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Abstract
Peng introduced a typical filtration consistent nonlinear expectation, called a

g-expectation in [40]. It satisfies all properties of the classical mathematical ex-
pectation besides the linearity. Peng’s conditional g-expectation is a solution to a
backward stochastic differential equation (BSDE) within the classical framework of
Itô’s calculus, with terminal condition given at some fixed time T . In addition, this
g-expectation is uniquely specified by a real function g satisfying certain properties.
Many properties of the g-expectation, which will be presented, follow from the spec-
ification of this function. Martingales, super- and submartingales have been defined
in the nonlinear setting of g-expectations. Consequently, a nonlinear Doob-Meyer
decomposition theorem was proved.

Applications of g-expectations in the mathematical financial world have also
been of great interest. g-Expectations have been applied to the pricing of contin-
gent claims in the financial market, as well as to risk measures. Risk measures were
introduced to quantify the riskiness of any financial position. They also give an indi-
cation as to which positions carry an acceptable amount of risk and which positions
do not. Coherent risk measures and convex risk measures will be examined. These
risk measures were extended into a nonlinear setting using the g-expectation. In
many cases due to intermediate cashflows, we want to work with a multi-period, dy-
namic risk measure. Conditional g-expectations were then used to extend dynamic
risk measures into the nonlinear setting.

The Choquet expectation, introduced by Gustave Choquet, is another nonlin-
ear expectation. An interesting question which is examined, is whether there are
incidences when the g-expectation and the Choquet expectation coincide.
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Chapter 1

Introduction

In 1933 Andrei Kolmogorov set out the axiomatic basis for modern probability the-
ory in his book ‘Foundation of Probability Theory’ (Grundbegriffe der Wahrschein-
lichkeitsrechnung). It was built on the measure theory introduced by Émile Borel
and Henry Lebesgue, and extended by Radon and Fréchet. Nowadays the probability
measure space (Ω,F ,P) is a standard concept and appears in most papers on prob-
ability and mathematical finance. Another important notion which was introduced,
was the concept of expectation. The linear expectation of a F-measurable random
variable X is defined as the integral

∫
ΩXdP. In his book ‘Foundation of Probability

Theory’, Kolmogorov used the Radon-Nikodym theorem to introduce the conditional
probability and the conditional expectation under a certain σ-algebra G ⊂ F .

An interesting problem which has come about, is whether a nonlinear expectation
could be developed under which we still have such a conditional expectation. Peng
introduced a typical filtration consistent nonlinear expectation, called g-expectation
in [40]. It satisfies all properties of the classical mathematical expectation besides
the linearity. Peng’s conditional g-expectation is a solution to a backward stochastic
differential equation (BSDE) within the classical framework of Itô’s calculus, with
terminal condition given at some fixed time T . In addition, this g-expectation is
uniquely specified by a real function g satisfying certain properties. Many properties
of the g-expectation follow from the specification of this function. For example,
when g is a convex (resp. concave) function, it can be shown that the g-expectation
is also convex (resp. concave). It can also be shown that the classical mathematical
expectation corresponds to the case when g = 0. The Girsanov transformations are
also contained in the concept of g-expectations.

g-Expectations are a fairly new research topic in mathematics and finance. The
properties and behaviour of g-expectations have been studied extensively by Peng
[40, 41, 42, 43, 44]. In a mathematical sense, g-expectations are of particular interest.
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The concept of martingales do not require the linearity assumption of the classical
mathematical expectation. Hence, martingales, super- and submartingales have
been defined in the nonlinear setting of g-expectations. Consequently, a nonlinear
Doob-Meyer decomposition theorem was proved. Other results on g-expectations
were obtained by Briand et al. [3], Jiang [32, 33], Chen et al. [5, 6, 7] and Pardoux
and Peng [38].

Applications of g-expectations in the mathematical financial world have also
been of great interest. g-Expectations have been applied to the pricing of contingent
claims in the financial market. This was studied by El Karoui et al. [35] amongst
others. Risk measures are another application of g-expectations. Risk measures
were introduced to quantify the riskiness of any financial position. They also give
an indication as to which positions carry an acceptable amount of risk and which
positions do not. A well known and popular risk measure is Value at Risk (VaR).
This risk measure has been of great interest in financial and mathematical research.
However, due to the drawbacks of VaR, Artzner et al. [1] introduced some desirable
properties which lead to the concept of coherent risk measures. Föllmer and Schied
then generalised this concept and introduced convex risk measures in general prob-
ability spaces. These risk measures were extended into a nonlinear setting using
the g-expectation. The risk measures mentioned thus far have been one-period risk
measures. However, in many cases due to intermediate cashflows, we want to work
with a multi-period, dynamic risk measure. Risk measures were first introduced
in a dynamic setting by Cvitanic and Karatzas [14] and Wang [49]. Frittelli and
Rosazza Gianin [26] and Riedel [46] amongst others have done more recent studies
on dynamic risk measures. Conditional g-expectations were then used to extend
dynamic risk measures into the nonlinear setting. In fact the assumptions on the
function g turn out to give an ideal characterisation of the dynamical behaviour of
risk measures.

The Choquet expectation, introduced by Gustave Choquet, is another nonlinear
expectation. An interesting question that arises is whether there are incidences
when the g-expectation and the Choquet expectation coincide. What assumptions
do we require for a g-expectation to be a Choquet expectation, and alternatively for
a Choquet expectation to be a g-expectation?

The concept of g-expectations and many of the results in this dissertation have
been generalised to a general framework by Samuel Cohen and Robert Elliot [9, 10,
11].

This masters dissertation has been set up in the following way: in Chapter
2 we recall some important mathematical preliminaries required in the remainder
of the dissertation. It covers mathematical expectation as well as stochastic dif-
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ferential equations and Brownian motions. Chapter 3 introduces the BSDE and
defines g-expectations and conditional g-expectations. Properties applying to g-
expectations are given. We also consider special cases for the function g and exam-
ine its effect on the g-expectation. Section 3.5 gives the representation lemma for
g-expectations. The resemblance between the classical mathematical expectation
and the g-expectation should become clear in this chapter. This chapter also shows
how the Black-Scholes option pricing formula can be retained from g-expectations.
An introduction to coherent and convex, static and dynamic risk measures follows
in Chapter 4. Chapter 5 combines the results obtained in Chapters 3 and 4. This
chapter begins by analysing the properties positive homogeneity, subadditivity, con-
vexity, translation invariance and monotonicity with regards to g-expectations. Next
we define risk measures in terms of g-expectations. Chapter 6 defines the Choquet
integral and gives general properties of the Choquet expectation. We also show that
the classical mathematical expectation is a special case of the Choquet expectation
and link this nonlinear Choquet expectation to Peng’s g-expectation. The masters
dissertation ends off with Chapter 7 on the nonlinear Doob-Meyer decomposition
theorem. We recall the classical Doob-Meyer decomposition theorem and any re-
lated definitions. Thereafter, we define and outline some properties of g-solutions,
g-super- and subsolutions as well as of g-martingales, g-super- and g-submartingales.
Section 7.4 presents the nonlinear Doob-Meyer decomposition theorem.

Appendix A contains some mathematical results required for various proofs in
the dissertation. For ease of reference Appendix B give an overview of the different
spaces we are working in.



Chapter 2

Mathematical preliminaries

This chapter covers some mathematical preliminaries required for the remainder
of the masters dissertation. Section 2.1 focuses on the concept of mathematical
expectation. Section 2.2 defines stochastic differential equations, Brownian motions
and states some of the important properties of stochastic calculus.

2.1 Mathematical expectation

The majority of the information in this section has been taken from Shreve [47]. We
begin by recalling the definition of the mathematical expectation in a general prob-
ability space (Ω,F ,P). We also recall the definition of the conditional mathematical
expectation. Some important and useful properties of the mathematical expectation
will be stated.

Definition 2.1. Let X be a random variable on a probability space (Ω,F ,P). The
expectation (or expected value) of X is defined to be

E[X] =
∫

Ω
X(ω) dP(ω). (2.1)

Definition 2.2. The random variable X is integrable if and only if

E[|X|] <∞.

The basic properties of the expected value will be stated next.

Proposition 2.3. Let X and Y be random variables on a probability space (Ω,F ,P).

(i) If X ≤ Y almost surely and X and Y are integrable (or almost surely nonneg-
ative), then

E[X] ≤ E[Y ].

4



2.1. MATHEMATICAL EXPECTATION 5

In particular, if X = Y almost surely and one of the random variables is
integrable (or almost surely nonnegative), then they are both integrable (or
almost surely nonnegative), and

E[X] = E[Y ].

(ii) If α and β are real constants and X and Y are integrable (or if α and β are
nonnegative constants and X and Y are nonnegative), then

E[αX + βY ] = αE[X] + βE[Y ].

(iii) If ϑ is a convex, real-valued function and X is an integrable random variable,
then

E[ϑ(X)] ≥ ϑ(E[X]).

Property (ii) from the previous proposition tells us that the mathematical ex-
pectation is a linear operator. Property (iii) is the well known Jensen’s inequality.

We next define the conditional mathematical expectation.

Definition 2.4. Let X be an integrable or almost surely nonnegative random vari-
able on a probability space (Ω,F ,P). Let G be a sub-σ-algebra of F . The conditional
expectation of X given G, denoted E[X|G], is defined to be the random variable that
satisfies the following properties:

(i) E[X|G] is G-measurable, and

(ii) ∫
A

E[X|G](ω) dP(ω) =
∫
A
X(ω) dP(ω), for all A ∈ G. (2.2)

Equation (2.2) is equivalent to having for all A ∈ G

E[1AE[X|G]] = E[1AX]. (2.3)

The basic properties of the conditional mathematical expectation will be stated
next.

Proposition 2.5. Let X and Y be random variables on a probability space (Ω,F ,P)
and let G be a sub-σ-algebra of F .

(i) If α and β are real constants and X and Y are integrable (or if α and β are
nonnegative constants and X and Y are almost surely nonnegative), then

E[αX + βY |G] = αE[X|G] + βE[Y |G].
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(ii) If X and Y are integrable (or X is positive and Y is G-measurable), Y and
XY are integrable, and X is G-measurable, then

E[XY |G] = XE[Y |G].

(iii) If H is a sub-σ-algebra of G and X is integrable (or almost surely nonnegative),
then

E[E[X|G]|H] = E[X|H].

(iv) If X is integrable and independent of G, then

E[X|G] = E[X].

(v) If ϑ is a convex, real-valued function and X is an integrable random variable,
then

E[ϑ(X)|G] ≥ ϑ(E[X|G]).

Property (i) from Proposition 2.5 tells us that the mathematical conditional
expectation is a linear operator. Property (iii) is also known as the ‘tower property’
or as ‘iterated conditioning’. Property (v) is the well known conditional Jensen’s
inequality.

This classical, linear mathematical expectation is a powerful tool for dealing with
stochastic processes. However, there are many uncertain mathematical phenomena
that are not easily modelled using the classical mathematical expectation. Thus
nonlinear operators were introduced. Choquet [8] introduced the concept of a ca-
pacity and subsequently defined the nonlinear Choquet expectation based on this
concept. Peng [40] introduced the so-called g-expectation, a nonlinear expectation
based on a backward stochastic differential equation.

We are interested in comparing the g-expectation, defined in Chapter 3, to the
classical mathematical expectation. The resemblance between the two will become
clear once we have defined and stated the properties of the g-expectation. In fact, we
will see that most of the basic properties of the classical mathematical expectation,
besides the linearity, are preserved with the g-expectation.

2.2 Stochastic differential equations

For completeness, this section will cover stochastic differential equations, the defi-
nition of a Brownian motion and that of a martingale, super- and submartingale.
Results regarding Brownian motions and martingales, such as the martingale rep-
resentation theorem and Girsanov’s theorem, will also be stated. The work in this
section has been taken from Shreve [47].
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Consider a stochastic differential equation

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt, (2.4)

where Bt is a Brownian motion. The terms µ(t,Xt) and σ(t,Xt) represent the
drift term and the volatility term of Xt respectively. The definition of a Brownian
motion follows. We define it in one dimension, it can however easily be extended to
d dimensions.

Definition 2.6. Let (Ω,F ,P) be a probability space. For each ω ∈ Ω, suppose there
is a continuous function Bt : R+ × Ω → R that satisfies B(0) = 0. Then (Bt)t≥0 is
a Brownian motion if for all 0 = t0 < t1 < . . . < tm, the increments

Bt1 = Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btm −Btm−1

are independent and each of these increments is normally distributed with

E[Bti+1 −Bti ] = 0,

Var[Bti+1 −Bti ] = ti+1 − ti.

Paths of Brownian motions are continuous and nowhere differentiable. Con-
sequently normal integration and differentiation rules do not apply to Brownian
motions. The most common stochastic differential equation involving Brownian mo-
tions is geometric Brownian motion. If the process Xt follows geometric Brownian
motion, it satisfies the stochastic differential equation

dXt = µXtdt+ σXtdBt.

Here, Xt is lognormally distributed with parameters µ and σ. Subsequently logXt

is normally distributed with mean µ and standard deviation σ.

Definition 2.7. Let Ω be equipped with the filtration (Ft)t∈[0,T ]. The stochastic
process (Xt)t∈[0,T ] is said to be adapted if, for each t, the random variable Xt is
Ft-measurable.

Theorem 2.8 (Itô’s formula). Let (Xt)t≥0 be a stochastic process with dynamics
given by (2.4). Consider a function f(t, x) which is continuous, once differentiable
with respect to time and twice differentiable with respect to x. Then, for any t ≥ 0,
f(t,Xt) satisfies

df(t,Xt) =
[
∂

∂t
f(t, x) + µ(t,Xt)

∂

∂x
f(t, x) +

1
2
σ2(t,Xt)

∂2

∂2x
f(t, x)

]
dt

+ σ(t,Xt)
∂

∂x
f(t, x)dBt.
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Definition 2.9. Let (Ω,F ,P) be a probability space, T a fixed positive number
and (Ft)t∈[0,T ] a filtration of sub-σ-algebras of F . Let (Mt)t∈[0,T ] be an adapted
stochastic process.

• The process, Mt, is a martingale if for all 0 ≤ s ≤ t ≤ T

E[Mt|Fs] = Ms a.s.

• The process, Mt, is a submartingale if for all 0 ≤ s ≤ t ≤ T

E[Mt|Fs] ≥Ms a.s.

• The process, Mt, is a supermartingale if for all 0 ≤ s ≤ t ≤ T

E[Mt|Fs] ≤Ms a.s.

Note that a process that is both a sub- and a supermartingale, is a martingale.
Conversely, a martingale is simultaneously a sub- and a supermartingale.

The martingale representation theorem connects Brownian motions and martin-
gales. We state the martingale representation theorem in one dimension. It can
also easily be extended to d dimensions. The one-dimensional martingale repre-
sentation theorem makes use of a one-dimensional Brownian motion, whereas the
d-dimensional equivalent uses the d-dimensional Brownian motion.

Theorem 2.10 (Martingale representation theorem, one dimension). Let (Bt)t∈[0,T ]

be a Brownian motion on a probability space (Ω,F ,P) and let (Ft)t∈[0,T ] be the
filtration generated by this Brownian motion. Let (Mt)t∈[0,T ] be a martingale with
respect to this filtration. Then there is an adapted process (Γt)t∈[0,T ] such that

Mt = M0 +
∫ t

0
ΓudBu, 0 ≤ t ≤ T.

Suppose we are working with the filtration generated by the Brownian motion.
The martingale representation theorem states that any martingale with respect to
this filtration can be represented as an initial condition plus an Itô integral with
respect to the Brownian motion. We can see here that a stochastic differential
equation with a zero drift term is a martingale.

Lastly we state a fundamental result in stochastic calculus, called Girsanov’s
theorem. Girsanov’s theorem describes how the dynamics of a stochastic process
change under a change in measure. Girsanov’s theorem is particularly important
in financial mathematics as it allows us to change from the real-world probability
measure into the risk-neutral measure. Under the risk-neutral probability measure,
contingent claims can be priced fairly.
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Theorem 2.11 (Girsanov’s theorem). Let (Bt)t∈[0,T ] be a Brownian motion on a
probability space (Ω,F ,P). Let (Ft)t∈[0,T ] be a filtration for this Brownian motion.
Let θt be an adapted process. Define

Zt = exp
[∫ t

0
θudBu −

1
2

∫ t

0
θ2
udu

]
,

B̃t = Bt +
∫ t

0
θudu,

and assume that

E
∫ T

0
θ2
uZ

2
udu <∞.

Under the probability measure defined by

Q(A) =
∫
A
Z(ω)dP(ω) for all A ∈ F

the process (B̃t)t∈[0,T ] is a Brownian motion.



Chapter 3

g-Expectations

In this chapter we define the concept of g-expectation and conditional g-expectation.
We also state and prove properties applying to these g-expectations. Section 3.1
introduces the notation required for the remainder of the dissertation. In Section
3.2 we define the general concept of a filtration consistent nonlinear expectation,
before continuing on to the definition of g-expectations in Section 3.4. Properties of
the filtration consistent nonlinear expectation, as well as of the g-expectation will be
proved. We also consider special cases for the function g and examine its effect on the
g-expectation. Section 3.5 gives the representation lemma for g-expectations. The
resemblance between the classical mathematical expectation and the g-expectation
will become clear in this chapter. The chapter ends off with a financial application
of the g-expectation.

3.1 Notation

Let (Ω,F ,P) be a probability space and let (Bt)t≥0 be a standard d-dimensional
Brownian motion on this space. Let (FBt )t≥0 be the filtration generated by the
Brownian motion, i.e. FBt = σ{Bs; 0 ≤ s ≤ t} for any t ≥ 0. Denote by (Ft)t≥0 the
augmented filtration such that Ft = σ{Bs; 0 ≤ s ≤ t} ∪ N for any t ≥ 0, where N
is the collection of all P-null sets.

Let T > 0 be a fixed time horizon and for simplicity of notation let F = FT .
Without loss of generality consider processes indexed by t ∈ [0, T ].

Let L2(Ft) = L2(Ω,Ft,P), with t ∈ [0, T ], denote the space of all real-valued,
Ft-measurable and square integrable random variables applying with the L2-norm
‖·‖2. Let X be a real-valued random variable, then the L2-norm ‖·‖2 is defined by

‖X‖2 =
(∫ T

0
|Xt|2dt

) 1
2

.

10



3.2. FILTRATION CONSISTENT NONLINEAR EXPECTATION 11

Let L2
F (T,Rn) denote the space of all Rn-valued, FT -adapted processes (Vt)t∈[0,T ]

with

E
∫ T

0
|Vt|2dt <∞,

where | · | denotes the Euclidean norm on Rn. The Euclidean norm on Rn is defined
by

|(v1, . . . vn)| =

(
n∑
i=1

v2
i

) 1
2

.

Also let MF (Rn) denote the space of all Rn-valued, Ft-progressively measurable
processes (ψt)t∈[0,T ]. Let Hq

F (T,Rn) denote the space of all (ψt)t∈[0,T ] ∈ MF (Rn)
with

E
∫ T

0
|ψt|qdt <∞.

Before we introduce the backward stochastic differential equation (BSDE) which
will be used in defining the g-expectation and conditional g-expectation, we define
nonlinear expectations and filtration consistent nonlinear expectations.

3.2 Filtration consistent nonlinear expectation

The majority of this section is based on the work by Coquet, Hu, Mémin and Peng
[12].

Definition 3.1. A (nonlinear) expectation is a function

E [ · ] : L2(FT )→ R

which satisfies

(i) Strict monotonicity : For all X1, X2 ∈ L2(FT ), if X1 ≥ X2 a.s. then E [X1] ≥
E [X2], and if X1 ≥ X2 a.s. then E [X1] = E [X2] if and only if X1 = X2 a.s..

(ii) Constancy : For all c ∈ R, we have E [1c] = c, where 1 : Ω → R is defined by
1 = 1 a.e. As is customary in literature, we write E [1c] = E [c].

Lemma 3.2. Let t ∈ [0, T ] and let η1, η2 ∈ L2(Ft). If for all A ∈ Ft

E [η11A] = E [η21A],

then
η1 = η2 a.s.
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Proof. Choose A = {η1 ≥ η2} ∈ Ft. Since η11A ≥ η21A and E [η11A] = E [η21A],
it follows from the definition of (nonlinear) expectation, that η11A = η21A a.s..
Therefore we have that η1 ≤ η2 a.s.. Similarly, we can show that η2 ≤ η1 a.s.. The
result follows and the proof is complete.

Definition 3.3. For the given filtration (Ft)t∈[0,T ], a (nonlinear) expectation is
called an Ft-consistent expectation (F-expectation) if for each X ∈ L2(FT ) and for
each t ∈ [0, T ] there exists a random variable η ∈ L2(Ω,Ft,P), such that for all
A ∈ Ft

E [1AX] = E [1Aη]. (3.1)

By Lemma 3.2 this η, which is denoted by E [X|Ft], is uniquely defined. E [X|Ft]
is called the conditional F-expectation of X under Ft and by Definition 3.3 it is
characterised such that for all A ∈ Ft, we have

E [1AX] = E [1AE [X|Ft]]. (3.2)

The properties of Ft-consistent expectations are listed below. We will soon see
that the g-expectation is an Ft-consistent expectation. Thus these properties also
apply to the g-expectation.

Proposition 3.4 (Properties of F-expectation).

(i) For each 0 ≤ r ≤ t ≤ T , we have E [E [X|Ft]|Fr] = E [X|Fr]. In particular, we
have E [E [X|Ft]] = E [X].

(ii) For all t ∈ [0, T ] and X1, X2 ∈ L2(FT ) with X1 ≥ X2, we have E [X1|Ft] ≥
E [X2|Ft]. If moreover E [X1|Ft] = E [X2|Ft] a.s. for some t ∈ [0, T ], then
X1 = X2 a.s..

(iii) For all B ∈ Ft, we have E [1BX|Ft] = 1BE [X|Ft].

Proof. (i) Let 0 ≤ r ≤ t ≤ T . For each A ∈ Fr, we also have A ∈ Ft. Thus applying
Equation (3.2) twice, we get

E [1AX] = E [1AE [E [X|Ft]|Fr]].

Now E [X|Fr] is the unique random variable η in L2(Fr) such that E [1AX] = E [1Aη],
hence it follows that

E [E [X|Ft]|Fr] = E [X|Fr].

The particular case follows by setting r = 0 and from the fact that F0 is the trivial
σ-algebra.
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(ii) Set ηi := E [Xi|Ft], i = 1, 2. Since X1 ≥ X2, we have by Equation (3.2) and
by the monotonicity of the (nonlinear) expectation that for each A ∈ Ft,

E [1Aη1] = E [1AX1] ≥ E [1AX2] = E [1Aη2].

In particular, we know that {η1 ≤ η2} is Ft-measurable and thus setting

A = {η1 ≤ η2},

we get E [1{η1≤η2}η1] ≥ E [1{η1≤η2}η2]. It is clear that 1{η1≤η2}η1 ≤ 1{η1≤η2}η2. By
the definition of the (nonlinear) expectation, the above two relations imply that
1{η1≤η2}η1 = 1{η1≤η2}η2 which consequently implies that η1 ≥ η2 i.e. E [X1|Ft] ≥
E [X2|Ft].

Now assume that E [X1|Ft] = E [X2|Ft] a.s. for some t ∈ [0, T ]. Applying E [ · ]
on both sides, we get by (i) that E [X1] = E [X2] and by the monotonicity of E [ · ], it
follows that X1 = X2 a.s..

(iii) Applying Equation (3.2) in two consecutive steps, we have for each A ∈ Ft

E [1AE [1BX|Ft]] = E [1A1BX]

= E [1A{1BE [X|Ft]}].

It follows easily that E [1BX|Ft] = 1BE [X|Ft] and consequently we have proved
(iii).

3.3 Backward stochastic differential equations

Consider a function

g : Ω× [0, T ]× R× Rd → R
(ω, t, y, z) 7→ g(ω, t, y, z).

In any operation involving g(ω, t, y, z) we assume the operation holds P-almost
surely, for any fixed t ∈ [0, T ]. For simplicity we omit the ‘P-almost surely’ and
write g(t, y, z) instead of g(ω, t, y, z).

Pardoux and Peng [38] introduced the BSDE

−dYt = g(t, Yt, Zt)dt− ZtdBt, 0 ≤ t ≤ T (3.3)

with terminal condition
YT = X, (3.4)

where X ∈ L2(FT ). We can write this BSDE in integral form as

Yt = X +
∫ T

t
g(s, Ys, Zs) ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T. (3.5)
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Remark 3.5. BSDE (3.3) can equivalently be written as

dYt = −g(t, Yt, Zt)dt+ ZtdBt, 0 ≤ t ≤ T

with terminal condition
YT = X.

However the literature on g-expectations prefers expressing the BSDE in the form
of Equation (3.3)-(3.4). We are working with a terminal condition at time T instead
of an initial condition. Hence −

∫ T
t dYs integrates to Yt−YT which makes it easy to

solve the equation for Yt yielding the integral form seen in Equation (3.5).

In the above we have (Yt, Zt)t∈[0,T ] ∈ L2
F (T,R) × L2

F (T,Rd), which denotes the
solution to BSDE (3.3) with terminal condition (3.4) i.e. Yt is a R-valued, FT -
adapted process and Zt is a Rd-valued, FT -predictable process.

Assume that the function g satisfies the following conditions.

(A1) g is uniformly Lipschitz continuous in (y, z), i.e. there exists a constant C > 0
such that for all y1, y2 ∈ R and z1, z2 ∈ Rd,

|g(t, y1, z1)− g(t, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|); (3.6)

(A2) g(·, y, z) ∈ L2
F (T,R) for each y ∈ R, z ∈ Rd;

(A3) g(·, y, 0) ≡ 0 for each y ∈ R.

Note that the Lipschitz continuity in assumption (A1) is equivalent to the following:
there exists a constant C ′ > 0 such that for all y1, y2 ∈ R and z1, z2 ∈ Rd,

|g(t, y1, z1)− g(t, y2, z2)|2 ≤ C ′(|y1 − y2|2 + |z1 − z2|2).

To see this, we square Equation (3.6) and note that we have (a + b)2 ≤ 2(a2 + b2)
for a, b ≥ 0. Therefore

|g(t, y1, z1)− g(t, y2, z2)|2 ≤ C2(|y1 − y2|+ |z1 − z2|)2

≤ C2(2|y1 − y2|2 + 2|z1 − z2|2)

= C ′(|y1 − y2|2 + |z1 − z2|2).

Also note that assumption (A3) is equivalent to having

g(·,1Ay,1Az) ≡ g(·, y,1Az) ≡ 1Ag(·, y, z) (3.7)
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for all (y, z) ∈ R×Rd and A ∈ Ft. We see this by examining the individual functions
in (3.7). We have that

g(·,1Ay,1Az) =

g(·, y, z) for ω ∈ A

g(·, 0, 0) for ω /∈ A.

Also

g(·, y,1Az) =

g(·, y, z) for ω ∈ A

g(·, y, 0) for ω /∈ A,

and

1Ag(·, y, z) =

g(·, y, z) for ω ∈ A

0 for ω /∈ A.

These three are equivalent if and only if g(·, y, 0) ≡ 0 for each y ∈ R. Assumptions
(A1), (A2) and (A3) are the usual ones when working with g-expectations and will
be assumed throughout this chapter, unless otherwise stated. A typical example
of such a g, satisfying assumptions (A1), (A2) and (A3), is g(t, y, z) = µ|z| where
µ ∈ R. This function will be of particular importance later on.

Additional assumptions which are often imposed are listed below. When any of
these assumptions is required for a specific result, they will be explicitly stated.

(B1) g(t, y, z) is continuous in t for each y ∈ R and z ∈ Rd;

(B2) g does not depend on y;

(B3) g is positive homogeneous in (y, z), i.e. for all t ∈ [0, T ], α ≥ 0 and (y, z) ∈
R× Rd, we have

g(t, αy, αz) = αg(t, y, z); (3.8)

(B4) g is subadditive in (y, z), i.e. for all t ∈ [0, T ] and (y0, z0), (y1, z1) ∈ R × Rd,
we have

g(t, y0 + y1, z0 + z1) ≤ g(t, y0, z0) + g(t, y1, z1); (3.9)

(B5) g is convex in (y, z), i.e. for all t ∈ [0, T ], (y0, z0), (y1, z1) ∈ R×Rd and α ∈ [0, 1],
we have

g(t, αy0 +(1−α)y1, αz0 +(1−α)z1) ≤ αg(t, y0, z0)+(1−α)g(t, y1, z1). (3.10)

The following two propositions will be stated without proof. The proof of the
first proposition can be found in Pardoux and Peng [38].
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Proposition 3.6. Let assumptions (A1) and (A2) hold true for g. Then there
exists a unique pair of processes (Yt, Zt)t∈[0,T ] ∈ L2

F (T,R) × L2
F (T,Rd) that solves

the BSDE (3.3) with terminal condition (3.4).

The solution to (3.3) with final condition (3.4) will also be denoted by
(Yt(g, T,X), Zt(g, T,X))t∈[0,T ].

Proposition 3.7. Let assumptions (A1) and (A2) hold true for the function g

and let X1, X2 ∈ L2(FT ) and (φ1
t ), (φ

2
t ) ∈ L2

F (T,R) be given. Furthermore, let
(Y (i)
t , Z

(i)
t )t∈[0,T ] ∈ L2

F (T,R)× L2
F (T,Rd) for i = 1, 2 be solutions of

−dY (i)
t = [g(t, Y (i)

t , Z
(i)
t ) + φit] dt− Z

(i)
t dBt, 0 ≤ t ≤ T

Y
(i)
T = Xi.

Then we have the following ‘continuous dependence property’:

sup
0≤t≤T

E[|Y (1)
t −Y

(2)
t |2]+E

∫ T

0
|Z(1)
s −Z(2)

s |2ds ≤ CE[|X1−X2|2]+CE
∫ T

0
|φ1
s−φ2

s|2ds.

The previous proposition as well as the following theorem have been taken from
Peng [40].

Theorem 3.8 (Comparison theorem). We suppose the same assumptions as in
Proposition 3.7. If we furthermore assume that

Y
(1)
t ≥ Y (2)

t a.s. and φ1
t ≥ φ2

t a.s., a.e. (3.11)

then for each t ∈ [0, T ], we have

Y
(1)
t ≥ Y (2)

t a.s. (3.12)

Also, we have

Y
(1)
t = Y

(2)
t a.s. if and only if Y (1)

T = Y
(2)
T a.s. and φ1

t = φ2
t a.s., a.e. (3.13)

Proof. For simplicity we will only prove the case where t = 0, d = 1 and φ1
t ≡ φ2

t .
Since

dY
(1)
t = −[g(t, Y (1)

t , Z
(1)
t ) + φ1

t ] dt+ Z
(1)
t dBt

and
−dY (2)

t = [g(t, Y (2)
t , Z

(2)
t ) + φ2

t ] dt− Z
(2)
t dBt

we can clearly see that

d(Y (1)
t − Y (2)

t ) = −[g(t, Y (1)
t , Z

(1)
t )− g(t, Y (2)

t , Z
(2)
t )] dt+ (Z(1)

t − Z
(2)
t ) dBt.
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Consequently we have

d(Y (1)
t − Y (2)

t ) = −[at(Y
(1)
t − Y (2)

t ) + bt(Z
(1)
t − Z

(2)
t )] dt+ (Z(1)

t − Z
(2)
t ) dBt,

where

at :=
g(t, Y (1)

t , Z
(1)
t )− g(t, Y (2)

t , Z
(1)
t )

Y
(1)
t − Y (2)

t

1{Y (1)
t 6=Y

(2)
t }

and

bt :=
g(t, Y (2)

t , Z
(1)
t )− g(t, Y (2)

t , Z
(2)
t )

Z
(1)
t − Z

(2)
t

1{Z(1)
t 6=Z

(2)
t }

.

Since g is uniformly Lipschitz, we have

|g(t, Y (1)
t , Z

(1)
t )− g(t, Y (2)

t , Z
(1)
t )| ≤ C|Y (1)

t − Y (2)
t |

and
|g(t, Y (2)

t , Z
(1)
t )− g(t, Y (2)

t , Z
(2)
t )| ≤ C|Z(1)

t − Z
(2)
t |,

giving
|at| ≤ C and |bt| ≤ C.

We now set
Qt := e

∫ t
0 bs dBs− 1

2

∫ t
0 |bs|

2 ds (3.14)

and apply Itô’s formula to

(Y (1)
t − Y (2)

t )Qte
∫ t
0 as ds.

We know Qt, e
∫ t
0 as ds and Y

(1)
t − Y (2)

t respectively satisfy

dQt = QtbtdBt,

d(e
∫ t
0 as ds) = ate

∫ t
0 as dsdt,

d(Y (1)
t − Y (2)

t ) = −[at(Y
(1)
t − Y (2)

t ) + bt(Z
(1)
t − Z

(2)
t )] dt+ (Z(1)

t − Z
(2)
t ) dBt.

Applying Itô’s product rule, first to Qte
∫ t
0 as ds and then to (Y (1)

t − Y (2)
t )Qte

∫ t
0 as ds,

we get

d(Qte
∫ t
0 as ds) = Qte

∫ t
0 as ds[atdt+ btdBt]

and

d[(Y (1)
t − Y (2)

t )Qte
∫ t
0 as ds] = (Y (1)

t − Y (2)
t )d(Qte

∫ t
0 as ds) +Qte

∫ t
0 as dsd(Y (1)

t − Y (2)
t )

+ d(Y (1)
t − Y (2)

t )d(Qte
∫ t
0 as ds)

= Qte
∫ t
0 as ds[(Y (1)

t − Y (2)
t )bt + (Z(1)

t − Z
(2)
t )]dBt.
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From this we know that (Y (1)
t − Y (2)

t )Qte
∫ t
0 as ds is a local martingale giving

Y 1
0 − Y 2

0 = E[(Y (1)
t − Y (2)

t )QT e
∫ T
0 as ds].

We note here that

Q0 = 1, and

e
∫ 0
0 as ds = 1.

Since |at| ≤ C for all t ∈ [0, T ], we have e
∫ T
0 as ds ≥ e−Ct, giving

Y 1
0 − Y 2

0 ≥ e−CtE[(Y (1)
T − Y (2)

T )QT ] = e−CtEQ[(Y (1)
T − Y (2)

T )].

Here E[ · ] denotes the classical mathematical expectation under the probability mea-
sure P and EQ[ · ] denotes the classical mathematical expectation under the proba-
bility measure given by

Q(A) =
∫
A
QT (ω)dP(ω) for all A ∈ F .

Thus Y (1)
T ≥ Y

(2)
T implies Y 1

0 ≥ Y 2
0 . Furthermore, since the probability measures

P[ · ] and Q[ · ] are mutually absolutely continuous, it follows that

Y
(1)

0 = Y
(2)

0 if and only if Y
(1)
T = Y

(2)
T a.s.

3.4 g-Expectations

We can now introduce g-expectations and conditional g-expectations as defined by
Peng [40] and outline some properties of the g-expectation. We assume that the
function g satisfies assumptions (A1), (A2) and (A3).

Definition 3.9. For any X ∈ L2(FT ), let (Yt, Zt)t∈[0,T ] ∈ L2
F (T,R)× L2

F (T,Rd) be
the solution of the BSDE (3.3) with terminal condition X. The g-expectation Eg of
X is defined by

Eg[X] = Y0.

Note that Y0 is a deterministic number that depends on the final condition X.
When g(t, y, z) = µ|z| where µ > 0, we will denote Eg[ · ] by Eµ[ · ] and Eg[ · |Ft] by
Eµ[ · |Ft].

Even though in general g-expectations are not linear, the same basic properties
as for the classical, linear mathematical expectation are preserved.
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Proposition 3.10 (Properties of g-expectation).

(i) Eg[c] = c for all c ∈ R. In particular, we have Eg[0] = 0 and Eg[1] = 1.

(ii) If X1 ≥ X2 a.s., then Eg[X1] ≥ Eg[X2]. In this case Eg[X1] = Eg[X2] if and
only if X1 = X2 a.s..

(iii) There exists a constant C > 0 such that for all X1, X2 ∈ L2(Ft), we have

|Eg[X1]− Eg[X2]|2 ≤ CE[|X1 −X2|2].

Proof. (i) Due to assumption (A3), when X = c, the solution of Equation (3.3)
(Yt, Zt)t∈[0,T ] is identically equal to (c, 0). Thus we have that Eg[c] = c. The partic-
ular cases follow by setting c = 0 and c = 1.

(ii) This is a direct consequence of the comparison theorem, theorem 3.8.
(iii) This is a direct consequence of the ‘continuous dependence property’ in

Proposition 3.7.

From the definition of g-expectation, Peng [40] introduces the concept of con-
ditional g-expectation of a random variable X ∈ L2(FT ) under Ft. Analoguously
to the definition of classical conditional expectation, we are looking for a random
variable η satisfying the following properties:

1. η is Ft-measurable, η ∈ L2(Ft);

2. Eg[1AX] = Eg[1Aη] for all A ∈ Ft.

Definition 3.11. For any X ∈ L2(FT ), let (Yt, Zt)t∈[0,T ] ∈ L2
F (T,R) × L2

F (T,Rd)
be the solution of the BSDE (3.3) with terminal condition X. The conditional
g-expectation Eg of X for any t ∈ [0, T ] is defined by

Eg[X|Ft] = Yt.

Proposition 3.12. Eg[X|Ft] is the unique random variable η in L2(Ft) such that
for all A ∈ Ft

Eg[1AX] = Eg[1Aη]. (3.15)

Proof. Uniqueness: Suppose η1, η2 ∈ Ft and both satisfy Equation (3.15), then we
have that for all A ∈ Ft

Eg[1Aη1] = Eg[1Aη2].

In particular, we have that {η1 ≥ η2} and {η1 ≤ η2} are Ft-measurable and thus
setting A = {η1 ≥ η2} or A = {η1 ≤ η2} we respectively get

Eg[1{η1≥η2}η1] = Eg[1{η1≥η2}η2],

Eg[1{η1≤η2}η1] = Eg[1{η1≤η2}η2].
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But

1{η1≥η2}η1 ≥ 1{η1≥η2}η2,

1{η1≤η2}η1 ≤ 1{η1≤η2}η2.

From these above relations and from the monotonicity property of Eg[ · ], Propo-
sition 3.10 (ii), we have that

1{η1≥η2}η1 = 1{η1≥η2}η2, a.s.

1{η1≤η2}η1 = 1{η1≤η2}η2, a.s.

Thus it follows that η1 = η2 a.s..
Existence: For each t ≥ 0, let T > t and let X ∈ L2(FT ). Let (Yt, Zt)t∈[0,T ] ∈

L2
F (T,R)×L2

F (T,Rd) be the solution of the BSDE (3.3) with terminal condition X,
then

Yu = X +
∫ T

u
g(s, Ys, Zs) ds−

∫ T

u
Zs dBs, 0 ≤ u ≤ T.

By (3.7), we can write for all A ∈ Ft

1AYu = 1AX +
∫ T

u
g(s,1AYs,1AZs) ds−

∫ T

u
1AZs dBs, t ≤ u ≤ T.

From the definition of Eg[ · ] and from the above equation, noting that in this case
1AYt is deterministic, it follows that

Eg[1AX] = 1AYt = Eg[1AYt].

Thus η = Yt satisfies (3.15) and is Ft-measurable, which completes the proof.

Similarly to Lemma 3.2 with (nonlinear) expectations, this proposition tells us
that for all A ∈ Ft, we have

Eg[1AX] = Eg[1AEg[X|Ft]]. (3.16)

The conditional g-expectation also preserves the essential properties of the clas-
sical conditional expectation, except for the linearity.

Proposition 3.13 (Properties of conditional g-expectation).

(i) Let X be an Ft-measurable random variable. Then Eg[X|Ft] = X. In particu-
lar, we have Eg[0|Ft] = 0 and Eg[1|Ft] = 1.

(ii) For all X ∈ L2(FT ) and r, t ∈ [0, T ], we have Eg[Eg[X|Ft]|Fr] = Eg[X|Ft∧r],
where t ∧ r denotes the minimum of t and r.
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(iii) If X1 ≥ X2, then Eg[X1|Ft] ≥ Eg[X2|Ft].

(iv) For all B ∈ Ft, we have Eg[1BX|Ft] = 1BEg[X|Ft].

Proof. (i) This follows directly from the definition of the conditional g-expectation.
(ii) We only consider the case where t > r since if t ≤ r, we can apply (i) and the

result follows easily. For t > r we have that for each A ∈ Fr, we also have A ∈ Ft.
Thus applying Equation (3.16) twice, we get

Eg[1AEg[Eg[X|Ft]|Fr]] = Eg[1AX].

Now Eg[X|Ft] is the unique random variable η in L2(Ft) such that Eg[1AX] =
Eg[1Aη], thus by Proposition 3.12, it follows that

Eg[Eg[X|Ft]|Fr] = Eg[X|Fr]

= Eg[X|Ft∧r].

(iii) Set ηi := Eg[Xi|Ft], i = 1, 2. Since X1 ≥ X2, we know by Equation (3.16)
and from Proposition 3.10 (ii) that for each A ∈ Ft,

Eg[1Aη1] = Eg[1AX1] ≥ Eg[1AX2] = Eg[1Aη2].

In particular, we know that {η1 ≤ η2} is Ft-measurable and thus setting A = {η1 ≤
η2}, we get Eg[1{η1≤η2}η1] ≥ Eg[1{η1≤η2}η2]. It is clear that 1{η1≤η2}η1 ≤ 1{η1≤η2}η2.
Again by Proposition 3.10 (ii), the above two relations imply that 1{η1≤η2}η1 =
1{η1≤η2}η2 which consequently implies that η1 ≥ η2 i.e. Eg[X1|Ft] ≥ Eg[X2|Ft].

(iv) For each A ∈ Ft

Eg[1AEg[1BX|Ft]] = Eg[1A1BX]

= Eg[1A{1BEg[X|Ft]}].

Now from Proposition 3.12 applying to conditional g-expectations, we get that
Eg[1BX|Ft] = 1BEg[X|Ft] and consequently we have proved (iv).

Having seen the similarities between the classical mathematical expectation and
the g-expectation, a natural question which Briand et al. [3] pose is the following:
if X ∈ L2(FT ) is independent of Ft, do we have that Eg[X|Ft] = Eg[X]? Briand et
al. [3] proved the following proposition.

Proposition 3.14. Let g satisfy assumptions (A1), (A2) and (A3) and let g be
a deterministic function. Also let X ∈ L2(FT ). If X is independent of Ft, then
Eg[X|Ft] = Eg[X].
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Proof. By Proposition 3.13 (ii) we know that Eg[X] = Eg[Eg[X|Ft]] and by the
constancy of the g-expectation, Proposition 3.10 (i), we also know that for all c ∈ R,
Eg[c] = c. It is hence sufficient to show that Eg[X|Ft] is deterministic.

To prove that Eg[X|Ft] is deterministic, we use the shift method. Let 0 ≤ s ≤
T − t, and let B′s = Bt+s − Bt. Then {B′s , 0 ≤ s ≤ T − t} is a Brownian motion
with respect to its filtration F ′s, which is the σ-algebra generated by the increments
of the Brownian motion after time t. Now X is FT -measurable and independent
of Ft, and hence it is measurable with respect to F ′T−t. We can thus construct the
solution (Y ′s , Z

′
s)s∈[0,T−t] of the BSDE

Y ′s = X +
∫ T−t

s
g(t+ u, Y ′u, Z

′
u) du−

∫ T−t

s
Z ′u dB

′
u, 0 ≤ s ≤ T − t.

Setting s = v − t, we get

Y ′v−t = X +
∫ T−t

v−t
g(t+ u, Y ′u, Z

′
u) du−

∫ T−t

v−t
Z ′u dB

′
u, t ≤ v ≤ T.

Making the change of variable r = t+ u in the integrals, we get

Y ′v−t = X +
∫ T

v
g(r, Y ′r−t, Z

′
r−t) dr −

∫ T

v
Z ′r−t dB

′
r−t, t ≤ v ≤ T

= X +
∫ T

v
g(r, Y ′r−t, Z

′
r−t) dr −

∫ T

v
Z ′r−t dBr, t ≤ v ≤ T. (3.17)

We know that (Yv, Zv)v∈[t,T ] is the solution to the BSDE

Yv = X +
∫ T

v
g(s, Ys, Zs) ds−

∫ T

v
Zs dBs, t ≤ v ≤ T. (3.18)

From Equation (3.17), we see that (Y ′v−t, Z
′
v−t)v∈[t,T ] is also a solution of the BSDE

(3.18). Hence by uniqueness, we have that (Y ′v−t, Z
′
v−t)v∈[t,T ] = (Yv, Zv)v∈[t,T ]. In

particular, setting v = t, gives us Y ′0 = Yt = Eg[X|Ft]. Since Y ′0 is deterministic,
Eg[X|Ft] is deterministic, which completes the proof.

The definition of the conditional g-expectation and the previous propositions
lead to the following obvious lemma.

Lemma 3.15. Consider the function g. The related g-expectation Eg[ · ] is an Ft-
consistent expectation.

We now consider two specific cases of the function g. Firstly we will show
that the classical mathematical expectation E[ · ] corresponds to the case of g = 0.
Subsequently we state and prove the lemma known as the risk aversion property
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of the g-expectation, Eg[ · ], shown by Peng [40]. Secondly, we consider the case of
g = bsz, where (bs)s∈[0,∞) is a uniformly bounded and Ft-adapted process. This case
shows that the concept of g-expectations contains the Girsanov transformations.

Let X be FT -measurable. Let g = 0 and consider the following BSDE

dYt = 0dt+ ZtdBt, 0 ≤ t ≤ T

with boundary condition
YT = X.

Integrating over the interval [t, T ], we get

Yt = X −
∫ T

t
Zs dBs.

Now Yt is an Ft-measurable random variable, thus taking conditional expectation
and noting that the expectation of an Itô integral is 0, we get

Eg[X|Ft] = Yt = E[X|Ft].

In particular, setting t = 0, we get that

Eg[X] = Y0 = E[X].

This provides an alternative explanation for the classical mathematical condi-
tional expectation. In the framework of a Brownian filtration, conditional expecta-
tions with respect to Ft are solutions of simple BSDEs. The classical mathematical
expectation is the value of this solution when t = 0.

Lemma 3.16 (Risk aversion). Assume that for all (t, y, z),

g(t, y, z) ≤ 0,

then
Eg[X|Ft] ≤ E[X|Ft].

In particular, when t = 0, we have,

Eg[X] ≤ E[X].

Proof. Let X be FT -measurable and consider the following BSDE

dŶt = ẐtdBt, 0 ≤ t ≤ T (3.19)

ŶT = X. (3.20)

The solution of this BSDE is Ŷt := E[X|Ft]. From the comparison theorem, Theorem
3.8, we have that Yt ≤ Ŷt which gives us that Eg[X|Ft] ≤ E[X|Ft] and completes the
proof. The particular case follows by setting t = 0.
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This risk aversion property gives a connection between g-expectations and risk
measures. Clearly the choice of g is important in the construction of the risk measure.
Risk measures, as well as the choice and interpretation of the function g in connection
with risk measures, will be discussed in Chapter 5.

We now consider the case g(s, z) = bsz, where (bs)s∈[0,∞] is a uniformly bounded
and Ft-adapted process. We let X be FT -measurable and let

Qt := exp
[∫ t

0
bsdBs −

1
2

∫ t

0
|bs|2ds

]
.

It is well known that Qt is the solution to the Itô equation

dQs = bsQsdBs, with

Q0 = 1.

We also know that Ys = Eg[X|Fs] is the solution to the backward equation

dYs = −bsZsds+ ZsdBs,

YT = X.

Applying Itô’s formula to YsQs, we get

d(YsQs) = YsbsQsdBs −QsbsZsds+QsZsdBs + bsZsQsds

= Qs(Ysbs + Zs)dBs. (3.21)

Integrating over the interval [0, T ], yields

YTQT = Y0 +
∫ T

0
Qs(Ysbs + Zs)dBs.

By taking the classical mathematical expectation on both sides and noting that
YT = X and that the expectation of an Itô integral is 0, we get

E[XQT ] = Y0 = Eg[X].

We therefore have that
Eg[X] = EQ[X]

where EQ[ · ] is the expectation under the probability measure given by

Q(A) =
∫
A
QT (ω)dP(ω) for all A ∈ F

and
EQ[X] = E[XQT ].
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This clearly shows that the concept of g-expectations contains the Girsanov trans-
formations.

Similarly, we can find an expression for the conditional g-expectation, Eg[ · |Ft]
in terms of the conditional expectation, EQ[ · |Ft], under Q. Integrating over the
interval [t, T ] on both sides of Equation (3.21) yields

YTQT = YtQt +
∫ T

t
Qs(Ysbs + Zs)dBs.

Taking the conditional expectation with respect to the filtration Ft and noting that
YtQt is Ft-measurable, we have that

E[XQT |Ft] = YtQt.

This gives us

Eg[X|Ft] = Yt =
1
Qt

E[XQT |Ft].

Thus we have that
Eg[X|Ft] = EQ[X|Ft]

where EQ[ · |Ft] is the expectation under the probability measure Q and

EQ[X|Ft] =
1
Qt

E[XQT |Ft].

This is again consistent with the Girsanov transformations.
The next theorem is due to the author. It combines the classical mathematical

expectation and the g-expectation under a change of measure.

Theorem 3.17. Let (Bt)t∈[0,T ] be a Brownian motion on a probability space (Ω,F ,P).
Let (Ft)t∈[0,T ] be a filtration for this Brownian motion. Consider the following BSDE

dYt = −g(t, Yt, Zt)dt+ ZtdBt, 0 ≤ t ≤ T

with terminal condition
YT = X,

where X ∈ L2(FT ). Assume that Zt > 0 or Zt < 0 a.e. Define

θt =
g(t, Yt, Zt)

Zt
.

Also define

Zt = exp
[∫ t

0
θudBu −

1
2

∫ t

0
θ2
udu

]
,

B̃t = Bt +
∫ t

0
θudu,
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and assume that

E
∫ T

0
θ2
uZ

2
udu <∞.

Consider the probability measure defined by

Q(A) =
∫
A
Z(ω)dP(ω) for all A ∈ F .

The g-expectation of X, Eg[X|Ft], corresponds to the classical conditional expectation
under Q. In particular, Eg[X] corresponds to the classical expectation under Q.

Proof. Under Q, we have that

dYt = ZtdB̃t, 0 ≤ t ≤ T

with terminal condition
YT = X.

By Girsanov’s theorem, we know that B̃t is a Brownian motion under Q. Hence,
under Q, we see that g(t, y, z) = 0. We know that the classical mathematical
expectation EQ[ · |Ft] corresponds to the case of g = 0. The particular case follows
by setting t = 0. This completes the proof.

We can now give a counterexample to Proposition 3.14, when g is not determin-
istic. This example has been taken from Briand et al. [3].

Fix T > 0 and let t ∈ [0, T ]. Let f : R → R be a continuous and bounded
function. Define g(s, z) := f(Bs∧t)z. Furthermore, let X = BT − Bt. X is FT -
measurable and independent of Ft. We now have

Qt := exp
[∫ t

0
f(Bs∧t)dBs −

1
2

∫ t

0
f2(Bs∧t)ds

]
.

By the above result, we know that

Eg[X|Ft] = EQ[X|Ft]

= EQ[BT −Bt|Ft]. (3.22)

Girsanov’s theorem tells us that under the probability measure Q, the process B̄r,
0 ≤ r ≤ T given by

B̄r = Br −
∫ r

0
f(Bs∧t)ds

is a Brownian motion. Moreover,

BT −Bt = B̄T − B̄t +
∫ T

t
f(Bs∧t)ds

= B̄T − B̄t +
∫ T

t
f(Bt)ds

= B̄T − B̄t + (T − t)f(Bt). (3.23)
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Plugging (3.23) into (3.22), it follows that

Eg[X|Ft] = EQ[B̄T − B̄t + (T − t)f(Bt)|Ft]

= (T − t)f(Bt).

Hence, if f is not constant, Eg[BT − Bt|Ft] is not deterministic, giving the desired
result.

Proposition 3.18. Let g be convex in (y, z). Then for all X, η ∈ L2(FT ), t ∈ [0, T ]
we have

Eg[X + η|Ft] ≤ Eg[X|Ft] + Eg[η|Ft].

Proof. Consider Y ∗t = Eg[X|Ft] which is the solution of

Y ∗t = X +
∫ T

t
g(s, Y ∗s , Z

∗
s )ds−

∫ T

t
Z∗sdBs, 0 ≤ t ≤ T.

Also Y ∗∗t = Eg[η|Ft] is the solution of

Y ∗∗t = η +
∫ T

t
g(s, Y ∗∗s , Z∗∗s )ds−

∫ T

t
Z∗∗s dBs, 0 ≤ t ≤ T.

Now

Eg[X + η|Ft] = X + η +
∫ T

t
g(s, Y ∗s + Y ∗∗s , Z∗s + Z∗∗s )ds−

∫ T

t
(Z∗s + Z∗∗s )dBs.

Since g is convex in (y, z) we have that

Eg[X + η|Ft] ≤X + η +
∫ T

t
g(s, Y ∗s , Z

∗
s ) + g(s, Y ∗∗s , Z∗∗s )ds

−
∫ T

t
(Z∗s + Z∗∗s )dBs.

Hence, it follows that
Eg[X + η|Ft] ≤ Y ∗t + Y ∗∗t ,

giving the desired result.

Remark 3.19. Similarly, if g be concave in (y, z), then for all X, η ∈ L2(FT ),
t ∈ [0, T ] we have

Eg[X + η|Ft] ≥ Eg[X|Ft] + Eg[η|Ft].

The proof of the concave case follows identically to that in the convex case with the
≤ inequality replaced by a ≥ inequality.

Before going on to results in the y-independent case, another useful result giving
the representation for generators of BSDEs, will be proved.
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3.5 Representation lemma for generators of BSDEs

Recall that the solution to the BSDE

Yt = X +
∫ T

t
g(s, Ys, Zs) ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T,

will also be denoted by (Yt(g, T,X), Zt(g, T,X))t∈[0,T ]. Consequently, assuming
(A1), (A2) and (A3) hold true, we have that the g-expectation of X is given by

Eg[X|Ft] = Yt(g, T,X).

In studying a converse comparison theorem for BSDEs, Briand et al. [3] showed
that under (A1), (A2), assuming that g(t, y, z) is continuous in t for each y ∈ R and
z ∈ Rd and assuming that

E

[
sup
t∈[0,T ]

|g(t, 0, 0)|2
]
<∞,

we have that for any (y, z) ∈ R× Rd and t ∈ [0, T )

g(t, y, z) = L2 − lim
ε→0+

1
ε

[Yt(g, t+ ε, y + z · (Bt+ε −Bt))− y].

The notation ‘L2−’ implies that the limit is taken in L2. While studying Jensen’s
inequality for g-expectations, Jiang [33] got the following proposition, which gives a
more general representation.

Proposition 3.20. Let (A1) and (A2) hold true for the function g and let 1 ≤ p ≤ 2.
Then for any (t, y, z) ∈ [0, T )× R× Rd, the following are equivalent:

(i) g(t, y, z) = Lp − lim
ε→0+

1
ε

[Yt(g, t+ ε, y + z · (Bt+ε −Bt))− y];

(ii) g(t, y, z) = Lp − lim
ε→0+

E
[

1
ε

∫ t+ε

t
g(s, y, z)ds|Ft

]
.

Many problems on BSDEs are related to this kind of representation problem.
We next state a general representation lemma for generators of BSDEs under as-
sumptions (A1) and (A2). This generalises the result of Briand et al. [3]. The
representation lemma is taken from Jiang [32].

Lemma 3.21 (Representation lemma). Let (A1) and (A2) hold true for the function
g and let 1 ≤ p ≤ 2. Then for any (y, z) ∈ R× Rd, we have that the equality

g(t, y, z) = Lp − lim
ε→0+

1
ε

[Yt(g, t+ ε, y + z · (Bt+ε −Bt))− y]

holds for almost every t ∈ [0, T ).
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If we set

Szy(g) :=
{
t ∈ [0, T ) : g(t, y, z) = L1 − lim

ε→0+

1
ε

[Yt(g, t+ ε, y + z · (Bt+ε −Bt))− y]
}
,

the representation lemma tells us that

λ([0, T ]\Szy(g)) = 0, (3.24)

where λ denotes the Lebesgue measure.
Before being able to prove Lemma 3.21, we require some additional results. We

first state the Lebesgue lemma taken from Fan and Hu [22].

Theorem 3.22 (Lebesgue lemma). Let f be a Lebesgue integrable function on the
interval [0, T ]. Then, in [0, T ], we have

lim
n→∞

n

∫ t+ 1
n

t
|f(u)− f(t)|du = 0 dt a.s. (3.25)

Equivalently we can write Equation (3.25) as follows.

lim
ε→0

1
ε

∫ t+ε

t
|f(u)− f(t)|du = 0

=⇒ lim
ε→0

1
ε

∫ t+ε

t
f(u)du− lim

ε→0

1
ε

∫ t+ε

t
f(t)du = 0,

which implies that

lim
ε→0

1
ε

∫ t+ε

t
f(u)du = lim

ε→0

1
ε
f(t)(t+ ε− t),

giving

lim
ε→0

1
ε

∫ t+ε

t
f(u)du = f(t) dt a.s.

We next give a proposition required in the proof of the representation lemma.

Proposition 3.23. Let q > 1 and let 1 ≤ p < q. For any (ψt)t∈[0,T ] ∈ H
q
F (T,R) we

have

ψt = Lp − lim
ε→0+

1
ε

∫ t+ε

t
ψsds a.e.

Proof. Since (ψt)t∈[0,T ] ∈ H
q
F (T,R), Fubini’s Theorem A.1 (see Theorem A.1 in the

appendix) yields ∫ T

0
E [|ψt|q] dt = E

∫ T

0
|ψt|qdt <∞.

Thus
∫ T

0 E [|ψt|q] dt < ∞ a.e. for t ∈ [0, T ]. By the Lebesgue lemma, we have for
almost every t ∈ [0, T )

lim
ε→0+

1
ε

∫ t+ε

t
E [|ψs|q] ds = E [|ψt|q] .
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Also since (ψ)t∈[0,T ] ∈ H
q
F (T,R) we have that

∣∣∣∫ T0 ψtdt
∣∣∣ <∞, a.s. By the Lebesgue

lemma and by Fubini’s theorem, we have

lim
ε→0+

1
ε

∫ t+ε

t
ψsds = ψt, a.s., a.e.

Thus there exists a subset S ⊆ [0, T ) such that the Lebesgue measure of [0, T ]\S
equals 0, and for each t ∈ S, we have that

lim
ε→0+

1
ε

∫ t+ε

t
ψsds = ψt a.s. (3.26)

We also have that

E [|ψt|q] <∞ and lim
ε→0+

1
ε

∫ t+ε

t
E [|ψs|q] ds = E [|ψt|q] .

For any t ∈ S, we know there exists a constant δt > 0 such that for all ε ∈ (0, δt]

1
ε

∫ t+ε

t
E [|ψs|q] ds ≤ E [|ψt|q] + 1. (3.27)

Now for any t ∈ S and ε ∈ (0, δt], set Xε
t :=

∣∣∣1ε ∫ t+εt ψsds
∣∣∣. For any a natural number

N ≥ 1, we want to integrate over Xε
t > N . Then for Xε

t > N ≥ 1 and for 1 ≤ p < q,
we have 1

NX
ε
t > 1. Therefore ∣∣∣∣ 1

N
Xε
t

∣∣∣∣p < ∣∣∣∣ 1
N
Xε
t

∣∣∣∣q ,
giving us

|Xε
t |
p <

1
N q−p |X

ε
t |
q . (3.28)

By Equation (3.28), Fubini’s theorem and Equation (3.27), we have∫
{Xε

t>N}

∣∣∣∣1ε
∫ t+ε

t
ψsds

∣∣∣∣p dP ≤ ∫
{Xε

t>N}

1
N q−p

∣∣∣∣1ε
∫ t+ε

t
ψsds

∣∣∣∣q dP
≤
∫
{Xε

t>N}

1
N q−p

[
1
ε

∫ t+ε

t
|ψs|qds

]
dP

≤ 1
N q−pE

[
1
ε

∫ t+ε

t
|ψs|qds

]
≤ 1
N q−p

1
ε

∫ t+ε

t
E [|ψs|q] ds

≤ 1
N q−p [E [|ψt|q] + 1]

<∞.
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Thus
{∣∣∣1ε ∫ t+εt ψsds

∣∣∣p ; ε ∈ (0, δt]
}

are uniformly integrable. Combining this with
Equation (3.26) we conclude that for each t ∈ S, we have that

ψt = Lp − lim
ε→0+

1
ε

∫ t+ε

t
ψsds.

This completes the proof.

We can now prove Lemma 3.21 which is restated below.

Lemma 3.24 (Representation lemma). Let (A1) and (A2) hold true for the function
g and let 1 ≤ p ≤ 2. Then for any (y, z) ∈ R× Rd, we have that the equality

g(t, y, z) = Lp − lim
ε→0+

1
ε

[Yt(g, t+ ε, y + z · (Bt+ε −Bt))− y]

holds for almost every t ∈ [0, T ).

Proof. Since (g(t, 0, 0))t∈[0,T ] ∈ H2
F (T,R) and g satisfies (A1), we know that for

each (y, z) ∈ R× Rd, (g(t, y, z))t∈[0,T ] ∈ H2
F (T,R). Then for any 1 ≤ p ≤ 2 and any

(y, z) ∈ R × Rd, Proposition 3.23 and the monotone convergence theorem yield for
t ∈ [0, T )

g(t, y, z) = Lp − lim
ε→0+

E
[

1
ε

∫ t+ε

t
g(s, y, z)ds|Ft

]
a.e.

Thus, using the equivalence of Proposition 3.20, the result of the representation
lemma follows, which completes the proof.

Under the additional assumption of (A3), the representation lemma has an al-
ternate formulation. To see this, we first note that

Yt(g, t+ ε, y + z · (Bt+ε −Bt) = Eg[y + z · (Bt+ε −Bt)|Ft],

and that

E[Yt + Zt · (Bs −Bt)|Ft] = E[Yt|Ft] + E[Zt · (Bs −Bt)|Ft]

= Yt + ZtE[(Bs −Bt)|Ft]

= Yt.

Now Lemma 3.21 states that

g(t, Yt, Zt) = lim
s→t

Yt(g, s, Yt + Zt · (Bs −Bt))− Yt
s− t

. (3.29)

We can rewrite Equation (3.29) as

g(t, Yt, Zt) = lim
s→t

Eg[Yt + Zt · (Bs −Bt)|Ft]− E[Yt + Zt · (Bs −Bt)|Ft]
s− t

,

which gives us the alternate formulation of the representation lemma.
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3.6 The y-independent case

We now examine and state some results in the case where the generator g does not
depend on the variable y.

Lemma 3.25. Let g be a function independent of y i.e. g = g(t, z). Then for all
X ∈ L2(FT ), η ∈ L2(Ft), we have

Eg[X + η|Ft] = Eg[X|Ft] + η. (3.30)

Moreover, if g is continuous in t, then (3.30) holds for any t ∈ [0, T ] if and only if
g does not depend on y.

Proof. Consider Yt = Eg[X + η|Ft] which is the solution of

Yt = X + η +
∫ T

t
g(s, Zs)ds−

∫ T

t
ZsdBs, 0 ≤ t ≤ T. (3.31)

Also Y ∗t = Eg[X|Ft] is the solution of

Y ∗t = X +
∫ T

t
g(s, Z∗s )ds−

∫ T

t
Z∗sdBs, 0 ≤ t ≤ T.

Consequently we have that Y ∗t + η satisfies the equation

Y ∗t + η = X + η +
∫ T

t
g(s, Z∗s )ds−

∫ T

t
Z∗sdBs.

By Peng [40], we know, however, that the solution of Equation (3.31) is unique
giving us

Eg[X + η|Ft] = Yt = Y ∗t + η = Eg[X|Ft] + η.

In addition we assume that g is continuous in t. We now want to show that
if (3.30) holds, then g does not depend on y. This is a direct application of the
representation lemma for generators of BSDEs. If we pick a triple (t, y, z) ∈ [0, T )×
R× Rd, then by Lemma 3.21 we have

g(t, y, z) = lim
ε→0+

1
ε

[Yt(g, t+ ε, y + z · (Bt+ε −Bt))− y]

= lim
ε→0+

1
ε
{Eg[y + z · (Bt+ε −Bt)|Ft]− y},

where the limit is taken in L2. On the other hand, by hypothesis we have

Eg[y + z · (Bt+ε −Bt)|Ft] = y + Eg[z · (Bt+ε −Bt)|Ft]

which yields

g(t, y, z) = lim
ε→0+

1
ε
Eg[z · (Bt+ε −Bt)|Ft].

Hence g does not depend on y, which completes the proof.
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A fundamental property of convex functions also leads to an interesting y-
independence result. We will first state and prove this elementary property, adapted
from Briand et al. [3].

Lemma 3.26. Let k : Rn → R be a convex function and let k be bounded from
above. Then k is constant.

Proof. Since k is convex, we know that for each α ∈ [0, 1] and for each y, k(αy) ≤
αk(y) + (1 − α)k(0). Choosing y = x

α in the previous equation, we get k(x) ≤
αk( xα) + (1 − α)k(0). Since k is bounded from above, say by M , we have that
k(x) ≤ αM + (1− α)k(0). Letting α tend towards 0 yields

k(x) ≤ k(0). (3.32)

Also, again using the convexity of k and setting α = 1
2 , we get k(1

2x −
1
2x) ≤

1
2k(x) + 1

2k(−x), yielding 2k(0) ≤ k(x) + k(−x). By Equation (3.32), we have that
2k(0) ≤ k(x) + k(0), which gives us

k(0) ≤ k(x). (3.33)

Combining Equations (3.32) and (3.33), we find that

k(0) = k(x). (3.34)

Thus k is constant.

From this lemma, we can deduce that, if a function g(t, y, z) satisfies assumptions
(A1) and (A3) and is convex in (y, z), then g does not depend on y. Clearly if z is
fixed, the function g(t, y, z) is convex in y. Moreover, using the Lipschitz continuity
of the function g, we have that

|g(t, y, z)− g(t, y, 0)| ≤ C(|y − y|+ |z − 0|).

From assumption (A3), we know that g(t, y, 0) = 0, giving

|g(t, y, z)| ≤ C(|z|).

Hence g is convex in y and bounded from above. Applying the previous lemma, we
have that g is constant in the variable y. Thus g is independent of y, giving us the
desired result.
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3.7 Converse comparison theorem

A natural extension to the comparison theorem is the reverse thereof. If we have
that Eg1 [X] ≤ Eg2 [X] or Eg1 [X|Ft] ≤ Eg2 [X|Ft], then do we necessarily have that
g1 ≤ g2? Also, if Eg1 [X] = Eg2 [X], do we have g1 = g2? Chen [7] and Briand et al.
[3] worked on this converse comparison theorem and found the following results.

The first theorem is taken from Chen [7] and the following two from Briand et
al. [3].

Theorem 3.27. Let assumptions (A1), (A2) and (A3) hold true for g1 and g2 and
assume that g1 and g2 are continuous in t. Also assume that for all X ∈ L(FT ),
Eg1 [X] = Eg2 [X]. Then P-a.s. for all (t, y, z) ∈ [0, T ]×R×Rd, we have g1(t, y, z) =
g2(t, y, z).

Proof. For any X ∈ L(FT ) and A ∈ L(Ft), we have

Eg2 [1AEg2 [X|Ft]] = Eg2 [1AX] = Eg1 [1AX] = Eg1 [1AEg1 [X|Ft]] = Eg2 [1AEg1 [X|Ft]].

This follows by the tower property of the g-expectation and by hypothesis. Then by
the uniqueness of the conditional g-expectation we have that

Eg1 [X|Ft] = Eg2 [X|Ft].

Set Y X
t = Eg1 [X|Ft] = Eg2 [X|Ft]. By the definition of Egi [X|Ft], i = 1, 2, there

exists Z(1)
t and Z

(2)
t such that (Y X

t , Z
(i)
t ), i = 1, 2, are the respective solutions to

the BSDEs

Y X
t = X +

∫ T

t
gi(s, Y X

s , Z(i)
s ) ds−

∫ T

t
Z(i)
s dBs, i = 1, 2. (3.35)

We get that

ZXt := Z
(1)
t = Z

(2)
t =

d
〈
Y X
t , Bt

〉
dt

, (3.36)

where
〈
Y X
t , Bt

〉
is the quadratic variation of Y X

t and Bt. Moreover, for any X ∈
L2(FT ) we know that the solution of BSDE (3.35) satisfies for all t ∈ [0, T ]

g1(t, Y X
t , ZXt ) = g2(t, Y X

t , ZXt ).

We still need to show that this equality holds for arbitrary (t0, a, b) ∈ [0, T ]×R×Rd.
Let (a, b) ∈ R×Rd. We need to show that there exists a random variable X ∈ L2(FT )
such that the solution of the BSDE (3.35) satisfies

(Y X
t , ZXt ) = (a, b). (3.37)
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For any (t0, a, b) ∈ [0, T ] × R × Rd, we consider the stochastic differential equation
(SDE)

Ȳt = a−
∫ t

t0

g(s, Ȳs, b) ds+
∫ t

t0

b dBs, t0 ≤ t ≤ T,

Ȳt = a, 0 ≤ t ≤ t0.

This SDE has a unique solution (Ȳt)t∈[0,T ] for g. Choose X := ȲT . Obviously
X ∈ L2(FT ). Also we have that (Ȳt, b)t∈[t0,T ] solves the BSDE (3.35) when X = ȲT .
We see this by the following. The left hand side of Equation (3.35) is

a−
∫ t

t0

g(s, Ȳs, b) ds+
∫ t

t0

b dBs.

The right hand side of the equation yields

X +
∫ T

t
g(s, Y X

s , Z(i)
s ) ds−

∫ T

t
Z(i)
s dBs = ȲT +

∫ T

t
g(s, Y X

s , b) ds−
∫ T

t
b dBs

= a−
∫ T

t0

g(s, Ȳs, b) ds+
∫ T

t0

b dBs

+
∫ T

t
g(s, Y X

s , b) ds−
∫ T

t
b dBs

= a−
∫ t

t0

g(s, Ȳs, b) ds+
∫ t

t0

b dBs.

We then have that the solution (Y X
t , ZXt ) of BSDE (3.35) satisfies

(Y X
t , ZXt ) = (Ȳt, b), t0 ≤ t ≤ T.

It follows from this equation and from (3.37) that Ȳt0 = a, which gives us the desired
result.

Theorem 3.28. Let assumptions (A1), (A2) and (A3) hold true for g1 and g2 and
assume that g1 and g2 are continuous in t. Also assume that for all X ∈ L(FT ),
Eg1 [X] ≤ Eg2 [X]. Then we have for all t ∈ [0, T ] and for all (y, z) ∈ R × Rd

g1(t, y, z) ≤ g2(t, y, z).

Proof. We fix (t, y, z) ∈ [0, T ] × R × Rd, and for large enough n ∈ N, we consider
Xn = y + z · (Bt+ 1

n
−Bt). Let (Y n(i)

t , Z
n(i)
t )t∈[0,T ] be the solution of the BSDE

Y
n(i)
t = Xn +

∫ T

t
gi(s, Y n(i)

s , Zn(i)
s ) ds−

∫ T

t
Zn(i)
s dBs, 0 ≤ t ≤ T, (3.38)

for i = 1, 2. We have by the representation lemma, Lemma 3.21 that

g(t, y, z) = lim
ε→0+

1
ε

[Yt(g, t+ ε, y + z · (Bt+ε −Bt))− y] ,
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or equivalently, letting ε = 1
n , we have

g(t, y, z) = lim
n→∞

n

[
Yt(g, t+

1
n
, y + z · (Bt+ 1

n
−Bt))− y

]
,

where the limit is taken in L2. Therefore we have that in L2

n{Egi [Xn|Ft]− y} → gi(t, y, z).

On the other hand, since Xn is independent of Ft, we know by Proposition 3.14 that
Egi [Xn|Ft] = Egi [Xn]. By hypothesis, we know that Eg1 [X] ≤ Eg2 [X] and hence

n{Eg1 [Xn|Ft]− y} ≤ n{Eg2 [Xn|Ft]− y}.

Letting n→∞ on both sides, and noting that g1 and g2 are deterministic, we obtain
g1(t, y, z) ≤ g2(t, y, z). This concludes the proof since (t, y, z) is arbitrary and both
g1(·, y, z) and g2(·, y, z) are continuous.

Theorem 3.29. Let assumptions (A1), (A2) and (A3) hold true for g1 and g2 and
assume that g1 and g2 are continuous in t. Also assume that for all X ∈ L(FT ),
and for all t ∈ [0, T ], Eg1 [X|Ft] ≤ Eg2 [X|Ft]. Then we have P-a.s. for all t ∈ [0, T ]
and for all (y, z) ∈ R× Rd g1(t, y, z) ≤ g2(t, y, z).

Proof. This proof follows similarly to the previous one. We fix (t, y, z) ∈ [0, T ] ×
R × Rd, and for large enough n ∈ N, we consider Xn = y + z · (Bt+ 1

n
− Bt). Let

(Y n(i)
t , Z

n(i)
t )t∈[0,T ] be the solution of the BSDE

Y
n(i)
t = Xn +

∫ T

t
gi(s, Y n(i)

s , Zn(i)
s ) ds−

∫ T

t
Zn(i)
s dBs, 0 ≤ t ≤ T. (3.39)

We have by the representation lemma, Lemma 3.21 that

g(t, y, z) = lim
ε→0+

1
ε

[Yt(g, t+ ε, y + z · (Bt+ε −Bt))− y] ,

or equivalently, letting ε = 1
n , we have

g(t, y, z) = lim
n→∞

n

[
Yt(g, t+

1
n
, y + z · (Bt+ 1

n
−Bt))− y

]
,

where the limit is taken in L2. Therefore we have that in L2

n{Egi [Xn|Ft]− y} → gi(t, y, z).

By hypothesis, we know that Eg1 [X|Ft] ≤ Eg2 [X|Ft] and hence

n{Eg1 [Xn|Ft]− y} ≤ n{Eg2 [Xn|Ft]− y}.
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Extracting a subsequence to get the convergence P-a.s. and letting n→∞ on both
sides we obtain that P-a.s. g1(t, y, z) ≤ g2(t, y, z). By the continuity, we obtain that
P-a.s. for all (t, y, z) ∈ [0, T ]×R×Rd, we have g1(t, y, z) ≤ g2(t, y, z). This completes
the proof.

If we do not assume that g1 and g2 are continuous in t, the above results still
hold, however we note that they now hold for all (y, z) ∈ R × Rd for almost every
t ∈ [0, T ]. In fact, combining these results with the representation lemma, we have
that for any (y, z) ∈ R×Rd and for any t ∈ Szy(g1)∩Szy(g2) the results hold P-almost
surely.

3.8 On Jensen’s inequality

In this section, taken from Briand et al. [3], we examine Jensen’s inequality for
g-expectations and show that in general Jensen’s inequality does not hold for g-
expectations. This will be shown by a counterexample.

Consider the function g : R→ R defined as follows

g(z) =

z2 if z ∈ [−1, 1];

2|z| − 1 if |z| > 1.

Introduce ξ := −σ2T + σBT for a fixed σ ∈ (0, 1]. We then consider the BSDE

Yt = ξ +
∫ T

t
g(Zs) ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T. (3.40)

The solution to this BSDE is

(−σ2t+ σBt, σ)t∈[0,T ];

that is Yt = −σ2t+ σBt and Zt = σ. We see this by the following. On the left hand
side of Equation (3.40) we have −σ2t+ σBt. The right hand side of the equality in
Equation (3.40) yields

ξ +
∫ T

t
g(Zs) ds−

∫ T

t
Zs dBs = −σ2T + σBT +

∫ T

t
σ2 ds−

∫ T

t
σ dBs

= −σ2T + σBT + σ2(T − t)− σ(BT −Bt)

= −σ2t+ σBt.

We note here that since σ ∈ (0, 1], we have g(z) = z2. Hence

1
2
Eg[ξ|Ft] = −σ

2

2
t+

σ

2
Bt.
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We now consider the BSDE

Yt =
1
2
ξ +

∫ T

t
g(Zs) ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T. (3.41)

The solution to this BSDE is(
−σ

2

2
T +

σ

2
Bt +

(σ
2

)2
(T − t), σ

2

)
t∈[0,T ]

;

that is Yt = −σ2

2 T + σ
2Bt +

(
σ
2

)2 (T − t) and Zt = σ
2 . We see this by the following.

On the left hand side of Equation (3.41) we have −σ2

2 T + σ
2Bt +

(
σ
2

)2 (T − t). The
right hand side of the equality in Equation (3.41) yields

1
2
ξ +

∫ T

t
g(Zs) ds−

∫ T

t
Zs dBs = −σ

2

2
T +

σ

2
BT +

∫ T

t

(σ
2

)2
ds−

∫ T

t

σ

2
dBs

= −σ
2

2
T +

σ

2
BT +

(σ
2

)2
(T − t)− σ

2
(BT −Bt)

= −σ
2

2
T +

σ

2
Bt +

(σ
2

)2
(T − t).

Hence, we have

Eg[
1
2
ξ|Ft] = −σ

2

2
T +

σ

2
Bt +

(σ
2

)2
(T − t).

Consequently it follows that

1
2
Eg[ξ|Ft]− Eg[

1
2
ξ|Ft] = (T − t)σ

2

4
,

which is positive if t < T . This contradicts Jensen’s inequality in the simplest case.
We considered the linear function ϑ : x → x

2 and a convex generator g and found
that for t ≤ T we have

ϑ (Eg[ξ|Ft]) ≥ Eg[ϑ (ξ) |Ft].

Briand et al. [3] has established that Jensen’s inequality does hold under certain
additional assumptions on the generator g and the g-expectation Eg[ · ]. For more
information regarding this, we refer the reader to Briand et al. [3].

3.9 Financial application of g-expectations

BSDEs are useful in finance and have been applied in the evaluation of contingent
claims, especially in constrained cases, as well as in the theory of recursive utilities,
researched extensively by Duffie and Epstein [20, 21]. Most notably, BSDEs ap-
peared in the valuation of contingent claims in complete markets, studied by Black
and Scholes [2] and Merton [36] amongst others. The problem posed was to deter-
mine the price of a contingent claim with payoff X and maturity T . In a complete
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market it was possible to construct a portfolio which replicates the payoff of the
contingent claim. The dynamics of the value of the replicating portfolio are given
by such a BSDE with a linear generator. The BSDE theory showed that there exists
a unique price and a unique hedging portfolio which replicates the payoff of the
contingent claim.

In this section, we specifically look at the financial application, interpretation and
implication of Peng’s g-expectation. g-Expectations give a dynamic evaluation of
pricing contigent claims with payoff X and maturity T in complete and incomplete
markets. As seen in Chapter 5, g-expectations can also be used to create risk
measures. A significant feature of the g-expectation Eg[ · |Ft] is that its value and
behaviour is uniquely and entirely determined by the generator function g. When
pricing contingent claims, we are concerned about finding this generator g. With
risk measures, this function can be chosen to suit the risk preference of the investor
and would hence indicate how conservative the risk measure is.

The work in this section has been based on El Karoui et al. [35], Rosazza Gianin
[30], Peng [44], Schroder [48] and Finch [23].

3.9.1 Black-Scholes option pricing formula

We first consider the Black-Scholes framework of pricing contingent claims in com-
plete or incomplete markets. Let (St)t∈[0,T ] be the value process of a risky asset with
dynamics:

dSt = νtStdt+ σtStdBt,

or equivalently
dSt
St

= νtdt+ σtdBt.

In general (St)t∈[0,T ] can be a vector St = (S1
t , . . . , S

d
t ), representing the vector value

process of d risky assets and where Sit represents the value process of risky asset
i. Let πt denote the portion of wealth invested in the risky asset at time t. Let
(Vt)t∈[0,T ] be the wealth process of the portfolio. We now consider a contingent
claim with payoff X at time T where X is a function of ST i.e. X = f(ST ). As
mentioned previously, in complete markets we know that the price at time 0 of such
a contingent claim is the initial value of the self-financing replicating portfolio, i.e.
V0. We consequently have

dVt = πtdSt = πtνtStdt+ πtσtStdBt, (3.42)

with terminal condition
VT = X. (3.43)
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Setting Yt := Vt and Zt := πtσtSt we get

dYt = −g(t, Yt, Zt)dt+ ZtdBt

with terminal condition
YT = X

and where g is given by
g(t, y, z) = − νt

σt
z.

The initial value of the replicating portfolio is then given by V0 = Y0 = Eg[X]. Note
that the function g is independent of y and linear in z. Also note that the function
depends on the drift, νt, and the volatility, σt, of the risky asset St. In this case the
static risk measure ρg(X) = Eg[−X] represents the initial value of the replicating
portfolio of a contingent claim with payoff −X. This risk measure can hence be seen
as the ‘natural’ risk measure. We also note that the expression − νt

σt
resembles the

market price of risk.
We know that the solution to the BSDE (3.42) with terminal condition (3.43) is

given by the well known Black-Scholes option pricing formula. Hence we see here
that Peng’s g-expectation contains the Black-Scholes option pricing formula. In this
case g is a linear function in z.

We now look at two other processes used for modelling equity prices. For each of
these processes, we set up the option pricing formula using the g-expectation. The
work in the following two subsections is due to the author.

3.9.2 Constant elasticity of variance option pricing formula

An alternative process used to model the dynamics of the stock price is the constant
elasticity of variance process. Empirical evidence showed there exists a relationship
between the stock price and the variance of the stock price returns. More precisely,
studies showed that an increase in stock price may reduce the variance of the stock
price return. Hence the constant elasticity of variance (CEV) model was proposed as
an alternative to the Black-Scholes model. The CEV process suggests the following
deterministic relationship between the stock price, St, and the volatility of the stock
price σ(S, t):

σ(S, t) = δS
(β−2)

2
t .

If β < 2 in the CEV model, then the stock price and the volatility are inversely
related. Under the constant elasticity of variance model, the stock price is assumed
to follow the dynamics

dSt = νtStdt+ δS
β
2
t dBt.
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When β = 2, the stock price is lognormally distributed and the variance of the
return is constant. In this case the elasticity of the variance with respect to the
price, which is given by β − 2, is zero. The stock then follows geometric Brownian
motion and the Black-Scholes framework applies. Again, in general (St)t∈[0,T ] can
be a vector St = (S1

t , . . . , S
d
t ). We let πt denote the portion of wealth invested in

the risky asset at time t. Let (Vt)t∈[0,T ] be the wealth process of the portfolio. We
again consider a contingent claim with payoff X at time T where X is a function of
ST i.e. X = f(ST ). Consequently we have that the wealth process satisfies

dVt = πtdSt = πtνtStdt+ πtδS
β
2
t dBt,

with terminal condition
VT = X.

In this case we set Yt := Vt and Zt := πtδS
β
2
t giving us

dYt = −g(t, Yt, Zt)dt+ ZtdBt

with terminal condition
YT = X

and where g is given by

g(t, y, z) = −νtzS
(β−2)

2
t .

The initial value of the replicating portfolio and hence the value of the contingent
claim at time 0, is then given by V0 = Y0 = Eg[X].

3.9.3 Ornstein-Uhlenbeck option pricing formula

Mean reversion processes are widely seen in finance. They are most commonly used
for modelling interest rates, however are also used for modelling currency exchanges,
convenience yields, volatilities of asset prices and even commodity prices. The most
popular mean reversion model is the Ornstein-Uhlenbeck process with following
dynamics:

dXt = λ(µ−Xt)dt+ σdBt.

The Vasicek model is a well-known example of an Ornstein-Uhlenbeck process, used
in interest rate modelling. If we assume that the stock price is modelled using the
Ornstein-Uhlenbeck process, we have

dVt = πtdXt = πtλ(µ−Xt)dt+ πtσdBt.

with terminal condition
VT = X.
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Here we set Yt := Vt and Zt := πtσ giving us

dYt = −g(t, Yt, Zt)dt+ ZtdBt

with terminal condition
YT = X

and where g is given by
g(t, y, z) = − z

σ
λ(µ−Xt).

The initial value of the replicating portfolio and hence the value of the contingent
claim at time 0, is again given by V0 = Y0 = Eg[X].



Chapter 4

Risk measures

A considerable amount of research has been done on different methods of measuring
the riskiness of financial positions, both in a theoretical and a practical setting. Risk
measures were introduced to quantify the riskiness of any financial position. They
also give an indication as to which positions carry an acceptable amount of risk and
which positions do not. A well known and popular risk measure is Value at Risk
(VaR). This risk measure has been of great interest in financial and mathematical
research. Value at Risk, for a given time horizon and probability α, also denoted
by VaRα, is the maximum loss in market value of a financial position over the time
horizon that is exceeded with a confidence of 1 − α. For an extensive overview
of VaR, we refer the reader to Duffie and Pan [19]. VaR, however, has quite a few
drawbacks and has been subject to a lot of criticism in the literature, see for example
Artzner et al. [1]. Consequently, Artzner et al. [1] introduced some desirable axioms
for risk measures which led to the concept of coherent risk measures. Delbaen
[15] generalised the concept of coherent risk measures to general probability spaces.
Furthermore Artzner et al. [1] and Delbaen [15] proved a representation theorem for
coherent risk measures.

A more general and more desirable property was then established which brought
about the concept of convex risk measures, first introduced by Heath [31] in fi-
nite probability spaces and later by Föllmer and Schied [24] in general probability
spaces. Fritelli and Rosazza Gianin [27] independently defined convex risk measures
in general probability spaces. Fritelli and Rosazza Gianin [27] also independently
to Föllmer and Schied [24], proved an analogous representation theorem for convex
risk measures that generalises the representation theorem of coherent risk measures.

All risk measures mentioned thus far have been one-period risk measures. How-
ever, in many cases due to intermediate cashflows, we want to work with a multi-
period risk measure. Therefore, as an extension to quantifying the risk today of

43
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a financial position at some fixed point in the future, we would like to be able to
quantify the riskiness of a position at intermediate timepoints. Thus risk measures
were first introduced in a dynamic setting by Cvitanic and Karatzas [14] and Wang
[49]. More recent and more extensive studies on dynamic risk measures have been
done by Frittelli and Rosazza Gianin [26] and Riedel [46] amongst others.

In this chapter, we recall the basic concepts of static and dynamic risk mea-
sures, as well as what is meant by coherent and convex risk measures and state the
corresponding representation theorems.

4.1 Static risk measures

A large portion of the work in the next two sections has been adapted from Föllmer
and Schied [25], Rosazza Gianin [30] and Frittelli and Rosazza Gianin [26].

Let (Ω,F ,P) be a probability space. We let T be a fixed future date. Denote
by X a vector subspace of the space of all measurable functions f : Ω → R which
contains the constant functions. The space X is interpreted as the space of all
financial positions which we are interested in. A financial position is a mapping
X : Ω→ R, where X(ω) is the discounted net worth of any position at time T , the
end of the trading period.

A static measure of risk is a mapping

ρ : X → R.

Many properties have been imposed on risk measures which consequently led to the
concepts of coherent and convex risk measures. The financial interpretation of these
properties makes them desirable. We list the axioms for static risk measures below.

Axiom 4.1 (Axioms for static risk measures).

(a) Positivity : For all X ∈ X with X ≥ 0, we require ρ(X) ≤ ρ(0).

(b) Monotonicity : For all X,Y ∈ X with X ≤ Y , we require ρ(Y ) ≤ ρ(X).

(c) Subadditivity : For all X,Y ∈ X , we require ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(d) Positive Homogeneity : For all λ ≥ 0 and X ∈ X , we require ρ(λX) =
λρ(X).

(e) Translation Invariance : For all X ∈ X and α ∈ R, we require ρ(X + α) =
ρ(X)− α.

(f) Constancy : For all c ∈ R, we require ρ(c) = −c.
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(g) Convexity : For all λ ∈ [0, 1] and X,Y ∈ X , we require ρ(λX + (1− λ)Y ) ≤
λρ(X) + (1− λ)ρ(Y ).

(h) Lower semi-continuity : {X ∈ X : ρ(X) ≤ γ} is closed in X for any γ ∈ R.

Definition 4.2. A monetary measure of risk is a mapping ρ : X → R which satisfies
Axioms 4.1 (b) monotonicity and (e) translation invariance.

The number ρ(X) represents the riskiness of the position X and can be inter-
preted as the minimum extra capital that needs to be added to the original risky
position to make the position acceptable from the viewpoint of a supervising agency.
If the risk measure is negative, the capital amount −ρ(X) can be withdrawn from
the position and the resulting position will remain acceptable.

The financial interpretation of both monotonicity and of translation invariance,
also known as cash invariance, is clear. Monotonocity ensures that if a position
always leads to a worse outcome than another position, then its riskiness is greater
than the riskiness of the other position. Translation invariance guarantees that
adding a sure amount to the initial position decreases the riskiness of the position by
that amount. In addition this property implies that ρ(X+ρ(X)) = 0. This confirms
the financial interpretation of a risk measure given earlier: ρ(X) is the amount
of money needed to add to the risky position X to make the position neutrally
acceptable.

Note that in Axiom 4.1 (a) positivity, (b) monotonicity, (e) translation invariance
and in (f) constancy, the risk measure inverts signs. This is due to the interpretation
of ρ. Axiom 4.1 (c) subadditivity and (d) positive homogeneity are together also
known as sublinearity. Positive homogeneity in particular tells us that if we increase
the size of a position by λ, the riskiness of the position increases by a factor of λ. In
other words, the size of the position directly influences the riskiness of the position.
In many situations, however, the riskiness of a financial position may increase in
a nonlinear fashion with the size of the position. If, for example, the position is
multiplied by a large factor, an additional liquidity risk may arise. This suggests
that the condition of positive homogeneity should be relaxed. Subadditivity is seen
as a natural requirement for coherency of risk measures as it ensures that diver-
sification of a portfolio holds. This means that combining risks into one portfolio
may lead to a lower resulting risk: the loss of one position may offset the gains
on other positions and the total risk may be reduced. Subadditivity also ensures
that there is no motivation to break into separate affiliates if the combined risk of
the positions is higher than the individual risk. As ‘natural’ as this condition may
seem, subadditivity has also been subject to criticsm in literature. This suggests
that it should also be relaxed. We elaborate on this later on in this chapter. For
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an extensive discussion of the financial motivation of the above axioms, we refer the
reader to Artzner et al. [1] and Frittelli and Rosazza Gianin [26, 27].

When dealing with risk measures, we are concerned about having acceptable
financial positions. In a mathematical sense, we mean the following when referring
to an acceptable position.

Definition 4.3. The acceptance set associated to a risk measure, ρ, is the set, Aρ,
defined by

Aρ = {X ∈ X | ρ(X) ≤ 0}.

In other words, a financial position X is acceptable if ρ(X) < 0, and unacceptable
otherwise. The relationship between risk measures and their acceptance sets will be
given shortly.

We require an additional result in the proof of the following proposition. We
first state and prove this result; Proposition 4.5 follows.

Lemma 4.4. Any monetary risk measure, ρ, is Lipschitz continuous with respect to
the supremum norm ‖ · ‖, that is

|ρ(X)− ρ(Y )| ≤ ||X − Y ||.

Proof. Clearly X ≤ Y + ‖X − Y ‖. By monotonicity and translation invariance,
noting that ‖X − Y ‖ is a constant, we have ρ(Y )− ‖X − Y ‖ ≤ ρ(X). This gives us
ρ(Y ) − ρ(X) ≤ ‖X − Y ‖. Reversing the roles of X and Y , we get ρ(X) − ρ(Y ) ≤
‖Y − X‖. Since ‖X − Y ‖ = ‖Y − X‖, we get |ρ(X) − ρ(Y )| ≤ ‖X − Y ‖ which
completes the proof.

The relationship between a monetary measure of risk and the acceptance set of
the risk measure is given by the following.

Proposition 4.5. Let ρ be a monetary measure of risk with acceptance set A = Aρ.
Then we have

(i) A is non-empty and satisfies the following conditions:

inf{m ∈ R |m ∈ A} > −∞. (4.1)

X ∈ A, Y ∈ X , Y ≥ X ⇒ Y ∈ A. (4.2)

Moreover, A has the following closure property. Let X ∈ A, Y ∈ X ,

{λ ∈ [0, 1] |λX + (1− λ)Y ∈ A} is closed in [0, 1].
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(ii) The risk measure ρ can be recovered from the acceptance set A by

ρ(X) = inf{m ∈ R |m+X ∈ A}

Proof. (i) The first two properties are straightforward. By Lemma 4.4, the function
λ 7→ ρ(λX + (1− λ)Y ) is continuous. Hence the set of λ ∈ [0, 1] such that ρ(λX +
(1− λ)Y ) ≤ 0 is closed.

(ii) Translation invariance implies that for X ∈ X ,

inf{m ∈ R |m+X ∈ A} = inf{m ∈ R | ρ(m+X) ≤ 0}

= inf{m ∈ R | ρ(X) ≤ m}

= ρ(X).

On the other hand, we can also consider a given class A ⊂ X of acceptable
positions. For any financial position X, we can define the risk measure ρA(X) by

ρA(X) := inf{m ∈ R |m+X ∈ A}.

Here m is again the minimal capital amount that needs to be added to the position
X so that m+X is acceptable. We then have that ρ = ρAρ .

Proposition 4.6. Assume that A is a non-empty subset of X which satisfies con-
ditions (4.1) and (4.2). Then ρA is a monetary risk measure.

For more information and an extensive study on the relationship between mon-
etary risk measures and their acceptance sets, we refer the reader to Föllmer and
Schied [25], and to Artzner et al. [1].

Due to the financial convenience, we concentrate on monetary risk measures with
additonal properties. Risk measures which satisfy (d) positive homogeneity and
(c) subadditivity, and risk measures which satisfies (g) convexity are of particular
interest. These two classes of risk measures will be dealt with in the following two
sections.

4.1.1 Coherent risk measures

Having stated the important properties imposed on risk measures, we can now define
the concept of a coherent measure of risk in general probability spaces.

Definition 4.7. A function ρ : X → R is a coherent measure of risk if it satisfies
Axiom 4.1 (b) monotonocity, (c) subadditivity, (d) positive homogeneity and (e)
translation invariance.
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Delbaen [15] defined and proved the general characterisation of a coherent mea-
sure of risk. Typically, any coherent measure of risk ρ arises from some family P of
probability measures on Ω.

Theorem 4.8. Consider the function ρ : X → R. Then ρ is a coherent measure
of risk if and only if there exists a closed convex set P of P-continuous probability
measures such that

ρ(X) = sup
Q∈P

EQ[−X]. (4.3)

For a proof of this theorem, see Delbaen [15].
By this representation any coherent risk measure ρ can be represented as the

maximum expected loss over a set P of generalised scenarios i.e. any coherent risk
measure can be seen as the ‘worst case method’ in a framework of generalised sce-
narios. The more scenarios one considers, the more conservative the resulting risk
measure.

The relationship between the risk measure and the acceptance set in the class of
coherent risk measures will next be given, however, we first recall the definition of
convexity and define the concept of a cone. The following definition has been taken
from Offwood [37].

Definition 4.9.

(i) A set A is convex if for all λ ∈ [0, 1] and x, y ∈ A, we have that λx+(1−λ)y ∈ A.

(ii) A set C in a vector space is said to be a cone with vertex at the origin if
x ∈ C implies that αx ∈ C for all α ≥ 0. A cone with vertex p is defined as a
translation p+C of a cone C with vertex at the origin. If the vertex of a cone
is not explicitly mentioned then it is assumed to be the origin.

Proposition 4.10. Suppose ρ is a monetary risk measure with acceptance set A.
Then ρ is positively homogeneous if and only if A is a cone. In particular, ρ is a
coherent risk measure if and only if A is a convex cone.

For a proof of this theorem, see Föllmer and Schied [25].
As explained previously, positive homogeneity and subadditivity are not always

applicable or suitable properties for risk measures. Thus it is suggested that the sub-
linearity property of risk measures be relaxed. Consequently convex risk measures
were introduced as a generalisation of coherent risk measures.

4.1.2 Convex risk measures

In the class of convex measures of risk the positive homogeneity and subadditivity
properties are replaced with the weaker property of convexity.
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Definition 4.11. A monetary risk measure ρ : X → R is a convex measure of risk
if it satisfies Axiom 4.1 (g) convexity, (h) lower semi-continuity and ρ(0) = 0.

Remark 4.12. In the literature, the definition of convex risk measures differs de-
pending on the author. The above definition, which will be used throughout the dis-
sertation, is a combination of definitions by Föllmer and Schied [25] and by Rosazza
Gianin [30].

We still interpret ρ(X) as the minimum capital requirement, which, if added to a
position, makes it acceptable. An analogous representation theorem as for coherent
risk measures exists for convex risk measures.

Theorem 4.13. The function ρ : X → R is a convex measure of risk if and only if
there exists a convex set P of P-continuous probability measures such that

ρ(X) = sup
Q∈P
{EQ[−X]− F (Q)}. (4.4)

For a proof of this theorem, see Föllmer and Schied [25].
This representation also has a financial interpretation. By this characterisation,

any convex risk measure ρ can be represented as the maximum expected loss over
a set P of generalised scenarios corrected with a penalty term F , which depends on
the scenarios. Whilst the set of possible scenarios may be exogenously determined,
the penalty function F may be determined by the investor, depending on his or her
own preference.

In the class of convex risk measures, the relationship between the risk measure
and the acceptance set is given by the following.

Proposition 4.14. Suppose ρ is a monetary risk measure with acceptance set A.
The risk measure ρ is convex if and only if A is convex.

For a proof of this theorem, see Föllmer and Schied [25].
The risk measures discussed this far deal with quantifying the risk today of a

financial position with fixed maturity date T . The natural question arises as to how
we can quantify the riskiness of a financial position at different timepoints between
0 and T i.e. in a dynamic setting.

4.2 Dynamic risk measures

The risk measures proposed thus far have all been one-period risk measures and
consequently do not measure the riskiness of a position at intermediate time points.
In many cases, however, particularly when intermediary cashflows take place, we
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are interested in a multi-period framework. We are therefore now concerned about
monitoring the riskiness of a financial position X at any intermediate time t between
the initial time 0 and the maturity T . To define a dynamic risk measure, it seems
reasonable to define a map, ρt, indexed by time, where ρt(X) denotes the riskiness
of the financial position X at time t conditional to the information available at time
t. To define dynamic risk measures, we furthermore require boundary conditions for
ρ(X) at the initial time 0 and at the final time T .

We now consider a general filtration {Ft}t≥0 on the probability space (Ω,F ,P).
Let Lp(Ft) = Lp(Ω,Ft,P) for p ≥ 1 denote the space of all real-valued, Ft-measurable
and p-integrable random variables. Let L0(Ω,Ft,P) denote the space of all Ft-
measurable random variables defined on (Ω,F ,P). We still have X denoting the
space of all financial positions which we are interested in and T a fixed future date
representing the period of uncertainty. For simplicity, we will assume that all ele-
ments of X are FT -measurable, i.e. we assume that X = L0(Ω,FT ,P).

We now define dynamic risk measures.

Definition 4.15. A dynamic risk measure is any map satisfying the following con-
ditions:

(i) ρt : X → L0(Ω,Ft,P) for all t ∈ [0, T ];

(ii) ρ0 is a static risk measure;

(iii) ρT (X) = −X for all X ∈ X .

Analogously to static risk measures, we wish to define coherent and convex dy-
namic risk measures. To do this, some properties of the dynamic risk measure
(ρt)t∈[0,T ] will be listed.

Axiom 4.16 (Axioms for dynamic risk measures).

(a) Positivity : For all t ∈ [0, T ] and X ∈ X with X ≥ 0, we require ρt(X) ≤ ρt(0).

(b) Monotonicity : For all t ∈ [0, T ] and X,Y ∈ X with X ≤ Y , we require
ρt(Y ) ≤ ρt(X).

(c) Subadditivity : For all X,Y ∈ X and t ∈ [0, T ], we require ρt(X + Y ) ≤
ρt(X) + ρt(Y ).

(d) Positive Homogeneity : For all t ∈ [0, T ], λ ≥ 0 and X ∈ X , we require
ρt(λX) = λρt(X).

(e) Translation Invariance : For all t ∈ [0, T ], X ∈ X and an Ft-measurable
random variable ξ in X , we require ρt(X + ξ) = ρt(X)− ξ.
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(f) Constancy : For all c ∈ R and t ∈ [0, T ], we require ρt(c) = −c.

(g) Convexity : For all t ∈ [0, T ], ρt is convex i.e. for all λ ∈ [0, 1] and X,Y ∈ X ,
we require ρt(λX + (1− λ)Y ) ≤ λρt(X) + (1− λ)ρt(Y ).

Note that the interpretation of most of the axioms is analogous to those explained
in the static case. In fact most of these axioms are identical to the axioms defined
for static risk measures, however we are now working in a dynamic setting. The dy-
namic translation invariance axiom is however stronger than the static translation
invariance axiom. In the dynamic setting, translation invariance does not only apply
with respect to constants, but also with respect to any Ft-measurable random vari-
able. In other words, translation invariance applies with respect to a risky position
that is completely determined by the information available to the market at time t.

We can now define coherent and convex risk measures in the dynamic setting.

Definition 4.17. A dynamic risk measure (ρt)t∈[0,T ] is called

(i) coherent if it satisfies Axiom 4.16 (b) monotonicity, (c) subadditivity, (d) pos-
itive homogeneity and (e) translation invariance;

(ii) convex if for each t, ρt is a monetary risk measure and it satisfies Axiom 4.16
(g) convexity and ρt(0) = 0;

(iii) time-consistent if for all t ∈ [0, T ], X ∈ X and A ∈ Ft,

ρ0(X1A) = ρ0[−ρt(X)1A]. (4.5)

The coherent and convex risk measures are the dynamic equivalent to coherent
and convex risk measures in the static sense. The new concept of time-consistency
is however now introduced. The time-consistency condition gives us two approaches
to quantify the riskiness of a financial position at the initial time 0:

• computing the static risk measure ρ0(X) directly;

• evaluating ρ0(X) in two steps, i.e. first evaluating the riskiness of the financial
position X at an intermediate time t and then quantifying the risk of −ρt(X)
at time 0.

The negative sign in the time-consistency property is as a consequence of the financial
interpretation of the risk measure ρt(X).

As a natural extension to the representation of coherent and convex risk measures
in the static sense, we present an example of a dynamic coherent risk measure and
an example of a dynamic convex risk measure taken from Rosazza Gianin [30].
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Example 4.18 (Dynamic coherent risk measure). Let P be a convex set of P-
absolutely continuous probability measures defined on (Ω,FT ). Then for all X ∈ X
and t ∈ [0, T ],

ρt(X) = ess.sup
Q∈P

EQ[−X | Ft] (4.6)

is a dynamic coherent risk measure.

It is easy to see that this is a dynamic risk measure as ρt : X → L0(Ω,Ft,P)
for all t ∈ [0, T ], ρ0 = ess.supQ∈P EQ[−X] is a static risk measure and ρT (X) =
ess.supQ∈P EQ[−X | FT ] = −X for all X ∈ X . Also it is easy to see that it
satisfies coherency due to the properties of the essential supremum and those of the
expectation.

Example 4.19 (Dynamic convex risk measure). Let P be a convex set of P-
absolutely continuous probability measures defined on (Ω,FT ). For any t ∈ [0, T ] let
Ft : P → R be a convex function such that infQ∈P Ft(Q) = 0. Then for all X ∈ X
and t ∈ [0, T ]

ρt(X) = ess.sup
Q∈P

{EQ[−X | Ft]− Ft(Q)} (4.7)

is a dynamic convex risk measure satisfying Axiom 4.16 (a) positivity, (e) translation
invariance and (f) constancy.

Again, going through the properties as in the previous example and keeping
Theorem 4.13 in mind, it is easy to see that this is a dynamic convex risk measure
satisfying the mentioned properties of Axiom 4.16.

Similarly to the static convex risk measure, this dynamic convex risk measure ρt is
represented as the essential supremum over a set P of generalised scenarios corrected
with a penalty term F , which depends on the scenarios. Also we remark here that not
all dynamic risk measures as defined in (4.6) satisfy the time-consistency property.
Since the risk measure as defined in (4.6) is a special case of the risk measure defined
in (4.7), we know that (4.7) is in general not a time-consistent risk measure.

Another class of dynamic risk measure arises from the conditional g-expectation
introduced by Peng [40] and which is elaborated further on in the dissertation.

For an extensive discussion on dynamic risk measures, we refer the reader to
Frittelli and Gianin [26].

All static risk measures discussed thus far have been based on this classical
mathematical expectation and all dynamic risk measures discussed thus far have
been based on this conditional mathematical expectation. However, none of the
risk measures mentioned have been ideal in measuring the riskiness of a financial
position. Consequently, in an attempt to find a better risk measure, Rosazza Gianin
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[30] defines a static risk measure in terms of the g-expectation and a dynamic risk
measure in terms of the conditional g-expectation.



Chapter 5

Risk measures via

g-expectations

In Chapter 4 we introduced the concept of static and dynamic risk measures, as
well as coherent and convex risk measures. Having also introduced the concept of
g-expectations, we can now define a risk measure in terms of the g-expectation. We
begin by analysing the properties positive homogeneity, subadditivity, convexity,
translation invariance and monotonicity with regards to g-expectations in Section
5.1. Following this, we define risk measures in terms of g-expectations.

5.1 Properties for g-expectations

The necessary and sufficient conditions for the properties positive homogeneity, sub-
additivity, convexity, translation invariance and monotonicity will be determined so
that the properties can be applied to g-expectations. The link between risk measures
and g-expectation may become clear, however will be explicitly stated in the next
section.

Recall that for any pair (y, z) ∈ R× Rd we set

Szy(g) :=
{
t ∈ [0, T ) : g(t, y, z) = lim

ε→0+

1
ε

[Yt(g, t+ ε, y + z · (Bt+ε −Bt))− y]
}
.

If g is independent of y, then for any z ∈ Rd, we set

Sz(g) :=
{
t ∈ [0, T ) : g(t, y, z) = lim

ε→0+

1
ε
Yt(g, t+ ε, z · (Bt+ε −Bt))

}
.

The results in this section are obtained under assumptions (A1) and (A3). The
results also hold true under the additional assumption of continuity, even though
this assumption is not necessary.

54
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5.1.1 Positive homogeneity for g-expectations

We begin with a theorem regarding the positive homogeneity for g-expectations.

Theorem 5.1. Let assumptions (A1), (A2) and (A3) hold for g, then the following
conditions are equivalent:

(i) Eg[ · ] is positively homogeneous;

(ii) Eg[ · |Ft] is positively homogeneous for any t ∈ [0, T ]; i.e. for all X ∈ L2(FT )
and α ≥ 0,

Eg[αX|Ft] = αEg[X|Ft];

(iii) g is positively homogeneous with respect to (y, z); i.e. for any y ∈ R, z ∈ Rd

and α ≥ 0,
g(t, αy, αz) = αg(t, y, z).

Proof. (iii)⇒(ii) For α = 0 the proof is trivial, we thus assume that α > 0. By
definition Eg[X|Ft] = Yt and Eg[αX|Ft] = Y ∗t where we have that (Yt, Zt) and
(Y ∗t , Z

∗
t ) are the respective solutions of

Yt = X +
∫ T

t
g(s, Ys, Zs)ds−

∫ T

t
ZsdBs, (5.1)

Y ∗t = αX +
∫ T

t
g(s, Y ∗s , Z

∗
s )ds−

∫ T

t
Z∗sdBs. (5.2)

Now g is positively homogeneous in (y, z), thus we have that g(t, αy, αz) =
αg(t, y, z) or equivalently, as α > 0, we can write αg(t, yα ,

z
α) = g(t, y, z). Thus (5.2)

can be rewritten as

Y ∗t = αX + α

∫ T

t
g(s,

Y ∗s
α
,
Z∗s
α

)ds−
∫ T

t
Z∗sdBs. (5.3)

Dividing by α > 0 yields

Y ∗t
α

= X +
∫ T

t
g(s,

Y ∗s
α
,
Z∗s
α

)ds−
∫ T

t

Z∗s
α
dBs. (5.4)

From (5.4) we notice that (Y
∗
t
α ,

Z∗t
α )t∈[0,T ] solves (5.1), however by Peng [40] we

know that the solution to (5.1) is unique. Thus it follows that for any t ∈ [0, T ]

Eg[αX|Ft] = Y ∗t = αYt = αEg[X|Ft]. (5.5)

(ii)⇒(i) is trivial.
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(i)⇒(iii) Suppose that (i) holds for Eg[ · ]. Let α > 0 and define a new function,
ḡα, such that for all (t, y, z) ∈ [0, T ]× R× Rd,

ḡα(t, y, z) := αg(t,
y

α
,
z

α
). (5.6)

It is clear that ḡα also satisfies assumptions (A1), (A2) and (A3). Now

(Yt(ḡα, T, αX), Zt(ḡα, T, αX))t∈[0,T ]

is the solution of

Yt = αX +
∫ T

t
ḡα(s, Ys, Zs)ds−

∫ T

t
ZsdBs (5.7)

=⇒ Yt = αX +
∫ T

t
αg(s,

Ys
α
,
Zs
α

)ds−
∫ T

t
ZsdBs. (5.8)

Also, we have that (Yt(g, T,X), Zt(g, T,X))t∈[0,T ] is the solution of

Yt = X +
∫ T

t
g(s, Ys, Zs)ds−

∫ T

t
ZsdBs (5.9)

=⇒ αYt = αX +
∫ T

t
αg(s,

αYs
α
,
αZs
α

)ds−
∫ T

t
αZsdBs. (5.10)

However, by Peng [40], we know that for any X ∈ L2(FT ), the solution of the BSDE
(5.8) is unique, and thus

(Yt(ḡα, T, αX), Zt(ḡα, T, αX))t∈[0,T ] = α(Yt(g, T,X), Zt(g, T,X))t∈[0,T ].

We therefore have that for any given α > 0 and for all X ∈ L2(FT )

Eḡα [αX] = αEg[X]. (5.11)

Combining this equality with (i), we get

αEḡα [X] = αEg[X]. (5.12)

Dividing by α > 0 gives
Eḡα [X] = Eg[X]. (5.13)

Then by Theorem 3.27 and by the representation lemma, we have that for any
(y, z) ∈ R× Rd and for any t ∈ Szy(ḡα) ∩ Szy(g) P-almost surely

ḡα(t, y, z) = g(t, y, z), (5.14)

where we know that
λ([0, T ]\(Szy(ḡα) ∩ Szy(g))) = 0, (5.15)
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and λ denotes the Lebesgue measure. It follows from (5.14) and (5.15) that

dP× dt a.s., ḡα(t, y, z) = g(t, y, z).

Since ḡα and g are both Lipschitz continuous with respect to (y, z), it follows that
for all y ∈ R and z ∈ Rd

dP× dt a.s., ḡα(t, y, z) = g(t, y, z).

Hence for any α > 0, we conclude that for all (y, z) ∈ R× Rd

ḡα = g, i.e. g(t, y, z) = αg(t,
y

α
,
z

α
), (5.16)

and (iii) follows.

5.1.2 Translation invariance for g-expectations

Theorem 5.2. Let assumptions (A1), (A2) and (A3) hold for g, then the following
conditions are equivalent:

(i) for all X ∈ L2(FT ) and c ∈ R, we have Eg[X + c] = Eg[X] + c;

(ii) for all X ∈ L2(FT ), c ∈ R and t ∈ [0, T ], we have Eg[X + c|Ft] = Eg[X|Ft] + c;

(iii) g is independent of y.

Proof. (iii)⇒(ii) This follows from Lemma 3.25.
(ii)⇒(i) is trivial.
(i)⇒(iii) Suppose that (i) holds. For any c ∈ R, we define a new generator such

that for all (t, y, z) ∈ [0, T ]× R× Rd

gc(t, y, z) := g(t, y − c, z).

It is clear that gc satisfies the assumptions (A1), (A2) and (A3). Now (Yt(gc, T,X+
c), Zt(gc, T,X + c))t∈[0,T ] is the solution of

Yt = X + c+
∫ T

t
gc(s, Ys, Zs)ds−

∫ T

t
ZsdBs (5.17)

=⇒ Yt − c = X +
∫ T

t
g(s, Ys − c, Zs)ds−

∫ T

t
ZsdBs. (5.18)

Also, we have that (Yt(g, T,X) + c, Zt(g, T,X))t∈[0,T ] is the solution of

Yt + c = X +
∫ T

t
g(s, Ys + c, Zs)ds−

∫ T

t
ZsdBs. (5.19)
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However, by Peng [40], we know that for any X ∈ L2(FT ), the solution of the BSDE
(5.18) is unique, and thus

(Yt(gc, T,X + c), Zt(gc, T,X + c))t∈[0,T ] = (Yt(g, T,X) + c, Zt(g, T,X))t∈[0,T ].

We consequently have for all X ∈ L2(FT )

Egc [X + c] = Y0(gc, T,X + c) = Y0(g, T,X) + c = Eg[X] + c.

Combining this equality with (i), we get

Egc [X + c] = Eg[X + c].

Therefore, we have for all η ∈ L2(FT )

Egc [η] = Eg[η].

Then by Theorem 3.27 and the representation lemma, we have for any (y, z) ∈ R×Rd

and for any t ∈ Szy(gc) ∩ Szy(g) that P-almost surely

gc(t, y, z) = g(t, y, z). (5.20)

Here we know that
λ([0, T ]\(Szy(gc) ∩ Szy(g))) = 0, (5.21)

where λ denotes the Lebesgue measure. It follows from (5.20) and (5.21) that

dP× dt a.s., gc(t, y, z) = g(t, y, z).

Since gc and g are both Lipschitz continuous with respect to (y, z), it follows that
for all y ∈ R and z ∈ Rd

dP× dt a.s., gc(t, y, z) = g(t, y, z).

That is for any given c ∈ R, we have gc = g, i.e. gc(t, y, z) = g(t, y− c, z) = g(t, y, z).
In particular this equation holds for c = y for any y ∈ R. Thus for any y ∈ R, and
for all z ∈ Rd we have

dP× dt a.s., gc(t, y, z) = g(t, y − y, z) = g(t, 0, z).

This shows that g is independent of y. and part (iii) follows.
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5.1.3 Convexity for g-expectations

Theorem 5.3. Let assumptions (A1), (A2) and (A3) hold for g, then the following
conditions are equivalent:

(i) Eg[ · ] is convex.

(ii) Eg[ · |Ft] is convex for all t ∈ [0, T ], i.e. for all X, η ∈ L2(FT ) and α ∈ [0, 1]

Eg[αX + (1− α)η|Ft] ≤ αEg[X|Ft] + (1− α)Eg[η|Ft].

(iii) g is independent of y and g is convex with respect to z, i.e. for any z1, z2 ∈ Rd

and α ∈ [0, 1]

g(t, αz1 + (1− α)z2) ≤ αg(t, z1) + (1− α)g(t, z2).

Proof. (iii)⇒(ii) This follows from the comparison theorem, Theorem 3.8.
(ii)⇒(i) is trivial.
(i)⇒(iii) Suppose that (i) holds. We first prove that (i) implies the translation

invariance property, i.e. given that for all X, η ∈ L2(FT ) and α ∈ [0, 1],

Eg[αX + (1− α)η] ≤ αEg[X] + (1− α)Eg[η], (5.22)

we want to prove that for any c ∈ R,

Eg[X + c] = Eg[X] + c. (5.23)

By (i) and by Proposition 3.13 (i), we have for all X ∈ L2(FT ), c ∈ R and
α ∈ [0, 1]

Eg[αX + (1− α)c] ≤ αEg[X] + (1− α)Eg[c]

= αEg[X] + (1− α)c.

Now we set α = (1 − 1
n) ∈ [0, 1], where n is any positive integer. Noting that if

c ∈ R, then nc ∈ R, we get that for all X ∈ L2(FT ) and c ∈ R

Eg[(1−
1
n

)X + c] = Eg[(1−
1
n

)X +
1
n

(nc)]

≤ (1− 1
n

)Eg[X] + c.

The operator Eg[ · ] is continuous in an L2 sense, and thus, taking the limit in L2 we
have

Eg[X + c] = lim
n→∞

Eg[(1−
1
n

)X + c]

≤ lim
n→∞

(1− 1
n

)Eg[X] + c

= Eg[X] + c.
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We thus get for all X ∈ L2(FT ) and c ∈ R

Eg[X + c] ≤ Eg[X] + c, (5.24)

giving
Eg[X] = Eg[X + c− c] ≤ Eg[X + c]− c. (5.25)

Equation (5.25) can be rewritten as

Eg[X] + c ≤ Eg[X + c]. (5.26)

From (5.24) and (5.26) we infer that for all X ∈ L2(FT ), c ∈ R

Eg[X] + c = Eg[X + c].

We have thus shown that the g-expectation Eg[ · ] satisfies the translation invariance
property. By Theorem 5.2 we can conclude that g is independent of y.

We now need to prove that for all t ∈ [0, T ], X, η ∈ L2(FT ) and α ∈ [0, 1]

Eg[αX + (1− α)η|Ft] ≤ αEg[X|Ft] + (1− α)Eg[η|Ft]. (5.27)

Consider the event

A := {Eg[αX + (1− α)η|Ft] > αEg[X|Ft] + (1− α)Eg[η|Ft]}.

Clearly A ∈ Ft. Now suppose that P(A) > 0. Then

1AEg[αX + (1− α)η|Ft]− 1A(αEg[X|Ft] + (1− α)Eg[η|Ft]) ≥ 0

and

P(1AEg[αX + (1− α)η|Ft]− 1A(αEg[X|Ft] + (1− α)Eg[η|Ft]) > 0) > 0.

Since A ∈ Ft, it is obvious that for all X ∈ L2(FT )

Eg[1AX|Ft] = 1AEg[X|Ft]. (5.28)

Now since g is independent of y and A ∈ Ft, we have by Proposition 3.13 (ii),
Lemma 3.25 and by Equality (5.28) respectively that

Eg[1A(αX + (1− α)η)− 1A(αEg[X|Ft] + (1− α)Eg[η|Ft])]

= Eg{Eg[1A(αX + (1− α)η)− 1A(αEg[X|Ft] + (1− α)Eg[η|Ft])|Ft]}

= Eg{Eg[1A(αX + (1− α)η)|Ft]− 1A(αEg[X|Ft] + (1− α)Eg[η|Ft])}

= Eg{1AEg[(αX + (1− α)η)|Ft]− 1A(αEg[X|Ft] + (1− α)Eg[η|Ft])}

> 0.
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On the other hand we have, using the fact that Eg[ · ] is convex, Proposition 3.13
(ii), Lemma 3.25 (noting that g is independent of y) and Equality (5.28) respectively,
that

Eg[1A(αX + (1− α)η)− 1A(αEg[X|Ft] + (1− α)Eg[η|Ft])]

= Eg[α(1AX − 1AEg[X|Ft]) + (1− α)(1Aη − 1AEg[η|Ft])]

≤ αEg[(1AX − 1AEg[X|Ft])] + (1− α)Eg[(1Aη − 1AEg[η|Ft])]

= αEg{Eg[(1AX − 1AEg[X|Ft])|Ft]}+ (1− α)Eg{Eg[(1Aη − 1AEg[η|Ft])Ft]}

= αEg{1AEg[X|Ft]− 1AEg[X|Ft]}+ (1− α)Eg{1AEg[η|Ft]− 1AEg[η|Ft]}

= 0 + 0

= 0.

This leads to a contradiction and thus we cannot have P(A) > 0, giving us
P(A) = 0. Consequently we have that Equation (5.27) holds.

For any z1, z2 ∈ Rd, α ∈ [0, 1], if t ∈ Sαz1+(1−α)z2(g)∩Sz1(g)∩Sz2(g), by Theorem
3.29 we deduce that P-almost surely we have

g(t, αz1 + (1− α)z2) ≤ αg(t, z1) + (1− α)g(t, z2).

For any z1, z2 ∈ Rd, α ∈ [0, 1], by the representation lemma we have that

λ([0, T ]\Sαz1+(1−α)z2(g) ∩ Sz1(g) ∩ Sz2(g)) = 0.

Thus for any z1, z2 ∈ Rd, α ∈ [0, 1], we have

P× dt a.s., g(t, αz1 + (1− α)z2) ≤ αg(t, z1) + (1− α)g(t, z2).

Thus (iii) holds, which completes the proof.

5.1.4 Subadditivity for g-expectations

Theorem 5.4. Let assumptions (A1), (A2) and (A3) hold for g, then the following
conditions are equivalent:

(i) Eg[ · ] is subadditive.

(ii) Eg[ · |Ft] is subadditive for all t ∈ [0, T ], i.e. for all X, η ∈ L2(FT )

Eg[X + η|Ft] ≤ Eg[X|Ft] + Eg[η|Ft].

(iii) g is independent of y and g is subadditive with respect to z, i.e. for any z1, z2 ∈
Rd

g(t, z1 + z2) ≤ g(t, z1) + g(t, z2).

Proof. As subadditivity follows directly from convexity and positive homogeneity
the proof of this theorem follows from Theorem 5.3 and Theorem 5.1.
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5.2 Risk measures using g-expectations

Let g satisfy assumptions (A1), (A2) and (A3) and let ρg : L2(FT ) → R and ρgt :
L2(FT ) → R. Let X ∈ L2(FT ). We define a static measure of risk in terms of the
g-expectation as

ρg(X) := Eg[−X], (5.29)

and, for all t ∈ [0, T ], a dynamic measure of risk in terms of the conditional g-
expectation as

ρgt (X) := Eg[−X|Ft]. (5.30)

By Proposition 3.10 (i) and (ii) respectively, the risk measure as described in
(5.29) satisfies Axiom 4.1 (a) positivity, (b) monotonicity and (f) constancy.

The following two propositions have been based on Rosazza Gianin [30].

Proposition 5.5. The risk measure ρg defined in (5.29) satisfies the following prop-
erties.

(i) Coherency: If g is positively homogeneous and subadditive in (y, z), then ρg is
a coherent risk measure satisfying Axiom 4.1 (h) lower semi-continuity.

(ii) Convexity: If g is convex in (y, z), then ρg is a convex risk measure satisfying
Axiom 4.1 (f) constancy.

Proof. As (i) is a particular case of (ii), we first prove case (ii) and case (i) follows.
(ii) By Theorem 5.2 we have that ρg satisfies translation invariance. Positivity,

monotonicity and constancy follow directly from Proposition 3.10 (i) and (ii) respec-
tively. Hence ρg is a monetary risk measure. Now suppose g is convex in (y, z). By
the remark following Lemma 3.26, we know that if g satisfies convexity, then g does
not depend on y. Hence by Theorem 5.3, we know that Eg[ · ] is convex and thus ρg

satisfies convexity. We still need the lower semi-continuity of ρg and ρg(0) = 0. The
latter follows from the constancy of ρg. Now by Delbaen [15] and Rosazza Gianin
[30] we have that, assuming translation invariance, ρg is lower semi-continuous if and
only if the acceptance set A = {X ∈ L2(FT ) | ρ(X) ≤ 0} is closed in L2. The closure
of the set A follows directly from Proposition 3.10 (iii) and from the definition of
ρ(X). We know that ρ(X) = Eg[−X] and Proposition 3.10 (iii) tells us that

|ρ(X1)− ρ(X2)|2 ≤ CE[|X1 −X2|2].

Hence A is a closed set. Consequently we have that ρg is lower semi-continuous
which completes the proof.

(i) Suppose that g is positively homogeneous and subadditive in (y, z). Thus g
is also convex in (y, z) and the reasoning of part (ii) applies. Hence we only need to
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verify that ρg satisfies subadditivity and positive homogeneity. These two properties
follow from Theorems 5.4 and 5.1 respectively and hence the result is proved.

In the dynamic setting, we have the following.

Proposition 5.6. The dynamic risk measure (ρgt )t∈[0,T ] defined in (5.30) satisfies
the following properties.

(i) Continuous-time recursivity: For 0 ≤ s ≤ t ≤ T and for all X ∈ L2(FT ),

ρgs(X) = ρgs[−ρ
g
t (X)]. (5.31)

(ii) Let X,Y ∈ L2(FT ). If for some t ∈ (0, T ], ρgt (X) ≤ ρgt (Y ), then for any
s ∈ [0, t] we have ρgs(X) ≤ ρgs(Y ).

(iii) Coherency: If g is positively homogeneous and subadditive in (y, z), then we
have that (ρgt )t∈[0,T ] is a dynamic coherent and time-consistent risk measure.

(iv) Convexity: If g is convex in (y, z), then we have that (ρgt )t∈[0,T ] is a dynamic
convex and time-consistent risk measure satisfying Axiom 4.16 (f) dynamic
constancy.

In (i) and (ii) above, we can replace deterministic times s and t by stopping
times σ and τ with 0 ≤ σ ≤ τ ≤ T .

Proof. (i) Continuous-time recursivity follows from the definition of ρgt and from
Proposition 3.13 (ii). Let 0 ≤ s ≤ t ≤ T , then

ρgs(X) = Eg[−X|Fs]

= Eg[Eg[−X|Ft]|Fs]

= Eg[ρgt (X)|Fs]

= ρgs(−ρ
g
t (X)).

(ii) Suppose ρgt (X) ≤ ρgt (Y ) for some t ∈ (0, T ]. Thus Eg[−X|Ft] ≤ Eg[−Y |Ft].
Using Proposition 3.13 (ii), we get that for any s ∈ [0, t],

ρgs(X) = Eg[Eg[−X|Ft]|Fs] ≤ Eg[Eg[−Y |Ft]|Fs] = ρgs(Y ). (5.32)

In the proofs of (i) and (ii), the same reasoning applies to stopping times σ and τ .
As (iii) is a particular case of (iv), we first prove case (iv) and case (iii) follows.
(iv) The proof follows similarly to the proof of Proposition 5.5. Dynamic con-

stancy, dynamic positivity and dynamic monotonicity follow from Proposition 3.13
(i) and (iii) respectively. Since g is independent of y, dynamic translability follows
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from Lemma 3.25. Hence for each t, ρg is a monetary risk measure. Now suppose g is
convex in (y, z). By the remark following Lemma 3.26, we know that if g satisfies con-
vexity, then g does not depend on y. Hence by Theorem 5.3, we know that Eg[ · |Ft]
is convex and thus ρgt satisfies convexity. Let t ∈ [0, T ], X ∈ L2(FT ) and A ∈ Ft.
Note that since F0 is the trivial filtration, we have that ρg0(X) = Eg[X|F0] = Eg[X].
The time-consistency follows from the definition of ρgt , from Proposition 3.13 (ii)
and using the fact that A is Ft-measurable:

ρg0(X1A) = Eg[−X1A]

= Eg[Eg[−X1A|Ft]]

= ρg0(−Eg[−X1A|Ft])

= ρg0(−Eg[−X|Ft]1A)

= ρg0[−ρgt (X)1A].

(iii) The proof follows identically to that of Proposition 5.5 (i). Suppose that g
is positively homogeneous and subadditive in (y, z). Thus g is also convex in (y, z)
and the reasoning of part (iv) can be applied. We hence only need to verify that ρgt
satisfies subadditivity and positive homogeneity. These two properties follow from
Theorems 5.4 and 5.1 respectively and hence the result is proved.

Note the connection between the recursivity of the dynamic risk measure and
the time-consistency condition of a dynamic risk measure.

We have seen by the previous proposition, that a conditional g-expectation can
induce a dynamic, time-consistent risk measure. The aim of this next section is to
find the conditions under which a dynamic time-consistent risk measure is induced
by a conditional g-expectation. The following section has been taken from Rosazza
Gianin [30] and Coquet et al. [12].

5.3 Risk measures induced by g-expectations

Before stating and proving the main proposition of this section, the concept of Eµ-
domination needs to be defined. Recall that when g(t, y, z) = µ|z| where µ > 0, we
will denote Eg[ · ] by Eµ[ · ] and Eg[ · |Ft] by Eµ[ · |Ft]. Let X ∈ L2(FT ). We denote the
corresponding static risk measure by ρµ and the dynamic risk measure by (ρµt )t∈[0,T ]

and define them by
ρµ(X) := Eµ[−X] (5.33)

and for all t ∈ [0, T ]
ρµt (X) := Eµ[−X|Ft]. (5.34)
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Also when g(t, y, z) = −µ|z| where µ > 0, we will denote Eg[ · ] by E−µ[ · ] and
Eg[ · |Ft] by E−µ[ · |Ft].

Definition 5.7. An (Ft)t∈[0,T ]-consistent expectation, E [ · ], is said

(i) to be Eµ-dominated, where µ > 0, if for all X,Y ∈ L2(FT ), we have

E [X + Y ]− E [X] ≤ Eµ[Y ];

(ii) to satisfy the translability condition if for any X ∈ L2(FT ) and η ∈ L2(Ft), we
have

E [X + η | Ft] = E [X | Ft] + η.

We say that the risk measure, ρ, is Eµ-dominated if for any X,Y ∈ L2(FT ) we
have

ρ(X + Y )− ρ(X) ≤ ρµ(Y ) = Eµ[−Y ].

The property of Eµ-domination is the generalisation of the ‘domination’ true for
any static convex risk measure. Using the representation of a convex risk measure
(4.4), properties of the supremum and the linearity of the classical expectation, E[ · ],
we know that

ρ(X + Y )− ρ(X) = sup
Q∈P
{EQ[−(X + Y )]− F (Q)} − sup

Q∈P
{EQ[−X]− F (Q)}

≤ sup
Q∈P
{EQ[−X − Y ]− EQ[−X]}

= sup
Q∈P
{EQ[−Y ]}

= ρ̂(Y )

which is a coherent risk measure by Theorem 4.8. Hence we have that any convex
risk measure, ρ, is dominated by a suitable coherent risk measure, ρ̂.

The following lemma from Rosazza Gianin [30] provides necessary and sufficient
conditions for Eµ-domination, as a consequence of the representation of static co-
herent and convex risk measures. Note that g(z) = µ|z| is convex when µ > 0 and
concave when µ < 0. Hence Eµ[X] is convex when µ > 0 and concave when µ < 0.

Lemma 5.8. Let ρ0 be a static coherent risk measure satisfying lower semi-continuity
and let ρµ(X) = Eµ[−X] for some µ > 0. Denote by P0 and Pµ the convex sets in
the representation of ρ0 and ρµ respectively. The risk measure ρ0 is Eµ-dominated
for some µ > 0 if and only if P0 ⊆ Pµ.
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Proof. Suppose that ρ0 is Eµ-dominated. By the representation of a static coherent
risk measure (4.3), we have that

ρ0(X) = sup
Q∈P0

{EQ[−X]}.

Also, since ρµ(X) = Eµ[−X] is convex and consequently a convex risk measure, we
have by the representation of a static convex risk measure (4.4) that

ρµ(X) = sup
Q∈Pµ

{EQ[−X]− F (Q)}. (5.35)

Let Q ∈ P0 be arbitrary. Then we know by the definition of supremum that EQ[X] ≤
ρ0(−X). By the dominance of ρ0, we also know that for any X ∈ L2(FT )

ρ(0−X)− ρ(0) ≤ ρµ(−X) = Eµ[X],

where ρ(0) = 0. Combining these inequalities, we have

EQ[X] ≤ ρ0(−X) ≤ ρµ(−X) = Eµ(X).

Hence in the representation of ρµ, (5.35), we have that F (Q) = 0 and consequently
Q ∈ Pµ, giving us P0 ⊆ Pµ.

Conversely, let us suppose that P0 ⊆ Pµ. Also let X,Y ∈ L2(FT ). Then, using
the fact that ρ0 is a static coherent risk measure and hence subadditive, from the
representation of ρ0 and using P0 ⊆ Pµ, we have

ρ0(X + Y )− ρ0(X) ≤ ρ0(Y )

= sup
Q∈P0

{EQ[−Y ]}

≤ sup
Q∈Pµ

{EQ[−Y ]}

= Eµ[−Y ]

and hence ρ0 is Eµ-dominated for some µ > 0.

The following theorem from Coquet et al. [12] gives the conditions under which
a (Ft)t∈[0,T ]-consistent expectation is induced by a g-expectation. The result is
needed for the main proposition of this section and will be stated without proof.
The interested reader can refer to Coquet et al. [12] for the proof.

Theorem 5.9. Let E : L2(FT )→ R be an (Ft)t∈[0,T ]-consistent expectation. If E [ · ]
is Eµ-dominated for some µ > 0 and if it satisfies the translability condition, then
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there exists a unique function g, independent of y, i.e. g = g(t, z) satisfying the usual
assumptions (A1), (A2) and (A3), such that for all X ∈ L2(FT )

E [X] = Eg[X]

and E [X|Ft] = Eg[X|Ft].

Moreover we have that |g(t, z)| ≤ µ|z| for all t ∈ [0, T ].

Under the further assumption of continuity on the function g, we have that the
converse implication of Theorem 5.9 holds too. This is stated and proved next.

Lemma 5.10. Let g satisfy the usual assumptions (A1), (A2) and (A3), be contin-
uous in t, independent of y and let |g(t, z)| ≤ µ|z| for some µ > 0. Then Eg[ · ] is
an (Ft)t∈[0,T ]-consistent expectation satisfying Eµ-domination and the translability
condition.

Proof. (Ft)t∈[0,T ]-consistent expectation: By Lemma 3.15, Eg[ · ] is a (Ft)t∈[0,T ]-
consistent expectation.
Eµ-domination: By hypothesis, g is continuous in t and independent of y and

hence it is progressively measurable. Moreover we know that |g(t, z)| ≤ µ|z| or
equivalently that −µ|z| ≤ g(t, z) ≤ µ|z|. By the definition of a g-expectation, we
have that

Eg[X + Y ] = X + Y +
∫ T

0
g(s, Zs)ds−

∫ T

0
ZsdBs (5.36)

Eg[X] = X +
∫ T

0
g(s, Ẑs)ds−

∫ T

0
ẐsdBs. (5.37)

Now set Z∗t := Zt − Ẑt and gẐ(t, Z∗t ) := g(t, Zt) − g(t, Ẑt) for all t ∈ [0, T ]. Let
X ∈ L2(FT ). Subtracting (5.37) from (5.36), gives

Eg[X + Y ]− Eg[X] = Y +
∫ T

0
[g(s, Zs)− g(s, Ẑs)]ds−

∫ T

0
[Zs − Ẑs]dBs

= Y +
∫ T

0
gẐ(s, Z∗s )ds−

∫ T

0
Z∗sdBs. (5.38)

By hypothesis, we have that g(t, Zt) ≤ µ|Zt| and that −µ|Ẑt| ≤ g(t, Ẑt), giving

gẐ(t, Z∗t ) = g(t, Zt)− g(t, Ẑt) ≤ µ(|Zt| − |Ẑt|) ≤ µ|Zt − Ẑt| = µ|Z∗t |.

Clearly gẐ satisfies the usual assumptions (A1), (A2) and (A3). Now using the
comparison theorem, Theorem 3.8 and Equation (5.38), we have that for all Y ∈
L2(FT )

Eg[X + Y ]− Eg[X] ≤ Eµ(Y ). (5.39)
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Since X is arbitrary and the bound in (5.39) is independent of X, we have the
Eµ-domination of Eg[ · ].

Translability: Since g is independent of y, we know by Theorem 5.2 that E [ · |Ft]
satisifes the translability condition.

This leads us to the main proposition of this section, giving the conditions un-
der which a dynamic time-consistent risk measure is induced by a conditional g-
expectation.

Proposition 5.11. Let (ρt)t∈[0,T ] be a dynamic coherent time-consistent risk mea-
sure (resp. convex). Now if E [X] = ρ0(−X) is strictly monotone and Eµ-dominated
for some µ > 0, then there exists a unique function g, independent of y, satisfying
the usual assumptions (A1), (A2) and (A3) and with |g(t, z)| ≤ µ|z|, such that for
all X ∈ L2(FT )

ρ0(X) = Eg[−X] (5.40)

and ρt(X) = Eg[−X|Ft]. (5.41)

If in addition g is continuous in t for all z ∈ Rd, then g is also positively homogeneous
and subadditive (resp. convex) in z.

The proof of this proposition relies heavily on Theorem 5.9. Having stated all
the results needed for the proof of Proposition 5.11, we can end this section with
the proof.

Proof. Set E [X] = ρ0(−X). We want to apply Theorem 5.9 to E [ · ]. To do so, we
need to check that E [ · ] satisfies all the hypothesis of Theorem 5.9.

Nonlinear expectation: For E [ · ] to be a nonlinear expectation, it needs to satisfy
constancy and strict monotonicity. The latter is assumed by hypothesis. It is easy
to verify that for both the coherent and the convex case E [ · ] satisfies constancy.
Thus it follows that E [ · ] is a nonlinear expectation.

(Ft)t∈[0,T ]-consistent expectation: By the time-consistency of the risk measure,
we have that for all t ∈ [0, T ], X ∈ L2(FT ) and A ∈ Ft,

ρ0(−X1A) = ρ0[−ρt(−X)1A]

=⇒ E [X1A] = E [ρt(−X)1A].

Thus for each X ∈ L2(FT ) and for each t ∈ [0, T ] there exists a random variable
η ∈ L2(Ft), such that for all A ∈ Ft

E [1AX] = E [1Aη].



5.4. FINANCIAL INTERPRETATION OF G IN RISK MEASURES 69

More precisely η = E [X|Ft] = ρt(−X) and consequently we have that E [ · ] is a
(Ft)t∈[0,T ]-consistent expectation.
Eµ-domination and translability: The Eµ-domination is assumed by hypothesis

and the translability condition of E [ · ] is a consequence of the dynamic translability
of the risk measure (ρt)t∈[0,T ].

Thus E [ · ] satisfies all the hypothesis of Theorem 5.9 and the first part follows
i.e.

ρ0(X) = Eg[−X]

and ρt(X) = Eg[−X|Ft].

Now we furthermore assume that g is continuous in t for all z ∈ Rd. From Equa-
tions (5.40) and (5.41), and by the dynamic coherency (resp. convexity) of (ρt)t∈[0,T ],
we have that Eg[ · ] and Eg[ · |Ft] are positively homogeneous and subadditive (resp.
convex). By Theorem 5.1 and Theorem 5.4 (resp. Theorem 5.3), we have that g is
also positively homogeneous and subadditive (resp. convex) in z. This completes
the proof.

We lastly look at the financial interpretation of the function g in risk measures.
The information in this next section has been taken from Rosazza Gianin [30].

5.4 Financial interpretation of g in risk measures

The choice of the function g is important when defining risk measures in terms of
g-expectations. The construction of the risk measure depends on the choice of g and
thus the conservativeness of the risk measures is largely dependent on this choice.
Clearly the preference of the investor also plays an important role in determining
what function to use for g.

From Property 3.10 (ii) and Property 3.13 (iii), we recall the monotonicity of
g-expectations and of conditional g-expectations. Thus g-expectation is ‘increasing
with respect to g’. This intuitively tells us that the bigger the function g is, the more
conservative the corresponding static risk measure ρg and the corresponding dynamic
risk measure ρgt are. Thus if we consider two functions, g and ĝ with g ≤ ĝ, and the
respective risk measures constructed from the g-expectation, ρg and ρĝ, then, if a
financial position X is ρĝ-acceptable, it is also ρg-acceptable. In contrast, if a risky
position X is not ρg-acceptable, it is also not ρĝ-acceptable. A minimum amount of
additional cash ρĝ(X) needs to be added to the position to make it ρĝ-acceptable.



Chapter 6

Choquet expectation

Many uncertain mathematical phenomena cannot be explained by the linear, clas-
sical mathematical expectation. In an attempt to deal with these phenomena, Cho-
quet [8] extended the idea of a probability measure to a nonlinear probability mea-
sure, also known as a capacity. He consequently defined the nonlinear Choquet
expectation, also known as the Choquet integral. The Choquet integral is a non-
linear generalisation of the Lebesgue integral. It has several properties that allow it
to be suitable for pricing insurance contracts or financial assets. Choquet pricing has
recently been introduced as an alternative to traditional pricing both in insurance
and in finance. For more information on this see Wang [50] and Chateauneuf [4] re-
spectively. Choquet expectations have been very useful in economics, mathematics,
finance and physics, however defining conditional Choquet expectations has been an
issue in research. In this section we define the concept of a capacity and of Choquet
expectation and state some properties of the Choquet integral.

The work in this chapter is based on Chen et al. [5]. Definitions, propositions
and proofs have been taken from Chen et al. [5] and from Offwood [37]. Section 6.1
defines the Choquet integral and gives general properties of the Choquet expectation.
We also show that the classical mathematical expectation is a special case of the
Choquet expectation. Section 6.2 links this nonlinear Choquet expectation to Peng’s
g-expectation.

6.1 Choquet integral

We again consider the probability space (Ω,F ,P).

Definition 6.1. A set function V : F → [0, 1] is called a capacity if

(i) V (∅) = 0, V (Ω) = 1, and
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(ii) if A,B ∈ F and A ⊆ B, then V (A) ≤ V (B).

Noticeably all probability measures are capacities. Also, if we consider a non-
decreasing function h : [0, 1]→ [0, 1] with h(0) = 0 and h(1) = 1, and a probability
measure P, then we can easily verify that V = h ◦ P is a capacity. Clearly V : F →
[0, 1] and

(i) V (∅) = h ◦ P(∅) = h(0) = 0, V (Ω) = h ◦ P(Ω) = h(1) = 1;

(ii) if A,B ∈ F and A ⊆ B, then V (A) = h◦P(A) ≤ h◦P(B) = V (B). This follows
from the definition of a probability measure and since h is a non-decreasing
function.

The function h is called a distortion function or a distortion operator. Let
Fξ(x) = P(ξ ≤ x) be the cumulative distribution function of the random vari-
able ξ on the probability space P. The distortion function h transforms the original
probability distribution function Fξ into a new distribution function h(Fξ).

Recall that for any probability measure P and A,B ∈ F , we know that

P(A ∪B) + P(A ∩B) = P(A) + P(B).

Following on from this relationship, we can define a concave set function.

Definition 6.2. A set function V : F → [0, 1] is said to be concave if for all A,B ∈ F
we have

V (A ∪B) + V (A ∩B) ≤ V (A) + V (B).

Definition 6.3. Let V be a capacity and let ξ ∈ L2(FT ). We define the Choquet
expectation of ξ with respect to the capacity V , denoted CV (ξ), by

CV (ξ) :=
∫ 0

−∞
(V (ξ ≥ t)− 1) dt+

∫ ∞
0

V (ξ ≥ t) dt. (6.1)

Definition 6.4. Random variables ξ and η ∈ L2(FT ) are said to be comonotonic if

[ξ(ω)− ξ(ω′)][η(ω)− η(ω′)] ≥ 0 for all ω, ω′ ∈ Ω. (6.2)

The following lemma has been taken from Parker [39]. The proofs are a direct
application of the definition of comonotonicity, and will not be included.

Lemma 6.5.

(a) Any function f and any constant function are comonotonic.

(b) If f and g are comonotonic, then so are αf and g for all α > 0.
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(c) If f and h are comonotonic and g and h are comonotonic, then f + g and h are
comonotonic.

(d) If f ,g and h are pairwise comonotonic, then max{f, g} and h are comonotonic,
as are min{f, g} and h.

(e) Let A,B ∈ Ω. Then 1A and 1B are comonotonic if and only if A ⊆ B or B ⊆ A.

(f) Comonotonicity is not transitive as can be seen by considering the indicator
functions of subsets of Ω.

Definition 6.6. A real function F is said to be comonotonic additive if for any
comonotonic random variables ξ and η ∈ L2(FT ) we have

F (ξ + η) = F (ξ) + F (η). (6.3)

For a function to be represented by a Choquet expectation, Dellacherie [16]
proved that comonotonic additivity is a necessary condition.

The Choquet expectation also satisfies certain properties, which will be listed
below.

Proposition 6.7. The Choquet expectation with respect to the capacity V has the
following properties:

(a) Monotonicity : For all ξ, η ∈ L2(FT ) with ξ ≥ η, we have CV (ξ) ≥ CV (η).

(b) Positive Homogeneity : For all λ ≥ 0 and ξ ∈ L2(FT ), we have CV (λξ) =
λCV (ξ).

(c) Translation Invariance : For all ξ ∈ L2(FT ) and α ∈ R, we have CV (ξ+α) =
CV (ξ) + α.

(d) Subadditivity : For all ξ, η ∈ L2(FT ), we have CV (ξ + η) ≤ CV (ξ) + CV (η)
if and only if V is concave.

Remark 6.8. Note that for A ∈ FT we have CV (1A) = V (A). For more information
on this, and on any of the other properties of the Choquet integral, see Denneberg
[17].

From the properties in Proposition 6.7, it is clear that ρ(X) = CV (−X) defines
a coherent risk measure if and only if the capacity V is concave.

As mentioned before, the Choquet expectation is an extension of the classical,
linear expectation, E[ · ]. This can be shown by the following. Again let Fξ be
the cumulative distribution function of a random variable ξ with respect to the
probability measure P, i.e. Fξ(x) = P(ξ ≤ x).
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Proposition 6.9. The expected value of ξ can be represented as

E[ξ] =
∫ 0

−∞
(P(ξ ≥ t)− 1)dt+

∫ ∞
0

P(ξ ≥ t)dt. (6.4)

Proof. Firstly, let ξ ≥ 0. Then ξ can be represented by ξ =
∫∞

0 1{ξ>t}dt. Using
Fubini’s theorem to change the order of integration, we have

E[ξ] =
∫ ∞

0
E[1{ξ>t}]dt

=
∫ ∞

0
P(ξ ≥ t)dt.

Next, let ξ ≤ 0. In this case, ξ can be written as ξ =
∫ 0
−∞ −1{ξ<t}dt. Then

E[ξ] =
∫ 0

−∞
−E[1{ξ<t}]dt

= −
∫ 0

−∞
P(ξ < t)dt

= −
∫ 0

−∞
(1− P(ξ ≥ t))dt

=
∫ 0

−∞
(P(ξ ≥ t)− 1)dt.

As ξ = ξ+ + ξ−, the result follows.

This representation implies the relationship between the linear mathematical
expectation E[ · ] and the probability measure P. When Choquet integrals are con-
cerned, we are no longer working in a linear framework. However, we can clearly
see the resemblence between the classical mathematical expectation, represented by
(6.4) and the Choquet expectation, as seen in Equation (6.1). This representation
shows that any linear mathematical expectation can be written as a Choquet ex-
pectation. The Choquet integral is thus the natural extension of the mathematical
expectation in the nonlinear framework.

Alternatively, Proposition 6.9 can be restated in terms of the cumulative distri-
bution function of ξ.

Proposition 6.10. The expected value of the random variable ξ can be represented
as

E[ξ] = −
∫ 0

−∞
Fξ(t)dt+

∫ ∞
0

(1− Fξ(t))dt. (6.5)
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6.2 Linking Choquet expectation and g-expectation

Having defined Peng’s g-expectation in Chapter 3 and the Choquet expectation, a
natural question that arises, is what the relationship between these two expectations
is. Do there exist conditions under which these two definitions coincide? Chen et
al. [5] proved a necessary and sufficient condition to answer this question in the one-
dimensional Brownian motion case. It turns out that the classical, linear expectation
is the only expectation that falls within both definitions.

We note that Peng’s g-expectation is defined only in a BSDE framework. Cho-
quet expectations are defined in a more general setting. Consequently, to explore
the relationship between the two, we make suitable restrictions to the Choquet ex-
pectations. More precisely, we restrict the Choquet expectations to the domain
L2(Ω,FT ,P).

This section deals explicitly with the one-dimensional Brownian motion case. We
thus assume, using our previous notation, that d = 1 and let y and z ∈ R. Before
we continue, the concept of g-probability needs to be defined.

Definition 6.11. Let A ∈ FT . Define the g-probability of A by

Pg(A) = Eg[1A]. (6.6)

Clearly Pg( · ) is a capacity.
The main result of this section which is taken from Chen et al. [5] can now be

stated. The proof of this theorem, however, relies on several lemmas. We first state
and prove these lemmas before proving the following main result.

Theorem 6.12. Suppose g satisfies assumptions (A1), (A2) and (A3). Then there
exists a Choquet expectation, whose restriction to the domain L2(Ω,FT ,P) is equal
to a g-expectation if and only if g does not depend on y and is linear in z, i.e. there
exists a continuous function υt such that

g(t, y, z) = υtz. (6.7)

We show that if Eg[ · ] is a Choquet expectation on the set of random variables of
the form y+ zBT , then g is of the form g(t, z) = µ(t)|z|+υtz, where µ(t) and υt are
continuous functions. The first point in the following lemma shows the uniqueness
of a capacity. We also note that in the proofs of Lemma 6.13 (ii) and Theorem 6.12
we only use random variables of the form y + zBT and 1BT∈(a,b). Hence Lemma
6.13 (ii) and Theorem 6.12 actually state that if and only if g is linear in z, then
the g-expectation is a Choquet expectation on the set of all random variables of the
form f(BT ) ∈ L(FT ).
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Lemma 6.13. If there exists a capacity, V , such that the associated Choquet expec-
tation on L2(Ω,FT ,P) is equal to the g-expectation, then

(i) V (A) = Pg(A) for all A ∈ FT .

(ii) There exist two continuous functions µ(t) and υt on [0, T ] such that g is of the
form

g(t, z) = µ(t)|z|+ υtz.

Proof. (i) Let ξ ∈ L2(FT ). Also let CV (ξ) be the Choquet expectation of ξ with
respect to the capacity V . By hypothesis, we have that for all ξ ∈ L2(FT )

Eg[ξ] = CV (ξ). (6.8)

If we choose ξ = 1A where A ∈ FT , then we have Eg[1A] = CV (1A). By the definition
of Choquet expectation we get CV (1A) = V (A). Combining these two equations,
we have that V (A) = CV (1A) = Eg[1A] = Pg(A), where the third equality follows
from the definition of the g-probability.

(ii) By hypothesis, Eg[ · ] is a Choquet expectation. Hence, by Dellacherie [16],
Eg[ · ] is comonotonic additive, i.e. for comonotonic random variables ξ, η ∈ L2(FT )
we have

Eg[ξ + η] = Eg[ξ] + Eg[η]. (6.9)

Choose constants (t, y1, z1), (t, y2, z2) ∈ [0, T ] × R2 such that z1z2 > 0. Denote
ξ = y1 +z1(Bτ −Bt) and η = y2 +z2(Bτ −Bt) for τ ∈ [t, T ]. Now clearly ξ and η are
independent of Ft and we can show that ξ and η are comonotonic random variables.
Let ω, ω′ ∈ Ω. Then

[ξ(ω)− ξ(ω′)][η(ω)− η(ω′)] = z1z2[Bτ (ω)−Bt(ω) +Bτ (ω′)−Bt(ω′)]2

≥ 0.

Note that g satisfies assumptions (A1) and (A3) and is deterministic. Also yi, zi, i =
1, 2 are constants. Applying Proposition 3.14 we have

Eg[ξ|Ft] = Eg[ξ], Eg[η|Ft] = Eg[η], Eg[ξ + η|Ft] = Eg[ξ + η]. (6.10)

Combining this with Equation (6.9) gives

Eg[ξ + η|Ft] = Eg[ξ|Ft] + Eg[η|Ft],

and consequently

Eg[ξ + η|Ft]− E[ξ + η|Ft]
τ − t

=
Eg[ξ|Ft]− E[ξ|Ft]

τ − t
− Eg[η|Ft]− E[η|Ft]

τ − t
.
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Let τ → t on both sides and apply Lemma 3.21, noting the alternate formulation,
to get that for all z1z2 ≥ 0, y1, y2 ∈ R

g(t, y1 + y2, z1 + z2) = g(t, y1, z1) + g(t, y2, z2). (6.11)

This implies that g is linear with respect to y in R and z in R+ (or R−). Applying
Equation (6.11) repeatedly gives

g(t, y, z) = g(t, y + 0, z1{z≥0} + z1{z≤0})

= g(t, y, z1{z≥0}) + g(t, 0, z1{z≤0})

= g(t, y + 0, 0 + z1{z≥0}) + g(t, 0,−(−z)1{z≤0})

= g(t, y, 0) + g(t, 0, z1{z≥0}) + g(t, 0,−(−z)1{z≤0})

= g(t, 0, 1)z1{z≥0} − g(t, 0,−1)z1{z≤0}

= g(t, 0, 1)z+ + g(t, 0,−1)(−z)+

= g(t, 0, 1)
|z|+ z

2
+ g(t, 0,−1)

|z| − z
2

=
g(t, 0, 1) + g(t, 0,−1)

2
|z|+ g(t, 0, 1) + g(t, 0,−1)

2
z.

Note that g(t, y, 0) = 0. Also the second equality follows since z1{z≥0}.z1{z≤0} = 0.
Setting

µ(t) =
g(t, 0, 1) + g(t, 0,−1)

2
and υt =

g(t, 0, 1) + g(t, 0,−1)
2

completes the proof.

We next need to show that for t ∈ [0, T ], µ(t) = 0. To prove this result we
require additional lemmas. The following lemma, which is a special case of the
comonotonic theorem in Chen, Kulperger and Wei [6], will be stated without proof.
The interested reader can refer to Chen et al. [5] for a sketch of the proof.

Lemma 6.14. Suppose Φ is a function such that Φ(BT ) ∈ L2(FT ). Let (Yt, Zt) be
the solution to

Yt = Φ(BT ) +
∫ T

t
µ(s)|Zs|ds−

∫ T

t
ZsdBs,

where µ(t) is a continuous function on [0, T ]. Then

(i) if Φ is increasing, then Zt ≥ 0 a.e. for all t ∈ [0, T ], and

(ii) if Φ is decreasing, then Zt ≤ 0 a.e. for all t ∈ [0, T ].

Lemma 6.15. Let µ(t) be a continuous function on [0, T ], ξ ∈ L2(FT ) and let
(Yt, Zt) be the solution to

Yt = ξ +
∫ T

t
µ(s)|Zs|ds−

∫ T

t
ZsdBs.

Then the following holds.
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(i) If ξ = 1{BT≥1}, then Zt > 0 for all t ∈ [0, T ).

(ii) If ξ = Φ(BT ), where Φ is a bounded function with strictly positive derivative
Φ′, then Zt > 0 for all t ∈ [0, T ).

(iii) If ξ = 1{2≥BT≥1}, then P × λ({(ω, t) : Zt(ω) < 0}) > 0, where λ denotes the
Lebesgue measure on [0, T ), and P × λ denotes the product of the probability
space P and the Lebesgue measure λ.

Proof. (i) Since the indicator function 1{x≥1} is increasing, we can apply Lemma
6.14 (i) and have that Zt ≥ 0 a.e. t ∈ [0, T ]. This gives us that |Zt| = Zt. We still
need to show that the strict inequality holds.

The BSDE

Yt = 1{BT≥1} +
∫ T

t
µ(s)|Zs|ds−

∫ T

t
ZsdBs,

is actually a linear BSDE in this case since we have that

Yt = 1{BT≥1} +
∫ T

t
µ(s)Zsds−

∫ T

t
ZsdBs.

Let

B̄t = Bt −
∫ t

0
µ(s)ds, (6.12)

giving us

Yt = 1{BT≥1} −
∫ T

t
ZsdB̄s. (6.13)

Consider
dQ
dP

= exp
[
−1

2

∫ T

0
µ2(s)ds+

∫ T

0
µ(s)dBs

]
(6.14)

and define a probability measure Q by

Q(A) =
∫
A

dQ
dP

(ω)dP(ω) for all A ∈ F . (6.15)

Using Girsanov’s theorem, we know that (B̄t)t∈[0,T ] is a Brownian motion under the
probability measure Q.

Taking the conditional expectation EQ[ · |Ft] on both sides of Equation (6.13),
gives us

Yt = EQ[1{BT≥1}|Ft]

= EQ[1{B̄T≥1−
∫ T
0 µ(s)ds}|Ft]

= EQ[1{B̄T−B̄t≥1−
∫ T
0 µ(s)ds−B̄t}|Ft]

= EQ[1{B̄T−B̄t≥1−
∫ T
0 µ(s)ds−B̄t}|σ(Bt)]

= EQ[1{B̄T−B̄t≥1−
∫ T
0 µ(s)ds−B̄t}|σ(B̄t)].
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For the second equality, we use Equation (6.12). Also we know that σ{Bs; s ≤ t} =
σ{B̄s; s ≤ t} since µ(t) is a real function in t.

Since B̄T − B̄t and B̄t are independent, we know that 1{B̄T−B̄t≥1−
∫ T
0 µ(s)ds−B̄t}

is independent of σ(B̄t) and hence

Yt = EQ[1{B̄T−B̄t≥1−
∫ T
0 µ(s)ds−k}]

∣∣
k=B̄t

.

But we know that B̄T − B̄t ∼ N (0, T − t), and hence

Yt =
∫ ∞

1−
∫ T
0 µ(s)ds−k

φ(x)dx
∣∣∣
k=B̄t

,

where φ(x) is the density of the normal distribution N (0, T − t), i.e.

φ(x) =
1√

2π(T − t)
exp

[
− x2

2(T − t)

]
.

Using Corollary 4.1 in El Karoui, Peng and Quenez [35], we get

Zt =
∂Yt
∂k

∣∣∣
k=B̄t

= φ

(
1−

∫ T

0
µ(s)ds− B̄t

)
> 0.

Hence Zt > 0 a.e. for all t ∈ [0, T ], which completes the proof.
(ii) This case follows similarly to case (i). We first note that since Φ′ > 0, we can

again apply Lemma 6.14 (i) and have that Zt ≥ 0 a.e. for all t ∈ [0, T ]. We again
need to show that the inequality is strictly greater than 0.

In this case we have the linear BSDE

Yt = Φ(BT ) +
∫ T

t
µ(s)|Zs|ds−

∫ T

t
ZsdBs, 0 ≤ t ≤ T.

Again we let B̄t be defined by Equation (6.12) giving us

Yt = Φ(BT )−
∫ T

t
ZsdB̄s. (6.16)

Consider dQ
dP and the probability measure Q as defined by Equations (6.14) and (6.15)

respectively. Similarly to part (i), taking the conditional expectation EQ[ · |Ft] on
both sides of Equation (6.16), gives us

Yt = EQ[Φ(BT )|Ft]

= EQ
[
Φ
(
B̄T +

∫ T

0
µ(s)ds

) ∣∣∣Ft]
= EQ

[
Φ
(
B̄T − B̄t +

∫ T

0
µ(s)ds+ B̄t

) ∣∣∣Ft]
= EQ

[
Φ
(
B̄T − B̄t +

∫ T

0
µ(s)ds+ B̄t

) ∣∣∣σ(Bt)
]

= EQ
[
Φ
(
B̄T − B̄t +

∫ T

0
µ(s)ds+ B̄t

) ∣∣∣σ(B̄t)
]
.
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Since B̄T − B̄t and B̄t are independent, we know that Φ(B̄T − B̄t +
∫ T

0 µ(s)ds+ B̄t)
is independent of σ(B̄t) and hence

Yt = EQ
[
Φ
(
B̄T − B̄t +

∫ T

0
µ(s)ds+ k

)] ∣∣∣
k=B̄t

.

But we still have that B̄T − B̄t ∼ N (0, T − t), and hence

Yt =
∫ ∞
−∞

Φ
(
x+

∫ T

0
µ(s)ds+ k

)
φ(x)dx

∣∣∣
k=B̄t

,

where φ(x) is the density of the normal distribution N (0, T − t). Using Corollary
4.1 in El Karoui, Peng and Quenez [35], we get that for all t ∈ [0, T )

Zt =
∂Yt
∂k

∣∣∣
k=B̄t

=
∫ ∞
−∞

Φ′
(
x+

∫ T

0
µ(s)ds+ B̄t

)
φ(x)dx > 0.

This completes the proof.
(iii) Let ξ = 1{2≥BT≥1}. We assume that the conclusion of (ii) is false i.e. we

assume that Zt ≤ 0 a.e. However by Lemma 6.14 (i) we have that Zt ≥ 0 a.e. for all
t ∈ [0, T ]. Hence we assume that Zt = 0 for all t ∈ [0, T ). This again implies that
the BSDE

Yt = 1{2≥BT≥1} +
∫ T

t
µ(s)|Zs|ds−

∫ T

t
ZsdBs, 0 ≤ t ≤ T

is a linear BSDE.
Again we let B̄t be defined by Equation (6.12) giving us

Yt = 1{2≥BT≥1} −
∫ T

t
ZsdB̄s. (6.17)

Consider dQ
dP and the probability measure Q as defined by Equations (6.14) and (6.15)

respectively. Using Girsanov’s theorem, we know that (B̄t)t∈[0,T ] is a Brownian
motion under the probability measure Q.

Set conditional expectation EQ[ · |Ft] on both sides of Equation (6.17). Note
that, by the same reasoning as in part (i) and (ii), we have that σ{Bs; s ≤ t} =
σ{B̄s; s ≤ t}.

Yt = EQ[1{2≥BT≥1}|Ft]

= EQ[1{2−∫ T0 µ(s)ds−B̄t≥B̄T−B̄t≥1−
∫ T
0 µ(s)ds−B̄t}|Ft]

= EQ[1{2−∫ T0 µ(s)ds−B̄t≥B̄T−B̄t≥1−
∫ T
0 µ(s)ds−B̄t}|σ(B̄t)]

= EQ[1{2−∫ T0 µ(s)ds−k≥B̄T−B̄t≥1−
∫ T
0 µ(s)ds−k}]

∣∣
k=B̄t

.
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Now B̄T − B̄t ∼ N (0, T − t), and hence

Yt =
∫ 2−

∫ T
0 µ(s)ds−k

1−
∫ T
0 µ(s)ds−k

φ(x)dx
∣∣∣
k=B̄t

,

where φ(x) is the density of the normal distribution N (0, T − t). Using the relation
between Yt and Zt by El Karoui, Peng and Quenez [35], we get that for all t ∈ [0, T )

Zt =
∂Yt
∂k

∣∣∣
k=B̄t

= φ

(
1−

∫ T

0
µ(s)ds− B̄t

)
− φ

(
2−

∫ T

0
µ(s)ds− B̄t

)
=

1√
2π(T − t)

exp

[
−

(1−
∫ T

0 µ(s)ds− B̄t)2

2(T − t)

]

− 1√
2π(T − t)

exp

[
−

(2−
∫ T

0 µ(s)ds− B̄t)2

2(T − t)

]
.

From this it is easy to check that for all t ∈ [0, T )

Zt > 0 when B̄t <
3
2
−
∫ T

0
µ(s)ds;

Zt < 0 when B̄t >
3
2
−
∫ T

0
µ(s)ds.

This implies that for all t ∈ [0, T ),

P(Zt > 0) > 0, P(Zt < 0) > 0 a.e.

Hence P×λ((ω, t) : Zt(ω) < 0) > 0, which contradicts our original assumption. This
completes the proof.

Lemma 6.16. Suppose g is a convex (or concave) function. If Eg[ · ] is comonotonic
additive on L2

+(Ω,FT ,P) (resp. L2
−(Ω,FT ,P)), then Eg[ · |Ft] is also comonotonic

additive on L2
+(Ω,FT ,P) (resp. L2

−(Ω,FT ,P)) for all t ∈ [0, T ].

Proof. We prove the result on L2
+(Ω,FT ,P); the proof on L2

−(Ω,FT ,P) follows sim-
ilarly. Denote L2

+(Ω,FT ,P) by L2
+(FT ) and L2

−(Ω,FT ,P) by L2
−(FT ).

Since Eg[ · ] is comonotonic additive on L2
+(Ω,FT ,P), we have that for all comono-

tonic random variables ξ, η ∈ L2
+(FT )

Eg[ξ + η] = Eg[ξ] + Eg[η].

We want to show that for all t ∈ [0, T ], and for all comonotonic random variables ξ,
η ∈ L2

+(FT )
Eg[ξ + η|Ft] = Eg[ξ|Ft] + Eg[η|Ft]. (6.18)
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We first consider the case where g is a convex function. By Proposition 3.18, we
know that for all t ∈ [0, T ]

Eg[ξ + η|Ft] ≤ Eg[ξ|Ft] + Eg[η|Ft].

Assume that (6.18) is false. Then there exists a t ∈ [0, T ] such that

P(ω; Eg[ξ + η|Ft] < Eg[ξ|Ft] + Eg[η|Ft]) > 0.

Let
A = {ω; Eg[ξ + η|Ft] < Eg[ξ|Ft] + Eg[η|Ft]}.

Clearly A ∈ FT and

1AEg[ξ + η|Ft] < 1AEg[ξ|Ft] + 1AEg[η|Ft].

By the comparison theorem, Theorem 3.8, we can take the g-expectation Eg[ · ] on
either side of the above inequality, giving

Eg[1AEg[ξ + η|Ft]] < Eg{1AEg[ξ|Ft] + 1AEg[η|Ft]}. (6.19)

Applying Proposition 3.18 and the tower property of the g-expectation to the right-
hand side of Equation (6.19), we get

Eg{1AEg[ξ|Ft] + 1AEg[η|Ft]} ≤ Eg{1AEg[ξ|Ft]}+ Eg{1AEg[η|Ft]}

= Eg[1Aξ] + Eg[1Aη].

Applying the Tower Property to the left-hand side of (6.19), we have that

Eg[1AEg[ξ + η|Ft]] = Eg[1Aξ + 1Aη].

Hence, combining these we get

Eg[1Aξ + 1Aη] < Eg[1Aξ] + Eg[1Aη]. (6.20)

Since ξ and η are positive and comonotonic, we have that 1Aξ and 1Aη are also
positive and comonotonic. However by the assumption that Eg[ · ] is comonotonic
additive, we have that

Eg[1Aξ + 1Aη] = Eg[1Aξ] + Eg[1Aη]. (6.21)

Inequality (6.20) contradicts Equation (6.21) and hence our original assumption that
(6.18) is false, cannot hold. Thus for all t ∈ [0, T ],

Eg[ξ + η|Ft] = Eg[ξ|Ft] + Eg[η|Ft]. (6.22)



6.2. LINKING CHOQUET EXPECTATION AND G-EXPECTATION 82

which proves the case when g is convex.
Now let g be a concave function. By Proposition 3.18, we know that for all

t ∈ [0, T ]
Eg[ξ + η|Ft] ≥ Eg[ξ|Ft] + Eg[η|Ft].

The rest of the proof follows similarly to the convex case.

Combining this lemma with Dellacherie’s Theorem [16], stating that comonotonic
additivity is a necessary condition for a function to be represented by a Choquet
expectation, results in the following corollary.

Corollary 6.17. Suppose g is a convex (or concave) function. If Eg[ · ] is a Choquet
expectation on L2

+(Ω,FT ,P) (resp. L2
−(Ω,FT ,P)), then Eg[ · |Ft] is also a Choquet

expectation on L2
+(Ω,FT ,P) (resp. L2

−(Ω,FT ,P)) for all t ∈ [0, T ].

The next couple of lemmas deal with the case when g is of the form g(t, z) =
µ(t)|z|, where µ(t) is a continuous function in t. Clearly, if µ(t) ≥ 0 for all t ∈ [0, T ],
then g is a convex function and if µ(t) ≤ 0 for all t ∈ [0, T ], then g is a concave
function.

Lemma 6.18. Let µ(t) 6= 0 be a continuous function on [0, T ] and g(t, z) = µ(t)|z|.
Then there exists no Choquet expectation agreeing with Eµ[ · ] on L2(Ω,FT ,P).

Proof. Assume that the result is false. Then there exists a Choquet expectation
agreeing with Eµ on L2(Ω,FT ,P). By Dellacherie’s Theorem [16], Eµ is comonotonic
additive on L2(Ω,FT ,P).

We choose two particular random variables ξ1 = 1{BT≥1} and ξ2 = 1{2≥BT≥1}.
Let (Y (i)

t , Z
(i)
t )t∈[0,T ], i = 1, 2 be the respective solutions to the following BSDEs

Y
(i)
t = ξi +

∫ T

t
µ(s)|Zis|ds−

∫ T

t
ZisdBs.

Let (Ȳ , Z̄)t∈[0,T ] be the solution to the BSDE

Ȳt = ξ1 + ξ2 +
∫ T

t
µ(s)|Z̄s|ds−

∫ T

t
Z̄sdBs.

Then
Y

(1)
t = Eµ[ξ1|Ft], Y

(2)
t = Eµ[ξ2|Ft], Ȳt = Eµ[ξ1 + ξ2|Ft]

Clearly ξ1 and ξ2 are positive and comonotonic. Hence by our assumption, Eµ[ · ] is
comonotonic additive with respect to ξ1 and ξ2. Lemma 6.16 tells us that Eµ[ · |Ft]
is also comonotonic additive with respect to ξ1 and ξ2, i.e. for all t ∈ [0, T ]

Eµ[ξ1 + ξ2|Ft] = Eµ[ξ1|Ft] + Eµ[ξ2|Ft]
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which can also be written as
Ȳt = Y

(1)
t + Y

(2)
t . (6.23)

Following from (6.23), we have that for all t ∈ [0, T ]〈
Ȳt, Bt

〉
=
〈
Y 1
t , Bt

〉
+
〈
Y 2
t , Bt

〉
,

where 〈Yt, Bt〉 is the finite variation process between the process Y = (Yt)t∈[0,T ] and
the Brownian motion B = (Bt)t∈[0,T ]. But

Z̄t =
d
〈
Ȳt, Bt

〉
dt

, Z
(1)
t =

d
〈
Y

(1)
t , Bt

〉
dt

, Z
(2)
t =

d
〈
Y

(2)
t , Bt

〉
dt

.

Thus for all t ∈ [0, T ] we have that a.e.

Z̄t = Z
(1)
t + Z

(2)
t . (6.24)

Note that (6.23) can be written as

ξ1 + ξ2 +
∫ T

t
µ(s)|Z̄s|ds−

∫ T

t
Z̄sdBs =

2∑
i=1

(
ξi +

∫ T

t
µ(s)|Zis|ds−

∫ T

t
ZisdBs

)
.

This gives us ∫ T

t
µ(s)|Z̄s|ds =

∫ T

t
µ(s)|Z1

s |ds+
∫ T

t
µ(s)|Z2

s |ds

=
∫ T

t
µ(s)(|Z1

s |+ |Z2
s |)ds.

We consequently obtain that a.e. for all t ∈ [0, T ]

µ(t)|Z(1)
t + Z

(2)
t | = µ(t)|Z(1)

t |+ µ(t)|Z(2)
t |.

Since µ(t) 6= 0, we have that a.e.

|Z(1)
t + Z

(2)
t | = |Z

(1)
t |+ |Z

(2)
t |. (6.25)

Clearly (6.25) is only true if Z(1)
t Z

(2)
t ≥ 0. However from Lemma 6.15 we know

that Z(1)
t > 0 a.e. for all t ∈ [0, T ] and P × λ((ω, t) : Z(2)

t (ω) < 0) > 0. Thus
P× λ((ω, t) : Z(1)

t (ω)Z(2)
t (ω) < 0) > 0 which implies that

P× λ((ω, t) : |Z(1)
t + Z

(2)
t | < |Z

(1)
t |+ |Z

(2)
t |) > 0,

which contradicts (6.25). This completes the proof.

Lemma 6.19. Let µ(t) 6= 0 be a continuous function on [0, T ]. Let ξ1 = 1{BT≥1} and
ξ2 = 1{2≥BT≥1}. Then ξ1 and ξ2 are comonotonic, but Eµ[ξ1 + ξ2] < Eµ[ξ1] + Eµ[ξ2].
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We can finally prove the main theorem of this section, which will first be stated
again.

Theorem 6.20. Suppose g satisfies assumptions (A1), (A2) and (A3). Then there
exists a Choquet expectation, whose restriction to the domain L2(Ω,FT ,P) is equal
to a g-expectation if and only if g does not depend on y and is linear in z, i.e. there
exists a continuous function υt such that

g(t, y, z) = υtz. (6.26)

Proof. Sufficiency: Let g(t, y, z) = υtz and let ξ ∈ L2(Ω,FT ,P). We need to show
that there exists a Choquet expectation which is equal to the g-expectation. Con-
sider the BSDE

Yt = ξ +
∫ T

t
υsZsds−

∫ T

t
ZsdBs, 0 ≤ t ≤ T. (6.27)

Let

B̄t = Bt −
∫ t

0
υsds, (6.28)

giving

Yt = ξ −
∫ T

t
ZsdB̄s. (6.29)

Define dQ
dP and a probability measure Q by Equations (6.14) and (6.15) respectively.

Using Girsanov’s theorem, we know that (B̄t)t∈[0,T ] is a Brownian motion under the
probability measure Q. Thus

Eg[ξ|Ft] = EQ[ξ|Ft].

In particular, setting t = 0, we have that

Eg[ξ] = Eg[ξ|F0] = EQ[ξ|F0] = EQ[ξ].

This implies that the g-expectation is a classical mathematical expectation. Also,
clearly the classical mathematical expectation can be represented by the Choquet
expectation. Consequently there exists a Choquet expectation which coincides with
the g-expectation. This completes the sufficiency part of the proof.

Necessity: Let ξ ∈ L2(Ω,FT ,P) and suppose there exists a Choquet expecta-
tion which coincides with a g-expectation. By Dellacherie’s Theorem [16], Eg[ · ] is
comonotonic additive on L2(Ω,FT ,P). We need to show that g does not depend
on y and has the form g(t, z) = υtz. By Lemma 6.13, there exist two continuous
functions on [0, T ] such that

g(t, y, z) = µ(t)|z|+ υtz.
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Without loss of generality, we assume that υt = 0, for t ∈ [0, T ], otherwise by
Girsanov’s theorem, we can rewrite

Yt = ξ +
∫ T

t
(µ(s)|Zs|+ υsZs)ds−

∫ T

t
ZsdBs,

as

Yt = ξ +
∫ T

t
µ(s)|Zs|ds−

∫ T

t
ZsdB̄s,

where B̄t = Bt−
∫ t

0 υsds and (B̄t)t∈[0,T ] is a Brownian motion under the probability
measure Q as defined previously.

Assume µ(t) 6= 0 for some t ∈ [0, T ]. There exists t0 such that µ(t0) 6= 0.
Without loss of generality, assume µ(t0) > 0. Since µ(t) is continuous, there exists
a region of t0, say [t1, t2] ⊂ [0, T ] such that µ(t) > 0 for all t ∈ [t1, t2].

Let ξ1 = 1{Bt2−Bt1≥1} and ξ2 = 1{2≥Bt2−Bt1≥1}. Then ξ1 and ξ2 are comonotonic
random variables.

Next we show that
Eµ[ξ1 + ξ2] < Eµ[ξ1] + Eµ[ξ2],

which shows that Eµ is not comonotonic additive for comonotonic random variable
ξ1 and ξ2.

Let B̄s = B̄t1+s − B̄t1 , then {B̄s : 0 ≤ s ≤ t2 − t1} is a Brownian motion under
the filtration (F ′s), where

F ′s = σ{B̄r : 0 ≤ r ≤ s} = σ{B̄t1+r − B̄t1 : 0 ≤ r ≤ s}.

Using the above notation, we can write ξ1 = 1{B̄t2−t1≥1} and ξ2 = 1{2≥B̄t2−t1≥1}. Let

a(t) = µ(t + t1) and let (y(i)
t , z

(i)
t ), i = 1, 2 be the solutions of the following BSDEs

with terminal values ξ1 and ξ2 respectively:

y
(i)
t = ξi +

∫ t2−t1

t
a(s)|z(i)

s |ds−
∫ t2−t1

t
z(i)
s dB̄s, 0 ≤ t ≤ t2 − t1. (6.30)

Let (ȳt, z̄t) be the solution of the BSDE with terminal value ξ1 + ξ2:

ȳt = ξ1 + ξ2 +
∫ t2−t1

t
a(s)|z̄s|ds−

∫ t2−t1

t
z̄sdB̄s, 0 ≤ t ≤ t2 − t1. (6.31)

Since a(t) = µ(t+ t1) 6= 0 for all t ∈ [0, t2 − t1], by Corollary 6.19 we have

ȳt < ȳ1
t + ȳ2

t . (6.32)

On the other hand, consider the BSDEs

Y
(i)
t = ξi +

∫ T

t
µ(s)|Z(i)

s |ds−
∫ T

t
Z(i)
s dBs, 0 ≤ t ≤ T (6.33)
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and

Ȳt = ξ1 + ξ2 +
∫ T

t
µ(s)|Z̄s|ds−

∫ T

t
Z̄sdBs, 0 ≤ t ≤ T. (6.34)

Comparing Equation (6.30) with (6.33) and Equation (6.31) with (6.34), we find
that for all t ∈ [0, t2 − t1]

y
(1)
t = Y

(1)
t , y

(2)
t = Y

(1)
t , ȳt = Ȳt.

But
Y

(1)
t = Eµ[ξ1|Ft], Y

(2)
t = Eµ[ξ2|Ft], Ȳt = Eµ[ξ1 + ξ2|Ft].

Thus, we have that

ȳ1
0 = Eµ[ξ1], ȳ2

0 = Eµ[ξ2], ȳ0 = Eµ[ξi + ξ2].

Applying Equation (6.32),

Eµ[ξi + ξ2] < Eµ[ξ1] + Eµ[ξ2].

This contradicts the comonotonic additivity of Eg[ · ] = Eµ[ · ]. Hence µ(t) = 0 for all
t ∈ [0, T ], which completes the proof.

Theorem 6.12 tells us that if g is nonlinear in z, then the g-expectation is not a
Choquet expectation on L2(Ω,FT ,P).

Since the classical mathematical expectation is linear, we know that for all ξ, η ∈
L2(FT )

E[ξ + η] = E[ξ] + E[η].

For the Choquet expectation, this equality is still true when ξ and η are comonotonic
random variables. However, if we consider Peng’s g-expectation, with g being a
nonlinear function, then the above equality no longer holds, even when ξ and η

are comonotonic. We can thus informally say that Peng’s g-expectation is ‘more
nonlinear’ than the Choquet expectation on L2(Ω,FT ,P).



Chapter 7

Doob-Meyer decomposition

In Chapter 3 we defined the concept of Peng’s g-expectation and showed that many
powerful properties still hold true in the nonlinear setting. In fact the notion of mar-
tingales, sub- and supermartingales does not need the linearity assumption. Con-
sequently we can define martingales, sub- and supermartingales in the nonlinear
setting. This leads to the question, if the well known Doob-Meyer decomposition
theorem also holds true in the nonlinear setting. The Doob-Meyer decomposition
theorem in the classical theory of martingales shows that certain submartingales can
be written as the sum of a martingale and an increasing process. However, since the
classical demonstration of the Doob-Meyer decomposition theorem is based on the
fact that the expectation E[ · ] is a linear operator, the related nonlinear Doob-Meyer
decomposition is not as straightforward.

In this chapter we begin by recalling the classical Doob-Meyer decomposition
theorem and any related definitions. Thereafter, in Section 7.2, we define and
outline some properties of g-solutions, g-super- and g-subsolutions as well as of
g-martingales, g-super- and g-submartingales. Consequently we attempt to find an
equivalent Doob-Meyer decomposition for nonlinear g-expectations. This is pre-
sented in Section 7.4. To prove the nonlinear version of the Doob-Meyer decompo-
sition however, we require a convergence and a limit theorem. These can be found
in Section 7.3. The work in this chapter has been taken from Karatzas and Shreve
[34], Cohen [9], Peng [42] and Peng and Xu [41].

7.1 Doob-Meyer decomposition theorem

We begin by defining some concepts required for the Doob-Meyer decomposition
theorem and consequently state the original Doob-Meyer decomposition theorem.

Consider the probability space (Ω,F ,P) and assume a continuous setting. The

87
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following definitions are taken from Shreve [47] and Karatzas and Shreve [34].

Definition 7.1. An adapted process (At)t∈[0,∞) is called increasing P-a.s. if we have
that E[At] <∞ for all t ∈ [0,∞) and

(a) A0 = 0;

(b) t 7→ At is a nondecreasing, right-continuous function.

An increasing process is called integrable if E
[

lim
t→∞

At

]
<∞.

Definition 7.2. An increasing process (At)t∈[0,∞) is called natural if for every
bounded right-continuous martingale (Mt)t∈[0,∞) we have for every t ∈ [0,∞)

E
∫ t

0
MsdAs = E

∫ t

0
Ms−dAs,

where s− denotes the left limit of s, i.e.

Ms− = lim
t→s−

Mt.

Definition 7.3. Consider the class S and Sa of all stopping times τ of the filtration
(Ft) which respectively satisfy P(τ < ∞) = 1 and P(τ < a) = 1 for a given finite
number a > 0. The right-continuous process (Xt)t∈[0,∞) is said to be of class (D) if
the family (XT )T∈S is uniformly integrable and of class (DL) if the family (Xτ )τ∈Sa
is uniformly integrable for every 0 < a <∞.

Theorem 7.4 (Doob-Meyer decomposition). Let X = (Xt)t∈[0,∞) be a continu-
ous submartingale of class (DL). Then there exists a continuous martingale M =
(Mt)t∈[0,∞) and a continuous increasing process A = (At)t∈[0,∞) such that for all
t > 0 we have almost surely

Xt = Mt +At. (7.1)

If, in addition, the increasing process A is taken to be natural, then the processes M
and A are uniquely determined up to indistinguishability. Furthermore, if X is of
class (D), then M is a uniformly integrable martingale and A is integrable.

The proof of this theorem is given in Karatzas and Shreve [34]. For an extensive
study on the Doob-Meyer decomposition, we refer the reader to Karatzas and Shreve
[34]. For the purpose of this dissertation, however, the statement of the classical
Doob-Meyer decomposition theorem suffices. We want to find a related nonlinear
Doob-Meyer decomposition which can be applied to the nonlinear case of Peng’s
g-expectation.
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7.2 g-Solutions and g-martingales

We are working in the framework outlined in Chapter 3. Consider the probability
space (Ω,F ,P) endowed with the filtration (FBt )t≥0. Let (Bt)t≥0 be a standard
d-dimensional Brownian motion on this space. The filtration is the one generated
by this Brownian motion, i.e. FBt = σ{Bs; 0 ≤ s ≤ t} for any t ≥ 0. We also
consider a function g satisfying assumptions (A1) and (A2) and a BSDE (3.3) with
terminal condition (3.4). Let D2

F (T,Rn) denote the space of all Rn-valued, RCLL
Ft-progressively measurable processes (Vt)t∈[0,T ] with

E

[
sup

0≤s≤T
|Vs|2

]
<∞,

where | · | denotes the Euclidean norm on Rn. A process (Vt)t∈[0,T ] is said to be
RCLL if it a.s. has right continuous sample paths which have a left limit. An RCLL
process is more commonly known as a càdlàg process. Also let A2

F (T,R) denote the
space of all increasing processes (At)t∈[0,T ] in D2

F (T,R) with A0 = 0.
We can now define the g-supersolution taken from Peng and Xu [41].

Definition 7.5. A process (Yt)t∈[0,T ] ∈ D2
F (T,R) is called a g-supersolution if there

exists a predictable process (Zt)t∈[0,T ] ∈ L2
F (T,Rd) and an increasing RCLL process

(At)t∈[0,T ] ∈ A2(T,R) such that for t ∈ [0, T ]

Yt = YT +
∫ T

t
g(s, Ys, Zs)ds+AT −At −

∫ T

t
ZsdBs. (7.2)

In the above (Zt)t∈[0,T ] is called the martingale part and (At)t∈[0,T ] is called the
increasing part. If At = 0 for all t ∈ [0, T ], then (Yt)t∈[0,T ] is called a g-solution.
In this case, we retrieve Equation (3.5). Hence, when At ≡ 0, the g-solution is
equivalent to the g-expectation Eg[ · |Ft].

We can also define a g-supersolution and a g-solution in terms of stopping times.
If we replace the deterministic terminal time T with a stopping time τ ≤ T , we
obtain the following definition.

Definition 7.6. For a given stopping time τ , we consider the BSDE

Yt = X +
∫ τ

t∧τ
g(s, Ys, Zs)ds+Aτ −At∧τ −

∫ τ

t∧τ
ZsdBs, (7.3)

where (At)t∈[0,τ ] ∈ A2(τ,R) is an increasing RCLL process and Yτ = X ∈ L2(Fτ )
is the terminal condition of the BSDE. A process (Yt)t∈[0,τ ] ∈ D2

F (τ,R) is called a
g-supersolution on [0, τ ] if it solves Equation (7.3). If At = 0 for all t ∈ [0, τ ], then
(Yt)t∈[0,τ ] is called a g-solution.
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A g-solution is uniquely determined if its terminal condition YT (or equivalently
Yτ ) is given. A g-supersolution is uniquely determined if its terminal condition YT

and the process (At)t∈[0,T ] (or equivalently Yτ and (At)t∈[0,τ ]) are given. This gives
us the following proposition.

Proposition 7.7. Given (Yt)t∈[0,τ ] a g-supersolution on [0, τ ], there is a unique
(Zt)t∈[0,τ ] ∈ L2

F (τ,Rd) and a unique increasing RCLL process (At)t∈[0,τ ] ∈ A2(τ,R)
such that the triple (Yt, Zt, At)t∈[0,τ ] satisfies Equation (7.3).

Proof. Suppose both (Yt, Zt, At)t∈[0,τ ] and (Yt, Z ′t, A
′
t)t∈[0,τ ] satisfy Equation (7.3).

We note that

Yt − Yt =
∫ τ

t∧τ
[g(s, Ys, Zs)− g(s, Ys, Z ′s)]ds+Aτ −At∧τ

− (A′τ −A′t∧τ )−
∫ τ

t∧τ
[Zs − Z ′s]dBs,

from which we get d(Yt − Yt). Applying Itô’s formula to (Yt − Yt)2, we get

d(Yt − Yt)2 = d(Yt − Yt)d(Yt − Yt)

= (∆(At −A′t))2 + |Zt − Z ′t|2dt.

Integrating over [0, τ ], subsequently taking expectations and noting that d(Yt −
Yt)2 = 0, we have that

E
∫ τ

0
|Zs − Z ′s|2ds+ E

∑
t∈(0,τ ]

(∆(At −A′t))2 = 0.

Thus we get Zt = Z ′t for all t ∈ [0, τ ] and At = A′t for all t ∈ [0, τ ].

Definition 7.8. Let (Yt)t∈[0,τ ] be a g-supersolution on [0, τ ], and let (Yt, Zt, At)t∈[0,τ ]

be the related unique triple from BSDE (7.3). Then we call (Zt, At)t∈[0,τ ] the de-
composition of (Yt)t∈[0,τ ].

Given a g-supersolution (Yt)t∈[0,τ ], the previous proposition showed that this
decomposition is unique.

Similarly to the case of g-expectations, we also have the following proposition.

Proposition 7.9. Let (A1) and (A2) hold true for g and let (At)t∈[0,T ] ∈ A2(T,R).
Then there exists a unique pair of processes (Yt, Zt)t∈[0,T ] ∈ L2

F (T,R) × L2
F (T,Rd)

that solves the BSDE (7.2) with terminal condition YT ∈ L2(FT ) such that (Yt +
At)t∈[0,T ] is continuous and such that

E

[
sup

0≤s≤T
|Ys|2

]
<∞.
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Proof. When At ≡ 0, we refer to Proposition 3.6. Otherwise, we make the change
of variable Ȳt := Yt +At and get the BSDE

Ȳt = YT +AT +
∫ T

t
g(s, Ȳs −As, Zs)ds−

∫ T

t
ZsdBs. (7.4)

We again refer back to Proposition 3.6. Also, we have

E

[
sup

0≤s≤T
|Ys|2

]
<∞,

since

E

[
sup

0≤s≤T
|As|2

]
<∞,

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0
ZsdBs

∣∣∣∣2
]
<∞,

and

E
∫ T

0
|g(s, Ys, Zs)|2ds <∞.

This completes the proof.

The comparison theorem for g-supersolutions is also of particular interest. It was
first introduced by Peng [43]. Two improved version were then given by El Karoui
et al. [35]. One of these improved versions is stated below. The proof and additional
information can be found in El Karoui et al. [35]. The result of strict comparison
was given by Peng [40].

We again consider (Yt)t∈[0,T ] which is the solution of Equation (7.2) recalled here.

Yt = YT +
∫ T

t
g(s, Ys, Zs)ds+AT −At −

∫ T

t
ZsdBs.

Theorem 7.10 (Comparison theorem). Let assumptions (A1) and (A2) hold true
for g. Let (Ȳt, Z̄t)t∈[0,T ] be the solution to

Ȳt = ȲT +
∫ T

t
ḡt(s, Ȳs, Z̄s)ds+ ĀT − Āt −

∫ T

t
Z̄sdBs,

where (ḡt)t∈[0,T ] ∈ L2
F (T,R), (Āt)t∈[0,T ] ∈ A2(T,R) and ȲT ∈ L2(FT ) are given such

that

(i) YT − ȲT ≥ 0,

(ii) g(Ȳt, Z̄t, t)− ḡt(Ȳt, Z̄t, t) ≥ 0 a.s., a.e.,

(iii) At − Āt is an increasing RCLL process.
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Then we have for all t ∈ [0, T ]

Yt ≥ Ȳt a.s., a.e.

If in addition we assume that P(YT − ȲT > 0) > 0, then P(Yt > Ȳt) > 0. In
particular, Y0 > Ȳ0.

We can now define the concept of a g-martingale, g-super- and g-submartingale
in a strong sense, as well as in a weak sense.

Definition 7.11. Let (Mt)t∈[0,T ] be an Ft-progressively measurable real-valued pro-
cess such that E[|Mt|2] <∞.

(i) The process, Mt, is a g-martingale on [0, T ], if it is a g-solution on [0, T ].

(ii) The process, Mt, is a g-supermartingale on [0, T ] in a strong sense if, for each
stopping time τ ≤ T , we have that the g-solution (Yt)t∈[0,τ ] with terminal
condition Yτ = Mτ satisfies

Yσ ≤Mσ

for all stopping times σ ≤ τ .

(iii) The process, Mt, is a g-submartingale on [0, T ] in a strong sense if, for each
stopping time τ ≤ T , we have that the g-solution (Yt)t∈[0,τ ] with terminal
condition Yτ = Mτ satisfies

Yσ ≥Mσ

for all stopping times σ ≤ τ .

If we replace the stopping times σ and τ in the previous definition with determin-
istic times s and t, then we have defined a g-supermartingale and a g-submartingale
in a weak sense.

We know that a g-solution is a g-martingale. If we assume (A3) in addition
to (A1) and (A2), and use the notion of g-expectations, we have that the process
(Mt)t∈[0,T ] defined by

Mt = Eg[X|Ft] (7.5)

for t ∈ [0, T ] is a g-martingale, where X is the terminal condition of the BSDE.
Using this, we have an alternate, more familiar definition for g-martingales, g-
supermartingales and g-submartingales.

Definition 7.12. Consider a function g satisfying assumptions (A1), (A2) and (A3).
Let the process (Mt)t∈[0,T ] satisfy E[|Mt|2] <∞.
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(i) The process, Mt, is a g-martingale in a weak sense if and only if for all 0 ≤
s ≤ t ≤ T we have

Eg[Mt|Fs] = Ms.

(ii) The process, Mt, is a g-submartingale in a weak sense if and only if for all
0 ≤ s ≤ t ≤ T we have

Eg[Mt|Fs] ≥Ms.

(iii) The process, Mt, is a g-supermartingale in a weak sense if and only if for all
0 ≤ s ≤ t ≤ T we have

Eg[Mt|Fs] ≤Ms.

For the equivalent definition of a g-martingale, g-super- and g-submartingale in
a strong sense, we replace the deterministic times s and t with stopping times σ and
τ . Clearly a g-supermartingale in a strong sense is also a g-supermartingale in a
weak sense. Under certain assumptions a stopped g-martingale, g-supermartingale
or g-submartingale remains such. This result corresponds to the optional stopping
theorem in the classical theory of martingales. It has been taken from Peng [44].

Proposition 7.13. Let g satisfy assumptions (A1), (A2) and (A3) and let (Yt)t∈[0,T ] ∈
D2
F (T,R) be a g-martingale (resp. g-super-, g-submartingale). Then for all stopping

times 0 ≤ σ ≤ τ ≤ T , we have

Eg[Yτ |Fσ] = Yσ (resp. ≤ Yσ, ≥ Yσ).

Note that if (Yt, Zt)t∈[0,T ] solves the equation

Yt = YT +
∫ T

t
g(s, Ys, Zs)ds+AT −At −

∫ T

t
ZsdBs,

it is clear that (−Yt,−Zt)t∈[0,T ] solves the equation

−Yt = −YT +
∫ T

t
−g(s,−(−Ys),−(−Zs))ds+ (−AT )− (−At)−

∫ T

t
(−Zs)dBs.

Hence if (Yt)t∈[0,T ] is a g-martingale (resp. g-super- or g-submartingale), then we
have that (−Yt)t∈[0,T ] is a g∗-martingale (resp. g∗-sub- or g∗-supermartingale) where

g∗(t, y, z) = −g(t,−y,−z).

Consequently, any results applying to g-supermartingales can also be applied to
g-submartingales and similarly, any results applying to g-submartingales can be
applied to g-supermartingales.
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7.3 Limit theorem of g-supersolutions

This section is based on the work done by Peng [41]. We begin by stating the
‘convergence theorem’ taken from Peng [41]. We omit the proof of this theorem in
this dissertation. Using this convergence theorem, we can prove the limit theorem
of g-supersolutions. This result is needed for the main theorem of this chapter, the
nonlinear Doob-Meyer decomposition theorem.

We first consider the family of semi-martingales

Y i
t = Y i

0 +
∫ t

0
gis(s, Y

i
s , Z

i
s)ds−Ait +

∫ t

0
ZisdBs. (7.6)

A semi-martingale is defined as follows. The definition is taken from Offwood [37].

Definition 7.14. A regular càdlàg adapted process St is a semi-martingale if it can
be represented as a sum of two processes: a local martingale Mt with M0 = 0 and
a process of finite variation At with A0 = 0, and

St = S0 +Mt +At.

In the semi-martingale given by Equation (7.6) the process (git)t∈[0,T ] ∈ L2
F (T,R)

is given and adapted for each i. We also assume that for each i, (Ait)t∈[0,T ] is a
continuous increasing process with E[(AiT )2] <∞. Furthermore, we assume that

(i) (git)t∈[0,T ] and (Zit)t∈[0,T ] are bounded in L2
F (T ) i.e. E

∫ T
0 [|gis|2 + |Zis|2]ds ≤ C;

(ii) {(Y i
t )t∈[0,T ]} increasingly converges to (Yt)t∈[0,T ] with E

[
sup

0≤t≤T
|Yt|2

]
<∞.

The limit of {(Y i
t )t∈[0,T ]} has the following form

Yt = Y0 +
∫ t

0
g0
s(s, Ys, Zs)ds−At +

∫ t

0
ZsdBs, (7.7)

where (g0
t )t∈[0,T ], (Zt)t∈[0,T ] and (At)t∈[0,T ] are respectively the L2-weak limits of

{(git)t∈[0,T ]}, {(Zit)t∈[0,T ]} and {(Ait)t∈[0,T ]}.

Theorem 7.15 (Convergence theorem). Assume (git)t∈[0,T ] and (Zit)t∈[0,T ] are bounded
in L2

F (T ) i.e. E
∫ T

0 [|gis|2 + |Zis|2]ds ≤ C. Also assume that {(Y i
t )t∈[0,T ]} increasingly

converges to (Yt)t∈[0,T ] with E
[
sup0≤t≤T |Yt|2

]
< ∞ and that (Ait)t∈[0,T ] is a con-

tinuous increasing process with E[(AiT )2] < ∞. The limit (Yt)t∈[0,T ] of {(Y i
t )t∈[0,T ]}

has the form (7.7), where (g0
t )t∈[0,T ] ∈ L2

F (T,R), (Zt)t∈[0,T ] is the weak limit of
{(Zit)t∈[0,T ]} and (At)t∈[0,T ] is an RCLL square-integrable increasing process. Fur-
thermore, for any p ∈ [0, 2), {(Zit)t∈[0,T ]} converges strongly to (Zt)t∈[0,T ] in LpF (T,Rd),
i.e. for all p ∈ [0, 2)

lim
i→∞

E
∫ T

0
|Zis − Zs|pds = 0.
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Consider the sequence of g-supersolutions (Y i
t )t∈[0,T ] solving the BSDEs for i =

1, 2, . . .

Y i
t = Y i

T +
∫ T

t
g(s, Y i

s , Z
i
s)ds+AiT −Ait −

∫ T

t
ZisdBs. (7.8)

Here the function g satisfies assumptions (A1) and (A2) and (Ait)t∈[0,T ] is a continu-
ous increasing process for each i = 1, 2, . . . with E[(AiT )2] <∞. From Proposition 7.7
there exists a unique pair (Y i

t , Z
i
t)t∈[0,T ] ∈ L2

F (T,R)×L2
F (T,Rd) for each i = 1, 2, . . .

satisfying BSDE (7.8).
The next theorem tells us that the limit of {(Y i

t )t∈[0,T ]} is still a g-supersolution.

Theorem 7.16. Consider a function g satisfying assumptions (A1) and (A2) and
a continuous increasing process (Ait)t∈[0,T ] with E[(AiT )2] < ∞. For i = 1, 2, . . .
let (Y i

t , Z
i
t)t∈[0,T ] be the solution of BSDE (7.8) with E

[
sup0≤t≤T |Y i

t |2
]
< ∞. If

{(Y i
t )t∈[0,T ]} increasingly converges to (Yt)t∈[0,T ] with E

[
sup0≤t≤T |Yt|2

]
< ∞, then

(Yt)t∈[0,T ] is a g-supersolution, i.e. there exist a predictable process (Zt)t∈[0,T ] ∈
L2
F (T,Rd) and an increasing square-integrable RCLL process (At)t∈[0,T ] such that

the pair (Yt, Zt)t∈[0,T ] is the solution of the BSDE

Yt = YT +
∫ T

t
g(s, Ys, Zs)ds+AT −At −

∫ T

t
ZsdBs. (7.9)

Here (Zt)t∈[0,T ] is the weak (resp. strong) limit of {(Zit)t∈[0,T ]} in L2
F (T,Rd) (resp.

in LpF (T,Rd) for p < 2) and for each t ∈ [0, T ], (At)t∈[0,T ] is the weak limit of
{(Ait)t∈[0,T ]} in A2(T,R).

Note that Equation (7.8) can be rewritten as

Y i
t = Y i

0 −
∫ t

0
g(s, Y i

s , Z
i
s)ds−Ait +

∫ t

0
ZisdBs

and Equation (7.9) can be rewritten as

Yt = Y0 −
∫ t

0
g(s, Ys, Zs)ds−At +

∫ t

0
ZsdBs.

To prove this theorem, we need the following additional lemma, telling us that
both {(Zit)t∈[0,T ]} and {(AiT )2

t∈[0,T ]} are uniformly bounded in L2. The proof of this
lemma is based on the proof by Peng [42]. Parts of the proof are based on Cohen’s
proof of the same theorem in the general framework, given in [9].

Lemma 7.17. Under the assumptions of Theorem 7.16, there exists a constant C
that is independent of i such that

(i) E
∫ T

0
|Zis|2ds ≤ C,

(ii) E[(AiT )2] ≤ C.
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Proof. From BSDE (7.8), we have

AiT = Y i
0 − Y i

T −
∫ T

0
g(s, Y i

s , Z
i
s)ds+

∫ T

0
ZisdBs

≤ |Y i
0 |+ |Y i

T |+
∣∣∣∣∫ T

0
g(s, Y i

s , Z
i
s)ds

∣∣∣∣+
∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣
≤ |Y i

0 |+ |Y i
T |+

∫ T

0
|g(s, Y i

s , Z
i
s)|ds+

∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣ .
Thus

|AiT |2 =(|Y i
0 |+ |Y i

T |)2 +
(∫ T

0
|g(s, Y i

s , Z
i
s)|ds+

∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣)2

+ 2(|Y i
0 |+ |Y i

T |)
(∫ T

0
|g(s, Y i

s , Z
i
s)|ds+

∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣) .
We know that for a, b ∈ R, we have that

2ab ≤ εa2 +
1
ε
b2, ε > 0. (7.10)

Thus setting

a = (|Y i
0 |+ |Y i

T |),

b =
(∫ T

0
|g(s, Y i

s , Z
i
s)|ds+

∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣) ,
we get that

|AiT |2 ≤ 2(|Y i
0 |+ |Y i

T |)2 + 2
(∫ T

0
|g(s, Y i

s , Z
i
s)|ds+

∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣)2

= 2(|Y i
0 |+ |Y i

T |)2 + 2
(∫ T

0
|g(s, Y i

s , Z
i
s)|ds

)2

+ 2
∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣2
+ 4

(∫ T

0
|g(s, Y i

s , Z
i
s)|ds

) ∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣
≤ 2(|Y i

0 |+ |Y i
T |)2 + 4

(∫ T

0
|g(s, Y i

s , Z
i
s)|ds

)2

+ 4
∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣2 .
By Jensen’s inequality for integrals, we know that for a convex function ϕ

ϕ

(∫ b

a
f(x)dx

)
≤
∫ b

a
ϕ((b− a)f(x))

1
b− a

dx.

Thus we have that(∫ T

0
|g(s, Y i

s , Z
i
s)|ds

)2

≤
∫ T

0
T 2|g(s, Y i

s , Z
i
s)|2

1
T
ds

= T

∫ T

0
|g(s, Y i

s , Z
i
s)|2ds.
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Consequently

|AiT |2 ≤ 2(|Y i
0 |+ |Y i

T |)2 + 4T
∫ T

0
|g(s, Y i

s , Z
i
s)|2ds+ 4

∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣2 . (7.11)

By the triangle inequality and by the Lipschitz continuity of the function g, we
have that there exists a µ > 0 such that

|g(s, Y i
s , Z

i
s)| − |g(s, 0, 0)| ≤ |g(s, Y i

s , Z
i
s)− g(s, 0, 0)|

≤ µ(|Y i
s |+ |Zis|).

Hence
|g(s, Y i

s , Z
i
s)| ≤ µ(|Y i

s |+ |Zis|) + |g(s, 0, 0)|.

Squaring the above expression, gives

|g(s, Y i
s , Z

i
s)|2 ≤ µ2(|Y i

s |+ |Zis|)2 + |g(s, 0, 0)|2 + 2µ(|Y i
s |+ |Zis|)|g(s, 0, 0)|.

We get using Equation (7.10) with a = µ(|Y i
s |+ |Zis|) and b = |g(s, 0, 0)|, that

|g(s, Y i
s , Z

i
s)|2 ≤ 2µ2(|Y i

s |+ |Zis|)2 + 2|g(s, 0, 0)|2

≤ 2µ2|Y i
s |2 + 2µ2|Zis|2 + 4µ2|Y i

s ||Zis|+ 2|g(s, 0, 0)|2

≤ 4µ2|Y i
s |2 + 4µ2|Zis|2 + 2|g(s, 0, 0)|2.

Therefore there exists a constant µ′ such that

|g(s, Y i
s , Z

i
s)|2 ≤ µ′|Y i

s |2 + µ′|Zis|2 + 2|g(s, 0, 0)|2. (7.12)

Plugging Equation (7.12) into Equation (7.11), we get that

|AiT |2 ≤ 2(|Y i
0 |+ |Y i

T |)2 + 4T
∫ T

0
(µ′|Y i

s |2 + µ′|Zis|2 + 2|g(s, 0, 0)|2)ds+ 4
∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣2 .
Taking expectation on both sides, leads to

E
[
|AiT |2

]
≤2E

[
(|Y i

0 |+ |Y i
T |)2

]
+ 4Tµ′E

∫ T

0
|Y i
s |2ds+ 4Tµ′E

∫ T

0
|Zis|2ds

+ 8TE
∫ T

0
|g(s, 0, 0)|2ds+ 4E

∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣2 .
By Itô isometry, we know that

E
∣∣∣∣∫ T

0
ZisdBs

∣∣∣∣2 = E
∫ T

0
|Zis|2ds.
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This gives us

E
[
|AiT |2

]
≤2E

[
(|Y i

0 |+ |Y i
T |)2

]
+ 4Tµ′E

∫ T

0
|Y i
s |2ds+ 8TE

∫ T

0
|g(s, 0, 0)|2ds

+ (4Tµ′ + 4)E
∫ T

0
|Zis|2ds.

Since Y 1
t ≤ Y i

t ≤ Yt we observe that |Y i
t | is dominated by |Y 1

t |+ |Yt|. Thus there
exists a constant independent of i such that

E

[
sup

0≤t≤T
|Y i
t |2
]
≤ C. (7.13)

It follows that there exists a constant C1, independent of i, such that

E[|AiT |2] ≤ C1 + (4Tµ′ + 4)E
∫ T

0
|Zis|2ds. (7.14)

On the other hand, we use Itô’s formula applied to |Y i
t |2. First, we know that

dY i
t = −g(t, Y i

t , Z
i
t)dt− dAit + ZitdBt.

Applying Itô’s formula yields

d|Y i
t |2 = −2Y i

t g(t, Y i
t , Z

i
t)dt− 2Y i

t dA
i
t + 2Y i

t Z
i
tdBt + |Zit |2dt.

Hence

|Y i
T |2−|Y i

0 |2 = −2
∫ T

0
Y i
s g(s, Y i

s , Z
i
s)ds−2

∫ T

0
Y i
s dA

i
s+2

∫ T

0
Y i
sZ

i
sdBs+

∫ T

0
|Zis|2ds,

giving us that

|Y i
0 |2 +

∫ T

0
|Zis|2ds = |Y i

T |2 +2
∫ T

0
Y i
s g(s, Y i

s , Z
i
s)ds+2

∫ T

0
Y i
s dA

i
s−2

∫ T

0
Y i
sZ

i
sdBs.

Taking expectations and noting that Y0 is deterministic and that the expected value
of an Itô integral is 0, we get using the Lipschitz continuity of g

|Y i
0 |2 + E

∫ T

0
|Zis|2ds

= E[|Y i
T |2] + 2E

∫ T

0
Y i
s g(s, Y i

s , Z
i
s)ds+ 2E

∫ T

0
Y i
s dA

i
s

≤ E[|Y i
T |2] + 2E

∫ T

0
[|Y i

s |(µ|Y i
s |+ µ|Zis|+ |g(s, 0, 0)|)]ds+ 2E

∫ T

0
|Y i
s |dAis

= E[|Y i
T |2] + 2E

∫ T

0
[µ|Y i

s |2 + µ|Y i
s ||Zis|+ |Y i

s ||g(s, 0, 0)|]ds+ 2E
∫ T

0
|Y i
s |dAis

≤ E[|Y i
T |2] + 2E

∫ T

0
[µ|Y i

s |2 + 4µ2|Y i
s |2 +

1
4
|Zis|2 + |Y i

s ||g(s, 0, 0)|]ds

+ 2E
∫ T

0
|Y i
s |dAis.
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Therefore, setting

a = 4E

[
sup

0≤t≤T
|Y i
t |2
] 1

2

,

b =
1
2

E[|AiT |2]
1
2 ,

we get using Equation (7.10) that

|Y i
0 |2 + E

∫ T

0
|Zis|2ds

≤ E[|Y i
T |2] + 2E

∫ T

0
[(µ+ 4µ2)|Y i

s |2 +
1
4
|Zis|2 + |Y i

s ||g(s, 0, 0)|]ds

+ 2E

[
AiT sup

0≤s≤T
|Y i
s |

]

≤ C2 +
1
2

E
∫ T

0
|Zis|2ds+ 2E

[
sup

0≤t≤T
|Y i
t |2
] 1

2

E[|AiT |2]
1
2 .

From this we get that

E
∫ T

0
|Zis|2ds ≤ 2C2 − 2|Y i

0 |2 + 4E

[
sup

0≤t≤T
|Y i
t |2
] 1

2

E[|AiT |2]
1
2

≤ 2C2 − 2|Y i
0 |2 + 16E

[
sup

0≤t≤T
|Y i
t |2
]

+
1
4

E[|AiT |2]

= C3 +
1
4

E[|AiT |2],

where from (7.13), the constants C2 and C3 are independent of i. Combining the
previous inequality with (7.14) and setting C = max(C1, C2) gives us that (i) holds
true and subsequently (ii) holds true, which completes the proof.

We can finally prove Theorem 7.16.

Proof. We want to apply the Convergence Theorem 7.15. In BSDE (7.8), we set
git := −g(t, Y i

t , Z
i
t) which satisfies assumptions (A1) and (A2). By hypothesis we

have that {(Y i
t )t∈[0,T ]} increasingly converges to (Yt)t∈[0,T ] with E[sup0≤t≤T |Yt|2] <

∞. By Lemma 7.17 we have that (Zit)t∈[0,T ] is bounded in L2
F (T,Rd). Hence

by Theorem 7.15, we have that there exists a (Zit)t∈[0,T ] in L2
F (T,Rd) such that

{(Zit)t∈[0,T ]} strongly converges to (Zt)t∈[0,T ] in LpF (T,Rd) for all p ∈ [0, 2). As a
result {(git)t∈[0,T ]} strongly converges in LpF (T,Rd) to (g0

t )t∈[0,T ] and

g0
s = −g(s, Ys, Zs), a.s., a.e.

It follows that (Yt, Zt)t∈[0,T ] is the solution of the BSDE (7.9). This completes the
proof.
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7.4 Nonlinear Doob-Meyer decomposition theorem

By the comparison theorem, Theorem 7.10 we can easily see that a g-supersolution
on [0, T ] is also a g-supermartingale in both a strong and a weak sense. We are now
concerned with the inverse problem: is a right-continuous g-supermartingale also a
g-supersolution? This question leads to the nonlinear version of the Doob-Meyer
decomposition theorem.

Before stating and proving the main theorem of this chapter, we require an
additional lemma. Consider the family of BSDEs parameterised by i = 1, 2 . . .

yit = YT +
∫ T

t
g(s, yis, Z

i
s)ds+ i

∫ T

t
(Ys − yis)ds−

∫ T

t
ZisdBs. (7.15)

We observe in the next lemma that for each i > 0, (yit)t∈[0,T ] is bounded from above
by (Yt)t∈[0,T ]. Hence (yit)t∈[0,T ] is a g-supersolution.

Lemma 7.18. Consider the BSDE (7.15) for i = 1, 2 . . .. Then we have for each i,
for t ∈ [0, T ]

Yt ≥ yit.

Proof. Suppose this is not the case. Then there exists a δ > 0 and a positive integer
i such that the measure of {(ω, t) : yit − Yt − δ ≥ 0} ⊂ Ω× [0, T ] is nonzero. We can
then define the stopping times

σ := inf
t
{yit ≥ Yt + δ},

τ := min[T, inf
t≥σ
{yit = Yt}].

We can see that σ ≤ τ ≤ T and P(τ > 0) > 0. Since Yt − yit is right-continuous, we
have

(i) yiσ ≥ Yσ + δ,

(ii) yiτ = Yτ .

Let (yit)t∈[0,τ ] denote the g-solution with terminal condition yiτ and (Yt)t∈[0,τ ] denote
the g-solution with terminal condition Yτ . By the comparison theorem, Theorem
7.10, we have that yiσ = Yσ. However, on the other hand, since (Yt)t∈[0,τ ] is a
g-submartingale, we have

Yσ ≥ yiσ.

This contradicts equation (i) above, which completes the proof.

We can now prove the following nonlinear version of the Doob-Meyer decompo-
sition theorem.
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Theorem 7.19. Consider a function g satisfying assumptions (A1) and (A2). Let
(Yt)t∈[0,T ] ∈ D2

F (T,R) be a g-supermartingale in a strong sense. Then (Yt)t∈[0,T ] is
a g-supersolution on [0, T ], i.e. there exists a unique process (At)t∈[0,T ] ∈ A2(T,R)
with E[(AT )2] <∞ and a process (Zt)t∈[0,T ] ∈ L2

F (T,Rd) such that

Yt = YT +
∫ T

t
g(s, ys, Zs)ds+AT −At −

∫ T

t
ZsdBs.

Proof. Existence: Let (Yt)t∈[0,T ] be a g-supermartingale. We consider a sequence of
g-supermartingales given by BSDE (7.15). Note that BSDE (7.15) can be rewritten
as

yit = YT +
∫ T

t
g(s, yis, Z

i
s)ds+AiT −Ait −

∫ T

t
ZisdBs,

where

Ait := i

∫ t

0
(Ys − yis)ds.

From Lemma 7.17 we have that there exists a constant C independent of i such
that

E[|AiT |2] = i2E

[(∫ T

0
|Ys − yis|ds

)2
]
≤ C.

Therefore we have that

E

[(∫ T

0
|Yt − yit|dt

)2
]

= 0.

It follows that yit converges to Yt for all t ∈ [0, T ].
Now from Lemma 7.18 we have that Yt − yit = |Yt − yit|. From the comparison

theorem, Theorem 7.10, it follows that yit ≤ yi+1
t . Thus {(yit)t∈[0,T ]} is a sequence

of continuous g-supermartingales, that is monotonically converging to the process
(Yt)t∈[0,T ]. It is easy to check that all conditions from Thereom 7.16 are satisfied.
Hence (Yt)t∈[0,T ] is a g-supersolution on [0, T ] of the following form:

Yt = YT +
∫ T

t
g(s, Ys, Zs)ds+AT −At −

∫ T

t
ZsdBs.

where (At)t∈[0,T ] is a RCLL increasing process.
Uniqueness: The uniqueness is due to the uniqueness of g-supersolutions, i.e.

Proposition 7.7. This completes the proof.

Corollary 7.20. Consider a function g independent of y and satisfying assumption
(A1), (A2) and (A3). Let (Xt)t∈[0,T ] be a g-submartingale on [0, T ] in a strong sense

satisfying E

[
sup

0≤s≤T
|Xs|2

]
<∞. Then (Xt)t∈[0,T ] has the following decomposition

Xt = Mt −At.
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In this representation (Mt)t∈[0,T ] is a g-martingale of the form (7.5) and (At)t∈[0,T ]

is an RCLL increasing process with A0 = 0 and E[(AT )2] < ∞. Furthermore, such
a decomposition is unique.

Proof. By Theorem 7.19, we know that the g-submartingale (Xt)t∈[0,T ] can be de-
composed as follows: there exists a unique RCLL increasing process (At)t∈[0,T ] ∈
A2(T,R) with E[(AT )2] <∞ such that for t ∈ [0, T ] we have

Xt = XT +
∫ T

t
g(s, Zs)ds+AT −At −

∫ T

t
ZsdBs. (7.16)

Set Mt = Xt +At. Then for t ∈ [0, T ]

Mt = XT +AT +
∫ T

t
g(s, Zs)ds−

∫ T

t
ZsdBs. (7.17)

Plugging Equation (7.17) into (7.16), we get

Xt = Mt −At.

Also, noting that g is independent of y, we have from Equation (7.17) that

Mt = Eg[XT +AT |Ft].

Clearly (Mt)t∈[0,T ] has the form (7.5). Also since g-expectations are g-martingales,
we have that (Mt)t∈[0,T ] is a g-martingale. This completes the proof.



Appendix A

Appendix

Theorem A.1 (Fubini’s theorem). Let (X,FX , µX) and (Y,FY , µY ) be measure
spaces with σ-finite complete measures µX and µY defined on the σ-algebras FX and
FY respectively. If the function f(x, y) is integrable on the product X ×Y of X and
Y with respect to the product measure µ = µX × µY of µX and µY , then for almost
all y ∈ Y the function f(x, y) of the varibale x is integrable on X with respect to
µX , the function g(y) =

∫
X f(x, y)dµX is integrable on Y with respect to µY and

one has the equality ∫
X×Y

f(x, y)dµ =
∫
Y
dµY

∫
X
f(x, y)dµX .

Fubini’s theorem is valid, in particular for the case when µX , µY and µ are the
Lebesgue measures in the Euclidean spaces Rm, Rn and Rm+n respectively.

Fubini’s theorem was established by Guido Fubini [29]. An important conse-
quence of Fubini’s theorem allows the order of integration to be reversed in iterated
integrals.

Theorem A.2 (Lebesgue lemma). Let f be a Lebesgue integrable function on the
interval [0, T ]. Then, in [0, T ], we have

lim
n→∞

n

∫ t+ 1
n

t
|f(u)− f(t)|du = 0 dt a.s.
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List of Spaces

For ease of reference, we give an overview of the different spaces we are working in,
in this masters dissertation.

L2(Ft) = L2(Ω,Ft,P) denotes the space of all real-valued, Ft-measurable and square
integrable random variables applying with the L2-norm.

L2
F (T,Rn) denotes the space of all Rn-valued, FT -adapted processes (Vt)t∈[0,T ] with

E
∫ T

0
|Vt|2dt <∞.

MF (Rn) denotes the space of all Rn-valued, Ft-progressively measurable processes
(ψt)t∈[0,T ].

Hq
F (T,Rn) denotes the space of all (ψt)t∈[0,T ] ∈MF (Rn) with

E
∫ T

0
|ψt|qdt <∞.

D2
F (T,Rn) denotes the space of all Rn-valued, RCLL Ft-progressively measurable

processes (Vt)t∈[0,T ] with

E

[
sup

0≤s≤T
|Vs|2

]
<∞.

A2
F (T,R) denotes the space of all increasing processes (At)t∈[0,T ] in D2

F (T,R) with
A0 = 0.
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Sandmann, K., Schönbucher, P.J. (Eds.), Advances in Finance and Stochastics,
Springer-Verlag, 1-37.

[16] Dellacherie, C. (1970). Quelques commentaires sur les prolongements de ca-
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