ENDOMETRIAL CARCINOMAS: MICROSATELLITE INSTABILITY AND SUSPECTED LYNCH SYNDROME IN THE GREATER JOHANNESBURG AREA

(2009-2015)

REUBINA WADEE 9900264F

A thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand, in fulfilment of the requirements for Doctor of Philosophy, in the branch of Anatomical Pathology.

Johannesburg, 2019

i

DECLARATION

I, Reubina Wadee declare that this thesis is my own work. It is being submitted for the degree of Doctor of Philosophy in the branch of Anatomical Pathology at the University of the Witwatersrand, Johannesburg. It has not been submitted for any degree or examination at this or any other University.

Signature of candidate

The _____ day of _____ 2019

DEDICATION

I dedicate this thesis to my family: Nitesh, Caleesi and Cantara; but most of all to my Dad, Ahmed. Thank you to everyone for your love, patience and unwavering support of this endeavour. I could not have come this far without you.

PRESENTATIONS ARISING FROM THIS STUDY

I have presented posters based on my research at the following:

2017: Molecular Biosciences Research Thrust (MBRT) Research Day, University of the Witwatersrand, Faculty of Health Sciences and Faculty of Sciences, November 2017

2018: Faculty of Health Sciences Research Day, Faculty of Health Sciences, University of the Witwatersrand, September 2018

2018: The XXXII International Academy of Pathology (IAP) Congress, October 2018, Dead Sea, Jordan

2018: Molecular Biosciences Research Thrust (MBRT) Research Day, University of the Witwatersrand, Faculty of Health Sciences and Faculty of Sciences, November 2018

2019: United States and Canadian Academy of Pathology (USCAP) March2019, National Harbour, Maryland, United States of America

PUBLICATION ARISING FROM THIS STUDY

"A potpourri of pathogenetic pathways in endometrial carcinomas with a focus on Lynch syndrome." In: Ann Diagn Pathol. 2019 Apr 1; 39:92–104. (Appendix 1).

ABSTRACT

Endometrial carcinomas are common malignancies of the female genital tract, with endometrioid endometrial carcinoma (EEC) being the most common histological subtype. Microsatellite instability is a molecular abnormality that is often documented in EEC and most tumours associated with Lynch syndrome (LS).

This study assessed 145 cases of EEC for the 4 mismatch repair markers by immunohistochemistry (IHC) and for microsatellite instability (MSI) by PCR. There were 41 cases that showed MMR deficiency, of which 37 demonstrated MLH1 loss. Forty-six cases were microsatellite unstable by PCR. The 37 MLH1 deficient cases and 25 cases illustrating discordance between IHC and PCR results underwent methylation studies, which revealed that over 80% of the 37 MHL1 deficient cases were hypermethylated. Furthermore, of the 25 cases showing discordant MMR IHC and MSI PCR results, 68% were hypermethylated. Of the remaining 8/25 cases, 7 were unmethylated whilst 1 case had insufficient DNA for methylation assessment.

BRAF assessment by IHC, PCR and Sanger sequencing was performed which showed that using all 3 tests; 6 out of 37 cases had BRAF mutations, which is higher than studies from western societies, but less than that noted in an eastern study. Similar to western studies, however, the present study showed that BRAF mutations are uncommon in EECs and should therefore not be included in the workup of EEC patients.

This study illustrated that a possible 13 of 145 (8.97%) patient cases are suspected of having potential germline mutations, which is double the expected frequency noted in the developed nations. This suggests that there may be a higher incidence of LS in South Africa than in western countries and highlights the need for screening tests in our patient population. It is

thus incumbent on histopathologists to undertake screening tests to identify females who may be affected by LS so that such patients, and their relatives; may be offered genetic counselling with a view to germline mutational assessment. Patients and relatives with suspected LS may then undergo surveillance for the development of other possible tumours in an attempt to decrease the menace of morbidity and mortality associated with this tumour syndrome.

ACKNOWLEDGMENTS

This thesis would not have been possible without the support and contributions from the following:

- 1. National Research Foundation (NRF) Thuthuka Grant.
- The National Health Laboratory Service (NHLS) Research Trust Development Grant.
- 3. University of the Witwatersrand Faculty Research Committee grant to individuals.
- 4. University of the Witwatersrand SEED fund.
- 5. Mrs. Sharlene Naidoo for her assistance with some of the molecular tests.
- 6. Mrs. Madi Nzeba for assistance with the immunohistochemical staining.
- Mr. Mishalan Moodley for his assistance with some of the molecular tests.
- 8. Dr. Innocent Maposa for his assistance with the statistical analyses.
- 9. Mr. Eric Liebenberg for his assistance with the line diagram.
- 10. Professor Moyra Keane for her assistance with proof-reading and all her support.
- 11. Professor Wayne Grayson for all his support.

TABLE OF CONTENTS

Declaration	ii
Dedication	iii
Presentations arising from this study	iv
Publications arising from this study	v
Abstract	vi
Acknowledgements	viii
Table of contents	ix
List of figures	xiii
List of tables	xvii
Abbreviations	XXV
Chapter 1.0. Introduction	1
Chapter 2.0. Literature review	7
2.1. Introduction	7
2.2. Pathology of endometrial carcinomas	7
2.3. Microsatellite instability	17
2.4. Additional functions of MMR proteins	19
2.5. Lynch syndrome	21

Page number

2.6. Additional molecular pathways in endometrioid endometrial	
carcinomas	38
2.7. Molecular pathways in non-endometrioid carcinomas of the	
endometrium	46
2.8. Aims	52
Chapter 3.0. Materials and methods	54
3.1. Immunohistochemistry	55
3.2. Polymerase Chain Reaction	56
3.3. BRAF V600E Immunohistochemistry	59
3.4. BRAF Polymerase Chain Reaction	59
3.5. BRAF Sanger sequencing	60
3.6. MLH1 methylation using EpiTYPER	61
3.7. The OneStep qMethyl TM kit for PCR	66
3.8. Statistical analysis	67
3.9. Study limitations	69
Chapter 4.0. Results	70
4.1. Clinical parameters	70
4.2. Mismatch repair immunohistochemistry	71

4.3. Comparison of age and tumour grade in mutations identified by IHC,	
PCR and overall mutational diagnosis	80
4.4. Microsatellite instability by PCR	82
4.5. Detection of mismatch repair/microsatellite instability by IHC versus	
PCR	87
4.6. Statistics of microsatellite instability mutational status	91
4.7. IHC versus overall abnormality/mutational status	97
4.8. Validity of PCR diagnosis in endometrial carcinoma	99
4.9. BRAF assessment of endometrial carcinomas	101
4.10. Statistics of BRAF mutational analysis	110
4.11. EpiTYPER MassARRAY MLH1 hypermethylation analysis	115
4.12. OneStep qMethyl TM kit MLH1 hypermethylation analysis	124
4.13. Comparison of EpiTYPER and OneStep qMethyl TM kit	125
4.14. Summary of results	142
Chapter 5.0. Discussion	144
5.1. Study limitations	144
5.2. Discussion of results	145
Chapter 6.0. Conclusion	199
6.1. Key points of the study	203

6.2. Recommendations	205
Chapter 7.0. References	207
Appendix 1. Published article	224
Appendix 2. Ethical clearance certificate	226
Appendix 3. Epigram	227
Appendix 4. PCR gel	228
Appendix 5. Turnitin report	229
Appendix 6. Plagiarism report	230

LIST OF FIGURES

	Page number
Figure 1. A uterus showing replacement of the endometrial cavity by a	
fungating tumour.	8
Figure 2. The back-to-back growth pattern of an endometrioid endometrial	
carcinoma is striking.	9
Figure 3. An endometrioid endometrial carcinoma.	10
Figure 4. Marked glandular crowding with little intervening stroma is seen.	10
Figure 5. A focus of central necrosis is evident in this tumour.	11
Figure 6. Nuclear pleomorphism is observed in this tumour.	11
Figure 7. An area containing foam cells is identified.	12
Figure 8. Brisk mitotic activity is demonstrated.	12
Figure 9. A photomicrograph demonstrating columnar cells with clear	
apical mucin in a mucinous carcinoma.	13
Figure 10. A photomicrograph demonstrating intracytoplasmic mucin	
within columnar cells.	14
Figure 11. A serous carcinoma is identified arising from intraepithelial carcin	noma. 15
Figure 12. A high-power view of serous carcinoma.	15

Figure 13. The tubulocystic architecture is well represented in a clear cell	
carcinoma.	16
Figure 14. A line diagram illustrating molecular pathways involved in	
endometrioid endometrial carcinomas.	46
Figure 15. Retained nuclear staining on an MLH1 stain.	73
Figure 16. Loss of MLH1 staining in tumour nuclei.	73
Figure 17. MLH1 staining of endometrial carcinomas.	74
Figure 18. Positive nuclear staining of tumour cells is noted on an MSH2 stain.	74
Figure 19. Lymphocytes and stromal cell nuclei stain positively whilst tumour	
nuclei are negative in a tumour with an MSH2 stain	75
Figure 20. MSH2 Staining of endometrial carcinomas.	75
Figure 21. A retained nuclear signal is noted in the tumour cells with an MSH6	
stain.	76
Figure 22. Lymphocytes and stromal cell nuclei show retained staining with an MSH6	
stain.	76
Figure 23. MSH6 staining of endometrial carcinomas.	77
Figure 24. Retained staining of tumour nuclei is noted with a PMS2 stain	77
Figure 25. Lymphocytes and stromal cell nuclei stain show retained staining with a PMS	\$2
stain.	78

Figure 26. PMS2 staining of endometrial carcinomas.	78
Figure 27. Distribution of immunohistochemical stains that demonstrated focal,	
weak or variable staining.	79
Figure 28. Heterogenous pattern of immunohistochemical staining.	80
Figure 29. Microsatellite instability as demonstrated by PCR.	83
Figure 30. An electropherogram illustrating microsatellite stability in all	
five markers in an endometrial carcinoma.	83
Figure 31. An electropherogram demonstrating a microsatellite-Low tumour	84
Figure 32. A microsatellite-high tumour is depicted in an electropherogram.	84
Figure 33. This electropherogram depicts a case in which no result was obtained.	85
Figure 34. MSI-High tumours.	86
Figure 35. Percentage of mutations in each of the PCR markers.	87
Figure 36. Methylation of cases that demonstrated MMR/MSI discordance using	
both EpiTYPER and the OneStep qMethyl TM kit.	91
Figure 37. Focal cytoplasmic staining of tumour cells is identified on a BRAF	
stain.	102
Figure 38. Aberrant nuclear staining of tumour cells is noted on a BRAF stain.	103
Figure 39. BRAF V600E staining by immunohistochemistry.	103
Figure 40. BRAF results by PCR.	104

Figure 41. Specific BRAF mutations identified by PCR.	104
Figure 42. A BRAF V600E mutation is indicated.	105
Figure 43. Wild-type BRAF is depicted.	105
Figure 44. MLH1 methylation by EpiTYPER.	115
Figure 45. Assessment of methylation of MLH1 regions C and D.	116
Figure 46. MLH1 methylation using the OneStep qMethyl TM Kit.	125
Figure 47. Comparison of methylation by EpiTYPER and the OneStep qMethyl TM	
kit.	129

LIST OF TABLES

Page number

Table 1. Amsterdam I and II Criteria and Revised Bethesda Guidelines	23
Table 2. Mismatch repair mutations and clinical phenotypes.	33
Table 3: Primer sequences utilised for MSI testing.	57
Table 4. Specific markers and expected size of amplicons.	58
Table 5. Interpretation of Cohen's kappa values.	69
Table 6. Age and pathological distribution of the study samples.	70
Table 7. The number of deficient immunohistochemical stains per marker (A)	
and the number of mismatch repair deficiencies per immunohistochemical marker	
per patient sample (B).	72
Table 8. Comparison of age and tumour grades of cases detected by IHC (A),	
PCR (B) and overall abnormality/mutational status (C).	80
Table 9. Numbers of mutations per molecular marker.	86
Table 10. Abnormalities/mutations detected by IHC versus PCR.	88
Table 11. Concordance between IHC and PCR.	91
Table 12. Odds ratio of abnormalities/mutations by IHC in comparison to PCR	92
Table 13. The agreement between IHC and PCR according to age (A) and by	
tumour grade (B).	92

Table 14. Odds ratio of abnormality/mutations by IHC in comparison to PCR stratified b	у
age.	93
Table 15. The odds of PCR mutations and tumour grades.	94
Table 16. The agreement between IHC and PCR in relation to tumour grade,	
stratified by age.	95
Table 17. The odds ratio for PCR detected mutations and tumour grades 2 and 3	
compared to grade 1 tumours.	96
Table 18. Agreement of IHC to overall abnormality/mutational status.	97
Table 19. Agreement between IHC and overall abnormality/mutational status.	
Comparison of abnormal/mutational status stratified by age (A), in relation to each	
tumour grade (B) and consolidated status in relation to age stratified	
by tumour grade (C).	97
Table 20. Concordance between PCR and overall abnormal/mutational status.	99
Table 21. Concordance between PCR and overall abnormal/mutational status according t	Ö
age.	99
Table 22. Mutations detected by IHC versus Sanger sequencing.	106
Table 23. Mutations detected by PCR versus Sanger sequencing	108
Table 24. The incidence of BRAF mutations using IHC, PCR and Sequencing.	110
Table 25. Agreement between BRAF results obtained by IHC, PCR and Sequencing.	111

Table 26. Comparison of age and tumour grades of cases with mutation and those	
without mutation based on BRAF IHC.	111
Table 27. Agreement of results obtained by BRAF IHC versus overall mutational	
status stratified by age, according to the three tumour grades.	112
Table 28. Comparison of age and tumour grades of cases with mutation and those without	ıt
mutation based on BRAF PCR.	112
Table 29. Concordance of results obtained by BRAF PCR versus overall mutational	
status stratified by age, according to the three tumour grades.	113
Table 30. Comparison of age and tumour grades of cases with mutation and those	
without mutation based on BRAF Sequencing.	113
Table 31. Agreement of results obtained by BRAF Sequencing versus overall	
mutational status stratified by age, according to the three tumour grades.	114
Table 32. Concordance between IHC, PCR and Sequencing results and overall BRAF	
mutational status.	114
Table 33. Results of EpiTYPER testing on sixty-one cases.	116
Table 34. Methylation of cases detected by EpiTYPER, stratified by age and tumour	
grade.	117
Table 35. Methylation by EpiTYPER against IHC abnormality/mutational status	117
Table 36. Agreement between EpiTYPER methylation and PCR mutations	118

Table 37. Agreement between EpiTYPER methylation and PCR mutational status	118
Table 38. Agreement between EpiTYPER methylation and PCR microsatellite	
instability.	119
Table 39. Concordance levels between EpiTYPER and IHC mutations.	119
Table 40. Agreement between EpiTyper and IHC stratified by age.	119
Table 41. Agreement between EpiTyper and IHC stratified by tumour grade	120
Table 42. Concordance between EpiTyper and PCR mutations.	120
Table 43. Agreement between methylation and PCR mutation by age.	120
Table 44. Agreement between methylation and PCR mutations by tumour grade.	120
Table 45. Agreement between EpiTYPER methylation and overall mutational status.	121
Table 46. Agreement between methylation and overall mutation by age.	121
Table 47. Agreement between EpiTYPER methylation and overall mutation by tumour	
grade.	121
Table 48. Agreement between EpiTYPER methylation and BRAF	121
Table 49. Agreement between EpiTYPER methylation and BRAF IHC by age group.	121
Table 50. Agreement between EpiTYPER methylation and BRAF IHC by tumour grade.	122
Table 51. Agreement between EpiTYPER methylation and BRAF PCR	122
Table 52. Agreement between methylation and BRAF PCR by age group.	122
Table 53. Agreement between methylation and BRAF PCR by tumour grade.	122

Table 54. Agreement between EpiTYPER methylation and BRAF Sequencing.	122
Table 55. Agreement between EpiTYPER methylation and BRAF Sequencing by age.	123
Table 56. Agreement between EpiTYPER methylation and BRAF sequencing stratified	
by tumour grade.	123
Table 57. Agreement between EpiTYPER methylation and overall BRAF mutation.	123
Table 58. Agreement between EpiTYPER methylation and overall BRAF mutation by	
age.	123
Table 59. Agreement between EpiTYPER methylation and overall BRAF mutation	
stratified by tumour grade.	124
Table 60. A comparison of methylation percentages in the 37 MLH1 deficient cases.	125
Table 61. Methylation detected by EpiTYPER versus the OneStep qMethyl TM kit.	126
Table 62. Frequency of methylated cases which had discordant IHC MMR and MSI	
PCR results.	129
Table 63. Discordant IHC and PCR cases using EpiTYPER and the OneStep qMethyl TM	
kit.	129
Table 64. Possible cases of Lynch syndrome.	130
Table 65. Methylation status using the OneStep qMethyl TM kit stratified by age.	131
Table 66. Methylation status using the OneStep qMethyl TM kit according to tumour	
grade.	132

Table 67. Agreement between the OneStep qMethyl TM kit and IHC mutations.	132
Table 68. Agreement between the OneStep qMethyl TM kit and IHC mutations according t	0
age.	132
Table 69. Agreement between the OneStep qMethyl TM kit and IHC by tumour	
grade.	133
Table 70 Agreement between the OneStep qMethyl TM kit and PCR mutations.	133
Table 71. Agreement between the OneStep qMethyl TM kit and PCR mutations according	
to age.	133
Table 72. Agreement between the OneStep qMethyl TM kit and PCR by tumour grade.	133
Table 73. A confusion matrix between the OneStep qMethyl TM kit methylation and PCR	
mutations.	134
Table 74. A confusion matrix between the OneStep qMethyl TM kit methylation and PCR	
mutational status.	134
Table 75. A confusion matrix between the OneStep qMethyl TM kit methylation and PCR	
microsatellite low and high.	134
Table 76. Agreement between the OneStep qMethyl TM kit and MMR/MSI PCR overall	
abnormality/mutational status.	135
Table 77. Agreement between the OneStep qMethyl TM kit and overall abnormality/	
mutational status.	135
Table 78. Agreement between OneStep qMethyl TM kit and overall abnormality/mutationa	ıl

Table 79. Agreement between the OneStep qMethyl TM kit and overall abnormality/mutation	ional
status by tumour grade.	136
Table 80. Agreement between the OneStep qMethyl TM kit and BRAF IHC.	136
Table 81. Agreement between the OneStep qMethyl TM kit and BRAF IHC stratified by	
age.	136
Table 82. Agreement between the OneStep qMethyl TM kit and BRAF IHC stratified by	
tumour grade.	136
Table 83. Agreement between OneStep qMethyl TM kit and BRAF PCR.	137
Table 84 Agreement between the OneStep qMethyl TM kit and BRAF PCR stratified by	
age.	137
Table 85 Agreement between the OneStep qMethyl TM kit and BRAF PCR stratified by	
tumour grade.	137
Table 86. Agreement between the OneStep qMethyl TM kit and BRAF Sequencing.	137
Table 87. Agreement between the OneStep qMethyl TM kit and BRAF Sequencing stratific	ed
by age.	138
Table 88. Agreement between the OneStep qMethyl TM kit and BRAF Sequencing stratific	ed
by tumour grade.	138
Table 89. Agreement between the OneStep qMethyl TM kit and BRAF overall mutational	

status.

Table 90. Agreement between the OneStep qMethyl TM kit and BRAF overall mutational		
status by age.	138	
Table 91. Agreement between the OneStep qMethyl TM kit and BRAF overall mutational		
status by tumour grade.	138	
Table 92. A confusion matrix between the OneStep qMethyl TM kit and EpiTYPER.	138	
Table 93. Agreement between EpiTYPER and the OneStep qMethyl TM kit.	141	
Table 94. Agreement between methylation using the OneStep qMethyl TM kit and EpiTYPER		
analysis stratified by age.	141	
Table 95. Concordance between EpiTYPER and the OneStep qMethyl TM kit according to)	
tumour grade.	142	

ABBREVIATIONS

°C	Degrees Celsius	
μL	Microlitre	
μm	Micrometer	
А	Adenine	
APC	Adenomatous Polyposis Coli	
ARID	AT-rich interaction domain	
bp	Base pair	
С	Cytosine	
CDH1	Gene encoding for epithelial cadherin	
CDKN2A	Cyclin-dependent kinase Inhibitor 2A	
CMMR-D	Constitutional Mismatch Repair Deficiency	
Da	Dalton	
Dkk	Dickkopf	
EEC	Endometrioid endometrial carcinoma	
EGFR	Epidermal growth factor receptor	
EIC	Endometrial intraepithelial carcinoma	
EMT	Epithelial to mesenchymal transitions	
EPCAM	Epithelial cell adhesion molecule	
ERBB2	Epidermal growth factor type II receptor	
ERK	Extracellular signal-regulated kinase	
FAP	Familial Adenomatous Polyposis	
FBX7	F-Box and WD Repeat Domain Containing 7	
FDA	Food and drug adminstration	
FGF	Fibroblast growth factor	
FGFR2	Fibroblast growth factor receptor 2	
FZD	Frizzled	
G	Guanine	
GSK3β	Glycogen Synthase Kinase 38	
HNPCC	Hereditary Non-Polyposis Colorectal Carcinoma	

IHC	Immunohistochemistry	
InSiGHT	International Society for Gastrointestinal Hereditary Tumours	
KRAS	Kirsten rat sarcoma	
LEF/Tcf	T-cell factor/lymphoid enhancer factor	
LS	Lynch syndrome	
MALDI-TOF	Matrix-Assisted Laser Desorption/ionization Time Of Flight	
MAP	Mitogen activated protein	
MLH	Mut L homolog	
MMR	Mismatch repair	
MSH	Mut S homolog	
MSI	Microsatellite instability	
MSI-H(igh)	Microsatellite high	
MSI-L(ow)	Microsatellite low	
MSRE	Methylation Sensitive Restriction Enzymes	
MSS	Microsatellite stable	
mTor	Mammalian target of rapamycin	
Mut	Mutational	
NEEC	Non-endometrioid endometrial carcinoma	
NTC	No template control	
PCNA	Proliferating cell nuclear antigen	
PCR	Polymerase Chain Reaction	
PI3K	Phosphatidylinositol 3-kinase	
PIK3CA	p110a catalytic subunit of PI3K	
PMS	Post-Meiotic Segregation proteins	
POLE	DNA Polymerase Epsilon	
PORTEC	Postoperative Radiation Therapy for Endometrial Carcinoma	
PP2A	Protein phosphatase 2A	
PPP2R1A	Protein Phosphatase 2 Scaffold Subunit Alpha	
PROmISE	Proactive molecular risk classifier for Endometrial Cancer	
PTEN	Phosphatase and tensin homolog	
SOP	Standard Operating Procedure	

SPRY	Sprouty mammalian genes
SWI/SNF	SWItch/sucrose non-fermenting
Т	Thymidine
TCGA	The Cancer Genome Atlas
TP53	Tumour protein 53
U	Uracil
WNT	Wingless-type