

EMPIRICAL COMPARISON OF VECTOR BOOTSTRAP METHODS FOR MULTIVARIATE

SCENARIO GENERATION

Malcolm James Murray

A research report submitted to the Faculty of Engineering and the Built Environment, University of

the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of

Science in Engineering

Johannesburg, 2011

i

ABSTRACT

Stochastic simulation models require input scenarios, which may be generated from observed data

using bootstrap methods. If a model‟s input variables are auto- and/or cross-correlated, these

dependencies must be preserved in the generated scenarios. Three bootstrap methods were tested

empirically: (1) the vector moving block bootstrap method, with a block length of one timeframe, (2)

the vector moving block bootstrap method, with an optimized block length, and (3) the vector nearest

neighbour bootstrap method. They were applied to data observed from processes at a petro-chemical

plant: 28 numerical, multivariate, stationary time series, with a variety of auto- and cross-correlations.

The quality of the generated scenarios was measured using a Turing test procedure, which balances

fidelity to the observed data and natural variety. Method (2) performed best, followed by method (3),

and then method (1). The number of input variables bootstrapped simultaneously did not significantly

affect the performance of the bootstrap methods.

ii

DECLARATION

I hereby declare the following:

 This research report is my own, unaided work except where I have explicitly indicated

otherwise (following the required referencing conventions).

 It is being submitted in partial fulfilment of the requirements for the Degree of Master of

Science in Engineering to the University of the Witwatersrand, Johannesburg.

 It has not been submitted before for any degree or examination at any other university.

 It contains data obtained while working under the aegis of Sasol Technology, Secunda, South

Africa.

Signed

Malcolm James Murray

this___________ day of _______________ year ____________

iii

TABLE OF CONTENTS

ABSTRACT ... i

DECLARATION .. ii

TABLE OF CONTENTS ... iii

LIST OF FIGURES ... iv

LIST OF TABLES .. v

NOMENCLATURE .. vi

1 INTRODUCTION .. 1

1.1 Background: Input Scenarios for Simulation Models ... 1

1.2 Motivation and Scope ... 2

2 LITERATURE SURVEY ... 4

2.1 Types of Methods ... 4

2.2 Non-Parametric Bootstrap Methods .. 5

2.3 The Importance of Preserving Dependencies ... 11

2.4 The Vector Moving Block Bootstrap Method (VMB) .. 11

2.5 The Vector Nearest Neighbour Bootstrap Method (VNN) ... 12

3 OBJECTIVES ... 13

4 EXPERIMENTAL DESIGN AND METHOD ... 14

4.1 Dependent Variable – A Quality Measure .. 14

4.2 Influencing Factors ... 17

4.3 Hypotheses .. 17

4.4 Sampling ... 18

4.5 Computations .. 18

5 OBSERVATIONS .. 19

6 RESULTS ... 22

6.1 The Effect of the Number of Variables in the Trace Series .. 22

6.2 The Effect of the Method Used ... 25

7 DISCUSSION ... 30

8 CONCLUSIONS ... 34

9 RECOMMENDATIONS FOR FURTHER RESEARCH .. 35

REFERENCES ... 36

APPENDIX A: DIGITAL APPENDIX .. 38

APPENDIX B: R CODE FOR BOOTSTRAP METHODS ... 39

APPENDIX C: QUADE MULTIPLE COMPARISON TESTS .. 42

iv

LIST OF FIGURES

Figure 1 - An example trace series with no auto- or cross-correlation ... 5

Figure 2 - An example trace series with cross-correlation but no auto-correlation 6

Figure 3 - An example trace series with auto-correlation but no cross-correlation 6

Figure 4 - The block bootstrap re-sampling approach .. 7

Figure 5 - An example trace series with auto- and cross-correlation .. 10

Figure 6 - Sample distributions of 𝑄 at various factor levels .. 23

Figure 7 - Distributions of ANOVA residuals for the three bootstrap methods 26

Figure 8 - ANOVA residuals vs predictions ... 27

Figure 9 - Differences in 𝑄 between bootstrap methods ... 28

Figure 10 - Example univariate trace series .. 31

Figure 11 - Generated series by the VMB1 bootstrap method (block length of 1 timeframe) 31

Figure 12 - Generated series by the VMB bootstrap method (block length of 25 timeframes) 31

Figure 13 - Performance versus block length for an example trace subseries 32

v

LIST OF TABLES

Table 1 - Panel data format ... 2

Table 2 - 𝑄 observations: 2 variables in trace series ... 19

Table 3 - 𝑄 observations: 4 variables in trace series ... 20

Table 4 - 𝑄 observations: 8 variables in trace series ... 21

Table 5 - Sample statistics - 𝑄 .. 24

Table 6 - Overall Kruskal-Wallis results .. 25

Table 7 - Sample statistics - residuals ... 27

Table 8 - Multiple comparison tests results .. 29

Table 9 - Within-subjects data format ... 42

vi

NOMENCLATURE

VMB the vector moving block bootstrap method

VMB1 the vector moving block bootstrap method, with a block length of 1 timeframe

VMBopt the vector moving block bootstrap method, with an optimized block length

VNN the vector nearest neighbour bootstrap method

HOC k the 𝑘th higher order crossing count of a univariate time series

𝑏 the block length (the number of timeframes sampled by block bootstrap methods)

𝑐 the number of levels of an experimental factor

𝐷 the test statistic for the Kolmogorov-Smirnov test

𝐹 the test statistic for the Quade test

𝑔 the number of experimental subjects, or blocks

𝐾 the number of candidates considered by nearest neighbour bootstrap methods

𝑚 the number of timeframes in each subseries

𝑛 the number of timeframes in the trace series

𝑝 the calculated probability of rejecting a true null hypothesis

𝑃𝑗 the probability of selecting the 𝑗th candidate in the VNN method

𝑞 the required number of timeframes in the generated series

𝑄 the quality measure for quantifying the performance of a bootstrap method

𝑟𝑐 the Spearman rank cross-correlation coefficient

𝑟𝑎 the Spearman rank auto-correlation coefficient (lag-1)

𝑠 the number of subseries for the Turing test

𝛼 the significance level of a statistical test (the acceptable type I error rate)

∆ the delta measure of the difference in auto-correlation structures between two

univariate time series

μ the population median

𝜒2 the chi-squared statistic from the Kruskal-Wallis test

1

1 INTRODUCTION

1.1 Background: Input Scenarios for Simulation Models

Stochastic simulation modelling is used to study the behaviour of complex systems, as follows:

1. A model is built, which is a simplified representation of the system that contains its essential

features. The complexity of the model depends on the scope and the required accuracy, which

depends on the purpose of the modelling exercise.

2. Scenarios are generated, which are sets of inputs to the model of the system. Again, this depends

on the purpose of the modelling. If we want to do „stress-testing‟ on the system, we can generate

extreme scenarios from imagination. If we only need to estimate average system response, we can

just use average values for all the inputs (having measured them for a while). However, we

usually want to study the full range of response of the system under realistic conditions. This

requires large volumes of realistic scenarios that mimic the natural level and variation of the

inputs (which have been observed). We focus on this intermediate case.

3. The scenarios are fed into the model, which simulates the behaviour of the system.

4. The response of the system model is observed and analyzed statistically.

To get meaningful results, the model must be appropriate and the input scenarios must be plentiful

and realistic. Ideally, all the required input scenarios would be observed empirically, sampling

directly from the population of all possible input scenarios in the real world. However, it is seldom

practical to observe them in sufficient quantities. Typically, only a modest empirical sample is

available, and this must be used to generate the required number of input scenarios. This process of

generating realistic input scenarios from observed data is the focus of this research.

The measured data is called trace data, and can be visualised as a panel (or matrix), where each

column represents one input variable, and each row represents the timeframe during which the input

variables were measured, as illustrated in Table 1. The scenarios generated from the measured data

also have this panel format. These two panels contain multivariate time-series data, so they are called

the trace series and the generated series respectively.

2

Table 1 - Panel data format

 Input variable 1 Input variable 2 Input variable 3 Input variable 4 etc.

Timeframe 1

Timeframe 2

Timeframe 3

Timeframe 4

Timeframe 5

etc.

1.2 Motivation and Scope

The complexity of each input variable in the trace series may vary as follows:

1. Data type:

 Numerical (interval, ratio, discrete numerical, ordinal)

 Nominal (categorical, binary)

 A combination of these in one trace series

2. Time-variation:

 Stationary – The statistical distribution is constant over the length of the series. In other

words, if the series were divided into a few sections, they would have similar histograms.

 Non-stationary – The statistical distribution changes over the length of the series. It may

follow a trend or vary cyclically.

3. Self-dependency:

 No auto-correlation – Successive values are independent.

 Short memory auto-correlation – Each value depends on the previous few values.

 Long-memory auto-correlation – Each value depends on many previous values.

4. Inter-dependency with other variables:

 No cross-correlation – Each variable is independent.

 Simple cross-correlation – When one variable‟s value is high, the other variable‟s value is

high (or when one variable‟s value is high, the other variable‟s value is low).

 Complex dependency – One variable‟s value depends on another variable‟s previous values,

or on a combination of other variables‟ values.

3

The current research is motivated by the need to find a suitable method for generating realistic input

scenarios for simulations of complex processes at a petro-chemical plant. The input variables are

physical quantities like temperatures, pressures, concentrations and yields, measured on a continuous

numerical scale. Observed data for trace series are in no short supply, with measurements taken

automatically at regular intervals. The processes are fairly stable, with input variables fluctuating

around a steady mean. The input variables almost always display significant self-dependency and

inter-dependency. It is very important that these dependencies are reproduced in the generated input

scenarios. In fact, the validity of simulation results critically depends on it. Although long-memory

auto-correlations and complex inter-dependencies may exist, a workable solution is sought that can

handle short-memory auto-correlation and simple inter-dependencies. With this context in mind, we

formally limit our scope to include only input variables with the following properties:

 Data type: numerical

 Time-variation: stationary

 Self-dependency: short-memory auto-correlation (or no auto-correlation)

 Inter-dependency: simple cross-correlation (or no cross-correlation)

4

2 LITERATURE SURVEY

2.1 Types of Methods

The methods for generating input scenarios from observed data fall into two categories:

1. Parametric methods use the observed data to try to understand and model the underlying data-

generating process driving the inputs. A mathematical model is fitted to the observed data in the

trace series, and then used to generate new input scenarios.

2. Non-parametric methods, by contrast, do not try to understand the observed data, but just to

mimic it. Non-parametric bootstrap methods, specifically, generate input scenarios by drawing

samples randomly from the empirical sample. This re-sampling is done with replacement, so that

the observed scenarios can be sampled repeatedly as input scenarios. In essence, non-parametric

bootstrap methods try to replay the trace series in a realistic way.

The features, benefits and pitfalls of each category of methods are discussed at length by Barton et al

(2002) and summarised below.

Parametric methods have the advantage that they can generate new scenarios that have not been

observed before, so they are preferable for very short trace series. Non-parametric bootstrap methods

cannot produce as much variety because they re-sample from observed data directly. They need

longer trace series, so that there is a wide range of scenarios from which to sample.

A major disadvantage of parametric methods is that one has to find an appropriate model for the

underlying process. This can be difficult if the underlying process is complicated or poorly

understood. A poor model may lead to implausible scenarios being generated. By contrast, non-

parametric bootstrap methods can be applied without making assumptions about the underlying

process. They always produce realistic scenarios because they re-sample data that has actually been

observed.

The quest for adequate models leads to another disadvantage of parametric methods: complexity.

Sophisticated models require many model parameters to be calculated, and this can quickly become

computationally infeasible. In addition, complex models are risky in practice. They can easily be

misapplied by practitioners who lack rigorous statistical training, because they do not fully understand

the complicated statistical techniques involved and the associated assumptions. On the other hand,

non-parametric bootstrap methods typically mimic the observed data in simple, intuitive ways.

The petro-chemical plant, which provides the motivation for this research, is a data-rich environment.

Since this nullifies the main comparative advantage of parametric methods, non-parametric bootstrap

5

methods become the obvious choice. Thus, this research focuses only on them. They are referred to

simply as bootstrap methods (although they exclude the parametric bootstrap method, which is model-

based).

2.2 Non-Parametric Bootstrap Methods

Different bootstrap methods are appropriate for different trace series, depending on their correlation

structures. The bootstrap methods available for a number of cases are surveyed below. Each case is

illustrated with a figure, which shows an example trace series containing two variables (Figure 1,

Figure 2, Figure 3 and Figure 5). The lag-1 auto-correlation is shown for each variable (𝑟𝑎), as well as

the cross-correlation between the variables (𝑟𝑐). The Spearman rank correlation coefficient is used,

which is the Pearson correlation coefficient applied to ranked data. A value of 1 means perfect

positive correlation, 0 means no correlation, and -1 means perfect negative correlation.

2.2.1 Case 1: Each variable in the trace series is independent (no auto- or cross-correlations)

Figure 1 - An example trace series with no auto- or cross-correlation

In this case, the simple univariate bootstrap method introduced by Efron (1979) may be used. For

each variable separately, a new series is generated by re-sampling randomly (with replacement) from

the observed data in the trace series. Note: The standard parametric method for this case is to fit a

parametric distribution to the observed data for each variable, and to generate new data by sampling

randomly from the fitted distributions.

time

𝑟𝑎 ≈ 0

𝑟𝑐 ≈ 0

𝑟𝑎 ≈ 0

6

2.2.2 Case 2: The variables in the trace series are cross-correlated, but not auto-correlated

Figure 2 - An example trace series with cross-correlation but no auto-correlation

The simple univariate bootstrap method cannot be used in this case, because if the variables are re-

sampled separately, their inter-dependencies will be destroyed in the generated series. A simple way

to avoid this problem is to sample all the variables at once, as a vector. This automatically preserves

the inter-dependencies, but at the expense of variety: only those combinations of values observed in

the trace series can occur in the generated series, while many others may in fact be possible. Another

approach is to perform a factor analysis on the variables and bootstrap them in the common factor

space (Zientek & Thompson 2007). Note: An appropriate parametric method for this case is the

NORTA method proposed by Cario & Nelson (1997).

2.2.3 Case 3: The variables in the trace series are auto-correlated, but not cross-correlated

Figure 3 - An example trace series with auto-correlation but no cross-correlation

Again, the simple univariate bootstrap cannot be used in this case, because if samples are taken in

random order, the auto-correlations will be destroyed in the generated series. There are two main

approaches to overcoming this problem:

time

time

𝑟𝑎 ≈ 0.7

𝑟𝑐 ≈ 0

𝑟𝑎 ≈ 0.7

𝑟𝑎 ≈ 0

𝑟𝑐 ≈ 0.7

𝑟𝑎 ≈ 0

7

1. The block approach involves sampling a number of successive timeframes from the trace

series at once, instead of just one at a time. The idea is that the auto-correlation pattern is

preserved within each block, although there are discontinuities at the block boundaries in the

generated series, as shown in Figure 4.

Figure 4 - The block bootstrap re-sampling approach

2. The nearest neighbour approach tries to preserve the auto-correlation by re-sampling such

that each new sample „fits‟ after the previous one. Each time it samples it asks, “What does

the generated series look like right now?” and, “When did it look similar to this in the trace

series”, and then, “At those times, what happened next?” It then samples from one of these

candidate successors.

The block bootstrap method comes in many varieties:

 The non-overlapping block bootstrap by Carlstein (1986) samples non-overlapping blocks of

fixed length.

 The moving block bootstrap by Kunsch (1989) and Liu & Singh (1992) samples overlapping

blocks of fixed length.

time

block 1 block 3block 4block 2

time

block 1 block 2 block 3 block 4

trace

series

generated

series

8

 The circular block bootstrap by Politis & Romano (1992) modifies the moving block

bootstrap by looping the trace series around on itself so that the last timeframe leads on to the

first.

 The stationary block bootstrap by Politis & Romano (1994) samples blocks whose length is

sampled from a geometric distribution.

 The threshold block bootstrap by Park & Willemain (1999) samples non-overlapping blocks

whose length is chosen such that each block begins and ends at a place where the trace series

crosses its mean.

 The matched block bootstrap by Carlstein et al (1998) samples blocks so that they match at

their ends using Markov chains.

A theoretical comparison of the first four methods by Lahiri (1999) shows that for a given block

length, all the methods have the same amount of bias asymptotically, but differ in terms of variance,

as follows:

 Methods that use overlapping blocks are better than those that use non-overlapping blocks.

 The circular block bootstrap and the moving block bootstrap are equivalent.

 The moving block bootstrap is better than the stationary block bootstrap.

Lahiri (1999) also compares his results with Carlstein et al (1998) and concludes that the matched

block bootstrap performs best of all when block lengths are optimal. However, the matched block

bootstrap is far more complex and computationally expensive. Willemain et al (2003) recommend the

moving block bootstrap “because of its simplicity, prominence, and good performance”. We follow

their recommendation and choose the moving block bootstrap (with its circular modification) as the

most suitable block bootstrap method for our purposes.

The method has one parameter, the block length, which is the number of timeframes sampled from the

trace series at once. Hall et al (1995) show that the performance of the moving block bootstrap

depends critically on block size. Demirel & Willemain (2002b) find that the optimal block size for

scenario generation is proportional to the square root of the trace length, where the proportionality

constant depends on the auto-correlation structure of the trace series. Lahiri (2004) provides a

thorough survey of the available methods for estimating optimal block length, but these are designed

for statistic-estimation rather than scenario generation.

9

The methods that follow the nearest neighbour approach (nearest neighbour methods) differ in the

way they choose each new sample, as follows:

 Number of previous timeframes compared – When matching the „current state‟ of the

generated series with the trace series, a number of recent timeframes may be compared. The

longer the memory of the auto-correlation structure, the more timeframes need to be

compared. Lee & Ouarda (2011) propose a method for choosing this number based on the

Akaike information criterion, but since our scope is limited to short memory auto-correlation,

we choose to compare only the most recent timeframe.

 Number of candidates considered – All the timeframes in the trace series are ranked

according to how well they resemble the current state of the generated series. Only the

successors of the best matches are considered as candidates. The number of candidates

considered may be chosen using:

o an objective criterion proposed and tested by Lall & Sharma (1996) and supported by

Rajagopalan & Lall (1999)

o an approach proposed by Lee & Ouarda (2011) based on the Akaike information

criterion

o the following heuristic:

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑓𝑟𝑎𝑚𝑒𝑠 𝑖𝑛 𝑡𝑒 𝑡𝑟𝑎𝑐𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 (1)

Lall & Sharma (1996) and Rajagopalan & Lall (1999) have observed that the rule of thumb

works well in practice when the trace series has more than 100 timeframes and no more than

six previous timeframes are compared for matching. The trace series encountered at the petro-

chemical plant are typically quite long, and we are only comparing one timeframe, so we

choose the rule of thumb for its simplicity.

 Successor selection method – The successor (next sample) can be chosen from the candidates

randomly, or by weighting the candidates so that the more closely the neighbour resembles

the current state of the generated data, the better the chances of its successor being chosen.

We choose the weighting scheme advocated by Lall & Sharma (1996) for its simplicity and

effectiveness.

o Let the number of candidates be K.

o Rank these candidates from “best match” to “worst match”.

o Assign a probability 𝑃𝑗 to the 𝑗𝑡 candidate as follows: 𝑃𝑗 =
1 𝑗

 (1 𝑖)𝐾
𝑖=1

. (2)

o Sample from these candidates with probabilities 𝑃𝑗 .

Note that because nearest neighbour methods choose each new generated timeframe based on the

previous ones, the first few generated timeframes must be sampled randomly from trace series. This

warm-up period is discarded once the generated series is complete. Note also that an appropriate

10

parametric method for this case is the ARTA method proposed by Biller & Nelson (2005), with the

ARTAFIT fitting algorithm (Biller & Nelson 2008).

2.2.4 Case 4: The variables in the trace series are both auto-correlated and cross-correlated

Figure 5 - An example trace series with auto- and cross-correlation

This is the combination of Case 2 and Case 3. It is a simple matter to generalize the moving block

bootstrap method so that it is suitable for multivariate trace series. Instead of blocks being re-sampled

for each variable separately, all the variables are re-sampled together, in a vector block. The nearest

neighbour method can also be generalized for multivariate trace series with the vector-sampling

approach; however, a complication is introduced: to find nearest neighbours, the „current state‟ of the

generated series must be compared to the trace series for all the variables at once. A vector distance

measure is required. Teknomo (2006) provides a thorough survey of the many vector distance

measures that are available for various data types. With possible future research in mind, we use a

ranked weighted city block distance measure because it can be applied to trace series with mixed data

types.

Suppose we have a vector representing the current state of the generated series, called the feature

vector, and a number of candidate vectors from the trace series. We identify which candidate vectors

are most similar to the feature vector as follows:

 Calculate the absolute difference between each variable in the feature vector and the

corresponding variable in each of the candidate vectors.

 For each variable, rank the candidate vectors from smallest difference to largest difference.

 For each candidate vector, calculate the weighted sum of the ranks of all its variables,

weighting according to strength of each variable‟s auto-correlation (calculated from the trace

series), because it is most important to preserve the strongest auto-correlations.

 The lower this summed rank, the closer the candidate vector is to the feature vector.

time

𝑟𝑎 ≈ 0.4

𝑟𝑐 ≈ 0.8

𝑟𝑎 ≈ 0.7

11

Because this method compares distances for each variable before combining them for each vector, no

standardization is required between variables, even if they are on different scales or of different types.

Note: An appropriate parametric method for this case is the copula-based multivariate time-series

input model (which includes VARTA as a special case) proposed by Biller (2009).

2.3 The Importance of Preserving Dependencies

Sometimes it can be safely assumed (using statistical tests, judgement and experience) that the trace

series is free from auto- and/or cross-correlations, or that they are unimportant for the simulation

model at hand. At these times the simpler bootstrap methods presented for Cases 1, 2 and 3 should be

used, because although the more sophisticated bootstrap methods will work for simpler cases, they

require more computation time and sacrifice some variety. However, if there is any doubt, the more

sophisticated bootstrap methods for Case 4 should be used. Neglecting relevant dependencies can

have a serious impact on simulation results. In some cases, it can render the findings completely

invalid. Civelek et al (2009) provide an exhaustive survey of empirical, analytic and simulation

research showing that:

 Auto- and cross-correlations occur widely in practice in industries like manufacturing,

services and telecommunications.

 Neglecting these dependencies when generating input scenarios can have a major effect on

simulation outputs (such as utilization and waiting time for queuing systems).

In the following sections, algorithms are given for the two bootstrap methods mentioned for Case 4.

2.4 The Vector Moving Block Bootstrap Method (VMB)

Given a trace series with 𝑝 variables and 𝑛 timeframes, produce a generated series of any length as

follows:

1. Choose a block length, 𝑏.

2. Randomly choose a timeframe from the 𝑛 timeframes in the trace series.

3. Starting at this timeframe, sample a vector block from the trace series (𝑝 variables × 𝑏

timeframes). If the sampling block overlaps the end of the trace series, let it continue at the

beginning.

4. Repeat steps 2 and 3 until the generated series exceeds the required length.

5. Truncate the generated series to the exact length required.

12

2.5 The Vector Nearest Neighbour Bootstrap Method (VNN)

Given a trace series with 𝑝 variables and 𝑛 timeframes, produce a generated series of any length as

follows:

1. For each variable, calculate the Spearman correlation between each value in the trace series and

its previous value. This is the lag-1 auto-correlation for that variable (𝑟𝑎).

2. Sample a timeframe randomly from the trace series. Set this as the start of the generated series. It

serves as the „warm-up‟ period.

3. Then, for each subsequent timeframe in the generated series:

 Compare the previous timeframe in the generated series to every timeframe in the trace series,

calculating the absolute difference between each of the variables.

 For each variable, rank the timeframes in the trace series according to this absolute difference,

in ascending order.

 For each timeframe, calculate the weighted sum of these ranks, weighting each variable

according the magnitude of its 𝑟𝑎 .

 Rank the timeframes in the trace series according to this weighted sum, in ascending order.

 Choose randomly from the best 𝑛 candidate timeframes (rounded down to the nearest

whole number), according to the probabilities defined by Lall & Sharma (1996), as described

in section 2.2.3.

 Sample the successor timeframe of the chosen candidate as the new timeframe in the

generated series.

13

3 OBJECTIVES

The objective of the research is to compare the VMB and VNN bootstrap methods to determine which

method generates the most realistic scenarios for simulations at the petro-chemical plant. The testing

is empirical, using trace series that have been observed from the plant.

The VMB bootstrap method has one parameter, the block length, which has a profound impact on

performance. We consider two cases:

 Block length of one timeframe (VMB1) - This is the simplistic case appropriate for when

there is no auto-correlation in the trace series. We consider it as a control, because it is the

method currently used at the petro-chemical plant.

 Optimized block length (VMBopt) - The VMB bootstrap method is applied to each trace series

at every possible block length. The block length with the best overall performance for a given

trace series is chosen.

So, we want to compare the performance of three bootstrap methods: VMB1, VMBopt and VNN.

14

4 EXPERIMENTAL DESIGN AND METHOD

4.1 Dependent Variable – A Quality Measure

To compare the performance of the bootstrap methods objectively, we need a quantitative statistical

measure of the quality of the generated scenarios. High quality scenarios are realistic scenarios. To be

realistic, they must satisfy two criteria:

1. Fidelity - Obviously, the generated scenarios must be similar to the observed data, with the

same essential characteristics. The properties of each variable in the trace series must be

preserved in the generated series, namely its:

 statistical distribution

 auto-correlation structure

 cross-correlation structure

2. Variety - However, the generated scenarios must not be identical to the observed data,

because the process creating the trace data is stochastic not deterministic. Successive

realizations of this process would produce different observed data. Therefore, the generated

data must also have some realistic variation. (To illustrate the point, imagine that the whole

trace series was just replayed repeatedly to make the generated series. The statistics would

then be identical, but there would be no variety. This is certainly not realistic.)

An appropriate quality measure must reconcile these two competing objectives. Demirel & Willemain

(2002b) note that many studies measuring bootstrap performance fail to do so, and propose that the

correct approach is to phrase the quality measure as a Turing test (Demirel & Willemain 2002a). The

idea behind a Turing test is as follows. Say you are shown Series A, which has been observed from

some process. You are then shown Series B and C. Series B has been observed independently from

the same process, while Series C has been generated from Series A using a bootstrap method. If you

can‟t tell which is which, between Series B and C, then the generated series has a high quality,

showing both fidelity and variety. In other words, a high quality generated series is as similar to the

trace series as independent realizations of the trace series are to each other.

The VMB and VNN bootstrap methods do not attempt to achieve variety in the statistical distributions

of the trace series, because they resample from the trace series directly. This is the disadvantage of all

bootstrap methods compared with parametric methods. We assume that the two methods do achieve

fidelity, because they only resample observed data, and do so in random ways.

15

Similarly, both methods sacrifice variety regarding cross-correlations, in favour of fidelity. They both

sample each timeframe in the generated series at once, as a vector, from the trace series. This

approach means that only the specific combinations of variables that have been observed in the trace

series can occur in the generated series. This is not ideal, because we want to expose the simulation

model to as wide a range of potential input scenarios as possible. However, the problem is not so

serious if the trace series is long, because it already contains a variety of combinations. This is

typically the case at the petro-chemical plant. Although not ideal, the vector approach seems sufficient

for our purposes.

Regarding auto-correlations, the VMB and VNN bootstrap methods are both able to achieve a balance

between fidelity and variety. The VMB achieves the trade-off by varying the block length. The longer

the block length, the better the fidelity. The shorter the block length, the better the variety. An optimal

block length can be found for each individual trace series. The VNN achieves the trade-off by the way

it chooses from the candidate timeframes in the trace series. Variety is introduced by selecting

randomly from the best 𝑛 candidates. Fidelity is sought by weighting the selection probabilities so

that the candidates that match best have the greatest chance of being sampled.

We want to compare the two methods according to how realistically they reproduce the auto-

correlations for each variable in the trace series. We perform a Turing test by answering three

questions:

1. How similar are independent realizations of the trace series to each other?

2. How similar are the generated series to the trace series?

3. How closely do these similarities match?

To answer questions 1 and 2 for each variable in the series, we must quantify the difference in auto-

correlation structure between two univariate series. Auto-correlation functions and spectra may be

used, but Demirel & Willemain (2002b) recommend the delta (∆) difference measure because of its

resistance to outliers. The measure is based on the higher order crossings (HOC) of each series,

which are calculated as follows:

 Subtract the series mean from the series. Count the number of times this mean-centred series

crosses the zero-line, to give the first higher order crossing count, HOC(1).

 Calculate the difference between successive timeframes in the mean-centred series. This gives

the first difference series. Count the number of times it crosses the zero-line, to give HOC(2).

 Calculate the difference between successive timeframes in the first difference series. This

gives the second difference series. Count the number of times it crosses the zero-line, to give

HOC(3).

16

 Repeat up to HOC(10), which is sufficient to characterize short-memory time series for

scenario-generation purposes (Demirel & Willemain 2002b).

 Note: If a difference series never crosses zero, set the HOC to 1. If it crosses zero at every

timeframe, subtract 1 from the HOC. These adjustments are made to avoid dividing by zero in

subsequent calculations.

The ∆ difference measure between series 𝑖 and series 𝑗 (each 𝑛 timeframes long) is then defined as:

 ∆=
𝑑𝑘𝑖−𝑑𝑘𝑗

𝑆𝐸 𝑑𝑘𝑖−𝑑𝑘𝑗

2
10
𝑘=1 (3)

where: 𝑑𝑘𝑖 = 𝐻𝑂𝐶 𝑘 𝑛 − 𝑘 for series 𝑖

 𝑑𝑘𝑗 = 𝐻𝑂𝐶 𝑘 𝑛 − 𝑘 for series 𝑗

 𝑆𝐸 𝑑𝑘𝑖 − 𝑑𝑘𝑗 =
𝑑𝑘𝑖 1−𝑑𝑘𝑖 +𝑑𝑘𝑗 1−𝑑𝑘𝑗

𝑛−𝑘

Simulation experiments by Demirel & Willemain (2002b) show that ∆ follows a log-normal

distribution.

Unfortunately, a problem arises in answering question 1 for real-world simulation scenarios, because

we seldom have multiple independent realizations of the trace series. We usually just have one, and

we want to get maximum value from it. Demirel & Willemain (2002b) propose getting around this

problem by dividing the trace series into a number of subseries, and comparing these to each other.

We use an adaptation of their method, answering the three Turing test questions as follows.

We have one observed trace time series, with a length of 𝑛 timeframes, containing 𝑝 variables. We

then:

1. Divide the trace series into 𝑠 non-overlapping subseries of equal length (𝑚 timeframes long),

where 𝑠 = 𝑛 (rounded down to the nearest whole number) and 𝑚 is the quotient of 𝑛 and 𝑠.

Compare each subseries to every other subseries, calculating ∆ for each pair of subseries. This

results in
𝑠
2
 samples of ∆ for each variable. These samples estimate the true distribution of

∆ for each variable.

2. From each of the 𝑠 subseries, generate 𝑠 new series of length 𝑚 using a bootstrap method.

Compare each new generated series to its trace subseries, again calculating ∆ for each

variable. This results in 𝑠2 samples of ∆ for each variable. These samples estimate the

generated distribution for each variable.

3. Compare the true and generated distributions for each variable, calculating the Kolmogorov-

Smirnov 𝐷-statistic. For each variable, calculate the quality measure 𝑄, which we define as

𝑄 = 𝑙𝑛 1 − 𝐷 𝐷 for good statistical properties. The higher the 𝑄 value, the better the

17

distributions match, the better the quality of the generated series for that variable. (Note: The

natural range of 𝐷 is [0,1]. To give 𝑄 a finite range, we limit the range of 𝐷 to [0.018,0.982].

This gives 𝑄 a range of [-4,4].)

Thus 𝑄 serves as the measure by which performance is quantified, and is the dependent variable in the

experimentation.

4.2 Influencing Factors

Our scope is limited to stationary trace series containing numerical data, with short-memory auto-

correlation and simple cross-correlation. Other factors that may affect the quality of generated

scenarios, for a given trace series are discussed below.

 The number of variables in the trace series. In the experimentation, we vary it between three

levels: 2, 4 and 8 variables. Each trace series that is observed in the experimentation can take

only one of these levels, so this is a between-subjects factor. (These levels were just chosen

for convenience, to make good use of the available data.)

 The bootstrap method used – In the experimentation, we vary it between three levels: VMBopt,

VNN, and VMB1. Each method can be applied to each observed trace series, so this is a

within-subjects factor.

 Random effects arising from the individual nature of each trace series, and from the

randomness in the method algorithms.

Note:

 The bootstrap methods deal with timeframes in a general way, so the quality does not depend

on whether they represent seconds, minutes or hours, etc.

 The length of the trace series cannot affect quality, because the quality measures are defined

in comparison to the trace series.

4.3 Hypotheses

We want to test whether performance depends on the number of variables in the trace series (for a

given method), so we test the null hypothesis 𝐻1,0: 𝑄 does not depend on the number of variables in

the trace series against the alternative hypothesis 𝐻1,𝐴: 𝑄 depends on the number of variables in the

trace series for each method separately.

More importantly, we want to test whether performance depends on the method used (for a given

number of variables in the trace series), so we test the null hypothesis 𝐻2,0: 𝑄 does not depend on the

bootstrap method that is used against the alternative hypothesis 𝐻2,𝐴: 𝑄 depends on the bootstrap

18

method that is used. If 𝐻1,0 is not rejected for any method, we can combine all the different numbers

of variables to test 𝐻2,0. Otherwise, 𝐻2,0 must be tested separately for each number of variables. Note:

All hypothesis tests are done at the 5% significance level.

4.4 Sampling

Empirical trace series were observed from processes at the petro-chemical plant, as follows:

 16 separate trace series containing 2 variables each (32 variables in total)

 8 separate trace series containing 4 variables each (32 variables in total)

 4 separate trace series containing 8 variables each (32 variables in total)

Because each variable gives an estimate of 𝑄, this yields 32 estimates for each level of the between-

subjects factor (the number of variables in the trace series). Thus the design is balanced.

The trace series were selected by a chemical engineer working at the plant (Branca 2011) such that the

variables in each trace series are:

 known to be linked in a physical way

 likely to be used as simultaneous inputs to a simulation model

 more-or-less stationary time series (from cursory visual inspection)

We hope that the total sample of 96 variables includes a fair variety of correlation structures, but we

cannot guarantee that it is truly representative. Furthermore, the samples only come from one field –

petro-chemical processes - so the applicability of the findings is limited to that field, strictly speaking.

However, this restriction can be cautiously relaxed if inspection of data from other fields shows

similar behaviour.

The variables in the sampled trace series represent physical measurements such as temperatures,

pressures, flow rates, etc. The data are supplied digitally on a compact disc in Appendix A. To protect

the intellectual property of the petro-chemical company, no names are given and each variable has

been standardised by subtracting the mean and dividing by the standard deviation. This does not affect

the correlations or result in any loss of generality.

4.5 Computations

The R language for statistical computing was used to perform the required computations. The script is

included digitally in Appendix A and printed in Appendix B. 𝑄 was calculated for each variable in

each trace series.

19

5 OBSERVATIONS

Table 2, Table 3 and Table 4 show the 𝑄 values that were calculated for each variable in each trace

series, for each bootstrap method. The first two columns index the variable and trace series to which

the bootstrap methods were applied. The next column gives the value of the between-subjects factor

(the number of variables in the trace series). The final three columns give the 𝑄 values for each level

of the within-subjects factor (the method used).

Table 2 - 𝑄 observations: 2 variables in trace series

Variable no Trace series no

Number of

variables in

trace series

VMB1 VMBopt VNN

1 1 2 -1.46 2.85 -0.12

2 1 2 0.89 1.33 -0.75

3 2 2 -3.20 0.96 0.63

4 2 2 -4.00 2.52 -0.95

5 3 2 -2.36 1.32 -0.13

6 3 2 -1.00 0.18 -0.08

7 4 2 -3.48 2.59 0.54

8 4 2 -2.78 1.28 1.32

9 5 2 -4.00 2.93 -0.90

10 5 2 -3.10 0.86 0.44

11 6 2 -0.29 2.15 0.93

12 6 2 1.83 1.56 0.90

13 7 2 -0.55 0.93 1.15

14 7 2 -4.00 -1.30 -1.92

15 8 2 1.64 0.13 1.41

16 8 2 -2.11 2.26 1.67

17 9 2 -0.07 1.32 2.18

18 9 2 0.15 1.77 1.56

19 10 2 -1.81 1.60 0.79

20 10 2 -2.17 1.54 0.73

21 11 2 -2.05 1.64 -0.07

22 11 2 -2.19 1.02 0.60

23 12 2 -0.79 0.68 0.78

24 12 2 -0.99 0.91 -0.92

25 13 2 -2.23 -0.11 -0.24

26 13 2 -1.92 1.45 0.97

27 14 2 -3.49 2.74 0.12

28 14 2 2.76 0.51 -0.40

29 15 2 0.55 0.19 0.89

30 15 2 -3.28 2.49 -0.93

31 16 2 -0.26 0.86 0.27

32 16 2 -2.51 3.02 -0.12

20

Table 3 - 𝑄 observations: 4 variables in trace series

Variable no Trace series no

Number of

variables in

trace series

VMB1 VMBopt VNN

33 17 4 -1.42 0.37 1.15

34 17 4 -4.00 -1.10 -1.11

35 17 4 -2.74 1.55 0.51

36 17 4 -2.18 2.64 -0.49

37 18 4 -1.91 0.77 0.89

38 18 4 -0.02 1.26 1.57

39 18 4 -0.52 1.84 1.48

40 18 4 -0.48 1.97 1.96

41 19 4 -2.15 1.42 0.52

42 19 4 -1.65 1.68 1.09

43 19 4 -2.83 1.31 0.74

44 19 4 -1.84 0.97 0.73

45 20 4 -1.93 1.55 0.83

46 20 4 2.21 1.43 -1.04

47 20 4 -3.09 0.88 0.20

48 20 4 -2.63 1.27 0.73

49 21 4 -1.00 0.81 1.07

50 21 4 -1.23 2.81 -0.05

51 21 4 -2.98 -1.26 -1.40

52 21 4 -3.42 1.63 1.15

53 22 4 -0.34 1.26 1.46

54 22 4 -0.36 0.79 0.61

55 22 4 -0.61 1.53 1.58

56 22 4 -4.00 0.16 0.42

57 23 4 2.27 1.72 -0.33

58 23 4 0.71 2.14 -2.05

59 23 4 -0.06 1.45 -1.53

60 23 4 1.35 1.87 -0.79

61 24 4 -1.32 1.41 0.77

62 24 4 -1.22 0.66 0.57

63 24 4 -2.21 0.51 0.27

64 24 4 -0.94 0.87 0.71

21

Table 4 - 𝑄 observations: 8 variables in trace series

Variable no Trace series no

Number of

variables in

trace

VMB1 VMBopt VNN

65 25 8 -0.74 0.90 0.56

66 25 8 -4.00 1.58 0.30

67 25 8 -1.16 1.73 2.00

68 25 8 -0.23 -0.09 0.67

69 25 8 0.43 1.02 0.67

70 25 8 -1.20 0.53 -0.22

71 25 8 -1.60 1.40 0.75

72 25 8 -1.69 0.57 -0.45

73 26 8 -0.19 1.58 1.29

74 26 8 0.73 3.04 0.65

75 26 8 0.16 1.81 1.67

76 26 8 0.05 1.91 1.60

77 26 8 -1.78 -0.04 0.67

78 26 8 -0.04 2.08 1.51

79 26 8 -1.06 0.57 2.05

80 26 8 0.27 1.55 1.91

81 27 8 -3.12 1.54 0.09

82 27 8 -2.63 2.13 0.54

83 27 8 -4.00 1.15 -0.16

84 27 8 2.66 1.04 -1.03

85 27 8 -4.00 1.11 -0.65

86 27 8 -0.65 -0.19 0.74

87 27 8 -1.03 0.72 1.10

88 27 8 -0.89 0.52 1.54

89 28 8 -0.04 2.30 0.61

90 28 8 1.03 2.12 -0.27

91 28 8 0.32 2.22 0.31

92 28 8 -0.14 1.22 -1.97

93 28 8 -0.31 1.86 0.34

94 28 8 -0.99 2.11 1.83

95 28 8 1.71 1.17 0.47

96 28 8 1.05 1.78 -0.45

22

6 RESULTS

6.1 The Effect of the Number of Variables in the Trace Series

We want to determine if and how the dependent variable (𝑄) is affected by the between-subjects

factor (the number of variables in the trace series). This question must be answered for each method

separately. The appropriate parametric test is one-way analysis of variance (ANOVA), which makes a

number of assumptions about the data. In general, the assumptions involve residuals, which are the

differences between the observed values and those predicted by the model, but for one-way ANOVA,

the assumptions can be tested from the data directly, as follows:

 The dependent variable must be normally distributed at each level of the between-subjects

factor.

 The standard deviation of the dependent variable must be similar at all the levels of the

between-subjects factor, with a maximum difference factor of 2.

 There must be no serious outliers or influential points.

Figure 6 shows box-and-whisker plots of the observed 𝑄 values separately for each method, for each

number of variables. In each plot, the bold line shows the median, which gives an indication of the

central tendency of the data. The “box” shows the inter-quartile range, which gives and indication of

the spread (or variance) of the data. The “whiskers” extend beyond the box edges no more than 1.5

times the box length, and the outliers beyond the whiskers are shown as circles.

23

Figure 6 - Sample distributions of 𝑄 at various factor levels

From these plots we can see that:

 For each method, the spread of the data is fairly similar between the numbers of variables.

 Some of the groups‟ distributions are quite skew (e.g. VMB1 - 2 variables, VMBopt - 2

variables, and VNN - 4 variables). However, there does not seem to be a consistent direction

or pattern to the skewness.

 For each method, there are small differences in median performance between the number of

variables. When viewed in the context of the spread of the data, these differences seem

negligible.

V
M

B
1
 -

 2
 v

ar
ia

b
le

s

V
M

B
1
 -

 4
 v

ar
ia

b
le

s

V
M

B
1
 -

 8
 v

ar
ia

b
le

s

V
M

B
o

p
t -

 2
 v

ar
ia

b
le

s

V
M

B
o

p
t -

 8
 v

ar
ia

b
le

s

V
M

B
o

p
t -

 4
 v

ar
ia

b
le

s

V
N

N
 -

 8
 v

ar
ia

b
le

s

V
N

N
 -

 4
 v

ar
ia

b
le

s

V
N

N
 -

 2
 v

ar
ia

b
le

s

24

Table 5 shows the sample mean, standard deviation, median and inter-quartile range for each group. A

Kolmogorov-Smirnov test was done for each group to test the null hypothesis that the data comes

from a normal distribution, using the ksnormTest() function from the fBasics package in R. The two-

sided 𝑝-values from these tests are also given in the table.

Table 5 - Sample statistics - 𝑄

Group Method
Number of

variables

Sample

mean

Sample

standard

deviation

Sample

median

Sample inter-

quartile range

Kolmogorov-

Smirnov 𝑝-

value (2-sided)

1 VMB1 2 -1.5 1.8 -2.0 2.6 3.7 × 10-08

2 VMB1 4 -1.3 1.6 -1.4 1.9 7.0 × 10-07

3 VMB1 8 -0.7 1.6 -0.5 1.5 3.7 × 10-02

4 VMBopt 2 1.4 1.0 1.3 1.3 5.3 × 10-11

5 VMBopt 4 1.2 0.9 1.4 0.8 3.6 × 10-10

6 VMBopt 8 1.3 0.8 1.5 1.0 1.0 × 10-11

7 VNN 2 0.3 0.9 0.5 1.1 1.1 × 10-01

8 VNN 4 0.4 1.0 0.7 1.2 2.2 × 10-03

9 VNN 8 0.6 0.9 0.6 1.3 1.0 × 10-03

From the table we see that for each method, the standard deviation is similar between the numbers of

variables, with a maximum difference factor of 1.25 (between groups 4 and 6). However, 8 of the 9

groups show non-normality when tested at the 5% significance level, and some show serious non-

normality (very small 𝑝-values). Since there is no obvious pattern to the skewness, it is unlikely that

normality can be achieved by means of a transformation. Therefore, we cannot use one-way ANOVA,

and must resort to a non-parametric test to examine the effect of the number of variables (for each

method separately). The Kruskal-Wallis rank sum test provides an appropriate alternative because:

 the number of variables is a between-subjects factor with more than two levels, and

 the spread of 𝑄 is similar at these three levels (for each method separately).

We rephrase the null hypothesis more specifically as 𝐻1,0: The median 𝑄 does not depend on the

number of variables in the trace series (𝜇2𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝜇4𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝜇8𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠). The alternative

hypothesis is then 𝐻1,𝐴: The median 𝑄 depends on the number of variables in the trace series

(𝜇2𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ≠ 𝜇4𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑜𝑟 𝜇2𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ≠ 𝜇8𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑜𝑟 𝜇4𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ≠ 𝜇8𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠).

25

These hypotheses were tested for each method separately using the overall Kruskal-Wallis test, which

was applied in R using the kruskal.test() function from the stats package. The results are shown in

Table 6.

Table 6 - Overall Kruskal-Wallis results

Method Kruskal-Wallis chi-squared (𝜒2) 𝑝-value (2-sided)

VMB1 5.87 0.053

VMBopt 0.56 0.755

VNN 0.79 0.673

The p-values for the VMBopt and VNN bootstrap methods are much greater than 0.05, so we fail to

reject 𝐻1,0 for them. We find no evidence to suggest that the median 𝑄 depends on the number of

variables in the trace series for these methods. The 𝑝-value for the VMB1 method, however, is only

just greater than 0.05. We provisionally fail to reject 𝐻1,0 for this method also, but note that this

failure might be because the Kruskal-Wallis test does not have enough power at these sample sizes. (It

is difficult to evaluate the power of the test because it is non-parametric, and we do not know the

exact underlying distribution of the data.)

6.2 The Effect of the Method Used

Because we find no significant effect on 𝑄 by the number of variables, we can combine all the

observed trace series when testing the effect of the bootstrap method used. We thus have 96 observed

trace series, to which all three bootstrap methods have been applied. We wish to test 𝐻2,0 to determine

whether any of the methods is better than the others. The bootstrap method used is a within-subjects

factor, so the appropriate parametric test is repeated-measures ANOVA. This equates to a two-way

ANOVA with each subject treated as a separate level of an index factor. In this case, we must test the

assumptions on the residuals, as follows:

 The residuals must be normally distributed at each level of the within-subjects factor.

 The standard deviation of the residuals must be similar at all the levels of the within -subjects

factor, with a maximum difference factor of 2.

 There must be no serious outliers or influential points.

In addition, repeated-measures ANOVA has the assumption of sphericity, which requires that the

differences in 𝑄 between all possible pairs of levels of the within-subjects factor have similar standard

deviations.

26

A repeated-measures ANOVA model (type III) was fitted to the observed data using the R function

ezANOVA() from the ez package, and the residuals were calculated. Figure 7 shows box-and-whisker

plots of the residuals for each method. From the plots we can see that:

 The spread of the data is fairly similar between the methods.

 The distributions seem to be symmetrical for VMB1 and VMBopt, but negatively skewed for

VNN.

 All three methods show some outliers.

Figure 7 - Distributions of ANOVA residuals for the three bootstrap methods

R
es

id
u

al
s

fr
o

m
 r

ep
ea

te
d

-m
ea

su
re

s
A

N
O

V
A

VMB1 VMBopt VNN

27

Table 7 shows the standard deviation of the residuals for each method. Again, a Kolmogorov-

Smirnov test was done for each method‟s residuals to test the null hypothesis that the data comes

from a normal distribution. As before, the tests were done in R using the ksnormTest() function

from the fBasics package. The two-sided 𝑝-values are given in the table.

Table 7 - Sample statistics - residuals

Method
Standard

deviation

Kolmogorov-Smirnov

𝑝-value (2-sided)

VMB1 1.15 0.653

VMBopt 0.84 0.126

VNN 0.84 0.004

From the table we see that the standard deviation is similar between the methods, with a maximum

difference factor of 1.4. However, the distribution for the VNN method shows non-normality when

tested at the 5% significance level, with a 𝑝-value of 0.004. It is unlikely that normality can be

achieved by means of a transformation, because the residuals follow normal distributions already for

the other methods. This is confirmed by a plot of residuals versus predicted values in Figure 8 which

shows no obvious pattern to suggest an appropriate transformation.

Figure 8 - ANOVA residuals vs predictions

A
N

O
V

A
 r

es
id

u
al

s

ANOVA predictions

28

Because the normality assumption is violated, we cannot use repeated-measures ANOVA. No

sphericity tests are necessary. We must resort to a non-parametric test instead, to compare the

bootstrap methods. Two alternatives are available for testing the effect of a within-subjects factor with

more than two levels: the Friedman test and the Quade test. Conover (1999) states that the more

powerful test is Quade if the within-subjects factor has 4 or fewer levels, and Friedman otherwise.

Since we have only three methods, we use the overall Quade test. We rephrase the null hypothesis

more specifically as 𝐻2,0: There is no median difference in 𝑄 between the bootstrap methods

(𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) = 0 𝑎𝑛𝑑 𝜇(𝑉𝑁𝑁−𝑉𝑀𝐵1) = 0 𝑎𝑛𝑑 𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑁𝑁) = 0). The alternative hypothesis

is then 𝐻2,𝐴: There is a median difference in 𝑄 between the bootstrap methods (𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) ≠

0 𝑜𝑟 𝜇(𝑉𝑁𝑁−𝑉𝑀𝐵1) ≠ 0 𝑜𝑟 𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑁𝑁) ≠ 0).

Figure 9 shows box-and-whisker plots of the differences in 𝑄 between the three bootstrap methods.

We see a pronounced difference between VMBopt and VMB1, and between VNN and VMB1, but it is

not clear whether there is a significant difference between VMBopt and VNN. We expect to reject

𝐻2,0.

Figure 9 - Differences in 𝑄 between bootstrap methods

D
if

fe
re

n
ce

s
in

 Q

VMBopt - VMB1 VNN - VMB1 VMBopt - VNN

29

The overall Quade test was applied in R using the quade.test() function from the stats packages. A

Quade 𝐹-value of 88.6, and a 𝑝-value of less than 2.2×10-16 were calculated. This 𝑝-value is much

less than our cut-off of 0.05. Therefore we reject 𝐻2,0 as expected, and provisionally conclude that

there is a median difference in 𝑄 between the bootstrap methods. In other words, the bootstrap

method that is used does have a statistically significant effect on performance, 𝑄.

Next, we want to determine where these differences lie. We cannot simply apply a test for paired data

(such as the Wilcoxon signed rank test) for each pair of methods, because this involves reusing data.

Instead, multiple comparison tests are needed that adjust the significance level so as to reveal only

honestly significant differences between the methods. Since R does not include a function to perform

Quade multiple comparison tests, the algorithm given in Appendix C was followed. The pair-wise

difference hypotheses and the test results are shown in Table 8, along with the sample median

difference between each pair of methods. Because every null hypothesis was rejected, we can

provisionally conclude that VMBopt performs significantly better than VNN, which performs

significantly better than VMB1, when tested at the 5% level of significance. We cannot evaluate the

power of the non-parametric Quade test at these sample sizes, but it is immaterial in this case, because

significant differences were detected.

Table 8 - Multiple comparison tests results

Null hypothesis
Alternative

hypothesis

Median

difference

(sample)

1-sided

𝑝-value

𝛼/2

(critical

value)

Conclusion

𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) = 0 𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) ≠ 0 2.2 7.3×10-11 2.5×10-2
Reject null

hypothesis

𝜇(𝑉𝑁𝑁−𝑉𝑀𝐵1) = 0 𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) ≠ 0 2.0 3.9×10-4 2.5×10-2
Reject null

hypothesis

𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑁𝑁) = 0 𝜇(𝑉𝑀𝐵𝑜𝑝𝑡 −𝑉𝑀𝐵1) ≠ 0 0.59 4.6×10-4 2.5×10-2
Reject null

hypothesis

30

7 DISCUSSION

For the sample data from the petro-chemical plant, the number of variables in the trace series was not

found to have a significant effect on the performance of any of the bootstrap methods. This result is

useful in practice, because one may not be sure whether certain inputs to a simulation model are

cross-correlated or not. The result tells us that if there is any doubt about the inter-dependence of the

input variables, it is better to combine them into one trace series before applying a bootstrap method.

Doing this will not cause a significant loss in performance regarding the preservation of auto-

correlations. (Note: It will still result in a loss of variety between the variables, because they will be

sampled together as a vector.)

The conclusion regarding the effect of the number of variables was marginal for the VMB1 method. It

might just have been a result of the test used and the sample size. Fortunately, this uncertainty does

not matter much, because one would not use the VMB1 method anyway. It was only tested as a

control and performed worse than the other methods, as expected.

The VMBopt method performed better than the VNN method. This could be because of the simplistic

nearest-neighbour matching algorithm used, which only compared one previous timeframe. A

different one could have been used, but the ideal matching algorithm could be different for each trace

series, depending on its auto-correlation structure. The VMBopt method has the advantage that it

automatically adjusts itself to the auto-correlation structure of each trace series, because it uses

whichever block length performs best. This „brute force‟ optimization is practical for the VMBopt

method because it is quick enough that many block lengths can be applied and tested. It would be

infeasible for the VNN method though, because it is much more computationally intensive. Another

possible explanation for the better performance of the VMBopt method is the general approach used. It

might just be more effective to preserve auto-correlations by re-sampling data in blocks, rather than

by trying to make each new re-sampled timeframe „fit‟ after the previous one. Whatever the reason,

the VMBopt method performed best for the trace series from the petro-chemical plant, and should be

used in preference.

Both the VMBopt and VNN methods performed much better than the control VMB1 method. This is

not surprising. The VMB1 method destroys the auto-correlations in the trace series by definition,

because it samples individual timeframes in random order. As the block length increases, fidelity to

the auto-correlation structure of the trace series increases. If the block length increases too much,

though, the generated series loses variety, and starts looking too much like the trace series. The

optimal block length is a compromise between the two. The effect of the block length is illustrated in

the figures below. Figure 10 shows an example univariate trace series, 100 timeframes long, that has

31

some auto-correlation (𝑟𝑎 ≈ 0.7). Figure 11 shows the generated series by the VMB1 bootstrap

method, which has a block length of one timeframe. It is clear from the pattern of the generated series

that the auto-correlation of the trace series is not preserved. Figure 12 shows the generated series by

the VMB bootstrap method with a block length of 25 timeframes. The auto-correlation pattern is

preserved, but the generated series resembles the trace series unrealistically closely.

Figure 10 - Example univariate trace series

Figure 11 - Generated series by the VMB1 bootstrap method (block length of 1 timeframe)

Figure 12 - Generated series by the VMB bootstrap method (block length of 25 timeframes)

timeframes

timeframes

timeframes

block 1 block 2 block 3 block 4

32

The performance measure 𝑄 incorporates the compromise between fidelity and variety, and shows

what the optimum block length is. Since 𝑄 is defined for each variable in a trace series individually,

the overall optimal block length is that which maximizes the total 𝑄 for the trace series. Figure 13

plots 𝑄 versus block length for an example trace series that is 1000 timeframes long and contains 4

variables. 𝑄 is estimated using the subseries Turing test technique, so the block lengths shown are for

a subseries (32 timeframes long), not the whole trace series. The performance of every possible block

length for a subseries is shown.

The graph shows that for each variable individually, performance increases sharply as the block

length increases from one timeframe to the optimum for that variable. Performance then gradually

declines as block length increases beyond the optimum. Similarly, the total 𝑄 for the trace series rises

sharply to its optimum, then declines gradually, as block length increases. This is typical for

stationary trace series where auto-correlation is present.

Figure 13 - Performance versus block length for an example trace subseries

Figure 13 illustrates why it is necessary to optimize the block length for each trace series. Using a

block length of one timeframe is a simple but inadequate approach. The VMBopt method finds the

optimal block length for each trace series using the subseries Turing test procedure. This makes it

more complicated and more computationally intensive than the simplistic VMB1 bootstrap method.

However, it produces generated data with much better quality. Since the quality of these input

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Q

Block length (timeframes)

Variable 1

Variable 2

Variable 3

Variable 4

TOTAL

33

scenarios determines the quality of simulation outputs, the VMBopt method should be used in

preference to the VMB1 method at the petro-chemical plant if it is suspected that a simulation‟s input

variables are auto-correlated.

In summary, when using the VMBopt bootstrap method to generate multivariate scenarios for a

simulation model, one must:

1. Assess which input variables may be auto- and/or cross-correlated, and assemble their

observed data into a multivariate trace series.

2. Check that the trace series complies with the assumptions of the VMBopt bootstrap method. It

must contain only numerical, stationary time series with short-memory auto-correlation and

simple cross-correlation.

3. Use the subseries Turing test technique to find the optimal overall block length for a

subseries.

4. Scale this up for the whole trace series by multiplying it by 𝑛
𝑚 as prescribed by Demirel

& Willemain (2002b), where 𝑛 is the trace series length and 𝑚 is the subseries length.

5. Apply the vector moving block bootstrap method to the trace series, using the optimal block

length (VMBopt), to produce the generated series, as required.

34

8 CONCLUSIONS

Three vector bootstrap methods were tested empirically, using data from a petro-chemical plant:

 the vector moving block bootstrap method, with a block length of 1 timeframe (VMB1)

 the vector moving block bootstrap method, with an optimized block length (VMBopt)

 the vector nearest neighbour bootstrap method (VNN)

The following conclusions can be made:

 The number of variables in a trace series did not make a statistically significant difference to

the performance of the bootstrap methods, at the 5% significance level.

 The VMBopt method performed significantly better than the VNN method, which in turn

performed significantly better than the VMB1 method, at the 5% significance level. Because

the VMBopt bootstrap method produced the most realistic scenarios, it is the most suitable

method for the petro-chemical plant. It should be used to generate multivariate input scenarios

for simulation models if the presence of auto and cross-correlation is suspected.

35

9 RECOMMENDATIONS FOR FURTHER RESEARCH

Further research is needed to generalize these results beyond the sample taken from the petro-

chemical plant. Artificial data could be simulated so as to cover a wide range of auto- and cross-

correlation structures.

Further research is also needed to relax the assumptions of the VMBopt bootstrap method, regarding:

 Data type: For trace series containing nominal variables, one would need a generalized

version of the delta (∆) measure, which quantifies the difference in the auto-correlation

structures of two time series.

 Time-variation: For non-stationary trace series, one would need to work with rates of change.

 Dependencies: For trace series with long-memory auto-correlation and complex inter-

dependencies between the variables, one would need more sophisticated sampling algorithms.

In addition, the „brute force‟ way in which the block length of the VMB method is optimized is fairly

computationally intensive. It would be useful to have a rule by which to predict the optimal block

length for a trace series without performing a subseries Turing test for every possible block length.

Since the optimal block length depends on the auto-correlation structures in the trace series, the rule

would need to characterize these structures and relate them to the optimal block length in some way.

Further research is needed to survey, develop and test potential optimization rules.

Finally, a serious limitation of vector bootstrap methods is that they cannot produce variety between

the variables in the generated series. To preserve cross-correlations, they sample all the variables from

the trace series as a vector. This means that the simulation model is only exposed to the limited

combinations of variables that have been observed in the trace series. Further research is needed to

survey, develop and test bootstrap methods that can preserve cross-correlations without sampling as a

vector, so that the generated series can contain new but realistic combinations.

36

REFERENCES

Barton, R.R. et al., 2002. Panel discussion on current issues in input modeling. In Proceedings of the

34th conference on Winter simulation: exploring new frontiers. San Diego, California: Winter

Simulation Conference, pp. 353-369.

Biller, B., 2009. Copula-Based Multivariate Input Models for Stochastic Simulation. Operations

Research, 57(4), pp.878-892.

Biller, B. & Nelson, B.L., 2008. Evaluation of the ARTAFIT Method for Fitting Time-Series Input

Processes for Simulation. INFORMS Journal on Computing, 20(3), pp.485-498.

Biller, B. & Nelson, B.L., 2005. Fitting time-series input processes for simulation. Operations

Research, 53(3), pp.549–559.

Borkowski, J., 2010. Course notes: Nonparametric Statistics - Quade test, Department of

Mathematical Sciences, Montana State University. Available at:

http://www.math.montana.edu/~jobo/st431/quade.pdf [Accessed October 18, 2011].

Branca, F., 2011. Discussion concerning sampling trace series from the petro-chemical plant.

Cario, M.C. & Nelson, B.L., 1997. Modeling and generating random vectors with arbitrary marginal

distributions and correlation matrix. Northwestern University, IEMS Technical Report.

Carlstein, E., 1986. The use of subseries methods for estimating the variance of a general statistic

from a stationary time series. Annals of Statistics, 14, pp.1171-1179.

Carlstein, E. et al., 1998. Matched-Block Bootstrap for Dependent Data. Bernoulli, 4(3), pp.305-328.

Civelek, I., Biller, B. & Scheller-Wolf, A., 2009. The Impact of Dependence on Queueing Systems.

Tepper School of Business Carnegie Mellon University, Pittsburgh, USA.

Conover, W.J., 1999. Practical Nonparametric Statistics 3rd ed., Wiley.

Demirel, O.F. & Willemain, T.R., 2002a. A Turing Test of Bootstrap Scenarios. Journal of

Computational and Graphical Statistics, 11(4), pp.896-909.

Demirel, O.F. & Willemain, T.R., 2002b. Generation of simulation input scenarios using bootstrap

methods. Journal of the Operational Research Society, 53(1), pp.69-78.

Derrac, J. et al., 2011. A practical tutorial on the use of nonparametric statistical tests as a

methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and

Evolutionary Computation, 1, pp.3-18.

Efron, B., 1979. Bootstrap methods: another look at the jackknife. The annals of Statistics, pp.1–26.

Hall, P., Horowitz, J.L. & Jing, B.Y., 1995. On blocking rules for the bootstrap with dependent data.

Biometrika, 82(3), p.561.

Kunsch, H.R., 1989. The Jackknife and the Bootstrap for General Stationary Observations. The

Annals of Statistics, 17(3), pp.1217-1241.

Lahiri, S.N., 2004. Selecting optimal block lengths for block bootstrap methods. Department of

Statistics, Iowa State University. Available at:

37

http://neptune.galaxy.gmu.edu/interface/I03/I2003Proceedings/LahiriSoumendra/LahiriSoum

endra.paper.pdf [Accessed September 14, 2011].

Lahiri, S.N., 1999. Theoretical Comparisons of Block Bootstrap Methods. The Annals of Statistics,

27(1), pp.386-404.

Lall, U. & Sharma, A., 1996. A nearest neighbor bootstrap for resampling hydrologic time series.

Water Resources Research, 32(3), pp.679–693.

Lee, T. & Ouarda, T.B.M.., 2011. Identification of model order and number of neighbors for k-nearest

neighbor resampling. Journal of Hydrology.

Liu, R.Y. & Singh, K., 1992. Moving blocks jackknife and bootstrap capture weak dependence.

Exploring the limits of bootstrap, 225, p.248.

Park, D. & Willemain, T.R., 1999. The threshold bootstrap and threshold jackknife. Computational

Statistics & Data Analysis, 31(2), pp.187–202.

Politis, D.N. & Romano, J.P., 1992. A circular block-resampling procedure for stationary data.

Exploring the limits of bootstrap, pp.263–270.

Politis, D.N. & Romano, J.P., 1994. The Stationary Bootstrap. Journal of the American Statistical

Association, 89(428).

Rajagopalan, B. & Lall, U., 1999. A k-nearest-neighbor simulator for daily precipitation and other

weather variables. Water Resources Research, 35(10), pp.3089–3101.

Teknomo, K., 2006. Similarity Measurement. Available at:

http://people.revoledu.com/kardi/tutorial/Similarity/ [Accessed March 2, 2011].

Willemain, T.R., Bress, R.A. & Halleck, L.S., 2003. Enhanced Simulation Inference Using Bootstraps

of Historical Inputs. IIE - Transactions, 35(9), p.851.

Zientek, L.R. & Thompson, B., 2007. Applying the bootstrap to the multivariate case: bootstrap

component/factor analysis. Behavior Research Methods, 39(2), pp.318-325.

38

APPENDIX A

APPENDIX A: DIGITAL APPENDIX

The compact disc contains:

 trace_series.xls – the 28 trace series observed from the petro-chemical plant in a spreadsheet

 trace1.txt to trace28.txt – the 28 observed trace series in a text files, ready to be used by the R

code

 code.txt – the R code used to run and test the bootstrap methods

39

APPENDIX B

APPENDIX B: R CODE FOR BOOTSTRAP METHODS

######################## DELTA quality measure function ##########################

DELTA_calc=function(series1,series2){

 #series1

 #series2

 series_length=dim(series1)[1]

 no_vars=dim(series1)[2]

 HOC1=matrix(NA,10,no_vars)

 HOC2=matrix(NA,10,no_vars)

 # for each variable in the series

 for(var_no in 1:no_vars){

 uni1=series1[,var_no]-mean(series1[,var_no])

 uni2=series2[,var_no]-mean(series2[,var_no])

 #for each higher order difference series

 for (diff_no in 1:10){

 #HOC for series 1

 HOC1[diff_no,var_no]=sum((uni1[2:length(uni1)]*

 uni1[1:(length(uni1)-1)])<0)

 if (HOC1[diff_no,var_no]==0) {HOC1[diff_no,var_no]=1}

 if (HOC1[diff_no,var_no]==(length(uni1)-1)) {HOC1[diff_no,

 var_no]=HOC1[diff_no,var_no]-1}

 HOC1[diff_no,var_no]=HOC1[diff_no,var_no]/(length(uni1)-1)

 uni1=uni1[2:length(uni1)]-uni1[1:(length(uni1)-1)]

 #HOC for series 2

 HOC2[diff_no,var_no]=sum((uni2[2:length(uni2)]*uni2[1:

 (length(uni2)-1)])<0)

 if (HOC2[diff_no,var_no]==0) {HOC2[diff_no,var_no]=1}

 if (HOC2[diff_no,var_no]==(length(uni2)-1)) {HOC2[diff_no,

 var_no]=HOC2[diff_no,var_no]-1}

 HOC2[diff_no,var_no]=HOC2[diff_no,var_no]/(length(uni2)-1)

 uni2=uni2[2:length(uni2)]-uni2[1:(length(uni2)-1)]

 }

 }

 #calculate delta

 DELTA=colSums(((HOC1-HOC2)/sqrt((HOC1*(1-HOC1)+HOC2*(1-HOC2))/

 (series_length-1:10)))^2)

 DELTA

}

####################### Vector Nearest Neighbour Bootstrap ########################

VNN = function (trace,req_gen_length,K=sqrt(dim(trace)[1])){

 #trace

 #req_gen_length

 #L=maximum lag for comparison

 #K=number of candidates

 trace_length=dim(trace)[1]

 no_vars=dim(trace)[2]

 #determine lag 1 auto-correlation for each variable

 auto_corr=rep(NA,no_vars)

 for (var_no in 1:no_vars) {auto_corr[var_no]=abs(cor(method="spearman",

 trace[,var_no],c(trace[trace_length,var_no],trace[1:(trace_length-1),

 var_no])))}

 #define gen and sample a timeframe to get things going (warm-up period)

 gen=matrix(NA,req_gen_length,no_vars)

 gen[1,]=trace[sample(1:trace_length,1),]

 #for each NN bootstrap sample

 for (samp_no in 2:req_gen_length){

 #compare feature vector with every timeframe in the trace

40

APPENDIX B

 diff=abs(trace-rep(gen[samp_no-1,],each=trace_length))

 #for each variable, rank across all timeframes

 for (var_no in 1:no_vars) {diff[,var_no]=rank(diff[,var_no],

 ties.method="random")}

 #for each timeframe, weight the ranks (weighting by autocorrelation)

 for (time_no in 1:trace_length) {diff[time_no,]=diff[time_no,]*

 auto_corr}

 #for each timeframe, sum across the weighted ranks

 diff=rowSums(diff)

 #rank across all timeframes

 diff=rank(diff,ties.method="random")

 #sample from the best K timeframes

 samp=sample(1:K,1,prob=1/(1:K)/sum(1/(1:K)))

 samp=which(diff==samp)

 #add to the generated data

 gen[samp_no,]=trace[samp,]

 }

 gen

}

############################## Moving Block Bootstrap #############################

VMB=function(trace,req_gen_length,block_length=0){

 #trace

 #req_gen_length

 #block_length = specified length of sampling block

 trace_length=dim(trace)[1]

 no_vars=dim(trace)[2]

 #generate bootstrap series

 start_rows=sample(x=1:trace_length,size=req_gen_length%/%block_length+1,

 replace=TRUE)

 sample_rows=rep(start_rows,each=block_length)+0:(block_length-1)

 sample_rows[sample_rows>trace_length]=sample_rows[sample_rows>trace_length]-

 trace_length

 gen=(trace[sample_rows,])[1:req_gen_length,]

 gen

}

#################################### Turing Test ##################################

D=list("Output - D")

Delta_true=list("delta_true")

Delta_VNN=list("delta_VNN")

Delta_VMB=list("delta_VMB")

for(test_no in 1:(2)){

 trace=as.matrix(read.table(paste("trace",test_no,".txt",sep=""),

 header=TRUE))[1:1000,]

 #standardise trace

 trace=scale(trace)

 trace_length=dim(trace)[1]

 no_vars=dim(trace)[2]

 no_subs=min(100,floor(sqrt(trace_length)))

 subs_length= min(100,trace_length%/%no_subs)

 #estimate the true distribution of DELTA for each variable

 #enumerate all the possible combinations of subseries

 combinations=cbind(rep(1:no_subs,each=no_subs),rep(1:no_subs,times=no_subs))

 combinations=combinations[combinations[,1]<combinations[,2],]

 #for each combination calculate and store DELTA for each variable

 no_comb=no_subs*(no_subs-1)/2

 DELTA_TRUE=matrix(NA,no_comb,no_vars)

 for (comb_no in 1:no_comb){

 trace_subs_no=combinations[comb_no,1]

 add_subs_no=combinations[comb_no,2]

 trace_subs=trace[((trace_subs_no-1)*subs_length+1):(trace_subs_no*

41

APPENDIX B

 subs_length),]

 add_subs=trace [((add_subs_no-1) *subs_length+1):(add_subs_no*

 subs_length),]

 DELTA_TRUE[comb_no,]=DELTA_calc(trace_subs,add_subs)

 }

 #estimate the distribution of DELTA generated by the

 #Vector Nearest Neighbour method for each variable

 DELTA_VNN=matrix(NA,no_subs*no_subs,no_vars)

 j=0

 for (subs_no in 1:no_subs){

 print(paste("test",test_no, "of 28","method 1 of 2,",

 floor(subs_no/no_subs*100),"% done"))

 flush.console

 trace_subs=trace[((subs_no-1)*subs_length+1):(subs_no*subs_length),]

 #generate many new series, and compare

 for (i in 1:no_subs){

 j=j+1

 #generate a new series

 gen_subs=VNN(trace=trace_subs,req_gen_length=subs_length)

 #compare the trace subseries to the generated subseries

 DELTA_VNN[j,]=DELTA_calc(trace_subs,gen_subs)

 }

 }

 #estimate the distribution of DELTA generated by the vector moving block

 #bootstrap method

 DELTA_VMB=rep(NA,no_subs*no_subs*no_vars*subs_length)

 dim(DELTA_VMB)=c(no_subs*no_subs,no_vars,subs_length)

 for (block_length in 1:subs_length){

 print(paste("test",test_no, "of 28","method 2 of 2,",

 floor(block_length/subs_length*100),"% done"))

 flush.console

 j=0

 for (subs_no in 1:no_subs){

 trace_subs=trace[((subs_no-1)*subs_length+1):

 (subs_no*subs_length),]

 #generate many new series, and compare

 for (i in 1:no_subs){

 j=j+1

 #generate a new series

 gen_subs=VMB(trace=trace_subs,req_gen_length=

 subs_length,block_length=block_length)

 #compare the trace subseries to the generated subseries

 DELTA_VMB[j,,block_length]=

DELTA_calc(trace_subs,gen_subs)

 }

 }

 }

 #do ks tests and compile results

 D_VNN=rep(NA,no_vars)

 D_VMB=matrix(NA,subs_length,no_vars)

 for(var_no in 1:no_vars){

 D_VNN[var_no]=ks.test(DELTA_TRUE[,var_no],DELTA_VNN[,var_no])[[1]]

 for (block_length in 1:subs_length){

 D_VMB[block_length,var_no]=ks.test(DELTA_TRUE[,var_no],

 DELTA_VMB[,var_no,block_length])[[1]]

 }

 }

 D=c(D,list(rbind(D_VNN,D_VMB)))

}

#convert these D values to Q values with Q=log((1-D)/D)

42

APPENDIX C

APPENDIX C: QUADE MULTIPLE COMPARISON TESTS

Non-parametric Quade multiple comparison tests were performed according to the following

algorithm, adapted from Derrac et al (2011, pp.8,10) and Borkowski (2010). We have 𝑔 blocks (the

experimental subjects) and 𝑐 treatments (the bootstrap methods), with every treatment applied once to

every block, as shown in Table 9.

Table 9 - Within-subjects data format

Block

(subject)

Treatment (within-subjects factor)

1 2 ... c

1 x11 x12 ... x1c

2 x21 x22 ... x2c

3 x31 x32 ... x3c

...

g xg1 xg2 ... xgc

Test whether the difference between two treatments (𝑚 and 𝑛) is statistically significant, as follows:

 Rank the observations within each block (each row), from 1 to 𝑐. For tied values, assign

average ranks. Let 𝑅𝑖𝑗 be the rank assigned to block 𝑖 and treatment 𝑗.

 Calculate the sample range of each block (row max 𝑥𝑖𝑗 – row min 𝑥𝑖𝑗). Rank the rows

according to this sample range, in ascending order, assigning average ranks to ties. Let 𝑃𝑖 be

the rank assigned to block 𝑖 and treatment 𝑗.

 Multiply each ranked observation by the ranked range of its block, 𝑆𝑖𝑗 = 𝑃𝑖[𝑅𝑖𝑗].

 Sum this product for each treatment (column), 𝑆𝑗 = 𝑆𝑖𝑗
𝑔
𝑖=1 for 𝑗 = 1, 2, . . . , 𝑐.

 Calculate: 𝐴 = 𝑆𝑖𝑗
2𝑐

𝑗=1
𝑔
𝑖=1

 Calculate: 𝐵 = 1 𝑔 𝑆𝑗
2𝑐

𝑗=1

 For a pair of treatments 𝑚 and 𝑛, calculate: 𝑡𝑚𝑛 =
 𝑆𝑚−𝑆𝑛

2𝑔 𝐴−𝐵

 𝑔−1 𝑐−1

 Perform a one-tailed t-test on this value at the required level of significance (𝛼). If the 𝑝-value

is less than (𝛼 2), reject the null hypothesis that there is no pair-wise difference between the

treatments.

