Figure 1.1:	Location of the Nylsvlei floodplain in the Limpopo Drainage	
	region (after Morgan, 1996)	4
Figure 1.2:	The main vegetation inundation zones (after Higgins and Rogers,	
	1993)	8
Figure 1.3:	Map showing the southern portion of the Nylsvlei floodplain and	
	catchments, the location of the study area, locations of the gauging	5
	stations and rain gauges, and the then-proposed site of the	
	Olifantspruit Dam. Location shown on 1: 250 000 map 2428	
	'Nylstroom', produced by the Surveyor General, Pretoria.	18
Figure 1.4:	Schematic diagram of the hydraulic modelling area showing its	
	division into three smaller regions. Significant inflows (Nyl	
	River inflow, tributaries and rainfall) and outflows (Nyl River	
	outflow and losses), and the location of water level gauges along	
	the floodplain are indicated (after Birkhead et al, 2004)	19
Figure 3.1:	Stage level plot for the gauge at Middelfontein (A6H039) for the	
	period 02/1998 to 05/2001 (after Birkhead et al, 2004)	49
Figure 3.2:	Stage level plot for the gauge at Deelkraal (A6H002) for the	
	period 11/1997 to 04/2002 (after Birkhead et al, 2004)	49
Figure 3.3:	Stage level plots for the seven gauges in the Nylsvley Reserve	
	(including Vogelfontein located at its downstream boundary)	
	for the period 01/1996 to 06/2001 (after Birkhead et al, 2004)	50
Figure 3.4:	Stage level plot for the gauge at Mosdene (GP8/A6H038) for	
	the period 02/1996 to 06/2001 (after Birkhead et al, 2004)	50
Figure 3.5:	Rating data and function plot for the gauge at Middelfontein	
	(A6H039) (after Birkhead et al, 2004)	51
Figure 3.6:	Rating data and function plot for the gauge at upstream boundary	
	of the Nylsvley Reserve (GP2) (after Birkhead et al, 2004)	52

Figure 3.7:	Rating data and function plot for the gauge at Vogelfontein	
	(A6H037) (after Birkhead et al, 2004)	52
Figure 3.8:	Rating data and function plot for the gauge at Mosdene	
	(A6H038) (after Birkhead et al, 2004)	52
Figure 3.9:	Discharge hydrographs for the Nyl River at Middelfontein and	
	GP2 (after Birkhead et al, 2004)	55
Figure 3.10:	Discharge hydrographs for the Nyl River at GP2 and	
	Vogelfontein (after Birkhead et al, 2004)	55
Figure 3.11:	Discharge hydrographs for the Nyl River at Vogelfontein and	
	Mosdene (after Birkhead et al, 2004)	56
Figure 3.12:	Total daily rainfall in mm for the Nylsvley weather station	
	(0590486) for the period 1921 to 2001 (after Birkhead et al,	
	2004)	57
Figure 3.13:	Plot of LIDAR random survey points for the section of the	
	Nylsvley Nature Reserve between GP2 (Deelkraal Road) and	
	GP4 (after Birkhead et al, 2004)	61
Figure 3.14:	Plot of LiDAR points at the upstream end of the study area at	
	Middelfontein, showing the Middelfonteinspruit, Nyl River and	
	N1 freeway.	61
Figure 4.1:	Components of the radiation balance at a soil surface: (a)	
	incoming and outgoing radiation; (b) radiation interchange	
	during the day; (c) radiation interchange at night (after Blight,	
	1997a)	76
Figure 4.2:	Graph showing cumulative growth in Rn, G and Le over the	
	course of the day 18 December 2000, after Blight (pers. comm.)	
	in the grassy and the degrassed areas	79
Figure 4.3:	Evapotranspiration measured at the Nylsvley Reserve (Blight,	
	2002a) and from the S pan at the Donkerpoort Dam	86
Figure 4.4:	Comparison between pan data from Donkerpoort Dam and	
	stations located near the study area of the Nylsvlei floodplain	89

Figure 4.5:	Symons pan factors derived from energy balance	
	evapotranspiration data for grassy and bare areas and the	
	Symons pan evaporation data for the same days at the	
	Donkerpoort Dam Symons pan (A6E006), and the recommended	
	Symons pan factor for lakes and wetlands in South Africa from	
	Midgley et al (1994)	91
Figure 4.6:	Comparison of the evapotranspiration derived from the energy	
	balance measurements with various empirical model predictions	
	and data based on class A pan evaporation from Scholes and	
	Walker (1993)	93
Figure 4.7:	Evapotranspiration rates predicted using various pan factors and	
	the rates derived from the energy balance measurements applied	
	to the Donkerpoort Dam station pan data	94
Figure 5.1:	Simplified soil map of the Nylsvley Nature Reserve (after Frost,	
	1987)	99
Figure 5.2:	Geology of the Nylsvlei floodplain region (after Morgan, 1996)	101
Figure 5.3:	The Guelph Permeameter on the floodplain alluvium in the	
	Nylsvley Nature Reserve, note the Nyl River channel behind	105
Figure 5.4:	Method to determine infiltration into a soil from an open hole in	
	uniform soil (after Blight, 1997b)	109
Figure 5.5:	Infiltration measurements along the traverse conducted in the	
	Nylsvley Nature Reserve in 2001 (after Blight et al, 2001)	111
Figure 5.6:	Depth profile of infiltration measured at the traverse compared	
	with measurements in the channel and at the bridge (transect 2 in	
	Figure 5.7) at the Nylsvley Nature Reserve (after Blight et al,	
	2001)	112
Figure 5.7:	Soil map of the Nylsvley Nature Reserve (after Harmse, 1977),	
	with numbered sites of infiltration measurements using the	
	Guelph Permeameter and ring infiltrometers, and numbered	
	transects	118

xiii

Figure 6.1:	View north to the Waterberg foothills from Vogelfontein in the	
	Nylsvley Reserve, showing the typical limited aerial extent of	
	convective storms in the Nylsvlei catchments	124
Figure 6.2:	Map of the Nylsvlei floodplain and catchments showing the	
	position of all evaporation, rainfall, geohydrological and	
	flow-gauging stations (after Pitman & Bailey, 2003)	125
Figure 6.3:	Contour map at 10cm intervals for the upper portion of the	
	Nylsvley Nature Reserve between GP2 (Deelkraal Road) and	
	GP4 (after Birkhead et al, 2004)	131
Figure 6.4:	Annotated contour map (20cm intervals) of the Nylsvley Nature	
	Reserve upstream of the Vogelfontein Road, showing the artificial	
	dikes (after Birkhead et al, 2004)	134
Figure 6.5:	Vogelfontein causeway, looking upstream into the Nylsvley	
	Nature Reserve. The influence of artificial topographical features	
	(dikes and road) on the hydraulic behaviour is noticeable. A	
	bird-hide is located in the tree-grove upstream of the road (photo	
	K. Rogers) (after Birkhead et al, 2004)	134
Figure 6.6:	Contour map at 20cm intervals for the upper portion of the	
	Nylsvley Reserve, with every fifth contour shaded in black (i.e.	
	at 1m intervals) (after Birkhead et al, 2004)	136
Figure 6.7:	Position of cross-sections (yellow transects) downstream of	
	Gauge Plate (GP) 4 in the Nylsvley Nature Reserve,	
	superimposed on a background image of the floodplain and	
	20cm contour map. The Nyl River flows from the bottom to the	
	top of the figure (after Birkhead et al, 2004)	138
Figure 6.8:	Photograph of the same area as in Figure 6.7, looking upstream	
	towards Gauge Plate (GP) 4. A bird hide is located in the reed	
	beds through which the Nyl River flows. (photo K. Rogers)	
	(after Birkhead et al, 2004)	138
Figure 6.9:	Aerial view of the Deelkraal Dam, looking downstream, a	
	channel runs past the dam to the bottom right of the photograph	
	(photo K. Rogers)	139

Figure 6.10:	Measured inflows from the DWAF stage plate A6H039 for the	
	1999/2000 hydrological year, plotted against inundated area in	
	the Middelfontein reach together with the best fit regression line	145
Figure 6.11:	Plot of modelled stage and discharge hydrographs, and measured	
	values at Middelfontein (A6H039 - cross-section 51) for the	
	period 26/02/1998 to 09/05/2001 (after Birkhead et al, 2004).	155
Figure 6.12:	Plot of modelled stage hydrographs and measured values at	
	Deelkraal (A6H002 – cross-section 20) for the period 26/02/1998	
	to 09/05/2001 (after Birkhead et al, 2004)	156
Figure 6.13:	Plot of modelled stage and discharge hydrographs, and measured	
	values at the downstream boundary of the Middelfontein reach	
	(GP2 – cross-section 1) for the period 26/02/1998 to 09/05/2001	
	(after Birkhead et al, 2004)	157
Figure 6.14:	Aerial view of the Deelkraal gauge (A6H002) (top right) and the	
	narrow channel and floodplain at this point (K. Rogers)	158
Figure 6.15:	Plot of modelled stage and discharge hydrographs, and measured	
	values at Middelfontein (A6H039) for the period 26/02/1997 to	
	09/05/2001 (after Birkhead et al, 2004)	160
Figure 6.16:	Plot of modelled stage hydrographs and measured values at	
	Deelkraal (A6H002) for the period 1973 to 1979 (after Birkhead	
	<i>et al</i> , 2004)	160
Figure 6.17:	Plot of modelled stage hydrographs and measured values at	
	Deelkraal (A6H002) for the period 1980 to 1985 (after Birkhead	
	<i>et al</i> , 2004)	161
Figure 6.18:	Plot of modelled stage hydrographs and measured values at	
	Deelkraal (A6H002) for the period 1986 to 1991 (after Birkhead	
	<i>et al</i> , 2004)	161
Figure 6.19:	Plot of modelled stage hydrographs and measured values at	
	Deelkraal (A6H002) for the period 10/1997 to 04/2001 (after	
	Birkhead et al, 2004)	162

Figure 6.20:	Plot of modelled stage and discharge hydrographs, and measured	
	values at GP2 in the Nylsvley Reserve for the period 01/1996 to	
	04/2001 (Birkhead et al, 2004)	163
Figure 6.21:	Discharge hydrographs at GP2 derived from (i) measured stages	
	and rating function, (ii) hydraulic routing through the upstream	
	wetland using (a) measured flows at Middelfontein and	
	extrapolated tributary flows and (b) extrapolated flows throughout	
	(after Birkhead et al, 2004)	164
Figure 7.1:	Flood peaks in the Olifantspruit from the modelled historical time	
	series used to time the IFR high flow releases in 1980/1981	176
Figure 7.2:	Flood peaks in the Olifantspruit from the modelled historical time	
	series used to time the IFR high flow releases in 1986/1987	176
Figure 7.3:	Comparison of maximum inundated areas of 25 continuous days	
	duration with various maintenance high flow release durations	
	from the Olifantspruit Dam for 1980/1981	179
Figure 7.4:	Comparison of maximum inundated areas of 25 continuous days	
	duration with various maintenance high flow release durations	
	from the Olifantspruit Dam for 1986/1987	180
Figure 7.5:	Comparison of maximum inundated areas of 25 continuous days	
	duration with various maintenance high flow release durations	
	from the Olifantspruit Dam for February with a base flow release	
	of 1.5 m ³ /s	181
Figure 8.1:	Conceptual model of the periodicity of the life history response	
	of Oryza longistaminata (after Marneweck, 2003)	188
Figure 8.2:	Map showing Tarboton's inundation extent definitions (from	
	Morgan, 1996)	190
Figure 8.3:	Daily time-series of inundated areas for the whole study area	
	from the historical catchment scenario and Tarboton's qualitative	
	flooding descriptions	192
Figure 8.4:	Temporal occurrences of inundation areas in the Nylsvley Reserve	
	reach for each catchment development scenario	193

Figure 8.5:	Temporal occurrence of inundation areas exceeded in the Nylsvley	
	Reserve reach compared to the virgin scenario	195
Figure 8.6:	Temporal occurrence of inundation areas exceeded in the Nylsvley	
	Reserve reach compared to the historical scenario	195
Figure 8.7:	The largest areas inundated for 25 days, for each year and scenario	
	in the Middelfontein reach	196
Figure 8.8:	The largest areas inundated for 25 days, for each year and scenario	
	in the Nyslvley Reserve reach	197
Figure 8.9:	The largest areas inundated for 25 days, for each year and scenario	
	in the Mosdene reach	197
Figure 8.10:	The largest areas inundated for 25 days, for each year and scenario	
	in the entire study area	198
Figure 8.11:	Number of years in which different inundation areas of at least 25	
	continuous days duration were exceeded for the different scenarios	
	in the Middelfontein reach	201
Figure 8.12:	Number of years in which different inundation areas of at least 25	
	continuous days duration were exceeded for the different scenarios	
	in the Nylsvley Reserve reach	201
Figure 8.13:	Number of years in which different inundation areas of at least 25	
	continuous days duration were exceeded for the different scenarios	
	in the Mosdene reach	202
Figure 8.14:	Number of years in which different inundation areas of at least 25	
	continuous days duration were exceeded for the different scenarios	
	in the entire study area	202
Figure 8.15:	Inflow, I , (m ³ /s) versus inundated area with depth between 0.1m	
	and 0.5m, A, (km ²) regression for range $0.1 \le I \le 1.005$	205
Figure 8.16:	Inflow, I , (m ³ /s) versus inundated area with depth between 0.1m	
	and 0.5m, A, (km^2) regression for range $I > 1.005$	205
Figure 8.17:	The largest areas inundated for 25 days at depths between 0.1m	
	and 0.5m, for each year and scenario for the Nylsvley Reserve	
	reach	206

Figure 8.18:Number of years in which different inundation areas of depths
between 0.1m and 0.5m and of at least 25 continuous days duration
were exceeded for the different scenarios in the Nylsvley Reserve
reach208