
 

 

 

 

 

 

EMPIRICAL COMPARISON OF VECTOR BOOTSTRAP METHODS FOR MULTIVARIATE 

SCENARIO GENERATION 

 

 

 

 

 

 

 

Malcolm James Murray 

 

 

 

 

 

 

A research report submitted to the Faculty of Engineering and the Built Environment, University of 

the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of 

Science in Engineering 

 

 

 

 

 

 

Johannesburg, 2011 



i 
 

 

ABSTRACT 

 

Stochastic simulation models require input scenarios, which may be generated from observed data 

using bootstrap methods. If a model‟s input variables are auto- and/or cross-correlated, these 

dependencies must be preserved in the generated scenarios. Three bootstrap methods were tested 

empirically: (1) the vector moving block bootstrap method, with a block length of one timeframe, (2) 

the vector moving block bootstrap method, with an optimized block length, and (3) the vector nearest 

neighbour bootstrap method. They were applied to data observed from processes at a petro-chemical 

plant: 28 numerical, multivariate, stationary time series, with a variety of auto- and cross-correlations. 

The quality of the generated scenarios was measured using a Turing test procedure, which balances 

fidelity to the observed data and natural variety. Method (2) performed best, followed by method (3), 

and then method (1). The number of input variables bootstrapped simultaneously did not significantly 

affect the performance of the bootstrap methods. 
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NOMENCLATURE 

 

VMB  the vector moving block bootstrap method 

VMB1  the vector moving block bootstrap method, with a block length of 1 timeframe 

VMBopt  the vector moving block bootstrap method, with an optimized block length 

VNN   the vector nearest neighbour bootstrap method 

HOC k   the 𝑘th higher order crossing count of a univariate time series 

 

𝑏  the block length (the number of timeframes sampled by block bootstrap methods) 

𝑐  the number of levels of an experimental factor 

𝐷  the test statistic for the Kolmogorov-Smirnov test 

𝐹  the test statistic for the Quade test 

𝑔  the number of experimental subjects, or blocks 

𝐾  the number of candidates considered by nearest neighbour bootstrap methods 

𝑚  the number of timeframes in each subseries 

𝑛  the number of timeframes in the trace series 

𝑝  the calculated probability of rejecting a true null hypothesis 

𝑃𝑗   the probability of selecting the 𝑗th candidate in the VNN method 

𝑞   the required number of timeframes in the generated series 

𝑄  the quality measure for quantifying the performance of a bootstrap method 

𝑟𝑐   the Spearman rank cross-correlation coefficient 

𝑟𝑎    the Spearman rank auto-correlation coefficient (lag-1) 

𝑠  the number of subseries for the Turing test 

𝛼  the significance level of a statistical test (the acceptable type I error rate) 

∆ the delta measure of the difference in auto-correlation structures between two 

univariate time series 

μ  the population median 

𝜒2  the chi-squared statistic from the Kruskal-Wallis test
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1 INTRODUCTION 

 

1.1 Background: Input Scenarios for Simulation Models 

 

Stochastic simulation modelling is used to study the behaviour of complex systems, as follows: 

1. A model is built, which is a simplified representation of the system that contains its essential 

features. The complexity of the model depends on the scope and the required accuracy, which 

depends on the purpose of the modelling exercise. 

2. Scenarios are generated, which are sets of inputs to the model of the system. Again, this depends 

on the purpose of the modelling. If we want to do „stress-testing‟ on the system, we can generate 

extreme scenarios from imagination. If we only need to estimate average system response, we can 

just use average values for all the inputs (having measured them for a while). However, we 

usually want to study the full range of response of the system under realistic conditions. This 

requires large volumes of realistic scenarios that mimic the natural level and variation of the 

inputs (which have been observed). We focus on this intermediate case. 

3. The scenarios are fed into the model, which simulates the behaviour of the system. 

4. The response of the system model is observed and analyzed statistically. 

 

To get meaningful results, the model must be appropriate and the input scenarios must be plentiful 

and realistic. Ideally, all the required input scenarios would be observed empirically, sampling 

directly from the population of all possible input scenarios in the real world. However, it is seldom 

practical to observe them in sufficient quantities. Typically, only a modest empirical sample is 

available, and this must be used to generate the required number of input scenarios. This process of 

generating realistic input scenarios from observed data is the focus of this research.   

 

The measured data is called trace data, and can be visualised as a panel (or matrix), where each 

column represents one input variable, and each row represents the timeframe during which the input 

variables were measured, as illustrated in Table 1. The scenarios generated from the measured data 

also have this panel format. These two panels contain multivariate time-series data, so they are called 

the trace series and the generated series respectively. 
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Table 1 - Panel data format 

 Input variable 1 Input variable 2 Input variable 3 Input variable 4 etc. 

Timeframe 1      

Timeframe 2      

Timeframe 3      

Timeframe 4      

Timeframe 5      

etc.      

 

 

1.2 Motivation and Scope 

 

The complexity of each input variable in the trace series may vary as follows: 

1. Data type:  

 Numerical (interval, ratio, discrete numerical, ordinal) 

 Nominal (categorical, binary) 

 A combination of these in one trace series 

2. Time-variation: 

 Stationary – The statistical distribution is constant over the length of the series. In other 

words, if the series were divided into a few sections, they would have  similar histograms. 

 Non-stationary – The statistical distribution changes over the length of the series. It may 

follow a trend or vary cyclically. 

3. Self-dependency: 

 No auto-correlation – Successive values are independent. 

 Short memory auto-correlation – Each value depends on the previous few values. 

 Long-memory auto-correlation – Each value depends on many previous values. 

4. Inter-dependency with other variables: 

 No cross-correlation – Each variable is independent. 

 Simple cross-correlation – When  one variable‟s value is high, the other variable‟s value is 

high (or when  one variable‟s value is high, the other variable‟s value is low). 

 Complex dependency – One variable‟s value depends on another variable‟s previous values, 

or on a combination of other variables‟ values. 
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The current research is motivated by the need to find a suitable method for generating realistic input 

scenarios for simulations of complex processes at a petro-chemical plant. The input variables are 

physical quantities like temperatures, pressures, concentrations and yields, measured on a continuous 

numerical scale. Observed data for trace series are in no short supply, with measurements taken 

automatically at regular intervals. The processes are fairly stable, with input variables fluctuating 

around a steady mean. The input variables almost always display significant self-dependency and 

inter-dependency. It is very important that these dependencies are reproduced in the generated input 

scenarios. In fact, the validity of simulation results critically depends on it. Although long-memory 

auto-correlations and complex inter-dependencies may exist, a workable solution is sought that can 

handle short-memory auto-correlation and simple inter-dependencies. With this context in mind, we 

formally limit our scope to include only input variables with the following properties: 

 Data type: numerical 

 Time-variation: stationary 

 Self-dependency: short-memory auto-correlation (or no auto-correlation) 

 Inter-dependency: simple cross-correlation (or no cross-correlation) 
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2 LITERATURE SURVEY 

 

2.1 Types of Methods 

 

The methods for generating input scenarios from observed data fall into two categories: 

1. Parametric methods use the observed data to try to understand and model the underlying data-

generating process driving the inputs. A mathematical model is fitted to the observed data in the 

trace series, and then used to generate new input scenarios. 

2. Non-parametric methods, by contrast,  do not try to understand the observed data, but just to 

mimic it. Non-parametric bootstrap methods, specifically, generate input scenarios by drawing 

samples randomly from the empirical sample. This re-sampling is done with replacement, so that 

the observed scenarios can be sampled repeatedly as input scenarios. In essence, non-parametric 

bootstrap methods try to replay the trace series in a realistic way. 

The features, benefits and pitfalls of each category of methods are discussed at length by Barton et al 

(2002) and summarised below. 

 

Parametric methods have the advantage that they can generate new scenarios that have not been 

observed before, so they are preferable for very short trace series. Non-parametric bootstrap methods 

cannot produce as much variety because they re-sample from observed data directly. They need 

longer trace series, so that there is a wide range of scenarios from which to sample. 

 

A major disadvantage of parametric methods is that one has to find an appropriate model for the 

underlying process. This can be difficult if the underlying process is complicated or poorly 

understood. A poor model may lead to implausible scenarios being generated. By contrast, non-

parametric bootstrap methods can be applied without making assumptions about the underlying 

process. They always produce realistic scenarios because they re-sample data that has actually been 

observed. 

 

The quest for adequate models leads to another disadvantage of parametric methods: complexity. 

Sophisticated models require many model parameters to be calculated, and this can quickly become 

computationally infeasible. In addition, complex models are risky in practice. They can easily be 

misapplied by practitioners who lack rigorous statistical training, because they do not fully understand 

the complicated statistical techniques involved and the associated assumptions. On the other hand, 

non-parametric bootstrap methods typically mimic the observed data in simple, intuitive ways. 

 

The petro-chemical plant, which provides the motivation for this research, is a data-rich environment. 

Since this nullifies the main comparative advantage of parametric methods, non-parametric bootstrap 
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methods become the obvious choice. Thus, this research focuses only on them. They are referred to 

simply as bootstrap methods (although they exclude the parametric bootstrap method, which is model-

based). 

 

2.2 Non-Parametric Bootstrap Methods 

 

Different bootstrap methods are appropriate for different trace series, depending on their correlation 

structures. The bootstrap methods available for a number of cases are surveyed below. Each case is 

illustrated with a figure, which shows an example trace series containing two variables (Figure 1, 

Figure 2, Figure 3 and Figure 5). The lag-1 auto-correlation is shown for each variable (𝑟𝑎 ), as well as 

the cross-correlation between the variables (𝑟𝑐 ). The Spearman rank correlation coefficient is used, 

which is the Pearson correlation coefficient applied to ranked data. A value of 1 means perfect 

positive correlation, 0 means no correlation, and -1 means perfect negative correlation. 

 

2.2.1 Case 1: Each variable in the trace series is independent (no auto- or cross-correlations) 

 

Figure 1 - An example trace series with no auto- or cross-correlation 
 

 

In this case, the simple univariate bootstrap method introduced by Efron (1979) may be used. For 

each variable separately, a new series is generated by re-sampling randomly (with replacement) from 

the observed data in the trace series. Note: The standard parametric method for this case is to fit a 

parametric distribution to the observed data for each variable, and to generate new data by sampling 

randomly from the fitted distributions. 

 

time

𝑟𝑎  ≈ 0 

𝑟𝑐  ≈ 0 

𝑟𝑎  ≈ 0 
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2.2.2 Case 2: The variables in the trace series are cross-correlated, but not auto-correlated 

 

Figure 2 - An example trace series with cross-correlation but no auto-correlation 

 

The simple univariate bootstrap method cannot be used in this case, because if the variables are re-

sampled separately, their inter-dependencies will be destroyed in the generated series. A simple way 

to avoid this problem is to sample all the variables at once, as a vector. This automatically preserves 

the inter-dependencies, but at the expense of variety: only those combinations of values observed in 

the trace series can occur in the generated series, while many others may in fact be possible. Another 

approach is to perform a factor analysis on the variables and bootstrap them in the common factor 

space (Zientek & Thompson 2007). Note: An appropriate parametric method for this case is the 

NORTA method proposed by Cario & Nelson (1997). 

 

2.2.3 Case 3: The variables in the trace series are auto-correlated, but not cross-correlated 

 

Figure 3 - An example trace series with auto-correlation but no cross-correlation 

 

Again, the simple univariate bootstrap cannot be used in this case, because if samples are taken in 

random order, the auto-correlations will be destroyed in the generated series. There are two main 

approaches to overcoming this problem: 

 

time

time

𝑟𝑎  ≈ 0.7 

𝑟𝑐  ≈ 0 

𝑟𝑎  ≈ 0.7 

𝑟𝑎  ≈ 0 

𝑟𝑐  ≈ 0.7 

𝑟𝑎  ≈ 0 
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1. The block approach involves sampling a number of successive timeframes from the trace 

series at once, instead of just one at a time. The idea is that the auto-correlation pattern is 

preserved within each block, although there are discontinuities at the block boundaries in the 

generated series, as shown in Figure 4. 

 

Figure 4 - The block bootstrap re-sampling approach 

 

2. The nearest neighbour approach tries to preserve the auto-correlation by re-sampling such 

that each new sample „fits‟ after the previous one. Each time it samples it asks, “What does 

the generated series look like right now?” and, “When did it look similar to this in the trace 

series”, and then, “At those times, what happened next?” It then samples from one of these 

candidate successors. 

 

The block bootstrap method comes in many varieties: 

 The non-overlapping block bootstrap by Carlstein (1986) samples non-overlapping blocks of 

fixed length. 

 The moving block bootstrap by Kunsch (1989) and Liu & Singh (1992) samples overlapping 

blocks of fixed length. 

time

block 1 block 3block 4block 2

time

block 1 block 2 block 3 block 4

trace 

series

generated 

series
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 The circular block bootstrap by Politis & Romano (1992) modifies the moving block 

bootstrap by looping the trace series around on itself so that the last timeframe leads on to the 

first. 

 The stationary block bootstrap by Politis & Romano (1994) samples blocks whose length is 

sampled from a geometric distribution. 

 The threshold block bootstrap by Park & Willemain (1999) samples non-overlapping blocks 

whose length is chosen such that each block begins and ends at a place where the trace series 

crosses its mean. 

 The matched block bootstrap by Carlstein et al (1998) samples blocks so that they match at 

their ends using Markov chains. 

 

A theoretical comparison of the first four methods by Lahiri (1999) shows that for a given block 

length, all the methods have the same amount of bias asymptotically, but differ in terms of variance, 

as follows: 

 Methods that use overlapping blocks are better than those that use non-overlapping blocks. 

 The circular block bootstrap and the moving block bootstrap are equivalent. 

 The moving block bootstrap is better than the stationary block bootstrap. 

 

Lahiri (1999) also compares his results with Carlstein et al (1998) and concludes that the matched 

block bootstrap performs best of all when block lengths are optimal. However, the matched block 

bootstrap is far more complex and computationally expensive.  Willemain et al (2003) recommend the 

moving block bootstrap “because of its simplicity, prominence, and good performance”. We follow 

their recommendation and choose the moving block bootstrap (with its circular modification) as the 

most suitable block bootstrap method for our purposes. 

 

The method has one parameter, the block length, which is the number of timeframes sampled from the 

trace series at once. Hall et al (1995) show that the performance of the moving block bootstrap 

depends critically on block size. Demirel & Willemain (2002b) find that the optimal block size for 

scenario generation is proportional to the square root of the trace length, where the proportionality 

constant depends on the auto-correlation structure of the trace series. Lahiri (2004) provides a 

thorough survey of the available methods for estimating optimal block length, but these are designed 

for statistic-estimation rather than scenario generation. 
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The methods that follow the nearest neighbour approach (nearest neighbour methods) differ in the 

way they choose each new sample, as follows: 

 Number of previous timeframes compared – When matching the „current state‟ of the 

generated series with the trace series, a number of recent  timeframes may be compared. The 

longer the memory of the auto-correlation structure, the more timeframes need to be 

compared.  Lee & Ouarda (2011) propose a method for choosing this number based on the 

Akaike information criterion, but since our scope is limited to short memory auto-correlation, 

we choose to compare only the most recent timeframe. 

 Number of candidates considered – All the timeframes in the trace series are ranked 

according to how well they resemble the current state of the generated series. Only the 

successors of the best matches are considered as candidates. The number of candidates 

considered may be chosen using: 

o an objective criterion proposed and tested by Lall & Sharma (1996) and supported by 

Rajagopalan & Lall (1999) 

o an approach proposed by Lee & Ouarda (2011) based on the Akaike information 

criterion 

o the following heuristic:  

  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 =   𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑓𝑟𝑎𝑚𝑒𝑠 𝑖𝑛 𝑡𝑒 𝑡𝑟𝑎𝑐𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 (1) 

Lall & Sharma (1996) and Rajagopalan & Lall (1999) have observed that the rule of thumb 

works well in practice when the trace series has more than 100 timeframes and no more than 

six previous timeframes are compared for matching. The trace series encountered at the petro-

chemical plant are typically quite long, and we are only comparing one timeframe, so we 

choose the rule of thumb for its simplicity. 

 Successor selection method – The successor (next sample) can be chosen from the candidates 

randomly, or by weighting the candidates so that the more closely the neighbour resembles 

the current state of the generated data, the better the chances of its successor being chosen. 

We choose the weighting scheme advocated by Lall & Sharma (1996) for its simplicity and 

effectiveness. 

o  Let the number of candidates be K. 

o Rank these candidates from “best match” to “worst match”. 

o Assign a probability 𝑃𝑗  to the 𝑗𝑡  candidate as follows: 𝑃𝑗 =
1 𝑗 

 (1 𝑖 )𝐾
𝑖=1

.  (2) 

o Sample from these candidates with probabilities 𝑃𝑗 . 

Note that because nearest neighbour methods choose each new generated timeframe based on the 

previous ones, the first few generated timeframes must be sampled randomly from trace series. This 

warm-up period is discarded once the generated series is complete. Note also that an appropriate 
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parametric method for this case is the ARTA method proposed by Biller & Nelson (2005), with the 

ARTAFIT fitting algorithm (Biller & Nelson 2008). 

 

2.2.4 Case 4: The variables in the trace series are both auto-correlated and cross-correlated 

 

Figure 5 - An example trace series with auto- and cross-correlation 

 

This is the combination of Case 2 and Case 3. It is a simple matter to generalize the moving block 

bootstrap method so that it is suitable for multivariate trace series. Instead of blocks being re-sampled 

for each variable separately, all the variables are re-sampled together, in a vector block. The nearest 

neighbour method can also be generalized for multivariate trace series with the vector-sampling 

approach; however, a complication is introduced: to find nearest neighbours, the „current state‟ of the 

generated series must be compared to the trace series for all the variables at once. A vector distance 

measure is required. Teknomo (2006) provides a thorough survey of the many vector distance 

measures that are available for various data types. With possible future research in mind, we use a 

ranked weighted city block distance measure because it can be applied to trace series with mixed data 

types. 

 

Suppose we have a vector representing the current state of the generated series, called the feature 

vector, and a number of candidate vectors from the trace series. We identify which candidate vectors 

are most similar to the feature vector as follows: 

 Calculate the absolute difference between each variable in the feature vector and the 

corresponding variable in each of the candidate vectors. 

 For each variable, rank the candidate vectors from smallest difference to largest difference. 

 For each candidate vector, calculate the weighted sum of the ranks of all its variables, 

weighting according to strength of each variable‟s auto-correlation (calculated from  the trace 

series), because it is most important to preserve the strongest auto-correlations. 

 The lower this summed rank, the closer the candidate vector is to the feature vector. 

time

𝑟𝑎  ≈ 0.4 

𝑟𝑐  ≈ 0.8 

𝑟𝑎  ≈ 0.7 
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Because this method compares distances for each variable before combining them for each vector, no 

standardization is required between variables, even if they are on different scales or of different types. 

 

Note: An appropriate parametric method for this case is the copula-based multivariate time-series 

input model (which includes VARTA as a special case) proposed by Biller (2009). 

 

2.3 The Importance of Preserving Dependencies 

 

Sometimes it can be safely assumed (using statistical tests, judgement and experience) that the trace 

series is free from auto- and/or cross-correlations, or that they are unimportant for the simulation 

model at hand. At these times the simpler bootstrap methods presented for Cases 1, 2 and 3 should be 

used, because although the more sophisticated bootstrap methods will work for simpler cases, they 

require more computation time and sacrifice some variety. However,  if there is any doubt, the more 

sophisticated bootstrap methods for Case 4 should be used. Neglecting relevant dependencies can 

have a serious impact on simulation results. In some cases, it can render the findings completely 

invalid. Civelek et al (2009) provide an exhaustive survey of empirical, analytic and simulation 

research showing that: 

 Auto- and cross-correlations occur widely in practice in industries like manufacturing, 

services and telecommunications. 

 Neglecting these dependencies when generating input scenarios can have a major effect on 

simulation outputs (such as utilization and waiting time for queuing systems). 

 

In the following sections, algorithms are given for the two bootstrap methods mentioned for Case 4. 

 

2.4 The Vector Moving Block Bootstrap Method (VMB) 

 

Given a trace series with 𝑝 variables and 𝑛 timeframes, produce a generated series of any length as 

follows: 

1. Choose a block length, 𝑏. 

2. Randomly choose a timeframe from the 𝑛 timeframes in the trace series. 

3. Starting at this timeframe, sample a vector block from the trace series (𝑝 variables ×  𝑏 

timeframes). If the sampling block overlaps the end of the trace series, let it continue at the 

beginning. 

4. Repeat steps 2 and 3 until the generated series exceeds the required length. 

5. Truncate the generated series to the exact length required. 
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2.5 The Vector Nearest Neighbour Bootstrap Method (VNN) 

 

Given a trace series with 𝑝 variables and 𝑛 timeframes, produce a generated series of any length as 

follows: 

1. For each variable, calculate the Spearman correlation between each value in the trace series and 

its previous value. This is the lag-1 auto-correlation for that variable (𝑟𝑎 ). 

2. Sample a timeframe randomly from the trace series. Set this as the start of the generated series. It 

serves as the „warm-up‟ period. 

3. Then, for each subsequent timeframe in the generated series: 

 Compare the previous timeframe in the generated series to every timeframe in the trace series, 

calculating the absolute difference between each of the variables. 

 For each variable, rank the timeframes in the trace series according to this absolute difference, 

in ascending order. 

 For each timeframe, calculate the weighted sum of these ranks, weighting each variable 

according the magnitude of its 𝑟𝑎 . 

 Rank the timeframes in the trace series according to this weighted sum, in ascending order. 

 Choose randomly from the best  𝑛  candidate timeframes (rounded down to the nearest 

whole number), according to the probabilities defined by Lall & Sharma (1996), as described 

in section 2.2.3. 

 Sample the successor timeframe of the chosen candidate as the new timeframe in the 

generated series. 
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3 OBJECTIVES 

 

The objective of the research is to compare the VMB and VNN bootstrap methods to determine which 

method generates the most realistic scenarios for simulations at the petro-chemical plant. The testing 

is empirical, using trace series that have been observed from the plant. 

 

The VMB bootstrap method has one parameter, the block length, which has a profound impact on 

performance. We consider two cases: 

 Block length of one timeframe (VMB1) - This is the simplistic case appropriate for when 

there is no auto-correlation in the trace series. We consider it as a control, because it is the 

method currently used at the petro-chemical plant. 

 Optimized block length (VMBopt) - The VMB bootstrap method is applied to each trace series 

at every possible block length. The block length with the best overall performance for a given 

trace series is chosen. 

 

So, we want to compare the performance of three bootstrap methods: VMB1, VMBopt and VNN. 
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4 EXPERIMENTAL DESIGN AND METHOD 

 

4.1 Dependent Variable – A Quality Measure 

 

To compare the performance of the bootstrap methods objectively, we need a quantitative statistical 

measure of the quality of the generated scenarios. High quality scenarios are realistic scenarios. To be 

realistic, they must satisfy two criteria: 

1. Fidelity - Obviously, the generated scenarios must be similar to the observed data, with the 

same essential characteristics. The properties of each variable in the trace series must be 

preserved in the generated series, namely its: 

 statistical distribution 

 auto-correlation structure 

 cross-correlation structure 

2. Variety - However, the generated scenarios must not be identical to the observed data, 

because the process creating the trace data is stochastic not deterministic. Successive 

realizations of this process would produce different observed data. Therefore, the generated 

data must also have some realistic variation. (To illustrate the point, imagine that the whole 

trace series was just replayed repeatedly to make the generated series. The statistics would 

then be identical, but there would be no variety. This is certainly not realistic.) 

 

An appropriate quality measure must reconcile these two competing objectives. Demirel & Willemain 

(2002b) note that many studies measuring bootstrap performance fail to do so, and propose that the 

correct approach is to phrase the quality measure as a Turing test (Demirel & Willemain 2002a). The 

idea behind a Turing test is as follows. Say you are shown Series A, which has been observed from 

some process. You are then shown Series B and C. Series B has been observed independently from 

the same process, while Series C has been generated from Series A using a bootstrap method. If you 

can‟t tell which is which, between Series B and C, then the generated series has a high quality, 

showing both fidelity and variety. In other words, a high quality generated series is as similar to the 

trace series as independent realizations of the trace series are to each other. 

 

The VMB and VNN bootstrap methods do not attempt to achieve variety in the statistical distributions 

of the trace series, because they resample from the trace series directly. This is the disadvantage of all 

bootstrap methods compared with parametric methods. We assume that the two methods do achieve 

fidelity, because they only resample observed data, and do so in random ways. 
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Similarly, both methods sacrifice variety regarding cross-correlations, in favour of fidelity. They both 

sample each timeframe in the generated series at once, as a vector, from the trace series. This 

approach means that only the specific combinations of variables that have been observed in the trace 

series can occur in the generated series. This is not ideal, because we want to expose the simulation 

model to as wide a range of potential input scenarios as possible. However, the problem is not so 

serious if the trace series is long, because it already contains a variety of combinations. This is 

typically the case at the petro-chemical plant. Although not ideal, the vector approach seems sufficient 

for our purposes. 

 

Regarding auto-correlations, the VMB and VNN bootstrap methods are both able to achieve a balance 

between fidelity and variety. The VMB achieves the trade-off by varying the block length. The longer 

the block length, the better the fidelity. The shorter the block length, the better the variety. An optimal 

block length can be found for each individual trace series. The VNN achieves the trade-off by the way 

it chooses from the candidate timeframes in the trace series. Variety is introduced by selecting 

randomly from the best  𝑛 candidates. Fidelity is sought by weighting the selection probabilities so 

that the candidates that match best have the greatest chance of being sampled. 

 

We want to compare the two methods according to how realistically they reproduce the auto-

correlations for each variable in the trace series. We perform a Turing test by answering three 

questions:  

1. How similar are independent realizations of the trace series to each other? 

2. How similar are the generated series to the trace series? 

3. How closely do these similarities match? 

 

To answer questions 1 and 2 for each variable in the series, we must quantify the difference in auto-

correlation structure between two univariate series. Auto-correlation functions and spectra may be 

used, but Demirel & Willemain (2002b) recommend the delta (∆) difference measure because of its 

resistance to outliers. The measure is based on the higher order crossings (HOC) of each series, 

which are calculated as follows: 

 Subtract the series mean from the series. Count the number of times this mean-centred series 

crosses the zero-line, to give the first higher order crossing count, HOC(1). 

 Calculate the difference between successive timeframes in the mean-centred series. This gives 

the first difference series. Count the number of times it crosses the zero-line, to give HOC(2). 

 Calculate the difference between successive timeframes in the first difference series. This 

gives the second difference series. Count the number of times it crosses the zero-line, to give 

HOC(3). 
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 Repeat up to HOC(10), which is sufficient to characterize short-memory time series for 

scenario-generation purposes (Demirel & Willemain 2002b). 

 Note: If a difference series never crosses zero, set the HOC to 1. If  it crosses zero at every 

timeframe, subtract 1 from the HOC. These adjustments are made to avoid dividing by zero in 

subsequent calculations. 

 

The ∆ difference measure between series 𝑖 and series 𝑗 (each 𝑛 timeframes long) is then defined as: 

  ∆=   
𝑑𝑘𝑖−𝑑𝑘𝑗

𝑆𝐸 𝑑𝑘𝑖−𝑑𝑘𝑗  
 

2
10
𝑘=1         (3) 

where:  𝑑𝑘𝑖 = 𝐻𝑂𝐶 𝑘  𝑛 − 𝑘   for series 𝑖 

  𝑑𝑘𝑗 = 𝐻𝑂𝐶 𝑘  𝑛 − 𝑘   for series 𝑗 

  𝑆𝐸 𝑑𝑘𝑖 − 𝑑𝑘𝑗  =  
𝑑𝑘𝑖  1−𝑑𝑘𝑖  +𝑑𝑘𝑗  1−𝑑𝑘𝑗  

𝑛−𝑘
  

Simulation experiments by Demirel & Willemain (2002b) show that ∆ follows a log-normal 

distribution. 

 

Unfortunately, a problem arises in answering question 1 for real-world simulation scenarios, because 

we  seldom have multiple independent realizations of the trace series. We usually just have one, and 

we want to get maximum value from it. Demirel & Willemain (2002b) propose getting around this 

problem by dividing the trace series into a number of subseries, and comparing these to each other. 

We use an adaptation of their method, answering the three Turing test questions as follows. 

 

We have one observed trace time series, with a length of 𝑛 timeframes, containing 𝑝 variables. We 

then: 

1. Divide the trace series into 𝑠 non-overlapping subseries of equal length (𝑚 timeframes long), 

where 𝑠 =  𝑛 (rounded down to the nearest whole number) and 𝑚 is the quotient of 𝑛 and 𝑠. 

Compare each subseries to every other subseries, calculating ∆ for each pair of subseries. This 

results in  
𝑠
2
  samples of ∆ for each variable. These samples estimate the true distribution of 

∆ for each variable. 

2. From each of the 𝑠 subseries, generate 𝑠 new series of length 𝑚 using a bootstrap method. 

Compare each new generated series to its trace subseries, again calculating ∆ for each 

variable. This results in 𝑠2 samples of ∆ for each variable. These samples estimate the 

generated distribution for each variable. 

3. Compare the true and generated distributions for each variable, calculating the Kolmogorov-

Smirnov 𝐷-statistic. For each variable, calculate the quality measure 𝑄, which we define as 

𝑄 = 𝑙𝑛  1 − 𝐷 𝐷   for good statistical properties. The higher the 𝑄 value, the better the 
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distributions match, the better the quality of the generated series for that variable. (Note: The 

natural range of 𝐷 is [0,1]. To give 𝑄 a finite range, we limit the range of 𝐷 to [0.018,0.982]. 

This gives 𝑄 a range of [-4,4].) 

Thus 𝑄 serves as the measure by which performance is quantified, and is the dependent variable in the 

experimentation. 

 

4.2 Influencing Factors 

 

Our scope is limited to stationary trace series containing numerical data, with short-memory auto-

correlation and simple cross-correlation. Other factors that may affect the quality of generated 

scenarios, for a given trace series are discussed below. 

 The number of variables in the trace series. In the experimentation, we vary it between three 

levels: 2, 4 and 8 variables. Each trace series that is observed in the experimentation can take 

only one of these levels, so this is a between-subjects factor. (These levels were just chosen 

for convenience, to make good use of the available data.) 

 The bootstrap method used – In the experimentation, we vary it between three levels: VMBopt, 

VNN, and VMB1. Each method can be applied to each observed trace series, so this is a 

within-subjects factor. 

 Random effects arising from the individual nature of each trace series, and from the 

randomness in the method algorithms. 

Note: 

 The bootstrap methods deal with timeframes in a general way, so the quality does not depend 

on whether they represent seconds, minutes or hours, etc. 

 The length of the trace series cannot affect quality, because the quality measures are defined 

in comparison to the trace series. 

 

4.3 Hypotheses 

 

We want to test whether performance depends on the number of variables in the trace series (for a 

given method), so we test the null hypothesis 𝐻1,0: 𝑄 does not depend on the number of variables in 

the trace series against the alternative hypothesis 𝐻1,𝐴: 𝑄 depends on the number of variables in the 

trace series for each method separately. 

 

More importantly, we want to test whether performance depends on the method used (for a given 

number of variables in the trace series), so we test the null hypothesis 𝐻2,0: 𝑄 does not depend on the 

bootstrap method that is used against the alternative hypothesis 𝐻2,𝐴: 𝑄 depends on the bootstrap 
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method that is used. If 𝐻1,0 is not rejected for any method, we can combine all the different numbers 

of variables to test 𝐻2,0. Otherwise, 𝐻2,0 must be tested separately for each number of variables. Note: 

All hypothesis tests are done at the 5% significance level. 

 

4.4 Sampling  

 

Empirical trace series were observed from processes at the petro-chemical plant, as follows: 

 16 separate trace series containing 2 variables each (32 variables in total) 

 8 separate trace series containing 4 variables each (32 variables in total) 

 4 separate trace series containing 8 variables each (32 variables in total) 

Because each variable gives an estimate of 𝑄, this yields 32 estimates for each level of the between-

subjects factor (the number of variables in the trace series). Thus the design is balanced. 

 

The trace series were selected by a chemical engineer working at the plant (Branca 2011) such that the 

variables in each trace series are: 

 known to be linked in a physical way 

 likely to be used as simultaneous inputs to a simulation model 

 more-or-less stationary time series (from cursory visual inspection) 

 

We hope that the total sample of 96 variables includes a fair variety of correlation structures, but we 

cannot guarantee that it is truly representative. Furthermore, the samples only come from one field – 

petro-chemical processes - so the applicability of the findings is limited to that field, strictly speaking. 

However, this restriction can be cautiously relaxed if inspection of data from other fields shows 

similar behaviour. 

 

The variables in the sampled trace series represent physical measurements such as temperatures, 

pressures, flow rates, etc. The data are supplied digitally on a compact disc in Appendix A. To protect 

the intellectual property of the petro-chemical company, no names are given and each variable has 

been standardised by subtracting the mean and dividing by the standard deviation. This does not affect 

the correlations or result in any loss of generality. 

 

4.5 Computations 

 

The R language for statistical computing was used to perform the required computations. The script is 

included digitally in Appendix A and printed in Appendix B. 𝑄 was calculated for each variable in 

each trace series.  
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5 OBSERVATIONS 

 

Table 2, Table 3 and Table 4 show the 𝑄 values that were calculated for each variable in each trace 

series, for each bootstrap method. The first two columns index the variable and trace series to which 

the bootstrap methods were applied. The next column gives the value of the between-subjects factor 

(the number of variables in the trace series). The final three columns give the 𝑄 values for each level 

of the within-subjects factor (the method used). 

 

Table 2 - 𝑄 observations: 2 variables in trace series 

Variable no Trace series no 

Number of 

variables in 

trace series 

VMB1 VMBopt VNN 

1 1 2 -1.46 2.85 -0.12 

2 1 2 0.89 1.33 -0.75 

3 2 2 -3.20 0.96 0.63 

4 2 2 -4.00 2.52 -0.95 

5 3 2 -2.36 1.32 -0.13 

6 3 2 -1.00 0.18 -0.08 

7 4 2 -3.48 2.59 0.54 

8 4 2 -2.78 1.28 1.32 

9 5 2 -4.00 2.93 -0.90 

10 5 2 -3.10 0.86 0.44 

11 6 2 -0.29 2.15 0.93 

12 6 2 1.83 1.56 0.90 

13 7 2 -0.55 0.93 1.15 

14 7 2 -4.00 -1.30 -1.92 

15 8 2 1.64 0.13 1.41 

16 8 2 -2.11 2.26 1.67 

17 9 2 -0.07 1.32 2.18 

18 9 2 0.15 1.77 1.56 

19 10 2 -1.81 1.60 0.79 

20 10 2 -2.17 1.54 0.73 

21 11 2 -2.05 1.64 -0.07 

22 11 2 -2.19 1.02 0.60 

23 12 2 -0.79 0.68 0.78 

24 12 2 -0.99 0.91 -0.92 

25 13 2 -2.23 -0.11 -0.24 

26 13 2 -1.92 1.45 0.97 

27 14 2 -3.49 2.74 0.12 

28 14 2 2.76 0.51 -0.40 

29 15 2 0.55 0.19 0.89 

30 15 2 -3.28 2.49 -0.93 

31 16 2 -0.26 0.86 0.27 

32 16 2 -2.51 3.02 -0.12 
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Table 3 - 𝑄 observations: 4 variables in trace series 

Variable no Trace series no 

Number of 

variables in 

trace series 

VMB1 VMBopt VNN 

33 17 4 -1.42 0.37 1.15 

34 17 4 -4.00 -1.10 -1.11 

35 17 4 -2.74 1.55 0.51 

36 17 4 -2.18 2.64 -0.49 

37 18 4 -1.91 0.77 0.89 

38 18 4 -0.02 1.26 1.57 

39 18 4 -0.52 1.84 1.48 

40 18 4 -0.48 1.97 1.96 

41 19 4 -2.15 1.42 0.52 

42 19 4 -1.65 1.68 1.09 

43 19 4 -2.83 1.31 0.74 

44 19 4 -1.84 0.97 0.73 

45 20 4 -1.93 1.55 0.83 

46 20 4 2.21 1.43 -1.04 

47 20 4 -3.09 0.88 0.20 

48 20 4 -2.63 1.27 0.73 

49 21 4 -1.00 0.81 1.07 

50 21 4 -1.23 2.81 -0.05 

51 21 4 -2.98 -1.26 -1.40 

52 21 4 -3.42 1.63 1.15 

53 22 4 -0.34 1.26 1.46 

54 22 4 -0.36 0.79 0.61 

55 22 4 -0.61 1.53 1.58 

56 22 4 -4.00 0.16 0.42 

57 23 4 2.27 1.72 -0.33 

58 23 4 0.71 2.14 -2.05 

59 23 4 -0.06 1.45 -1.53 

60 23 4 1.35 1.87 -0.79 

61 24 4 -1.32 1.41 0.77 

62 24 4 -1.22 0.66 0.57 

63 24 4 -2.21 0.51 0.27 

64 24 4 -0.94 0.87 0.71 
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Table 4 - 𝑄 observations: 8 variables in trace series 

Variable no Trace series no 

Number of 

variables in 

trace 

VMB1 VMBopt VNN 

65 25 8 -0.74 0.90 0.56 

66 25 8 -4.00 1.58 0.30 

67 25 8 -1.16 1.73 2.00 

68 25 8 -0.23 -0.09 0.67 

69 25 8 0.43 1.02 0.67 

70 25 8 -1.20 0.53 -0.22 

71 25 8 -1.60 1.40 0.75 

72 25 8 -1.69 0.57 -0.45 

73 26 8 -0.19 1.58 1.29 

74 26 8 0.73 3.04 0.65 

75 26 8 0.16 1.81 1.67 

76 26 8 0.05 1.91 1.60 

77 26 8 -1.78 -0.04 0.67 

78 26 8 -0.04 2.08 1.51 

79 26 8 -1.06 0.57 2.05 

80 26 8 0.27 1.55 1.91 

81 27 8 -3.12 1.54 0.09 

82 27 8 -2.63 2.13 0.54 

83 27 8 -4.00 1.15 -0.16 

84 27 8 2.66 1.04 -1.03 

85 27 8 -4.00 1.11 -0.65 

86 27 8 -0.65 -0.19 0.74 

87 27 8 -1.03 0.72 1.10 

88 27 8 -0.89 0.52 1.54 

89 28 8 -0.04 2.30 0.61 

90 28 8 1.03 2.12 -0.27 

91 28 8 0.32 2.22 0.31 

92 28 8 -0.14 1.22 -1.97 

93 28 8 -0.31 1.86 0.34 

94 28 8 -0.99 2.11 1.83 

95 28 8 1.71 1.17 0.47 

96 28 8 1.05 1.78 -0.45 
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6 RESULTS 

 

6.1 The Effect of the Number of Variables in the Trace Series 

 

We want to determine if and how the dependent variable (𝑄) is affected by the between-subjects 

factor (the number of variables in the trace series). This question must be answered for each method 

separately. The appropriate parametric test is one-way analysis of variance (ANOVA), which makes a 

number of assumptions about the data. In general, the assumptions involve residuals, which are the 

differences between the observed values and those predicted by the model, but for one-way ANOVA, 

the assumptions can be tested from the data directly, as follows: 

 The dependent variable must be normally distributed at each level of the between-subjects 

factor. 

 The standard deviation of the dependent variable must be similar at all the levels of the 

between-subjects factor, with a maximum difference factor of 2. 

 There must be no serious outliers or influential points. 

 

Figure 6 shows box-and-whisker plots of the observed 𝑄 values separately for each method, for each 

number of variables. In each  plot, the bold line shows the median, which gives an indication of the 

central tendency of the data.  The “box” shows the inter-quartile range, which gives and indication of 

the spread (or variance) of the data. The “whiskers” extend beyond the box edges no more than 1.5 

times the box length, and the outliers beyond the whiskers are shown as circles. 
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Figure 6 - Sample distributions of 𝑄 at various factor levels 

 

From these plots we can see that:  

 For each method, the spread of the data is fairly similar between the numbers of variables. 

 Some of the groups‟ distributions are quite skew (e.g. VMB1 - 2 variables, VMBopt - 2 

variables, and VNN - 4 variables). However, there does not seem to be a consistent direction 

or pattern to the skewness. 

 For each method, there are small differences in median performance between the number of 

variables. When viewed in the context of the spread of the data, these differences seem 

negligible. 
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Table 5 shows the sample mean, standard deviation, median and inter-quartile range for each group. A 

Kolmogorov-Smirnov test was done for each group to test the null hypothesis that the data comes 

from a normal distribution, using the ksnormTest() function from the fBasics package in R. The two-

sided 𝑝-values from these tests are also given in the table. 

 

Table 5 - Sample statistics - 𝑄 

Group Method 
Number of 

variables 

Sample 

mean 

Sample 

standard 

deviation 

Sample 

median 

Sample inter-

quartile range 

Kolmogorov-

Smirnov 𝑝-

value (2-sided) 

1 VMB1 2 -1.5 1.8 -2.0 2.6 3.7 × 10-08 

2 VMB1 4 -1.3 1.6 -1.4 1.9 7.0 × 10-07 

3 VMB1 8 -0.7 1.6 -0.5 1.5 3.7 × 10-02 

4 VMBopt 2 1.4 1.0 1.3 1.3 5.3 × 10-11 

5 VMBopt 4 1.2 0.9 1.4 0.8 3.6 × 10-10 

6 VMBopt 8 1.3 0.8 1.5 1.0 1.0 × 10-11 

7 VNN 2 0.3 0.9 0.5 1.1 1.1 × 10-01 

8 VNN 4 0.4 1.0 0.7 1.2 2.2 × 10-03 

9 VNN 8 0.6 0.9 0.6 1.3 1.0 × 10-03 

 

From the table we see that for each method, the standard deviation is similar between the numbers of 

variables, with a maximum difference factor of 1.25 (between groups 4 and 6). However, 8 of the 9 

groups show non-normality when tested at the 5% significance level, and some show serious non-

normality (very small 𝑝-values). Since there is no obvious pattern to the skewness, it is unlikely that 

normality can be achieved by means of a transformation. Therefore, we cannot use one-way ANOVA, 

and must resort to a non-parametric test to examine the effect of the number of variables (for each 

method separately). The Kruskal-Wallis rank sum test provides an appropriate alternative because: 

 the number of variables is a between-subjects factor with more than two levels, and 

 the spread of 𝑄 is similar at these three levels (for each method separately). 

 

We rephrase the null hypothesis more specifically as 𝐻1,0: The median  𝑄 does not depend on the 

number of variables in the trace series (𝜇2𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝜇4𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝜇8𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ). The alternative 

hypothesis is then 𝐻1,𝐴: The median  𝑄 depends on the number of variables in the trace series 

(𝜇2𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ≠ 𝜇4𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑜𝑟  𝜇2𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ≠ 𝜇8𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑜𝑟 𝜇4𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ≠ 𝜇8𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ). 
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These hypotheses were tested for each method separately using the overall Kruskal-Wallis test, which 

was applied in R using the kruskal.test() function from the stats package. The results are shown in 

Table 6.  

 

Table 6 - Overall Kruskal-Wallis results 

Method Kruskal-Wallis chi-squared (𝜒2) 𝑝-value (2-sided) 

VMB1 5.87 0.053 

VMBopt 0.56 0.755 

VNN 0.79 0.673 

 

The p-values for the VMBopt and VNN bootstrap methods are much greater than 0.05, so we fail to 

reject 𝐻1,0 for them. We find no evidence to suggest that the median  𝑄 depends on the number of 

variables in the trace series for these methods.  The 𝑝-value for the VMB1 method, however, is only 

just greater than 0.05. We provisionally fail to reject 𝐻1,0 for this method also, but note that this 

failure might be because the Kruskal-Wallis test does not have enough power at these sample sizes. (It 

is difficult to evaluate the power of the test because it is non-parametric, and we do not know the 

exact underlying distribution of the data.) 

 

6.2 The Effect of the Method Used 

 

Because we find no significant effect on 𝑄 by the number of variables, we can combine all the 

observed trace series when testing the effect of the bootstrap method used. We thus have 96 observed 

trace series, to which all three bootstrap methods have been applied. We wish to test 𝐻2,0 to determine 

whether any of the methods is better than the others. The bootstrap method used is a within-subjects 

factor, so the appropriate parametric test is repeated-measures ANOVA. This equates to a two-way 

ANOVA with each subject treated as a separate level of an index factor. In this case, we must test the 

assumptions on the residuals, as follows: 

 The residuals must be normally distributed at each level of the within-subjects factor. 

 The standard deviation of the residuals must be similar at all the levels of the within -subjects 

factor, with a maximum difference factor of 2. 

 There must be no serious outliers or influential points. 

In addition, repeated-measures ANOVA has the assumption of sphericity, which requires that the 

differences in 𝑄 between all possible pairs of levels of the within-subjects factor have similar standard 

deviations. 
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A repeated-measures ANOVA model (type III) was fitted to the observed data using the R function 

ezANOVA() from the ez package, and the residuals were calculated. Figure 7 shows box-and-whisker 

plots of the residuals for each method. From the plots we can see that:  

 The spread of the data is fairly similar between the methods. 

 The distributions seem to be symmetrical for VMB1 and VMBopt, but negatively skewed for 

VNN. 

 All three methods show some outliers. 

 

 

Figure 7 - Distributions of ANOVA residuals for the three bootstrap methods 
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Table 7 shows the standard deviation of the residuals for each method.  Again, a Kolmogorov-

Smirnov test was done for each method‟s residuals to test the null hypothesis that the data comes 

from a normal distribution. As before, the tests were done in R using the ksnormTest() function 

from the fBasics package. The two-sided 𝑝-values are given in the table. 

 

Table 7 - Sample statistics - residuals 

Method 
Standard 

deviation 

Kolmogorov-Smirnov 

𝑝-value (2-sided) 

VMB1 1.15 0.653 

VMBopt 0.84 0.126 

VNN 0.84 0.004 

 

From the table we see that the standard deviation is similar between the methods, with a maximum 

difference factor of 1.4. However, the distribution for the VNN method shows non-normality when 

tested at the 5% significance level, with a 𝑝-value of 0.004. It is unlikely that normality can be 

achieved by means of a transformation, because the residuals follow normal distributions already for 

the other methods. This is confirmed by a plot of residuals versus predicted values in Figure 8 which 

shows no obvious pattern to suggest an appropriate transformation. 

 

Figure 8 - ANOVA residuals vs predictions 
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Because the normality assumption is violated, we cannot use repeated-measures ANOVA. No 

sphericity tests are necessary. We must resort to a non-parametric test instead, to compare the 

bootstrap methods. Two alternatives are available for testing the effect of a within-subjects factor with 

more than two levels: the Friedman test and the Quade test. Conover (1999) states that the more 

powerful test is Quade if the within-subjects factor has 4 or fewer levels, and Friedman otherwise. 

Since we have only three methods, we use the overall Quade test. We rephrase the null hypothesis 

more specifically as 𝐻2,0: There is no median difference in 𝑄 between the bootstrap methods 

(𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) = 0  𝑎𝑛𝑑  𝜇(𝑉𝑁𝑁−𝑉𝑀𝐵1) = 0  𝑎𝑛𝑑  𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑁𝑁) = 0). The alternative hypothesis 

is then 𝐻2,𝐴: There is a median  difference in 𝑄 between the bootstrap methods (𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) ≠

0  𝑜𝑟  𝜇(𝑉𝑁𝑁−𝑉𝑀𝐵1) ≠ 0  𝑜𝑟  𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑁𝑁) ≠ 0). 

 

Figure 9 shows box-and-whisker plots of the differences in 𝑄 between the three bootstrap methods. 

We see a pronounced difference between VMBopt and VMB1, and between VNN and VMB1, but it is 

not clear whether there is a significant difference between VMBopt and VNN. We expect to reject 

𝐻2,0. 

 

Figure 9 - Differences in 𝑄 between bootstrap methods 
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The overall Quade test was applied in R using the quade.test() function from the stats packages. A 

Quade 𝐹-value of 88.6, and a 𝑝-value of  less than 2.2×10-16 were calculated. This 𝑝-value is much 

less than our cut-off of 0.05. Therefore we reject 𝐻2,0 as expected, and provisionally conclude that 

there is a median  difference in 𝑄 between the bootstrap methods. In other words, the bootstrap 

method that is used does have a statistically significant effect on performance, 𝑄. 

 

Next, we want to determine where these differences lie. We cannot simply apply a test for paired data 

(such as the Wilcoxon signed rank test) for each pair of methods, because this involves reusing data. 

Instead, multiple comparison tests are needed that adjust the significance level so as to reveal only 

honestly significant differences between the methods. Since R does not include a function to perform 

Quade multiple comparison tests, the algorithm given in Appendix C was followed. The pair-wise 

difference hypotheses and the test results are shown in Table 8, along with the sample median 

difference between each pair of methods. Because every null hypothesis was rejected, we can 

provisionally conclude that VMBopt performs significantly better than VNN, which performs 

significantly better than VMB1, when tested at the 5% level of significance. We cannot evaluate the 

power of the non-parametric Quade test at these sample sizes, but it is immaterial in this case, because 

significant differences were detected. 

 

Table 8 - Multiple comparison tests results 

Null hypothesis 
Alternative 

hypothesis 

Median 

difference 

(sample) 

1-sided 

𝑝-value 

𝛼/2 

(critical 

value) 

Conclusion 

𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) = 0 𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) ≠ 0 2.2 7.3×10-11 2.5×10-2 
Reject null 

hypothesis 

𝜇(𝑉𝑁𝑁−𝑉𝑀𝐵1) = 0 𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) ≠ 0 2.0 3.9×10-4 2.5×10-2 
Reject null 

hypothesis 

𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑁𝑁) = 0 𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) ≠ 0 0.59 4.6×10-4 2.5×10-2 
Reject null 

hypothesis 
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7 DISCUSSION 

 

For the sample data from the petro-chemical plant, the number of variables in the trace series was not 

found to have a significant effect on the performance of any of the bootstrap methods. This result is 

useful in practice, because one may not be sure whether certain inputs to a simulation model are 

cross-correlated or not. The result tells us that if there is any doubt about the inter-dependence of the 

input variables, it is better to combine them into one trace series before applying a bootstrap method. 

Doing this will not cause a significant loss in performance regarding the preservation of auto-

correlations. (Note: It will still result in a loss of variety between the variables, because they will be 

sampled together as a vector.) 

 

The conclusion regarding the effect of the number of variables was marginal for the VMB1 method. It 

might just have been a result of the test used and the sample size. Fortunately, this uncertainty does 

not matter much, because one would not use the VMB1 method anyway. It was only tested as a 

control and performed worse than the other methods, as expected. 

 

The VMBopt method performed better than the VNN method. This could be because of the simplistic 

nearest-neighbour matching algorithm used, which only compared one previous timeframe. A 

different one could have been used, but the ideal matching algorithm could be different for each trace 

series, depending on its auto-correlation structure. The VMBopt method has the advantage that it 

automatically adjusts itself to the auto-correlation structure of each trace series, because it uses 

whichever block length performs best. This „brute force‟ optimization is practical for the VMBopt 

method because it is quick enough that many block lengths can be applied and tested. It would be 

infeasible for the VNN method though, because it is much more computationally intensive. Another 

possible explanation for the better performance of the VMBopt method is the general approach used. It 

might just be more effective to preserve auto-correlations by re-sampling data in blocks, rather than 

by trying to make each new re-sampled timeframe „fit‟ after the previous one. Whatever the reason, 

the VMBopt method performed best for the trace series from the petro-chemical plant, and should be 

used in preference. 

 

Both the VMBopt and VNN methods performed much better than the control VMB1 method. This is 

not surprising. The VMB1 method destroys the auto-correlations in the trace series by definition, 

because it samples individual timeframes in random order. As the block length increases, fidelity to 

the auto-correlation structure of the trace series increases. If the block length increases too much, 

though, the generated series loses variety, and starts looking too much like the trace series. The 

optimal block length is a compromise between the two. The effect of the block length is illustrated in 

the figures below. Figure 10 shows an example univariate trace series, 100 timeframes long, that has 
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some auto-correlation (𝑟𝑎  ≈ 0.7). Figure 11 shows the generated series by the VMB1 bootstrap 

method, which has a block length of one timeframe. It is clear from the pattern of the generated series 

that the auto-correlation of the trace series is not preserved. Figure 12 shows the generated series by 

the VMB bootstrap method with a block length of 25 timeframes. The auto-correlation pattern is 

preserved, but the generated series resembles the trace series unrealistically closely. 

 

 

Figure 10 - Example univariate trace series 

 

 

Figure 11 - Generated series by the VMB1 bootstrap method (block length of 1 timeframe) 

 

 

Figure 12 - Generated series by the VMB bootstrap method (block length of 25 timeframes) 
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The performance measure 𝑄 incorporates the compromise between fidelity and variety, and shows 

what the optimum block length is. Since 𝑄 is defined for each variable in a trace series individually, 

the overall optimal block length is that which maximizes the total 𝑄 for the trace series. Figure 13 

plots 𝑄 versus block length for an example trace series that is 1000 timeframes long and contains 4 

variables. 𝑄 is estimated using the subseries Turing test technique, so the block lengths shown are for 

a subseries (32 timeframes long), not the whole trace series. The performance of every possible block 

length for a subseries is shown. 

 

The graph shows that for each variable individually, performance increases sharply as the block 

length increases from one timeframe to the optimum for that variable. Performance then gradually 

declines as block length increases beyond the optimum. Similarly, the total 𝑄 for the trace series rises 

sharply to its optimum, then declines gradually, as block length increases. This is typical for 

stationary trace series where auto-correlation is present. 

 

 

Figure 13 - Performance versus block length for an example trace subseries 

 

Figure 13 illustrates why it is necessary to optimize the block length for each trace series. Using a 

block length of one timeframe is a simple but inadequate approach. The VMBopt method finds the 

optimal block length for each trace series using the subseries Turing test procedure. This makes it 

more complicated and more computationally intensive than the simplistic VMB1 bootstrap method. 

However, it produces generated data with much better quality. Since the quality of these input 
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scenarios determines the quality of simulation outputs, the VMBopt method should be used in 

preference to the VMB1 method at the petro-chemical plant if it is suspected that a simulation‟s input 

variables are auto-correlated. 

  

In summary, when using the VMBopt bootstrap method to generate multivariate scenarios for a 

simulation model, one must: 

1. Assess which input variables may be auto- and/or cross-correlated, and assemble their 

observed data into a multivariate trace series. 

2. Check that the trace series complies with the assumptions of the VMBopt bootstrap method. It 

must contain only numerical, stationary time series with short-memory auto-correlation and 

simple cross-correlation. 

3. Use the subseries Turing test technique to find the optimal overall block length for a 

subseries. 

4. Scale this up for the whole trace series by multiplying it by  𝑛
𝑚  as prescribed by Demirel 

& Willemain (2002b), where 𝑛 is the trace series length and 𝑚 is the subseries length. 

5. Apply the vector moving block bootstrap method to the trace series, using the optimal block 

length (VMBopt), to produce the generated series, as required. 
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8 CONCLUSIONS 

 

Three vector bootstrap methods were tested empirically, using data from a petro-chemical plant: 

 the vector moving block bootstrap method, with a block length of 1 timeframe (VMB1) 

 the vector moving block bootstrap method, with an optimized block length (VMBopt)  

 the vector nearest neighbour bootstrap method (VNN)    

 

The following conclusions can be made: 

 The number of variables in a trace series did not make a statistically significant difference to 

the performance of the bootstrap methods, at the 5% significance level. 

 The VMBopt method performed significantly better than the VNN method, which in turn 

performed significantly better than the VMB1 method, at the 5% significance level. Because 

the VMBopt bootstrap method produced the most realistic scenarios, it is the most suitable 

method for the petro-chemical plant. It should be used to generate multivariate input scenarios 

for simulation models if the presence of auto and cross-correlation is suspected. 
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9 RECOMMENDATIONS FOR FURTHER RESEARCH 

 

Further research is needed to generalize these results beyond the sample taken from the petro-

chemical plant. Artificial data could be simulated so as to cover a wide range of auto- and cross-

correlation structures. 

 

Further research is also needed to relax the assumptions of the VMBopt bootstrap method, regarding: 

 Data type: For trace series containing nominal variables, one would need a generalized 

version of the delta (∆) measure, which quantifies the difference in the auto-correlation 

structures of two time series. 

 Time-variation: For non-stationary trace series, one would need to work with rates of change. 

 Dependencies: For trace series with long-memory auto-correlation and complex inter-

dependencies between the variables, one would need more sophisticated sampling algorithms. 

 

In addition, the „brute force‟ way in which the block length of the VMB method is optimized is fairly 

computationally intensive. It would be useful to have a rule by which to predict the optimal block 

length for a trace series without performing a subseries Turing test for every possible block length. 

Since the optimal block length depends on the auto-correlation structures in the trace series, the rule 

would need to characterize these structures and relate them to the optimal block length in some way. 

Further research is needed to survey, develop and test potential optimization rules. 

 

Finally, a serious limitation of vector bootstrap methods is that they cannot produce variety between 

the variables in the generated series. To preserve cross-correlations, they sample all the variables from 

the trace series as a vector. This means that the simulation model is only exposed to the limited 

combinations of variables that have been observed in the trace series. Further research is needed to 

survey, develop and test bootstrap methods that can preserve cross-correlations without sampling as a 

vector, so that the generated series can contain new but realistic combinations. 
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APPENDIX A 

APPENDIX A: DIGITAL APPENDIX 

 

The compact disc contains: 

 trace_series.xls – the 28 trace series observed from the petro-chemical plant in a spreadsheet 

 trace1.txt to trace28.txt – the 28 observed trace series in a text files, ready to be used by the R 

code 

 code.txt – the R code used to run and test the bootstrap methods 
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APPENDIX B 

APPENDIX B: R CODE FOR BOOTSTRAP METHODS 

 

######################## DELTA quality measure function ########################## 

DELTA_calc=function(series1,series2){ 

 #series1 

 #series2 

 series_length=dim(series1)[1] 

 no_vars=dim(series1)[2] 

 

 HOC1=matrix(NA,10,no_vars) 

 HOC2=matrix(NA,10,no_vars) 

 # for each variable in the series 

 for(var_no in 1:no_vars){ 

  uni1=series1[,var_no]-mean(series1[,var_no]) 

  uni2=series2[,var_no]-mean(series2[,var_no]) 

  #for each higher order difference series 

  for (diff_no in 1:10){  

   #HOC for series 1 

   HOC1[diff_no,var_no]=sum((uni1[2:length(uni1)]* 

    uni1[1:(length(uni1)-1)])<0) 

   if (HOC1[diff_no,var_no]==0) {HOC1[diff_no,var_no]=1} 

   if (HOC1[diff_no,var_no]==(length(uni1)-1)) {HOC1[diff_no, 

    var_no]=HOC1[diff_no,var_no]-1} 

   HOC1[diff_no,var_no]=HOC1[diff_no,var_no]/(length(uni1)-1) 

   uni1=uni1[2:length(uni1)]-uni1[1:(length(uni1)-1)] 

   #HOC for series 2 

   HOC2[diff_no,var_no]=sum((uni2[2:length(uni2)]*uni2[1: 

    (length(uni2)-1)])<0) 

   if (HOC2[diff_no,var_no]==0) {HOC2[diff_no,var_no]=1} 

   if (HOC2[diff_no,var_no]==(length(uni2)-1)) {HOC2[diff_no, 

    var_no]=HOC2[diff_no,var_no]-1} 

   HOC2[diff_no,var_no]=HOC2[diff_no,var_no]/(length(uni2)-1) 

   uni2=uni2[2:length(uni2)]-uni2[1:(length(uni2)-1)] 

  } 

 } 

 #calculate delta 

 DELTA=colSums(((HOC1-HOC2)/sqrt((HOC1*(1-HOC1)+HOC2*(1-HOC2))/ 

  (series_length-1:10)))^2) 

 DELTA  

} 

 

####################### Vector Nearest Neighbour Bootstrap ######################## 

VNN = function (trace,req_gen_length,K=sqrt(dim(trace)[1])){ 

 #trace 

 #req_gen_length 

 #L=maximum lag for comparison 

 #K=number of candidates 

 trace_length=dim(trace)[1] 

 no_vars=dim(trace)[2] 

 

 

 #determine lag 1 auto-correlation for each variable 

 auto_corr=rep(NA,no_vars) 

 for (var_no in 1:no_vars) {auto_corr[var_no]=abs(cor(method="spearman", 

  trace[,var_no],c(trace[trace_length,var_no],trace[1:(trace_length-1), 

  var_no])))} 

 

 #define gen and sample a timeframe to get things going (warm-up period) 

 gen=matrix(NA,req_gen_length,no_vars) 

 gen[1,]=trace[sample(1:trace_length,1),] 

 

 #for each NN bootstrap sample 

 for (samp_no in 2:req_gen_length){ 

  #compare feature vector with every timeframe in the trace 
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  diff=abs(trace-rep(gen[samp_no-1,],each=trace_length)) 

  #for each variable, rank across all timeframes 

  for (var_no in 1:no_vars) {diff[,var_no]=rank(diff[,var_no], 

   ties.method="random")} 

  #for each timeframe, weight the ranks (weighting by autocorrelation) 

  for (time_no in 1:trace_length) {diff[time_no,]=diff[time_no,]* 

   auto_corr} 

  #for each timeframe, sum across the weighted ranks 

  diff=rowSums(diff) 

  #rank across all timeframes 

  diff=rank(diff,ties.method="random") 

  #sample from the best K timeframes 

  samp=sample(1:K,1,prob=1/(1:K)/sum(1/(1:K)))   

  samp=which(diff==samp) 

  #add to the generated data 

  gen[samp_no,]=trace[samp,] 

 } 

 gen 

}               

 

############################## Moving Block Bootstrap ############################# 

VMB=function(trace,req_gen_length,block_length=0){ 

 #trace 

 #req_gen_length 

 #block_length = specified length of sampling block 

 trace_length=dim(trace)[1] 

 no_vars=dim(trace)[2] 

 #generate bootstrap series 

 start_rows=sample(x=1:trace_length,size=req_gen_length%/%block_length+1, 

  replace=TRUE) 

 sample_rows=rep(start_rows,each=block_length)+0:(block_length-1) 

 sample_rows[sample_rows>trace_length]=sample_rows[sample_rows>trace_length]- 

  trace_length 

 gen=(trace[sample_rows,])[1:req_gen_length,] 

 gen  

}   

 

#################################### Turing Test ################################## 

 

D=list("Output - D") 

Delta_true=list("delta_true") 

Delta_VNN=list("delta_VNN") 

Delta_VMB=list("delta_VMB") 

 

for(test_no in 1:(2)){ 

 trace=as.matrix(read.table(paste("trace",test_no,".txt",sep=""), 

  header=TRUE))[1:1000,] 

 #standardise trace 

 trace=scale(trace)  

 trace_length=dim(trace)[1] 

 no_vars=dim(trace)[2] 

 no_subs=min(100,floor(sqrt(trace_length))) 

 subs_length= min(100,trace_length%/%no_subs) 

 

 #estimate the true distribution of DELTA for each variable 

 #enumerate all the possible combinations of subseries 

 combinations=cbind(rep(1:no_subs,each=no_subs),rep(1:no_subs,times=no_subs)) 

 combinations=combinations[combinations[,1]<combinations[,2],] 

 #for each combination calculate and store DELTA for each variable 

 no_comb=no_subs*(no_subs-1)/2 

 DELTA_TRUE=matrix(NA,no_comb,no_vars) 

 for (comb_no in 1:no_comb){ 

  trace_subs_no=combinations[comb_no,1] 

  add_subs_no=combinations[comb_no,2] 

  trace_subs=trace[((trace_subs_no-1)*subs_length+1):(trace_subs_no* 
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   subs_length),] 

  add_subs=trace  [((add_subs_no-1)  *subs_length+1):(add_subs_no* 

   subs_length),] 

  DELTA_TRUE[comb_no,]=DELTA_calc(trace_subs,add_subs) 

 } 

 

 

 #estimate the distribution of DELTA generated by the  

  #Vector Nearest Neighbour method for each variable 

 DELTA_VNN=matrix(NA,no_subs*no_subs,no_vars) 

 j=0 

 for (subs_no in 1:no_subs){ 

  print(paste("test",test_no, "of 28","method 1 of 2,", 

   floor(subs_no/no_subs*100),"% done")) 

  flush.console 

  trace_subs=trace[((subs_no-1)*subs_length+1):(subs_no*subs_length),] 

  #generate many new series, and compare 

  for (i in 1:no_subs){ 

   j=j+1 

   #generate a new series 

   gen_subs=VNN(trace=trace_subs,req_gen_length=subs_length) 

   #compare the trace subseries to the generated subseries 

   DELTA_VNN[j,]=DELTA_calc(trace_subs,gen_subs) 

  } 

 } 

 

 #estimate the distribution of DELTA generated by the vector moving block  

  #bootstrap method  

 DELTA_VMB=rep(NA,no_subs*no_subs*no_vars*subs_length) 

 dim(DELTA_VMB)=c(no_subs*no_subs,no_vars,subs_length) 

 for (block_length in 1:subs_length){ 

  print(paste("test",test_no, "of 28","method 2 of 2,", 

   floor(block_length/subs_length*100),"% done")) 

  flush.console 

  j=0 

  for (subs_no in 1:no_subs){ 

   trace_subs=trace[((subs_no-1)*subs_length+1): 

    (subs_no*subs_length),] 

   #generate many new series, and compare 

   for (i in 1:no_subs){ 

    j=j+1 

    #generate a new series 

    gen_subs=VMB(trace=trace_subs,req_gen_length= 

     subs_length,block_length=block_length) 

    #compare the trace subseries to the generated subseries 

    DELTA_VMB[j,,block_length]= 

DELTA_calc(trace_subs,gen_subs) 

   } 

  }  

 } 

 

 #do ks tests and compile results 

 D_VNN=rep(NA,no_vars) 

 D_VMB=matrix(NA,subs_length,no_vars) 

 for(var_no in 1:no_vars){ 

  D_VNN[var_no]=ks.test(DELTA_TRUE[,var_no],DELTA_VNN[,var_no])[[1]] 

  for (block_length in 1:subs_length){ 

   D_VMB[block_length,var_no]=ks.test(DELTA_TRUE[,var_no], 

   DELTA_VMB[,var_no,block_length])[[1]] 

  } 

 } 

 D=c(D,list(rbind(D_VNN,D_VMB))) 

} 

 

#convert these D values to Q values with Q=log((1-D)/D) 
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APPENDIX C: QUADE MULTIPLE COMPARISON TESTS 

 

Non-parametric Quade multiple comparison tests were performed according to the following 

algorithm, adapted from Derrac et al (2011, pp.8,10) and Borkowski (2010). We have 𝑔 blocks (the 

experimental subjects) and 𝑐 treatments (the bootstrap methods), with every treatment applied once to 

every block, as shown in Table 9. 

 

Table 9 - Within-subjects data format 

Block 

(subject) 

Treatment (within-subjects factor) 

1 2 ... c 

1 x11 x12 ... x1c 

2 x21 x22 ... x2c 

3 x31 x32 ... x3c 

... ... ... ... ... 

g xg1 xg2 ... xgc 

 

Test whether the difference between two treatments (𝑚 and 𝑛) is statistically significant, as follows: 

 Rank the observations within each block (each row), from 1 to 𝑐. For tied values, assign 

average ranks. Let 𝑅𝑖𝑗  be the rank assigned to block 𝑖 and treatment 𝑗.  

 Calculate the sample range of each block (row max 𝑥𝑖𝑗  – row min 𝑥𝑖𝑗 ). Rank the rows 

according to this sample range, in ascending order, assigning average ranks to ties. Let 𝑃𝑖  be 

the rank assigned to block 𝑖 and treatment 𝑗. 

 Multiply each ranked observation by the ranked range of its block, 𝑆𝑖𝑗  = 𝑃𝑖[𝑅𝑖𝑗 ]. 

 Sum this product for each treatment (column), 𝑆𝑗 =  𝑆𝑖𝑗
𝑔
𝑖=1  for 𝑗 = 1, 2, . . . , 𝑐. 

 Calculate: 𝐴 =   𝑆𝑖𝑗
2𝑐

𝑗=1
𝑔
𝑖=1  

 Calculate: 𝐵 = 1 𝑔   𝑆𝑗
2𝑐

𝑗=1   

 For a pair of treatments 𝑚 and 𝑛, calculate: 𝑡𝑚𝑛 =
 𝑆𝑚−𝑆𝑛  

 
2𝑔 𝐴−𝐵 

 𝑔−1  𝑐−1 

 

 Perform a one-tailed t-test on this value at the required level of significance (𝛼). If the 𝑝-value 

is less than (𝛼 2 ), reject the null hypothesis that there is no pair-wise difference between the 

treatments. 


