driven pri-miR shuttle sequences knock down HBV replication in 

vivo 

 In vivo efficacy of the A1AT- and BCP-driven pri-miR shuttle expression cassettes 

was assessed in the hydrodynamic injection model of HBV replication. Serum HBsAg 

concentration was measured at day 3 and 5 post-injection to determine silencing of HBV 

replication (Figure 4.6). Silencing achieved with pA1AT pri-miR-122/5 was equivalent to
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Figure 4.5: Assessing saturation of the miRNA biogenesis pathway. 

(A) Schematic representation of the psi-miR-16T×7 target plasmid, which expresses the 

Renilla luciferase transcript with seven imperfect miR-16 target sites within its 3’ UTR. 

(B) Huh7 cells were co-transfected with the indicated plasmids and psi-miR-16T×7 in 

triplicate and the cells analysed for luciferase activity 48 hours later. Means of the relative 

Renilla to Firefly luciferase activity are indicated with SEM. 
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Figure 4.6: In vivo inhibitory effects of liver-specific promoter pri-miR-122 expression cassettes.  

(A) Schematic representation of pCH-9/3091. (B) Mice were injected using the hydrodynamic tail vein injection procedure with the 

indicated plasmids and pCH-9/3091. Each group comprised at least 4 mice. Serum was collected 3 and 5 days post-injection and HBsAg 

concentrations determined by ELISA. Mean HBsAg concentrations are indicated with SEM. 
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that of its CMV promoter-driven counterpart, however silencing was only maintained until 

day 5 in mice that received pA1AT pri-miR-122/5. This may be as a result of the relative 

strengths of the A1AT and CMV promoters. No silencing of HBV replication was 

observed in mice that received BCP-driven pri-miR-122 shuttle expression cassettes. 

 

4.3.2 Polycistronic CMV pri-miR-31 expression cassettes 

4.3.2.1 Polycistronic pri-miR-31 expression cassettes produce multiple effecter 

sequences 

 A functional assay was initially used to determine whether the multimeric pri-miR-

31 expression cassettes produce all the expected guide sequences. Dual luciferase reporter 

plasmids were generated that are targeted by each individual effecter sequences (i.e. pri-

miR-31/5, pri-miR-31/8 or pri-miR-31/9) (Figure 4.7A). The ability of an expression 

cassette to silence Renilla luciferase expression from individual reporter plasmids is 

therefore indicative of the production of a functional effecter sequence. Each of the six 

multimeric pri-miR-31 shuttle expression cassettes was co-transfected with the three 

different individual psiCHECK target plasmids. Renilla luciferase expression from 

psiCHECK-5T was significantly inhibited by all of the different polycistronic pri-miR-31 

shuttle expression cassettes (Figure 4.7B). All the polycistronic pri-miR-31 shuttle 

expression cassettes therefore produced functional pri-miR-31/5 shuttle sequence. Of the 

six multimeric cassettes only pCMV pri-miR-31/5/9/8 and pCMV pri-miR-31/9/8/5 did not 

inhibit Renilla luciferase expression from psiCHECK-8T which indicates that these 

cassettes lack the ability to produce a pri-miR-31/8 shuttle sequence. Though all the 

polycistronic cassettes significantly silenced Renilla luciferase expression from 

psiCHECK-9T, the inhibitory effects were not as marked as that achieved against the 5 or



Chapter 4  - 108 - 

 

Figure 4.7: Determination of effecter sequence production by a functional assay. 

(A) Schematic representation of the individual luciferase target vectors. (B) Huh7 cells 

were co-transfected with psiCHECK-5T, psiCHECK-8T or psiCHECK-9T and the 

indicated trimeric pri-miR shuttles plasmids in triplicate. Forty eight hours post-

transfection Renilla and Firefly luciferase activity was measured from the lysates of 

transfected cells. Indicated are the relative averages of Renilla to Firefly luciferase activity 

with SEM. 
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8 target plasmids and may indicate that the pri-miR-31/9 shuttle sequences produced from 

these polycistronic cassettes are not highly effective. 

 

The data from the functional analysis were corroborated by Northern blot 

hybridisation to detect processed guide sequences (Figure 4.8). In accordance with the 

functional analysis using psiCHECK-5T, guide sequences corresponding to miR-31/5 were 

produced from all the multimeric pri-miR-31 expression cassettes (Figure 4.8A). Guide 

sequences corresponding to miR-31/8 were not detected in cells transfected with pCMV 

pri-miR-5/9/8 or pCMV pri-miR-9/8/5 (Figure 4.8B) which clarifies the results observed 

with the functional assay. The miR-31/9 guide sequence was produced from all the 

different pri-miR-31 shuttle expression cassettes (Figure 4.8C), however guide 

concentration was lower than that observed for miR-31/5 and miR-31/8 and may explain 

the lower inhibitory effects observed against the individual luciferase target. 

4.3.2.2 Multimeric pri-miR-31 shuttles effectively knock down markers of HBV 

replication in vitro 

 Next, silencing efficacy of polycistronic pri-miR shuttle expression cassettes 

against more relevant viral targets was assessed. Huh7 cells were co-transfected with the 

various multimeric pri-miR-31 shuttle expression cassettes and the target vectors, pCH-

9/3091 and pCH-FLuc. HBsAg concentrations in supernatants of cells transfected with the 

different polycistronic cassettes were significantly reduced as compared to mock-

transfected cells (Figure 4.9). Furthermore the degree of silencing was comparable to that 

achieved with the highly effective U6 shRNA 5 sequence. Similar results were observed 

with the polycistronic pri-miR-31 shuttles targeted against the Firefly luciferase reporter 

pCH-FLuc (Figure 4.10). These results together with the previous data (Section 4.3.2.1) 

indicate that at least one of the effecter sequences that are produced from the multimeric
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Figure 4.8: Northern blot analysis for the detection of guide sequences from 

multimeric cassettes.  

Total RNA extracted from cells transfected with the different shRNA or pri-miR-31 

expression cassettes were hybridised to nylon membranes and relevant guide sequences 

detected with radioactively labelled probe. Membranes were stripped and reprobed for U6 

snRNA to confirm equal loading. 
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Figure 4.9: Inhibition of HBV replication in cultured mammalian cells.  

(A) Schematic representation of pCH-9/3091. (B) Huh7 cells were co-transfected with 

pCH-9/3091 and the indicated plasmids in triplicate. HBsAg concentration in culture 

supernatant was determined by ELISA. Bars indicate normalised averages of HBsAg levels 

with SEM. 
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Figure 4.10: In situ inhibition of a marker of HBV replication.  

(A) Schematic representation of pCH-FLuc. (B) To assess silencing activity of the 

multimeric pri-miR-31 expression cassettes within cells the Firefly luciferase reporter 

plasmid, pCH-FLuc was co-transfected with the indicated effecter plasmids. Firefly and 

Renilla luciferase activities were assessed in the lysates of transfected cells and are 

indicated graphically with SEM. 
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shuttle expression cassettes is causing effective knockdown of viral gene expression. 

4.3.2.3 Polycistronic pri-miR-31 shuttes are capable of silencing mutant HBx 

target sequences 

 To assess whether the polycistronic pri-miR-31 shuttle expression cassettes could 

potentially prevent the emergence of a viral escape mutant, a dual luciferase reporter vector 

was constructed that has a mutated pri-miR-31/5 target. The psiCHECK-HBx vector, 

which contains a copy of the complete HBx ORF downstream of the Renilla luciferase 

sequence, was used to derive the mutant target vector psiCHECK-mHBx (Figure 4.11A). 

Using a PCR-based approach five point mutations were introduced into the pri-miR-31/5 

target site. Huh7 cells were transfected with the polycistronic pri-miR-31 expression 

cassettes and the wild-type or mutant HBx target vectors The pri-miR-31/5/8/9, pri-miR-

31/8/5/9, pri-miR-31/8/9/5 and pri-miR-31/9/5/8 shuttle cassettes were capable of 

efficiently reducing expression of wild-type and mutant HBx targets (Figure 4.11B). 

Unsurprisingly the pri-miR-31/5/9/8 and pri-miR-31/9/8/5 expression cassettes, though 

capable of efficiently silencing the wild-type HBx target, only moderately knocked down 

the mutant HBx target. Northern hybridisation analysis (Figure 4.8 (above)) revealed that 

the 8 guide sequence was not produced from the pri-miR-31/5/9/8 or pri-miR-31/9/8/5 

shuttle sequences and as a consequence was not functional against an 8 target (Figure 4.7 

(above)). Additionally the 9 guide sequence produced from the polycistronic cassettes was 

shown to be only moderately effective (Figure 4.7 (above)). Consequently only the 5 guide 

produced from the pri-miR-31/5/9/8 or pri-miR-31/9/8/5 shuttle sequences is potentially 

effective and since its cognate is mutated, these cassettes cause poor silencing of the mHBx 

target. Nevertheless, the modular nature of the polycistronic pri-miR-31 shuttle sequences 

allowed rearraging the order of each individual shuttle to produce four multimeric cassettes 

that are effective and potentially capable of limiting viral escape mutants.  
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Figure 4.11: Silencing of mutant HBx sequence by polycistronic pri-miR-31 shuttles. 

(A) Schematic representation of psiCHECK-HBx and psiCHECK-mHBx target vectors. 

Wild-type and mutant HBx sequences occur downstream of the Renilla luciferase ORF 

with the pri-miR-31/5 guide sequence that target these sites indicated in red. (B) 

psiCHECK-HBx (grey bars) or psiCHECK-mHBx (white bars) were co-transfected with 

the indicated polycistronic pri-miR-31 shuttle plasmids. Mean ratios of Renilla to Firefly 

luciferase activity from transfected cells are shown with SEM indicated by error bars.
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4.3.2.4 Polycistronic pri-miR-31 shuttle sequences do not exhibit toxic effects 

 To exclude toxic effects as factors contributing to the observed viral inhibition, 

induction of the interferon response was measured. IFN-β was determined in HEK293 cells 

transfected with the panel of multimeric pri-miR-31 shuttles. Compared to the control 

positive for induction of the interferon response (poly (I:C) control) none of the 

polycistronic pri-miR-31 shuttle sequences caused a significant increase in IFN-β mRNA 

levels (Figure 4.12). The silencing effects observed are therefore independent of immune 

stimulation. 

 

Again to assess possible disruption of the endogenous miRNA biogenesis pathway, 

the miR-16 saturation assay was carried out with the pri-miR-31 expression cassettes. 

Whereas the miR-16 sponge plasmid co-transfected with the dual luciferase target plasmid 

clearly disrupted endogenous miR-16 function as can be seen by derepression of Renilla 

luciferase activity, none of the multimeric cassettes had a negative effect on miR-16 

function (Figure 4.13). Therefore the polycistronic pri-miR-31 expression cassettes neither 

cause induction of the IFN response nor do these cassettes saturate the endogenous miRNA 

pathway. 

4.3.2.5 Polycistronic pri-miR-31 shuttles efficiently knock down HBV replication 

in vivo 

 To assess efficacy of the polycistronic pri-miR-31 expression cassettes for silencing 

HBV replication in vivo, the murine hydrodynamic injection procedure was used to co-

deliver effecter plasmid with the HBV replication-competent plasmid, pCH-9/3091. In 

comparison to mock-injected mice, serum HBsAg concentrations were significantly 

reduced in mice that received the multimeric pCMV pri-miR-31/5/8/9 or pCMV pri-miR- 
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Figure 4.12: Stimulation of IFN response genes by polycistronic pri-miR-31 shuttle sequences.  

Real-time qRT-PCR analysis was carried out on total RNA extracted from HEK293 cells transfected with the indicated plasmids. IFN-β 

mRNA levels were normalised and averages from triplicate experiments are indicated with SEM. 
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Figure 4.13: Saturation assay to assess disruption of endogenous miR-16 function.  

(A) Schematic representation of the dual luciferase target plasmid, psi-miR-16T×7, which 

contains seven imperfect miR-16 target sites within the 3’ UTR of the Renilla luciferase 

transcript. (B) Huh7 cells were co-transfected with the indicated plasmid and Renilla and 

Firefly luciferase activities determined 48 hours post-transfection. Relative Renilla/Firefly 

activities are indicated as averages from triplicate experiments with error bars representing 

SEM. 
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31/8/5/9 (Figure 4.14). Knockdown achieved with the two multimeric expression cassettes 

was equivalent to the degree of inhibition achieved with the CMV-derived monomeric 

shuttle sequence, pri-miR-31/5 and the U6 shRNA 5 effecter sequence. In addition 

knockdown was sustained for up to five days post-injection. Polycistronic pri-miR shuttle 

sequences are therefore capable of efficiently silencing HBV replication in an in vivo 

model that simulates viral replication. 

4.3.2.6 Replacing pri-miR-31/8 shuttle with a pri-miR-30a/8 shuttle sequence 

restores silencing to the 5/9/8 trimer 

 To assess whether replacing the pri-miR-31/8 shuttle sequence of CMV pri-miR-

31/5/9/8 with a different pri-miR shuttle backbone would restore repressive activity to the 

trimeric cassette, pCMV pri-miR-31/5/9-30a/8 and pCMV pri-miR-122/5-31/9-30a/8 were 

created. Initially silencing by the pri-miR-30a/8 shuttle sequence within the context of a 

polycistronic sequence was assessed by co-transfecting the pCMV pri-miR-31/5/9-30a/8 

and pCMV pri-miR-122/5-31/9-30a/8 cassettes with the individual 8 target vector. As 

shown previously (Figure 4.7 (above)) the pCMV pri-miR-31/5/9/8 and pCMV pri-miR-

31/9/8/5 shuttle expression cassettes do not knock down Renilla luciferase expression from 

the psiCHECK-8T target vector (Figure 4.15). In contrast both the pCMV pri-miR-31/5/9-

30a/8 and pCMV pri-miR-122/5-31/9-30a/8 cassettes effectively knock down Renilla 

luciferase activity. Similarly the pCMV pri-miR-31/5/9-30a/8 and pCMV pri-miR-122/5-

31/9-30a/8 cassettes were effective against a mutated HBx target whereas the pri-miR-

31/5/9/8 and pri-miR-31/9/8/5 shuttles exhibited limited silencing efficacy (Figure 4.16). 

These results clearly indicate that substituting the pri-miR-31/8 sequence for the pri-miR-

30a/8 shuttle sequence restores repressive activity to the 5/9/8 trimer. 
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Figure 4.14: Inhibitory potential of polycistronic pri-miR-31 shuttle expression 

cassettes in vivo.  

(A) Schematic representation of pCH-9/3091. (B) Mice were injected hydrodynamically 

with the indicated plasmids and blood collected at days 3 and 5 post-injection. Serum 

HBsAg concentrations were determined by ELISA and are indicated as the average from at 

least four experiments. Error bars represent SEM. 
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Figure 4.15: Indvidual target silencing by modified pri-miR shuttle sequences. 

(A) Schematic representation of individual 8 target vector. (B) psiCHECK-8T was co-

transfected with the indicated polycistronic pri-miR shuttle cassettes. Ratios of Renilla to 

Firefly luciferase activity is shown with SEM. 
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Figure 4.16: Mutant target silencing by modified pri-miR shuttle sequences. 

(A) Diagrammatic representation of the wild-type and mutant HBx target vectors. (B) 

psiCHECK-HBx (grey bars) or psiCHECK-mHBx (white bars) was co-transfected with the 

indicated polycistronic expression plasmids. Average Renilla to Firefly luciferase activity 

is shown with SEM indicated by the error bars. 
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4.4 DISCUSSION 

 Until recently attempts to create RNAi expression cassettes that express effecter 

sequences from Pol II promoters have yielded constructs that exhibit variable efficacy and 

applicability (152-154). This is likely as a result of attempting to express traditional 

shRNA sequences from Pol II promoters. The development of pre- and pri-miR shuttle 

sequences as RNAi effecters has allowed other important characteristics of natural miRNA 

biogenesis to be exploited. First pri-miRNA are typically transcribed from Pol II regulatory 

elements and consequently pri-miR shuttle sequences have the potential for Pol II 

transcription. In the previous Chapter embedding anti HBV guides within RNAi effecters 

that mimic naturally occurring pri-miRNA was shown to enable these sequences to be 

transcribed from Pol II promoters without compromising silencing activity. Subsequently 

liver-specific human and viral (HBV) Pol II regulatory elements were assessed for their 

ability to express the pri-miR-122 shuttle sequences in a tissue–specific manner. Though 

expression of the Firefly luciferase transgene was greatest from the constitutively active 

CMV immediate early promoter enhancer, expression of the transgene from the liver-

specific promoters was limited to the liver-derived cell line Huh7. The A1AT and HBV 

core promoter, which exhibited the strongest transgene expression of the liver-specific 

promoters, were further analysed for pri-miR-122 shuttle sequence expression. Silencing of 

HBV gene expression was only observed in a liver-derived cell line when HBV DNA had 

been co-transfected with the liver-specific pri-miR-122 expression cassettes. This strongly 

implies that in cultured mammalian cells liver-specific expression of the pri-miR-122 

shuttle sequences was achieved. In vivo, only the A1AT expression cassette was able to 

knock down HBV replication, however silencing was not maintained for longer than 5 

days. Further characterisation of candidate liver-specific Pol II regulatory elements is 
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therefore necessary to improve tissue-specific expression of these pri-miR shuttle 

sequences (e.g. by improving promoter strength). One option that has been explored was to 

combine a murine alpha-fetoprotein enhancer with a minimal albumin promoter sequence 

(155). This chimaeric promoter was shown to exhibit improved strength and liver-

specificity and was demonstrated to effectively express anti HBV pre-miR-30 shuttle 

sequences. Numerous naturally occurring miRNA such as the liver-abundant miR-122 

exhibit tissue-specificity and the promoter elements of these miRNA may offer an 

alternative for the design of tissue-specific pri-miR shuttle sequences. Furthermore Pol II 

cassettes can be designed to only express the pri-miR shuttle sequence upon HBV infection 

(through the transactivation potential of HBx) to limit effecter expression to actively 

infected cells. Preliminary data to assess transactivation by HBx of liver-specific promoters 

(A1AT, BCP and murine transthyretin (mTTR) promoter) driving Firefly luciferase 

expression indicate that further development of promoter sequences is necessary (P. 

Arbuthnot, personal communication). 

 

 The second feature conferred to pri-miR shuttle sequences is the potential for the 

generation of polycistronic expression cassettes. Multiple miRNA are often processed from 

a number of pre-miRNA structures that are clustered on a single pri-miRNA transcript 

(156). This characteristic therefore enables multiple shuttle sequences to be clustered 

together as a single polycistronic pri-miR shuttle sequence. To assess the feasibility of such 

an approach, trimeric Pol II-driven pri-miR-31 shuttle expression cassettes were generated 

from the individual pri-miR-31/5, pri-miR-31/8 and pri-miR-31/9 shuttle sequences. As 

predicted, multiple effecter sequences were produced from each of the single multimeric 

expression cassettes. Furthermore functional analysis revealed that each of the 

polycistronic pri-miR-31 shuttle expression cassettes was able to effectively silence 
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multiple targets. Interestingly some degree of interference was observed within pri-miR-31 

clusters of a particular order. Whenever the pri-miR-31/8 shuttle sequence occurred 

downstream of the pri-miR-31/9 sequence the miR-31/8 guide was not produced. Absence 

of pri-miR-31/8 processing within these clusters corroborated functional analysis. 

Computer-aided prediction of secondary structure of the pri-miR-31/5/9/8 and pri-miR-

31/9/8/5 clusters did not reveal any difference as compared to the other polycistronic 

shuttle sequences. One possibility is that preferential processing of the pri-miR-31/9 shuttle 

sequence causes subsequent RNA folding which interferes with further pri-miR-31/8 

processing. Nevertheless the modular nature of the polycistronic pri-miR-31 shuttle design 

allowed for the creation of a number of constructs that produce multiple RNAi effecter 

sequences. Furthermore replacing the pri-miR-31/8 shuttle sequence with that of a pri-

miR-30a shuttle restored functionality to the 5/9/8 trimer.   

 

 The present study describes the vast potential presented by the generation of pri-

miR shuttle expression cassettes capable of producing effective silencing effecter 

sequences from RNA Pol II transcription. Achieving tissue-specific expression of RNAi 

effecter sequences for example mitigates the need for strategies that are designed to 

specifically deliver expression cassettes to target tissues. At the least tissue-specific 

expression cassettes would complement such strategies. In addition to tissue-specific 

expression of RNAi effecters, Pol II regulatory elements also allow inducible regulation of 

expression and may prove to be important to limit toxic effects that arise from the 

expression of foreign sequences. A multi-targeted approach to silence viral genes has 

become especially important since the description of the emergence RNAi escape mutants 

(112-114, 117). An RNAi approach that prevents emergence of resistant viral mutations 

would be an invaluable therapeutic tool. The polycistronic pri-miR-31 shuttle expression 
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cassettes described here were designed to specifically target HBV. The application of this 

polycistronic approach to other highly mutable viruses like HIV, HCV and poliovirus is 

just as feasible. The value of combining a polycistronic pri-miR shuttle with a tissue-

specific promoter remains to be assessed. 
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5 CONCLUSION 

 In recent years considerable resources have been invested in the development of 

RNAi-based therapeutics to treat genetic and infectious diseases. Initial studies established 

the feasibility of exploiting the RNAi pathway to silence pathology-causing genes and 

further development of expressed anti HBV RNAi effecters is reported here. Subsequently 

these sequences were further developed to improve RNAi as an anti HBV therapeutic 

strategy. Specifically guide sequences of naturally occurring pri-miRNA were replaced 

with anti HBV guide sequences of U6 shRNA described here. Pol III- and Pol II-driven 

pri-miR shuttle sequences were shown to effectively silence viral replication in vitro and in 

vivo. Concentrations of anti HBV guide sequences produced from the pri-miR shuttles 

were significantly lower than guide strands produced from U6 shRNA cassettes. Viral 

knockdown however was comparable to that achieved by the shRNA sequences indicating 

the potency of the pri-miR shuttles. The Pol II-driven pri-miR shuttle expression cassettes 

were adapted as liver-specific expression cassettes as well as multimeric pri-miR shuttle 

expression cassettes. Liver-specific effecter expression was achieved by placing the pri-

miR-122 shuttles under the transcriptional control of the human A1AT promoter as well as 

the HBV BCP. Polycistronic pri-miR shuttles were created from individual pri-miR-31, 

pri-miR-30a/8 and pri-miR-122/5 sequences and shown to be capable of silencing multiple 

target sequences. Significant progress has been made in the development of RNAi-based 

therapeutics for the management of chronic HBV infection. However, for the promise of 

this therapeutic modality to be fully realised in clinical application, a number of hurdles 

need to be overcome. Persistence of cccDNA, efficient delivery of therapeutic sequences, 

limiting off-target effects and refining dose of effecter sequences are key issues that need 

to be addressed.  
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The stability of cccDNA has significant implications for the development of anti 

HBV RNAi-based therapeutics. Using a surrogate model of HBV infection Starkey et al. 

demonstrated that a U6 shRNA administered post-infection resulted in suppression of viral 

replication, however established cccDNA levels remained unaffected (157). This study has 

important implications for HBV therapeutic interventions that target viral replication. One 

implication is that silencing may need to be maintained for prolonged periods of time as 

viral replication would be reinitiated from the pool of stable cccDNA when the therapeutic 

is removed. The pri-miR shuttles described in this study are compatible with the use of 

recombinant helper-dependent adenoviral vectors, lentiviral vectors and AAVs. Long-term 

silencing that can be achieved with the use of these vectors may, given enough time, 

diminish cccDNA levels. RNAi-mediated transcriptional gene silencing (158, 159), though 

debatable in mammalian systems, may offer a means of inactivating episomal HBV 

cccDNA. Transcriptional inactivation of cccDNA would allow viral replication to be 

permanently silenced. Zinc finger proteins (ZFPs) represent an alternative gene therapy 

strategy that has the potential silence cccDNA transcription (160). Typically ZFPs are 

designed to bind a specific DNA sequence and regulate the gene of interest by interfering 

with its transcription (160). Artificial ZFPs are designed with up to six zinc finger domains 

each composed of two β sheets and an α helix (161). Each zinc finger domain recognises a 

DNA sequence of 3 bp and as such ZFPs can be designed to specifically recognise an 18 

bp DNA sequence. Zinc finger nucleases, artificial ZFPs that are capable of recognising 

and cleaving a specific DNA sequence, also holds potential as an anti HBV therapeutic. 

ZFPs and RNAi-mediated transcriptional gene silencing however, are still in their infancy 

and further development is required before application of these gene silencing mechanisms 

can be realised. 
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 Immune stimulation, saturation of the miRNA biogenesis pathway and off-target 

effects are some of the safety issues surrounding the use of RNAi activators for therapy. 

Immune stimulation, most notably by synthetic siRNA, is well characterised and means of 

avoiding activation of the innate immune response by chemical modification of siRNAs 

has been thoroughly researched (89, 90, 92, 95, 96). In contrast saturation of the miRNA 

pathway is a potential complication of expressed RNAi effecters, specifically effecter 

sequences produced in excessive amounts. The present undertaking and work by others 

that employ pre-miR shuttle expression cassettes (146, 155, 162, 163) represent significant 

advances in limiting toxic effects of expressed RNAi effecters. Non-specific silencing of 

gene expression as a result of off-target effects by RNAi effecter sequences remains a 

concern. Off-target effects may occur through unintended passenger strand selection. 

Naturally occurring miRNA exhibit strand selection bias, which may improve guide 

selection of shuttle sequences. Additionally off-target effects may occur as a result of 

complementarity of cellular genes to the seed region of effecter sequences (60, 164). The 

pri-miR shuttle cassettes described here are capable of potent silencing. These cassettes 

may therefore reduce the risk of off-target effects as the concentration at which the shuttle 

sequences are effective is very low. Avoiding disruption of the endogenous miRNA 

pathway, negligible immunostimulation and potential reduced off-target effects through 

dose regulation are therefore some of the benefits of expressed pri-miR shuttle sequences. 

 

Expressed miR shuttle sequences offer a number of advantages over the traditional 

Pol III-driven shRNA effecter sequences.   Importantly miR shuttles can be expressed from 

Pol II regulatory elements. In this study pri-miR shuttle expression cassettes were shown to 

relieve saturation effects observed with U6 promoter-driven shRNA sequences. 

Additionally pri-miR shuttle sequences allowed for the generation of multimeric effecter 
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expression cassettes. The multi-targeted approach afforded by polycistronic pri-miR shuttle 

cassettes is of potential benefit to limit emergence of viral escape mutants. The 

identification of an HBV mutant strain that is resistant to single RNAi effecter sequences 

has already been described (117). Though the pri-miR shuttle sequences in this study have 

been generated to target HBV the process described here is applicable to other viral targets. 

The polycistronic pri-miR shuttle system may be of benefit to limit emergence of HCV, 

HIV and poliovirus resistant mutants. Computational analysis has revealed that four 

effective RNAi effecter sequences acting simultaneously are necessary to prevent 

emergence of HIV-1 escape mutants (165). HBV is not as mutable as HIV and as a 

consequence fewer than four effecter sequences are likely necessary to limit emergence of 

resistant mutants. In addition to the multimeric system, tissue-specific and inducible 

expression of RNAi effecters that can be achieved with pri-miR shuttles may also be 

applied to silence pathology causing genes other than those of HBV. 

 

Mature miRNA are invariably produced from at least one pri-miRNA sequence. 

miR-16 for example is processed from two different precursors, the pri-miR-16-1 and pri-

miR-16-2 stem loop sequences (133). Both pri-miR-16-1 and pri-miR-16-2 produce miR-

16 as the major product and miR-16-1 and miR-16-2 as minor products, respectively. Since 

tertiary structure, and therefore sequence, plays an important role in miRNA biogenesis 

pre- and pri-miRNA sequence likely depends on the sequence of the miRNA duplex. The 

method adopted in this study was to replace the major guide sequence of naturally 

occurring miRNA with anti HBV guide sequences. Pre- and pri-miR shuttles therefore rely 

on existing miRNA scaffolds/backbones to ferry guide sequences for RNAi activation. The 

next stage in the evolution of expressed RNAi activators will be the creation of completely 

artificial pri-miR shuttles with the scaffold tailor-made for the guide sequence it needs to 
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ferry. Furthermore a growing body of evidence suggests that tissue-specific expression of 

miRNA may not rely exclusively on promoter activity (166, 167). Sequence motifs within 

certain miRNA precursors have been identified that are necessary for binding of a co-

factor, KSRP (K homology domain-type splicing regulatory protein), which in turn 

facilitates Drosha binding and processing (166). The presence or absence of KSRP 

determines whether the mature miRNA accumulate or not. Exploiting these features of 

endogenous miRNA may therefore be used to further improve regulation of pri-miR 

shuttles. Achieving these goals will require comprehensive understanding of the structural 

and sequence requirements of miRNA and their precursors and interaction of these 

sequences with the RNAi machinery. The benefits of expressed RNAi activators will only 

be realised with the implementation of concerted efforts to develop effective delivery 

vehicles. Discoveries in RNAi are constantly being made and continue to drive research 

efforts to overcome these hurdles. 
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6 APPENDIX A 

A1 STANDARD LABORATORY TECHNIQUES 

A1-1 Tissue culture 

Reagents 

RPMI medium (RPMI) 

One litre of RPMI was made as follows: 10.4 g of RPMI-1640 (Gibco BRL, United 

Kingdom), HEPES (5.0 × 10
-3

M), Na2SeO3 (3.0 × 10
-8

M), 3.0 × 10
-9

 

(NH4)6Mo7O2·4H2O, 1.0 × 10
-7 

M FeSO4·7H2O, 3.0 × 10
-10

M MnCl2·4H2O, 1.0 × 

10
-8 

M NH4VO3, 3.0× 10
-9 

M linoleic acid, 3.0 × 10
-9 

M oleic acid, 3.0 × 10
-5 

M 

ethanolamine and 2.4 × 10
-2 

M NaHCO3 were dissolved in water. The medium was 

sterilised by filtration. 

1000× Pen/Strep 

One gram of Streptomycin and 0.61 g of Penicillin were dissolved in 10 ml of 

deionised water and the solution filter sterilised. 

DMEM supplied in liquid form by Sigma-Aldrich, MI, USA. 

FCS (Gibco BRL, United Kingdom) 

Saline + 0.01% EDTA 

0.5× Trypsin 

Five hundred microlitres of a 10× Trypsin (Gibco BRL, United Kingdom) stock 

solution was made up to 10 ml and filter sterilised. 

Opti-MEM (Gibco BRL, United Kingdom) 

 

Protocol for propagation of cells 
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Huh7, HEK293 and 116 cells were maintained in a humidified incubator at 37
°
C 

and 5% CO2 in RPMI or DMEM growth medium supplemented with 2.5-10% FCS 

and antibiotics. The cells were subcultured upon reaching a density of 90-100% by 

washing once with saline and subsequently incubating for 5 minutes at 37
°
C in 

saline containing 0.01% EDTA. Following the 5 minute incubation the saline-

EDTA solution was removed, 500 µl of 0.5× trypsin added and the cells incubated 

for an additional 5 minutes. Trypsinisation was omitted for HEK293 and 116 cells. 

The cells were then dislodged from the culture dish by gentle aspiration. An equal 

volume of growth medium was added to inactivate the trypsin. Cells were added to 

a sterile 56 cm
2
 tissue culture dishes or 60 cm

2
 tissue culture flasks at the desired 

density (30-40%). Ten millilitres of RPMI or 15 ml of DMEM were added and the 

cells incubated at 37
°
C and 5% CO2 in a humidified incubator. Growth medium 

was replenished at 48 hour intervals until cells needed to be passaged. 

Transfection of cells 

For transfections cells were seeded at a density of 40-50% per well (see Table A1 

below for cell numbers) and allowed to grow overnight at 37
°
C and 5% CO2 in 

growth medium supplemented with 2.5-10% FCS and antibiotics. Prior to 

transfection the growth medium was replaced with fresh RPMI or DMEM 

supplemented with 2.5-10% FCS but lacking antibiotics. 

On the day of transfection DNA:Opti-MEM and Lipofectamine:Opti-MEM mixes 

were prepared as indicated in Table A1. The mixes were incubated at room 

temperature for 5 minutes added together and incubated for an additional 20 

minutes. The DNA:Lipofectamine mixes were added to cells and the transfections 

were allowed to proceed at 37°C in a humidified incubator for a minimum of 5 

hours.
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Table A1: Seeding of cells and amounts of DNA and reagents used for transfections. 

 

Cell Type 6-well plate 

(per well) 

12-well plate 

(per well) 

24-well plate 

(per well) 

Huh7 300 000 cells  150 000 cells  75 000 cells seeded  

HEK293/116 500 000 cells seeded  250 000 cells seeded  120 000 cells seeded  

Transfection Mix    

DNA 

Opti-MEM 

4-9 µg 

200 µl 

2 µg 

100 µl 

1 µg 

50 µl 

Lipofectamine™ 2000 

Opti-MEM 

4-9 µl 

200 µl 

2 µl 

100 µl 

1 µl 

50 µl 
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A1-2 EndoFree® Plasmid Maxi Kit plasmid preparation 

Reagents 

Luria Bertani medium  

Ten grams of Bacto-tryptone (Oxoid, England), 5 g Yeast extract (Oxoid, England) 

and 5 g NaCl were dissolved in one litre of deionised water. The medium was 

autoclaved for 30 minutes at 121
°
C and 1 kg/cm

2
. 

 

1000× Ampicillin 

One hundred milligrams of ampicillin (Roche Diagnostics GmbH, Germany) was 

dissolved in 1 ml of 50% ethanol. Stored at -20°C. 

EndoFree® Plasmid Maxi Kit (Qiagen, CA, USA) 

 

Protocol 

Three hundred millilitres of Luria Bertani medium containing 100 µg/ml ampicillin 

was inoculated with a single colony containing the plasmid of interest and 

incubated at 37
°
C with shaking (100 rpm) for 18 hours. The cells were collected by 

centrifugation at 4000 rpm for 20 minutes at 4
°
C and the pellet resuspended in 10 

ml Buffer P1 (50 mM Tris-HCl, pH 8.0; 10 mM EDTA) containing RNase A at a 

concentration of 100 µg/ml. Ten millilitres of Buffer P2 (200 mM NaOH; 1% SDS) 

was added to the cell suspension, the solution mixed thoroughly and incubated at 

room temperature for no more than 5 minutes. Ten millilitres of Buffer P3 (3 M 

Potassium acetate, pH 5.5) was added to the lysate, mixed, applied to the Qiafilter 

Cartridge and incubated at room temperature for 10 minutes. After the 10 minute 

incubation, the lysate was filtered into a sterile 50 ml tube. Two and a half 

millilitres of Endotoxin Removal buffer was added to the filtrate, mixed and 
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incubated on ice for 30 minutes. During the incubation on ice a QIAGEN-tip 500 

was equilibrated by applying 30 ml of Buffer QBT (750 mM NaCl; 50 mM MOPS, 

pH 7.0; 15% Isopropanol; 0.15% Triton® X-100) to the column and allowing the 

buffer to drain by gravity flow. After the incubation in Endotoxin Removal buffer 

the solution was applied to the QIAGEN-tip 500 and allowed to drain by gravity 

flow. The column was washed with 30 ml Buffer QC (1 M NaCl; 50 mM MOPS, 

pH 7.0; 15% Isopropanol), twice. The plasmid was eluted from the column with 15 

ml Buffer QN (1.6 M NaCl; 50 mM MOPS, pH 7.0; 15% Isopropanol). A 0.7× 

volume of isopropanol was used to precipitate the plasmid and the solution 

centrifuged at 8000 rpm for 1 hour at 4
°
C. The DNA pellet was washed with 

endotoxin-free 70% ethanol and centrifuged for an additional hour at 8000 rpm and 

4
°
C then air-dried and resuspended in an appropriate volume of endotoxin-free TE 

buffer (10 mM Tris-HCl, pH 8.0; 1 mM EDTA). 
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A2 PUBLICATIONS 

A2-1 Selected Research Publications derived from work presented in this 

Thesis 
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Exploiting the RNA interference pathway has shown promise for developing novel and effective
treatment of hepatitis B virus (HBV) infection. To advance this approach, we analyzed the antiviral
efficacy of a panel of 10 Pol III U6 promoter-encoded short hairpin RNAs (shRNAs) that target
conserved sequences of the oncogenic HBx open reading frame. To facilitate intracellular
processing, the shRNAs included mismatches in the 25-bp stem region and a terminal loop of
miRNA-23. Two shRNAs (shRNA 5 and shRNA 6) showed knockdown of HBV markers by 80–100% in
transfected hepatocytes and also in a murine hydrodynamic injection model of HBV replication.
Intracellular processing of hairpin RNA with the intended strand bias correlated with antiviral
efficacy. Moreover, markers of HBV replication were inhibited without inducing genes associated
with the nonspecific interferon response. To assess the antiviral efficacy of the shRNAs in a context
that is similar to natural HBV infection, shRNA-encoding cassettes were tested against the virus in a
HBV transgenic murine model. When delivered using recombinant adenovirus vectors, U6 shRNA 5
and U6 shRNA 6 mediated significant HBV knockdown. Collectively, these observations indicate that
U6 shRNA 5 and U6 shRNA 6 are promising candidates for therapy of chronic HBV infection.
R
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30
Key Words: RNAi, short hairpin RNA, HBV, hydrodynamic injection, HBV transgenic mice,
recombinant adenovirus, interferon response

CTION viral genome [9] and conserved regions may enco
INTRODU

Persistent hepatitis B virus (HBV) infection remains an
important global public health problem with an esti-
mated 6% of the worldTs population chronically infected
with the virus [1–3]. The clinical course of HBV infection
is not constant and may be influenced by properties of
individual viral variants [4,5]. For example, chronic
infection with HBV subgenotype A1, which is hyper-
endemic to South Africa, is associated with a particularly
high risk of hepatocellular carcinoma [6]. Licensed treat-
ments for HBV infection, which include interferon-a and
nucleoside (lamivudine) and nucleotide (adefovir) ana-
logues, produce a long-term response in only a minority
of chronic carriers [7,8]. The continued search for an
effective therapy to prevent life-threatening complica-
tions thus remains a priority. HBV has a compact genome
(Fig. 1) that makes it well suited to developing antiviral
therapies that are based on nucleic acid hybridization.
Overlapping open reading frames (ORFs) cover the entire
THERAPY Vol. 13, No. 2, February 2006

e American Society of Gene Therapy

.00
de more
than one protein as well as HBV cis elements required for
viral replication. HBx is an example of a multifunctional
HBV sequence. It encodes the HBx protein, which has
been implicated in HBV-mediated hepatocarcinogenesis
(reviewed in [1]) and is required for HBV replication
[10,11]. HBx also overlaps with the 3V end of the
polymerase ORF, direct repeats that are required during
virus reverse transcription, and regions important for
transcription control (basic core promoter and negative
regulatory elements). HBV transcripts are usually
unspliced and have a common 3V end that includes HBx
(Fig. 1). The key role of HBx in viral replication and
hepatocarcinogenesis, together with the presence of the
conserved HBx sequence in all of the HBV transcripts,
makes it a good target to develop nucleic acid hybrid-
ization-based therapy.

Exploiting the RNA interference (RNAi) pathway has
shown exciting promise for the development of novel
411



FIG. 1. HBV target sites and shRNA-encoding vectors. (A) Organization of the hepatitis B virus genome showing sites targeted by shRNA sequences. Coordinates

of the genome are given relative to the single EcoRI restriction site. Partially double-stranded HBV DNA comprises + and � strands with cohesive complementary

5V ends. The cis elements that regulate HBV transcription are represented by the circular and rectangular symbols. Immediately surrounding arrows indicate the

viral open reading frames (with initiation codons) that encompass the entire genome. Four outer arrows indicate the HBV transcripts, which have common 3V

ends that include HBx. (B) (Top) Schematic illustration of anti-HBV shRNA indicating mismatches in the sense strand, miRNA 23 loop, and sequence of two U

residues that are derived from the transcription termination signal. The DNA cassette with U6 promoter, sense, miRNA 23 loop (L), and antisense-encoding

sequences is indicated below.
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antiviral therapy. Naturally, the mechanism involves
processing of larger dsRNA by Dicer to form short
interfering RNA (siRNA) duplexes [12–14]. One of the
strands of the siRNA is incorporated into the RNA-
induced silencing complex (RISC) and acts as a guide to
target degradation of complementary cytoplasmic RNA.
Exogenous silencing is typically induced by synthetic
RNA or transcripts produced from Pol III cassettes [12,15–
17]. A number of studies have demonstrated that activa-
tion of RNAi has potential for the development of novel
treatments of HBV infection [18–27]. As the pathway of
RNAi becomes better understood, more rational
approaches to the design and characterization of poten-
tially therapeutic RNAi inducers are being sought. Avoid-
ance of the interferon response, efficacy at a low
concentration of RNAi-inducing sequences, specificity
for the viral cognate, and processing of the duplexes with
appropriate strand bias are important considerations. In
this study, we report that anti-subgenotype A1 short
hairpins RNAs (shRNAs) targeted to HBx, which have
features of endogenous micro RNA (miRNA) that allow for
influencing strand bias, are powerful and specific inhib-
itors of HBV replication. Inhibition of HBV replication
412
was observed in vitro in transfected cells, in vivo after gene
transfer using hydrodynamic DNA injection, and in HBV
transgenic models. Sequences found to be most effective
also have homology to other HBV genotypes and poten-
tially have broad therapeutic applications.

RESULTS AND DISCUSSION

HBV Targets and Design of DNA Encoding Antiviral
shRNA Sequences
We generated a panel of 10 U6 shRNA cassettes, which
target the most conserved sites of the HBx sequence
from South African genotype A1 isolates of the virus
[28]. We designed hairpins to comprise a 25-bp stem
with four GU or CA mismatches in the shRNA strand of
HBV sense polarity, and the HBx antisense sequence
was perfectly complementary to the viral target (Fig. 1
and Table 1). The 10-nt loop sequence was common to
all of the hairpins and was derived from miRNA-23
[29]. These features were incorporated to facilitate
intracellular processing and may also diminish non-
specific effects of activating the interferon response
[30,31].
MOLECULAR THERAPY Vol. 13, No. 2, February 2006
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TABLE 1: Nucleotide sequences of PCR reverse primers used to generate HBV U6 shRNA cassettes

HBV targeta Name Primer sequence

1168–1192 U6 shRNA 1.1 5V-TGACGTGACAGGAAGCGTT
--
AGCAG––

ACACTTGGCAT
--
AGG––

CCCGGTGTTTCGTCCTTTCCACA-3V
U6 shRNA 1.2 5V-CCCAGATCTACGCGTAAAAAAGGTCTGTGCCAAGTGTTTGCTGACGTGACAGGAAGCGTTA-3V

1432–1456 U6 shRNA 2.1 5V-GGACGTGACAGGAAGCGTT
--
CGT

--
GGGATTCAGCGT

--
CGAT

--
GGCGGTGTTTCGTCCTTTCCACA-3V

U6 shRNA 2.2 5V-CCCAGATCTACGCGTAAAAAACCGTCGGCGCTGAATCCCGCGGACGTGACAGGAAGCGTTC-3V
1514–1538 U6 shRNA 3.1 5V-CTTTATGACAGGAAGCAAAG––

AGAGA––
TGCGCCCCA––

TGGC––
CGCGGTGTTTCGTCCTTTCCACA-3V

U6 shRNA 3.2 5V-CCCAGATCTACGCGTAAAAAACGACCACGGGGCGCACCTCTCTTTATGACAGGAAGTAAAG-3V
1518–1542 U6 shRNA 4.1 5V-ACGCGTGACAGGAAGCGT

--
GTG––

AAGAGAGGTGT
--
GCCCT

--
GTGCGGTGTTTCGTCCTTTCCACA-3V

U6 shRNA 4.2 5V-CCCAGATCTACGCGTAAAAAACACGGGGCGCACCTCTCTTTACGCGTGACAGGAAGCGTGT-3V
1575–1599 U6 shRNA 5.1 5V-CTCTGTGACAGGAAGCAGAGGC––

GAAGCA––
AAGC––

GCACACGA––
CGGTGTTTCGTCCTTTCCACA-3V

U6 shRNA 5.2 5V-CCCAGATCTACGCGTAAAAAACCGTGTGCACTTCGCTTCACCTCTGTGACAGGAAGCAGAG-3V
1580–1604 U6 shRNA 6.1 5V-CACGTTGACAGGAAGAT

--
GTGT

--
AGAGGTGAAGCGAG––

GTGT
--
ACGGTGTTTCGTCCTTTCCACA-3V

U6 shRNA 6.2 5V-CCCAGATCTACGCGTAAAAAATGCACTTCGCTTCACCTCTGCACGTTGACAGGAAGATGTG-3V
1640–1664 U6 shRNA 7.1 5V-GGACTTGACAGGAAGAGTT

--
CTT

--
TTATGTAG––

GACT
--
TTGGGCCGGTGTTTCGTCCTTTCCACA-3V

U6 shRNA 7.2 5V-CCCAGATCTACGCGTAAAAAAGCCCAAGGTCTTACATAAGAGGACTTGACAGGAAGAGTTC-3V
1678–1702 U6 shRNA 8.1 5V-GAGGCTGACAGGAAGGCT

--
TCAAGGTT

--
GGTT

--
GTTGACG––

TTGCGGTGTTTCGTCCTTTCCACA-3V
U6 shRNA 8.2 5V-CCCAGATCTACGCGTAAAAAACAATGTCAACGACCGACCTTGAGGCTGACAGGAAGGCTTC-3V

1774–1798 U6 shRNA 9.1 5V-TTGGTTGACAGGAAGACT
--
AATTTG––

TGCCTACAGCT
--
TCT

--
TACGGTGTTTCGTCCTTTCCACA-3V

U6 shRNA 9.2 5V-CCCAGATCTACGCGTAAAAAATAGGAGGCTGTAGGCATAAATTGGTTGACAGGAAGACTAA-3V
1863–1887 U6 shRNA 10.1 5V-CTTGGTGACAGGAAGCCAAA––

GCACAA––
CTC––

GGAGGCTC––
GAACGGTGTTTCGTCCTTTCCACA-3V

U6 shRNA 10.2 5V-CCCAGATCTACGCGTAAAAAATTCAAGCCTCCAAGCTGTGCCTTGGTGACAGGAAGCCAAG-3V

Overlapping sequences are underlined. Mismatches incorporated into the sense strand of the hairpin stems are indicated with a double underline. The region complementary to the U6

promoter is italicized. Sequences encoding HBx antisense RNA are bold.
a HBV coordinates are relative to the single EcoRI site as indicated in Fig. 1.
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Effects of shRNA on HBsAg Secretion from Transfected
Cells and Assessment of Efficacy in Situ
Initially, to assess efficacy against HBV, we cotransfected
Huh7 cells with hairpin-encoding sequences and the pCH-
9/3091 HBV target plasmid [32]. Variable efficacy of
knockdown of viral antigen secretion was achieved by
each of the sequences (Fig. 2A). U6 shRNA 5 and U6 shRNA
6 were most effective and plasmids encoding these hair-
pins decreased HBsAg concentration in the culture super-
natant to less than 5% of the mock-treated cellsT level.
Transfection of the vector encoding U6 shRNA 10 had
little if any effect on HBsAg secretion. We corroborated
these data using a reporter gene plasmid (pCH-eGFP) to
measure knockdown in situ (Fig. 2B) [33]. In pCH-eGFP,
the preS2/S sequence of pCH-9/3091 was replaced with the
enhanced green fluorescent protein (eGFP) ORF, with the
targeted HBx ORF remaining intact. Cotransfection of
pCH-eGFP with shRNA-encoding vectors allows for the
convenient measurement of anti-HBV shRNA efficacies
using flow cytometry and fluorescence microscopy. Anal-
ysis showed that the number of cells expressing eGFP was
diminished significantly by U6 shRNA 5 and U6 shRNA 6,
while U6 shRNA 10 was least effective (Fig. 2C). The sites
targeted by these shRNAs 5 and 6 overlap each other,
which suggests that this region of HBx is particularly
susceptible to RNAi-mediated knockdown. Activators of
the RNAi pathway can potentially stimulate nonspecific
inflammatory effects by activating the interferon
response, which in turn is capable of inducing cell death
by apoptosis [34,35]. To exclude this effect, we measured
mRNA from three genes that are key components of the
MOLECULAR THERAPY Vol. 13, No. 2, February 2006
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interferon response: IFN-h, OAS1, and MxA (Supplemental
Fig. 1). Expression of interferon response genes was not
increased in Huh7 and HEK293 cells that were transfected
with shRNA-expressing plasmids. These observations
indicate that the knockdown of HBsAg secretion and eGFP
marker expression was specific to activation of RNAi and
not a result of causing interferon response-mediated
programmed cell death.

Effects of shRNAs on HBV RNA Concentrations
We extracted total cellular RNA from Huh7 cells that had
been transiently transfected with shRNA-encoding plas-
mids together with HBV target DNA. Analysis using
Northern blot hybridization confirmed that shRNA 5
efficiently reduced the concentration of HBV RNA (Fig.
3A). When normalized for loading differences using the
GAPDH mRNA band intensity, U6 shRNA 5 diminished
HBV transcript concentration to approximately 35% of
the control value. Concentrations of HBV transcripts in
cells cotransfected with the U6 shRNA 10 vector were 90–
100% of the controls. Cotransfection of Huh7 cells with
U6 shRNA 9 had an intermediate knockdown effect on
HBV RNA and diminished concentrations by approxi-
mately 40%. These data correlate with the observations on
the shRNA effects on HBsAg secretion and in situ marker
gene expression.

shRNA Processing
To assess processing of expressed shRNA sequences, we
carried out primer extension analysis on total RNA that
was extracted from the transfected Huh7 liver cell line.
413



FIG. 2. shRNA-mediated inhibition of HBsAg secretion

and HBV–eGFP fusion marker protein expression in

transfected cells. (A) Measurement of HBsAg secretion

from Huh7 cells cotransfected with indicated shRNA-

encoding plasmids together with HBV target plasmid.

HBsAg measurements from quantitative ELISA are given

as a normalized mean relative to the mock-treated cells.

Results are from four independent transfections and the

bars indicate the standard error of the mean (SEM). (B)

Schematic illustration of plasmid construct pCH-eGFP

showing open reading frames, respective transcripts,

and sites targeted by shRNAs. The disrupted polymerase

ORF is not indicated. Representative fluorescence micro-

scopy fields of Huh7 cells transfected with pCH-eGFP

and indicated shRNA-expressing construct are also

shown. (C) Quantitative comparison of the percentage

of eGFP-positive Huh7 cells detected using flow cytom-

etry after transfection with indicated shRNA-encoding

expression vectors. Number of eGFP-positive cells is

given as a normalized mean relative to the mock-treated

cells, which represents approximately 45% eGFP-pos-

itive cells in the total population. Results are depicted as

means from four independent transfections (each

counting 100,000 events) with the SEM indicated.
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FIG. 3. RNA analysis. (A) Huh7 hepatocytes were transfected with the indicated shRNA-encoding plasmids. Two days after transfection, total RNA was extracted

from the cells and analyzed by Northern blot hybridization. The control lane represents analysis of RNA extracted from cells that had been transfected with a

plasmid encoding shRNA 5 sequences under transcriptional regulation of the Pol II CMV immediate early promoter/enhancer. Blots were probed for HBV RNA

and also GAPDH as a loading control. (B and C) Either radiolabeled HBV� or radiolabeled HBV+ oligonucleotides targeting the relevant sequences of shRNA 5 or

shRNA 10 were hybridized to total RNA extracted from transfected Huh7 cells and then subjected to primer extension analysis using reverse transcriptase. Sizes of

extended fragments were then detected using autoradiography after resolution with denaturing PAGE. The amount of template cellular RNA subjected to reverse

transcription is indicated above the lanes and RNA molecular weight marker sizes (nt) are indicated on the left of the autoradiographs.
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We radiolabeled oligonucleotide primers that were com-
plementary to the HBV sense or antisense sequence of the
hairpin RNA encoded by U6 shRNA 5 or U6 shRNA 10 at
their 5V end, hybridized them to complementary cellular
MOLECULAR THERAPY Vol. 13, No. 2, February 2006
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RNA from transfected cells, and then extended them
using reverse transcriptase. Extension of end-labeled
primers complementary to the U6 shRNA 5 antisense
strand generated a 21-nt product that corresponds to the
415
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putative guide sequence that effects HBV gene silencing
(Fig. 3B). A similar primer extension to detect a shRNA-
derived HBx sense sequence did not generate a signal,
and this was confirmed in an overexposed autoradio-
graph from the same gel. Conversely, when we subjected
RNA extracted from U6 shRNA 10-transfected cells to
primer extension analysis, both sense and antisense
labeled oligonucleotides generated extended products
21 nt in length (Fig. 3C). Moreover, the U6 shRNA 10-
encoded sense strand sequence is present at a slightly
higher concentration compared to the intended anti-
sense guide. Thus, intracellular processing of the hairpin
encoded by U6 shRNA 10 has a slight bias for the
nonhybridizing sequence with the same polarity as its
viral target. Conversely, the only single-stranded RNA
sequence that is detectable from U6 shRNA 5-transfected
cells is that which corresponds to the intended antisense
guide RNA. Several factors that affect processing and
functionality of RNAi effectors have been identified.
Included among these is a GC content of 30–52% that
is thought to be optimal for efficient unwinding of the
duplex while at the same time retaining sufficient
stability of interaction of the siRNA guide strand with
its target [36–38]. Based on primer extension analysis of
shRNA 5, the siRNA derived from this hairpin has 47%
GC pairs (9 of 19 pairs in the duplex region). However,
the proportion of GC pairs between the shRNA 5-derived
guide sequence and the HBV target is higher (62%), and
this is a result of the GU mismatch pairs of the shRNA
stem that are not present in the hybrid with the HBV
target. Thus, it is likely that the relatively lower GC
content of the Dicer-processed product facilitates
unwinding of the duplex, while the higher GC content
of the guide and target pair stabilizes this interaction.
Another important factor that determines the processing
of RNA duplex is the stability at the 5V end of the
intended guide sequence within the double-stranded
RNA [36–38]. With shRNA 5, there is a 5V GU mismatched
base pair at the 5V end of the antisense strand, and this is
likely to facilitate the intended strand bias. Together,
these factors are likely to improve processing of shRNA 5
and advance our understanding of the properties of
effective anti-HBV RNA sequences.

Efficacy of shRNA-Encoding Plasmids in Vivo Using
the Murine Hydrodynamic Injection Procedure
To determine anti-HBV efficacy of shRNA in vivo, we
initially used the hydrodynamic injection procedure to
deliver target and shRNA-encoding DNA simultaneously.
Using this approach, shRNA 5-encoding plasmid DNA
continuously knocked down HBsAg in the serum of mice
to a background level over a period of 4 days (Fig. 4A).
We also observed an inhibitory effect when we measured
HBV core antigen (HBcAg) using immunohistochemical
staining in liver sections from mice that had been
subjected to hydrodynamic injections (Fig. 4B). The
416
control for DNA delivery efficiency showed that uptake
and expression of the lacZ marker gene were similar in
treated and untreated mice. Comparing efficacies of U6
shRNAs 5, 6, and 10 on day 4 after injection, the
production of HBsAg was suppressed completely in mice
treated with shRNA 5- or shRNA 6-encoding plasmids
(Fig. 4C). However, as was observed in transfected cells,
HBsAg concentrations in the serum of mice that were
injected with shRNA 10-encoding DNA were not signifi-
cantly diminished. Similarly, on day 4 HBV viral loads
were knocked down to background levels in the mice
treated with DNA encoding shRNA 5 or shRNA 6 (Fig.
4D). Again U6 shRNA 10 was less effective, indicating
that the knockdown is a sequence-specific phenomenon
and is unrelated to generic features of the anti-HBx
hairpin cassettes. Efficient inhibition of viral replication
markers was confirmed when we administered shRNA 5-
encoding DNA at a fifth of the molar concentration of
HBV target DNA (not shown). Simultaneous injection of
25 Ag of synthetic siRNA 5, which has a sequence
equivalent to that encoded by U6 shRNA 5, inhibited
secretion of HBsAg and viral particle concentration in
the serum significantly (P b 0.05) (Figs. 4C and 4D).
However, the synthetic RNA was also significantly less
effective against markers of viral replication than U6
shRNA 5 and U6 shRNA 6 (P b 0.05). Sustained
production of shRNA from a constitutively active DNA
cassette as well as the shorter half-life of RNA compared
to plasmid DNA is likely to account for this. Moreover,
improved silencing by coupled Dicer processing prior to
loading of guide sequences onto the RISC has been
reported [39] and may contribute to the enhanced
silencing effected by DNA-encoded shRNA compared to
synthetic siRNA.

Efficacy of shRNA-Encoding Recombinant Adenovirus
Vectors in Vivo in HBV Transgenic Mice
We assessed the efficacy of shRNAs against HBV in the
context of established constitutive replication of the virus
in HBV transgenic mice [40], which mimic natural
infection more closely than does the hydrodynamic
murine injection model. We incorporated U6 shRNA 5,
6, and 10 expression cassettes into recombinant adeno-
virus vectors to produce ADV shRNA 5, ADV shRNA 6,
and ADV shRNA 10, respectively. Control adenoviruses
included a U6 shRNA cassette targeted to the h-galacto-
sidase marker (ADV shRNA LacZ) or no U6 shRNA
sequence (ADV eGFP). The recombinant vectors coex-
pressing eGFP and fluorescence microscopy revealed that
approximately 60–80% of hepatocytes expressed adeno-
virus DNA after tail vein injection with 5 � 109 infectious
particles (not shown). Higher doses of adenovirus vectors
caused significant hepatic toxicity. Compared to controls
and ADV shRNA 10, a single dose of ADV shRNA 5 and
ADV shRNA 6 significantly diminished the concentration
of HBsAg concentration in the serum over a period of 12
MOLECULAR THERAPY Vol. 13, No. 2, February 2006
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FIG. 4. Effects of shRNA sequences on HBV antigen production in the hydrodynamic injection model of HBV replication. (A) Time course of relative serum HBsAg

concentrations, measured using quantitative ELISA, in mice treated with hydrodynamic injection. Graphical depictions of individual measurements of the viral

antigen are given on a log scale for four mock- and four U6 shRNA 5-treated animals. (B) Mice subjected to the hydrodynamic injection procedure were sacrificed

after 4 days and the livers analyzed using immunohistochemistry to detect the HBcAg. Representative low- and high-power fields are shown for livers from mock-

and U6 shRNA 5-treated animals. Frozen sections from the same animals were stained for LacZ activity to confirm similar delivery of DNA to hepatocytes. (C)

Serum HBsAg concentrations and (D) viral loads on day 4 after injection of mice using the hydrodynamic injection procedure. Mice were injected with the

indicated shRNA-encoding plasmids or synthetic RNA duplex equivalent to shRNA 5 (siRNA 5) together with pCH/9-3091 HBV target DNA. Mock-treated

animals received backbone plasmid (pGEM-T Easy) without shRNA-encoding sequences. Viral loads were determined using real-time quantitative PCR and

included EuroHep standards to calibrate the virion copy numbers. Groups comprised six to eight animals and the graphs indicate the mean and SEM for each

group.
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days (P b 0.05) (Fig. 5A). Preliminary data also indicate
that the inhibition of HBsAg secretion persists for at least
28 days (not shown). This is comparable to a recently
reported observation that adenovirus vectors expressing
shRNA sequences effected a sustained inhibition of
markers of HBV replication [25]. Similarly, compared to
control adenovirus vectors, serum HBeAg concentrations
were significantly diminished by both ADV shRNA 5 and
ADV shRNA 6 at day 12 after administration of the viral
vectors ( P b 0.05) (Fig. 5B). Interestingly, the effects of
ADV shRNA 5 and ADV shRNA 6 on HBeAg secretion
were less marked than those on HBsAg (approx 2-fold
compared to 10-fold inhibition, compare Figs. 5A and
5B). This correlates with the previously reported obser-
vation that suggests the 3.5-kb HBV transcript encoding
HBeAg is relatively more resistant to RNAi-mediated
MOLECULAR THERAPY Vol. 13, No. 2, February 2006
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knockdown [25]. Circulating virion counts were dimin-
ished in animals treated with ADV shRNA 5 and ADV
shRNA 6, although the effect was less significant than on
serum HBeAg and HBsAg concentrations (Fig. 5C).
Although target sites of shRNA 5 and shRNA 6 are
conserved in the transgenic mice, silencing is less marked
than that observed in the hydrodynamic model. There
are two possible explanations for this observation. First,
levels of HBV in the transgenic mice greatly exceed those
of the hydrodynamic injection model (compare viral
loads of Figs. 4D and 5C) and complete silencing may be
more difficult to achieve when HBV replication is high.
Second, under experimental conditions described here,
the adenovirus vectors infected 60–80% of hepatocytes.
Incomplete delivery of the shRNA-encoding cassettes to
all of the HBV-producing cells is likely to account for
417



FIG. 5. Effects of recombinant adenovirus-mediated

shRNA delivery on viral replication markers in the HBV

transgenic mouse model. (A) Time course of relative

mouse serum HBsAg concentrations, measured using

quantitative ELISA, after tail vein injection of indicated

recombinant adenovirus vectors. Relative serum

HBsAg concentrations over a period of 12 days are

shown. Comparison of (B) serum HBeAg and (C) viral

loads at day 12 after injection of animals with saline or

indicated recombinant adenovirus.
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lower silencing efficiency. Taken together, these data
indicate that recombinant adenoviruses incorporating U6
shRNA 5 and U6 shRNA 6 are capable of sustained
inhibition of gene expression in vivo during constitutive
replication of HBV. Moreover, HBV RNA is susceptible to
RNAi-mediated silencing and is not protected from
silencing by viral proteins.

The demonstration that the anti-HBx shRNAs used in
this study can successfully inhibit HBV replication
indicates that this target sequence is potentially useful
for therapeutic application. Effective inhibition of HBV
antigen production by U6 shRNA 5 and U6 shRNA 6 is an
important advantage over available inhibitors of HBV
reverse transcription, which do not reduce viral antigen
secretion directly. HBV antigenemia may attenuate the
host immune response and compromise eradication of
the virus by these drugs [41]. RNAi-based inhibition of
viral antigenemia may thus induce a more vigorous anti-
HBV immune response to eliminate HBV during chronic
infection. Unlike many other viruses, plasticity of the
HBV genome is restricted because of its compact arrange-
418
ment. Target sites of shRNA 5 and shRNA 6 are conserved
in most genotypes, suggesting that these RNAi effectors
may have broad applicability against different HBV
genotypes. Although the results reported here and else-
where augur well, there are concerns that need to be
addressed before effective RNAi-based therapy of HBV
infection will be realized. In particular, off-target effects
of anti-HBV RNA sequences, which include activation of
the interferon response and nonspecific interactions
between guide sequences and alternative cellular targets,
remain a concern. These effects require further character-
ization, and optimal therapeutic concentrations need to
be defined. An important technical hurdle related to
developing RNAi-based antiviral therapy is the efficient
delivery of nucleic acid sequences to infected cells in the
liver. Although DNA expression cassettes have been
shown to be effective in the context of recombinant
adenoviruses tested in this study and by others [25], these
vectors are unlikely to be suitable for clinical application.
Potential toxicity and the limited number of adminis-
trations caused by adenovirus immunity are of concern.
MOLECULAR THERAPY Vol. 13, No. 2, February 2006
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Incorporation of U6 shRNA 5 and U6 shRNA 6 into
hepatotropic nonviral vectors with limited immunoge-
nicity is an objective of current work.

MATERIALS AND METHODS

shRNA expression cassettes and synthetic siRNA. Conserved target

sequences within the HBx open reading frame of the HBV A1 subgenotype

were identified by aligning sequences of 27 viral isolates of South African

origin. To generate the panel of 10 shRNA expression constructs,

oligonucleotides were designed to produce Pol III U6 shRNA cassettes

from a U6 DNA template [42] in a two-step amplification reaction. The

reverse oligonucleotide sequences used during PCR are indicated in Table

1. U6 shRNA X.1 primers were complementary to part of the U6 promoter

and included the mismatched HBx sense sequences of the short hairpin,

together with the hairpin loop. U6 shRNA X.2 primers included the

overlapping loop, HBx antisense sequence, and transcription termination

sequence. Each PCR step was performed with a U6 universal forward

primer (5V-CTAACTAGTGGCGCGCCAAGGTCGGGCAGGAAGAGGG-3V).

The PCR products from the final amplification step were purified and

ligated to a PCR cloning vector (pGEM-T Easy, Promega, WI, USA) to

generate pG-U6shRNA plasmids (e.g., pG-U6shRNA 5 and pG-U6shRNA

6). The sequences were confirmed by standard manual or automated

sequencing procedures involving dideoxy chain termination. siRNA 5,

which has a sequence equivalent to that of the duplex stem of shRNA 5,

was synthesized using 2V-O-ACE-RNA phosphoramidites (Dharmacon,

CO, USA). The sequences of the oligoribonucleotides were 5V-UCGU-

GUGCGCUUUGCUUCGCCUCUG-3V (sense) and 5V-CAGAGGUGAAGC-

GAAGUGCACACGG-3V (antisense).

Target vectors. pCH-9/3091 has been described previously [32]. It

contains a greater than genome length HBV sequence, which is similar

to the HBV A1 subgenotype consensus. pCH-eGFP is derived from pCH-9/

3091 and has the eGFP sequence substituting for the preS2/S ORF [33].

Cell culture. Huh7 cells were maintained in RPMI medium supplemented

with 2.5% fetal calf serum (FCS), penicillin (50 IU/ml), and streptomycin

(50 Ag/ml) (Gibco BRL, UK). HEK293 cells were propagated in DMEM

supplemented with 10% FCS, penicillin (50 IU/ml), and streptomycin (50

Ag/ml) (Gibco BRL). On the day prior to transfection, 250,000 HEK293

cells or 150,000 Huh7 cells were seeded in wells 2 cm in diameter.

Transfection was carried out using Lipofectamine (Invitrogen, CA, USA)

according to the manufacturerTs instructions. To determine the effects of

shRNA-encoding plasmids, Huh7 cells were transfected with a combina-

tion of 6 Ag of pCH-9/3091 and 2 Ag of hairpin-encoding pGEM-derived

plasmid or control plasmid lacking the shRNA cassette. HBsAg secretion

into the culture supernatants was measured daily using the Monolisa

(ELISA) immunoassay kit (Bio-Rad, CA, USA). To determine in situ effects

of the pG-U6 shRNA series of plasmids, Huh7 cells were cotransfected

with 6 Ag pCH-eGFP instead of pCH-9/3091. Cells labeled with eGFP were

detected using flow cytometry and confirmatory fluorescence microscopy

48 h after transfection. The mean number of fluorescent cells as well as

the standard error of the mean was calculated from four independent

experiments. A plasmid vector that constitutively produces h-galactosi-

dase [43] was included in each cotransfection and equivalent transfection

efficiencies were verified by staining for activity of this marker gene [44].

Northern blot hybridization. Huh7 cells were harvested 4 days after

transfection and total RNA was extracted using Tri Reagent (Sigma, MI,

USA) according to the manufacturerTs instructions. The RNA was resolved

using formaldehyde agarose gel electrophoresis and blotted onto nylon

membranes. An HBV sequence from the surface region was radiolabeled

with [a-32P]dCTP using the multiprime technique (Megaprime kit;

Amersham, UK) and then hybridized to blotted RNA and detected using

autoradiography. As a control for equal loading, the same blot was

stripped and rehybridized to a radiolabeled GAPDH-specific probe.

Expression and processing of shRNA. DNA oligonucleotides, which were

complementary to 18 nucleotides of each of the strands of the U6-
MOLECULAR THERAPY Vol. 13, No. 2, February 2006
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encoded hairpins, were labeled at their 5V ends with [g-32P]ATP and T4

polynucleotide kinase. After purification using standard procedures,

labeled DNA oligonucleotides were hybridized to 2 to 8 Ag of total

Huh7 cellular RNA and then extended for 20 min at 428C with AMV

reverse transcriptase (Promega) according to the conditions recommen-

ded by the supplier. Products were analyzed by autoradiography after

resolution using 8 M urea denaturing 15% polyacrylamide gel electro-

phoresis. The oligonucleotides used in the primer extension assays were as

follows: shRNA 5 HBV+, 5V-CCGTGTGCACTTCGCTTC-3V; shRNA 5

HBV�, 5 V-CAGAGGCGAAGCAAAGCG-3 V; shRNA 6 HBV+, 5 V-

TGCACTTCGCTTCACCTC-3V; shRNA 6 HBV�, 5V-ATGTGTAGAGGT-

GAAGCG-3V; shRNA 10 HBV+, 5V-TTCAAGCCTCCAAGCTGT-3V; shRNA

10 HBV�, 5V-CCAAAGCACAACTCGGAG-3V.

Quantitative PCR. To measure the effects of shRNA sequences on

circulating virion DNA (see below), total DNA was isolated from 50 Al of

mouse serum using the Total Nucleic Acid Isolation Kit and MagNApure

instrument from Roche Diagnostics. Controls included water blanks and

HBV-negative serum. DNA extracted from the equivalent of 8 Al of mouse

serum was amplified using SYBR Green Taq Readymix (Sigma, MO, USA).

Crossing-point analysis was used to measure virion DNA concentrations

and standard curves were generated using EuroHep calibrators [45]. The

HBV surface primer set was HBV surface forward, 5V-TGCACCTGTATTC-

CATC-3V, and HBV surface reverse, 5V-CTGAAAGCCAAACAGTGG-3V. PCR

was carried out using the Roche Lightcycler v.2. Capillary reaction volume

was 20 Al and thermal cycling parameters consisted of a hot start for 30 s

at 958C followed by 50 cycles of 578C for 10 s, 728C for 7 s, and then 958C
for 5 s. Specificity of the PCR products was verified by melting curve

analysis and agarose gel electrophoresis.

Assessment of in vivo efficacy of anti-HBV shRNA constructs. The

murine hydrodynamic tail vein injection method was initially employed

to determine the effects of shRNA plasmid vectors on the expression of

HBV genes in vivo. Experiments on animals were carried out in accordance

with protocols approved by the University of the Witwatersrand Animal

Ethics Screening Committee. A saline solution comprising 10% of the

mouseTs body mass was injected via the tail vein over 5–10 s. The saline

solution included a combination of three plasmid vectors: 10 Ag target

DNA (pCH-9/3091) or 10 Ag pCI-neo plasmid DNA (Promega), which lacks

HBV sequences; 10 Ag anti HBV sequence (shRNA-encoding plasmid) or

mock (pGEM backbone); and 10 Ag pLTR h-gal [43] (a control for hepatic

DNA delivery, which encodes the h-galactosidase marker gene under

control of an LTR promoter). In some investigations, the amount of

shRNA-encoding plasmid was reduced to 5 and 1 Ag. To test the efficacy of

synthetic siRNA 5 against HBV, 25 Ag of this duplex was coinjected via the

tail vein. Blood was collected daily from the tail vein over a period of 5

days and HBsAg was measured using the electrochemiluminescence assay

(ECLIA) from Roche Diagnostics (Mannheim, Germany) according to the

manufacturerTs instructions. Animals were sacrificed after 4 days. Fixed

and unfixed frozen liver sections were processed respectively for immu-

nohistochemical HBcAg detection or for h-galactosidase staining [44]. A

rabbit polyclonal antibody against HBcAg (Signet Laboratories, Inc., MA,

USA) and horseradish peroxidase-conjugated secondary antibody (Dako,

Denmark) were used to detect the viral antigen in paraffin-embedded

sections according to standard procedures.

Adenovirus vectors. The procedure described by He et al. [46] was

followed for the preparation of the ADV shRNA 5, ADV shRNA 6, ADV

shRNA 10, ADV eGFP, and ADV shRNA LacZ adenovirus vectors. ADV

shRNA LacZ is a control adenovirus that includes a U6 shRNA cassette

with hairpin that targets the h-galactosidase reporter gene. ADV eGFP is

another control that includes the backbone sequence without U6 hairpin

cassette. The pG shLacZ vector was propagated using the two-step PCR

procedure described above. The U6 universal forward primer, with

5V-CTGTTTGACAGGAAGAACAAGTATCCGCTAGTCACTTCGACGG-

TGTTTCGTCCTTTCCACA-3V and 5V-CCCAGATCTACGCGTAAAAAATC-

GAAGTGACCAGCGAATACCTGTTTGACAGGAAGAACAA-3V as reverse

primers, was used in sequential amplifications. To generate adenovirus

shuttle vectors containing the shRNA cassettes, pG-U6shRNA vectors were
419
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digested with NotI and HindIII. The U6 shRNA-containing fragment was

purified and ligated to equivalent sites of pAdTrack to generate pAd-Track

U6 shRNA. After verifying the sequence of the inserts, pAdTrack U6 shRNAs

were digested with PmeI and homologous recombination with the

pAdEasy-1 adenoviral backbone plasmid was carried out in Escherichia coli

BJ55183 cells. Propagation of the adenovirus in HEK293 cells was then

done according to the described procedures [46]. Absence of E1A sequences

from each adenovirus was confirmed using PCR. Failure to observe a

cytopathic effect in A549 cells, which support adenovirus replication, but

which do not provide E1 sequences in trans, verified that wild-type

revertants were not present in any of the adenovirus preparations.

HBV transgenic mice. HBV transgenic mice with greater than genome

length HBV sequence stably integrated into their genomes, which

constitutively generates HBV particles [40], were used to assess the

antiviral efficacy of shRNA-encoding adenoviral vectors. All procedures

were approved by the Animal Care Committee at Stanford University. A

dose of 5 � 109 adenovirus infectious particles was injected via the tail

vein. Serum HBsAg was measured using a quantitative sandwich ELISA

from Abbott Laboratories, and HBeAg was determined using the ECLIA

from Roche Diagnostics (Mannheim, Germany) according to the man-

ufacturerTs instructions. Viral loads were determined using real-time PCR

according to procedures described above. Adenovirus gene transduction,

assessed by detection of eGFP, was determined using fluorescence micro-

scopy of liver sections.

Statistical analysis. Data are expressed as the mean F standard error of

the mean. Statistical difference was considered significant when P b 0.05

and was determined according to the Dunnett multiple comparison test

and calculated with the GraphPad Prism software package (GraphPad

Software, Inc., CA, USA).
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Activating RNA interference to achieve specific gene
silencing has shown promise for the development of
RNA-based treatment of chronic hepatitis B virus (HBV)
infection. To further this approach, we assessed the
efficacy of expressed long hairpin RNAs (lhRNAs) that
target the conserved HBx open reading frame of HBV. As
substrates for Dicer, lhRNAs have the potential to
generate multiple short interfering RNAs (siRNAs) to
enable simultaneous targeting of different sites. Two U6
Pol III vectors were constructed that encode anti-HBV
lhRNAs with a 62 base pair stem sequence containing
multiple G:U pairings. Assessment in transfected cul-
tured cells and also in vivo using the murine hydro-
dynamic injection model showed that one of the lhRNA
vectors (lhRNA 1) diminished markers of virus replication
by 70–90% without evidence of interferon response
induction. Greatest silencing efficacy was observed for
targets that are complementary to sequences located at
the base of the hairpin stem and this correlated with a
higher concentration of siRNAs derived from this region
of the lhRNA. Although lhRNA 1 has the advantage of
targeting a greater viral sequence, incomplete cellular
processing may result in unequal silencing across the
span of the viral target RNA.
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INTRODUCTION
Infection with hepatitis B virus (HBV) is an important global

medical problem. Available therapy is only partially effective

against the virus1,2 and development of improved treatment

modalities remains an important medical priority. Recent

demonstrations that activation of the RNA interference (RNAi)

pathway can achieve specific silencing of HBV genes3–8 have

prompted the development of novel RNA-based antiviral agents.

RNAi usually involves processing of precursor double-stranded

RNA (dsRNA) by Dicer to form short interfering RNA (siRNA)

duplexes of 21–23 base pairs (bp).9,10 The siRNA is incorporated

into the RNA-induced silencing complex, where one of the

strands is selected and acts as a guide to target degradation of

complementary cytoplasmic RNA.11 Silencing by exogenous

potentially therapeutic sequences is typically induced by short

synthetic duplex RNA or expressed Pol III-driven short hairpin

RNA (shRNA).12–15 Although several viruses have been shown to

be susceptible to knockdown by RNAi effector sequences,16,17 an

important concern is escape from silencing effects by viruses that

are prone to a high mutation rate. Selection of RNAi escape

mutants has been reported in vitro for poliovirus,18 human

immunodeficiency virus 1 (HIV-1),19,20 and hepatitis C virus

(HCV).21 However, with HCV, resistant viral sequences were

susceptible to silencing by siRNAs that targeted alternative

sites.21 Using a vector that produces a Dicer substrate that

generates multiple siRNAs would have the advantage of limiting

escape and targeting a range of sequences found in different viral

genotypes or quasispecies.

Use of dsRNA Dicer substrates with a duplex region greater

than 30 bp may be complicated by the induction of the

nonspecific type 1 interferon (IFN) response in mammalian

cells.22 This may ultimately cause translation suppression and

mRNA degradation, which would be undesirable in a therapeutic

context. The IFN response is elicited by interaction of dsRNA

with cellular proteins, such as dsRNA-dependent RNA protein

kinase (PKR) and triggers activation of interferon-b (IFN-b),

Myxovirus A (MxA), and 20,50-oligoadenylate synthase 1 (OAS1)

genes among others. Recent studies showed that expressed

hairpins evade activation of the IFN response more efficiently

than exogenous synthetic RNA.23 Also, modified long hairpin

RNAs (lhRNAs) comprising 50–100 bp with multiple G:U

pairings in the stem sequence have been reported to silence

HCV targets in cell culture without an immunostimulatory

effect.24,25 Although promising for therapeutic application, it has

not been established whether expressed lhRNA vectors are

capable of efficient silencing across the extent of the hairpin

duplex and whether specific viral gene silencing can be

achieved in vivo. To address this, we examined the silencing

of HBV replication by expressed lhRNAs targeting HBx. This

multifunctional sequence encodes the HBx protein, which is

required for viral replication and has been implicated in

HBV-related hepatocarcinogenesis. We show that an anti-lhRNA

cassette is capable of specific inhibition of markers of viral

replication.
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RESULTS
lhRNA-encoding cassettes
Two U6 Pol III lhRNA cassettes were generated, which target

conserved HBx sites of HBV genotype A1 isolates26 (Figure 1).

Hairpins were designed to comprise a 62 bp stem with 12 G:U

wobble pairs in the stem sequence. The lhRNA antisense

sequence was perfectly complementary to the viral target,

whereas the sense sequence included mismatches. It has been

suggested that inclusion of G:U wobble pairings evades

induction of the IFN response by a mechanism that involves

structural simulation of endogenous microRNA.24,25 Although

the lhRNAs described here included G:U pairings, they were

incorporated primarily as a technical aid to improve the

efficiency of the two-step polymerase chain reaction (PCR)

method for generating expression cassettes.

lhRNA-mediated target silencing in transfected cells
without evidence for induction of an IFN response
Initially, to assess efficacy against HBV in vitro, Huh7 cells were

co-transfected with lhRNA 1 and lhRNA 2 vectors together with

the pCH-9/3091 HBV target plasmid.27 The HBx sequence is

common to all HBV transcripts (Figure 1b) and inhibition of

HBV surface antigen (HBsAg) secretion correlates with RNAi-

mediated silencing of HBV replication.3,28,29 Controls included

an shRNA-encoding plasmid (shRNA 5), which we have

previously shown to be effective against HBV,3 and also a long

hairpin directed against an unrelated HIV-1 trans-acting

response element (TAR) sequence. Compared to mock-treated

cells, a knockdown of approximately 90% of viral antigen

secretion was achieved by lhRNA 1 and shRNA 5 (Figure 2a).

The vector encoding lhRNA 2 caused less impressive inhibition

of HBsAg secretion (approximately 50%) and control HIV

lhRNA TAR had no significant effect on HBsAg secretion. A

series of experiments was also carried out in which psiCheck-

HBx, a dual luciferase reporter vector (Figure 1b), was co-

transfected with hairpin plasmids. Firefly luciferase is expressed

constitutively in psiCheck-HBx, whereas Renilla luciferase is

susceptible to silencing by hairpin-expressing sequences. A ratio

of Renilla to firefly luciferase activity was thus used as an

indicator of target knockdown. A very similar inhibition of the

ratio of Renilla to firefly luciferase acivity, and HBsAg secretion

was demonstrated (Figure 2b). These observations are in

accordance with previously reported data, which showed that

the viral sequence targeted by lhRNA 1 is particularly susceptible

to RNAi-mediated silencing, whereas the downstream lhRNA 2

site is less so.3

Figure 1 lhRNA sequences and HBV target sites. (a) Schematic
illustration of lhRNA comprising 62 bp in the stem. G:U pairings are
shown as well as a sequence of 2 U residues that are derived from the
transcription termination signal. The antisense strand is perfectly
complementary to its HBV target. (b) Organization of the HBV genome
showing ORFs and sites within the pCH-9/3091 target vector that are
complementary to antisense components of lhRNA. Four arrows indicate
the HBV transcripts, which have common 30 ends, and include the
lhRNA targets. The psiCheck-HBx vector includes the entire HBx target
sequence downstream of the Renilla luciferase reporter ORF and firefly
luciferase is constitutively produced from a separate expression cassette.

Figure 2 HBsAg secretion and IFN response-related gene expres-
sion in transfected cells in culture. (a) HBsAg secretion from Huh7
cells co-transfected with indicated hairpin RNA-encoding plasmids
together with HBV target plasmid. HBsAg measurements from quanti-
tative ELISA (enzyme-linked immunosorbent assay) are presented as a
normalized mean relative to the mock-treated cells. Results are from
seven independent transfections and the bars indicate the SEM. (b)
Renilla luciferase reporter gene activity in Huh7 cells co-transfected with
indicated hairpin RNA-encoding plasmids together with psiCheck-HBx
reporter plasmid. Measurements are given as a normalized ratio (7SEM)
of Renilla to firefly luciferase activity and were determined from three
independent experiments. (c) Assessing activation of the IFN response in
transfected cells. Quantitative real-time PCR was used to measure IFN-b,
MxA, or OAS1 mRNA. HEK293 cells were transfected with the indicated
hairpin RNA-encoding plasmids and the positive control group was
transfected with poly (I:C). Means (7SEM) of IFN-b, MxA, or OAS1 to
GAPDH mRNA were calculated from the positive control and were
determined from four independent experiments.
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Activation of the IFN response, which can induce unintended

programmed cell death and nonspecific gene silencing, may be

effected by duplex RNA in mammalian cells (reviewed in ref. 22).

To assess activation of the IFN response in cells that were

transfected with lhRNAs, relative levels of cellular 20,50-OAS1,

MxA, and IFN-b mRNA were measured using a sensitive

quantitative PCR assay. Data revealed that IFN response genes

were not significantly induced in HEK293 cells that had been

transfected with lhRNA-encoding sequences (Figure 2c),

whereas cells treated with poly (I:C) (positive control) mounted

an expected IFN response. Activation of 20,50-OAS1, MxA, and

IFN-b was not observed in Huh7 cells after lhRNA vector

transfection or poly (I:C) treatment (data not shown), support-

ing previous findings that the IFN response is attenuated in this

liver-derived line.30 Also, transfection efficiency and cell viability

were unaffected by transfection with lhRNA-encoding plasmids

(data not shown). Together these data indicate that silencing of

reporter gene expression and HBsAg secretion from cells that

were co-transfected with lhRNA-encoding cassettes was specific

and not a result of induction of the IFN response.

Effects of lhRNA on viral replication in vivo
To determine anti-HBV efficacy of shRNA in vivo, HBV

replication competent plasmid together with lhRNA-encoding

vectors were delivered to the liver using the hydrodynamic tail

vein injection method. lhRNA 1- and shRNA 5-encoding

plasmids knocked down HBsAg in the serum of mice by

approximately 90% when measured at day 5 after administering

this DNA (Po0.05) (Figure 3a). lhRNA 2 effected a less

significant decrease in HBsAg secretion (Po0.1) and HIV

lhRNA TAR did not diminish serum HBsAg concentration.

These data were supported by measuring the number of

viral particle equivalents in the serum at 2 and 5 days after

coinjecting HBV target and hairpin-encoding DNA (Figure 3b).

lhRNA 1 and shRNA 5 inhibited production of viral

particle equivalents in vivo by 60–70%. Furthermore, measure-

ment of intrahepatic knockdown of HBV gene expression

corroborated these findings. Concentrations of HBV mRNA

containing core and surface sequences were diminished by

lhRNA 1 and shRNA 5 by approximately 60–70% (Figure 3c).

Three separate lines of evidence, HBsAg concentration determi-

nation, viral loads, and intracellular HBV mRNA determination,

establish that lhRNA 1 substantially decreases markers of HBV

replication in vivo.

IFN response in vivo
To determine whether lhRNA-induced activation of the IFN

response pathway occurs in vivo, induction of OAS1 and IFN-b
genes in hepatocytes was determined after murine hydrodynamic

injection. Expression of both genes was increased at 6 h after

injection with poly (I:C), which confirms activation of the IFN

response in the positive control (Figure 4). This effect was not

observed after 5 days and is likely to be a result of the transient

nature of the effect of poly (I:C) (data not shown). There was a

small increase in OAS1 mRNA concentration in mock-treated

animals at 6 h, which may be due to effects of the hydrodynamic

injection procedure itself. Five days after administration of

Figure 3 Effects of hairpin sequences on markers of HBV replication
in the hydrodynamic injection model of HBV replication. (a) Serum
HBsAg concentrations were determined at day 5 after hydrodynamic
injection of mice with pCH-9/3091 HBV target and indicated hairpin-
encoding sequences. Results were normalized relative to the mock-
treated mice and are expressed as the mean (7SEM) from at least five
mice. (b) Serum circulating viral particle equivalents (VPEs) at days 2 and
5 after hydrodynamic injection with the target vector together with
hairpin-encoding sequences. (c) Hepatocyte concentrations of HBV
mRNA from the core and surface regions expressed as a ratio to amount
of GAPDH mRNA. Total RNA was isolated from liver cells at day 5 after
hydrodynamic injection and subjected to quantitative real-time PCR.
Groups comprised 5–8 animals and the graphs indicate the mean and
SEM for each group.

Figure 4 Assessment of in vivo IFN response. Mice were mock
treated, injected with indicated hairpin-encoding cassettes, or with poly
(I:C) using the hydrodynamic procedure. RNA was extracted from the
livers and then subjected to quantitative real-time PCR to determine
concentrations of OAS1, IFN-b, and GAPDH mRNA. Analysis was carried
out after 6 h to verify that an IFN response was induced using the poly
(I:C) positive control. In the remaining animals, which had been treated
with anti-HBV hairpins, markers of induction of the IFN response were
determined after 5 days.
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lhRNA-encoding vectors, activation of OAS1 and IFN-b was not

observed in any of the groups of mice.

Silencing of mutant targets by lhRNA 1
An advantage of using long hairpin sequences to effect silencing

is their potential to serve as substrates for the production of

several siRNAs, which can target different viral sequences. This is

of importance for inhibition of expression of viral mutants that

evade the silencing mechanism. To assess this, we inserted wild-

type and mutant targets downstream of the sequence encoding

the Renilla luciferase gene within the psiCheck2 dual reporter

vector. The mutations were located within the target of shRNA 5

(Figure 5a). Transfection of cultured cells demonstrated that

both lhRNA 1 and shRNA 5 were capable of silencing the normal

target (Figure 5b). However, the lhRNA sequence silenced

mutant targets more effectively than shRNA 5. Interestingly, the

shRNA vector remained capable of significant mutant sequence

knockdown when compared to the control transfected cells. This

may have resulted from translational suppression that did not

require perfect complementarity with the HBV cognate.

Although lhRNA 1-mediated knockdown of the mutant targets

was better than that of shRNA 5, this observation does not

establish that there is equally efficient silencing of the target

across the extent of the lhRNA 1 duplex.

siRNA guide sequences derived from lhRNA 1
Northern blot hybridization was carried out to determine

whether the siRNA guide sequences from lhRNA 1 were

produced in equal amounts. RNA extracted from cells trans-

fected with lhRNA 1- and shRNA 5-encoding plasmids was

hybridized to each of three labelled oligonucleotide probes

(Figure 6a and b). The sequences of the probes were

complementary to, and together spanned the extent of the

lhRNA HBV antisense region. Precursor unprocessed shRNA 5

sequences were detectable as a band of approximately 60

nucleotides (nt). Probe A, which is located at the 30 end of the

lhRNA, detected a putative guide sequence of approximately

23 nt in the cells that had been transfected with lhRNA 1,

whereas no hybridizing RNA was detectable in cells that had been

transfected with shRNA 5. RNA sequences of approximately

23 nt, when detected by probe B, were found in both lhRNA 1-

and shRNA 5-transfected cells. As expected, probe C detected a

prominent siRNA sequence in shRNA 5-transfected cells.

Interestingly, a 23 nt band was not detectable in RNA from

lhRNA 1-transfected cells when hybridized to probe C. This was

confirmed in a duplicate blot and when hybridized blots were

overexposed (data not shown). Thus, siRNAs generated from the

loop side of the lhRNA 1 sequences are present in lower

concentration than those from the stem base. These observations

may reflect initial efficient Dicer cleavage at the stem base of

lhRNA 1 and less efficient processing toward the loop side of the

hairpin.

Greater silencing efficacy of siRNAs derived from the
lhRNA 1 stem base sequence
To determine whether silencing by lhRNA 1 along the extent of

the viral target sequence correlated with siRNA concentrations, a

tiling assay was performed in which the entire lhRNA 1 target

and segments of this sequence spanning from 50 to 30

Figure 5 Assessment of silencing efficacy of shRNA 5, shRNA 6, and
lhRNA 1 against mutant and wild-type HBV targets. (a) HBV
sequences were inserted downstream of the Renilla luciferase ORF within
the psiCheck2 plasmid vector. Nucleotides that are mutated within the
targets are indicated in bold as are the affected complementary bases
within the putative shRNA 5 and lhRNA 1 structures. (b) Knockdown
efficiency of shRNA 5 and lhRNA 1 vectors against wild-type and mutant
targets. Values are normalized to the ratio of Renilla to firefly luciferase
activity in the mock transfected cells. Columns indicate the average
values from four separate experiments and error bars show the SEM.

Figure 6 Detection of siRNA sequences produced from expressed
lhRNA 1 and shRNA 5. (a) Schematic illustration of shRNA 5 and lhRNA
1 with relative positions of probes A, B, and C. These oligonucleotides
comprise single-stranded DNA sequences complementary to the HBV
antisense strand of the hairpins. (b) Hybridization of radiolabelled
probes A, B, C, and U6 snRNA (small nuclear RNA) oligonucleotides to
RNA from transfected HEK293 cells using Northern blot analysis.
Approximate sizes (nt) of hybridizing bands and molecular weight
markers are indicated. Blots were sequentially hybridized, stripped, and
rehybridized. Repeated hybridization analysis showed data to be
reproducible.
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(progressively targets A–E) were inserted downstream of the

Renilla luciferase open reading frame (ORF) of psiCheck2

(Figure 7a). Knockdown of each of the targets was determined

according to the ratios of Renilla and firefly luciferase activity

(Figure 7b). Predictably, each of the hairpin-encoding sequences

caused knockdown of the complete target. Only lhRNA 1

inhibited Renilla luciferase expression when target A was placed

downstream of the reporter. Neither shRNA 5 nor shRNA 6 had

any effect on Renilla luciferase expression when the reporter

vector contained targets A, B, or C, whereas lhRNA 1 induced

silencing at targets B and C, but with lower efficacy than against

target A. Target B straddles the putative initial Dicer cleavage site

of lhRNA 1. This means that siRNAs from the long hairpin are

likely to have only partial sequence complementarity to target B

and poor silencing efficacy against this sequence. More effective

lhRNA 1 silencing of target C than target B may be a result of

improved hybridization of a putative second Dicer-generated

siRNA from the lhRNA 1 sequence. Target D, which encompasses

shRNA 5 and shRNA 6 cognates, was a poor substrate for

silencing by lhRNA 1, but efficient knockdown was achieved by

the shRNA vectors. Target E was also poorly silenced by lhRNA 1

and partially knocked down by shRNA 6. Taken together with

the analysis of concentrations of RNA fragments from lhRNA 1

(Figure 6), these data suggest that siRNAs from the loop side of

the long hairpin are formed less efficiently and are less effective

silencers of target RNA than those from the stem base. Similar

investigation of knockdown of HIV-1 targets by lhRNAs (data

not shown) corroborates this.

DISCUSSION
Several studies have demonstrated that synthetic siRNA and

expressed shRNA can be used to silence HBV gene expression.3–8

A range of different sites within the viral genome has been

targeted, and variable efficiency of knockdown has been

observed. Although algorithms have been devised that distin-

guish effective RNAi inducers, predictions that identify optimal

targets are often difficult to make.31 Typically, screening of

several candidate silencing sequences and empirical validation is

required to aid in identifying the optimal RNAi effector. Use of a

combination of siRNAs should thus facilitate the process of

achieving successful silencing. This was confirmed in a study

which showed that transfecting cells with a panel of siRNAs

produced ex vivo using recombinant Dicer is a useful means of

attaining reliable silencing.32,33 Generating several siRNAs from

one expressed lhRNAs sequence is analogous and should

improve the probability of assembling effective silencing

complexes.34 An important concern of applying RNAi to the

treatment of virus infections, particularly viruses such as HBV

which replicate using error-prone reverse transcriptase, is the

evasion of silencing effects as a result of mutation. Selection of

poliovirus,18 HIV-1,19,20 and HCV21 RNAi escape mutants has

been reported and, in the case of HCV, resistant sequences were

susceptible to siRNAs that targeted alternative sites.21 Using

lhRNA to target several sites simultaneously should overcome

viral escape and also improve the probability of successful

silencing. Although these are important theoretical advantages,

our data show that silencing is not equally efficient across the

extent of the lhRNA duplex. siRNAs originating from the duplex

at the loop terminus side of the hairpin have poor silencing

efficacy. Knockdown was most effective by siRNAs derived from

the stem base and siRNAs from this part of the lhRNA were also

present in higher concentration. Importantly, this bias in

knockdown efficiency has implications for design and use of

lhRNAs to counter viral escape and optimize target sequence

silencing. A likely reason for unequal silencing by lhRNA-derived

siRNAs is that Dicer cleavage is initiated at the stem base end of

the lhRNA where 2 nt 30 overhangs are recognized by the

enzyme.9,10 Processing capacity of intracellular Dicer may be

incomplete, resulting in a relatively higher concentration of

siRNAs arising from the stem base of the lhRNA. The rate of

lhRNA transcription and differences in the stability of nascent

and partially diced hairpin RNA are also likely to contribute to

our findings.

Several properties of RNAi effectors have been described that

may cause unwanted activation of an innate immune response.

These include duplex sequences that are longer than 30 bp,35

presence of 50 triphosphates,36 ‘‘danger’’ sequence motifs,37 and

lack of 2 nt 30 overhangs.38 Induction of immunostimulatory

effects, particularly the IFN response, has thus been a concern of

using lhRNA sequences to effect gene silencing. Although long

dsRNA induces the IFN response through activation of PKR and

interaction with endosomal Toll-like receptors, this effect may be

of greater significance when using perfectly matched exogenous

synthetic RNA to cause gene silencing.24,25,39 Expressed hairpin

RNA does not have the same immunostimulatory properties as

synthetic dsRNA.23 Importantly, RNA that is transcribed within

cells does not typically traverse the endosomal compartment and

interact with Toll-like receptor 3, Toll-like receptor 7, and Toll-

like receptor 8 to stimulate downstream activators of the

innate immune response. Moreover, lhRNA products of Dicer

Figure 7 Silencing efficiency across the span of the lhRNA1 target
sequence. (a) The complete lhRNA1 as well as individual short target
sequences (targets A–E) were inserted downstream of the Renilla
luciferase ORF within the psiCheck2 vector. Areas that are complemen-
tary to the sequences located within shRNA 5, shRNA 6, and lhRNA 1 are
indicated above. (b) Knockdown by shRNA 5, shRNA 6, and lhRNA 1 of
individual target sequences. Values are normalized to the ratio of Renilla
to firefly luciferase activity in the mock-transfected cells. Columns
indicate the average values from four separate experiments and error
bars show the SEM.
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processing have characteristic 2 nt 30 overhangs, which are a

structural feature that suppresses immunostimulation by RIG-I

(retinoic-acid-inducible protein I).38 Collectively, these factors,

and possibly the presence of G:U wobbles in the lhRNA duplex,

are likely to limit induction of the IFN response in cultured cells

or in vivo.

Specificity of RNAi effectors for their cognate targets is also

critical for development of therapeutic RNA. Minimal or no

unintended crossreaction of silencing sequences with cellular

RNA will be an important requirement for therapeutic applica-

tion of lhRNAs. A concern of using lhRNAs is that Dicer may

generate multiple overlapping siRNAs with unpredictable guide

strand bias, resulting in an increased probability of off-target

effects. The length and specific sequences of the duplex are likely

to be the major contributors to these nonspecific side effects.

Although Dicer predominantly generates duplex siRNAs con-

taining 21 nt RNA strands, the size ranges from approximately 21

to 23 nt.9,10 Thus, with longer dsRNA substrates, formation of

siRNAs is likely to proceed with decreasing precision, which may

contribute to off-target effects. In this study, we designed an

lhRNA expression cassette that would potentially target three

adjacent HBV siRNA targets. This is considerably shorter than

the duplex region of other lhRNAs that have been reported to

cause specific silencing of target genes.34 Nevertheless, as with

eventual therapeutic application of any RNAi effectors, it is likely

that detailed analysis, including use of microarrays, will be

required to verify specificity of lhRNA1.

The recent demonstration that saturation of the natural

microRNA pathway by exogenous expressed RNA causes toxicity

in hepatocytes is a caveat for development of RNAi-based HBV

therapy.40 This is of concern for application of constitutively

expressed lhRNAs, and refined transcription control to regulate

intracellular concentration of RNAi effectors will be required.

Investigations are currently in progress in our laboratory, which

are aimed at assessing efficacy of hairpin sequences expressed

from liver-specific Pol II promoters.

Results from our study have shown that expressed lhRNA is

capable of inhibiting production of markers of viral replication

in cell culture and in vivo models of HBV. This effect was

observed without induction of the IFN response. Although

unequal silencing across the extent of the lhRNA duplex was

observed, the approach offers promise for the use of expressed

sequences containing long duplexes that generate multiple

siRNAs to silence HBV gene expression.

MATERIALS AND METHODS
lhRNA expression plasmids. Generation of the Pol III U6 shRNA 5

cassette has been described.41 A similar two-step PCR approach was
used to produce the lhRNA vectors complementary to HBV coordinates

1581–1640 (lhRNA 1) and 1372–1431 (lhRNA 2) (accession J02203). The
first amplification was carried out with a universal U6 forward primer

and first lhRNA reverse primer with U6 promoter plasmid DNA as
template. The amplified product was used as template for a PCR step

with a second lhRNA reverse primer and again the universal U6 forward
primer. The sequence of the U6 universal forward (F) primer was 50-
CTAACTAGTGGCGCGCCAAGGTCGGGCAGGAAGAGGG-30. Sequences
of the reverse (R) primers for the amplifications were as follows: lhRNA

HBV1-R1 50-ACTCTCTTGAAGCGCAAAGGCGAAGCAAAGTACACAC

GATCCGACAGACGAGAAGACACAAACAGGAAGTCGGTGTTTCGTC

CTTTCCACAA-30 (92 nt), lhRNA HBV1-R2 50-GATCTCTAGAAAAAA
GACTCCCCGTCTGTGCCTTCTCATCTGCCGGACCGTGTGCACTTC

GCTTCACCTCTGCACTCTCTTGAAGCGCAAAG-30 (92 nt), lhRNA
HBV2-R1 50-CATCTCTTGAATGCCGGTACGCAAACAACTTACGCC

CACAACCTCCCAGCACAAAGACCCTCAACCCAATCGGTGTTTCGT
CCTTTCCACAA-30 (92 nt), lhRNA HBV2-R2 50-GATCTCTAGAAA

AAAGATTAGGTTAAAGGTCTTTGTACTAGGAGGCTGTAGGCATAAA
TTGTCTGCGCACCAGCATCTCTTGAATGCCGGTA-30 (92 nt), lhRNA

HIV TAR-R1 50-CCTCTCTTGAAGAGTCCCCTAAATAACCAGAGAAC
CCCCGGACTCAGATCCGGTCCACCCAGAAAGAACCGGTGTTTCGT

CCTTTCCACAA-30 (91 nt), and lhRNA HIV TAR-R2 50-GATCTCTA
GAAAAAAGGGTCTCTCTAGGTAGACCAGATCTGAGCCCGGGAGCT

CTCTGGCTATCTAGGGAACCCTCTCTTGAAGAGTCCCC-30 (91 nt).
Each pair of primers had an overlapping sequence of 19 bases that

enabled extension of the PCR product to generate a U6 promoter lhRNA
cassette with transcription termination signal.41 Amplified DNA was

ligated to a PCR cloning vector (pTZ57R/T, Fermentas, Madison, WI) to
generate pTZ-U6 lhRNA plasmids (pTZ-U6 lhRNA HBV 1, pTZ-U6

lhRNA HBV 2, and pTZ-U6 lhRNA TAR). The sequences were
confirmed by standard procedures.

Target plasmids. pCH-9/3091 has been described previously.27 It
contains a greater than genome length HBV sequence, which is similar

to the HBV A1 subgenotype consensus. The psiCheck-HBx target
plasmid was prepared by directed insertion of the XhoI-NotI digested

HBx fragment from pCI-neo HBx29 into the plasmid psiCheck2
(Promega, Madison, WI) such that the HBx ORF is within the 30

untranslated region of the Renilla Luciferase cassette. The lhRNA HBV 1
target sequence was amplified by PCR amplification using HBx lhRNA-1

F (50-GATCTCGAGGACTCCCCGTCTGTGCCTTCT-30) and HBx
lhRNA-1 R (50-GATCGCGGCCGCACGTGCAGAGGTGAAGCGAAGT

GCACACGG-30) primer combinations. The mutagenic reverse primer
HBx lhRNA-1m R (50-GATCGCGGCCGCACGTGCAGAGGTGAAGC

NANGNGCACACGG-30), which contains three random nucleotides,
was used to generate mutated targets. PCR products were cloned into

the PCR cloning vector as described above and, for the mutated targets,
a mixed plasmid population was used to extract target fragments for

insertion into corresponding XhoI-NotI sites within the Renilla 30

untranslated region of psiCheck2. To generate multiple short targets that

‘‘tile’’ the entire HBx lhRNA 1 target, complementary oligonucleotides

were treated with polynucleotide kinase (Promega, WI), annealed, and
cloned directly into the XhoI-NotI sites of psiCheck2. To facilitate

screening, an EcoRV site was inserted within each annealed dsDNA
insert. The complementary oligonucleotide sequences used were

lhRNA 1a F 50-TCGAGATATCGACTCCCCGTCTGTGCCTTCTGC-30

and lhRNA 1a R 50-GGCCGCAGAAGGCACAGACGGGGAGTCGATA

TC-30; lhRNA 1b F 50-TCGAGATATCCGTCTGTGCCTTCTCATCTG
CCGGAGC-30 and lhRNA 1b R 50-GGCCGCTCCGGCAGATGAGA

AGGCACAGACGGATATC-30; lhRNA 1c F 50-TCGAGATATCTCATCTG
CCGGACCGTGTGCAGC-30 and lhRNA 1c R 50-GGCCGCTGCACACG

GTCCGGCAGATGAGATATC-30; lhRNA 1d F 50-TCGAGATATCCCGTG
TGCACTTCGCTTCACCTCTGGC-30 and lhRNA 1d R 50-GGCCGCCA

GAGGTGAAGCGAAGTGCACACGGGATATC-30; and lhRNA 1e F 50-
TCGAGATATCCTTCGCTTCACCTCTGCACGTGC-30 and lhRNA 1e R

50-GGCCGCACGTGCAGAGGTGAAGCGAAGGATATC-30.

Cell culture. Huh7 cells were maintained in Roswell’s Park Memorial

Institute medium supplemented with 2.5% fetal calf serum, penicillin
(50 IU/ml), and streptomycin (50 mg/ml) (Gibco BRL, Paisley, UK).

HEK293 cells were propagated in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal calf serum, penicillin (50 IU/ml), and

streptomycin (50 mg/ml) (Gibco BRL, UK). On the day before
transfection, 250,000 HEK293 cells or 150,000 Huh7 cells were seeded
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in wells of 2 cm diameter. Transfection was carried out using

Lipofectamine (Invitrogen, Carlsbad, CA) according to the manufac-
turer’s instructions. To determine the effects of lhRNA-encoding

plasmids, Huh7 cells were transfected with a combination of 6 mg of
pCH-9/309127 or psiCheck-HBx target vector and 2mg of long hairpin-

encoding pTZ-derived plasmid or plasmid lacking the lhRNA/shRNA
cassettes. HBsAg secretion into the culture supernatants was measured

using the Monolisa (enzyme-linked immunosorbent assay) immunoas-
say kit (BioRad, Hercules, CA). A plasmid vector that constitutively

produces enhanced green fluorescent protein28 was included in each co-
transfection and equivalent transfection efficiencies were verified by

fluorescence microscopy. The activities of Renilla and firefly luciferase
were measured with the dual luciferase assay kit (Promega, WI) and

using the Veritas dual injection luminometer (Turner BioSystems,
Sunnyvale, CA).

Assessment of in vivo efficacy of lhRNA constructs. The murine
hydrodynamic tail vein injection method was employed according to

previously described methods to determine the effects of hairpin-
encoding plasmid vectors on the expression of HBV genes in vivo.3

Experiments on animals were carried out in accordance with protocols
approved by the University of the Witwatersrand Animal Ethics

Screening Committee. As a positive control for the activation of the
IFN response in vivo, mice were injected with 100mg poly (I:C) (Sigma,

St Louis, MO) and killed 6 h thereafter for gene expression analysis.
After discarding data from injections that were suboptimal each

experimental group comprised 5–8 mice.

Quantitative PCR. To measure the effects of lhRNA sequences on
circulating viral particle equivalents, total DNA was isolated from 50 ml

of the serum of mice on days 3 and 5 after hydrodynamic injection and
viral DNA was determined using quantitative PCR according to

previously described methods3 with EuroHep calibrating standards.42

To measure concentrations of mRNA encoding HBV and IFN response-

related genes, total RNA from HEK293 cells or mouse liver was reverse

transcribed using Sensiscript (Qiagen, GmbH, Germany) and oligo d-T
primer according to the manufacturer’s instructions. HBV mRNA

containing core and surface sequences was amplified using the following
primer combinations: core F 50-ACCACCAAATGCCCCTAT-30, core R

50-TTCTGCGACGCGGCGA-30, surface F 50-GCCAAAATTCGCAGT
CC-30, and surface R 50-ACGGGCAACATACCTT-30. The primer

combinations listed below were used to amplify IFN response-related
mRNA of human (Huh7 and HEK293 cells) origin: IFN-b F (h): 50-
TCCAAATTGCTCTCCTGTTGTGCT-30; IFN-b R (h): 50-CCACAGGA
GCTTCTGACACTGAAAA-30; glyceraldehyde-3-phosphate dehydrogen-

ase (GAPDH) F (h): 50-AGGGGTCATTgATGGCAACAATATCCA-30;
GAPDH R (h): 50-TTTACCAGAGTTAAAAGCAGCCCTGGTG-30; OAS1

F (h): 50-CGAGGGAGCATGAAAACACATTT-30; OAS1 R (h): 50-GCAG
AGTTGCTGGTAGTTTATGAC-30; MxA F (h): 50-CTGGTGCTGAAAC

TGAAGAAAC-30; and MxA R (h): 50-ATCTCAATCTCGTAGTCCTGG
TA-30. To amplify murine OAS1, IFN-b, and GAPDH complementary

DNA, the procedures and primer combinations described by Song
et al.43 were used. All quantitative PCRs were carried out using the

Roche Lightcycler V.2. Controls included water blanks and RNA extracts
that were not subjected to reverse transcription. Taq readymix with

SYBR green (Sigma, St Louis, MO) was used to amplify and detect DNA
during the reaction. Thermal cycling parameters consisted of a hotstart

for 30 s at 951C followed by 50 cycles of 581C for 10 s, 721C for 7 s, and
then 951C for 5 s. Specificity of the PCR products was verified by

melting curve analysis and agarose gel electrophoresis.

Northern blot analysis. HEK293 cells were harvested 4 days after
transfection and total RNA was extracted using Tri Reagent (Sigma, MI)

according to the manufacturer’s instructions. Twenty-five micrograms of

RNA was resolved on urea denaturing 15% polyacrylamide gels and
blotted onto nylon membranes. Decade RNA molecular weight markers

(Ambion, Austin, TX), which were labelled radioactively as described
below, were run alongside the cellular RNA. Blots were hybridized to

three DNA oligonucleotides (probes A, B, and C) to detect products of
hairpin processing. These were complementary to regions spanning the

HBV antisense sequence of the long hairpin. Probes were labelled at their
50 ends with [g-32P]ATP and T4 polynucleotide kinase. After purifica-

tion using standard procedures, they were hybridized to immobilized
RNA, exposed to X-ray film and then stripped and reprobed. An

oligonucleotide sequence complementary to U6 small nuclear RNA was
used as a control to verify equal loading of the cellular RNA. Probe

oligonucleotide sequences were as follows: probe A: 50-GACTCCCC
GTCTGTGCCTTCTCA-30; probe B: 50-TCATCTGCCGGACCGTGTG

CACT-30; probe C: 50-TGCACTTCGCTTCACCTCTGCACTC-30; and
U6 small nuclear RNA probe: 50-TAGTATATGTGCTGCCGAAGCGAG

CA-30.

Statistical analysis. Data are expressed as the mean7SE of the mean.

Statistical difference was considered significant when Po0.05 and was
determined according to Dunnett’s multiple comparison test and

calculated with the GraphPad Prism software package (GraphPad
Software, San Diego, CA).
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Expressed Anti-HBV Primary MicroRNA  
Shuttles Inhibit Viral Replication Efficiently  
In Vitro and In Vivo
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The use of RNA interference (RNAi) to inhibit gene 
expression is potentially applicable in the treatment of 
viral infections such as hepatitis B virus (HBV) persis-
tence. Although efficient HBV gene silencing by short 
hairpin RNA (shRNA) expressed from RNA polymerase 
(Pol) III promoters has been reported, constitutive high-
level transcription may cause harmful side effects. Here, 
we report an approach that allows the use of a Pol II pro-
moter to improve transcription regulation of expressed 
RNAi effecters. Pol II [cytomegalovirus (CMV)] or Pol III 
(U6) promoter cassettes that transcribe anti-HBV primary 
microRNA (pri-miR)-122 and pri-miR-31 shuttles were 
generated. In cultured cells both types of pri-miR-like 
sequences effected knockdown of markers of viral repli-
cation (>80%) and were processed to form intended 21-
nucleotide guides. The concentration of CMV-expressed 
miRs was ~85-fold lower than the U6 shRNA-derived 
guide RNA. When cells were co-transfected with pri-miR 
expression cassettes, attenuation of independent RNAi–
mediated gene silencing was not observed, which is in 
contrast to the action of U6 shRNA expression cassettes. 
The efficacy of the anti-HBV pri-miR shuttles in vivo was 
verified using the murine hydrodynamic injection model. 
Employing Pol II–expressed pri-miR mimics may be use-
ful in the treatment of HBV infection, and potentially also 
for generic application in RNAi-based therapy.

Received 3 September 2007; accepted 25 March 2008; published online 
22 April 2008. doi:10.1038/mt.2008.82

Introduction
Chronic hepatitis B virus (HBV) infection, which continues to be 
endemic to sub-Saharan Africa and parts of Asia, is often com-
plicated by cirrhosis and hepatocellular carcinoma (reviewed in 
ref. 1). Licensed therapies are only partially effective, and develop-
ing improved treatment strategies to prevent the life-threatening 
sequelae of virus persistence remain an important medical 
priority.2 Activation of the RNA interference (RNAi) pathway to 
effect specific HBV gene silencing3–8 has prompted enthusiasm 
for the potential of nucleic acid–based HBV treatment. RNAi 

involves specific and powerful gene silencing through predict-
able complementary interaction between RNAi effecters and their 
targets.9 Naturally, RNAi plays an important role in regulating gene 
expression through the processing of endogenous miRs (reviewed 
in ref. 10), which control several cellular processes including 
organogenesis, apoptosis, cell proliferation, and tumorigenesis. 
miRs are transcribed by Pol II11 as pri-miR hairpin-like structures, 
which are then processed to form precursor miRs (pre-miRs) 
within the nucleus. This step is catalyzed by Drosha (an RNAse 
III enzyme) together with DGCR8, which is its double-stranded 
RNA–binding domain partner. After export from the nucleus, 
pre-miRs are processed by Dicer with associated double-stranded 
RNA–binding domain TAR RNA–binding protein. The result-
ing 19–24-base pair duplex is handed on to the RNA-induced 
silencing complex before selection of one strand as the mature 
miR guide. miRs are usually not entirely complementary to their 
targets, and bind to the 3′ untranslated regions of cognate messen-
ger RNA to induce translational suppression. When base pairing 
between guide and target is perfectly matched, the Ago2 compo-
nent of RNA-induced silencing complex exerts silencing through 
site-specific cleavage of the guide complement.12,13

The specific and powerful gene silencing that may be induced 
by RNAi has prompted investigation of RNAi-based therapeu-
tic modalities to inhibit expression of pathology-causing genes, 
which include those of viruses such as HBV. Typically, exoge-
nous RNAi-inducing sequences have been either synthetic short 
interfering RNA (siRNA) duplexes or expressed short hairpin 
RNA (shRNA) sequences.14 Synthetic siRNAs are similar to Dicer 
cleavage products and cause gene silencing by direct activation of 
RNA-induced silencing complex. shRNAs enter the RNAi path-
way at an earlier stage and act as pre-miR mimics. Constitutively 
active Pol III promoters have been favored for transcribing shR-
NAs because of their ability to generate short, defined transcripts 
with a minimal requirement for regulatory elements within the 
transcript-encoding sequences. Several sites of the HBV genome 
have been targeted with synthetic and expressed RNA sequences, 
and impressive knockdown of markers of viral replication has 
been demonstrated.3–8 However, a recent finding that U6 Pol 
III–expressed anti-HBV shRNAs cause serious toxicity in vivo by 
saturating the endogenous miR pathway, is an important concern 
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while considering the therapeutic application of expressed RNAi 
sequences.15 Tissue-specific and inducible Pol II promoters may 
therefore be preferable to Pol III regulatory elements, because 
they provide a better means of transcription control and dose 
regulation of expressed RNAi effecters. Some reports have dem-
onstrated efficient silencing by Pol II RNAi expression cassettes, 
but this approach has been hampered by unpredictable and 
variable silencing efficacy of conventional hairpin sequences.16 
Sequences upstream and downstream of the hairpins, which 
are incorporated into Pol II–derived transcripts, may interfere 
with processing of the silencers. In order to improve transcrip-
tion control of potentially therapeutic sequences, we have taken 
advantage of the natural Pol II–mediated transcriptional control 
of cellular miRs. Anti-HBV sequences were incorporated into 
expression cassettes that encode mimics of pri-miR-31 (refs. 
17,18) or pri-miR-122.19 Potent silencing of markers of viral rep-
lication was achieved in vitro and in vivo when anti-HBV pri-
miR shuttle expression cassettes were placed under the control 
of Pol II or Pol III promoters.

Results
Design of anti-HBV pri-miR–expressing plasmids
Pri-miR expression cassettes were designed by replacing guide 
and complementary sequences of natural miR-31 (refs. 17,18) 
and miR-122 (ref. 19) with those of an effective anti-HBV shRNA 
(U6 shRNA 5) described earlier.3 The wild-type sequences of the 
miRs were maintained as far as possible, and computer-aided 
prediction20 of the secondary structure of the transcripts did 
not differ significantly from that of their respective wild-type 
miRs (Figure 1a). The final cassettes contained 51 nucleotides 
of wild-type sequence flanking either end of the pre-miR17,19 that 
was located downstream of a U6 promoter or within an exonic 
sequence of a cytomegalovirus (CMV) immediate early promoter 
enhancer expression cassette (Figure 1b). Unlike typical cellular 
miRs, the intended guide sequence was perfectly complementary 
to its HBV target, and was therefore expected to effect cleavage of 
all HBV transcripts.

miR-mediated inhibition of HBV surface antigen 
secretion from transfected cells
Initially, in order to assess efficacy against HBV in vitro, Huh7 cells 
were co-transfected with miR-31/5- and miR-122/5-expressing 
vectors together with the pCH-9/3091 HBV replication compe-
tent target plasmid21 (Figure 2a). Controls included a U6 shRNA-
encoding plasmid (U6 shRNA 5), which we have previously 
shown to be effective against HBV,3 and also a vector in which the 
CMV promoter transcribed the shRNA 5 sequence. Compared 
with mock-treated cells, knockdown of 95–98% of viral antigen 
secretion was achieved by U6 shRNA 5-, U6 miR-31/5-, U6 miR-
122/5-, CMV miR-31/5-, and CMV miR-122/5-expressing vectors 
(Figure 2b). CMV miR-122/5 was slightly less effective than the 
other miR vectors (85–90% knockdown). The vector encoding 
shRNA 5 derived from the CMV promoter caused the least 
efficient silencing (~60%).

miR-mediated inhibition of Firefly luciferase  
activity in transfected cells
The HBsAg secretion data were corroborated using a reporter 
gene plasmid (pCH Firefly Luc) to measure knockdown efficiency 
in situ (Figure 2c). In pCH Firefly Luc, the preS2/S sequence of 
pCH-9/3091 (ref. 21) was replaced with the Firefly luciferase open 
reading frame (ORF) with the targeted HBx ORF remaining intact 
(Figure 2a). Co-transfection of pCH Firefly Luc with miR-encoding 
vectors allows for the convenient quantitative measurement of 
anti-HBV efficacy in situ by determining luciferase reporter gene 
activity. Analysis showed that the Firefly luciferase activity was 
diminished significantly by U6 shRNA 5-, U6 miR-31/5-, U6 miR-
122/5-, CMV miR-31/5-, and CMV miR-122/5–containing vectors. 
Each of these plasmids caused knockdown of ~75% as compared 
with controls (Figure 2c). Again, the CMV shRNA 5 vector did not 
inhibit Firefly luciferase activity significantly. Taken together, these 
data indicate that the incorporation of an anti-HBV sequence into 
miR-like structures of miR-31 or miR-122 enables expression of 
the silencing sequence from a Pol II or Pol III promoter without 
compromising silencing efficacy.

Figure 1  Pri-miR-31/5 and pri-miR-122/5 anti-HBV sequences. (a) Predicted structure and sequences of pri-miR-31 and pri-miR-122 (available at 
http://microrna.sanger.ac.uk/) with their anti-HBV derivatives, pri-miR-31/5 and pri-miR-122/5. The sequence of the putative pre-miRs generated 
after Drosha/DGCR8 processing is indicated in color (purple and red) and mature processed guide sequences are indicated in red only. (b) Schematic 
illustration (not to scale) of anti-HBV miR DNA expression cassettes showing putative processing of pri-miR and pre-miR to generate mature miR. The 
arrangement of the Pol II [cytomegalovirus (CMV)] or Pol III (U6) promoter, pri-miR-31/5- or pri-miR-122/5–encoding sequences, together with the 
transcription termination sequences are indicated. HBV, hepatitis B virus.
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Detection of processed miR-31/5 and  
miR-122/5 sequences
Northern blot hybridization analysis was carried out to detect 
processed products of the anti-HBV miR expression cassettes. 
RNA was extracted from transfected cells and Figure 3 shows the 
signals obtained after hybridization to a probe that was comple-
mentary to the putative mature processed miR-31/5, miR-122/5, 
or shRNA 5 guides. The dominant processed product was detect-
able as a band of ~21 nucleotides in size, which is a length similar 
to that of naturally occurring mature miR-31 and miR-122 prod-
ucts.17,19 Interestingly, bands corresponding to RNA of 20 and 22 
nucleotides in length were also detected in cells transfected with 
CMV miR-31/5 and U6 miR-31/5 (Figure 3a), which implies that 
processing of anti-HBV guide strands in the context of the miR-
31 shuttle may be heterogenous. Larger-molecular-weight miR/
shRNA intermediates were detected in RNA extracted from cells 
transfected with U6 promoter–containing vectors but not from 
cells expressing the CMV miR-31/5 or CMV miR-122/5 cassettes. 
This suggests that complete processing of the CMV Pol II tran-
scripts occurs more efficiently than that of the Pol III–expressed 
RNA. When compared with the U6 HBV shRNA 5–derived 
guide, which was included as a positive control of known high 
level expression, the mature miR-31 and miR-122 sequences were 
detected at up to 85-fold lower concentration. Interestingly, intra-
cellular concentrations of miR-derived guides from U6 cassettes 

were lower than for U6 shRNA 5. This could be the result of 
lower Pol III transcription efficiency of the longer miR-122/5 
and miR-31/5 sequences. The detected guide strand signal was 
specific, as no bands were detectable when the probe was hybrid-
ized to RNA that had been extracted from cells transfected with 
similar pri-miR expression vectors that target different HBV sites 
(Figure 3b and c).

Assessment of off-target effects of  
miR-expression cassettes
The presence of duplex RNA within cells may lead to activation 
of a type 1 interferon (IFN) response, resultant programmed cell 
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Figure 2  HBsAg secretion and reporter gene expression in Huh7 
cells co-transfected with miR-encoding plasmids. (a) Organization of 
the hepatitis B virus (HBV) genome with open reading frames (ORFs) and 
sites within the pCH-9/3091 target vector. Four parallel arrows indicate the 
HBV transcripts which have common 3′-ends and include the miR-31/5, 
miR-122/5, and U6 short hairpin RNA 5 (shRNA 5) targets. The structure 
of the pCH-9/3091–derived pCH Firefly Luc target vector containing the 
Firefly luciferase ORF (F-luciferase) is indicated below. (b) HBsAg secretion 
from Huh7 cells co-transfected with plasmids encoding the indicated 
miR or shRNA cassettes, together with the HBV target plasmid. HBsAg 
measurements from quantitative enzyme-linked immunosorbent assay 
are given as a normalized mean relative to the corresponding measure-
ments from mock-treated cells. The results are from three independent 
transfections, and the bars indicate the SEM. (c) Firefly luciferase reporter 
gene activity in transfected Huh7 cells. The measurements are given as 
a normalized ratio (±SEM) of Firefly activity to constitutively expressed 
Renilla luciferase activity, and were determined from three independent 
experiments. CMV, cytomegalovirus; OD, optical density.

Figure 3 N orthern blot hybridization analysis of expressed miR shut-
tle sequences that were extracted from HEK293 cells after transfec-
tion with plasmids encoding the indicated miR or short hairpin RNA 
(shRNA) cassettes. Hybridization was to a radiolabeled probe comple-
mentary to the putative mature anti-HBV guide 5 strand. Representative 
hybridization signals to detect (a) precursors of mature miRs and compar-
ative concentrations of (b) mature miR-31/5 or (c) miR-122/5 sequences 
are shown. Blots were stripped and rehybridized to a probe complemen-
tary to endogenous U6 shRNA in order to confirm equal loading of cellular 
RNA (lower panels of a, b, and c). CMV, cytomegalovirus; HBV, hepatitis 
B virus.
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death, and nonspecific gene silencing (reviewed in ref. 22). In 
order to assess activation of the IFN response, the ratios of cellular 
IFN-β to GAPDH messenger RNA concentrations were measured 
in transfected cells using a sensitive quantitative real-time PCR 
assay (Figure 4a). IFN-β  messenger RNA was not significantly 
induced in any of the cell groups that had been transfected with 
miR-expressing vectors, while treatment with poly (I:C) (positive 
control) resulted in activation of IFN-β  expression. IFN-β activa-
tion was not tested in Huh7 cells, because we (data not shown) 
and others23 have observed that the IFN response is attenuated 
in this liver-derived line. In order to control for transfection effi-
ciency, a plasmid expressing enhanced green fluorescent protein 
(eGFP) was also included in the assessment of IFN induction. No 
decrease in eGFP expression was observed in the presence of the 
miR-expressing vectors (data not shown), which further supports 
the idea that these shuttles are not toxic to cells.

The effect of miR-expressing vectors on independent RNAi–
mediated gene silencing was also assessed. To determine this, a dual 
luciferase reporter plasmid (psiCHECK-8T) containing an inde-
pendent HBV miR-31/8 target sequence downstream of the Renilla 
luciferase ORF was transfected together with pCMV miR-31/8 and 
each of the shRNA 5-, miR-31/5-, or miR-122/5-expressing vectors 
(Figure 4b). In accordance with previous observations that over-
expression of shRNA from U6 Pol III promoter causes disruption 
of the endogenous miR pathway,15 the silencing of psiCHECK-
8T target by pCMV miR-31/8 was diminished in the presence of 
pU6 HBV shRNA 5. This effect was, however, not observed when 
miR-122/5- or miR-31/5–expressing plasmids were co-transfected. 
These consequences are likely to be dependent on RNAi effecter 
concentration, and this is in keeping with our finding that the 
intracellular pri-miR-derived guide sequences are present at lower 
concentrations than U6 shRNA 5 guides (Figure 3a). In order to 
corroborate this, knockdown was measured using decreasing con-
centrations of co-transfected pU6 HBV shRNA 5 with constant 
amounts of CMV miR-31/8 and psiCHECK-8T target (Figure 4c). 
Efficient miR-31/8-mediated knockdown was achieved at low 
concentrations of pU6 HBV shRNA 5. However, when the amount 
of pU6 HBV shRNA 5 was increased, the efficacy against HBV 
target 8 was diminished. Co-transfecting a similar range of pU6 
HBV shRNA 5 concentrations with pCH-9/3091 HBV replica-
tion competent plasmid confirmed that potent silencing of HBsAg 
secretion is achieved by the RNAi effecter (Figure 4d). These data 
further support the notion that disruption by pU6 HBV shRNA 5 
of independent pCMV miR-31/8 silencing is influenced by the 
concentration of expressed shRNA 5.

Inhibition of markers of HBV replication in vivo
Concentrations of HBsAg were measured in the sera of mice that 
had been subjected to hydrodynamic tail-vein injection (HDI).24 
Each of the shRNA 5-, miR-31/5-, and miR-122/5-containing 
plasmids knocked down the serum viral antigen concentra-
tion by at least 95% (Figure 5a). This was observed when mea-
surements were taken at both 3 and 5 days after HDI. Of the 
three plasmid vectors, pU6 shRNA 5 was the most efficient, and 
HBsAg was not detectable in the sera of mice injected with this 
plasmid. The number of circulating viral particle equivalents in 
the same mice was also measured using quantitative real-time 

PCR at days 3 and 5 (Figure 5b). The results corroborate the 
HBsAg determinations, in that pU6 shRNA 5, pCMV miR-31/5, 
and pCMV miR-122/5, each decreased the number of circulating 
viral particle equivalents by at least 95%. HBV DNA replication 
intermediates were also measured in the liver tissues of represen-
tative animals that had been subjected to HDI experimentation 
(Figure 5c). HBV duplex linear and relaxed circular DNA were 
detectable only in the mock-treated animals, but not in any of 
the mice that had been co-injected with CMV miR-31/5, CMV 
miR-122/5, or U6 shRNA 5 plasmids. The size of the HBV DNA 
bands from mock-treated mice did not correspond to any of the 

Figure 4  Assessment of off-target effects of miR-expression cassettes. 
(a) Interferon (IFN) response was assessed in HEK293 cells that were trans-
fected with plasmids encoding the indicated miR-encoding cassettes or 
with poly (I:C). RNA was extracted from the cells 24 hours later and sub-
jected to quantitative real-time PCR to determine concentrations of IFN-β 
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) messenger 
RNA (mRNA). The mean values (±SEM) of the normalized ratios of IFN-β to 
GAPDH mRNA concentrations are indicated from three independent experi-
ments. (b) Attenuation of independent RNA interference–mediated silenc-
ing was assessed by co-transfection of Huh7 cells with plasmids expressing 
the indicated short hairpin RNA (shRNA) or miR cassettes, together with 
pCMV miR-31/8 and a psiCHECK-8T dual luciferase vector. The reporter 
plasmid contained the independent hepatitis B virus (HBV) miR-31/8 cog-
nate sequence downstream of the Renilla luciferase open reading frame. 
Measurement of Renilla:Firefly luciferase activity was used for assessing the 
effects of shRNA 5-, miR-31/5-, or miR-122/5–expressing plasmids on miR-
31/8 silencing of its target. (c) Effect of the amounts of pU6 HBV shRNA 5 
used for transfection on attenuation of cytomegalovirus (CMV) miR-31/8 
silencing. The indicated mass ratios of pCMV miR-31/8 to psiCHECK-8T to 
pU6 HBV shRNA 5 vectors were co-transfected. Again, measurements of 
Renilla:Firefly luciferase activities (±SEM) were used for assessing the effects 
of decreasing amounts of pU6 HBV shRNA 5 on miR-31/8 silencing of its 
target. (d) Inhibition of HBsAg secretion from Huh7 cells that were trans-
fected with decreasing amounts of pU6 HBV shRNA 5. The indicated mass 
ratios of pU6 HBV shRNA 5 to HBV replication competent pCH-9/3091 
vectors were used for transfection and the HBsAg concentrations in the 
culture supernatants were determined 48 hours thereafter. Normalized 
mean relative optical density (OD) readings (±SEM) from enzyme-linked 
immunosorbent assays are represented.
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pCH-9/3091 bands, thereby signifying that the detected double-
stranded and relaxed circular HBV DNA were not the same as 
input plasmid DNA.

For the purpose of assessing possible disruption of indepen-
dent RNAi-mediated silencing and toxicity in vivo caused to 
hepatocytes by pri-miR shuttles, mice were also injected with the 
psiCHECK-8T dual luciferase reporter plasmid and various anti-
HBV expression cassettes (Figure 5d). Firefly and Renilla lucifer-
ase activities in liver homogenates were measured 3 days after HDI. 
Selective and efficient silencing of Renilla luciferase activity was 
achieved with pCMV miR-31/8. This knockdown was not atten-
uated by co-injection of 20-fold excess amount of U6 shRNA 5, 
CMV miR-122/5, or CMV miR-31/5. This indicates that, under the 
experimental conditions described here, independent silencing was 
unaffected by U6 shRNA or miR shuttle expression. When using 
the HDI model, direct assessment of hepatotoxicity caused by miR 
mimics is complicated by the damage to liver cells caused by the 

release of enzyme markers that is inherent to the injection proce-
dure itself. As a surrogate indicator to assess damage to liver cells 
caused by pri-miR shuttles, untargeted and constitutively active 
psiCHECK-8T-derived Firefly luciferase activity was independently 
evaluated in the groups of mice. When compared with the animals 
receiving no RNAi effecter, the mice that had received the miR shut-
tles showed undiminished Firefly luciferase activity in liver homo
genates (data not shown). Collectively, these data show that miR 
mimics generated from CMV miR-31/5 and CMV miR-122/5 are 
specific silencers of HBV replication in vivo with negligible effects 
on independent RNAi-mediated silencing. Moreover, the efficacy 
of the miR-expression cassettes is comparable with those of the U6 
shRNA 5 sequences.

discussion
Although recent studies have demonstrated efficient silencing of 
HBV replication by activating the RNAi pathway,3–8 some hurdles 
remain before the goal of therapeutic application of this approach 
is realized. Particularly important is limiting of unintended 
effects, which include off-target silencing of cellular RNA, disrup-
tion of the endogenous miR pathway and immunostimulation. 
Both synthetic and expressed sequences are being widely used 
to achieve RNAi-mediated HBV gene knockdown.14 Unlike with 
DNA expression cassettes, dose regulation and delivery is easier 
to achieve with synthetic siRNAs. Nonetheless, expressed RNAi 
sequences have significant advantages, which include better sta-
bility of DNA templates, ability to achieve sustained silencing by 
continuously transcribed RNAi effecters, as well as compatibility 
of expression cassettes with incorporation into both recombinant 
viral and nonviral vectors. These properties render expression 
cassettes well suited for the treatment of chronic diseases such as 
persistent HBV infection. Constitutively active Pol III promoters 
have traditionally been used for expressing RNAi effecters. 
However, these regulatory elements have been reported to have 
serious toxic effects in vivo, which result from shRNA overexpres-
sion and saturation of the endogenous miR pathway.15 Against this 
background, the use of Pol II promoters to express RNAi effecters 
offers the advantage of being able to refine transcription control 
and thereby limit unwanted effects. This study shows that potent 
knockdown of markers of HBV replication is attained in vitro and 
in vivo when an antiviral guide is incorporated into exonic pri-miR 
mimics that are transcribed from a Pol II promoter. miR-122 and 
miR-31 backbones were selected because these sequences were 
predicted to favor intrahepatic processing of adapted anti-HBV 
shuttles. miR-122 is liver-specific19 and pri-miR-31 is efficiently 
processed by Drosha.17 The demonstration that the anti-HBV 
miRs do generate an intended guide strand of ~21 nucleotides 
confirms that these sequences function as pri-miR mimics and are 
processed in a manner similar to those of natural pri-miRs. Potent 
silencing of markers of HBV replication was observed, with no 
evidence of toxicity or disruption of independent miR-mediated 
silencing. Also, data from our investigations have shown that anti-
HBV pri-miR sequences that target different sites within the virus 
are capable of efficient silencing (Figures 4b and 5d). These find-
ings suggest that the design of Pol II pri-miR shuttles described 
here is potentially valuable for treating HBV infection and may be 
useful for generic application in RNAi-based therapy.

Figure 5 E ffects of miR sequences on markers of hepatitis B virus (HBV) 
replication in vivo using the hydrodynamic tail-vein injection (HDI) 
model of HBV replication. (a) Serum HBsAg concentrations and (b) cir-
culating viral particle equivalents were determined at days 3 and 5 after 
HDI of mice with pCH-9/3091 HBV target and plasmids encoding cyto-
megalovirus (CMV) miR-31/5, CMV miR-122/5, or U6 short hairpin RNA 
5 (shRNA 5) sequences. The results are expressed as mean values (±SEM) 
from at least four mice. (c) Southern blot analysis of HBV DNA replica-
tion intermediates extracted from two representative animals from each 
of the groups of mice that had been subjected to the HDI procedure 
(upper panel). HBV duplex linear (DL) and relaxed circular (RC) replica-
tion intermediates were detectable only in the mock-treated animals. 
pCH-9/3091 was loaded as a control to verify that HBV replication 
intermediates did not correspond to input DNA. The lower panel is a 
representation of the separated extracted DNA after ethidium bromide 
staining and before Southern transfer and hybridization. (d) In order to 
assess the effects of miR shuttles on independent silencing in vivo, mice 
were subjected to HDI with the psiCHECK-8T vector, together with the 
indicated RNA interference expression cassettes. Where relevant, the 
ratios of the CMV miR-31/5, CMV miR-122/5, and U6 shRNA 5 to CMV  
miR-31/8 vectors are indicated in parentheses. The normalized mean 
values of Renilla:Firefly luciferase activities (±SEM) were determined in liver 
homogenates 3 days after plasmid injection. mRNA, messenger RNA; OD, 
optical density.
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Significant progress has been made in understanding the 
mechanisms of pri-miR processing and we aimed to utilize these 
recent insights to ensure optimal design of anti-HBV RNAi expres-
sion cassettes. Zeng et al.17,25 have shown that Drosha substrate 
preference is for RNA hairpins that bear long terminal loops, and 
that pre-miRs are generated by cleavage that occurs two helical 
turns from the junction of the pri-miR loop and stem sequences. 
By contrast, Han et al.26 reported that the terminal loop sequence 
is not essential. According to this alternative mechanism, the 
initial binding of DGCR8 to pri-miRs requires single-stranded 
hairpin-flanking regions. Thereafter, Drosha is recruited to cleave 
the pri-miR ~11 nucleotides from the stem–single-stranded RNA 
junction. The reason for the apparent differences between these 
proposed pri-miR processing mechanisms is unclear, but it is pos-
sible that both operate naturally. The anti-HBV pri-miR shuttles 
that we used here accommodate Drosha/DGCR8 processing by 
either of the mechanisms. Although other studies have reported 
silencing by pre-miR or shRNAs expressed from Pol II promoter 
elements,27–36 these cassettes are of variable and sometimes poor 
silencing efficiency, and therefore this approach has not gained 
widespread acceptance. Importantly, if flanking single-stranded 
RNA sequences are of importance in the nuclear processing of 
pri-miR,26 then it is likely that pre-miR and shRNA expressions 
from Pol II promoters will not be as efficient as those from the 
pri-miR mimics described here.

Recently, in an attempt to improve efficacy and overcome 
problems of viral escape mutation, long hairpin RNA–expressing 
sequences have been used for silencing HBV.37 These cassettes 
were intended to be capable of generating different siRNAs to 
target independent HBV sites simultaneously. However, the use 
of long hairpin RNA expression cassettes seems to be limited by 
intracellular Dicer processivity and difficulties associated with 
controlling guide strand bias of multiple siRNAs. In addition to 
their production from Pol II promoters, another interesting prop-
erty of miRs is that they are often naturally derived from poly-
cistronic precursor sequences.10 This is a characteristic that could 
be adapted for the formation of multimeric therapeutic silencing 
sequences,36 which would be useful for overcoming viral escape. 
Current investigations in our laboratory are aimed at assessing 
the use of liver-specific Pol II promoters and production of multi-
meric pri-miR shuttles that target different HBV sequences.

MATERIALS AND METHODS
Anti-HBV miR sequences. Initially, DNA encoding pre-miR-31 and pre-
miR-122 sequences with a guide targeting HBV were generated by PCR-
based primer extension of partially complementary pre-miR-31/5 and 
pre-miR-122/5 forward and reverse primers. The anti-HBV guide of miR-
31/5 targets HBV coordinates 1,575–1,595, and miR-122/5 targets HBV 
coordinates 1,575–1,597.

The oligonucleotide sequences were pre-miR-31/5 forward: 5′-GTAA 
C T C G G A A C T G G A G A G G G G T G A A G C G A A G T G C A C A C 
GGGTTGAACTGGGAACGACG-3′, pre-miR-31/5 reverse: 5′-CTGCT 
G TC AG AC AG G A A AG C C G TG A ATC G ATG TG C AC AC G TC 
GTTCCCAGTTCAACCCTG-3′, pre-miR-122/5 forward: 5′-GAGTTT 
C C T TA G C A G A G C T G G A G G T G A A G C G A A G T G C A C A C 
GGGTCTAAACTAACGTGTGCA-3′ and pre-miR-122/5 reverse: 5′-GG 
AT T G C C TAG C AG TAG C TAG G T G T G A AG C TA AG T G C AC 
ACGTTAGTTTAGACCCGTGTGCA-3′. The pre-miR-31/5 and pre-miR- 
122/5 products were purified and used as the template for a second round  

of PCR amplification with forward and reverse pri-miR primers, respec
tively. The primer sequences were pri-miR-31 forward: 5′-GCTAGCCA 
TAACAACGAAGAGGGATGGTATTGCTCCTGTAACTCGGAACTG 
GAGAGG-3′, pri-miR-31 reverse: 5′-AAAAAAACTAGTAAGACAAG 
GAGGAACAGGACGGAGGTAGCCAAGCTGCTGTCAGACAG 
GAAGC-3′; pri-miR-122 forward: 5′-GACTGCTAGCTGGAGGTGAAG 
TTAACACCTTCGTGGCTACAGAGTTTCCTTAGCAGAGCTG-3′ and 
pri-miR-122 reverse: 5′-GATCACTAGTAAAAAAGCAAACGATGCCA 
AGACATTTATCGAGGGAAGGATTGCCTAGCAGTAGCTA-3′. The U6 
promoter was also amplified using standard PCR conditions from a U6 
promoter–containing plasmid.38 The primer sequences were U6 forward: 5′-
GATCAGATCTGGTCGGGCAGGAAGAGGGCC-3′ and U6 reverse: 5′-
GCTAGCGGTGTTTCGTCCTTTCCACA-3′. DNA fragments encoding 
pri-miR-31/5, pri-miR-122/5, or the U6 promoter were each ligated into 
pTZ57R/T (InsT/Aclone PCR Cloning Kit; Fermentas, Hanover, MD) to 
generate pTZ pri-miR-31/5, pTZ pri-miR-122/5, and pTZ-U6 respectively. 
For generating Pol III–driven pri-miR vectors, pri-miR-31/5 and pri- 
miR-122/5 fragments were cloned downstream of the U6 promoter in 
pTZ-U6. Pri-miR-31/5 was excised from pTZ pri-miR-31/5 by digesting 
with NheI and ScaI, and pri-miR-122/5 was removed from pTZ pri- 
miR-122/5 after NheI and EcoRI restriction. These fragments were inserted 
into SpeI and ScaI, or SpeI and EcoRI sites of pTZ-U6 to produce pU6 pri-
miR-31/5 and pU6 pri-miR-122/5, respectively. The method of generation 
of the pU6 shRNA 5 vector has been described earlier.3 Pol II–driven pri-
miR vectors were generated by inserting pri-miR-31/5, pri-miR-122/5, 
and shRNA 5 sequences downstream of the CMV of pCI-neo (Promega, 
Madison, WI). pri-miR-31/5 was excised from pTZ pri-miR-31/5 with SalI 
and NheI and ligated to complementary overhangs of pCI-neo (which had 
been digested with XhoI and XbaI) to form pCMV pri-miR-31/5. pCMV 
pri-miR-122/5 was generated by inserting a NheI and XbaI restriction 
fragment from pTZ pri-miR-122/5 into a pCI-neo backbone that had 
been digested with the same restriction enzymes. pTZ pri-miR-31/8 (HBV 
target 1,678–1,700) and pCMV pri-miR-31/8 (HBV target 1,678–1,700) 
expression cassettes targeting different sites within the HBx ORF were 
generated using similar procedures.

Target plasmids. pCH-9/3091 has been described earlier.21 The pCH Firefly 
Luc vector was prepared by replacing the preS2/S ORF of pCH-9/3091 with 
Firefly luciferase–encoding DNA. A Firefly luciferase sequence was ampli-
fied from pGL4 (Promega, Madison, WI) using PCR. The forward primer 
comprised sequences complementary to HBV sequences from coordinates 
129–159 (including a naturally occurring XhoI restriction site) and 5′ Firefly 
luciferase sequences. In this primer, the position of the Firefly luciferase ini-
tiation codon is equivalent to that of the translation initiation codon of the 
middle HBs protein. The reverse primer included sequences complementary 
to the 3′-end of the Firefly luciferase ORF, as well as a SpeI restriction site. 
The PCR primer sequences were Firefly Luc forward: 5′-ACTGCTCGAGG
ATTGGGGACCCTGCGCTGAACATGGAAGACGCCAAAAAC-3′ and 
Firefly Luc reverse: 5′-ACTGACTAGTTTACACGGCGATCTTTCC-3′.  
The PCR product was cloned into pTZ57R/T to generate pTZ Firefly Luc. 
The Firefly luciferase sequence was then excised from pTZ Firefly Luc with 
XhoI and SpeI and inserted into the XhoI and SpeI sites of pCH-9/3091 to 
generate pCH Firefly Luc. For generating psiCHECK-8T, containing the 
miR 8 target, primer 8T forward 5′-CAATGTCAACGACCGACCT-3′ 
and primer 8T reverse 5′-ACTAGTGCCTCAAGGTCGGT-3′ were used 
for amplifying nucleotides 1,678–1,702 of the HBV genome and for intro-
ducing a SpeI site at the 3′-end of the amplicon. The purified fragment was 
ligated into the pTZ57R/T PCR cloning vector, and the insert was removed 
with SalI and SpeI and then ligated into the XhoI and SpeI sites of the psi-
CHECK 2.2 derivative of psiCHECK 2 (Promega, WI). The resulting plas-
mid, psiCHECK-8T, contained the HBV target site downstream of the 
Renilla luciferase ORF. The psiCHECK 2.2 plasmid, a gift from Dr. Marc 
Weinberg, contained additional SacI, EcoRI, SmaI, SpeI, and SalI sites 
between the NotI and XhoI sites of psiCHECK 2. All the plasmid sequences 
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were verified in accordance with standard dideoxy chain termination 
protocols (Inqaba Biotechnology, Pretoria, South Africa).

Cell culture. Culture and transfection of Huh7 and HEK293 lines were car-
ried out as described earlier.3 For determining the effects of miR-31/5- and  
miR-122/5–encoding plasmids, cells were transfected with a combination 
of 80 ng of pCH-9/3091 (ref. 21) or pCH Firefly Luc target vector and 
800 ng of shRNA 5, miR-31/5- and miR-122/5–derived plasmids, or vector 
lacking the miR cassettes. For assessing the effects of miR-31/5- and miR-
122/5–expressing plasmids on independent RNAi-mediated silencing, 
cells were seeded into 24-well dishes at a density of 35–40% and transfected 
with 80 ng of psiCHECK-8T, 40 ng of pCMV miR-31/8, and 780 ng of 
shRNA 5 or miR 5 expression plasmids. In the case of transfections with 
the pCH Firefly Luc target vector, a plasmid that constitutively produces 
Renilla luciferase under control of the CMV promoter (phRL-CMV; 
Promega, Madison, WI) was included in order to control for transfection 
efficiency. The effects of the plasmid dose of pU6 shRNA 5 on indepen-
dent silencing by pCMV miR-31/8 were determined by transfecting with 
pU6 shRNA 5 in amounts ranging from 0 to 800 ng. Similarly, for deter-
mining the silencing potency of pU6 shRNA 5 against pCH-9/3091, pU6 
shRNA 5 was used for transfection in amounts ranging from 0 to 800 ng. 
A constant amount of 80 ng of psiCHECK-8T and pCH-9/3091 were used 
for transfection in each well. Backbone plasmid was included in each case 
so as to ensure that equal amounts of total plasmid DNA were used for 
transfection. The measurement of IFN response, HBsAg, and the activi-
ties of Renilla and Firefly luciferase were determined as described earlier.37 
A plasmid vector that constitutively produces eGFP39 was also included 
in each co-transfection so as to verify equivalent transfection efficien-
cies using fluorescence microscopy. Northern blot analysis of total RNA 
extracted 3 days after transfection was carried out as described earlier.37 
The miR-31/5, miR-122/5, and shRNA 5 guide probe oligonucleotide was 
5′-GACTCCCCGTCTGTGCCTTCTCA-3′.

Testing of anti-HBV efficacy of miR sequences in vivo using the HDI 
model of HBV replication. The murine HDI method24,37 was employed for 
determining the in vivo effects of miR-expressing vectors on the markers of 
HBV replication and reporter gene expression. All experiments on animals 
were carried out in accordance with protocols approved by the University 
of the Witwatersrand Animal Ethics Screening Committee. For the purpose 
of assessing the effects on viral replication, the injected solutions included a 
combination of three plasmid vectors: 5 µg target DNA (pCH-9/3091); 5 µg 
anti-HBV sequence (pU6 shRNA 5, pCMV miR-31/5, or pCMV miR-122/5 
plasmid) or mock (pTZ backbone); and 5 µg pCI-neo eGFP (a control for 
hepatic DNA delivery, constitutively expressing the eGFP marker gene39). 
Serum HBsAg concentration and circulating viral particle equivalents were 
measured as described.3 The mice were killed at day 5 after HDI, and the 
livers were removed. Total DNA was extracted40 and subjected to agarose 
gel electrophoresis without restriction digestion before being processed for 
Southern blot analysis using Rapid-hyb solution (Amersham, Piscataway, 
NJ). pCH-9/3091 (ref. 21) was run alongside as a control for input DNA. 
For generating a probe, HBx DNA was amplified with HBx forward (5′-
GATCAAGCTTTCGCCAACTTACAAGGCCTTT-3′) and HBx reverse 
(5′-GATCTCTAGAACAGTAGCTCCAAATTCTTTA-3′) primers. The 
PCR products were purified and used as the template for random-primed 
labeling with the HexaLabel DNA Labeling kit (Fermentas, WI), in accor-
dance with the manufacturer’s instructions. In order to determine the 
effects of miR on reporter gene activity in vivo, mice were administered 
0.5 µg reporter target DNA (psiCHECK-8T), 5 µg pCH-9/3091, combina-
tions of anti-HBV plasmids (pCMV miR-31/8, pU6 shRNA 5, pCMV miR-
31/5, or pCMV miR-122/5), or mock (pCI-neo backbone). The mice were 
killed 3 days after HDI, and their livers were removed and homogenized 
in phosphate-buffered saline; thereafter, the activities of Renilla and Firefly 
luciferase were determined as described earlier.37

Statistical analysis. Analysis of statistically significant differences was 
carried out using the Student’s paired two-tailed t-test.
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ABSTRACT

Expressed polycistronic microRNA (miR) cassettes
have useful properties that can be utilized for
RNA interference (RNAi)-based gene silencing.
To advance their application we generated modular
trimeric anti-hepatitis B virus (HBV) Pol II cassettes
encoding primary (pri)-miR-31-derived shuttles that
target three different viral genome sites. A panel of
six expression cassettes, comprising each of the
possible ordering combinations of the pri-miR-31
shuttles, was initially tested. Effective silencing of
individual target sequences was achieved in trans-
fected cells and transcribed pri-miR trimers gener-
ated intended guide strands. There was, however,
variation in processing and silencing by each of
the shuttles. In some cases the monomers’ position
within the trimers influenced processing and this
correlated with target silencing. Compromised
efficacy could be compensated by substituting the
pri-miR-31 backbone with a pri-miR-30a scaffold.
Inhibition of HBV replication was achieved in vivo,
and in cell culture without disruption of endogenous
miR function or induction of the interferon response.
A mutant HBV target sequence, with changes in
one of the guide cognates, was also silenced by
the trimeric cassettes. The modular nature of the
cassettes together with compatibility with expres-
sion from Pol II promoters should be advantageous
for gene silencing applications requiring simultane-
ous targeting of different sites.

INTRODUCTION

The powerful and specific gene silencing that may be
achieved by harnessing the RNA interference (RNAi)
pathway is potentially useful for developing new thera-
pies required to treat a variety of diseases. In addition,

application of RNAi has utility for the study of gene
function. Both synthetic and expressed sequences are
being developed to activate RNAi (1). Exogenous
expression cassettes achieve this by transcribing mimics
of intermediates of the microRNA (miR) processing
pathway (2). Short hairpin RNAs (shRNAs), which
are typically expressed from Pol III promoters, simulate
precursor miR (pre-miR) products of Drosha/DGCR8
processing. Primary miR (pri-miR) shuttles are analo-
gues of nascent miR transcripts and their processing is
compatible with expression from Pol II transcription
regulatory elements (3–7). This important property pro-
vides the means of improving control of production of
RNAi activators and thereby limiting unwanted off
target effects caused by saturating the endogenous miR
pathway (8). Pri-miR-like shuttles are also thought to
effect superior silencing by simulating natural miR pro-
cessing more closely. Processing of pri-miR shuttles by
Drosha/DGCR8, which is bypassed by shRNAs, may
improve entry into the RNAi pathway (4). pri-miR-30
was initially the most widely utilized (9–11) backbone,
but other pri-miR shuttles such as miR-155 (6) miR-31
and miR-122 (3) have since been used successfully to
generate exogenous RNAi effecters. The polycistronic
arrangement of some naturally occurring miR clusters
is an additional property that may be exploited to gen-
erate combinatorial multitargeting RNAi expression cas-
settes (4,6,7). This is particularly useful to improve
knockdown efficacy and overcome attenuation of silenc-
ing caused by target site mutation such as often occurs
during chronic viral infection. Recently, the miR-106 (7)
and miR-17-92 (4) polycistronic clusters have been used
successfully to generate multiplexed anti-HIV-1 RNAi
activators. To improve use of expressed multimeric
RNAi effecters, a system that allows convenient assem-
bly, modification to improve silencing efficacy and which
causes knockdown without disrupting the endogenous
miR pathways would be valuable. We demonstrate
these attributes in a panel of anti-hepatitis B virus
(HBV) Pol II trimeric pri-miR cassettes, which are
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capable of inhibiting viral replication in transfected cells
and in vivo.

MATERIALS AND METHODS

miR expression plasmids

Anti-HBV pre-miR DNA shuttles were generated
by annealing partly complementary pre-miR-31/5, -31/8,
31/9 and pre-miR30a/8 forward (F) and reverse (R) oligo-
nucleotides, which was followed by primer extension to
generate completely double-stranded DNA. The oligonu-
cleotide sequences were pre-miR-31/5 F: 50-GTA ACT
CGG AAC TGG AGA GGG GTG AAG CGA AGT
GCA CAC GGG TTG AAC TGG GAA CGA CG-30,
pre-miR-31/5R: 50-CTG CTG TCA GAC AGG AAA
GCC GTG AAT CGA TGT GCA CAC GTC GTT
CCC AGT TCA ACC CGT-30, pre-miR-31/8 F: 50-GTA
ACT CGG AAC TGG AGA GGC AAG GTC GGT
CGT TGA CAT TGG TTG AAC TGG GAA CGA
AA-30, pre-miR-31/8R: 50-CTG CTG TCA GAC AGG
AAA GCT AAG GTT GGT TGT TGA CAT TTC
GTT CCC AGT TCA ACC AAT-30, pre-miR-31/9 F:
50-GTA ACT CGG AAC TGG AGA GGA TTT ATG
CCT ACA GCC TCC TAG TTG AAC TGG GAA CGA
AG-30, pre-miR-31/9R: 50-CTG CTG TCA GAC AGG
AAA GCC TTT ATT CCT TCA GCC TCC TTC GTT
CCC AGT TCA ACT AGG-30, pre-miR-30a/8 F: 50-TGC
TGT TGA CAG TGA GCG ACT CAA GGT CGG TCG
TTG ACA TTG CTG TGA AGC CAC AGA TGG GC-
30 and pre-miR-30a/8R: 50-GAA GTC CGA GGC AGT
AGG CAG CTC AAG GTC GGT TTG ACA TTG CCC
ATC TGT GGC TTC ACA G-30. Extended pre-miR
DNA was used as template to generate the pri-miR shuttle
sequences using PCR with pri-miR-31 F: 50-GCT AGC
CAT AAC AAC GAA GAG GGA TGG TAT TGC
TCC TGT AAC TCG GAA CTG GAG AGG-30, pri-
miR-31R: 50-AAA AAA ACT AGT AAG ACA AGG
AGG AAC AGG ACG GAG GTA GCC AAG CTG
CTG TCA GAC AGG AAG C-30, pri-miR-30a F:
50-GAT CGC TAG CTT AAC CCA ACA GAA GGC
TAA AGA AGG TAT ATT GCT GTT GAC AGT GAG
CGA C-30 and pri-miR-30a R: 50-GAT CAC TAG TAA
AAA ACA AGA TAA TTG CTC CTA AAG TAG CCC
CTT GAA GTC CGA GGC AGT AGG CA-30 primers.
The pri-miR-31 and pri-miR-30a sequences were then
inserted into the PCR cloning vector, pTZ57R/T
(InsTAcloneTM PCR cloning Kit, Fermentas, MD,
USA) to generate pTZ pri-miR-31/5, pTZ pri-miR-31/8,
pTZ pri-miR-30a/8 and pTZ pri-miR-31/9. Propagation
of pTZ pri-miR-122/5 has been described previously (3).
To produce U6-driven pri-miR expression plasmids (pTZ
U6-pri-miR-31/5, pTZ U6-pri-miR-31/8 and pTZ U6-pri-
miR-31/9), the pri-miR-31 shuttle sequences were excised
with NheI and ScaI then inserted into equivalent sites
downstream of the U6 promoter in the pTZ-U6 vector
(12). Pol II-driven miR expression plasmids (pCI-pri-
miR-31/5, 31/8 and 31/9) were constructed by excising
the pri-miR-31 shuttle sequences with SalI and XbaI and
ligating these fragments to XhoI and XbaI sites of pCI-
neo (Promega, WI, USA).

Trimeric shuttle cassettes, containing pri-miR-31, pri-
miR-30a and pri-miR-122 sequences, were formed by
inserting combinations of pri-miR-31/5, pri-miR-31/8,
pri-miR-30a/8, pri-miR-31/9 and pri-miR-122/5 sequences
downstream of the CMV immediate early promoter
enhancer. A total of eight trimeric cassettes was generated
(pri-miR-31/5-8-9, pri-miR-31/5-9-8, pri-miR-31/8-5-9,
pri-miR-31/8-9-5, pri-miR-31/9-5-8, pri-miR-31/9-8-5,
pri-miR-31/5-31/9-30a/8 and pri-miR-122/5-31/9-30a/8).
Six of the trimeric cassettes comprised pri-miR-31-derived
sequences exclusively, while pri-miR-31/5-31/9-30a/8, and
pri-miR-122/5-31/9-30a/8 also included pri-miR-30a and
pri-miR-122 scaffolds. Similar cloning strategies were used
to propagate each of the trimers. As an example, to gen-
erate the pri-miR-31/5-8-9 cassette, pri-miR-31/8 was
excised from pTZ pri-miR-31/8 with NheI and EcoRI
and ligated to pTZ pri-miR-31/5 that had been digested
with SpeI and EcoRI to create pTZ pri-miR-31/5-8.
Similarly, the sequence encoding pri-miR-31/9 was then
excised from pTZ pri-miR-31/9 with NheI and EcoRI
and ligated to SpeI and EcoRI sites of pTZ pri-miR-31/
5-8. Successful ligation resulted in formation of pTZ pri-
miR-31/5-8-9. The trimer cassettes were excised with NheI
and XbaI and inserted at equivalent sites of pCI-neo
to generate the CMV panel of multimeric cassettes.
Sequences were verified using standard automated
dideoxy chain termination reactions.

miR target plasmids

To produce dual luciferase reporter plasmids containing
sites individually targeted by pri-miR-31/5, pri-miR-31/8,
pri-miR-31/9, pri-miR-30a/8 and pri-miR-122/5 primers
were designed to amplify HBV coordinates 1575–1599
(5T), 1678–1702 (8T) and 1774–1798 (9T) (Genbank
accession J02203). Oligonucleotide sequences, which also
introduced a SpeI site at the 30 end of the amplicons, were
5T F: 50-CCG TGT GCA CTT CGC TTC AC-30, 5T R:
50-ACT AGT CAG AGG TGA AGC GA-30, 8T F:
50-CAA TGT CAA CGA CCG ACC TT-30, 8T: R
50-ACT AGT GCC TCA AGG TCG GT-30, 9T F:
50-TAG GAG GCT GTA GGC ATA AA-30 and 9T R:
50-ACT AGT ACC AAT TTA TGC CT-30. Purified frag-
ments were incorporated into the pTZ57R/T PCR cloning
vector (InsTAcloneTM PCR cloning Kit, Fermentas, MD,
USA) and the insert was removed with SalI and SpeI then
ligated to the XhoI and SpeI sites of psiCHECK2.2 (3)
that had been previously modified from psiCHECKTM-2
(Promega, WI, USA), to generate psiCHECK-5T,
psiCHECK-8T and psiCHECK-9T with the target sites
downstream of the Renilla luciferase reporter open read-
ing frame (ORF). The reporter target vector psiCHECK-
HBx, which contains an intactHBx target sequence down-
stream of the Renilla ORF within psiCHECKTM-2
(Promega, WI, USA), has been described previously
(13). The derivative with mutant HBx target,
psiCHECK-mHBx, was propagated using PCR. Briefly
mHBx was amplified from psiCHECK-HBx using
mHBx F (50 GAT CCG GTC CGT CTG CAG TTC
GGT TGT CCT CTG CAC GTT GCA TGG AG 30)
and mHBx R (50 GAT CGC GGC CGC CCG GGT
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CGA CTC 30) primers. Mutant bases of the target 5
sequence (underlined) were incorporated within the for-
ward PCR primer. The resultant amplicon included
RsrII and NotI sites at the 50 and 30 ends, respectively.
After insertion into the pTZ57R/T PCR cloning vector
(InsTAcloneTM PCR cloning Kit, Fermentas, MD,
USA) and sequence verification, mHBx was excised with
RsrII and NotI then used to replace HBx in psiCHECK-
HBx and generate psiCHECK-mHBx. Presence of a PstI
restriction digestion site (bold font in mHBx F primer),
which is absent from wild-type HBx, was used to verify
insertion of the intended mutant sequences. The HBV
target plasmids, pCH-9/3091 (14) and pCH-FLuc (3),
have been described previously.

miR-16 sponge and dual luciferase target

The U6-driven miR-16 sponge (15) was generated by clon-
ing seven copies of an imperfectly complementary target
of miR-16 into the U6+27 sequence (16–18). A single
copy of duplex DNA, comprising annealed oligonucleo-
tides encoding a single copy of the miR-16 target site
(miR-16S) with single nucleotide 30 A overhangs, was ini-
tially ligated to pTZ57R/T to create pTZ-miR-16S�1.
The resulting target sequence included an XhoI site that
was 50 of the target and SalI and NotI sites 30 of this
sequence. Oligonucleotide sequences used to generate the
inserts were miR-16S F: 50-CTC GAG CGC CAA TAT
TAT GTG CTG CTA GTC GAC GCG GCC GCA-30

and miR-16S R: 50-GCG GCC GCG TCG ACT AGC
AGC ACA TAA TAT TGG CGC TCG AGA-30. The
miR-16S�1 sequence was restricted from pTZ-miR-
16S�1R (insert in reverse orientation with respect to the
�-galactosidase gene) with ApaI and PvuII and cloned into
the ApaI and HincII sites of pGEM�-T Easy (Promega,
WI, USA) to create pG-miR-16S�1. To generate vectors
with tandem copies of the miR-16S sequence, pG-miR-
16S�1 was digested with XhoI and ScaI and separately
with SalI and ScaI. The fragments containing the miR-16S
sequence from each digestion were ligated to create pG-
miR-16S�2. pG-miR-16S�3 and pG-miR-16S�4 were
generated using similar procedures. Finally, the vectors
containing three and four tandem copies of the miR-16S
sequence were used to create pG-miR-16S�7.

The U6+27 sequence (18) was produced using a two-
step PCR of the human U6 promoter. U6 forward (U6F,
50-GAT CTC TAG AAA GGT CGG GCA GGA AGA
GGG-30) and U6+27 reverse 1 (U6+27 R1, 50-CTC
GAG TAG TAT ATG TGC TGC CGA AGC GAG
CAC GGT GTT TCG TCC TTT CCA C-30) primers
used in the first round of amplification. Amplicons from
this reaction were used as template for the second round
of PCR using the U6+27 R2 primer (50-GAT CAA AAA
AGC GGA CCG AAG TCC GCT CTA GAC TCG AGT
AGT ATA TGT GCT G-30) and U6F primer. The com-
plete U6+27 sequence was inserted into the PCR cloning
vector pTZ57R/T to generate pTZ-U6+27. The miR-
16S�7 sequence was removed from pG-miR-16S�7 with
XhoI and SalI and ligated to the XhoI site of pTZ-
U6+27 to produce the pTZ-U6-miR-16S�7 sponge plas-
mid. To generate the psiCHECK-miR-16T�7 target

vector containing 7 miR-16 sites downstream of the
Renilla luciferase ORF, the miR-16S�7 sequence was
restricted from pG-miR-16S�7 with XhoI and NotI and
inserted into equivalent sites of psiCHECKTM-2
(Promega, WI, USA).

Cell culture, transfection, northern blot analysis and dual
luciferase assay

Huh7 cells were cultured in DMEM (Lonza, Basel,
Switzerland) supplemented with 10% fetal calf serum
(Gibco BRL, UK). To determine the efficacy of individual
pri-miR monomers in the context of multimeric cassettes,
each trimeric plasmid (800 ng) was co-transfected
with psiCHECK-5T, psiCHECK-8T or psiCHECK-9T
(80 ng). Luciferase activity was assayed using the Dual-
Luciferase� Reporter Assay System (Promega, WI,
USA) and Renilla luciferase to Firefly luciferase activity
was determined. Silencing of mutant HBx sequences was
assayed similarly by using psiCHECK-HBx and
psiCHECK-mHBx dual luciferase reporter vectors. To
assess HBV knockdown efficacy of the Pol III and Pol II
pri-miR shuttles, Lipofectamine 2000TM (Invitrogen, CA,
USA) was used to co-transfect 80 ng pCH-FLuc, 800 ng of
the relevant pri-miR shuttle plasmid, together with effecter
plasmid or vector control plasmid according to previously
described methods (3). phRL-CMV (Promega, WI, USA),
a plasmid constitutively expressing Renilla luciferase, was
included in all transfections. Forty-eight hours after trans-
fection cells were assayed for luciferase activity using the
Dual-Luciferase� Reporter Assay System (Promega, WI,
USA) and the ratio of Firefly luciferase to Renilla lucifer-
ase activity was calculated.
Northern blot analysis was performed on RNA

extracted from cells transfected with the various miR-31
shuttle constructs according to previously described meth-
ods (3). The probes for the 5, 8 and 9 guide sequences were
50-CCG TGT GCA CTT CGC TTC-30, 50-CAA TGT
CAA CGA CCG ACC-30 and 50-TAG GAG GCT GTA
GGC ATA-30, respectively. Scanned autoradiographs
were used to quantitate guide bands using KODAK
MI Software.
Knockdown of HBV replication was assessed in cells

co-transfected with pCH-9-3091(14) and relevant RNAi
effecter plasmid. Forty-eight hours after transfection
growth medium was harvested and HBsAg secretion mea-
sured by ELISA using the MONOLISA� HBs Ag
ULTRA kit (Bio-Rad, CA, USA).
Activation of the interferon (IFN) response was

assessed using previously described methods (19). Assays
to assess saturation of the endogenous miR pathway were
performed in Huh7 cells cotransfected with 80 ng
psiCHECK-miR-16T�7 and 800 ng RNAi effecter plas-
mids or miR-16 sponge plasmid. Luciferase assays were
performed as described above.

Assessment of efficacy of pri-miR-31 shuttles in vivo

Mice were injected using the hydrodynamic injection
procedure with a combination of 5 mg pCH-9-3091 (14),
5 mg of RNAi expression vector, 5 mg of control U6 (pTZ-
U6 vector (12)) or CMV (pCI-neo, Promega, WI, USA)
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promoter-containing backbone plasmid and 5 mg of
psiCHECK2.2. Blood was collected 3 and 5 days post-
injection. Experiments were carried out according to pro-
tocols approved by the University of the Witwatersrand
Animal Ethics Screening Committee. ELISA for HBsAg
levels was performed on serum samples using the
MONOLISA� HBs Ag ULTRA kit from Bio-Rad.

Statistical analysis

Data are expressed as the mean � standard error of the
mean (SEM). Statistical difference was considered signifi-
cant when P< 0.05 and was determined according to the
Student’s paired two-tailed t-test. Calculations were done
with the GraphPad Prism software package (GraphPad
Software Inc., CA, USA).

RESULTS

Design of trimeric pri-miR expression cassettes

Structure of the expression cassettes producing trimeric
anti-HBV pri-miR-31 mimics is depicted schematically in
Figure 1A. The pri-miR-31 backbone was initially selected
as we have previously shown that single unit shuttles
with this scaffold can be used to generate efficient Pol II
anti-HBV expression cassettes (3). Sequences encoding the
pri-miR-31 trimers were located within an exon and down-
stream of a CMV Pol II transcription controlling element
and intron sequence. Trimeric cassettes were designed
such that pre-miRs comprised 59 nt and were flanked by
51 nt of natural pri-miR-31/derived sequences (Figure 1B).
According to this scheme, the mature anti-HBV miRs
were predicted, using the MFold algorithm (20), to
have a similar structure to that of naturally occurring
pri-miR-31. To assess the modular nature of the
cassettes, six different trimeric expression cassettes were
generated using all possible ordering combinations of
the three pri-miR-31 shuttles. Computer-based predictions
indicated that the intended miR-31-like structures of the
trimeric cassettes were energetically most favourable
and similar for each of the six ordering combinations.
The calculated �G values of each was approximately
–195 kcal/mol.

Detection of processed pri-miR sequences and silencing
of individual targets

To verify formation of individual guide sequences, north-
ern blot analysis was carried out on RNA extracted from
Huh7 liver-derived cells transfected with DNA-expressing
pri-miR-31 shuttles (Figure 2A–C). Hybridization to a
probe complementary to the intended miR-31/5 HBV
guide showed heterogenous processing to form guide
sequences of 20–22 nt in length. Guide strand 5 produc-
tion was similar when generated from monomeric and
trimeric cassettes and was not affected by shuttle position
within the anti-HBV polycistron. As expected, measure-
ment of relative guide band intensities showed that the
20–22 nt HBV anti-sense sequence was present in consid-
erably higher amounts in cells transfected with U6 shRNA
5-expressing plasmid when compared to cells transfected

with the pri-miR trimer shuttles. Specific knockdown of
target 5 sequence, assessed using a dual luciferase reporter
system, was similar and highly effective (�90%) for the
U6 shRNA 5 and each of pri-miR-31 shuttle expression
cassettes (Figure 2D). Northern blot analysis to detect
guide 8 revealed a single band of 21 nt (Figure 2B),
which was distinct from the heterogenous mature
pri-miR-31/5 sequences. Interestingly, no mature pri-
miR-31/8 was detectable in RNA extracted from cells
transfected with CMV pri-miR-31/9-8-5 and CMV pri-
miR-31/5-9-8. This suggests that pri-miR-31/8 shuttle
position within the trimer affects processing, and presence
of pri-miR-31/9 immediately upstream of pri-miR-31/8
may be responsible for compromised guide 8 production.
Assay of knockdown using a dual luciferase assay with
miR-31/8 target alone, confirmed that knockdown of
reporter expression correlated with detection of mature
miR sequences (Figure 2E). Interestingly, guide produced
from the U6 shRNA 8 cassette was slightly larger than
that of the CMV miR-31-derived sequences. It is likely
that the differences in secondary structure of the shRNA
8 and pri-miR-31/8 RNA, as well as the involvement of
Drosha in miR shuttle processing, are responsible for gen-
eration of guide strands of different molecular weight.
Analysis of silencing and processing of pri-miR-31/9
sequences showed less efficient knockdown (45–80%)
of ORF containing pri-miR-31/9 target (Figure 2F),
which correlated with lower efficiency of pri-miR-31/9
guide production (Figure 2C). Although there is varia-
tion in the efficiency of individual guide strand production
and knockdown, these data indicate that the pri-miR-31
scaffold is useful for production of Pol II trimeric
cassettes.

Figure 1. Trimeric pri-miR-31 expression cassettes. (A) Schematic illus-
tration of pri-miR-31 shuttle expression cassettes showing upstream
CMV promoter, intron and three miR mimic sequences with down-
stream transcription termination signal [poly(A)]. Pre-miR shuttles
were inserted in an exon and were flanked by 51 nt of pri-miR-31-
derived sequences. (B) Pri-miR-31/5, pri-miR-31/8 and pri-miR-31/9
anti-HBV sequences. Predicted structures and sequences of anti-HBV
pri-miR-31 derivatives. The sequences of the putative pre-miRs gener-
ated after Drosha/DGCR8 processing are indicated in colour (purple
and red) and the mature processed guide sequences that are selected
after Dicer processing and strand selection by RISC are indicated in
red only.
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Incorporating a pri-miR-30a monomer scaffold improves
silencing of HBV target 8

Sequence-specific properties of the individual anti-HBV
pri-miR-31 shuttles as well as position of monomer shut-
tles within the trimers are likely to influence their proces-
sing and silencing efficiency. To assess the effect of
pri-miR backbone scaffold sequences within the expres-
sion cassettes, silencing of target 8 sequences by an
expanded panel of trimeric expression cassettes that
included pri-miR-122/5 and pri-miR-30a/8 shuttles was
measured (Figure 3). Each of the six pri-miR-31 trimers
together with pCMV pri-miR-31/5-31/9-30a/8 and pCMV
pri-miR-122/5-31/9-30a/8 were co-transfected with
psiCHECK 8T. As described before (Figure 2E), knock-
down of Renilla luciferase activity was poor with cassettes
containing pri-miR-31/5-9-8 and pri-miR-31/9-8-5.
However, efficient inhibition of reporter gene activity
was achieved with pCMV pri-miR-31/5-31/9-30a/8 and
pCMV pri-miR-122/5-31/9-30a/8 (Figure 3B). This indi-
cates that substitution of the pri-miR-31 scaffold with a
pri-miR-30a backbone restores target 8 silencing. In addi-
tion, inclusion of the pri-miR-122/5 monomer, which we
have previously shown to act efficiently against HBV (3),
does not compromise silencing by the pri-miR-30a/8
monomer. Thus, in addition to allowing improved silenc-
ing efficiency by changing monomer positions within
the trimers, the cassettes described here have the added
advantage of permitting the changing of pri-miR shuttle

backbones to compensate for any compromised silencing
efficacy of pri-miR-31 scaffolds.

miR-mediated inhibition of markers of HBV replication
in transfected cells and in vivo

Target sites of the individual miR cassettes are located
within the HBV X (HBx) ORF (Figure 4A). This sequence
is conserved, common to all viral transcripts and has been
shown to be a good target for RNAi-based HBV silencing
(19). A dual luciferase assay, in which the surface ORF of
pCH-9/3091 was substituted with a Firefly luciferase ORF,
demonstrated that each of the trimeric cassettes achieved
good knockdown when all three cognates of the intended
miR-31/5, miR-31/8 and miR-31/9 guides were present
(Figure 4B). As an initial assessment of pri-miR-31
trimer-mediated inhibition of HBV replication, Huh7
liver-derived cells were transfected with the pCH-9-3091
HBV replication competent plasmid (14), together with
the panel of RNAi expression plasmids. Secreted HBV
surface antigen (HBsAg), which is a reliable indicator of
HBV replication in our hands (3,19,21), was determined
thereafter in the culture medium (Figure 4C). Knockdown
of �90% was achieved. This correlated with the inhibitory
effect that was observed when using the dual luciferase
reporter system to measure silencing of individual targets
(Figure 2D–F) and also inhibition of a Firefly luciferase-
HBx reporter gene construct (Figure 4B). To determine
silencing of target genes in vivo in a model that simulates

Figure 2. Processing and knockdown efficacy of trimer shuttles. Northern blot analysis of RNA extracted from cells that had been transfected with
indicated expression cassettes. Hybridization was carried out with probes complementary to putative guide 5 (A), guide 8 (B) or guide 9 (C). Bands
corresponding to guide sequence (G) and precursors (P) are indicated by the arrow and square bracket respectively. Re-hybridization of blots to
U6 snRNA was carried out to confirm equal RNA loading in each of the lanes (lower panels). Oligodoexynucleotide length (nt) of labelled
single-stranded DNA markers is indicated on the left of each panel. Approximate band intensities of miR-derived guides relative to the
U6 shRNA guides (%) are indicated below. Assessment of knockdown efficacy of trimer shuttles using a dual luciferase reporter gene assay in
which a target sequence complementary to guide 5 (D), 8 (E) or 9 (F) only was inserted downstream of the Renilla luciferase reporter ORF of
psiCHECK 2.2. Data are represented as mean ratios of Renilla to Firefly luciferase activity (�SEM) and are normalized relative to the cells treated
with backbone plasmid lacking RNAi effecter sequences (mock).
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HBV replication, mice were co-injected with an HBV rep-
lication competent plasmid together with a selection of
vectors encoding pri-miR-31 shuttles using the hydrody-
namic procedure (22). Significant knockdown of HBsAg
was observed at Days 3 and 5 after the injection, and the
effects appeared to be independent of promoter interfer-
ence (Figure 4D). These findings confirm that trimeric pri-
miR-31 shuttles are capable of silencing HBV replication
and verify that they are active against transcripts that are
produced during viral replication in vivo.
A potential advantage of employing multimeric cas-

settes to inhibit viral replication is that viral escape result-
ing from emergence of evading mutations is limited. A
dual luciferase assay was undertaken to assess whether
HBV target silencing occurred when mutations were intro-
duced into the target 5 site of HBV (Figure 5A). Co-trans-
fection of cells was carried out with each plasmid encoding
the panel of eight trimeric expression cassettes together
with wild-type or mutantHBx target. Silencing of reporter
gene expression was achieved with all trimeric expression
cassettes with the exception of mutant target silencing
by CMV pri-miR-31/5-9-8 and CMV pri-miR-31/9-8-5.
This was expected as these two expression cassettes are
known to generate antiHBV guide 9 in low amounts and
be defective with respect to guide 8 production (Figure 2).

Importantly, mutant target silencing was restored in these
cassettes by changing the pri-miR-31/8 monomer for a
pri-miR-30a/8 unit, and confirms earlier observations
(Figure 3) that target 8 silencing may be improved by
substituting the pri-miR scaffold of its guide. Thus tri-
meric pri-miR cassettes are capable of efficiently silencing
targets containing one mutant guide cognate and defective
silencing may be overcome by changing the order of the
miR units or scaffold sequence within the monomers.

Exclusion of non-specific effects induced by pri-miR-31
trimer cassettes

Verification that the pri-miR-31 trimer cassettes are
indeed non-toxic and induce gene silencing by an RNAi-
mediated mechanism is important to establish. To address
this, disruption of the endogenous miR pathway and stim-
ulation of the innate IFN response by pri-miR-31 trimer
cassettes were assessed. Measurement of IFN-� mRNA
concentration in cells transfected with trimer expression
cassettes showed no elevation of this transcript, indicating
that little or no immunostimulation is caused by IFN
pathway induction (Figure 6). To assess disruption of
the endogenous miR pathway, we adapted the recently
described method that utilizes miR sponges as a con-
trol to verify derepressive effects of endogenous miR

Figure 3. Use of shuttles containing pri-miR-31, pri-miR-30a and pri-miR-122 to improve silencing of HBV target 8 sequence. (A) Predicted
structures and sequences of pri-miR-30a/8 and pri-miR-122/5 anti-HBV sequences. Colour coding of the sequences representing putative pre-
miRs and mature guides are as indicated in Figure 1B. (B) Assessment of knockdown efficacy of trimer shuttles using a dual luciferase reporter
gene assay in which a target sequence complementary to guide 8 was inserted downstream of the Renilla luciferase reporter ORF of psiCHECK2.2.
Data are represented as mean ratios of Renilla to Firefly luciferase activity (�SEM) and are normalized relative to the mock-treated cells.
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function (15). A dual luciferase reporter vector was gen-
erated in which seven copies of an imperfectly matched
endogenous miR-16 target were inserted downstream of
the Renilla luciferase ORF (Figure 7A). Perturbations in
miR-16 translational suppression could be detected sensi-
tively by measuring Renilla/Firefly luciferase reporter
gene activity. miR-16 was selected for this assay as it is
expressed in a variety of tissues (23) and can be conveni-
ently used to determine disruption of natural miR func-
tion. A miR sponge expression cassette that encodes seven
tandemly repeated miR-16 target sites was used to control
for endogenous miR derepression (Figure 7B). Analysis
revealed that co-expression of each of the trimeric con-
structs within transfected cells did not cause derepression
of miR-16 inhibition of its cognate in the reporter fusion
sequence (Figure 7C). The Pol II promoter-controlled
expression of trimeric anti-HBV miR-31 shuttles,

therefore, cause no detectable toxicity that results from
IFN response induction or disruption of the endogenous
miR pathway.

DISCUSSION

The powerful gene silencing that can be achieved by
harnessing RNAi has facilitated development of new
approaches to inhibition of pathology-causing genes and
the study of gene function (1). Although synthetic siRNAs
have been favoured as RNAi activators for many such
applications, use of expressed silencing sequences has sev-
eral advantages. These include achievement of sustained
knockdown, compatibility with recombinant viral vectors
and evasion of some of the immunostimulatory properties
of exogenous synthetic sequences (24). Convenient expres-
sion of silencing sequences that efficiently target multiple

Figure 4. Trimer expression cassette-mediated knockdown of HBV replication in cultured cells and in vivo. (A) Organization of the HBV genome
with ORFs and sites within the pCH-9/3091 vector that are targets complementary to processed products of pri-miR-31/5, pri-miR-31/8 and pri-miR-
31/9 expressing vectors. Four parallel arrows indicate the HBV transcripts, which have common 30 ends, and include the pri-miR-31/5, pri-miR-31/8
and pri-miR-31/9 targets. The pCH-9/3091-derived pCH-FLuc target vector has the Firefly luciferase ORF substituted for the preS2/S HBV
sequence. (B) Luciferase reporter gene-based assay of knockdown efficacy in situ. pCH-FLuc was cotransfected with plasmids containing indicated
RNAi expression cassettes in addition to a plasmid constitutively expressing Renilla luciferase. Results are given as ratios of Firefly to Renilla
luciferase activity. Column-labelled negative represents data from transfections that excluded the pCH-FLuc plasmid. (C) Concentration of HBsAg in
culture supernatants of Huh7 cells 48 h after transfection with pCH-9/3091 HBV replication-competent plasmid together with indicated anti-HBV
expression cassettes. Column-labelled negative represents data from transfections that excluded the pCH-9/3091 HBV plasmid. (D) Silencing of HBV
replication in vivo. Serum concentration of HBsAg was measured at Days 3 and 5 after hydrodynamic injection of mice with replication-competent
vector and plasmids expressing anti-HBV RNAi sequences. Mock injections included control backbone plasmids containing U6 or CMV promoters
that did not express anti-HBV RNAi effecters.
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sites would be a particularly useful attribute to enhance
knockdown and counter evading target mutations.
Achieving this without causing unintended off target
effects and needing to utilize complex systems that require
multiple expression cassettes is desirable. The engineered
polycistrons described here provide a suitable method to
attain these objectives. Cassettes were generated using pri-
miR-31-, pri-miR-30a- and pri-miR-122-derived modules,
which were combined as trimers and expressed from a Pol
II promoter. Efficient processing of the shuttles and silenc-
ing of HBV cognates was observed without evidence
for disruption of the endogenous miR pathway.

Detailed analysis revealed variation in efficacy of indi-
vidual units that was dependent on specific sequences of
the monomers as well as their position within the engi-
neered polycistrons. Despite simultaneous production of
three RNAi effecters from a single transcript, the mature
guide sequences were not formed in equimolar amounts.
Although knockdown of single targets may be compro-
mised as a result of poor processing of individual guides,
the modular nature of the cassettes facilitates improve-
ment of defective silencing. Rearranging the order of the
pri-miR units, which is not easily achieved with polycis-
tronic miR cluster mimics, may restore function of indi-
vidual miR shuttles. In addition, the cassettes described
here allow improvement of efficacy to be achieved by

Figure 5. Dual luciferase reporter assay to detect silencing of wild-type HBx and mutant HBx target sequences using pri-miR expression cassettes.
(A) The dual luciferase reporter vectors include the entire wild-type or mutant HBx target sequence downstream of the Renilla luciferase ORF.
Guide 5 sequence is indicated in red, and mutations within its mutant HBx cognate are indicated in blue. (B) Assessment of knockdown efficacy of
trimer shuttles using the psiCHECK-based dual luciferase reporter gene assay in which wild-type HBx or mutant HBx had been inserted downstream
of the Renilla ORF. Data are represented as mean ratios of Renilla to Firefly luciferase activity (�SEM) and are normalized relative to the mock-
treated cells.

Figure 6. Assessment of IFN response induction by miR-expression
cassettes. IFN-� mRNA concentrations were determined in HEK293
cells, which were transfected with the indicated miR-encoding cassettes,
or with poly(I–C) as positive control. RNA was extracted from the cells
24 h later and then subjected to quantitative RT-PCR to determine
concentrations of IFN-� and GAPDH mRNA. Means (�SEM) of the
normalized ratios of IFN-� to GAPDH mRNA concentrations are
indicated from three independent experiments.
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substituting poorly acting pri-miR-31 scaffolds with
other backbone shuttles, such as those derived from
pri-miR-30a and pri-miR-122. The sequence-specific dif-
ferences in individual guide processing and target knock-
down that we observed are not surprising but currently
difficult to explain. Although computer-predicted struc-
tures of the shuttles were similar, empirical characteriza-
tion of the processing of expressed RNAi effecters remains
critically important.

Previous investigations have demonstrated that a com-
binatorial approach to knockdown of HIV-1 replication
augments silencing and prevents the emergence of viral

escape mutants (25). It has been calculated that four
optimally acting individual antiviral guide sequences are
required to prevent HIV-1 escape from RNAi (26), and
anti-HIV-1 RNAi activators have been designed accord-
ingly (4,7). Unlike with HIV-1, the HBV genome com-
prises overlapping ORFs with embedded viral cis
elements (27). This highly compact arrangement of the
genome restricts ability of HBV to mutate without com-
promising its replication fitness. The number of RNAi
effecters within a combinatorial cassette that is required
to prevent emergence of HBV escape mutants is not estab-
lished, but it is likely to be fewer than the four that
are required for HIV-1. Nevertheless, although only
three pri-miR-31 shuttles were tested in the polycistronic
cassettes described here, it is likely that a larger number of
monomeric modules can be accommodated.
An important concern for the development of

RNAi-based therapy is avoidance of off target effects.
Unintended consequences may result from disruption
of endogenous miR functions and silencing of normal cel-
lular genes that have partial sequence complementarity
to exogenous RNAi activators. We have shown that endo-
genous miR-16-mediated repression of a target reporter
fusion is unaffected by expression of the Pol II pri-miR-
31 trimer cassettes. Generating multiple silencing
sequences from an engineered polycistronic cassette poten-
tially increases the likelihood of causing unintended off
target effects. Interaction of a guide seed region, compris-
ing nucleotides 2–8 from the 50 end, is potentially sufficient
to effect translational suppression of a cellular target.
This weak sequence restraint emphasizes the importance
of utilizing potent expressed silencing sequences that
are effective at low concentration, and also restricting
the expression of RNAi effecters to target tissues.
Compatibility of polycistronic pri-miR shuttles with
expression from Pol II promoters, and efficacy that is
equivalent to that of shRNA transcribed from a U6 pro-
moter, are useful features that may be harnessed to dimin-
ish unintended effects. Compared to Pol III promoters,
Pol II transcription regulatory elements have greater
versatility that facilitates production of mature RNAi
effecters without perturbing endogenous miR function.
In the case of developing RNAi-based HBV therapy,
expression cassettes containing liver-specific promoters
that are induced by target-encoded transcription activa-
tors, e.g. the HBV X protein (28,29), should facilitate tran-
scription regulation with consequent attenuation of off
target effects.
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Figure 7. Assessment of effects of pri-miR-31 shuttles on endogenous
miR-16 function using dual luciferase reporter and sponge vectors. (A)
Schematic illustration to show dual luciferase psiCHECK-derived
vector with seven copies of miR-16 target inserted downstream of the
Renilla luciferase ORF. Firefly luciferase constitutively expressed from
the same plasmid was used to normalize data. (B) Schematic illustration
of expression cassette that generates a transcript containing seven
copies of an imperfectly matched miR-16 target. The transcript con-
tains 50 U6+27 and 30 stem sequences, which are thought to improve
stability of U6 Pol III transcripts. (C) Analysis of effects of pri-miR-31
expression cassettes on endogenous miR-16 repression of target repor-
ter sequence using a dual luciferase assay. Co-transfection of reporter
plasmid, containing seven copies of miR-16 target inserted downstream
of the Renilla luciferase ORF, was carried out together with RNAi
expression cassettes, empty backbone plasmid (mock) or miR-16
sponge plasmid. Ratio of Renilla to Firefly luciferase activity was mea-
sured to assess derepression of endogenous miR-16 by coexpressed miR
shuttles.
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A4 SUPPLEMENTARY FIGURES 

A4-1 Predicted secondary structures of pri-miR and pri-miR shuttle 

sequences 
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Figure A1: Predicted secondary structures of pri-miR-31 wild-type (A) and shuttle (B-D) sequences.  

Computer aided prediction was carried out on RNA sequence encoding wild-type pre-miR-31 and 51 nt 

flanking sequences. 
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Figure A2: Predicted secondary structures of pri-miR-122 wild-type (A) and shuttle (B-D) sequences.  

Computer aided prediction was carried out on RNA sequence encoding wild-type pre-miR-122 and 51 nt 

flanking sequences. 
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Figure A3: Predicted secondary structure of pri-miR-30a wild-type (A) and shuttle (B) sequences. 

Computer aided prediction was carried out on RNA sequence encoding wild-type pre-miR-30a and 51 nt 

flanking sequences. 
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