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Abstract 

With rising global food prices, growing populations, climate change and future demand for tuber 

crops for feed and potential energy source, cassava is well positioned to meet the needs of many 

countries in the SADC region, including South Africa. However a major constraint to cassava 

cultivation is cassava infecting begomoviruses (CBVs), including African cassava mosaic virus 

(ACMV) and South African cassava mosaic virus (SACMV). ACMV and SACMV belong to the 

family Geminiviridae, comprising of circular single-stranded bipartite. Symptoms associated 

with CBVs infection include yellow and/or green mosaic, leaf deformation, leaf curling and 

stunted plant growth. Since no chemical control of virus diseases of plants is possible, one 

approach to develop virus resistance is via biotechnology, through genetic engineering (GE) of 

cassava to express hairpin RNA (hpRNA) silencing constructs against CBV. However cassava is 

recalcitrant and difficult to transform and regenerate. The aim of this study was to produce 

hpRNA/inverted repeat (IR) hpRNA constructs targeting ACMV AC1/4:AC2/3 open reading 

frames (ORF) and hpRNA targeting SACMV BC1 ORF to engineer hpRNA expressing 

transgenic cassava resistant to ACMV and SACMV. Furthermore, the approach was to stack two 

ACMV contiguous overlapping reading frames (AC1/4) and (AC2/3) in an attempt to improve 

resistance to CBV. However IR sequences are prone to unfavourable tight secondary structure 

formation known as cruciform structures. To circumvent this, one set of constructs (mutated 

sense-arm: mismatch constructs) were designed to contain sodium bisulfite deamination-induced 

mutations in the hairpin sense-arm making it less complementary to the antisense arm and 

therefore enhancing IR stability and cruciform junction formation. MM2hp (mismatch construct 

targeting ACMV AC1/4:AC2/3) and MM4hp (mismatch construct targeting SACMV BC1) were 

generated. The second construct set, non-mismatch: gateway, was designed based on the most 

currently used Gateway construct system. Gateway constructs contained an intron positioned 

between the IR fragments. MM6hp (non-mismatch construct targeting ACMV AC1/4:AC2/3) 

and MM6hp (non-mismatch construct targeting SACMV BC1) were generated.  Similar to the 

deamination-induced mutations, the intron assisted with IR stability. ACMV- or SACMV-

derived hpRNA constructs were transformed into model cassava cultivar cv.60444. Additionally, 

since few farmer-preferred cultivars or landraces have been transformed for resistance, South 

African high starch landrace T200 was also transformed with the hpRNA constructs. 

Agrobacterium-mediated transformation of friable embryogenic callus (FEC) was used and 
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plants regenerated. Several transgenic cv.60444 and T200 lines were regenerated. Cassava 

landraces are generally less amenable to transformation however were able to report 79 % and 76 

% for model cv.60444 and landrace T200, respectively. T200 transformation efficiency reported 

in this study is 43% higher than previously reported. This is also the first report of South African 

cassava landrace T200 transformation with ACMV and SACMV-derived hpRNA constructs. 

Transgenic lines were selected and infected with ACMV and SACMV infectious virus clones. 

Lines were then monitored at 12, 32 and 67 days post infection (dpi) for symptom development, 

plant growth and SACMV and ACMV viral load. At 67 dpi, a more significant difference 

between transgenic lines and untransformed infected cv.60444 was observed. At 67 dpi, 69 % 

and 75% of ACMV AC1/4:AC2/3 and SACMV BC1 transgenic lines, respectively, showed 

lower symptoms and reduced viral load compared to control susceptible wild-type cv.60444, but 

comparable to virus-challenged non-transgenic tolerant landrace control TME3. Notably, a lack 

of correlation between viral load and symptoms was not always observed. Plant to plant variation 

was observed between individual transgenic lines generated from each construct (MM2hp; 

MM4hp; MM6hp and MM8hp) transformation events (A-MM2, A-MM4, C-MM6 and C-MM8). 

However, overall a positive correlation between symptoms and viral load was observed for virus 

challenge trials of transgenic lines generated from A-MM4, C-MM6 and C-MM8 transformation 

events, this overall positive correlation was observed at all 3 dpi (12, 32 and 67 dpi).  A number 

of ACMV and SACMV tolerant transgenic lines were obtained for both mismatch and non-

mismatch hpRNA expressing transgenic lines, where virus replication persisted, but symptoms 

were lower at 67 dpi compared to non-transgenic plants. CBV tolerance levels observed in 

transgenic lines expressing mismatch technology hpRNA was not significantly different to CBV 

tolerance levels observed in transgenic lines expressing non-mismatch hpRNA.  Expression of 

ACMV and SACMV- derived constructs generated tolerant cassava lines, where tolerance is 

defined as plants displaying virus replication but lower to no symptoms. In addition to this, a 

recovery phenotype was observed in five  MM2hp (ACMV AC1/4:AC2/4)- derived hp 

expressing  transgenic lines at 365 dpi, where recovery is defined as no to mild symptoms after 

an initial period of symptoms, and a reduction in or no viral load. In five MM4hp (SACMV 

BC1)-derived hpRNA expressing transgenic lines, complete recovery was observed at 365 dpi; 

no symptoms and no detectable virus. From this study we propose that expression of CBV- 

derived hpRNA targeting ACMV AC1/4:AC2/4 and SACMV BC1 in CBV susceptible cv.60444 
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enhances cv.60444 ACMV and SACMV tolerance. Mismatch (mutated sense-arm) construct 

technology offered tolerance levels comparable to the more conventional and more expensive 

non-mismatch (Gateway) technology. We therefore also propose that the use of mismatch 

hpRNA technology in cassava genetic engineering can be used as an alternative approach to 

transgenic crop production.  Promising transgenic lines, showing moderate SACMV and ACMV 

resistance, were identified and these will be used in further trials as they could be considered 

favourable to farmers. 
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CHAPTER: 1 LITERATURE REVIEW 

1.1 Cassava crop 

Cassava (Manihot esculenta Crantz) is a perennial plant grown in tropical and subtropical Africa, 

Asia and Latin America and 80% of total cassava cultivation occurs in Africa and Asia (Adenle 

et al., 2012). It is mainly cultivated by small resource poor farmers. In low income areas of these 

countries the crop is a staple food consumed by over 700 million people (Eleazu, et al., 2011). 

It’s recognised as one of 11 crops that contribute to poverty alleviation and food security.  



It is thought that cassava was introduced into South Africa from Zimbabwe or Mozambique and 

Mauritius, and spread across the northern and eastern regions of Natal and Mpumalanga by 

Tsonga tribesman in the 1830’s (Trench et al., 1985). Cassava is mainly cultivated in KwaZulu-

Natal (where it is known as ndumbula) and Mpumalanga in South Africa (Daphne, 1980). In 

1999 a cassava starch processing factory was built in Limpopo and has provided large cash 

injections for both small and large-scale farmers. This operation has been expanded into 

Swaziland (Mabasa 2007). 

 

1.2 Cassava mosaic disease (CMD) 

CMD contributes to devastating cassava crop losses in Africa and other cassava growing regions 

of the world (Thresh et al., 1998; Legg & Fauquet, 2004; Legg et al., 2011). Symptoms of CMD 

were first documented by Warburg in 1894 and only later, in 1906 was it suggested by 

Zimmerman that the viral pathogen was the causal agent of CMD. CMD results in enormous 

cassava yield losses annually and is considered one of the most destructive crop disease (Legg et 

al., 2011; Patil & Fauquet, 2009). This crop disease is caused by viruses belonging to the genus 

Begomovirus of the family Geminiviridae. These cassava infecting begomoviruses (CBVs) are 

transmitted by a whitefly vector, Bemisia tabaci (Gennadius) (Berry et al., 2004; Bock & 

Harrison, 1985). CBVs are  transmitted by Bemisia haplotypes that form a distinct southern 

African clade  (Berry & Rey, 2001; Esterhuizen et al., 2013).  The virus also spreads through 

infected cuttings after transmission and produces a range of symptoms that can be observed on 

plants 3-5 weeks post infection (Varma & Malathi, 2003; von Arnim & Stanley, 1992). Plants 
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can show mild symptoms such as light-green mosaic patterns or more severe symptoms such as 

severe leaf shrinkage, curling and chlorotic lesions (fig.1.1). Extreme symptoms such as leaf 

desiccation may result in defoliation and death of young infected plants (Pita et al., 2001). In 

South Africa CMD was reported as early as 1970 and bulk import of cassava from Mozambique 

in 1975 caused CMD outbreak (Trench et al., 1985). It was not until the late 1999’s and 2000’s 

that two comprehensive studies on the epidemiology and 

diversity of cassava begomoviruses were undertaken (Berry & Rey, 2001). 

 

    

 

 

Figure 1. 1 (a) Healthy wildtype cassava plant. (b) and (c) CBV infected cassava plant showing 

CMD symptoms. 
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1.3 Geminiviruses 

Geminiviruses have paired icosahedral capsids containing circular single stranded (ss) DNA 

genomes of 2.5-2.9 kilobases (kb) and are either monopartite or bipartite. The name geminivirus 

was derived from the Latin word Gemini, meaning twins and was proposed by Harrison et al., 

1997). The family Geminiviridae has been classified into 7 genera; Turncurtovirus, Eragrovirus, 

 Becurtovirus, Curtovirus, Mastrevirus, Topocuvirus and Begomovirus based on virus genome 

organisation, host range and most importantly the vector transmission (Adams et al., 2013; 

Fauquet et al., 2008). The genus Begomovirus represents 80% of known geminiviruses (Varma 

& Malathi, 2003).  are responsible for several important diseases in southern African crops, 

including monocots and dicots (Rey et al., 2012). 

 

1.3.1 Begomovirus genome organisation 

 

Begomoviruses are whitefly transmitted and most are bipartite, consisting of two DNA 

components; DNA-A and DNA-B each having a 2.6-2.8 kb genome (fig. 1.2). The genomes are 

bidirectionally transcribed and replicate in the nuclei of infected plant cells (Dry et al., 1993; 

Gutierrez, 2002).  DNA-A encodes 2 genes on its virion-sense strand; AV1 (coat protein) and 

AV2 (responsible for virus accumulation and symptom development and has also been identified 

as an RNA silencing suppressor) (Wang et al., 2014). The complementary-sense strand of DNA 

A encodes 4 genes; AC1-AC3 genes encode the replication-protein (Rep), transcriptional 

activator protein (TrAP) and the replication enhancer protein (REn), respectively and AC4 gene 

is involved in virus movement, symptom severity and host range determination (Amin et al., 

2011; Settlage et al., 2005; Trinks et al., 2005).  AC2, AC3 and AC4 have all been demonstrated 

to suppress host gene silencing (Amin et al., 2011; Hanley-Bowdoin et al., 2013). The DNA-B 

component is required for inter and intra-cellular movement and encodes for 2 genes; BV1 

encodes for a nuclear shuttle protein while BC1 encodes for proteins required for cell-to-cell 

movement of the virus (Hehnle et al., 2004; Ward et al., 1997). 

                   

DNA-A and DNA-B share a common region (CR) of ~200 base pairs (bp) with a high sequence 

identity (90-100%) (Harrison & Robinson, 1999). The CR is located within the intergenic region 

which lies between the virion and the complementary-sense strands of both DNA-A and DNA-B. 

The intergenic region contains sequence motifs that are necessary for gene replication and 

http://en.wikipedia.org/w/index.php?title=Turncurtovirus&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Eragrovirus&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Becurtovirus&action=edit&redlink=1
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control of gene expression (Eagle et al.,1994; Elmer et al., 1988; Gutierrez, 2002). Also found in 

the intergenic region is a nonanucleotide sequence TAATATT↓AC which is conserved across all 

geminiviruses. Rolling circle replication occurs at this site; ↓ which is known as the initiation site 

(Stanley, 1995) and initiated and catalyzed by AC1 encoded protein (Settlage et al., 2005).   

 

        

Figure 1. 2 CBV genome organisation, DNA-A and DNA-B (Gutierrez, 2000)   

 

1.3.2 Classification of cassava infecting begomoviruses (CBVs) 

Initially 3 distinct groups of whitefly transmitted CBVs were distinguished based on nucleotide 

sequence by Hong et al., (1993). Berrie et al., 1998;  isolated and characterised the 4
th

 distinct 

group of CBVs from South Africa. This distinct group was named South African cassava mosaic 

virus (SACMV). Making up these 4 groups are 11 distinct species of which 9 infect cassava in 

Africa: African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), 

East African cassava mosaic Cameroon virus (EACMCV), East African cassava mosaic Malawi 

virus (EACMMV), East African cassava mosaic Zanzibar virus (EACMZV), East African 

cassava mosaic Kenya virus (EACMKV), African cassava mosaic Burkina Faso virus 

(ACMBFV); Cassava mosaic Madagascar virus (CMMV) and South African cassava mosaic 

virus (SACMV) (Fauquet et al., 2008). Natural recombination has been associated with the 

occurrence or evolution of new distinct CBV species (Fondong et al., 2000; Pita et al., 2001). 
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1.3.3 Mixed infections and synergism 

Several reports have shown that mixed virus infections in plants occur naturally (Fondong et al., 

2000). It is during these mixed infections that recombination and pseudo-recombination between 

the infecting viruses can occur (Pita et al., 2001). Recombination then results in an increase virus 

molecular diversity (Lima et al., 2013). Recombination between geminiviruses was first reported 

by Zhou et al., 1997. DNA-A of a novel recombinant isolate Uganda variant (UgV) was found to 

be extremely similar to Tanzanian isolate of EACMV however the coat protein (CP) was found 

to be composed of both EACMV and ACMV CP.  This novel isolate was found to cause 

unusually severe CMD symptoms.  

 

During these mixed infections there is an increase in virus titre of both or one of the infecting 

viruses (Harrison et al., 1997). An increase in virus titre normally results in more severe plant 

disease symptoms than those observed in single infections, indicating some sort of virus-virus 

interaction (Rentería-Canett et al, 2011; Sanz et al., 2000).  Synergistic interaction of viruses was 

demonstrated between ACMV-[CM] and EACMCV. A seven-fold increase in ACMV-[CM] 

DNA-A and B was observed in N. benthamiana co-infected with EACMCV DNA-A compared 

with control plants infected with only both components of ACMV-[CM]. Similar results were 

observed upon co-infection of EACMCV DNA-A and B with ACMV-[CM] DNA-A 

(Vanitharani et al., 2004). However the same test performed using DNA-B components showed 

no alteration in viral DNA-A accumulation. Experiments were also performed to identify 

particular genes involved in the synergistic relationship (discussed later under Silencing 

suppressors).  

 

Designing hybrid RNA silencing constructs targeting several viral regions and several viruses 

simultaneously ensures greater silencing efficiency and allows successful silencing in the event 

of mixed infections and in the event that virus recombination or sequence mutations occur. 
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1.4 RNA silencing 

RNA silencing (RNAi) is a conserved innate  gene regulatory mechanism that induces sequence-

specific mRNA degradation or complete suppression at both transcriptional (TGS) and post-

transcriptional gene silencing (PTGS) levels (Agrawal et al., 2003; Wang et al., 2012). In 

addition, this mechanism has also evolved for  protection against virus and transposon invasion 

(Obbard et al., 2009). This gene regulatory and defense mechanism has been observed in a 

variety of eukaryotic organisms such as plants, animals, fungi algae, flies, protozoa, nematodes, 

and many others (Cerutti et al., 2011; Clemens et al., 2000; McRobert and McConkey 2002; 

Tomoyasu et al., 2008).. An RNAi-like mechanism involving short direct repeat sequences 

called clustered regularly interspaced short palindromic repeats (CRISPRs) has been reported to 

also exist in prokaryotes. This RNAi-like mechanism has been termed Prokaryotic silencing (psi) 

(Barrangou et al., 2007; Brouns et al., 2008). RNA silencing was first documented by Napoli et 

al. (1990) in transgenic petunia flowers. They attempted to up-regulate the key enzyme involved 

in flavonoid synthesis, chalcone synthase (CHS). Napoli et al., 1990 were expecting to produce 

transgenic petunia with intensified purple coloured flowers. However contrary to what was 

expected, 42% of transgenic petunia produced totally white flowers while all the untransformed 

control produced flowers with normal pigmentation. This phenomenon was termed co-

suppression as a result of loss of mRNA of both the endogenous and transgenic CHS gene. This 

was later known as PTGS.  

 

There are three different pathways in gene silencing: the cytoplasmic short-interfering RNA 

(siRNA) pathway, another pathway that results in the silencing of endogenous mRNAs using 

microRNAs (miRNAs) and a DNA methylation and transcription suppression pathway (de 

Felippes et al., 2012; Hamilton, 1999; Ketting et al., 2001; Vaistij et al., 2002). All these 

different pathways however do share underlying features. In all the various systems, this gene 

regulatory mechanism occurs in a three step process and the underlying features are similar, (i) 

formation of double stranded (ds) RNA; (ii) cleavage of dsRNA into siRNA of between 20-27 

nt; and (iii) sequence-specific inhibition of complementary cellular or viral mRNA guided by the 

siRNA (fig. 1.3) (Bernstein et al., 2001; Hammond et al., 2000; Parisi et al., 2009; Semizarov et 

al., 2003). 
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1.4.1 dsRNA formation and processing into small interfering RNAs 

dsRNA was a first identified as a mediator and strong inducer of the silencing process in 

nematodes Caenorhabditis elegans (C. elegans) studies (Fire et al., 1998). dsRNA was found to 

be more potent silencing mechanism than either sense or antisense ssRNA. This study also 

revealed that only a few molecules of dsRNA is required per cell to induce RNAi as silencing of 

an abundantly expressed C. elegans gene was successfully achieved by only a few molecules of 

dsRNA. This suggested a catalytic or amplification step that resulted in RNAi being very potent, 

systemic and persistent. Following this discovery, similar supporting reports in plants emerged 

(Tenllado & Di, 2001). RNA-dependent RNA-polymerase (RDR) was implicated in dsRNA 

amplification and was found to be critical in the RNA silencing signal potency and systemic 

spread (Xie et al., 2001). Research by Smardon et al. (2000) showed that mutations in an RDR 

homolog resulted in loss of RNA silencing ability. The presence and amplification of dsRNA 

also explained dsRNA intermediate synthesis in the RNA silencing of DNA viruses such as 

geminiviruses (Hanley-Bowdoin et al., 2013; Vanitharani et al., 2005). dsRNA can also result 

from aberrant RNA, originating from the transcription of foreign virus DNA, this can undergo 

amplification by RDR (Raja et al., 2010)  

 

1.4.2 Dicer 

The unifying feature of all the RNA silencing mechanisms is the cleavage of dsRNA into short 

RNA fragments of 21-27nt known as siRNA. Reports by  Elbashir et al. (2001) and Lipardi et al. 

(2001) Lipardi, et al. (2001) that the siRNA produced have a 5’ phosphate and 3’ hydroxyl 

termini lead to the elucidation that the cleavage of dsRNA into siRNA was by enzymatic 

activity. The multi-domain ribonuclease called Dicer, belonging to the RNase III protein family, 

reported as responsible for processing of the initiator dsRNA into the short RNAs (siRNA) of 21, 

25 and 27nt  (Bernstein et al., 2001; Brodersen & Voinnet, 2006; Hammond et al., 2000; 

Weinheimer et al., 2014). This endonucleolytic cleavage activity was reported to start between 

phosphodiester bonds the lies between the 10
th

 and 11
th

 nucleotide of the dsRNA substrate. Dicer 

has a 10-residue segment that functions in correctly aligning dsRNA substrates in the enzyme 

active site. A decrease in catalytic activity and random cleavage of dsRNA is observed when 

mutations are introduced into the 10-residue Dicer segment (MacRae et al., 2007; Schwab et al., 

2006). This work suggested that the structure an d ability of Dicer to align the dsRNA molecule 
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for into siRNA processing is more dependent on the Dicer enzyme active site rather than the 

dsRNA sequence. Dicer catalytic activity has also been shown to be unaffected by imperfect U:G 

wobbles within the dsRNA molecules, both perfect and imperfect dsRNA substrates produce 

similar cleavage patterns (Soifer et al., 2008). The ability of Dicer to process dsRNA containing 

wobbles was also demonstrated by Hossbach et al., 2006. Silencing efficiency of both wobble 

and non-wobble containing hairpins was reported as comparable.  

 

1.4.3 siRNA functional asymmetry 

Once the dsRNA has been processed into the siRNA, the siRNA duplexes have to be unwound. 

Unwinding is as a result of helicase activity (Huang and Liu 2002; Wang et al., 2012). Only a 

single strand is then incorporated into to the RNA-induced silencing complex (RISC) (Wu-

Scharf et al., 2000). Both strands are capable of directing RNA silencing, however it has been 

shown that Dicer can have a higher affinity for one strand than other and this is known as siRNA 

functional asymmetry (Schwarz et al., 2003). In vitro incubation of luciferase siRNA in an RNAi 

reaction for 1h in the absence of target mRNA resulted in a 22% accumulation of single stranded 

(ss) antisense siRNAs while no ss sense siRNAs from the siRNA duplex could be detected. The 

levels of ss sense siRNAs were however anticipated. This then suggested that the antisense 

strand is used for directing RNA silencing while the sense stand is degraded. This also proves 

that there is siRNA asymmetry involved and that the target mRNA is not responsible for any 

strand bias observed (Schwarz et al., 2003). However, even though a strand bias exists, complete 

siRNA duplex is required and critical; as single stranded siRNA molecules are approximately 10 

fold less effective at directing silencing than siRNA duplexes. This also suggests that this 

functional asymmetry occurs just before the multicomponent silencing complex termed the RISC 

is activated (Shao et al., 2007). The RISC complex is comprised of Dicer and the core 

endonucleolytic cleavage site known as ARGONAUTE (AGO protein) (Meister et al., 2004, 

2005; Schuck et al., 2013). Studies have proposed that thermodynamics play a role in strand 

bias; the siRNA strand with the lower thermodynamic stability at the 5’ end is incorporated into 

the RISC complex and used as the guide strand for homologous mRNA degradation (Kini & 

Walton, 2009; Tomari et al., 2004; Ui-Tei et al., 2012). Introducing a U:G wobble (a less stable 

base pairing) to the 5’ end of the siRNA sense strand and leaving the antisense siRNA strand 

unchanged resulted in RNA silencing being directed by the sense strand and diminished levels of 
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the antisense strand was observed and this time round the siRNA functional asymmetry was 

inverted (Khvorova et al., 2003; Schwarz et al., 2003). Strand asymmetry still remains one of the 

biggest challenges in siRNA design (Matveeva et al., 2010). 

 

1.4.4 Degradation of mRNA 

Once siRNA strand incorporation into the RISC complex has occurred, sequence-specific 

recognition and degradation of target mRNA follows. The target mRNA is then cleaved into 21-

27nt intervals. Target mRNA is only cleaved in regions that are identical to siRNAs produced 

from the dsRNA (Lu et al., 2004; Pumplin & Voinnet, 2013). Experiments by Hamilton et al. 

(2002) using GFP-expressing N. benthamiana also demonstrated two functionally different 

classes of siRNAs; short and long siRNA, are responsible for sequence-specific degradation of 

mRNA and systemic spread of the silencing signal. Short siRNAs (21-23nt) were identified to be 

only involved in mRNA degradation of homologous mRNA and cell-to-cell spread of the signal 

through the plasmodesmata. Long siRNAs (24-26nt) were implicated in sequence-specific 

degradation of mRNA as well as systemic RNA silencing through the vascular system (Bai et al., 

2011; Melnyk et al., 2011). The silencing signal moves from the site of initial mRNA 

degradation along with or ahead of the virus causing silencing of viral mRNA in newly infected 

cells (Hamilton et al., 2002). Long siRNAs are also involved in RNA directed methylation of 

homologous DNA in the cell that the signal has been mobiles to (Bai et al., 2011; Hamilton et 

al., 2002).  
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Figure 1. 3 Overview of steps involved in RNA silencing mechanism involving processing of 

dsRNA intermediates by Dicer into primary siRNA production. Primary siRNA are then used for 

secondary siRNA production which then enter the RISC complex for sequence-specific 

degradation of complementary mRNA (Parisi et al., 2009). 

 

1.4.5 DNA methylation 

This is a conserved epigenetic mechanism that results in repression of transcription. This 

silencing mechanism has been reported in both prokaryotes and eukaryotes (Saze et al., 2012). It 

involves methyltransferase addition of a methyl group to DNA cytosine bases, resulting in a 5-

methylcytosine. DNA sequences containing symmetric CG, CHG, and asymmetric CHH (H = A, 

C, or T) are methylation target sites (Kanno & Habu, 2011). DNA methylation was first reported 

in potato spindle tuber viroid (PSTVd) transgenic N. benthamiana (Wassenegger et al., 1994). 
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Full PSTVd sequence-specific methylation was reported but no methylation of sequences outside 

the integration sites was observed. Later experiments reported the existence of two types DNA 

methylation; a maintenance type that maintains previous methylation patterns present in a 

particular DNA sequence, and a type that methylates previously unmethylated sequences (Bai et 

al., 2011; Xie et al., 2004; Yu et al., 2005). This RNA-directed DNA methylation (RdDM) 

pathway also involves the biogenesis of siRNA from dsRNA cleavage by a Dicer-like 3 (DLC3) 

ribonuclease (Xie et al., 2004). Methylation of homologous DNA occurs via another effector 

complex called the RNA-induced initiation of transcriptional gene silencing (RITS). The long 

siRNAs incorporate into the RITS and direct chromatin modification/methylation of homologous 

target DNA sequences (Verdel et al., 2004; Wu et al., 2010). 

 

1.4.6 Comparison of siRNA and miRNA 

MiRNA are endogenously derived regulatory molecules. These were first discovered by Lee et 

al., (1993) while studying the gene lin-14 in C. elegans. They discovered that the gene does not 

encode for a particular protein, but instead involved in the control of larval development. The 

gene was found to produce small RNA molecules of 22nt (Lee et al., 1993) . miRNA, like 

siRNA have been shown to be involved in DNA methylation (Wu et al., 2010). Like siRNA, 

miRNA fall under the class of silencing RNA that regulate gene expression (Wilson & Doudna, 

2013). Both siRNA and miRNA are involved in post-transcriptional regulation however miRNA 

are also involved in developmental and cellular processes as well (Khraiwesh et al., 2010). 

siRNA can be of exogenous and endogenous origin while miRNA are endogenously derived. 

miRNA differ to siRNA in their biogenesis and can only be differentiated by their precursor 

transcripts as they are structurally similar to siRNA once processed. miRNA are also 20-24nt 

long but are mainly processed by Dicer-like 1 ribonuclease (Han et al., 2004; Ketting et al., 

2001). siRNA are generated from cleavage of long perfectly complementary dsRNA precursors 

while miRNA are generated from a longer imperfect pri-miRNA precursor that is processed into 

a shorter 70nt stemloop pre-miRNA (Bartel, Lee, & Feinbaum, 2004). This is then further 

processed into a mature miRNA molecule that can then enter the RISC complex. Generally one 

miRNA is produced from the pri-miRNA, whereas several siRNA can be generated from the 

dsRNA precursor (Bartel et al., 2004). miRNA have several different mRNA targets and lower 

off target effects while siRNA generally target one specific complementary mRNA and can have 

http://en.wikipedia.org/wiki/Caenorhabditis_elegans
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a higher off target effect as a result of the pool of siRNA fragments generated from the long 

dsRNA precursor (Bartel et al., 2004). However, plant miRNA tend to have fewer targets of high 

complementarity than animal miRNA which have been reported to have a broader target of 

limited complementarity (Schwab et al., 2006). 

 

1.5 Geminiviruses as RNA silencing inducers and targets  

In plants, RNA silencing is considered a primary defense mechanism against viral invasion 

(Zvereva & Pooggin, 2012). It is characterised by formation of primary viral siRNA molecules 

which are generated from the RISC-mediated cleavage of dsRNA viral transcripts. Primary 

siRNA molecules are also used for generating secondary siRNA molecules by RDR1 and RDR6 

(Blevins et al., 2006). This results in silencing of the viral genome and reduced viral replication. 

In some cases initiation of this antiviral mechanism correlates with decreased titre of the 

invading virus, reduction in symptoms, resistance and a recovery phenotype seen in geminivirus-

infected plants (Akbergenov et al., 2006; Carrillo-Tripp et al., 2007; Ribeiro et al., 2007; 

Vanderschuren et al., 2009; Vu et al., 2013)  . 

 

Geminiviruses are ssDNA viruses and replicate through a dsDNA intermediate and do not enter a 

dsRNA phase (Gutierrez 2002; Laufs et al., 1995). But it is believed that dsRNA is generated 

from Polymerase II (Pol II) directed monodirectional transcription of viral DNA resulting in 

overlapping regions of viral mRNA (Aregger et al., 2012; Hanley-Bowdoin et al., 2013; 

Vanitharani et al., 2004). The overlapping regions are used as template by RDR to make dsRNA 

which is then processed by Dicer producing primary siRNAs as seen in Fig. 1.4.  Majority of 

siRNAs generated in ACMV-[CM] plant infections have been found to originate from the AC1 

and AC2 ORF overlap region of DNA-A (Chellappan et al., 2004). dsRNA can also be generated 

from aberrant RNA with regions of homology folding on itself creating the dsRNA required to 

trigger RNA silencing (fig. 1.4) (Aregger et al., 2012; Montgomery & Fire, 1998; Shimura & 

Pantaleo, 2011; Vanitharani et al., 2005). siRNA molecules derived from aberrant 8S RNA of 

Cauliflower mosaic virus (CaMV) have been identified and its suggested that a Pol II mediated 

dsRNA intermediate mechanism is involved, however the exact mechanism is still unknown 

(Blevins et al., 2011). 
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Involvement of siRNA in TGS-directed antiviral defense mechanism against geminiviruses has 

been extensively shown over the last few years. TGS is associated with promoter inactivation 

and reduced transcript levels (Vaucheret & Fagard, 2001).  DNA methylation does negatively 

affect geminivirus promoters (Ermak et al., 1993). A recovery phenotype was observed by 

Vanderschuren et al. (2007) in siRNA-directed methylation of ACMV CR and promoter. There 

were able to detect 24-nt siRNA which are generally associated with DNA methylation which 

contributes to recovery. In research performed by Akbergenov et al. (2006) 21, 22 and 24nt 

siRNA targeting ACMV and Cabbage leaf curl virus (CaLCuV)  non coding intergenic region 

and were associated with and also suggesting involvement of both PTGS and TGS. Involvement 

of both PTGS and TGS resulting in reduced virus titre and host recovery was observed in pepper 

plants infected with Pepper golden mosaic virus (PepGMV) (Rodríguez-Negrete et al., 2009). 

Two classes of siRNA molecules were identified; smaller 21-22nt siRNA corresponding mainly 

to PepGMV coding regions and 24-nt siRNA corresponding to intergenic region.  A bisulfite 

methylation approach was performed to determine methylation levels and patterns focussing on 

the CP and intergenic regions. Results showed a much higher and constant conserved 

methylation pattern at all time points for the intergenic region but not for CP. In a more recent 

geminivirus-plant interaction study the importance of TGS was clearly demonstrated by Hagen et 

al. (2008). Cucurbit leaf crumple virus (CuLCrV) infected watermelon and cantaloupe plants had 

high accumulation of CuLCrV-derived siRNA of 24-27nt and a strong recovery phenotype. 

Similar results were seen when recovery plants were re-inoculated with CuLCrV. A limited 

recovery phenotype was observed in CuLCrV-infected zucchini plants as expected methylated 

CuLCrV DNA was lower CuLCrV infected zucchini plants than CuLCrV-infected watermelon 

plants. However, CuLCrV infection of zucchini plants inoculated with CuLCrV CR IR construct 

did result in recovery and reduced virus levels indicating involvement of gene silencing antiviral 

defense mechanism.  Inoculation of CuLCrV recovery leaves with RNA virus, Cucumber mosaic 

virus CMV, resulted in severe disease symptoms and high CuLCrV and CMV titre however 

surprisingly high siRNA accumulation was observed. This study also emphasised the idea that 

RNA silencing is more effective on DNA than RNA viruses. The results also suggest that 

recovery response is virus specific and directed. The increase in CuLCrV also suggests that 

CMV encodes 2b protein which is a known RNA silencing suppressor (González et al., 2010; 
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Xiuren Zhang et al., 2006). They also implicated virus-virus interaction, similar to that observed 

by Chellappan et al. (2004), as the cause in recovery phenotype loss.  

 

 

 

Figure 1. 4 A model depicting formation of dsRNA intermediates for siRNA induced gene 

silencing of homologous mRNA . (a) dsRNA generated from complementary viral RNA strands. 

(b) Imperfect dsRNA-like structures generated from secondary RNA structures. (c) dsRNA 

generated from aberrant RNA with homologous regions folding on itself or those formed by 

RDR-mediated amplification forming. (d) Bidirectional promoter transcribed 3’ overlapping 

RNA transcripts forming perfectly paired dsRNA molecules which can become RDR templates 

(Shimura & Pantaleo, 2011). 
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1.6 Viral RNA silencing suppressors  

DNA and RNA viruses have evolved suppressor proteins that bind the siRNA duplex or interfere 

with plant silencing at different stages of the PTGS pathway (initiation, maintenance and 

systemic signalling). Evasion and silencing of PTGS then enables the virus to replicate and 

eventually spread systemically resulting in infection (Chapman et al., 2004; Pumplin & Voinnet, 

2013). Viral RNA silencing suppressors (VRSS) of different virus families share no similarities 

suggesting different origins (Senshu et al., 2011). Most VRSS were previously identified as 

pathogenicity factors and symptom determinants prior to being assigned a secondary function as 

VRSS (Shimura & Pantaleo, 2011). Some of the earlier work on VRSS identification and 

confirmation studies were done on potyvirus proteinease HC-Pro (Anandalakshmi et al., 1998; 

Brigneti et al., 1998; Pruss et al., 1997). This RSS was implicated in interfering with initiation 

and maintenance of RNA silencing by inhibiting dsRNA processing by DICER and unwinding 

of the dsRNA duplex (Anandalakshmi et al., 1998). Early studies were also on Cucumber mosaic 

virus (CMV) 2b protein. This VRSS was implicated in prevention of systemic spread of 

silencing signal (Brigneti et al., 1998).  VRSS was also shown to have small dsRNA binding 

ability (Goto et al., 2007). More recently the mode of silencing suppression has been attributed 

to interaction and inhibition of the AGO protein (González et al., 2010).  Geminiviruses AC2, 

AC4, V2 and βC1 associated proteins have also been identified as PTGS suppressors. 

Complexities associated with VSR disruptions in RNA silencing pathways are starting to become 

more apparent and further investigations are required (Burgyán & Havelda, 2011).  

 

1.6.1 AC2 ORF encoded PTGS suppressor 

Voinnet et al., 1999 performed experiments on N. benthamiana exhibiting PTGS of the GFP 

transgene. The plant was infected with a variety of viruses leading to a disruption if GFP PTGS. 

However the degree of PTGS suppression was found to be virus specific. ACMV infection led to 

GFP PTGS suppression. Results of previous studies led to the idea of inoculating GFP 

expressing transgenic N. benthamiana exhibiting PTGS with an AC2-PVX expressing vector. 

More severe necrotic symptoms than those produced by the wild type PVX were observed and 

this gave an indication that AC2 was a host suppressor. ACMV AC2 was therefore implicated as 

a PTGS suppressor.  To further test that AC2 was indeed a silencing suppressor, PVX vector 

expressing a single AC2 point mutation (PVX-mAC2) was also used. Unlike the AC2-PVX 
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vector PVX-mAC2 didn’t produce severe symptoms and didn’t result in GFP suppression. From 

the results it was concluded that AC2 was indeed a suppressor of PTGS.  

 

The mechanism of AC2 in PTGS was later suggested to be via transcriptional regulation of host 

genes involved in negatively regulating the RNA silencing mechanism (Bisaro, 2006). AC2 was 

shown to have the ability to reverse RNA silencing  (Trinks et al., 2005). GFP expressing N. 

benthamiana plants were bombarded with a GFP and AC2 expressing plasmid. Results showed 

that systemic silencing spread was totally inhibited. This was through AC2-mediated 

transcriptional activation of host genes that regulate silencing.  This was termed transcription-

dependent suppression. AC2 seems to also work in a transcription-independent manner by 

interacting and inactivating adenosine kinase (ADK) which is required in the methylation 

silencing pathway (Wang et al., 2005; Yang et al., 2007). 

 

Synergistic relationships occurring in mixed virus infections are known to cause severe disease 

symptoms (Pruss et al., 1997)  but mechanism remained unclear until studies suggested 

involvement of PTGS suppression (Savenkov & Valkonen, 2001). RNA suppression ability of 

AC2 was also studied by transient expression leaf assays using N. benthamiana agro-infiltrated 

with a plant transformation vector harbouring EACMV AC2 followed by agro-infection of plant 

with Cameroon strain ACMV (ACMV-[CM]).  An 8 fold accumulation of ACMV-[CM] DNA-A 

was observed as compared to infections with ACMV-[CM] alone (Vanitharani et al., 2004).  

Vanitharani et al. (2004) also demonstrated a synergistic relationship between ssRNA binding 

AC4 and AC2 that results in exacerbated disease symptoms.  

 

1.6.2 AC4 ORF encoded PTGS suppressor 

The AC4 gene lies entirely within the Rep encoding region and is reported to be a PTGS 

suppressor and a disease and viral invasiveness enhancer. PTGS suppression by AC4 was also 

reported to be virus specific (Vanitharani et al., 2004). One of the experiments performed was a 

transient assay in GFP transgenic N. benthamiana. The suppression activity of AC4 from four 

different CBVs was tested. Two of the tested AC4 proteins were from ACMV-[CM] and Sri 

Lankan cassava mosaic virus and both showed PTGS suppressor activity with increased 

inhibition of GFP-specific siRNAs. From their extensive studies they were able to categorise 
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ACMV-[CM] AC4 and EACMCV AC2 as strong PTGS suppressors and ACMV-[CM] AC2 and 

EACMCV AC4 as week PTGS suppressors. This study provided evidence that similar proteins 

encoded by different virus species can and do exhibit different silencing suppressor activities. 

 

Chellappan et al. (2005) reported that AC4 from ACMV-[CM] but not EACMCV is associated 

with developmental defects when expressed in Arabidopsis though disruption of miRNA 

pathways. Plants expressing AC4 from ACMV-[CM] appeared stunted and had reduced 

reproductive tissues. Reduced levels of the most abundant Arabidposis leaf miRNA, miR159 

were also reported. This suggested that the mature miR159 was inactivated resulting in low 

miR159 detection levels which therefore caused an over-accumulation of the normal mRNA 

target producing the developmental defects (Chellappan et al., 2005). It is believed that miRNA 

pathway suppression is linked to AC4 binding to ss small RNA which then interrupts loading of 

ss small RNA into the RISC complex or disrupts already existing RISC complexes (Raja et al., 

2010). 

 

1.6.3 V2 protein as an RNA silencing suppressor 

V2 protein of Israeli isolate TYCLV-Is demonstrated RNA silencing suppressor ability in N. 

benthamiana plants infiltrated with Agrobacterium containing V2 suppressor gene and 

Agrobacterium carrying the RNA silencing initiator GFP-reporter gene (Zrachya et al., 2007). 

Elevated GFP expression and GFP protein accumulation in the infiltrated leaves was observed 

even though accumulation of GFP-specific siRNAs was present. Suppression or disruption of the 

RNA silencing pathway was then speculated to be to subsequent to dsRNA processing into GFP-

specific siRNA molecules by Dicer unlike AC4 and AC2 which inhibit siRNA accumulation 

(Vanitharani et al., 2004). Co-infiltration with Agrobacterium carrying a mutant V2 suppressor 

gene did not inhibit RNA silencing.  According to Glick et al. (2008) the suppressor activity of 

V2 is through inactivation of SGS3, this then disrupts the possible RNA silencing signal 

transport function of SGS3. SGS3 forms part of the host RNA silencing machine and is involved 

in RDR6-mediated amplification of the silencing signal (Jauvion et al., 2010; Mourrain et al., 

2000). V2 RNA silencing suppressor activity has also been identified in V2 of Ageratum yellow 

vein virus-Indonesia and Tomato yellow leaf curl China virus (Sharma et al., 2010; Zhang et al., 

2012). 
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1.6.4 Begomovirus associated Betasatellite βC1 encoded PTGS suppressor 

Satellites are single stranded sub-viral agents found associated with plant viruses. The first DNA 

satellite associated with a DNA virus was reported by Dry et al. (1997). Satellites depend on co-

infection with a helper virus for replication, movement and encapsidation but don’t share any 

sequence similarity to their helper virus (Dry et al., 1997). Satellites can also ameliorate 

symptoms caused by the helper virus. However, some satellites can also exacerbate helper virus 

disease symptoms (Roossinck et al., 1992). These sub-viral agents have also been implicated in 

virus movement as shown by Saeed et al. (2007). Co-infection of Tomato leaf curl New Delhi 

virus (ToLCNDV) DNA-A with DNA βC1 associated with cotton leaf curl disease (CLCuD) 

resulted in systemic infection.  However co-infection of DNA-A with a disrupted DNA βC1 did 

not cause systemic infection. This proved that the movement function of the bipartite 

begomovirus DNA-B required for systemic infection was replaced by βC1 encoded protein 

 

Betasatellite DNA βC1 encoded protein has been shown to be a VRSS (Amin et al., 2011; Eini et 

al., 2012; Li et al., 2014). It was suggested that DNA βC1 encoded protein has a strong affinity 

to dsRNA and therefore interrupts or interferes with dsRNA processing by Dicer (Amin et al., 

2011). A decrease in Tomato leaf curl virus (ToLCV) siRNA levels and an increase in ToLCV 

viral load was reported after co-infection of Cotton leaf curl Multan virus (CLCuMV) βC1 

encoded protein with the helper ToLCV (Eini et al., 2012).  However the ability to suppress 

PTGS has not yet been clearly elucidated.  

 

Mechanism of PTGS suppression by DNA βC1 encoded was suggested to be linked to the 

interaction of the protein with other plant host effectors that are involved in the RNA silencing 

pathway. The 1
st
 report of calmodulin-like protein, a cellular component, as an endogenous 

suppressor of PTGS, was reported by Anandalakshmi, 2000. Developmental abnormalities were 

observed in calmodulin-like protein (Nbrgs-CaM) over-expressing transgenic lines. More 

recently, Li et al., 2014 showed that N. benthamiana Nbrgs-CaM could be unregulated  by 

Tomato yellow leaf curl China (TYLCCNV) DNA βC1 encoded protein. GFP expressing N. 

benthamiana were infiltrated with sense and IR-mediated constructs targeting GFP and with 

calmodulin-like protein (Nbrgs-CaM) and βC1. Both Nbrgs-CaM and βC1 failed to suppress 

GFP silencing in IR-mediated PTGS but GFP silencing was observed by both in S-PTGS. These 
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results that Nbrgs-CaM and βC1 disrupts process involved upstream dsRNA generation (Li et 

al., 2014). Li et al., 2014, demonstrated with further experiments using a RDR6-deficient N. 

benthamiana plants that the observed PTGS was through the repression of N. benthamiana 

RDR6 (NbRDR6) mRNA levels.  RDR6 has been shown to be involved in the biogenesis of 

secondary siRNA which are required in the PTGS pathway (Cuperus et al., 2011; Rajeswaran 

and Pooggin 2012).  

 

1.7 Application of RNA silencing to combat plant disease 

RNA silencing technology exploiting/improving the innate immune response is currently been 

used to produce resistant transgenic plants (Duan et al., 2012). This method involves the 

expression of pathogen-derived genes in transgenic plants. The successful use of pathogen-

derived resistance (PDR) technology can be traced as early as 1986. Abel et al. (1986) reported a 

delay in Tomato mosaic virus (TMV) induced symptoms in transgenic tobacco expressing TMV 

coat protein. Over the years PDR technology has evolved from the expression of antisense or 

sense pathogen-derived RNA transcripts to the currently used technology that involves the 

simultaneous expression of sense and antisense pathogen-derived RNA transcripts. 

 

1.7.1 Sense and antisense RNA silencing constructs 

The first reports of antisense and sense RNA silencing strategies were in bacteria and animal 

systems and then later in plants (Fire et al., 1991; Takayama 1990). Ecker and Davis (1986) 

evaluated and compared antisense and sense target gene suppression efficiency in plant 

protoplasts. Bacterial chloramphenicol acetyltransferase gene was introduced in the sense and 

antisense orientation. Chloramphenicol acetyltransferase assays showed that antisense strategy to 

be more effective than sense strategy at blocking target gene expression (Ecker & Davis, 1986). 

Fire et al., 1991, antisense strategy was reported to be better at inhibiting gene expression than 

the sense strategy. Similarly, Smith et al., 1990, transformed tomato plants with the 

polygalacturonase (PG) gene in the antisense orientation and later that year in the sense 

orientation. However they reported sense technology and antisense technology to be comparable 

at PG protein reduction and activity (Smith et al., 1990). Findings by Fire et al. (1998), that 

dsRNA itself is a strong inducer of silencing, inspired further later experiments on simultaneous 

expression of sense and antisense transcripts by Waterhouse et al., 1998.   
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1.7.2 RNA silencing hairpin constructs 

Waterhouse et al. (1998) pioneered the simultaneous expression of sense and antisense RNA 

transcripts in plants. They transformed N. benthamiana plants with the NIa-Protease (Pro) gene 

of potato virus Y (PVY).  They reported enhanced and higher resistance to PVY in up to 55% of 

transgenic N. benthamiana simultaneously expressing antisense and sense Pro transcripts than in 

(less than 15%) transgenic N. benthamiana expressing either the sense or the antisense Pro 

transcripts.  Current technology of designing hairpin RNA silencing constructs is derived from 

findings of Waterhouse et al. (1998). These inverted repeat (IR) transgenes form the basis of 

experimental PTGS in plant systems and has been termed IR-PTGS (Chuang and Meyerowitz 

2000; Wesley et al., 2001). 

 

Inverted repeat sequences 

Eichman et al., 2000 however showed through crystallization studies that IR sequences can form 

cruciform structures which are similar in structure to Holliday junctions. These structures were 

named after Robin Holliday (Holliday et al., 1985). They form as a result of genetic 

recombination between homologous regions of DNA (Duckett et al., 1988). These four-way 

junctions can adopt either an open extended-X or more compact stacked X conformation as they 

are thermodynamically favoured than the linear form (fig. 1.5) (Eichman et al., 2000). 

 

 

Figure 1. 5 Different 4-way junctions that can be formed by IR sequences; (a) Open extended-X 

conformation and (b) compact stacked conformation (Eichman et al., 2000). 

a b 
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These secondary structures associated with palindromes, such as those seen in IR sequences, 

make cloning, polymerase chain reaction (PCR) amplification and DNA sequencing processes 

difficult (Bao & Cagan, 2006; Harmse, 2007; Wyman et al., 1985). However it was shown that 

this can be circumvented by designing constructs containing a significantly large spacer 

sequence between the sense and anti-sense arms of the IR (Smith et al., 2000).  Smith et al., 

(2000) showed that such constructs (intron-spliced RNA hairpin) can induce PTGS with almost 

100% efficiency compared to co-suppression and antisense strategy (70% efficiency). The high 

efficiency has been suggested to be due to the intron aiding alignment of complementary arms of 

the hairpin, favouring RNA hybridisation, and therefore correct dsRNA formation (Smith et al., 

2000; Wesley et al., 2001). Vectors aiding the production of IR constructs with enhanced 

stability in bacterial and plant cells were designed and introduced by Helliwell and Waterhouse 

(2003). These vectors; pHANNIBAL, pKANNIBAL and pHELLSGATE, were designed to 

contain a 700bp Pdk intron gene sequence from Flaveria between the sense and the anti-sense 

arm, a Cauliflower mosaic virus (CaMV) 35S promoter and an octopine synthase (OCS) 

terminator based on the pART7 system. However according to Heilersig et al., 2006 an intron 

whether spliceable or not doesn’t seem to enhance PTGS. They reported no noticeable increase 

in silencing efficiency.  

 

Mutated sense-arm hairpin RNA silencing constructs 

Taylor et al., 2012c circumvented the formation of cruciforms by designing hairpin constructs 

containing several mutations on the sense-arm therefore making the hairpin sense-arm less 

complementary to the anti-sense arm. This destabilises the DNA secondary structure without 

destabilising the RNA secondary structure or compromising folding of the RNA hairpin or 

silencing ability and efficiency of siRNAs generation (Arbuthnot et al., 2010; Taylor et al., 

2012c). Cytosine to thymine mutations were introduced using sodium bisulfite (chemical 

mutagen) which specifically deaminates cytosine without affecting any of the other nitrogenous 

bases (Arbuthnot et al., 2010; Taylor et al., 2012c). Due to the enhanced stability of mismatched 

IR constructs observed by Taylor et al., 2012c, mutated sense-arm hairpin RNA silencing 

constructs were designed and used for cassava cultivar cv.60444 friable embryogenic callus 

(FEC) transformation (genetic engineering of cassava discussed later). Exactly matched hairpins 
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using the Gateway-compatible vector such as pHellsgate (Helliwell & Waterhouse, 2003) were 

also designed. 

 

1.7.3 Artificial miRNA constructs for virus resistance 

miRNA were first identified by Lee et al., (1993) and they were described as small non-coding 

gene regulating RNA molecules that are transcribed from their own genes or from introns. The 

use of artificial miRNA (amiRNA) constructs has recently become a popular PTGS engineering 

strategy used to confer virus resistance in plants. Resistance is conferred by targeting viral genes 

responsible for virus replication, transmission and other important functions in the virus. This 

technology was first applied in animal cells by  Zeng et al. ( 2002) and later by (Parizotto et al. 

(2004) in Arabidopsis (Schwab et al., 2006). More recently this technology has been reported to 

confer resistance against a bipartite begomovirus. The amiRNA was designed to target the pre-

coat and coat protein of Tomato leaf curl virus (ToLCV). A 25.3% reduction in ToLCV viral 

load was observed (Vu et al., 2013). 

 

The mature artificial miRNA consists of a miRNA:miRNA* duplex with a stem-loop. This 21nt 

duplex is derived from the processing of a naturally occurring 70-80nt precursor miRNA 

transcript, known as a pre-miRNA (Cuperus et al., 2011; Ketting et al., 2001). The pre-miRNA 

is processed from a longer transcript known as a primary miRNA (pri-miRNA) (Han et al., 

2004). The short 21-25nt sequence length of artificial miRNA is advantageous over the use of 

siRNA derived from long hairpin sequences, as this reduces the possible chance of 

recombination between the introduced transgenic sequence and the infecting virus (Ali et al., 

2013).  

 

1.8 hpRNA construct design requirements 

1.8.1 Sequence length 

Several studies have focused on determining the minimum transgene length required for PTGS. 

This is still however unclear. GFP-transgenic N. benthamiana expressing a transgene sequence 

as short as 23nt were able to provide silencing but efficiency dramatically increased with an 

increase in transgene length (Thomas et al., 2001). Sequences of less than 16 nt were reported 

ineffective and showed chimeric silencing in the early stages of infection.  Similar studies by 
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Sijen et al. (1996) showed that 60nt was required to promote PTGS. In N benthamiana 

expressing partial nucleocapsid sequence of Tomato spotted wilt virus Tospovirus, a minimum 

transgene length of 236-387 bp was required to induce RNA silencing. However it was found 

that when the sequence is fused to a non-target gene then a 59-110 bp sequence is still sufficient 

(Pang et al., 1997). Reasons suggested for the inability of small fragments to promote silencing 

was inefficient transcription in the nucleus, inefficient processing and less transcript stability in 

the cytoplasm. These studies showed that length is as important as sequence homology. 

 

Tuschl et al., 1999 performed in vitro gene expression studies using Drosophila embryo lysates, 

targeting the luciferase genes and a 75-80% reduction in target mRNA levels with transgene 

lengths of between 505 – 957 nt was reported. Transgene length of 149 nt was reported to cause 

a 50% mRNA reduction while 49 nt transgene length was no more effective than buffer controls. 

However very long transgenes are sometimes not favourable as large siRNAs populations can be 

produced, and this may seem like an effective strategy but the chance of non-target endogenous 

plant gene silencing is increased. Therefore it is advisable to produce small populations of highly 

effective siRNAs to reduce the probability of non-target gene silencing (Galun, 2005). 

 

1.8.2 Sequence complementarity requirements 

Length of transgene has been shown to have an effect on RNA silencing efficiency however 

Mueller et al., 1995 demonstrated the pool of siRNAs derived from the transgene are required to 

have perfect sequence specificity to target mRNA. PVX expressing N. benthamiana was reported 

to be only effective against PVX and was ineffective against other strains that differed in 

sequence homology by as little as 22% (Mueller et al., 1995). It is generally believed that in 

plants, amiRNA and mRNA complementarity is required while in animals, perfect 

complementarity between the amiRNA and target mRNA is not as essential (Bartel et al., 2004; 

Montanucci et al., 2008; Rajeswaran and Pooggin 2012). In planta experiments by Mallory et al. 

(2004),  showed that mismatched within the miR165 complementary site resulted in dramatic 

Arabidopsis leaf developmental effects. 
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1.8.3 Other important design requirements 

There are other set guidelines recommended to helps increase the RNA silencing potency exerted 

by these short RNA molecules, and siRNA and amiRNA do share common recommended design 

features. The initial suggestion was that a high GC content was essential; however this was 

shown to be incorrect. Holen et al. (2002) showed there to be no correlation between siRNA 

potency and high GC content. Instead a low GC content is more favourable (Huesken et al., 

2005; Ui-Tei et al., 2004). Other guidelines include: (i) a stretch of adenosine nucleotides at 

preceding the endonuclease cleavage site at position 10 of the siRNA or amiRNA duplex; (ii) the 

presence of an AU sequence at the 5’ end of the antisense strand of the duplex;  and (iii) a GC 

sequence at the 5’ end of the sense strand of the duplex (strand bias discussed above) (Huesken 

et al., 2005). 

 

1.9 Defective interfering molecule-mediated resistance 

Virus resistance can also be mediated by other nucleic acid-based methods other than the 

expression of virus ORF sequences in either the sense, antisense or sense:antisense (hairpin) 

orientations. Defective interfering (DI) molecule-mediated resistance is a PDR mechanism that 

involves the expression of defective viral DNA sequences. These defective sequences are 

derived from small subgenomic DNA (549-1555 nt) referred to as DI-DNA (Stanley & 

Townsend, 1985). DI-DNA are found associated with helper full length geminiviruses (Patil et 

al., 2007; Stanley and Frischmuth 1990). DIs interfere with helper virus replication, production 

and mobilisation and reduce disease symptoms of infected plants and hence referred to as DI 

molecules (Stanley & Frischmuth, 1990).  DI-DNA lack a complete set of genes required to 

complete an infectious cycle and therefore require their helper virus to complete replication 

(Stanley et al., 1997). N. benthamiana transformed with a genomic sequence of a DI molecule 

isolated from an ACMV Kenya isolate, showed symptom amelioration after infection with an 

ACMV Nigeria isolate and a Kenya isolate. Infection of non-transgenic N. benthamiana showed 

no symptom amelioration (Stanley & Frischmuth, 1990).  
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1.10 Protein-mediated resistance 

This is another form of pathogen-derived resistance (PDR) but unlike nucleic acid-mediated 

resistance (RNA silencing) this uses protein expression to confer resistance. This method offers 

resistance to a broader range of viruses however resistance is not as effective as RNA silencing 

which is highly virus specific and offers high virus resistance (discussed above) (Duan et al., 

2012; Nomura et al., 2004). Protein-mediated resistance can be achieved by targeting a number 

of virus proteins. 

 

1.10.1 Coat protein-mediated resistance  

The first report of this was in 1986 in Tobacco mosaic virus (TMV) coat protein (CP) expressing 

N. benthamiana plants. Some of the transgenic seedlings inoculated with TMV showed no 

symptoms while others showed a delay in symptoms. It was proposed that the expressed CP 

exerted the observed results by interfering with virus disassembly and therefore disabling the 

virus ability to infect, replicate and systemically spread (Abel et al., 1986). CP-mediated 

resistance provides broad resistance and resistance against closely related virus species (Beachy 

et al., 1990; Lomonossoff 1995).  

 

1.10.2 Rep-mediated resistance 

This resistance mechanism was first observed in transgenic Nicotiana tabacum expressing a 54 

kDa component of TMV replicase gene. Upon infection with TMV, plants showed complete 

virus resistance (Golemboski et al., 1990). However, this resistance mechanism was found to be 

strain-specific. The exact mode of action was remained unclear as all attempts to extract protein 

were unsuccessful. Later, Carr et al. (1992) suggested that the resistance observed was protein-

mediated. They suggested resistance was as a result of 54 kDa protein synthesis and assembly 

being favoured over synthesis and assembly of the complete 183 kDA replicase of the infecting 

TMV.  Tenllado et al. 1995, transformed N. benthamiana with a component of Pepper mild 

mottle virus (PMMV) replicase gene. They reported similar results but reported that the observed 

resistance phenotype was both protein-mediated and transgene RNA-medaited. 

 

Transgenic expression of truncated C1 Rep-associated protein (Rep) of Tomato yellow leaf curl 

Sardinia virus (TYLCSV) resulted in resistance phenotype (Lucioli et al., 2003). Expression of 
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this protein interfered with challenging (TYLCSV) Rep by inhibiting C1 protein oligomerisation 

and therefore affecting TYLCSV replication (Lucioli et al., 2003). Oligomersation is required for 

binding and cleavage of ssDNA at the nanonucleotide sequence found in the common region of 

both DNA-A and B (Orozco et al., 1997). Once ssDNA has been nicked, then virus replication 

occurs (Orozco et al., 1997). Once again, resistance was reported to be protein mediated (through 

oligomerisation inhibition) and nucleic acid-mediated (through PTGS). However, resistance was 

also reported to be unstable resistance. 

 

1.10.3 Movement protein mediated resistance 

The ability of virus to efficiently move locally and systemically plays a role in its pathogenicity 

and virulence (Ingram et al., 1995; Ward et al., 1997). The movement protein (MP) is 

responsible for these functions (Ward et al., 1997). A reduction in symptoms and systemic virus 

levels was seen in transgenic tobacco expressing a gene encoding a defective TMV movement 

protein (MP) (Cooper et al., 1995). Transgenic tobacco expressing a gene encoding a fully 

functional TMV MP showed high virus levels and increased symptoms. This showed that the 

mechanism observed was MP mediated (Cooper et al., 1995). 

  

A reduction or disturbance in virus movement was also observed in tobacco plants expressing a 

mutated or partially inactive MP sequence (Seppänen et al., 1997). It was suggested that the 

observed reduction was as a result of non-functional MP competing with infecting virus MP and 

therefore inhibiting or reducing virus movement in the transgenic plant (Seppänen et al., 1997). 

This approach offers a broader level of resistance to a number of viruses than PTGS, which is 

very sequence specific and therefore offers a narrower virus resistance. TMV MP transgenic 

plants showed tolerance not only to TMV but also to several distantly related and unrelated 

viruses (Cooper et al., 1995; Seppänen et al., 1997). 

 

1.11 Genetic engineering 

Successful production of transgenic plants involves two important processes; development of 

efficient transformation systems and regeneration procedures (Christou, 1992). Genetic 

engineering of plants was first reported in N.tabacum  (Herrera-Estrella et al., 1983). Other 

earlier reports were in tobacco and tomato (Mccormick et al., 1986; Paszkowski et al., 1984). 
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Later with the improvement of transformation technology, successes spread to maize, rice, wheat 

and barley, cassava and other crops (Blechl et al., 1998; Bull et al., 2009; He et al., 2000; Li et 

al., 1996; Lyznik et al., 1989; Wan and Lemaux 1994). Varying degrees of plant transformation 

successes have been achieved using transformation systems such as electroporation, particle 

bombardment and Agrobacterium tumefaciens (Christou, 1992). A combination of the correct 

transformation system, most amenable transformation tissue and reproducible regeneration 

systems greatly increase transformation efficiencies. 

 

1.11.1 Electroporation 

Electroporation of susprension cells involves the use of 2 electrodes passing an electrical current 

through the suspension and the target DNA (Neumann et al., 1982).  Transient pores in the 

plasma membrane are created allowing the target DNA to enter. The electrodes are then also 

used to seal the pores, enabling cells to be regenerated (Neumann et al., 1982; Sukharev et al., 

1992). 

 

Electroporation of plants usually involves protoplasts; however this has also been successfully 

achieved in somatic embryo tissue. One of the first successful protoplast electroproration 

experiments was done in tobacco. Protoplasts were transformed with the aminoglycoside 

phosphotransferase II gene and successfully regenerated into plantlets (Paszkowski et al., 1984). 

However the limitations to this method were the low stable transformation efficiencies and 

difficulty to regenerate plantlets. Prior to 1995, there were only reports of transient gene 

expression in cassava somatic embryos using electroporation (Luong et al., 1995). Luong and 

colleagues reported transient expression of β- glucuronidase (GUS) in 75% cassava somatic 

embryos. Stable transformation of cassava was only later achieved using particle bombardment 

(Raemakers et al., 1997).  

 

1.11.2 Particle bombardment 

Particle bombardment also involves the introduction of target DNA into cells, however using 

metal particles such as gold and tungsten. The DNA coated particles are released at high pressure 

into plant cells and the target DNA is incorporated into the chromosomal DNA (Christou, 1992).   
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This transformation approach is considered to be slightly better than electroporation as it allows 

introduction of target DNA into intact tissue and causes minimal damage to plant tissue and 

therefore improves the recovery and regeneration of transformed cells (Southgate et al., 1998). 

Transformation efficiency can be variable depending on species and tissue to be transformed and 

the efficiency is often lower than that achieved when using Agrobacterium tumefaciens-mediated 

transformation method (Dai et al., 2001). However, unlike A. tumefaciens-mediated 

transformation, bombardment is a universal DNA delivery method and does not depend on crop 

specificity and host range (Liu et al., 2011; Zheng et al., 1996). Schopke et al. (1997) achieved 

stable GUS gene expression in cassava using particle bombardment however only 7 positive 

transgenic lines were obtained.  

 

Particle bombardment is less host-crop specific than Agrobacterium-mediated transformation but 

does however result in multiple transgene insertions in 90% of reported cases as compared to the 

lower 50% observed when using Agrobacterium tumefaciens-mediated transformation method 

(Dai et al., 2001). Multiple insertions are undesirable as they can result in transgene silencing 

and genetic rearrangements (Gelvin 2003a; Tang et al., 1999). 

 

1.11.3 Agrobacterium tumefaciens-mediated transformation 

Agrobacterium is a gram negative bacterium A. tumefaciens  (Heberlein et al., 1967). This 

bacterium contains a tumour inducing (Ti) plasmid (Zaenen et al., 1974). Present are oncogenes 

which are housed within the transferred (T) DNA (region of the Ti plasmid that integrates into 

the plant genome) (Chilton et al., 1977). For genetic engineering purposes, these oncogenes are 

deleted and replaced with foreign genes of interest (Gelvin, 2003a). The T-DNA region is 

flanked on either side by the left and right borders (25bp imperfect repeat sequences). Any DNA 

fragment that lies between these borders can be randomly integrated into the plant genome 

(Gelvin, 2003a).  It’s this natural ability to transfer genes into plant genomes that has been 

exploited in the development of transgenic monocotyledonous and dicotyledonous plants (Chen 

et al., & Yu, 2014; Newell et al., 2010). This method is still considered to be the most favourable 

transformation method for generating transgenic plants (Gelvin, 2003b). There are numerous 

reports of successes in cassava genetic engineering of using A. tumefaciens-mediated 

transformation of cassava friable embryogenic callus (FEC). Cassava transformation protocols 



29 

 

have been developed and optimised to make this less time consuming method and a more 

reliable and reproducible method with high transformation efficiencies (Bull et al., 2009; Chetty 

et al., 2013; Nyaboga et al., 2013; Zainuddin et al., 2012). 

1.12 Engineering geminivirus resistance 

Great strides in engineering resistance to geminiviruses have been made over the past few 

decades. Very early attempts included the expression of  non-viral protein involved in cell death 

upon viral infection and transactivation of viral proteins (Hong et al., 1997) to coat protein-

mediated strategies (discussed above) (Jan et al., 2000) and to the more widely and still used 

RNA silencing-mediated resistance strategy (discussed above) (Ye et al., 2014). Previously these 

strategies were developed and tested in model plants such as N. benthamiana but these 

technologies have since been adopted into other crops and plant systems (Vanderschuren et al., 

2007). These strategies have attempted to solve limitations and challenges associated with 

traditional breeding for resistance. A major limitation to traditional breeding is the availability of 

naturally occurring geminivirus resistance genes in wildtype cultivars (Vanderschuren et al., 

2007). Introgression of the available geminivirus resistance genes into farmer preferred cultivars 

through traditional breeding is also a huge challenge (Lapidot & Friedmann, 2002). Another 

limitation to traditional breeding for geminivirus resistance was the very variable and limited 

levels of resistance obtainable (Vanderschuren et al., 2007).  

 

Genetic engineering for geminivirus resistance has been demonstrated in other plant systems 

such in tomato. Resistance to Tomato yellow leaf curl virus (TYLCV) was reported in tomato 

plants expressing TYLCV Rep gene sequences (Yang et al., 2004). Similarly in maize, 

successful geminivirus resistance was reported in maize streak virus (MSV) resistant maize. This 

was reported as the first all-African produced MSV resistant maize (Shepherd et al., 2007). In 

gemivirus susceptible Jatropha curcus, resistance to Indian cassava mosaic virus (ICMV-Dha) 

was obtained through expression of hpRNAi constructs targeting ICMV-Dha DNA-A genes (Ye 

et al., 2014). Resistance levels were not only high, but were also reported to be durable and 

heritable. Resistance to ICMV Singaporean isolate, which shares 94.5% sequence homology to 

ICMV-Dha, was also reported (Ye et al., 2014).  Lessons learnt and successful RNAi strategies 
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developed over the years in other crop systems and the development of efficient tissue culture 

systems have contributed to geminivirus resistance engineering in cassava.   

 

1.13 Cassava genetic engineering  

The major problems in cassava crop cultivation are yield-limiting diseases, such as cassava 

mosaic disease (CMD), caused by several geminiviruses (Varma & Malathi, 2003) (discussed 

above, section 1.2). Traditional plant breeding has to date been the only means of selecting for 

virus tolerant cassava (Lapidot & Friedmann, 2002). However this approach is difficult due to 

the highly heterozygous nature of this crop and the limited resistance gene available (Solomon-

Blackburn & Barker, 2001). Furthermore, cassava’s vegetative propagation results in increases 

of the disease through successive cycles of cultivation (Thresh et al., 1994). Since no chemical 

control of virus diseases of plants is possible, one approach is via biotechnology, through genetic 

engineering (GM) of cassava to express virus resistance mechanisms such as RNA silencing 

(Thresh, 2003).   

 

However lack of reproducible transformation and regeneration systems were previously a major 

concern in cassava transgenic research and development (Munyikwa et al., 1998). Previously 

transformation efficiency depending on the transformation method used was very low (3-5%) 

and intensive and extended tissue culture periods were required (de Vetten et al., 2003). 

However the technology transfer in cassava FEC induction, transformation and regeneration has 

made genetic engineering of different cassava cultivars relatively easier and faster with higher 

transformation efficiencies now achievable (Bull et al., 2009; Chetty et al., 2013; Nyaboga et al., 

2013). 

 

The most practical explant for cassava transformation is still FEC and somatic cotyledons (Bull 

et al., 2009). Insertion of the gene of interest in the explants can be achieved using 3 methods; 

electroporation particle bombardment and A. tumefaciens-mediated transformation (Bull et al., 

2009; Fromm et al., 1985; Gonzalez et al., 1998; Schopke et al., 1997). Agrobacterium 

tumefaciens-mediated transformation is still the most efficient and reproducible method (Bull et 

al., 2009). The method used in this research was Agrobacterium tumefaciens-mediated 

transformation of FECs. 
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Early RNAi experiments were in model plants such as N. benthamiana but efficient 

transformation and reproducible protocols have allowed RNAi technology transfer to cassava 

and other crops (Vanderschuren et al., 2007). There have been several reports of successful 

cassava GE experiments over the years (Taylor et al., 2001; Taylor et al., 2012b; Vanderschuren 

et al., 2009; Vanderschuren et al., 2007; Zhang et al., 2000; Zhang et al., 2005)  and GE 

successes are even achievable in farmer preferred cultivars (Chetty et al., 2013; Nyaboga et al., 

2013; Zainuddin et al., 2012). IR-PTGS derived geminivirus resistance in cassava was first 

demonstrated by Vanderschuren et al. (2009). They produced ACMV AC1 transgenic lines that 

were resistant and still managed to maintain the resistant phenotype even under high virus 

pressure and different methods of introducing infectious virus. Prior to this work, Vanderschuren 

et al. (2007) only managed to produce IR-PTGS expressing transgenic cassava lines showing 

reduced viral load, attenuated symptoms and recovery phenotype. These results were obtained in 

transgenic lines expressing ACMV CR containing the bidirectional promoter. Currently as it 

stands successes on cassava geminivirus transgenic research have demonstrated proof in the 

laboratory and greenhouses. There is no currently available data on geminivirus transgenic 

cassava confined field trial tests. However, according to Adenle et al. (2012), a two year field 

trial on geminivirus resistant transgenic cassava engineered by the cassava research group from 

 Eidgenössische Technische Hochschule (ETH) Zürich is underway in Puerto Rico. Geminivirus 

resistant cassava confined field trials involving Danforth Center and ETH Zürich cassava 

research groups, are underway in Kenya and Uganda (Bailey et al., 2014; Taylor et al., 2012b).  
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Rationale and Motivation for the study 

Cassava (Manihot esculenta Crantz) is a staple food and food security crop in sub-Saharan 

Africa and is cultivated by small resource-poor farmers. Cassava has many uses and application 

such as animal feeding, ethanol and biofuel production and in the textile and paper industry. 

Cassava is grown in the Mpumalanga, Limpopo and Kwa-Zulu Natal Provinces in South Africa 

(SA) by subsistence farmers and commercially in Mozambique and Swaziland for industrial 

starch. Cassava starch is imported from Thailand for the paper industry in SA, and there has been 

considerable recognition recently of cassavas’ potential contribution to the bioeconomy in terms 

of agroprocessing, animal feed and bioethanol.  Very recently, the Cassava Industry Association 

of Southern African (CIASA) was registered as an NPO with the Department of Social Welfare. 

The next step from there will be the registration with the dti (Department of Trade and Industry) 

SASS Fund and, together with the Agricultural Research Council and Technical Innovation 

Agency, funds will be committed for cassava germplasm trials for selection of suitable material 

for large scale commercialized farming development. However cassava mosaic disease (CMD), 

which is caused by cassava infecting begomoviruses (CBVs), results in devastating cassava crop 

yield losses in tropical countries where it is cultivated (Elegba et al., 2013). While CMD is 

endemic to South Africa, no information is available on the actual yield losses. Several 

approaches have been developed and used to control CMD, including, breeding of natural virus 

resistant varieties and improved biotechnological strategies to decrease the huge losses 

experienced annually. Breeding for virus resistant cassava varieties is lengthy, slow and 

relatively difficult and the use of chemicals to control viruses is not possible. One approach that 

is effective in combating virus disease is genetic engineering (GE). GE can also be used for 

developing varieties with increased starch and product yield. 

 

Pathogen-derived resistance (PDR) is a GE strategy that involves the use of virus-derived genes 

or genome fragments that interfere with a specific step during virus replication or movement. 

There are several PDR approaches that can be employed for developing transgenic plants; these 

include nucleic acid-mediated approach (expression of antisense and sense viral sequences and 

hairpins) and viral protein-mediated resistance mechanism. Cassava is highly recalcitrant to 

transformation and regeneration, but recently a more reproducible and efficient method of 

cassava GE, by Agrobacterium-mediated transformation of friable embryogenic callus (FEC), 
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was developed by optimized researchers at Eidgenössische Technische Hochschule (ETH) 

Zürich. Successful transformation requires efficient FEC induction, gene transfer method, plant 

regeneration procedures and extensive skills. 

 

According to Bull et al. (2011), despite advancements in efficient cassava transformation 

protocols over the last 15 years by research institutes such as the Danforth Center and ETH 

Zürich. Technology transfer, development of technical skills and successful implementation on 

the African continent has been relatively slow. Establishment and implementation of cassava 

transformation technology on the continent will ensure high quality biotechnology research and 

training in institutions and universities. This will allow African scientists full control to adapt 

cassava based on the continent requirements. 

 

RNA silencing could provide a strategy that offers a combination of specificity and the 

exploitation of a plant cellular pathway that has evolved naturally to combat disease. Combining 

RNA silencing and cassava transformation protocols available to engineer cassava expressing 

geminivirus-derived gene sequences provides an effective strategy for combating CMD. 

 

General Objective 

Pathogen-derived resistance (PDR) is a GE strategy that involves the use of virus-derived genes 

to interfere with a specific step during virus replication or movement.  With regard to pathogen-

derived strategies, several approaches have been taken for CBVs, and these include antisense and 

sense constructs, construct encoding intron-spliced RNAs and constructs encoding hairpin RNA 

structures i.e. inverted repeats (IR) which fold to produce dsRNA and hence induce siRNAs.  

These siRNAs target incoming viral transcripts and reduce infection. This research will test two 

different RNA hairpin structures for efficient RNA silencing induction, i.e mutated sense-arm 

hybrid RNA silencing hairpins and Gateway (non-mutated) RNA silencing hairpins. Mismatched 

haripins were designed in order to overcome the problem of cruciform structures or holliday 

junctions (Eichman et al., 2000) and to stabilize the long IRs during cloning.  

 

Studies in South Africa have shown that ACMV, SACMV and EACMV isolates exist (Berry and 

Rey 2001; Rey et al., 2012).  Additionally, infections normally occur as single and also as mixed 
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infections therefore the aim of the study was to design mismatched and non-mismatched hairpin 

RNA silencing constructs that provide the most efficient siRNA production and virus 

knockdown against ACMV-[NG-Ogo], EACMV-UG2, SACMV and other cassava infecting 

geminivirus isolates. Furthermore, comparisons of RNA silencing efficiency between the 

mismatched and non-mismatched IR were undertaken. 

 

General Aims 

 

1. Design virus-derived hairpin RNA silencing constructs targeting ACMV, EACMV and 

SACMV. Constructs were designed using two different methods; using the mutated sense-arm 

method and the Gateway technology method. 

 

2. Cultivar 60444 and landraceT200 FEC induction. Agrobacterium–mediated 

transformation of cv.60444 and T200 FEC with hpRNA constructs and regeneration of 

transgenic plantlets. 

 

3. Evaluation of transgenic lines for ACMV and SACMV resistance 
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CHAPTER 2 

CONSTRUCTION OF THE MUTATED SENSE-ARM HAIRPIN RNA 

SILENCING CONSTRUCTS AND GATEWAY RNA SILENCING 

CONSTRUCTS AGAINST AFRICAN CASSAVA MOSAIC VIRUS,  EAST 

AFRICAN CASSAVA MOSAIC VIRUS AND SOUTH AFRICAN CASSAVA 

MOSAIC VIRUS 
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2.1 Introduction  

RNAi strategy was first observed in petunia plants unexpectedly by Napoli et al. (1990) and over 

the years it has become a widely used method in PTGS for developing virus resistant transgenic 

crops and also for plant gene function studies. Self-complementary (IR or hairpin) constructs are 

considered to be more effective for RNAi strategy against viral pathogens than sense or antisense 

strategies as dsRNA is the actual (Wang et al., 2008; Waterhouse et al., 1998) RNAi trigger. 

 

A spacer region is required between the IR for stability of the IR DNA in the bacteria and host 

plant. However in 2000, Smith et al., observed that only 60% of plants transformed with spacer 

region containing constructs had a single transgene copy number and were virus resistant. When 

the spacer sequence was replaced with a functional intron that is spliced out during pre-mRNA 

processing and 100% of plants transformed with the spliceable intron showed increased silencing 

efficiency. Based on the findings by Smith et al., (2000) Helliwell and Waterhouse et al., 2003 

then developed high throughput silencing vectors such as the pHannibal and pHellsgate. These 

vectors are designed with a functional PDK intron instead of the spacer sequence and facilitate 

rapid and simple construction of silencing construct. An increase in RNA silencing efficiency 

was observed in 100% plants transformed using these vectors. Helliwell and Waterhouse et al., 

2003 have developed a technology called the Gateway system that has reduced the number of 

cloning steps. They have designed vectors that allow PCR products containing specific primer 

sites on either end to recombine with pHellsgate vectors. Recombination occurs at appropriate 

vector sites allowing formation of the two arms of the hairpin in a single recombination reaction 

(Helliwell & Waterhouse, 2003).  

 

Gateway technology is rapid, however a more desirable and improved method of construct 

design that eliminates the use of a very large intron and therefore the transfer of a very large T-

DNA region during plant transformation has been adopted in our lab. This method is based on 

the knowledge that repeat sequences of DNA are prone to Holliday junction formation and hence 

the need for a spacer/intron to stabilize the DNA (Eichman et al., 2000).  DNA containing 

extensive regions of very close homology, such as IR DNA sequences has been known to form 

junctions known as helical junctions or Holliday intermediates (Duckett et al., 1988). These 

structures are important in biological cells during genetic recombination events, rearrangements 
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and repair of double strand breaks in DNA. In naturally occurring biological systems these 

structures are resolved by enzymes. The IR form stable cruciform structures. Junctions then form 

in the arms of the cruciform (Lilley & Norman, 1999).  

 

Therefore in designing IR DNA with a few mismatches we believe that the tendency of IR 

forming these stable cruciform structures will be circumvented. Mismatches reduce the long 

stretch of homologous sequence and therefore circumvent the formation of stable cruciform 

structures. Mismatches were introduced in the DNA sequence by exposing DNA to sodium 

bisulfite treatment. Sodium bisulfite treatment deaminates unmethylated cytosines to uracil 

(Shapiro et al., 1970). The mutated strand is used in an amplification reaction resulting in the 

incorporation of a thyamine in the newly synthesised stand, hence C-T conversion. 

 

In this study mutated sense-arm hairpin RNA silencing constructs (section 2.2) and Gateway 

silencing constructs (section 2.3) were designed to against ACMV and SACMV and the 

silencing efficiency compared between the two approaches. Additionally, mixed infections are a 

common occurrence in nature and hence stacked (chimeric/hybrid) constructs with the ability to 

target a variety of CBVs were designed. Stacked constructs were also designed to target two 

CBV ORF simultaneously. All constructs were transformed into cassava FEC T200 landrace and 

cv.60444 FEC (Chapter 3). 
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2.2 Specific Aims 
 

The aim of this chapter was to design virus-derived hairpin RNA silencing constructs (MM1; 

MM2 and MM3) targeting ACMV, EACMV and SACMV. Constructs were designed using two 

different methods; using the mutated sense-arm method and the Gateway technology method.  A 

mutated SACMV BC1 hpRNA construct previously tested in N. benthamiana (Taylor et al., 

2012c; Rey et al., 2012) was included in the transformation and virus-challenge trials of cassava 

(chapters 3 and 4). 

 

2.2.1 Construct mutated sense-arm hairpin RNA silencing constructs 

MM1hp: Construct I (ACMV AC1/AC4 + EACMV AC1/AC4) 

MM2hp: Construct II (ACMV AC1/AC4 + ACMV AC2/AC3) 

MM3hp: Construct III (EACMV AC1/AC4 + EACMV AC2/AC3) 

 

Steps for construction of mutated sense-arm hybrid RNA silencing hairpins 

i. Target sequence amplification of selected regions.  

ii. Fuse selected amplicon fragments to make the required hybrid combinations 

iii. Sodium bisulfite treat the hybrid fragments required for the sense-arm of the IR 

construct  

iv. Assemble the different IR constructs consisting of a mutated sense and unmodified 

antisense-arm. 

v. Clone the mismatched IR constructs into pART7 expression vector. 

vi. Clone the hairpin cassette constructs into plant transformation vector pCAMBIA 

1305.1. 

vii. Transform Agrobacterium LBA 4404 with the 4 mutated sense-arm hybrid RNA 

silencing hairpins. 
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2.2.2 Construct non-mismatched (Gateway) RNA silencing hairpin constructs 

MM5hp: Construct V (ACMV AC1/AC4 + EACMV AC1/AC4) 

MM6hp: Construct VI (ACMV AC1/AC4 + ACMV AC2/AC3) 

MM7hp: Construct VII (EACMV AC1/AC4 + EACMV AC2/AC3) 

MM8hp: Construct VIII (SACMV BC1) 

 

 Steps for Gateway RNA silencing hairpins 

i. Target sequence amplification from hybrid sequences generated in 2.4.1.6. Hybrid 

sequence PCR modification to incorporate XbaI and XhoI restricted sites 

ii. Cloning of XbaI and XhoI containing amplicons into XbaI and XhoI restricted sites of 

pHellsgate 8 

iii. NotI digest of pHellsgate 8 hairpin cassette (promoter, IR sequences separated by 

intron and terminator) and ligation into pCAMBIA1305.1  

iv. Transformation of Agrobacterium LBA 4404 with the 4 different Gateway RNA 

silencing hairpin constructs 
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2.3 Methodology flow chart 

 

2.3.1 Target region selection and amplification 

 

 

 

 

 

 

 

1) PCR amplification of target regions 
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2.3.2 Mutated sense-arm hairpin RNA silencing constructs 

                                                                                             

 

 

                                                                    
 

 
                                                          

 

 

 

 

    XhoI -------------------------------------------BglII                                          ------------------------------------------ 

                                                                                                     
                                                             

 

 

 

 

 

 

 

 

 

 

 

                                                                      

2) PCR-mediated fusion of target regions to make hybrid 

strand 

1) Mutation of hybrid strand using sodium bisulfite 

3) T/A cloning of fragments into pTZ57R/T and screening for orientation 

2) PCR amplification of mutated hybrid strand 

using modified primers that contain restriction 

enzymes to facilitate downstream cloning 

 

2) PCR amplification of original 

(nonmutated) hybrid strand using 

original target region primers 

 

3) Digestion with ScaI and BglII 3) Digestion with ScaI and BamHI 
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2.3.3 Non-mismatched (Gateway) RNA silencing hairpin constructs 

 

-------------------------------- 

(hybrid fragment generated in section 2.3.1) 

 

 

 

 

 
 

 

 

 

 XhoI---------------------------------XhoI                                                            XbaI---------------------------------XbaI 
 

 

 

 

 

1) PCR incorporation of XhoI and XbaI restriction sites on either side of the target hybrid fragments 

 

2) Ligation of XhoI and XbaI containing target amplicons into pHellsgate 8 

4) Ligation of fragments 

5) Sub-cloning into pART7 expression cassette and 9) Sub-cloning into pCambia 1305.1  
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3) Sub-cloning of pHellsgate 8 hairpin cassette into pCambia 1305.1 

4) A. tumerfaciens LBA4404 transformation with pCambia 1305.1-pHellsgate 

hairpin constructs (nonmutated RNA silencing hairpin/Gateway constructs) 

Figure 2. 1 Flow diagram of methodology followed to create the Mutated sense-arm 

(Mismatched constructs) and the Gateway (Non-mismatched) RNA silencing constructs. 
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2.4 Materials and Methods 

2.4.1 Target selection, alignment and amplification 

2.4.1.1 Sequence alignment and selection of CBV ORF targets for RNAi constructs 

The paper by Fauquet et al. (2008) was used to obtain the accessions numbers of DNA-A of 8 

ACMV isolates; ACMV-[Nigeria: Ogoroco: 1990] ([NG:Ogo:90]), ACMV-Cameroon: 1998 

([CM: 98), ACMV– [Nigeria] (NG), ACMV– [Cameroon-DO2:1998] (DO2:98), ACMV–[Cote 

d’Ivoire:1999] ([CI:99]), ACMV–[Kenya:844:1982] ([KE:844:82]),  ACMV–[Uganda] (ACMV-

[UG]), ACMV-Uganda: Mild: 1997) ([UGMld]:97) and ACMV–Uganda:Severe:1997 

[UG:Svr:97]) and DNA-A of 6 EACMV isolates; EACMV–Uganda2 ([UG2]), EACMV–

[Uganda:Mild2:1997] ([UG:Mld2:97]), EACMV–[Uganda:Severe2:1997] ([UG:Svr2:97]), 

EACMV– [Kenya:K2B:1996] ([[KE:K2B:96]), EACMV-Tanzania [Tanzania:YV] ([TZ:TV]) 

and East African mosaic Zanzibar virus ([EACMZV]).  

 

The accession numbers of all the 14 CBV isolates were entered into the National Center for 

Biotechnological Information site (NCBI) to obtain the sequences. The selected CBV isolates are 

representatives of EACMV and ACMV diversity in Africa. Multiple sequence alignment was 

performed using Clustal X Multiple Sequence Alignment Program (version 1.8, 1999). ACMV 

([NG:Ogo:90]), DNA-A and EACMV–[UG2] DNA-A were chosen as reference sequences 

(these are isolates that are available in the lab and therefore available for PCR amplification of 

desired target regions). The reference sequences were aligned with the DNA-A sequences of the 

other 7 ACMV and 5 of the EACMV to find regions with sequence similarity within the 

overlapping gene regions of AC1/AC4, AC2/AC3 for both ACMV and EACMV. Well 

conserved regions amongst ACMV and EACMV isolates were identified as potential targets 

against sites. Sequences of regions selected were entered into a program called siRNA Scan (Xu 

et al., 2006) to identify potential RNA silencing off-targets and to also identifying regions along 

the potential target sequence were efficient siRNAs will be produced. 
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Overlapping ORF fragments were computationally identified 

• ACMV AC1/AC4 =136 bp 

• ACMV AC2/AC3 =183 bp 

• EACMV AC1/AC4 =207 bp 

• EACMV AC2/AC3 =174 bp 

 

2.4.1.2 Polymerase chain reaction amplification of identified overlapping ORF regions  

Integrated DNA Technologies (IDT) programme was used to design primers to amplify the 

target overlapping ORF regions. Each of the 4 preliminary fragments were amplifies using High 

fidelity enzyme mix (Fermentas) using the following 4 sets of primers. For amplification of 

ACMV AC1/4, primer ACMV AC1/AC4F (forward) (5’-AAGTGAGGTTCCCCATTCTG-3’) 

and ACMV AC1/AC4R (reverse) (5’-ATGTCTTTCTCACATACCCAAAGTG-3’) combination 

was used. Primer set had an annealing temperature (Ta) of 60°C. For ACMV AC2/3, primer 

ACMV AC2/3F (5’-CTCCTTCCTCAGGTTGTGATTG-3’) and ACMV AC2/3R (5’-

CCAATCATGGATTTACGCACA-3’) were used, Ta was 60°C. For EACMV AC1/4 the 

primers EACMV AC1/4R (5’-TTCTGGCATCGACTTGGAA-3’) and EACMV AC1/4R (5’- 

ATGGGGTGCCTCATCTCC-3’) were used, Ta was 56°C. For EACMV AC2/3, primers 

EACMV AC2/3F (5’- CCAGACCTTGAAGTTCAGAAAA-3’) and EACMV AC2/3R (5’- 

AGGAATGGCGTTTTTACCTG-3’) were used, Ta was 58°C. The reaction mixture contained 

0.2μM of each primer, 5X High fidelity buffer, 2mM dNTPs, 1U High fidelity enzyme mix 

(creates both blunt ends and 3’-dA overhangs), 20ng of template DNA and nuclease free water to 

a final volume of 50μl. The polymerase chain reactions (PCR) were cycled in a thermal cycler 

(Bio-Rad) set at 94 °C for 2min and 35 cycles 94°C for 30s, appropriate Ta for 30s, primer 

extension at 72°C for 30s and final extension step of 72°C for 10min the appropriate cycling 

conditions. Amplification products were run in 1.2% agarose gel containing 10µg/ml ethidium 

bromide run in 1X TAE. 
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2.4.1.3 Cloning of PCR products 

PCR amplicons were T/A cloned into pTZ57R/T vector (Fermentas). The ligation mixture 

contained 1X ligation buffer, 1U T4 DNA ligase (Fermentas), 4µl of PCR amplified fragment, 

3µl pTZ57R/T vector and nuclease free water to a final volume of 30µl. Ligation control was 

also performed using the kit provided control PCR fragment. The ligation mixtures were 

incubated at 22°C for a minimum of 1 hour (h). Chemically treated competent E.coli DH5α cells 

stored at -70°C were thawed on ice. To this 15 µl of ligation mix was added to 100µl competent 

cells and incubated on ice for 15min. Cells were heat shocked at 42°C for 90s and then placed on 

ice for 3-5min. Transformation control was also performed using control vector with insert 

(Fermentas). Cells were spread onto LB agar plates containing 100µg/ml ampicillin (to select for 

transformants), 20mg/ml X-Gal and 0.1M IPTG, for blue/white colony screening. Plates were 

incubated at 37°C overnight. White colonies were selected and inoculated into 5ml LB broth 

containing 100µg/ml ampicillin and incubated at 37°C overnight shaking at 200 revolutions per 

minute (rpm).  

 

2.4.1.4 Screening of clones 

Plasmid DNA was extracted from the presumptive clones using the High pure plasmid miniprep 

kit (Roche) and quantified on the Nanodrop 1000 spectrophotometer (Nanodrop).Clones were 

screened for presence of insert using the M13pUC F (5'-GTAAAACGACGGCCAG-3') and 

M13pUC R (5'-CAGGAAACAGCTATGAC-3') primers, corresponding to the N-terminus of 

galactosidase. Insert primers used to amplify the regions in 2.4.1.2 were also used to confirm the 

presence of target insert. The reaction mixture contained 1X Taq buffer, 2mM MgCl2, 0.2mM 

dNTPs, 0.2μM of each primer, 1U Taq recombinant enzyme (Fermentas), 20ng of template DNA 

and nuclease free water to a final volume of 50μl. Reactions were cycled in a thermal cycler 

(Bio-Rad) set at 94 °C for 2min and 35 cycles 94°C for 30s, 55°C for 30s, primer extension at 

72°C for 30s and final extension step of 72°C for 10min the appropriate cycling conditions. 

Amplification products were run in 1.2% agarose gel containing 10µg/ml ethidium bromide run 

in 1XTAE. 

 

Once the overlapping ORF fragments had been identified, amplified and cloned we explored 

different fragment fusion combinations that could be used to generate hybrid fusion fragments 



47 

 

required to produce 3 different mutated sense-arm RNA silencing hairpin constructs. The 

following combinations were selected: 

 

 I-ACMV AC1/AC4 + EACMV AC1/AC4 =343 bp 

 II-ACMV AC1/AC4 + ACMV AC2/AC3 =319 bp 

 III-EACMV AC1/AC4 + EACMV AC2/AC3 =381 bp 

 

 

2.4.1.5 Designing bridge primers and producing PCR fragments with complementary 

overlapping ends 

In order to fuse 2 fragments required to make the 3 hybrid constructs, chimeric bridge primers 

were designed. Bridge primers introduced complementary overlapping ends between 2 fragments 

and therefore facilitated the fusion of the fragments forming the hybrid virus target sequence. For 

each of the 3 constructs a bridge primer was designed. Bridge primers were designed by adding 

the F primer sequence of the 2
nd

 fragment to the R primer sequence of the 1
st
 fragment creating a 

40-47nt bridge primer.  

 

Bridge primer for Hybrid I was made by adding the EACMV AC1/4F primer sequence to the 5’ 

end of ACMV AC1/4 R primer sequence creating a 44nt ACMV1/4 + EACMV1/4 HYBRID R 

primer (5’-TTCCAAGTCGATGCCAGAAATGTCTTTCTCACATACCCAAAGTG-3’). The 

ACMV AC1/4 fragment required for Hybrid I was re-amplified from extracted plasmid (2.4.1.4) 

using ACMV AC1/4F and ACMV AC1/4 + EACMV AC1/4 Hybrid R producing an ACMV 

AC1/4 amplicon with EACMV AC1/4 overlap (Product A).   

 

Bridge primer for Hybrid II was made by adding the ACMV AC2/3 F primer sequence to the 5’ 

end of ACMV AC1/4 R primer sequence creating a 47nt ACMV1/4+ ACMV2/3 HYBRID R 

primer (5’-CAATCACAACCTGAGGAAGGAGATGTCTTTCTCACATACCCAAAGTG-3’). 

The ACMV AC1/4 fragment was also required for Hybrid II, the fragment was once again re-

amplified from extracted plasmid (2.4.1.4) however this time round using ACMV AC1/4F and 
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the ACMV AC1/4 + ACMV AC2/3 Hybrid R primers producing ACMV AC1/4 amplicons with 

ACMV AC2/3 overlap (Product B). 

 

Bridge primer for Hybrid III was made by adding the EACMV AC2/3 F primer sequence to the 

5’end EACMV AC1/4 R primer sequence creating a 40nt EACMV 1/4 + EACMV 2/3 HYBRID 

R (5’-TTTTCTGAACTTCAAGGTCTGGATGGGGTGCCTCATCTCC-3’). To amplify the 

EACMV AC1/4 fragment required to generate the Hybrid III, EACMV AC1/4F primer and 

EACMV AC1/4+EACMV AC2/3 Hybrid R primer were used.  The fragment was amplified 

from plasmid extracted in 2.4.1.4 creating an EACMV AC1/4 amplicon with EACMV AC2/3 

overlap (Product C).  

The PCR reaction mixture to amplify all the 3 hybrid fragments consisted of 0.2μM of each 

appropriate primer, 1X High fidelity buffer, 0,2mM dNTPs, 1U High fidelity enzyme mix 

(Fermentas), 20ng of appropriate plasmid and nuclease free water to a final volume of 50μl. PCR 

Reactions were cycled in a Thermal cycler (Bio-Rad) set at 94 °C for 2min and 35 cycles 94°C 

for 30s, appropriate Ta for 30s, primer extension at 72°C for 30s and final extension step of 72°C 

for 10min. Ta used to create ACMV AC1/4 with EACMV AC1/4 overlap (Product A) was 58°C. 

Ta to create ACMV AC1/4 with ACMV AC2/3 overlap (Product B) was 60°C. Ta to create 

EACMV AC1/4 with EACMV AC2/3 overlap (Product C) was 58°C. Fragments were run in 

1.2% agarose gel containing 10µg/ml ethidium bromide run in 1XTAE. The remaining PCR 

products were PCR purified using the High pure PCR purification kit (Roche) and also cloned 

into pTZ5R/T following the same method as 2.4.1.3 Method used to screen clones was the same 

as 2.4.1.4.  

 

2.4.1.6 Fusion PCR for creating hybrid fragments I, II,  

Target overlapping regions (EACMV AC1/4, ACMV AC2/3 and EACMV AC2/3) were again 

amplified from extracted plasmid from 2.4.1.4, regions were amplified following the same 

conditions used in 2.4.1.5. Products A, B and C were also re-amplified from the plasmid clones 

generated above.  
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PCR was used to fuse fragments required to make each hybrid fragment. PCR Product A (1μg) 

was mixed with EACMV AC1/4 overlap fragment (1μg). PCR product B (1μg) was mixed with 

ACMV AC2/3 (1μg) and PCR product C was mixed with EACMV AC2/3 (1μg). Mixed 

products were placed in a thermal cycler (Bio-Rad) for 3min at 95°C to denature the strands then 

cooled down to 50°C for 5min to allow the overlapping in each reaction to align (ref to 

methodology flow diagram 2.1, point 2). PCR reaction tubes were set up with 1X High fidelity 

buffer, 0,4mM dNTPs, 5U High fidelity enzyme mix (Fermentas) and nuclease free water to a 

final volume of 50μl. No primers were included in this reaction as this reaction was only 

performed to elongate the overlapping regions generated after the 50°C for 5min cooling step. 

The reaction tubes were 1
st
 heated to 95°C for 30sec and machine paused and to this 10μl of the 

mixed DNA was added. The reaction tubes were then placed back into the Thermal cycler (Bio-

Rad) for 30sec at 55°C followed by 30min at 72°C to allow for overlapping ends to be extended 

creating the dsDNA. 

 

2.4.1.7 Amplification of the hybrid fragments 

PCR reactions were set up for each of the 3 hybrid fragments. Primer combinations specific for 

amplifying each of the above products were used. To amplify Hybrid I, ACMV AC1/4F and 

EACMV AC1/4R primers were used. To amplify Hybrid II, ACMV AC1/4F and ACMV 

AC2/3R primers were used. To amplify Hybrid III, EACMV AC1/4F and EACMV AC2/3R 

primers were used. dsDNA molecules generated above were used as template, 1μl was placed in 

a PCR tube containing 1X High fidelity buffer, 0,2mM dNTPs, 0.2μM of each primer, 1U High 

fidelity enzyme mix (Fermentas) and nuclease free water to a final volume of 50μl. PCR cycling 

conditions were as follows, 94 °C for 2min and 35 cycles 94°C for 30s, Ta of 58°C for 30s was 

used for all primer sets, primer extension at 72°C for 30s and final extension step of 72°C for 

10min. Hybrid PCR products were run in 1% agarose gel containing 10µg/ml ethidium bromide 

run in 1X TAE. 

 

2.4.1.8 Cloning and screening of hybrid fragments 

Hybrid fragments I, II and III were PCR purified using pure PCR purification kit (Roche) and 

cloned following the same method as 2.4.1.3. Plasmid DNA was extracted from the presumptive 

clones using the High pure plasmid miniprep kit (Roche) and plasmid quantified on the 
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Nanodrop 1000 spectrophotometer (Nanodrop). Clones were screened using the same method as 

2.4.1.4. Clones were further screened for orientation using the M13pUC F primer, the EACMV 

AC1/4R primer for Hybrid I, M13pUC F primer and ACMV AC2/3 R primer for Hybrid II and 

M13pUC F primer and EACMV AC1/4 R primer for Hybrid III. PCR reaction mixture used and 

cycling conditions used were same as 2.4.1.4. Amplification products were run in 1% agarose gel 

containing 10µg/ml ethidium bromide run in 1X TAE. Clones containing the hybrid fragments in 

the antisense orientation were kept for later use and those containing sense fragments were used 

for sodium bisulfite treatment reaction. 

 

2.4.2 Construction of mutated sense-arm hairpin RNA silencing constructs 

2.4.2.1 C-T mutation of PCR products 

Hybrid I, II and III were amplified from extracted plasmid DNA using High fidelity enzyme mix 

(Fermentas). Primers used were the same as the ones used in 2.4.1.7 and the thermal cycling 

conditions were also the same.  The reaction mixture contained 0.2μM of each primer, 1X High 

fidelity buffer, 2mM dNTPs, 1U High fidelity enzyme mix (Fermentas). PCR amplicons were 

PCR purified (Roche) and quantified on the Nanodrop 1000 spectrophotometer (Nanodrop). The 

EZ DNA Methylation-Gold kit (Zymo Research) was used to catalyze the deamination of 

Cytosine residues to Thymine residues. Following manufactures instructions 130μl CT reagent 

(containing sodium bisulfite) was added to 20μl (200ng-500ng) of respective purified PCR 

products I, II and III. Tubes were then placed in a Thermal cycler (Biorad). DNA was denatured 

at 98°C for 10min, then deaminated at 64°C for various time periods (5, 10, 15, and 30min), 

followed by cooling at 4°C for 10min. Deaminated DNA was then used immediately and not 

stored for longer than 24hrs.  Deaminated DNA products were then purified with desulphonation 

buffer and an ethanol-containing wash buffer. The recovered purified deaminated DNA was then 

eluted from a silica-based spin-column and used for downstream PCR. 

 

2.4.2.2 Strand specific amplification of the deaminated PCR products 

To preferentially amplify the sodium bisulfite treated PCR products, modified primers designed. 

These primers were designed to incorporate appropriate restriction endonuclease (RE) sites to the 

5’ and 3’ ends of the PCR products, this was essential for downstream processing restriction and 
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ligations. To the F primer XhoI and SpelI sites were added and a BglII recognition site was added 

to the R primer.  

 

To preferentially amplify mutated Hybrid I fragment, primer set ACMV AC1/4F (mod-

XhoI+SpeI) (5’-GATCCTCGAGACTAGTAAGTGAGGTTTCCCATTTTG-3’) and EACMV 

AC1/4R (mod-BglI) (5’-GATCAGATCTATAGGATGCCTCATCTCC-3’) was used. To 

preferentially amplify mutated Hybrid II fragment, primer set ACMV AC1/4 F (mod-XhoI+ 

SpeI) (5’-GATCCTCGAGACTAGTAAGTGAGGTTTCCCATTTTG’-3) and ACMV AC2/3R 

(mod-BglII) (5-’GATCAGATCTCCAATCATAGATTTACACACAGG-3’) was used. To 

preferentially amplify mutated Hybrid III, primer set EACMV AC1/4F (mod-XhoI+ SpeI) (5- 

GATCCTCGAGACTAGTTTTTGGCATCGATTTGGAA-3’) and EACMV AC2/3 R (mod-

BglII) (5-’GATCAGATCTAAGAATAGCGTTTTTACCTGG-3’) was used. The PCR reaction 

mixture consisted of 0.2μM of each primer, 1X High fidelity buffer, 0,2mM dNTPs, 1U High 

fidelity enzyme mix (Fermentas), 1μl of the recovered mutated DNA was added and nuclease 

free water added to a final volume 50μl.  The mutated hybrid PCR products were then run in a 1 

% agarose gel containing 10µg/ml ethidium bromide in 1XTAE.  

 

Mutated hybrid fragments were expected to be 18 bp longer than the nonmutated hybrid 

fragments. The 18 bp extra nucleotides were from RE sites that were introduced to the 5’ end of 

the F and R primers used to amplify the mutated hybrid fragments.  

 

 Expected mutated hybrid fragment sizes 

 I mutated hybrid =361 bp 

 II mutated hybrid =337 bp 

 III mutated hybrid =399 bp 

 

2.4.2.3 Cloning of mutated hybrid fragments 

Mutated hybrid PCR products were purified using the High Pure PCR product purification Kit 

(Roche) and quantified using the Nanodrop. Fragments were then T/A cloned into pTZ57R/T 

vector (Fermentas) following method described in 2.4.1.3. Plates were incubated at 37°C O/N. 
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White colonies were randomly selected and inoculated in LB broth containing 100µg/ml 

amplicillin. 

 

2.4.2.4 Screening of clones for insert and orientation 

Plasmid DNA was extracted from presumptive clones using High Pure Plasmid Miniprep kit 

(Roche) and quantified using the Nanodrop. Clones were first screened for correct size using the 

M13 primer set following same method described in 2.4.1.4. Positive clones containing the right 

size insert were then further screened for correct orientation using the M13F pUC primer and the 

mutated hybrid insert reverse primer. PCR amplicons were examined by electrophoresis on a 1% 

agarose gel, containing 10μg/ml ethidium bromide run in 1X TAE. 

 

2.4.2.5 Sequencing and sequence analysis of clones 

Following screening, clones presumed to contain the mutated and original unmodified strands 

were sent for automated sequencing by Inqaba Biotechnical Industries (Pretoria, South Africa). 

The universal M13/pUC F primer and the M13/pUC R primer were used to sequence the 

multiple cloning site (MCS) of pTZ57R and any insert contained within. Raw sequencing data 

was edited using the Chromas software (version 1.45) (Griffith University, Australia). 

Subsequent sequence analysis was performed using Vector NTI Advance suite of software 

(version 10.3) (Invitrogen, 2006). A multiple sequence alignment was done to compare the 

sequences of mutated overlapping clones to the full length sequence to determine the number of 

cytosine to thymine mutations. Sequencing data was also used to confirm the orientation of 

inserts. 

 

2.4.2.6 Construction and cloning of the inverted (IR) repeat 

Plasmid DNA was extracted from the desired mutated hybrid and nonmutated hybrid clones. 

Plasmid containing the mutated hybrid fragment was restricted with ScaI and BglII (Fermentas) 

while plasmid containing the nonmutated hybrid fragment was restricted with ScaI and BamHI 

(Fermentas). The restriction fragments were then analysed on a 1% agarose gel. Bands 

corresponding to approximately 1.5kb (nonmutated hybrid) and 2.2kb (mutated hybrid) were 

excised and gel extracted using the QiAquick gel extraction kit (Qiagen) followed by 
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quantification using a nanodrop. Restriction digest with BglII and BamHI produced compatible 

cohesive ends therefore enabling mutated hybrid and nonmutated hybrid fragments to be ligated 

forming an IR. A 1:1 ligation ratio between the 2 fragments was performed. Ligation mixture 

contained 1X ligation buffer, 1U T4 DNA ligase (Fermentas) and 1:1 ratio purified fragments. 

This was incubated for a minimum of 1hr at 22°C. Chemically competent DH5α cells (100μl) 

were transformed with 15μl of the ligation mixture and spread on 100 µg/ml ampicillin 

containing LB agar plate and incubated O/N at 37°C. Colonies were randomly selected and 

inoculated in LB containing 100 µg/ml ampicillin and incubated O/N at 37°C. Plasmid DNA 

from the presumptive clones was then extracted.  Clones were successfully screened using XbaI 

and XhoI (Fermentas) as it was to PCR to amplify through the IR sequence. Restriction 

fragments were examined by electrophoresis on a 0.8% agarose gel containing 10 μg/μl ethidium 

bromide run in 1X TAE. 

 

Figure 2. 2 Schematic representation of head to head ligation of non-mutated strand and mutated 

strand required for IR formation. 

 

 Expected IR hairpin fragment sizes 

 I-IR: non-mutated hybrid I + mutated hybrid I = 698 bp 

 II-IR: non-mutated hybrid II + mutated hybrid II = 650 bp 

 III- IR: non-mutated hybrid III + mutated hybrid III = 774 bp 
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2.4.2.7 Sub-cloning of IR into expression cassette 

A double digest using XbaI and XhoI (Fermentas) was performed to restrict the IRs to restrict out 

of pTZR5/T. Following restriction, the vector and fragments of interest were separated by 

electrophoresis run in 1X TAE. The IR fragements was excised from a 1% agarose gel 

containing10ug/μl ethidium bromide. IR fragments were gel purified using a QiAquick gel 

Extraction Kit (Qiagen), and quantified on a Nanodrop. Expression pART7 vector was linearized 

using XbaI and XhoI (Fermentas) and also dephosphorylated using FastAP (Fermentas). Vector 

was then purified using the High Pure PCR product purification Kit (Roche). The gel purified 

fragments were then ligated in the pART7 multiple cloning site (MCS), between CaMV35S 

promoter and octopine synthase transcriptional terminator sites. A 1:1 insert (100ng) vector 

(100ng) ligation reaction was performed and incubated at 22°C for a minimum of 1hour. This 

transformed into DH5α following the same method as 2.4.1.3. Transformed cells were plated on 

LB agar plate containing 100µg/ml amplicillin and incubated O/N at 37°C. Colonies were 

randomly picked and plasmid DNA extracted using the High Pure plasmid extraction kit (Roche) 

followed by screened using XhoI and XbaI (Fermentas). Correct clones were assigned the 

following ID/codes MM1-IR cassette, MM2-IR cassette and MM3-IR cassette.  

 

2.4.2.8 PCR amplification of IR expression cassette 

Due to the lack of available REs required to restrict the IR expression cassette out of pART7 and 

ligate into pCAMBIA 1305.1, it was necessary to amplify out the whole IR expression cassette 

(promoter, IR insert and terminator). The IR expression cassette was amplified using the 

following primer set; Cassette 7 F (5’-TTAACGTTTACAATTTCCCATTCGC-3’) and Cassette 

7 R (5’-GTTATCCGCTCACAATTCC-3’) primers. The PCR reaction mixture consisted of 

0.2μM of each primer, 1X High fidelity buffer, 0,2mM dNTPs, 1U High fidelity enzyme mix 

(Fermentas), 20ng of template DNA and nuclease free water to a final volume of 50μl. PCR 

cycling conditions were as follows, 94 °C for 2min and 35 cycles 94°C for 30s, 55°C for 30s, 

primer extension at 72°C for 3min and final extension step of 72°C for 10min. PCR products 

were run in a 1 % agarose gel containing 10µg/ml ethidium bromide in 1X TAE. Amplicons 

produced of ~3000 bp were T/A cloned into pTZ57R/T as described in 2.4.1.3. Ligation mixture 

was transformed into E.coli DH5α using following method described in 24.1.3. Transformed 

cells were plated on LB agar plate containing 100µg/ml ampicillin and incubated O/N at 37°C. 
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Colonies were randomly selected and plasmid DNA extracted using the High Pure plasmid 

extraction kit (Roche).   

 

2.4.2.9 Screening of clones for presence and orientation of IR expression cassette 

Colonies were screened using M13 primers for presence of IR expression cassette following 

method described in 2.4.1.4. The PCR reaction mixture contained 1X Taq buffer, 2mM MgCl2, 

0.2mM dNTPs, 0.2μM of each primer, 1U Taq recombinant enzyme (Fermentas), 20ng of 

template DNA and nuclease free water to a final volume of 50μl.  Reactions were cycled in a 

thermal cycler (Bio-Rad) set at 94 °C for 2min and 35 cycles 94°C for 30s, 55°C for 30s, primer 

extension at 72°C for 3min 30secs and final extension step of 72°C for 10min th. Amplification 

products were run in 0.8% agarose gel containing 10µg/ml ethidium bromide run in 1X TAE.  

 

Colonies containing IR expression cassettes were further screened for orientation. PCR was used 

to screen. Different primer combinations were used. M13pUCF primer was used along with 

cassette 7 R primer. M13pUCR was used with cassette 7 F primer. Reaction mixture and cycling 

conditions were the same as above. Amplification products were then run in 0.8% agarose gel 

containing 10µg/ml ethidium bromide run in 1XTAE.  

 

2.4.2.10 Sub-cloning of IR hairpin cassette into pCambia 1305.1 

Double digest was performed using EcoRI and HindIII (Fermentas) to restrict the IR hairpin 

cassette out of pTZ57R/T. Expected restricted fragments (~3-3.3kb) were gel extracted and 

purified from a 0.8% agarose gel containing 10µg/ml ethidium bromide run in 1XTAE. Plant 

transformation vector pCAMBIA 1305.1 was linearized with EcoRI and HindIII (Fermentas) and 

blunt end polished using T4 DNA polymerase (Fermentas). Blunt polished ends were then 

dephosphorylated using FastAP (Fermentas). The vector was then PCR purified using the High 

Pure PCR product purification Kit (Roche). Quality and quantity of fragments was determined 

using a Nanodrop. A ligation reaction of the IR cassette and the vector 1305.1 was set up. 

Ligation reaction was set up following method described in 2.4.1.3. Concentration of IR 

cassettes DNA (insert) was 81.81ng and 100ng vector 1305.1 was used for a 3:1 insert to vector 

ratio creating MM1-IR/1305.1, MM2-IR:1305.1 and MM2-IR:1305.1. Competent E.coli DH5α 

cells were transformed with 15µl of the ligation reaction mixture following method described in 
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2.4.1.3. Transformed cells were plated on LB plates containing 50µg/ml kanamycin and 

incubated O/N at 37°C. Clones were randomly selected and inoculated into 5ml LB containing 

50µg/ml kanamycin broth, and incubated at 37°C overnight. 

 

2.4.2.11 Screening of plant transformation vector for presence of IR cassette. 

Plasmid DNA was extracted from the presumptive clones using the High Pure plasmid extraction 

kit (Roche). Restriction digest was performed on the clones using XhoI and XbaI (Fermentas) to 

screen putative recombinant plasmids for the presence of IR cassette. Screening was also 

performed by PCR using Hybrid primers, annealing temperatures and procedure described in 

2.4.1.7 and Mutated hybrid primers, annealing temperatures and procedure described in 2.4.2.2. 

The reaction mixture contained 1X Taq buffer, 2mM MgCl2, 0.2mM dNTPs, 0.2μM of each 

primer, 1U Taq recombinant enzyme, 20ng of template DNA and nuclease free water to a final 

volume of 50μl. Reactions were cycled in a thermal cycler (Bio-Rad) set at 94 °C for 2min and 

35 cycles 94°C for 30s, appropriate Ta for 30s, primer extension at 72°C for 30s and final 

extension step of 72°C for 10min. Fragments were analysed by electrophoresis on a 1% agarose 

gel containing 10μg/ml ethidium bromide in a 1X TAE buffer. One screening was completed and 

correct RNA silencing hairpin constructs identified the following ID/codes were aligned to each 

of the 3 constructs; MM1hp construct, MM2hp construct and MM3hp construct.  

 

2.4.2.12 Transformation of A. tumefaciens LBA 4404 with IR hairpin cassettes  

Plasmid DNA extracted from clones containing the correct RNA silencing hairpin constructs was 

then used to transform A. tumefaciens LBA 4404 using the freeze thaw method (Holsters et al., 

1978). Chemically competent A. tumefaciens LBA 4404 cells stored at -70°C were placed on ice 

to thaw. Once thawed, 100ng of RNA silencing hairpin (MM1hp construct, MM2hp construct 

and MM3hp) construct was added to 100µl of the competent cells. This was then snap frozen in 

liquid nitrogen for 5min followed by heat shock on a heating block at 37°C for 5min, 1ml Yeast 

extract-phosphate (YEP) broth was then added. This was incubated at 28 °C for 2-4 hrs with gentle 

shaking (50rpm). After the incubation period, transformed cells were centrifuged for 30secs at 

maximum speed and the supernatant discarded. The pellet was resuspended in 100µl YEP. 

Transformed cells were then spread on YEP plate containing 50µg/ml rifampicin, 50µg/ml 
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kanamycin and 100µg/ml streptomycin and incubated at 28 °C for 1-2 days until colonies 

appeared.  

 

2.4.2.13 Transformation of BC1 hairpin cassette into A. tumefaciens LBA 4404 

The SACMV BC1 mutated hybrid RNA silencing construct used to transform N. benthamiana 

(Taylor et al., 2012c) was included in this study as transformation of cassava had not been 

attempted. This construct was engineered in exactly the same way as the 3 above (MM1hp, 

MM2hp and MM3hp) constructs. The only differences being, this SACMV BC1 construct was 

derived from a single ORF (not hybrid ORF), the target ORF was DNA-B derived and not DNA-

A derived, the construct was in plant transformation pCAMBIA 1303 and not pCAMBA 1305.1. 

pCAMBIA 1303 is very similar to pCAMBIA 1305.1, the only difference is the presence of both 

GFP and GUS gene in pCAMBIA 1303 while pCAMBIA only has the GUS reporter gene. 

Lastly, this construct was in a different A. tumefaciens strain. Construct was in A. tumefaciens 

Agl and not LBA4044 like the other 3 constructs. A. tumefaciens Agl is more virulent than 

LBA4044 and was therefore not suitable Agrobacterium-mediated transformation of FEC. Agl is 

more suitable for virus infectivity studies. This construct was extracted from Agl and mobilised 

into LBA4044. 

 

SACMV BC1 containing Agl was cultured in YEP containing 50µg/ml kanamycin and 100µg 

carbenicillin O/N at 28°C and shaking at 180rpm. Plasmid DNA was isolated using the High 

Pure plasmid extraction kit (Roche). Plasmid was used to transform chemically competent E.coli 

DH5α cells following method described in 2.4.1.3. Colonies were cultured in LB containing 

50µg/ml kanamycin, O/N at 37°C shaking at 200rpm. Plasmid DNA was again isolated using the 

High Pure plasmid extraction kit (Roche). Presence of the SACMV-[ZA] BC1hp was screened 

using BC1 non-mutated fragment primer set, BC1F (5’-AAACATTCCACGGACATACG-3’) 

and BC1R (5’TGGTAGCCCAATCTGAGACCTT-3’). Plasmid was also screened for the 

presence of the BC1 mutated fragment using the primer set, BC1F (mod–XhoI+SpeI) (5-

‘GATCCTCGAGACTAGTAAATATTCTACGGACATACG-3’) and BC1R (mod-BglII) (5’-

GATCAGATCTTAGTAGCCCAATCTAAGACCTTGT-3’). The reaction mixture for each 

contained 1X Taq buffer, 2mM MgCl2, 0.2mM dNTPs, 0.2μM of each primer, 1U Taq 

recombinant enzyme (Fermentas), 20ng of template DNA and nuclease free water to a final 
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volume of 50μl. Reactions were cycled in a thermal cycler (Bio-Rad) set at 94 °C for 2min and 

35 cycles 94°C for 30s, 54°C for 30s, primer extension at 72°C for 30s and final extension step 

of 72°C for 10min. Fragments were analysed by electrophoresis on a 1% agarose gel containing 

10μg/ml ethidium bromide in a 1X TAE buffer. 

 

Once BC1hp construct had been identified and verified to be correct we renamed this RNA 

silencing hairpin construct MM4hp. Construct MM4hp was then used to transform A. 

tumefaciens LBA4404 following the method described in 2.4.2.12 

 

2.4.2.14 Screening of A. tumefaciens LBA4404 for the presence RNA silencing hairpin 

constructs. 

Colonies from each of the four A. tumefaciens LBA4404 transformation plates were selected and 

inoculated into YEP broth containing 50µg/ml rifampicin, 50µg/ml kanamycin and 100µg/ml 

strepotomycin. Broths were incubated at O/N at 28°C and 200rpm. Plasmid DNA was then 

extracted from presumptive clones and screened for the presence of the hairpin constructs; 

MM1hp, MM2hp, MM3hp and MM4hp. Clones were screened by restriction digest using XhoI 

and XbaI (Fermentas). An empty pCAMBIA1305.1 (p1305.1) was also digested accordingly and 

used as a negative control. 

 

Clones were also screened by PCR amplification of beta-glucuronidase (GUS) gene. GUS gene 

is found on the p1305.1 vector. To amplify the gene, the following primer set was used; 

GUSPlus F (5’-CAACATCCTCGACGACGATAGCA-3’) and GUSPlus R (5’-

GGTCACAACCGAGATCTCCT-3’) were used. These amplify a 181 bp fragment. Clones were 

also screened the following primer set; Hyg F (5’-TCTCGATGAGCTCATGCTTTGG-3’) and 

Hyg R (5’-AGTACTTCTACACAGCCATGGG-3’). These primers amplify a 444 bp amplicons; 

a portion of the Hygromycin resistance gene found on the p1305.1 vector. The reaction mixture 

for amplification of each of the reporter genes contained 1X Taq buffer, 2mM MgCl2, 0.2mM 

dNTPs, 0.2μM of each primer, 1U Taq recombinant enzyme (Fermentas), 20ng of template DNA 

and nuclease free water to a final volume of 50μl. Reactions were cycled in a thermal cycler 

(Bio-Rad) set at 94 °C for 2min and 35 cycles 94°C for 30s, 58°C for 30s, primer extension at 

72°C for 30s and final extension step of 72°C for 10min. Clones were also screened using target 
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insert primers following method described in 2.4.1.7 and 2.4.2.2. Fragments were analysed by 

electrophoresis on a 1% agarose gel containing 10μg/ml ethidium bromide in a 1X TAE buffer. 

A. tumefaciens LBA 4404 successfully transformed with the pCAMBIA 1305.1.  

 

 

2.4.3 Construction of non-mismatched (Gateway) RNA silencing hairpin constructs 

Method used to make the Gateway (pHellsgate) constructs was slightly different to the method 

described by the Invitrogen protocol. The BP recombinase method of going through the pDon 

entry clone was omitted and instead target fragments were cloned into the XhoI and XbaI sites of 

pHellsgate 8 using restriction enzyme digestion and ligation. 

 

Gateway RNA silencing hairpin constructs to be designed 

 

 

 

 

 MM5hp: ACMV AC1/AC4 + EACMV AC1/AC4 =343 bp 

 MM6hp: II-ACMV AC1/AC4 + ACMV AC2/AC3 =319 bp 

 MM7hp: IV-EACMV AC1/AC4 + EACMV AC2/AC3 =381 bp 

 MM8hp: SACMV BC1=221 bp 

 

2.4.3.1 Addition of XbaI and XhoI restriction sites to hairpin fragments 

To facilitate ligation of Hybrid  I, II and III and BC1 fragments into pHellsgate 8, XbaI and XhoI  

restriction enzyme sites were added to the 5’end of each of the forward and reverse primers.  

 

XhoI and XbaI restriction site was added to the following primers 

Hybrid I: ACMV AC1/4F and EACMV AC1/4R  

Hybrid II: ACMV AC1/4F and ACMV AC2/3R 

Hybrid IV: EACMV AC1/4F and EACMV AC2/3R 

SACMV BC1: BC1F and BC1R 

 
   Insert (XbaI arm)             800bp (PDK intron)            Insert (XhoI arm) 
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Hybrid fragments used were created above in steps 2.4.1.1-2.4.1.8, BC1 fragment was obtained 

from previous student (Harmse, 2009). The restriction sites were added to each of the 4 

fragments in a PCR reaction.  

To amplify Hybrid I fragment with XbaI restriction sites on either ends, primer set; ACMV 

AC1/4 XbaI F (5’-GATCTCTAGAAAGTGAGGTTCCCCATTCTG-3’) and EACMV AC2/3 

XbaI R (5’-GATCTCTAGAAGGAATGGCGTTTTTACCTG-3’) was used. Another Hybrid I 

fragment was amplified and modified to contain XhoI restriction sites to either ends of the 

fragment. This was achieved by designing primers that were the same as the XbaI primers 

however the underlined section of the primer was replaced with CTCGAG. 

 

To amplify Hybrid II fragment with XbaI restriction sites on either ends, primer set; ACMV 

AC1/4 XbaI F (5’-GATCTCTAGAAAGTGAGGTTCCCCATTCTG-3’) and ACMV AC2/3 

XbaI F (5’- GATCTCTAGACCAATCATGGATTTACGCACA-3’) was used. Another Hybrid II 

fragment was amplified and modified to contain XhoI restriction sites to either ends of the 

fragment. This was achieved by designing primers that were the same as the XbaI primers 

however the underlined section of the primer was replaced with CTCGAG. 

 

To amplify Hybrid III fragment with XbaI restriction sites on either ends, primer set; EACMV 

AC1/4 XbaI F (5’-GATCTCTAGATTCTGGCATCGACTTGGAA-3’) and EACMV AC2/3 

XbaI R (5’-GATCTCTAGAAGGAATGGCGTTTTTACCTG-3’) was used. Another Hybrid 

fragment was amplified and modified to contain XhoI restriction sites to either ends of the 

fragment. This was achieved by designing primers that were the same as the XbaI primers 

however the underlined section of the primer was replaced with CTCGAG. 

 

To amplify SACMV BC1 fragment with XbaI restriction sites on either ends, primer set; BC1 

XbaI F (5’- GATCTCTAGAAAATATTCTACGGACATACG-3’) and BC1 XbaI R (5’-

GATCTCTAGATGGTAGCCCAATCTGAGACCTT-3’) was used. Another SACMV BC1 

fragment was amplified and modified to contain XhoI restriction sites to either ends of the 

fragment. This was achieved by designing primers that were the same as the XbaI primers 

however the underlined section of the primer was replaced with CTCGAG. 
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The PCR reaction mixture contained 1 X High fidelity buffer, 2mM dNTPs, 1U High fidelity 

enzyme mix (Fermentas), 0.2μM of each primer, 20ng of template DNA and nuclease free water 

to a final volume of 50μl. Reactions were cycled in a thermal cycler (Bio-Rad) set at 94 °C for 

2min and 35 cycles  of 94°C for 30s, 58°C 30s, primer extension at 72°C for 30s and final 

extension step of 72°C for 10min. Amplicons were run in 1.2% agarose gel containing 10µg/ml 

ethidium bromide run in 1X TAE. 

 

2.4.3.2 Ligation of fragments (hairpin arms) into pHellsgate 8 

PCR fragments generated were digested with either XbaI or XhoI (Fermentas). Digested 

fragments were PCR purified using the High pure PCR purification kit (Roche). pHellsgate 8 

was first digested with XbaI (Fermentas) to digest out the 1.5kb ccdB gene and simultaneously 

dephoshorylated using FastAP (Fermentas). The digestion reaction was analysed on a 1% 

agarose gel. Bands corresponding to 16 485bp (vector backbone) was excised and gel extracted 

using the QiAquick gel extraction kit (Qiagen), followed by quantification using a nanodrop.  

The XbaI digested PCR fragments required for each hairpin construct were ligated into the XbaI 

digested pHellsgate 8 backbone. A 3:1 insert to vector ligation ratio was performed. Ligation 

mixture contained 1X Rapid ligation buffer, 1U T4 DNA ligase (Fermentas) and 3:1 ratio 

purified fragments. This was incubated for 10min at 22°C. Chemically competent DB3.1 cells 

were then transformed following method used in 2.4.1.3. Transformed cells were plated onto LB 

agar plates containing 100µg/ml spectinomycin. Plates were incubated at 37°C O/N. Colonies 

were cultured in LB broth with 100µg/ml spectinomycin. 

 

2.4.3.3 Screening of clones for presence and orientation of XbaI hairpin arm 

Plasmid DNA from the O/N cultures was extracted using plasmid isolation kit (Fermentas). 

Presence of insert was confirmed by PCR using the XbaI modified primers from 2.4.3.1. The 

reaction mixture contained 1X Taq buffer, 2mM MgCl2, 0.2mM dNTPs, 0.2μM of each primer, 

1U Taq recombinant enzyme (Fermentas), 20ng of plasmid DNA and nuclease free water to a 

final volume of 50μl. Reactions were cycled following same cycling conditions used for 2.4.3.1. 

Amplification products were run in 1.2% agarose gel containing 10µg/ml ethidium bromide run 

in 1X TAE. 
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Clones containing insert were also screened for presence and orientation of insert using a 

combination of the XbaI F insert primer and the pHellsgate 8 P27-5 sequencing primer and also 

the combination of XbaI R and pHellsgate 8 P27-5. Clones containing XbaI hairpin arm in the 

correct orientation were expected to yield an amplicon for the XbaI F primer and P27-5 primer 

combination and no amplicon for the XbaIR and P27-5 combination. 

 

2.4.3.4 Ligation of the 2nd arm (XhoI fragment) required to complete the hairpin 

Clones containing the correct orientation XbaI fragments were digested with XhoI (Fermentas) to 

digest out the other 1.5kb ccdB gene house in the pHellsgate 8 vector. Digestion and 

dephosphorylation (Fermentas FastAP) was performed simultaneously. The digestion reaction 

was analysed on a 1% agarose gel. Bands corresponding to vector backbone were excised and 

gel extracted using the QiAquick gel extraction kit (Qiagen) followed by quantification using a 

nanodrop. XhoI fragments (hairpin arm) from 2.4.3.1 were also digested with XhoI and PCR 

purified using PCR purification kit (Roche). Ligation of the vector backbone and the XhoI 

digested hairpin arm was performed following method described in 2.4.3.2. Following ligation 

transformation of competent DB3.1 cells was performed following method used in 2.4.3.2. 

 

2.4.3.5 Screening of clones for presence and orientation of XhoI hairpin arm 

Plasmid DNA from the O/N cultures was extracted using plasmid isolation kit (Fermentas). 

Presence of insert was screening by PCR using the XhoI modified primers from 2.4.3.1. 

Screening was performed following method used in 2.3.3.3 however the XhoI insert primers 

were used and clones containing insert were screened for insert orientation using primer hybrid 

XhoI F and P27-3 combination and XhoI R and P27-3 combination.  Clones containing XhoI 

hairpin arm in the correct orientation were expected to yield an amplicon for the XhoI F primer 

and P27-5 primer combination and no amplicon for the XhoIR and P27-3 combination. 

 

2.4.3.6 Sub-cloning of pHellsgate IR into pCambia 1305.1 

Digestion of IR cassette out of plant transformation vector pHellsgate 8 into plant transformation 

vector pCAMBIA 1305.1 was necessary so that silencing efficiency comparison between the 

mutated-sense arm hairpin constructs and the Gateway hairpin constructs can be made. 
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Once both IR ams (XbaI and XhoI hairpin arms) were confirmed to be present and in the correct 

orientation, the IR cassette (35S promoter, IR arms and the octopine synthase terminator) were 

digested with NotI (Fermentas). The digestion reaction was analysed on a 1% agarose gel. Bands 

corresponding to right size for each IR cassette were excised and gel extracted using the 

QiAquick gel extraction kit (Qiagen) followed by quantification using a nanodrop. Purified 

excised fragments were blunt end polished using T4 DNA polymerase (Fermentas) to facilitate 

blunt end ligation with blunt-end polished dephosphorylated pCambia 1305.1 vector generated 

from 2.4.2.10. For the ligation reaction, a 3:1 IR cassette to pCambia 1305.1 ratio was used, 

other reaction components included 1X Rapid ligase buffer, 10X PEG 4000 (V/V), 5U T4 DNA 

ligase (Fermentas) and nuclease water to a final volume of 30µl. The ligation reaction was 

incubated for 10min at 22°C. Chemically competent E.coli DH5α cells were then transformed 

following method used in 2.4.5.3. Transformed cells were plated onto LB agar plates containing 

50µg/ml kanamycin. Plates were incubated at 37°C O/N. Colonies were cultured in 5ml of LB 

broth with 100µg/ml kanamycin. 

 

2.4.3.7 Screening of plant transformation vector for presence IR hairpin cassette. 

Plasmid extraction from O/N liquid cultures was performed using the Plasmid extraction kit 

(Fermentas). Screening of clones was performed following 2.4.3.3 (screening of XbaI arm) and 

2.4.3.5 (screening of the XhoI arm). 

 

Following screening, 1 clone presumed to be correct for each of the 4 constructs (MM5hp, 

MM6hp, MM7hp and MM8hp) were sent off for automated sequencing by Inqaba Biotechnical 

Industries (Pretoria, South Africa). Each clone was sequenced using 4 different primers (P27-3, 

P27-5, XhoI F and XbaIF). Raw sequencing data was edited using the Chromas software (version 

1.45) (Griffith University, Australia). Multiple sequence alignment to confirm correct orientation 

of the XbaI and XhoI arms if the IR cassette was performed using Clustal X Multiple Sequence 

Alignment Program (version 1.8, 1999). 
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2.4.3.8 Transformation of A. tumefaciens LBA 4404 with IR hairpin cassettes 

Transformation was performed as described in 2.4.2.12. Plasmid was extracted from randomly 

selected colony for each construct; plasmid was extracted using the Plasmid extraction kit 

(Fermentas). Colonies were also screened as described 2.4.3.3 and 2.4.3.5. Clones were also 

screened using the GUS and Hyg gene primers following method described in 2.4.2.14. 
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2.5 Results 

2.5.1 Sequence alignment and target region identification 

Regions in ACMV AC1/4 overlapping ORF and ACMV AC2/3 overlapping ORF that had high 

sequence identity were selected for potential targeting (fig 2.3 and 2.4). Less perfect alignment 

sequence similarity between the EACMV AC1/4 and EACMV AC2/3 overlapping reading 

frames of the 8 EACMV isolates was observed (fig 2.5 and 2.6). The selected EACMV isolates 

showed only 83% and 75% sequence similarity within the EACMV AC1/4 and EACMV AC2/3 

overlapping regions, respectively. This was expected as it is known that there is more variation 

in EACMV isolates than ACMV. 

 

 

Figure 2. 3 A segment of the multiple sequence alignment output screen. Alignment was 

performed on 8 ACMV isolates to identify a region along the ACMV AC1/4 overlapping region 

that gives the best sequence alignment. 

 

 

 

Figure 2. 4 A segment of the multiple sequence alignment output screen. Alignment was 

performed on 8 A CMV isolates to identify a region along the AC2/3 overlapping region that 

gives the best sequence alignment. 
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Figure 2. 5 A segment of the multiple sequence alignment performed on 8 EACMV isolates to 

identify a region along the EACMV AC1/4 overlapping region that gives the best alignment 

between the isolates. 

 

 

Figure 2. 6 A segment of the multiple sequence alignment performed on 8 EACMV isolates to 

identify a region along the EACMV AC2/3 that gives the best sequence alignment results. 

 

siRNA hotspots from the conserved ACMV AC1/4, ACMV AC2/3. EACMV AC1/4 and 

EACMV AC2/3 overlapping regions were identified using siRNA Scan programme. Regions 

generating possible efficient siRNA hit/hotspots are shown in red and regions considered non-

hits shown in black in tables 2.1-2.4.  

 

Table 2. 1 siRNA scan programme computational results predicting regions along the ACMV-

[NG:Ogo:90] AC1/AC4 overlapping region were efficient and effective siRNA could be 

generated. 

Number Fragment siRNA AS (3' - 5') Hits 

12 query_seq (289 - 309) UUCACUCCAAGGGGUAAGACU 1 

13 query_seq (306 - 326) GACUACGUCGAGAGAUGUCUA 1 

14 query_seq (309 - 329) UACGUCGAGAGAUGUCUAAAA 1 

15 query_seq (310 - 330) ACGUCGAGAGAUGUCUAAAAU 1 

27 query_seq (395 - 415) AUCUUGUGAAACCCAUACACU 1 

28 query_seq (404 - 424) AACCCAUACACUCUUUCUGUA 1 
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Table 2. 2 siRNA scan programme computational results predicting regions along the ACMV-

[NG:Ogo:90] AC2/AC3 overlapping region were efficient and effective siRNA could be 

generated. 

Number Fragment siRNA AS (3' - 5') Hits 

1 query_seq (38 - 58) UCCAGCAGGUCUGGAACUUCA 1 

4 query_seq (46 - 66) GUCUGGAACUUCAAGUCUUUU 0 

7 query_seq (156 - 176) CAGCACCAGCCACUAAAGCUU 1 

8 query_seq (157 - 177) AGCACCAGCCACUAAAGCUUU 1 

9 query_seq (159 - 179) CACCAGCCACUAAAGCUUUAU 1 

10 query_seq (160 - 180) ACCAGCCACUAAAGCUUUAUA 0 

11 query_seq (171 - 191) AAGCUUUAUAUCCCCUAAACA 0 

12 query_seq (172 - 192) AGCUUUAUAUCCCCUAAACAA 1 

13 query_seq (188 - 208) AACAAUACAGGGUCCAUUUUU 1 

14 query_seq (199 - 219) GUCCAUUUUUGCGGUAAGGAA 1 

\ 

 

Table 2. 3 siRNA scan programme computational results predicting regions along the EACMV-

[UG2] AC1/AC4 overlapping region were efficient and effective siRNA could be generated. 

Number Fragment siRNA AS (3' - 5') Hits 

1 query_seq (28 - 48) AAGACCGUAGCUGAACCUUUU 1 

2 query_seq (30 - 50) GACCGUAGCUGAACCUUUUCA 1 

3 query_seq (59 - 79) UUCUUUAAGGGGAGGGAAAAA 0 

4 query_seq (65 - 85) AAGGGGAGGGAAAAAUUACAU 0 

5 query_seq (66 - 86) AGGGGAGGGAAAAAUUACAUU 0 

6 query_seq (70 - 90) GAGGGAAAAAUUACAUUCGAA 0 

7 query_seq (90 - 110) AACUGUAGCCUGCUACUAAAU 1 

8 query_seq (103 - 123) UACUAAAUCGAGGGACUUACA 1 

9 query_seq (114 - 134) GGGACUUACAAGCCUACCUUU 1 

10 query_seq (120 - 140) UACAAGCCUACCUUUACACAA 1 

11 query_seq (123 - 143) AAGCCUACCUUUACACAACUA 1 

12 query_seq (139 - 159) AACUAGCCCUACCCCUUUACU 1 

13 query_seq (142 - 162) UAGCCCUACCCCUUUACUCUA 1 
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Table 2. 4 siRNA scan programme computational results predicting regions along the EACMV-

[UG2] AC2/AC3 overlapping region were efficient and effective siRNA could be generated. 

Number Fragment siRNA AS (3' - 5') Hits 

1 query_seq (1 - 21) UCCAGCAGGUCUGGAACUUCA 1 

2 query_seq (4 - 24) AGCAGGUCUGGAACUUCAAGU 0 

6 query_seq (71 - 91) GGCAUAGACCUCUCACUACUA 0 

7 query_seq (119 - 139) CAGCACCAGCCACUAAAGCUU 1 

8 query_seq (120 - 140) AGCACCAGCCACUAAAGCUUU 1 

9 query_seq (122 - 142) CACCAGCCACUAAAGCUUUAU 1 

10 query_seq (123 - 143) ACCAGCCACUAAAGCUUUAUA 0 

11 query_seq (134 - 154) AAGCUUUAUAUCCCCUAAACA 0 

12 query_seq (135 - 155) AGCUUUAUAUCCCCUAAACAA 0 

13 query_seq (151 - 171) AACAAUACAGGGUCCAUUUUU 1 

14 query_seq (162 - 182) GUCCAUUUUUGCGGUAAGGAA 1 

 

Based on the computational results, two final specific target regions were selected on the ACMV 

([NG:Ogo:90])  reference target begomovirus  (fig. 2.6a). 

 

a) ACMV-[NG:Ogo:90] AC1/AC4 overlapping region (2445-2528) 136 nt 

 

b) ACMV-[NG:Ogo:90] AC2/AC3 overlapping region (1297-1479) 183 nt  

 

Using EACMV–Uganda2 ([UG2]) as the reference virus, the following 2 overlapping target 

regions were chosen (fig. 2.6b). 

c) EACMV-[UG2] AC1/AC4 overlapping region (2279-2485) 207 nt  

 

d) EACMV-[UG2] AC2/AC3 overlapping region (1291-1464) 174 nt  
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Figure 2. 7 (a) Diagrams of ACMV-[NG:Ogo:90] DNA-A AC1/AC4 (136 nt) and AC2/AC3 

(183 nt) and (b) EACMV-[UG2] DNA-A AC1/AC4 (207nt) and AC2/AC3 (174 nt) showing 

regions that were targeted for efficient siRNA production (targeted areas on the 2 DNA-A 

molecules shown in green). 

 

A 

B 
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2.5.2 Mutated sense-arm hairpin RNA silencing constructs 

2.5.2.1 Amplification of the target ORF and fusion of fragments to make the hybrids 

All four regions were successfully amplified from the full length reference clones ACMV 

([NG:Ogo:90])  and EACMV-[UG2]. Fragment size of 136 nt was amplified for ACMV AC1/4, 

183 nt for ACMV AC2/3, 207 nt for EACMV AC1/4 and 174 nt for EACMV AC2/4 (fig 2.8). 

Fragments were successfully cloned into pTZR5/T (Fermentas).  

 

 
 

Figure 2. 8 1.2% agaraose gel electrophoresis of  PCR amplified targer ORF; 136 bp ACMV 

AC1/AC4 (lane 2), 183 bp ACMV AC2/AC3 (lane 3),  207 bp EACMV AC1/AC4 and 174 bp 

EACMV AC2/AC3 (lane 5) and (lane 1) O’GeneRuler 1kb Plus DNA ladder (Fermentas). 

 

2.5.2.2 Fusion of fragments to create hybrids 

Following cloning, target ORF fragments were re-amplified from the clones. However primer-

introduced modifications were included to facilitate fusion of the target ORF. Fusion/hybrid 

fragments, 343 bp Hybrid I fragment (fig 2.9 lane 4), 319 bp Hybrid II (fig 2.9 lane 7) and 381 

bp hybrid III fragment (fig 2.9 lane 10), were generated. Fragments were also successfully 

cloned into pTZR5/T (Fermentas). 

 

 

 

500bp 

 

200bp 
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Figure 2. 9 1.2% agarose gel showing fusion of ORF used to create Hybrid fragments. 

Fermentas O’GeneRuler 1 kb Plus DNA ladder (lane 1). ACMV AC1/AC4, 136 bp fragment 

(lane 2), 207 bp EACMV AC1/AC4 fragment (lane 3), fusion of lane 2 and 3 amplicons to yield 

~343 bp Hybrid I fragment (lane 4). ACMV AC1/AC4, 136 bp fragment (lane 5), ACMV 

AC2/AC3, 183 bp fragment (lane 6), fusion of lane 5 and 6 fragment to yield a ~319 bp Hybrid 

II fragment (lane 7). EACMV AC1/AC4, 207 bp fragment (lane 8), EACMV AC2/AC3, 174 bp 

fragment (lane 9), fusion of lane 8 and 9 fragments to yield ~381 bp hybrid III fragment (lane 

10).  

 

2.5.2.3 Sodium bisulfite treatment of hybrid fragments and sequence analysis for C-T 

mutations in the sequence 

Preferential amplification of mutated hybrid fragments was successful using the modified 

primers containing few C-T base changes in the F primer and G-A base changes in the R primer. 

PCR amplification could only be achieved from fusion products sodium bisulfite treated for 

15min. Therefore in our study 15min bisulfite treatment of products was the optimal time. 

Preferentially amplified mutated fragments were cloned into pTZR5/T (Fermentas) and 

sequenced. Mutated hybrid I mutagenesis showed 81 % C-T (38/47 C-T mutations). There was 

an overall 11% change in the 343 bp Hybrid I fragment, however the cloned and sequenced 

mutated Hybrid I fragment also contained 1 undesirable G-A mutation. Mutated Hybrid II had 

56% C-T mutation (29 out of 52 C’s were converted to T’s). There was an overall 9% change in 

the 319 bp Hybrid II sequence. Mutated hybrid III mutagenesis showed 78% C-T (59/76 C 

mutation to T’s), representing an overall 16% change 381 bp Hybrid III sequence.  

 

500bp 

 

200bp 
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Figure 2. 10 1% agarose gel electrophoresis of mutated hybrid fragments amplified from 15min 

bisulfite treated original hybrid fragments, fragments were clones into pTZR5/T (Fermentas). 

Fragments were amplified using the mutated modified forward and reverse primers for each 

Hybrid. M= O’Gene 1kb Plus DNA ladder (Fermentas), mutated 361 bp Hybrid I amplicon (lane 

1), mutated 337 bp Hybrid II amplicons (lane 2), mutated 399 bp Hybrid III amplicon (lane 3) 

and NTC (lane 4). 

 

     

       

Figure 2.11 (a) A segment of a chromatogram for one of the sequenced clones, with arrows 

showing points along the Hybrid sequence were C-T mutations were introduced. (b) Original 

Hybrid sequence prior C-T mutations. Arrows are showing Cs that corresponds with the changed 

T in fig. 2.11b.  

 

A 

B 
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2.5.2.4 Ligation of nonmutated original hybrid fragment and the mutated hybrid fragment 

required to make the IR. 

Ligation of the mutated and non-mutated hybrid fragments generated. I-IR, II-IR and III-IR and 

these were cloned into pTZ57R/T.  Putative IR clones were screened with enzymes XhoI and 

XbaIand expected fragment size of 704 bp for I-IR, 656 bp fragment for II-IR and 780 bp for III-

IR were obtained (fig. 2.12, III-IR digest not shown on gel).  

 

           

Figure 2. 12 1% agarose gel showing IR clones digested with XbaI and XhoI to screen clones for 

successful IR formation following ligation of mutated Hybrid fragment and non-mutated hybrid 

fragment. Lane 1= O’GeneRuler 1 kb Plus DNA ladder, XbaI and XhoI restricted empty 

pTZ57R/T vector (lane 2), 701 bp I-IR released fragment (lane 4), 656 bp II-IR released 

fragment (lane 3). 

 

2.5.2.5 Ligation of IR into pART7 

XbaI and XhoI digested IR clones were sub-cloned and ligated into expression vector pART7. 

Clones containing the expected IR fragment sizes of 701 bp for I-IR and 656 bp for II-IR and 

780 bp for III-IR selected (gel not shown). Selected clones were also screened using NotI. NotI 

releases the entire expression cassette (CaMV35S promoter, target IR and the 765 bp terminator) 

0.7kb 

3kb 
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Expected size for NotI digested I-IR clone was 2811 bp, NotI digested II-IR clone released a 

2766 bp and 2890 bp fragment was released following NotI digest of III-IR clone (fig. 2.13). 

  

                                                        

Figure 2. 13 1% agarose gel, screening clones for successful ligation of IR into expression 

vector pART7, NotI digest of  IR clones, M= O’GeneRuler 1kb DNA ladder, I-IR cassette (lane 

1), II-IR cassette (lane 2), undigested pART7 expression vector (lane 3) and linearised pART7 

expression vector (lane 4). 

 

2.5.2.6 Sub-cloning of IR into plant transformation vector pCAMBIA 1305.1 

Final destination vector for IR expression cassettes was plant transformation vector pCAMBIA 

1305.1. To facilitate sub-cloning of the expression cassette into p1305.1, entire 2811 bp 

amplicon for I-IR, 2766 bp for II-IR and 2890 bp for III-IR were amplified and  (fig. 2.14) and 

products  T/A cloned into pTZR5/T. Successful ligation into p1305.1 was confirmed by PCR 

amplification of the mutated and non-mutated hybrid fragments. Plasmid of clones containing 

the entire completed RNA silencing hairpin construct (MM1hp, MM2hp and MM3hp) was then 

ready to be used for transformation Agrobacterium LBA4404 (fig 2.15).  

 

 

 

 

  

3kb 

1kb 
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Figure 2. 14  0.8% agarose gel electrophoresis. IR expression cassettes PCR amplification using 

pART7 cassette primers. M= O’GeneRuler 1kb Plus DNA, 2811 bp I-IR cassette amplicon (lane 

1), 2766 bp II-IR cassette amplicon (lane 2), 2890 bp III-IR cassette amplicon (lane 3), 2178 bp 

amplicons amplified from empty pART7 expression vector (lane 4) and NTC (lane 5). 

 

                                           

Figure 2. 15 1% agarose gel, PCR amplification to screen for successful ligation and presence of 

IR cassette in plant transformation vector p1305.1. M= O’GeneRuler 1kb Plus DNA ladder 

(Fermentas), I-IR cassette; 343 bp non-mutated fragment (lane 1), I-IR cassette; 361 bp mutated 

fragment (lane 7), II-IR cassette 319bp non-mutated fragment (lane 2), II-IR cassette 337 bp 

mutated fragment (lane 8) and III-IR cassette; 381bp non-mutated fragment (lane 3) and 399 bp 

mutated fragment (lane 9). Empty p1305.1 vector (lane 10) and NTC (lane 11). 

 

2.5.2.7 SACMV BC1 (MM4hp) construct 

The SACMV BC1 mutated sense-arm hairpin construct was mobilised from the more virulent 

Agrobacterium Agl1 strain (Taylor et al., 2012c) to Agrobacterium LBA4404 for cassava 

transformation purposes.  Successful plasmid mobilisation was confirmed by amplification of a 

221 bp non-mutated fragment however amplification of the 239 bp mutated fragment was 

unsuccessful. Amplification of IR fragments is often problematic due to tight secondary 

0.5kb 

  5kb 

 

1.5kb 
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structures and therefore we proceeded with Agrobacterium LBA4404 transformation of cassava 

FEC.  

                                                                          

Figure 2. 16 1.2% agarose gel electrophoresis to confirm presence of SACMV BC1 construct. 

M= O’GeneRuler 1kb Plus DNA ladder (Fermentas), SACMV BC1 non-mutated 221 bp IR arm 

amplified from extracted SACMV BC1 construct (lane 4). PCR amplification of mutated 239 bp 

SACMV BC1 IR arm was unsuccessful (lane 12), NTC (lane 5) and empty p1303 vector (lane 

6). 

 

2.5.2.8 Transformation of constructs into Agrobacterium LBA4404 

All four (MM1hp, MM2hp, MM3hp and MM4hp) constructs were successfully mobilised into 

LBA4404. Transformation success was confirmed by PCR amplification of the Hyg, GUS and 

insert gene (fig 2.17). 

 

 

 

 

 

 

0.5kb 
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Figure 2. 17 PCR amplification of Hyg, GUS and insert genes to screen for construct 

transformation success in Agrobacterium LBA4404. (a) M= 1kb ladder (Fermentas), 

amplification of 181 bp GUS gene in MM1hp, MM2hp, MM3hp, MM4 hp (lane 1-4 resp), 

positive control (lane 5) and NTC (lane 6). Amplification of 343 bp non-mutated fragment of 

MM1hp (lane 7), 319 bp non-mutated fragment of MM2hp, 381 bp non-mutated fragment of 

MM3hp (lane 8), 221 bp non-mutated fragment of MM4hp (lane 10) and NTC (lane 11) (b) M= 

1 kb ladder Fermentas), amplification of Hyg gene (485bp) 3 in MM1hp, MM2hp, MM3hp and 

MM4 hp (lane 1-4 resp), positive control (lane 5) and NTC (lane 6), amplification of 361 bp 

mutated fragment of MM1hp (lane 7), 337 bp mutated fragment of MM2hp (lane 8), 399  bp 

non-mutated fragment of MM3hp (lane 9), 239 bp mutated fragment of MM4hp (lane 10) and 

NTC (lane 11). 

 

2.5.3 Non-mismatched (Gateway) RNA silencing hairpin constructs 

2.5.3.1 PCR incorporation of XhoI and XbaI restriction sites and fragment ligation into 

pHellgate 8 

XbaI and XhoI-containing amplicons for MM5hp, MM6hp, MM7hp and MM8hp were 

successfully amplified . A 365 bp MM5XbaI and 365 bp MM5XhoI fragment were amplified for 

MM5hp construct (fig. 2. 19a). A 331 bp MM6XbaI and 331 bp MM6XhoI fragment were 

amplified for MM6hp construct (fig. 2. 19b). A 393bp MM7XbaI and 393 bp MM7XhoI 

fragment were amplified for MM7hp construct (fig. 2. 19c). A 232 bp MM8XbaI and 232 bp 

MM8XhoI fragment were amplified for the MM8hp construct (fig. 2. 19d). 

 

0.5kb 

0.5kb 
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Figure 2. 18  (a) Amplification of 365 bp MM5 XbaI fragment (lanes 1-4) and amplification of 

365 bp MM5 XhoI fragment (lanes 5-8). (b) Amplification of 331 bp MM6 XbaI fragment (lanes 

1-3) and amplification of 365 bp MM5 XhoI fragment (lanes 1-3). (c) Amplification of 393 bp 

MM7 XbaI containing fragment (lanes 1-4) and amplification of 393 bp MM7 XhoI containing 

fragment (lanes 5-8). (d) Amplification of 232 bp MM8 XbaI fragment (lanes 1-5) and 

amplification of 232 bp MM8 XhoI containing fragment (lanes 6-10). M= O’GeneRuler 1 kb 

Plus DNA ladder (Fermentas). 

 

2.5.3.2 XbaI ligation into pHellsgate 8 vector 

The site-specific recombinase method was not utilised to replace the ccdB gene sites with the 

target genes. Instead conventional restriction and ligation was used. The ccdB gene fragment 

flanked by XbaI sites was digested out, releasing a 1428 bp fragment (fig. 2. 20). The resulting 

linear dephoshorylated plasmid (~16kb) from each digestion reaction was gel extracted and gel 

purified and XbaI containing fragment for each construct ligated into the linear vector. 

Amplicons generated from plasmid P27-3 primer and XbaI reverese primer combination 

suggested correct ligation orientation. For MM5, only one clone was obtained, clone g (lane 7), a 

468 bp amplicon was produced, the other clones were empty (fig. 2. 21 a). For MM6, 3 clones 

producing a 434 bp amplicon were selected (lanes 1,2 and 4) (fig. 2. 21 b). A 496 bp amplicon 

could be amplified in 5 MM7 clones (lanes 1, 4, 5, 6, 8) (fig. 2. 21 c). A 335 bp fragment was 

correctly amplified in 3 of the MM8 clones (fig. 2.21 d). One clone for each construct was 

selected for downstream XhoI restriction digest and ligation of the XhoI arm required to complete 

the hairpins. Selected clones were labelled as MM5XbaI-pH8, MM6XbaI-pH8, MM7XbaI-pH8 

and MM8XbaI-pH8. 
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Figure 2. 19 Extracted pHellsgate 8 plasmid restricted with XbaI (lane 1, 2, 4, 5) and undigested 

pHellsgate 8 (lane 3). M= O’GeneRuler 1 kb Plus DNA ladder (Fermentas). 

 

 
 

Figure 2. 20 1% agarose gel electrophoresis, showing MM5XbaI-pH8, MM6XbaI-pH8, 

MM7XbaI-pH8 and MM8XbaI-pH8 clones containing the correct size construct XbaI insert in 

the desired orientation. Screening of the clones was done using the respective target insert XbaI 

R primer in conjunction with the plasmid P27-3 primer. The P27-3 primer added 103 bp to the 

expected target insert size. (a) Correct MM5 clone g (lane 7) yielded the expected 468 bp 

fragment. (b) Lane 1, 3 and 4 with correct 434 bp MM6 fragment. (c) Clones MM7 a, d, e, f and 

h produced the expected 496 bp amplicon. (d) Clones in lane 1, 4 and 5 are correct, 335 bp 

amplicon. M= O’GeneRuler 1 kb Plus DNA ladder. 

1.5kb 

5kb 
20kb 

0.5kb 
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2.5.3.3 Ligation of the XhoI arm of the hairpin replacing the 2nd ccdB gene 

Clones MM5XbaI-pH8, MM6XbaI-pH8, MM7XbaI-pH8 and MM8XbaI-pH8 were restricted 

with XhoI to remove the other ccdB gene to allow for insertion of the XhoI arm of the hairpin. 

Clones were screened using the respective insert XhoI R primer and the plasmid P23-5 primer 

combination. Two positive clones containing the MM5XbaI: XhoI-pH8 hairpin for the MM5hp 

construct, these 2 clones produced the expected 446 bp amplicon (fig. 2. 22a). All 8 clones 

screened for MM6 XhoI were positive for the 412 bp amplicon (fig. 2. 22b). Four positive were 

obtained  for MM7XhoI, expected 474 bp amplicon, and 1 of the 5 clones had no insert (fig. 2. 

22c). For MM8XhoI, all 8 clones screened were positive for the 313 bp (fig. 2. 22d). One from 

each was selected for further downstream processing and these clones were labelled MM5XbaI: 

XhoI-pH8, MM6XbaI: XhoI-pH8, MM7XbaI: XhoI-pH8 and MM8XbaI: XhoI-pH8. 

 

 

Figure 2. 21 1% agarose gel electrophoresis, showing PCR screening of clones for the XhoI 

hairpin arm (a) 474 bp fragment was amplified from MM5XbaI: XhoI-pH8 clones 1 and 2 (lane 

1, 2). (b) MM6XbaI: XhoI-pH8 screened clones with the expected 412 bp fragment. (c) 

MM7XbaI: XhoI-pH8 clones 1-4 with the right size 474 bp insert. (d) MM8XbaI: XhoI-pH8 

clones 1-8, all with the right size 313 bp fragment. M=O’GeneRuler 1 kb Plus DNA ladder 
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2.5.3.4 NotI digestion of pHellgate 8 hairpins and ligation into pCambia 1305.1 

pHellsgate 8 hairpins; MM5XbaI: XhoI-pH8, MM6XbaI: XhoI-pH8, MM7XbaI: XhoI-pH8 and 

MM8XbaI: XhoI-pH8 were sub-cloned  into plant transformation vector pCAMBIA 1305.1, as 

the other 4 mutated sense-arm hairpin silencing constructs (designed in 2.4.2) were cloned into 

this plant transformation vector.  

 

NotI digestion of control original 17485 bp pHellsgate 8 produced 2 fragments; 11667 bp vector 

backbone fragment and a 5818 bp fragment that lies with the 2 NotI restriction sites (fig. 2. 23a, 

lane 2). NotI digest of MM5XbaI: XhoI-pH8 produced the 11667 bp vector backbone fragment as 

well as a 3689 bp hairpin cassette (CaMV35S promoter, the two 365 bp sense and antisense 

hairpin arms and the OCS terminator) (fig. 2. 23b, lane 1). NotI digest of MM6XbaI: XhoI-pH8 

produced the vector backbone fragment and a 3621bp hairpin cassette (CaMV35S promoter, the 

two 331 bp sense and antisense hairpin arms and the OCS terminator) (fig. 2. 23c, lane 6-8). 

MM7XbaI: XhoI-pH8 NotI digest produced the vector backbone fragment and the 3745bp 

hairpin cassette (CaMV35S promoter, the two 393 bp sense and antisense hairpin arms and the 

OCS terminator) (fig. 2. 23a, lane 4). NotI digest of MM8XbaI: XhoI-pH8 released the 3423 bp 

hairpin cassette (CaMV35S promoter, the two 232 bp sense and antisense hairpin arms and the 

OCS terminator and the 14626 bp vector backbone (fig. 2. 23c, lane 1-3). Plant transformation 

vector pCambia 1305.1 was simultaneously double digested using HindIII and EcoRI and 

dephosphorylated (fig. 2. 23c, lane 10-11). Linear dephosphorylated p1305.1 was gel extracted 

and purified and made ready for ligation of the hairpin cassettes into the MCS of the vector. 
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Figure 2. 22 1% agarose gel electrophoresis, showing NotI digestion of pHellsgate hairpin 

cassettes. M= O’GeneRuler 1 kb Plus DNA ladder (Fermentas). (a) Undigested original 

pHellsgate 8 plasmid (lane 1) and NotI digestion of pHellsgate 8 (lane 2). Undigested MM7XbaI: 

XhoI-pH8 hairpin (lane 3). NotI digested MM7XbaI: XhoI-pH8 releasing a 3745 bp MM7 

hairpin cassette (lane 4). (b) NotI digested MM5XbaI: XhoI-pH8 releasing a 3689 bp MM5 

hairpin cassette (lane 1). (c)  NotI digested MM8XbaI: XhoI-pH8 releasing a 3423 bp MM8 

hairpin cassette (lane 1-3) and undigested MM8XbaI: XhoI-pH8 (lane 4). NotI digested 

MM6XbaI: XhoI-pH8, releasing a 3621 bp MM8 hairpin cassette (lane 6-8) and undigested 

MM6XbaI: XhoI-pH8 (lane 9). EcoRI and HindIII double digest of plant transformation vector 

p1305.1 (lane 10 and 11) and undigested pCambia 1305.1 (lane 12). 
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2.5.3.5 Screening of completed hairpin constructs prior to DNA sequencing 

Prior to sending hairpin construct clones off for sequencing, PCR verification and restriction 

enzyme digestion was performed on the clones once more to confirm presence and orientation of 

the hairpin arms and the entire hairpin cassette. This was also done to confirm that the hairpin 

cassettes had been successfully ligated into plant transformation vector pCambia 1305.1.  

 

Restriction digest screening 

Restriction digestion of the MM5hp construct clone with XbaI and XhoI confirmed that the target 

inserts were present. The two 365 bp fragments corresponding to the sense and anti-sense arms 

of the MM5hp construct were released by digestion with XbaI and XhoI (fig. 2. 24a, lane 1 and 

2). The entire 3689 bp hairpin cassette was also released after NotI digestion of the hairpin clone 

(fig. 2. 24a, lane 3). 

 

Both XbaI and XhoI restriction digestion of MM6hp construct clone released the two 331 bp 

insert fragments corresponding to the sense and anti-sense arms of MM6hp construct (fig. 2. 24b 

lane 2 and 3). Digestion of the clone with NotI released the expected 3621 bp hairpin cassette 

(fig. 2. 24b, lane 4).  

 

Restriction digestion of MM7hp construct clone with XbaI and XhoI released the expected two 

393 bp fragments corresponding to the sense and antisense arms of the hairpin construct (fig. 2. 

24b, lane 6 and 7). NotI restriction digestion of the clone released the 3745 bp hairpin cassette 

(fig. 2. 24b, lane 8). 

 

XbaI and XhoI restriction digestion of the MM8hp construct clone released the two 232 bp 

fragments corresponding to the sense and anti-sense arm of the hairpin construct (fig. 2. 24b, 

lane 10 and 11). NotI restriction digestion of the hairpin construct clone released the expected 

3423 bp hairpin cassette (fig. 2. 24, lane 12). 

 

Control pHellsgate 8 restriction digestions with XbaI and XhoI was also performed and 

fragments corresponding to the 1428 bp of the sense ccdB gene was observed and the 1431bp 

fragment corresponding to the anti-sense ccdB gene fragment was seen (fig. 2. 24b, lane 15 and 
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16). NotI restriction digestion released the 5818 bp fragment consisting of the CaMV35S 

promoter, the two ccdB genes and the OCS terminator (fig. 2. 24b, lane 16). 

 

                                       

 

Figure 2. 23 Restriction digestion of clones to confirm correct design and construction of the 

hairpin constructs. M= O’GeneRuler 1kb Plus DNA ladder (Fermentas) (a) MM5 hairpin clone, 

digested with XbaI (lane 1), XhoI (lane 2) and NotI (lane 3). (b) MM6 hairpin clone, digested 

with XbaI (lane 2), XhoI (lane 3) and NotI (lane 4). MM7 hairpin clone, digested with XbaI (lane 

6), XhoI (lane 7) and NotI (lane 8). MM8 hairpin clone, digested with XbaI (lane 10), XhoI (lane 

11) and NotI (lane 12). pHellsgate 8 control XbaI, XhoI and NotI digestion (lane 15-18). Bottom 

gel is the inverted image to help with visualisation of bands. Undigested MM6hp, MM7hp 

MM8hp and pHellsgate 8 in lanes 1, 5, 9 and 14, respectively. 
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 PCR screening 

Following restriction enzyme screening, hairpin construct clones were PCR screened once again 

before sequencing. PCR screening was used to validate correct insert orientation and to once 

again confirm that hairpin cassettes had been successfully ligated into p1305.1 before 

immobilising hairpin constructs into Agrobacterium LBA4404. To verify correct orientation, 

clones were screened once again with the plasmid primer and the insert reverse primer for both 

the XbaI and XhoI inserts. MM5hp construct screening with the primers amplified the expected 

446 bp and 468 bp fragments (fig. 2. 24a, lanes 1-3 and 4-6). MM6hp construct screening 

amplified a 412 bp and 434 bp fragment (fig. 2. 24b, lanes 1-4). MM7hp construct screening 

amplified a 474 bp and 496 bp fragment (fig. 2. 24b, lanes 5-8). Amplification from MM8hp 

construct amplified a 313 bp and 335 bp fragment (fig. 2. 24b, lanes 9-12). 

 

Plant transformation vector p1305.1 primers amplifying the 465 bp HygII gene fragment and 181 

bp GUS gene fragment were used to complete the screening process of the MM5hp, MM6hp, 

MM7hp and MM8hp constructs. Both fragments were successfully amplified in all construct 

clones and the positive controls (fig. 2. 24 c). 
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Figure 2. 24 PCR amplification to screen for presence and orientation of inserts in the completed 

hairpin constructs. O’GeneRuler 1kb Plus DNA (Fermentas) (a) MM5hp XhoI (446 bp) and XbaI 

(468 bp) amplicons. (b) MM6 XbaI (434 bp) and XhoI (412 bp) amplicons (lanes 1-4). MM7hp 

XbaI (496 bp) and XhoI (474 bp) amplicons (lanes 5-8). MM8hp XbaI (335 bp) and XhoI (313 

bp) amplicons (lanes 9-12). (c) Amplification of 465 bp HygII gene fragment from construct 

MM5hp, MM6hp, MM7hp and MM8hp and positive 1305.1 control plasmid (lanes 1-5, resp) 

and 181 bp GUS gene fragment from MM5hp, MM6hp, MM7hp and MM8hp and positive 

1305.1 control plasmid (lanes 1-6, resp). 
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2.6 Discussion 

The overall objective of this study was to engineer geminivirus resistance cassava using RNA 

silencing hairpin constructs derived from SACMV or ACMV open reading frames. We 

employed two different design methods; mutated sense-arm RNA silencing hairpin and the more 

conventional intron-containing RNA silencing hairpin technology. Four sense strand-mutated 

transgene constructs (MM1hp-MM4hp) and four Gateway-based (pHellsgate8) hairpin were 

successfully constructed (MM5hp-MM8hp). Constructs were designed to target multiple ORFs 

from the same species as this method has been showed to be more efficient than single ORF 

targeting constructs. Hybrid constructs targeting ORF of different species were designed to try 

and address the severity of losses experienced from mixed infections as to offer multiple species 

resistance. Regions were also targeted because begomovirus AC2 and AC4 have been identified 

as PTGS suppressors.   

 

Variation in DNA-A of ACMV and EACMV isolates 

Due to CBV sequence conservation, the nature and spread of cassava infecting geminivirus and 

the severe losses reported from mixed virus infections, constructs were designed to target 

multiple species and strains  (Harrison et al.,1997; Pita, Fondong, Sangar, et al., 2001). Sequence 

variation in the DNA-A of ACMV isolates was found to be lower irrespective of the 

geographical location. However the same was not observed when sequences of DNA-A of 

EACMV isolates were aligned. High variation in DNA-A of EACMV isolates was also observed 

by Zhou et al. (1997). Pita et al. (2001) attributed the high variation seen in EACMV DNA-A to 

the high recombination frequency. Alignment of the AC1/4 of the 6 EACMV isolates was found 

to have less variation than the AC2/3 region. Our results are similar to those observed by 

Fondong et al., 2000 from the alignment of EACMV Tanzania. Recombination maps of EACMV 

DNA-A showed AC2/3 to be a recombination hotspot and hence the reason for the high variation 

observed. Regions of ACMV and EACMV showing higher sequence conservation were targeted.  

 

Target sequence selection for efficient siRNA production 

A programme called siRNA Scan programme was used. The aim of the programme is to predict 

regions within the identified conserved sequence where efficient siRNA are generated (Xu et al., 

2006b, http://bioinfo2.noble.org/RNAiScan.htm). This was done to ensure that only regions 
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offering maximum silencing efficiency were selected. This ensured that the final dsRNA hairpin 

length was as short as possible. Short hairpins were preferred even though the successful use of 

long dsRNA in plant systems has been reported (Lu et al., 2004; Tenllado et al., 2001; 

Vanitharani et al., 2003). Expression of long dsRNA is more unfavourable in animal systems. 

Another more crucial reason for using shorter target sequences as possible was to reduce possible 

off-target silencing effects (Pang et al., 1997). 

 

Sodium bisulfite treatment for deamination of cytosine to thymine (C-T) 

Sodium bisulfite treatment is commonly used in applications for studying DNA methylation 

patterns; however in this study sodium bisulfite was used for introducing C to T (C-T) mutations 

in the sense-arm of hairpin RNA silencing constructs. This is the second report of bisulfite 

treatment application for use in hairpin RNA silencing technology. Designing intron containing 

RNA silencing hairpin constructs is the most commonly used technology for producing hairpin 

constructs. An intron positioned within the sense and antisense arms has been reported to be 

important in allowing correct hairpin folding (Smith et al., 2000). It is also believed that the 

intron helps in stopping the formation of cruciform structures known to occur in IR sequences 

(Eichman et al., 2000).  

 

In this research, introns-containing hairpins as well as non-intron (mutated sense-arm) hairpins 

were explored. It was shown by Taylor et al., 2012c that introduction of C-T mutations in the 

sense-arm of the hairpin disrupts the perfect complementarity of the IR sequences and therefore 

stops the formation of cruciform structures. C-T mutations were achieved by exposing the target 

sequence to sodium bisulfite. Exposure of sequence to sodium bisulfite for a specific period of 

time results in deamination of cytosine residues to thymine (Shapiro and Weisgras 1970).  In our 

study the optimum exposure time was 10 min. We observed that exposure periods of more than 

10 min resulted in the inability to PCR amplify the specific sequence post treatment. This could 

have been as a result of undesired bases changes other than the anticipated C-T conversion or 

due to DNA degradation. Ehrich et al., 2007 and Raizis et al., 1995 showed that C-T conversion 

time requires optimisation to achieve optimum C-T conversion with minimal DNA degradation. 

They showed that treatment exposures of 30 min and longer results in fragmented ssDNA caused 

DNA depurination. However previously in our lab, Harmse, 2009 (MSc thesis) reported no 
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difference in PCR amplification efficiency after prolonged bisulfite treatment exposure. Tusnády 

et al., 2005 implicated primer design as the main contributor of low bisulfite PCR efficiency due 

to high T and A presence in the sense and antisense primers, respectively. They developed a 

primer search design tool with an algorithm aimed at circumventing this problem. 

 

Sequence specific amplification of the correctly mutated strand 

It was expected that post treatment, C-T mutations would be introduced in the positive strand of 

the sequence when read in the 5’ to 3’ direction and conversely producing G-A base changes in 

the negative strand. With this is mind, primers were designed to specifically amplify only the 

mutated template strands as it was possible that a population of mutated and non-mutated 

template was present. The forward primers were designed to contain C-T changes along the 

length of the primer, while the reverse primers were designed to contain several G-A base 

changes along the length of the primer. As little as 2 base changes in the forward and reverse 

primers were enough to ensure strand specific amplification.  

 

Successfully amplified strands were sent off for sequencing and successful strand specific 

selection was confirmed by the sequence analysis results. From the sequencing results we 

observed that after 10 min treatment periods that the sense arm of MM1hp had a 81 % C-T 

conversion rate, MM2hp sense arm; a 56 % conversion rate and MM3hp sense arm; a 78 % 

conversion rate.  A lower conversion rate was seen in MM2hp than in MM1hp and MM3hp, 

indicating that MM2hp sequence contained more methylated Cs as sodium bisulfite treatment 

targets non-methylated C and deaminates the Cs to Ts. Harmse, 2009 reported a 56 % 

deamination of C-T in the sense arm of the SACMV BC1 (MM4hp) construct after a 10 min 

treatment.  

 

Advantages of using mutated sense arm hairpin construct technology 

Mutated sense-arm hairpin construct technology was relatively cheaper than the Gateway 

construct system but did however involve more restriction enzyme digests, ligations and cloning 

steps and therefore was more time consuming. Using this method of engineering imperfect IR 

sequences reduces the formation of cruciform and any unwanted tertiary structures associated 

with IR sequences. This is important as cloning of IR sequences is known to be difficult (Bao & 



90 

 

Cagan, 2006; Rattray, 2004). Cloning difficulties arise from IR sequence re-arrangement and 

deletion ability possessed by certain conventional E.coli strains, such as E.coli DH5α (Bao & 

Cagan, 2006). Unlike the Gateway IR system, this imperfect IR technology does not required 

specialised IR tolerant cells, such as SURE E.coli cells, are required. These cells are IR 

endonuclease and recombinase deficient (Casali, 2003). Other specialised E.coli DB3.1 cells are 

also required for the Gateway system, E.coli DB3.1 cells these cells are resistant to the toxic 

effects of the ccdB gene carried by plasmids such as pHellsgate 8 and pHellsgate 10. Piccin et 

al., 2001 circumvented these IR-induced cruciform structures by including a GFP intron/spacer 

between the target hairpin arms. Gateway pHellsgate vectors are based on a similar approach 

with approximately a 800 bp PDK intron positioned between both arms of the hairpin (Wesley et 

al., 2001).  This PDK intron is relatively large in relation to the shorter 300-500bp target 

sequences required for the hairpin arms and this increases the hairpin cassette which can make 

ligation and cloning even more difficult. However with this said, cloning of large fragments has 

improved since the early years of Burke and colleagues in 1987 (Tao & Zhang, 1998). 

 

Imperfect IR technology is relatively cheaper than the Gateway recombinase kits as conventional 

restriction enzymes, standard TA cloning vectors, expression vectors and standard E.coli strains 

that are routinely found in the lab were used and therefore costs were significantly reduced. 

However we employed a slightly different method to produce the desired non-mismatched 

constructs. This approach was cheaper than the manual-prescribed Gateway recombinase kit. 

This method used conventional restriction and ligation methods in molecular cloning however 

did require slightly more ligation, assembly and cloning steps than the kit described Gateway 

recombinase method.  
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3.1 Introduction 

Cassava transformation 

Cassava production is sub-Saharan Africa is faced with a number of biotic constraints. Cassava 

mosaic disease (CMD) is the major biotic constraint in cassava cultivation and causes severe 

cassava yield losses annually (Hong et al., 1993; Patil and Fauquet, 2009). Disease control relies 

on development of virus resistant plants. Virus resistant transgenic cassava varieties have been 

developed by different approaches, and by introducing different virus-derived transgenes 

(Vanderschuren et al., 2009; Vanderschuren et al., 2012; Vanderschuren et al., 2007; Zhang et 

al., 2005). However the key element in successful cassava genetic engineering is reliable and 

efficient transformation and regeneration methods. The most efficient and reliable method is the 

use of Agrobacterium tumefaciens (A. tumefaciens) to introduce the DNA of interest (Bull et al., 

2009). 

 

Agrobacterium-mediated transformation 

A. tumefaciens is a soil plant pathogenic gram-negative bacterium. This bacterium naturally 

infects dicotyledonous plants causing the formation of crown gall tumours (Cleene & Ley, 1976; 

Newell et al., 2010; Smith & Townsend, 1907). Proliferation of the induced tumour in the plant 

cells doesn’t require the continuous presence of the bacterium, indicating that cells become 

genetically transformed upon infection. This is the only organism that is capable of inter-

kingdom gene transfer (Pitzschke & Hirt, 2010; White & Braun, 1942).  It is believed that this 

inter-kingdom gene transfer ability might be evolutionary related to bacterial conjugation (Lessl 

& Lanka, 1994). It is this natural ability to insert foreign genes into plant genomes that has been 

exploited to produce transgenic plants (Gelvin, 2003b).  

 

The A. tumefaciens harbours a Ti plasmid, and located on this plasmid is a segment of DNA 

called the T-DNA and the vir genes which are required for both virulence and tumor formation 

(Gelvin, 2003a; Zaenen et al., 1974). This T-DNA is flanked by 25 bp direct repeat sequences 

called the right border (RB) and left border (LB) based on the polarity and genes involved in the 

T-DNA transfer. Chilton et al., 1977 demonstrated that the T-DNA segment is transferred and 

integrated into the plant genome. Reports later revealed that the RB is very important as it 

determines the direction of T-DNA transfer from the Agrobacterium to the plant genome 
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(Kononov et al., 1997; Wang et al., 1984). Once the segment has been transferred and 

transcribed reprogramming of plant cells occurs and tumour formation occurs.  

 

There are several steps and processes involved in infection. Plant phenolic compounds that are 

produced during wounding first autophosphorylates the VirA protein. This then activates the 

VirG protein which then binds to the vir gene promoter thereby activating vir gene transcription 

(Brencic & Winans, 2005). The Agrobacterium then attaches to the plant cell using 

chromosomally encoded bacterial genes (Douglas et al., 1982; Newell et al., 2010). Following 

this, a transporter complex is formed by the VirB and VirD4 protein to allow the Vir proteins and 

T-DNA to be transported. VirD2 then nicks and binds to the 5’end of the T-DNA and guides it 

through the transporter complex into the plant cell (De Vos & Zambryski, 1989). Located on the 

C terminus of the VirD2 is a nuclear localisation signal which then helps direct and attach the T-

DNA to the plant nucleus. The VirD2 has been implicated in of the host genome and ligation of 

T-DNA into the plant genome is mediated by host proteins. Integration of the T-DNA occurs in a 

non-homologous end-joining mechanism (Koukolíková-Nicola et al., 1993). Upon infection the 

plant also attempts to mount a defence response using the plant innate immunity however the T-

DNA and the Vir protein act as defence response suppressors (Ditt et al., 2001). 

 

Integration of the T-DNA in the host genome results in the expression of the T-DNA encoded 

bacterial genes (oncogenes). These oncogenes encode enzymes responsible in the synthesis of 

plant growth hormones, auxins and cytokinins. This then results in reprogramming of plant cells 

for tumour formation and the activation of genes involved in opine synthesis (Binns & 

Thomashaw, 1988). These opines are in the form of nopaline or octopine which the bacteria then 

uses as growth substances once the T-DNA has been integrated (Dessaux et al., 1988; Pitzschke 

& Hirt, 2010). 

 

Manipulation of Agrobacterium for plant genetic engineering 

Implication of the Ti plasmids in tumorgenesis, and the scientific evidence that demonstrated that 

only a segment (T-DNA) of the Ti plasmid is transferred and integrated into the plant genome, 

and that gene transfer ability of the bacterium was across plant kingdoms, lead to the proposal 

that the Ti plasmid could be used for foreign DNA transfer into plant genomes. Following this 
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proposal, T-DNA binary vectors were developed. The reasons for not using the Ti plasmid and 

developing the T-DNA binary vectors were : 1) The Ti plasmid lacked appropriate restriction 

sites for cloning of the gene of interest, 2) the Ti plasmid had a large size and 3) the discovery 

that the ability to transfer DNA required only the LB and RB (Gelvin, 2003a).  

 

The binary vector system is based on the use of two plasmids simultaneously; the binary vector 

carrying the T-DNA segment and the Ti (vir) plasmid disarmed of the oncogenic genes with only 

the origin of replication present (Hoekema et al in 1983). The presence of both plasmids in a 

desired Agrobacterium strain ensures that the T-DNA is transferred into the plant genome. 

pCambia are a group of plant transformation binary vectors that are derived from the pPZP 

vectors and were constructed by Hajdukiewicz et al. in 1994. These vectors contain RB and LB 

flanking the region to be transferred. Within this region flanked by the RB and LB is a multiple 

cloning site (MCS) and this follows after the RB following the MCS is the gene encoding for 

herbicide or antibiotic resistance and selectable marker gene. This arrangement ensures that the 

gene of interest is closest to the RB as transfer is initiated at the RB followed by the plant 

markers then to the LB. Once the foreign gene of interest is cloned into the MCS the plasmid is 

then used to transform a disarmed strain of A. tumefaciens with only the vir genes and the origin 

of replication present (Hajdukiewicz et al., 1994). LBA4404 is one of the A. tumefaciens stains 

developed to contain a non-oncogenic vir helper
 
plasmid. The earliest reports of gene transfer 

into plant cells was in N. benthamiana and this technology has since been exploited in a variety 

of other plants (Eamens et al., 2008).  

 

Cassava transformation 

Cassava genetic engineering technology has matured and developed significantly since the first 

reports of successful cassava genetic engineering in the 1990s. Some of the first cassava genetic 

transformation experiments involved the expression of selectable markers such as the 

phosphinotricin resistance (bar) gene and the β-glucuronidase (uidA) genes. Transformation is  

mainly based on the production of friable embryogenic callus (FEC) through somatic 

embryogenesis which is  considered be the most promising target tissue (Bull et al., 2009; Chetty 

et al., 2013; Hankoua et al., 2006; Li et al., 1998; Nyaboga et al., 2013; Schopke et al., 1997; 

Taylor et al., 2001; Zainuddin et al., 2012).  
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In 1996, cassava expressing a luciferase gene was engineered by Raemakers et al., 1996. This 

luciferase reporter gene was introduced into cassava somatic embryos using particle 

bombardment. This was the first report of successful bombardment of cassava embryos. Later 

Schopke et al., 1997 also reported successful cassava transformation using embryogenic 

suspension cultures as target tissue, however, particle bombardment was used to introduce the 

DNA.  Gonzalez et al., 1998 also used embryogenic suspension cultures as target tissue for the 

introduction of the uidA gene into the cassava genome however this foreign DNA was 

introduced using Agrobacterium-mediated transformation.  In other experiments, somatic 

embryo derived-cotyledons were selected as target tissue for transformation using 

Agrobacterium (Li et al., 1996 and Sarria et al., 2000). Zhang et al., 2000 also reported stable 

and successful transformation of cotyledons however using particle bombardment. The use of 

embryogenic suspension cultures as target tissue was initially considered to be more favourable 

and efficient than using cotyledons as it offered better transgene selection because of constant 

contact with the selection medium. Another reason was that the chance of obtaining chimeric 

plants was considered to be lower than when using organised tissue such as cotyledons 

(Gonzalez et al., 1998).  Technology has shifted to the use of FEC as the target tissue, first 

described by Taylor et al. in 1996. 

 

The chance of obtaining chimeric transgene expression is greatly reduced when FEC is used as 

the target tissue unlike when somatic embryos and organised tissue like cotyledons are used. 

This reduction can be seen when either Agrobacterium or particle bombardment are used 

(Raemakers et al., 1997). This therefore makes FEC the most practical target tissue for particle 

bombardment and Agrobacterium-mediated transformation. Using FEC also decreases the level 

of escapes (untransformed plantlets) unlike when cotyledons are used. The high susceptibility of 

the FEC to Agrobacterium makes Agrobacterium-mediated transformation of FEC the most 

efficient, reproducible and favoured method for DNA introduction than particle bombardment. 

Agrobacterium-mediated FEC transformation experiments by Schreuder et al.  (2001) showed 

that up to 100 transgenic lines per 100 mg FEC starting material. Their results also revealed that 

transformation success was Agrobacterium strain dependent.  Munyikwa et al. (1998) reported 

an extremely low transformation efficiency using particle bombardment. Their results showed 
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that about 1 transgenic line was produced per 100 mg FEC starting material. The comparatively 

high Agrobacterium-mediated transformation efficiency of FEC compared to other starting 

material, and lack of very high technology equipment required, makes this the transformation 

method of choice. FEC induction does however still require lengthy and fastidious tissue culture 

procedures and is genotype dependent (Chetty et al., 2013; Nyaboga et al., 2013; Zainuddin et 

al., 2012), and requires also a certain level of training and skills.  More recently, Bull et al. 

(2009) adapted some of the earlier protocols, leading to a more robust and streamlined 

procedure, which was used to establish vector transformation of cassava in our laboratory 

(Chetty et al., 2013). However, this has not been achieved, to date, for transformation for 

SACMV and ACMV resistance until this study.  This was also the first undertaking to transform 

the cassava landrace/genotype T200 with anti-viral hpRNA constructs. 

 

3.2 Specific Aims 

i. Cassava cv.60444 and T200 FEC induction 

ii. Agrobacterium-mediated transformation of FEC with mutated and non-mutated 

constructs (described in chapter 2) 

iii. Regeneration of transformed FEC  

iv. Selection of plants for  transgene integration using visual and molecular screening 

v. Selection of transgenic plants for virus infection to screen for resistance 
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3.3 Methodology flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1 Flow diagram of work flow to generate transgenic cassava plants.  

FEC induction from both 

cv.60444 and T200 explants 
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3.4 Materials and Methods 

 

3.4.1 Friable embrogenic callus (FEC) induction 

cv.6044 FEC induction from cassava explants material was performed following ( Bull et al., 

2009). Induction of T200 FEC followed (Chetty et al., 2013).  On each GD plate, 10 FEC 

clusters were placed. All non-embryogenic friable callus (NEFC) was removed with each sub-

culturing. 

 

3.4.2  Preparation of Agrobacterium inoculum 

Mismatched and non-mismatched RNA silencing hairpin constructs (chapter 2; MM1hp, 

MM2hp, MM3hp, MM4hp, MM5hp, MM6hp, MM7hp and MM8hp) transformed into 

Agrobacterium LBA4044, and Agrobacterium harbouring empty pCambia 1305.1 plant 

transformation vector, were streaked each on Yeast extract peptone (YEP) medium (5 g/L Yeast 

extract, 5g Bacto-peptone and 10 g/L Sodium chloride, solidified with 15 g/L bacterial agar and 

pH was adjusted to 7.2). YEP medium was supplemented with antibiotics (50 µg/ml kanamycin, 

50 µg/ml rifampicin and 100 µg/ml streptomycin). Streaked plates were inverted and incubated 

at 28°C in the dark for 2 days. A single colony for each construct was removed using a sterile 

inoculating loop and inoculated in YEP + 50 µg/ml kanamycin, 50 µg/ml rifampicin, 100 µg/ml 

streptomycin and 2  mM MgSO4. This was cultured O/N in the dark at 28 °C with shaking at 200 

rpm.  

 

Cultures were allowed to grow until they reached an optical denstity (OD) of 0.7-1.0, at 

λ=600nm. From this culture 0.5 ml was removed and inoculated in 25 ml of YEP containing 50 

µg /ml kanamycin, 50 µg/ml rifampicin, 100 µg/ml streptomycin and 2 mM MgSO4. This was 

grown O/N in the dark at 28 °C with shaking at 200 rpm. The OD was measured and when an 

OD of 0.7-1.0 at λ=600nm was obtained, the bacterial suspension was placed in a sterile 50 ml 

centrifuge tube and centrifuged at 4000 g for 10 min at room temperature. The supernatant was 

removed and the pellet resuspended in 25 ml of liquid GD medium. Suspension was again 

centrifuged at 4000g for 10 min at room temperature. Following this, the supernatant was 

removed and excess liquid removed. The pellet was resuspended in GD liquid and diluted to an 

OD600 of 0.5. Once the correct OD had been reached, acetosyringone to a final concentration of 
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200 μM was added. The cultures were placed on a horizontal shaker (50 rpm) at room 

temperature for 45 min. 

 

3.4.3  Agrobacterium-mediated transformation of FEC 

Seven FEC plates, consisting of 10 FEC clumps of approximately 0.8 - 1 cm diameter were used 

for each transformation experiment. Each FEC clump was co-cultivated with 100 μl of prepared 

Agrobacterium: construct inoculums (prepared in section 3.4.4). The same was also performed 

for the 2 plates using the Agrobacterium with the control pCAMBIA vector. One plate was not 

transformed and was monitored for regeneration. Pipetting of the bacterial suspension was done 

in a manner as not to flood the plate but rather just soak the FEC clusters. Plates were then left in 

the laminar flow uncovered for ~5 min and then sealed with parafilm. FEC with the bacterial 

suspensions were co-cultivated at 24 °C for 4 days in 16 h light/8h dark photoperiod. 
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Table 3. 1 Summary of transformation events including details of RNAi construct used and FEC 

type transformed. 

Constructs cv.60444 FEC T200 FEC 

MM1hp 

Mismatch (ACMV AC1/AC4 + EACMV AC1/AC4) 

Group A 

transformation 

Group B 

transformation 

MM2hp 

Mismatch (ACMV AC1/AC4 + ACMV AC2/AC3) 

MM3hp 

Mismatch (EACMV AC1/AC4 + EACMV AC2/AC3) 

MM4hp 

Mismatch (SACMV BC1) 

   

MM5hp 

Non-Mismatch/Gateway 

 (ACMV AC1/AC4 + EACMV AC1/AC4) 

Group C 

transformation 

Group D 

Transformation 

MM6hp 

Non-Mismatch/Gateway 

 (ACMV AC1/AC4 + ACMV AC2/AC3) 

MM7hp 

Non-Mismatch/Gateway 

 (EACMV AC1/AC4 + EACMV AC2/AC3) 

MM8hp 

Non-Mismatch/Gateway 

 (SACMV BC1) 

 

 

3.4.4 Removal of excess Agrobacterium 

Following the co-cultivation period, FEC were gently scraped off the plates using sterile forceps 

and placed in 50 ml tubes containing 25 ml of GD liquid plus 500 µg/ml carbenicillin. The 

suspension was vortexed briefly for 5-10 sec and the FEC were then allowed to settle. Using a 10 

ml pipette the supernatant was aspirated, leave the FECs as dry as possible. Washing of FEC in 
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the GD liquid containing 500µg/ml carbenicillin was repeated ~5 times or until the supernatant 

became clear. Once clear, the supernatant was discarded and the FEC resuspended in ~10 ml of 

GD liquid containing 500 µg/ml carbenicillin. The FEC suspensions were pipetted and spread 

thinly and evenly onto ~10 sterile plastic meshes (pour size of 100 μm). Meshes were then each 

placed on top of 3 layers of sterile filter paper to allow for absorption of excess liquid off the 

FEC.  

 

3.4.5 Recovery and maturation of transformed FEC 

Mesh:FEC were then transferred to GD plates with 250 µg/ml carbenicillin to help with FEC 

recovery. Plates were sealed with parafilm and incubated at 28 °C for 4 days at 16 h light/8 h 

dark photoperiod. For the selection of transformed FEC and to improve the regeneration 

efficiency mesh/FEC were placed on a stepwise increase of hygromycin. After 4 days, 

mesh:FEC were placed for a week on to GD containing 250 µg/ml carbenicillin and 5 µg/ml 

hygromycin followed by one week on GD containing 250 µg/ml carbenicillin and 8 µg/ml 

hygromycin and one further week on GD with 250 µg/ml carbenicillin and 15 µg/ml 

hygromycin. All plates were sealed with parafilm and placed at 28 °C with 16 h light/8 h dark 

photoperiod.  

 

3.4.6 GUS assay to determine transformation success 

To visually detect transformation success a small section of the putatively transformed material 

on the mesh/FEC was removed using sterile forceps and placed in GUS assay solution (100  mM 

Tris/NaCl buffer, 1 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid (X-Gluc) and 1 % 

Triton X-100). Untransformed cv.60444 FEC were also included as a negative control. These 

were incubated at 37 °C O/N. GUS solution was removed and material destained in 70% ethanol, 

and leaves viewed. 

 

3.4.7 Regeneration of transgenic plants 

For the regeneration of transformed FEC, MSN medium was used. MSN consists of MS2 

medium containing 250 µg/ml carbenicillin, 1 µg/ml 1-Naphthaleneacetic acid (NAA) and 15 

µg/ml hygromycin and solidified with 8 g/L Noble agar. Mesh: FECs were transferred to MSN 

and maintained on MSN for 10 days at 28 °C with 16 h light/8 h dark photoperiod. After 10 
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days, this was transferred to fresh MSN for a further 10 days using the same incubation 

conditions. This cyclic MSN transfer process was performed not more than 8 times. This was to 

decrease the possibility of regenerating escapee non-transformed FEC. During these MSN 10 

days transfers, any green or white emerging cotyledons were moved to cassava elongation 

medium (CEM). CEM was composed of MS2 supplemented with 0.4 µg/ml BAP and 2 μM 

CuSO4 and 100 µg/ml carbenicillin and solidified with 8 mg/ml Nobel agar. Cotyledons were 

moved to fresh CEM every 14 days, and this was repeated until juvenile leaves and shoots 

appeared. Shoots were removed and placed in sterile small bottles on solid cassava basic medium 

(CBM) [MS2 with 2 μM CuSO4; 50 µg/ml carbenicillin and solidified 3 mg/ml phytagel]. Plates 

were incubated for 28 °C with 16 h light/8hrs dark photoperiod, and approximately 2 weeks 

later, roots developed forming small plantlets. 

 

3.4.8 GUS assay on plantlets 

Developing shoots were selected and GUS assays were performed following the procedure used 

in section 3.4.8. 

 

3.4.9 Preliminary screening using a rooting experiment 

A rooting test on hygromycin-containing media to screen for successful hygromycin-resistant 

transformants was performed. The apical shoots from the plantlets generated in section 3.4.9 

were isolated and placed in sterile tissue culture bottles on CBM containing 50 µg/ml 

carbenicillin and 10 µg/ml hygromycin. Two holes were punctured in the top of the tissue culture 

bottle lids and puncture wholes were then covered with sterile micropore tape. Regenerated wild-

type untransformed cv.60444 plantlets were also included as a negative control.  

 

3.4.10 Propagation of transgenic plant lines 

Plants showing positive GUS and positive rooting in the hygromycin were selected and 

propagated on MS2 medium following method described in section 3.4.1. 
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3.4.11 Regeneration test of untransformed wild-type cv.60444 FEC 

As mentioned in 3.4.5, a plate of untransformed cv.60444 was included with every 

transformation experiment. This was done to determine the regeneration efficiency of the FEC 

selected for the transformation experiment. Untransformed FEC clusters were removed off the 

GD plates where they were maintained and propagated and placed on sterile mesh. The mesh 

with the FEC was then placed onto MSN medium without the hygromycin and 250 µg/ml 

carbenicillin (to test that the carbenicillin had no effect on FEC maturation and regeneration into 

plantlets). Upon placing on hygromycin-free MSN, the FEC clusters were gently pressed down 

to ensure FEC contact with the medium. FEC were maintained hygromycin-free MSN and 

transferred to fresh medium every 10 days following method described in 3.4.9. Developing 

cotyledons were also treated following the same method as described in 3.4.9. Plantlets produced 

on the CBM medium were propagated following the same method described in 3.4.1. 

 

3.4.12 Total nucleic acid extraction from plantlets  

Approximately 50 mg of leaf tissue was collected from the plantlets, and snap- frozen in liquid 

nitrogen, and crushed into a fine powder. Total nucleic acid (TNA) was isolated from the 

harvested samples using the CTAB based method (Doyle and Doyle 1987). To each eppendorf of 

crushed sample, 500 µl of preheated CTAB extraction buffer (2 % 

hexadecyltrimethylammonium bromide, 1.4 M NaCl, 0.2 % 2-mercaptoethanol, 20  mM EDTA, 

100 mM Tris-HCl, pH 8.0) was added and thoroughly vortexed and incubated in a water-bath at 

65 °C for 60 min and the tube occasionally inverted. After incubation, 500 µl of chloroform-

isoamyl alcohol (24:1) was added followed by mixing and centrifugation at 13 400 rpm for 10 

min at 4 °C. The aqueous layer containing the DNA was placed into a clean tube and the above 

chloroform-isoamyl alcohol extraction step repeated. Purified TNA in the upper aqueous layer 

was precipitated using 500 µl isopropanol and centrifugation for 10 min at 13 400 rpm at 4 °C. 

TNA pellet was washing with 1 ml of ice-cold 70 % ethanol followed by centrifugation for 10 

min at 13 400 rpm at 4 °C, this pellet washing step was repeated. The pellet was air dried and 

resuspended in 50 µl TE (10 mM Tris pH 8.0 and 1 mM EDTA) containing 20 µg/ml RNase A 

(Fermentas). The extracted DNA was quantified on the Nanodrop 1000 spectrophotometer 

(Nanodrop). 
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3.4.13 PCR-based screening for further confirmation of transformation success 

Plants were screened for transgene using insert primers following method described in sections 

2.4.1.7 and 2.4.2.2 for screening of mutated sense-arm hairpin RNA transgenic plantlets and the 

method described in sections 2.4.3.4 and 2.4.3.5 for non-mutated (Gateway) hairpin RNA 

transgenic plants. Both sets of transgenic plants were also screened with both GUS and Hyg 

primers following the method described in section 2.4.2.14. 

 

3.4.14 Southern blot screening of transgenic plants 

Some of the extracted DNA from 3.4.14 was used for transgene copy number analysis following 

DIG-High Prime DNA Labelling and Detection Starter Kit II (Roche) protocol. A total of 20 µg 

of extracted DNA was digested with enzyme and incubated O/N at 37 °C. Digestion reaction was 

deactivated and run O/N in a 1 % agarose gel in 1X TAE. Capillary transfer of DNA from 

agarose gel to positively charged nylon Hybond-N+ membrane (Amersham) was performed for 

6-8 h. Membranes were hybridised O/N at 42 °C with DIG-labelled Hyg gene probe. Probe was 

labelled following the DIG-High Prime DNA Labelling and Detection Starter Kit II (Roche) 

protocol. Washing off of all unbound probe membrane and antibody detection was performed 

following DIG-High Prime DNA Labelling, and the Detection Starter Kit II (Roche) protocol. 

Membranes were developed on Lumi-film chemiluminescent detection film (Roche).  

 

Samples were digested with HindIII and then probed separately with Hyg DIG-labelled probe 

and the GUS DIG-labelled probe. Samples were also digested with both HindIII and EcoRI 

simultaneously and then probed with target gene labelled probe.  
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3.5 Results  

3.5.1  FEC induction from cv.60444 

SE developed 2 weeks after being placed on CIM, however these were still immature, and at this 

stage there was more non-desirable soft tissue than SE (fig. 3.2 b). The immature SE were then 

placed on fresh CIM for 2 more weeks, and after this the appearance of finger-like structures, 

coral-shaped and torpedo-like structures, resembling mature SE, became visible (fig. 3.2 c). At 

this stage some of the mature SE were divided and split and some placed on GD media for FEC 

induction and some were used for further SE production on fresh CIM (this was the 3
rd

 transfer) 

(fig 3.2. d). Biweekly maintenance and cycling of SE on fresh CIM ensured that a constant SE 

supply was available for FEC induction at any one time. However, SE could only be transferred 

to fresh CIM for 10 more weeks (at 2 week intervals, therefore 5 CIM transfers) as the ability to 

produce finger-like structures diminished with every successive transfer to CIM. Towards the 8
th

 

transfer to CIM, a green colour around the SE edges was observed. SE also appeared more coral 

shaped and lost the finger-like structure and torpedo appearance. SE induction had to therefore 

be initiated every 16 weeks to maintain stocks and for production of high quality FEC induction. 

 

High quality cv.60444 FEC (fig. 3.2 f) was obtained after approximately 11 weeks (from the start 

of explant axillary bud swelling to the development of FEC on the 4
th

 transfer on GD media).  

 

3.5.2 T200 FEC induction 

T200 FEC induction followed a similar process to cv.60444 induction; however T200 FEC 

induction was a lengthier process as it required additional cycling steps compared with cv.60444 

FEC induction.  Mature SE only appeared after the 3
rd

 SE transfer to fresh CIM (fig. 3.3 c). As 

with cv.60444, the SEs were split for SE maintenance (fig. 3.3 d) or FEC induction (fig. 3.3 e). 

FEC suitable for transformation were obtained after a total of 14 weeks from the 1
st
 GD transfer 

to the 7
th

 GD transfer. Therefore it took a total of 18 weeks from the start of explant swelling to 

mature FEC formation (fig. 3.3 h). T200 FEC was a slightly light yellow-pale colour unlike 

cv.60444 FEC which were a more yellow colour. 
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Figure 3. 2 cv.60444 FEC induction (a) Swollen axillary bud after 3 days on CAM.  (b) 

Immature somatic embryos (SE) surrounded by NEFC after 2 weeks on CIM. (c) Maturing SE 

with a reduction in NEFC after the 2
nd

  transfer to fresh CIM (after 2 weeks); SE then ready for 

FEC induction on GD. (d) SE maintained on CIM finger-like structures, trumpet shaped and 

coral-like SE with no NEFC after the 3
rd

 transfer to CIM. (e) Developing FEC with NEFC after 

the 3
rd

 transfer to GD. (f) Proliferating FEC with no NEFC after the 4
th

 transfer to GD; FEC 

ready for inoculation with Agrobacterium harbouring the constructs. 
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Figure 3. 3 T200 FEC induction (a) Swollen axillary bud, after 3 days on CAM.  (b) Immature 

somatic embryos (SE) surrounded by NEFC after 2 weeks on CIM. (c) Maturing SE produced 

after 2
nd

 transfer to fresh CIM (4 weeks later) and ready for FEC induction on GD. (d) Mature 

trumpet shaped and coral-like SE, with choral-like SE being more dominant, and no NEFC after 

the 4
th

 transfer to CIM (after 2 more weeks). (e) Tiny clump of developing FEC with NEFC after 

the 4
th

 transfer to GD. (f) Tiny clump of FEC giving rise to more FEC, proliferating FEC still 

embedded in NEFC. (g) Proliferating FEC after 10 weeks (5
th

 cycle on GD) with hard yellow 

NEFC structure. (h) FEC after 14 weeks (7
th

 cycle on GD); mature and ready to be inoculation 

with Agrobacterium harbouring the constructs. 
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3.5.3 Mismatched (mutated sense arm) RNA silencing hairpin construct transformation of 

cv.60444 and T200 FEC and regeneration of transformed FEC  

3.5.3.1 FEC transformation and cotyledons 

To distinguish between cv.60444 and T200 transformation with mismatched constructs, 

transformation events were labelled as group A and group B, respectively.  

 

For group A and group B transformation experiments, 7 plates with 10 FEC clumps of 

approximately 1cm diameter were used as starting material. After the co-cultivation step, FEC 

were moved weekly onto GD media containing increments of hygromycin (5 mg/ml-15 mg/ml). 

This step was necessary to promote selection and later regeneration of transformed FEC. A GUS 

assay was performed and positive transformation was confirmed by the blue stained FEC (fig. 

3.4 a). FEC that failed to be transformed turned a dull creamy colour, while transformed FEC 

turned a more intense yellow colour and appeared to double in size.   

 

The next step following selection was regeneration of transformed FEC on media containing 

increments of hygromycin minimise regeneration of untransformed FEC (escapees). 

Transformed cv.60444 FEC produced embryos as early as 10 days after being placed on 

MSN+H15 media (fig. 3.4 b). On the 2
nd

 transfer to MSN+H15 tiny green cotyledons were 

already forming and the production of more embryos and cotyledons increased with every 

transfer to fresh MSN+H15 (fig. 3.4 d). FEC were transferred to fresh MSN+H15 6 times (after 

every 10 days). The same process was followed for T200 transformed FEC, however for T200 

transformed FEC, formation of embryos and cotyledons only occurred on the 3
rd

 MSN+H15 

transfer.  

 

Cotyledons only developed from MM2 and MM4 transformed cv.60444 FEC (A-group) and 

from T200 FEC transformed with MM2, MM3 and MM4 constructs (B group) (Table 3.2). 

Cotyledons failed to regenerate from MM1, MM5 and MM7 transformed FEC. Up to a 50% 

reduction in cotyledon number was seen for T200 transformed FEC compared with cv.60444 

FEC transformed with the same constructs. 
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Figure 3. 4 Regeneration of putatively transformed FEC (a) Blue stained FEC after GUS 

assay. (b) Developing embryo (on MSN+C250+H15) on a bed of transformed FEC seen as 

yellow swollen structures. (c) Maturing embryo after 2 weeks on MSN+C250+H15. (d) Yellow 

green cotyledon after 3 weeks on MSN+C250+H15; cotyledon ready to be moved to 

CEM+C100. (e) Maturing cotyledon. (f) Appearance of shoot with emerging juvenile leaves 

after several weeks on CEM+C100. Apical shoot was transferred to rooting media after 

appearance of mature\true leaves.  
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3.5.3.2 Undesirable FEC developmental retardation and defects 

 

MM1 transformed cv.60444 FEC turned a cream and brown colour and failed to proliferate even 

4 weeks after the co-cultivation step, and no cotyledons were formed (fig. 3.5 b). FEC did 

however stain blue, indicative of successful transformation (fig. 3.5 a). Similar results were 

observed for T200 FEC transformed with MM1; however amongst the brown FEC were clumps 

with an intense yellow colour that is associated with transformed FEC (fig. 3.5 c). These also 

failed to produce cotyledons. 

 

 

 

Figure 3.5 MM1 transformed cv60444 and T200 FEC. (a) GUS stained FEC. (b) MM1 

transformed cv.60444 FEC: FEC not proliferating and not producing embryos after 4 weeks on 

MSN+C250+H15, turning necrotic. (c) MM1 transformed T200 FEC after 4 weeks on 

MSN+C250+H15: swollen yellow FEC not forming cotyledons.  
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Interesting and unusual finger-like structures, instead of the expected embryo structures, were 

observed from cv.60444 FECs transformed with MM3 constructs (fig. 3.6 b) despite positive 

transformation, indicated by blue-stained FEC (GUS assay) (fig. 3.6 a). 

 

 

Figure 3. 6 MM3 transformed cv.60444 FEC (a) GUS stained FEC. (b) cv.60444 FEC 

producing finger-like structures instead of expected embryo structures. 

 

3.5.3.3 Shoot development and rooting of putative transgenic lines  

Group A and B cotyledons emerging from FEC transformation and regeneration events were 

transferred to shoot-promoting media containing 100 mg/ml carbenicillin (CEM+C100). After 

placing the cotyledons on CEM+C100 for 2 weeks, shoots with juvenile leaves emerged from the 

middle of the cotyledons (fig. 3.4 f). Approximately 65% of the cotyledons produced shoots.  

 

Group A and group B shoots were excised and placed on rooting media with 50 mg/ml 

carbenicillin (CBM+C50). Overall a high percentage of shoots placed on CBM+C50 produced 

roots efficiently. Each shoot that rooted was treated as an independent putative transgenic line. 

Less than 5 % of shoots failed to root. Over 100 putative transgenic A-group lines were 

generated on CBM+C50, however for handling purposes only 100 A-MM2 lines and 100 A-

MM4 lines (table 3.2) were selected and maintained for transgene status characterisation.  

 

B-group shoots were able to develop roots at a high efficiency with the exception of B-MM3 

transgenic lines. Only 50 putative transgenic lines were selected for maintained and transgene 

status determination, and again this was done to help keep the number of lines analysed at a 

B A 

Finger –like 

structures  
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manageable size. As a result of the lower rooting efficiency observed for B-MM3 lines, only 43 

putative transgenic lines were generated (Table 3.2). 

 

3.5.4 Non-mismatched  RNA silencing hairpin constructs transformation of cv.60444 and 

T200 FEC and regeneration of transformed FEC  

 

3.5.4.1 FEC transformation and cotyledons 

Cultivar 60444 and T200 FEC transformation events with non-mismatched constructs were 

given the codes Group C and Group D, respectively. Selection of cv.60444 and T200 FEC 

transformed with non-mismatched constructs followed the same sequence of events as observed 

for cv.60444 and T200 FEC transformed with mismatched constructs (3.5.3). Transformed FEC 

were selected for on GD media containing increasing concentrations of hygromycin. Embryos 

were formed after moving FEC to MSN+H15 media. Results were similar to those observed in 

3.5.3. Once again a delay in embryo production was observed in T200 transformed FEC 

compared with cv.60444 transformed FEC.  

 

Embryos matured and gave rise to cotyledons. Approximately a 10-fold decrease in cotyledon 

numbers was observed in both cv.60444 and T200 FEC transformed with non-mismatched 

constructs compared to cotyledons generated from mismatched transformed cv.60444 and T200 

FEC (reported in 3.5.3). 

   

3.5.4.2 Shoot development of cotyledons 

Cotyledons were placed on CEM+C100 media and green shoots with immature leaves emerged. 

C-MM6 generated cotyledons had a shooting efficiency of 66% and 60% for C-MM8 generated 

cotyledons. D-MM6 and D-MM8 generated cotyledons had a 71% and 54% shooting efficiency, 

respectively (table3.2).
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Table 3. 2 Cotyledon and shoot generation efficiency per ~1cm FEC clump for each cultivar/landrace construct transformation event. 

Cultivar/landrace 

transformed,construct and 

experiment group 

RNAi 

construct 

 

 

Number 

of 

~1 cm FEC 

clumps 

Number 

of 

cotyledons 

generated 

Number of 

cotyledons/ 

~1 cm FEC 

clump 

Number 

of emerging 

shoot 

Number of 

shoots/ 

~1 cm 

FEC 

clump 

cv.60444 

transformation with Mutated sense-

RNAi constructs (A-group) 

MM2hp 70 850 12 535 8 

MM4hp 70 640 9 408 6 

cv.60444 

transformation with Non-mutated-

RNA constructs (C-group) 

MM6hp 40 107 3 71 2 

MM8hp 40 117 3 67 2 

T200 

transformation with Mutated sense-

RNAi constructs (B-group) 

MM2hp 50 317 6 197 4 

MM3hp 50 108 2 65 1 

MM4hp 50 343 7 230 5 

T200 

transformation with Non-mutated-

RNAi constructs (D-group) 

MM6hp 30 40 1 28 1 

MM8hp 30 70 2 38 1 
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3.5.4.3 Shoot rooting to generate putative transgenic lines 

As a result of low cotyledon numbers, fewer shoots were available for transfer to rooting media 

CBM+C50. Roots started appearing as early as 2 weeks after placing excised shoots in rooting 

media. Shoot and roots matured over 6-8 weeks giving rise to putative transgenic lines. Up to 

95% of shoots placed on rooting media managed to produce roots however as s a result of the 

low starting shooting number, fewer putative transgenic lines were available for further 

transgene status characterisation (table 3.2). 

 

 

3.5.5 Visual screening of Group A, Group B, Group C and Group D generated lines for 

transgene status   

A total of 98 A-MM2 lines, 99 A-MM4 lines, 50 B-MM2, 42 B-MM3 and 50 B-MM4 putative 

transgenic lines were screened The number of putative transgenic lines from group C and D that 

were screened was reduced to 30 lines for C-MM6, 40 lines for CMM-8, 20 lines for D-MM6 

and 30 lines for D-MM8.  

 

All the selected putative transgenic lines (generated and selected in 3.5.3 and 3.5.4) were tested 

for transformation success using visual tests: (i) hygromycin rooting test and GUS assay and (ii) 

molecular methods: PCR of the Hyg, GUS and transgene, southern blots and northern blots.   

 

3.5.5.1 Hygromycin rooting test  

Apical shoots of putative transgenic lines were placed on CBM media containing 10 µg/ml 

hygromycin (CBM+C50+H10), this was to test the rooting ability in media containing 

hygromycin selection. Successfully transformed lines were able to produce roots and grow in 

media containing hygromycin, while untransformed cv.60444 and T200 failed to produce roots, 

and the apical shoot failed to grow, turned brown and died (fig. 3.7). A-MM2 and A-MM4 

putative transgenic lines had 86% and 88% rooting success, respectively. B-MM2, B-MM3 and 

BMM4 had 95%, 98% and 98% respectively. C-MM6 and C-MM8 putative transformed lines 

showed a 66% and 75% rooting success, respectively. C-MM5 and C-MM7 putative transgenic 

lines all failed to root. D-MM6 and D-MM8 had 66% and 83% rooting success, respectively 

(table 3.2). 
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Figure 3.7 Hygromycin rooting test. (a)Transgenic line rooting and growing well on 

CBM+C50+H10 medium (b) Untransformed cv.60444 not rooting nor growing on 

CBM+C50+H10 medium. 

 

3.5.5.2 GUS assay 

Along with the rooting test, putative transgenic lines were also screened for transformation 

success using a GUS assay. Lines that had been successfully transformed turned blue following 

O/N incubation in GUS assay solution (fig. 3.8a).   Leaves that remained green following 

staining suggested that plant was not transgenic (fig. 3.8b). GUS assay results demonstratedthat 

74 % of A-MM2 and 80 % of A-MM4 lines were transgenic. Seventy four percent, 76 % and 64 

% of B-MM2, B-MM3 and B-MM4 lines assayed were positive for GUS, respectively. A low 37 

% of C-MM6 lines assayed tested positive for GUS and 63 % of C-MM8 lines tested positive. 

All C-MM5 and C-MM7 lines tested negative for GUS. GUS assay results of D group putative 

transgenic lines suggested that 43 % of D-MM6 and 60 % of D-MM8 selected lines had been 

successfully transformed (table 3.2). As expected, untransformed cv.604444 and untransformed 

T200 control plants were negative for GUS, with the leaves not staining blue (fig. 3.8 b).  

 

A B 

Long roots 

forming from 

shoot 
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Figure 3. 8 Leaves following O/N incubation at 37 °C in GUS assay solution. (a) Blue stained 

leaf (positive GUS assay) indicating positive transgene status. (b) Untransformed green wild-

type cv.60444 leaf negative for GUS    

       

 

Table 3.3 Transformation efficiency calculated based on putative transgenic plantlets able to 

root on hygromycin-containing media and positive blue GUS assay. 

Transformation 

group ID 

Number of 

Lines 

screened 

Transformation efficiency 

Hygromycin 

Rooting test 

(%) 

GUS assay 

(%) 

A-MM2 98 86 74 

A-MM4 99 88 80 

B-MM2 50 98 74 

B-MM3 42 95 64 

B-MM4 50 98 76 

C-MM6 68 66 37 

C-MM8 65 75 62 

D-MM6 21 67 62 

D-MM8 36 83 50 

 

 

 

a b 
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3.5.6 PCR-based validation of group A, group B, group C and group D transgene status 

For validation of visual screening results, PCR amplification of Hyg, GUS and insert were 

performed. 

 

3.5.6.1 Mismatched cv.60444 lines (group A) and mismatched T200 lines (group B) - 

Transgene status screening using PCR amplification of GUS, Hyg and transgene 

 Group A lines:  

A-MM2 lines  

PCR amplification of a 181 bp GUS fragmentwas successful in 85 % of the 98 A-MM2 lines, 

however only 83 % of the same lines were positive for the 485 bp Hyg amplicon. Positive and 

negative controls gave the expected results (fig 3.9a and b). The 337 bp mutated sense-arm (of 

the construct) was detected in 80 % of the lines (fig. 3.9c). However the 319 bp non-mutated 

antisense-arm of the hairpin could not be amplified in all 98 lines, but the positive control 

amplified from plasmid gave the expected fragment size (fig. 3.9d). GUS, Hyg and RNAi 

construct PCR amplification results suggested that some lines had only certain regions of the T-

DNA integrated. An example of this was line, A-MM2-3, where only the Hyg and the hpRNA 

mutated sense-arm could be amplified (fig. 3.9). A total of 98 lines were screened, but the 

agarose electrophoresis gels below show results for only 27 lines. 
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Figure 3. 9 1 % agarose gel electrophoresis of Hyg, GUS and RNAi construct PCR amplicons in 

27 A-MM2 putative transgenic lines that were selected for rooting test and GUS assay. Lines 

were screened for the (a) 181 bp GUS gene fragment, (b) 485 bp Hyg gene amplicon, (c) 337 bp 

mutated sense-arm amplicon and (d) the 319 bp non-mutated antisense-arm amplicon. M= 

O’GeneRuler 1 kb Plus DNA ladder (Fermentas). 

 

A-MM4 lines  

A GUS amplicon was detected in 93 % of the 99 MM4 lines tested (fig. 3.10a). The Hyg 

amplicon was amplified in 99 % of the lines (fig. 3.10b). Lines were also tested for the mutated 

sense-arm of the hairpin, and the 239 bp fragment was amplified in 89 % of the lines (fig. 3.10c), 

however, the non-mutated antisense-arm of the hairpin could not be detected in any of the 99 

lines. Positive control reactions yielded the expected results (fig. 3.10d). In certain lines, for 

example A-MM4 90, the Hyg rooting test was positive, however PCR amplification of the Hyg, 

GUS, mutated sense-arm and non-mutated antisense-arm were all negative.  
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Figure 3. 10 PCR confirmation of transgene status of MM4 putative transgenic lines. Lines were 

screened for the (a) 181 bp Hyg fragment, (b) 485 bp GUS amplicon, (c) 337 bp mutated sense-

arm hairpin amplicon and (d) the 221 bp non-mutated antisense-arm hairpin amplicon. M= 

O’GeneRuler 1 kb Plus DNA ladder (Fermentas). 

 

 Group B lines: 

B-MM2 lines  

PCR amplification of the 181 bp GUS fragmentwas successful in 96 % of the 50 B-MM2 lines 

and the 485 bp Hyg fragment was detected in 98 % of the 50 BMM2 lines (fig. 3.11a and b). 

Transgene screening using the non-mutated sense-arm primers was positive in only 40 % of the 

lines (fig. 3.11c). Screening of the same lines using the mutated-sense arm primers amplified 

positive in 96 % of the lines (fig. 3.11d). Agarose gels below show results for only 15/50 lines 

that were screened. 

 

 

a 

b 

c 
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Figure 3. 11 PCR confirmation of transgene status of putative transgenic B-MM2 lines selected 

for rooting test and GUS assay. All 50 lines were screened, but gels above only showing results 

lines B-MM2 16-31. Lines were screened for (a) 181 bp Hyg amplicon, (b) 500 bp GUS 

amplicon, (c) 319 bp non-mutated antisense-arm fragment of the hairpin and (d) the 337 bp 

mutated sense-arm fragment of the hairpin. M= O’GeneRuler 1 kb Plus DNA ladder 

(Fermentas). 

 

B-MM3 lines  

 

The 181 bp GUS amplicon was detected in all of the 42 lines screened (fig. 3.12a). The same 

lines were screened for the Hyg region of the transgene, and this was only detected in 95 % of 

the lines (fig. 3.12b). The lines were further screened for the non-mutated antisense-arm of the 

transgene, and this was only detected in 31 % of the lines (fig. 3.12c). Screening of the mutated 

sense-arm fragment of the hairpin was only detected in an even lower 21 % of the lines (fig. 

3.12d). Mutated sense-arm and antisense-arm amplicons were very faint (fig. 3.12c and d). Gels 

below show results of only 12/50 of the lines screened. 

 

 

b 

c 

d 
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Figure 3. 12 PCR screening of putative transgenic B-MM3 lines selected for rooting test and 

GUS assay. All 42 lines were screened, but gels above show results of B-MM3 31- 42 lines. 

Lines were screened for (a) 181 bp GUS amplicon, (b) 485 bp Hyg  amplicon, (c) 381 bp non-

mutated antisense-arm fragment and (d) 399 bp mutated sense-arm fragment of the construct. 

M= O’GeneRuler 1 kb Plus DNA ladder (Fermentas). 

 

B-MM4 lines  

The Hyg fragment was detected in 92 % of the 50 lines screened (fig. 3.13a). The GUS amplicon 

was detected in 96 % of the 50 lines screened (fig. 3.13b). The non-mutated antisense-arm of the 

construct was amplified in 96% of the lines (fig. 3.13c). The mutated sense-arm was amplified in 

only 88 % of the lines (fig. 3.13d). The negative and positive control PCR reactions yielded the 

expected results. Gels below are showing results for only 11 lines. 

 

 

b 

c 
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Figure 3. 13 PCR confirmation of transgene status of putative transgenic BMM4 lines that were 

selected for rooting test and GUS assay. All 50 lines were screened, but gels above only show 

results for lines BMM4 15-25. Lines were screened for (a) 485 bp Hyg gene amplicon, (b) GUS 

gene(c) 221 bp non-mutated antisense-arm fragment and (d) the 239 bp mutated sense-arm 

fragment of the construct. M= O’GeneRuler 1 kb Plus DNA ladder (Fermentas). 

 

3.5.6.2 Non-mismatched cv.60444 lines (group C) and non-mismatched T200 lines (group 

D) - Transgene status screening using PCR amplification GUS, Hyg and RNAi construct 

 

C-MM6 lines 

Molecular screening of C-MM6 lines was performed on 17 lines. All the 17 lines were positive 

for both the 181 bp GUS amplicons (fig. 3.14 a) and the 485 bp Hyg fragment (fig. 3.14 b). 

Positive amplification was achieved for both plasmid controls while no amplicons were obtained 

for the negative control untransformed cv.60444 and the NTC. None of the samples tested 

positive for PCR amplification of both the 331 bp MM6 XbaI-arm and the 339 bp MM6 XhoI-

arm of the construct (gel not shown).  

 

 

 

b 

c 

d 
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Figure 3.14 PCR confirmation of putative transgenic C-MM6 lines transgenic status. Lines were 

screened for (a) 181 bp GUS fragment; fragment was successfully amplified in all lines screened. 

(b) Amplification of the 485 bp hygromycin gene fragment was detected in all lines tested. In 

both (a) and (b) plasmid amplified positive while no amplicons was seen in both the 

untransformed cv.60444 and NTC controls. M= O’GeneRuler 1 kb Plus DNA ladder 

(Fermentas). 

 

C-MM8 lines  

Amplification of the 181 bp GUS was positive in 15/17 lines screened while 16/17 were positive 

for the 485 bp Hyg gene fragment. Positive controls amplified positive for both the GUS and 

Hyg. The negative control, untransformed cv.60444, and NTC were negative for the both GUS 

and Hyg gene fragments. Amplification of the 239 bp MM8 XbaI-arm was strongly amplified in 

only 2 of the 17 samples tested. Faint amplification of this 239 bp fragment was observed in the 

10 remaining lines. The 236 bp MM8 XhoI-arm was amplified at high intensity in only 1 of the 

17 lines tested while very faint amplicons were seen in 7 lines and no amplicons was seeing in 

9/17 lines. Positive and negative controls gave expected results. 

 
 

 

b 

a 
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Figure 3. 15 PCR confirmation of putative transgenic C-MM8 lines transgenic status. Lines 

were screened for (a) 181bp GUS fragment successfully amplified in all lines except line 12 and 

23 (b) Amplification of the 485 bp Hyg fragment was detected in all lines except line 23. (c) 

Inverted gel image of 239 bp MM8 XbaI amplicons detected in line 2 and 27 and very faintly in 

lines 1,3,4,5,6,7,8,9,10 and 23 (d) Inverted gel image of 239 bp MM8 XhoI-arm detected in line 

27 and very faintly in lines 1,2,3,4,5,7,8. M= O’GeneRuler 1 kb Plus DNA ladder (Fermentas). 

 

 

 

D-MM6 transgenic lines  

 

All 8 D-MM6 lines screened were positive for presence of the 181bp GUS fragment (fig. 3.16 a) 

and positive for the 485 bp Hyg fragment (fig. 3.16 b). Lines were also screened for the 331 bp 

MM6 XbaI-arm of the hairpin and the 331 bp MM6 XhoI-arm however both these fragments 

could not be amplified in all the 8 lines screened (gels not shown). 

 

 

b 

a 

a 

b 

c 
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Figure 3.16 PCR screening of putative D-MM6 transgenic lines for transgene status.  (a) 

Positive amplification of 181 bp GUS fragment in all 8 selected lines. (b) Positive amplification 

of the 485 bp Hyg gene fragment in all lines screened. M= O’GeneRuler 1 kb Plus DNA ladder 

(Fermentas). 

 

D-MM8 lines 

The 181 bp GUS fragment was positively amplified in all 10 out of 11 D-MM8 lines screened. 

(fig. 3.17 a). These 11 lines were also screened for the presence of the 485 bp Hyg gene 

fragment, all 11 lines amplified positive (fig. 13.7 b). Both GUS and Hyg positive controls 

amplified successfully while as expected the negative control, untransformed cv.60444 and the 

NTC produced no amplicons. Lines were also screened for the presence of the hairpin arm of the 

construct. The 239 bp MM8 XbaI-arm was amplified in 8 of the 11 lines screened; however the 

amplicons were very faint. The 239 bp MM8 XhoI-arm was amplified in 6 out of the 11 lines 

screened; the amplicons were also faintly amplified. 

 

 

a 
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Figure 3. 17 PCR screening of D-MM8 lines for transgene determination. (a) PCR amplification 

of the 181 bp GUS fragment in 10 lines (lines 1-10) and positive control. (b) Positive 

amplification of 485 bp gene fragment in all 11 lines and positive control. (c) Amplification of 

239 bp MM8 XbaI fragment in lines 1, 2, 4, 5, 6, 8, 9 and 10. (d) Amplification of the 239 bp 

MM8 XhoI fragment in lines 1, 3,4,5,9 and 10. M= O’GeneRuler 1 kb Plus DNA ladder 

(Fermentas). 

 

3.5.7 Transgene integration analysis using Southern blot 

Selected lines from the screening tests above were maintained in tissue culture for further 

processing and analysis.   

 

Group A (mismatched cv.60444) and group C (non-mismatched cv.60444) transgenic lines were 

probed with 3 probes (Hyg, GUS and RNAi construct DIG-labelled probes). Group B 

(mismatched T200) and group D (non-mismatched T200) transgenic lines were probed with Hyg 

DIG labelled probe.  
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3.5.7.1 DIG Probe labelling and synthesis 

Probes were successfully synthesised following the Roche DIG PCR labeled kit. Synthesis and 

labeling was confirmed by agarose gel electrophoresis. Successfully labelled gene fragments 

migrated slower than the respective unlabelled control gene fragment. Slower migration was as a 

result of the incorporation of the heavier DIG-11-dUTP deoxyribonucleotide contained in the 

mixture of deoxyribonucleotides. The DIG-labelled Hyg and GUS probes appeared higher than 

the 485 bp (fig. 3.18 lane 1 and 2), and 181 bp GUS (fig. 3.18 lane 3 and 4) unlabelled 

counterparts. The unmodified ACMV AC1/4:AC2/3 DIG-probes appeared higher than 

unlabelled 319 bp ACMV AC1/4:AC2/3amplicon (fig. 3.19 lane 1 and 3) while unmodified 

BC1 labelled probe also appeared higher than 221 bp BC1 unlabelled amplicons. (fig. 3.19 (lane 

2 and 4). Probes were then used in Southern blot hybridisation experiments. 

 

 

 

Figure 3. 18 1% agarose gel of PCR DIG labelled Hyg and GUS fragment probes. M= 

O’GeneRuler 1 kb Plus DNA ladder (Fermentas). DIG-labelled Hyg probe (lane 1) migrating 

slower than unlabelled 485 bp Hyg fragment (lane 2) and DIG-labelled GUS probe (lane 3) 

migrating slower than unlabelled 181 bp GUS fragment (lane 4). 
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Figure 3. 19 1% agarose gel of PCR DIG labelled insert probes. M= O’GeneRuler 1 kb Plus 

DNA ladder (Fermentas), unmodified ACMV AC1/4:AC2/3 (lane 1) migrating slower than 

unlabelled 319 bp ACMV AC1/4:AC2/3 fragment (lane 3) and DIG-labelled unmodified BC1 

unmodified (lane 2) migrating slower than unlabelled 221 bp BC1 (lane 4). 

 

3.5.7.2 Group A transgenics 

A-MM2 lines 

Transgene integration study was performed on 16 of the 98 A-MM2 lines. Probing with DIG 

labelled-Hyg indicated that 12/16 lines had a single transgene copy integrated, 3/16 lines had 2 

transgene copies integrated, while no transgene could be detected in one of the lines (fig. 3.20a).  

Probing of the same 16 lines with DIG labelled-GUS 8/16 lines had a single transgene copy 

integrated, 2/16 had 2 transgene integrations, 3/16 lines had 3 transgenes integrated, 1/16 had 4 

transgenes integrated, while in 1 line there was no transgene detection (fig. 3.20b). The 16 lines 

were also screened for transgene copy number using the DIG labelled-ACMV AC1/4:AC2/3. 

Analysis showed that 11/16 of the lines had 1 copy of an intact MM2hp cassette (CaMV35S-

ACMV AC1/4:AC2/3 IR- terminator), 2/16 lines had 1 copy of the intact cassette as well as a 

truncated MM2hp cassette and in 3/16 of the lines, no MM2hp cassette could be detected 

suggesting a deletion of the ACMV AC1/4:AC2/3 fragment of the MM2hp cassette (fig. 3.20c). 
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Figure 3. 20 Southern blot analysis of A-MM2 transgenic lines for transgene integration using 

three DIG-labelled probes. M = DIG molecular weight marker (Roche), wt = untransformed 

cv.60444 and +veC = pC1305.1  (a) HindIII-digested genomic DNA, probed with Hyg (b) 

HindIII-digested genomic DNA, probed with GUS and (c) HindIII and EcoRI-double digested 

genomic DNA, probed with ACMV AC1/4:AC2/3 DIG-labelled fragment to detect a 2771 bp 

MM2hp cassette; +veC = HindIII and EcoRI-double digested pTZR5/T containing MM2hp 

cassette. 
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Table 3.4 Transgene copy numbers of 16 A-MM2 lines detected by DIG-labelled Hyg, GUS and 

DIG Hybrid II (ACMV AC1/4:AC2/3) -labelled probes 

Line 

ID 

Hyg GUS MM2hp cassette 

21 1 1 1 

27 1 1 1 

30 1 1 1 

34 1 1 1 

36 1 0 0 

43 1 1 0 

44 1 3 1 

45 1 1 1 

52 2 3 1 

53 1 2 1 and a truncated copy 

54 2 3 1 

58 1 1 1 

63 1 1 1 

69 1 2 1 and a truncated copy 

70 0 4 0 

71 2 0 1 
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A-MM4 lines 

Out of 98 A-MM4 transgenic lines, 17 lines were selected to analyse transgene integration 

patterns. Transgene copy results, when probed using the DIG-labelled Hyg indicated that 14/17 

lines had single transgene copy, 1/17 lines had 2 copies, and there was no detection in 2/17 A-

MM4 lines (fig.3.21a). When probing the same 17 lines with DIG-labelled GUS probes, 10/17 

lines had a single transgene copy and 7/17 lines had 2 transgene copies (fig. 3.21b). Lines were 

also probed with DIG-labelled BC1 unmodified fragment. Probing showed that 13/17 lines had 

an intact MM4hp cassette (CaMV35S-SACMV BC1 IR-terminator), 1 line had an intact MM4hp 

cassette as well as 4 other copies containing insertions within the cassette, 1/17 had an intact 

cassette and an insertion containing copy, and in 2/17 lines no MM4hp cassette could be detected 

suggesting a possible deletion of the unmodified arm of the MM4hp (fig. 3.21c). 

  

 

a 

b 

c 

Figure 3. 21 Southern blot analysis of A-MM4 transgenic lines for transgene integration using 

DIG-labelled probes. M = DIG molecular weight marker (Roche), wt = untransformed cv.60444 

and +veC = pC1305.1 (a) HindIII-digested genomic DNA, probed with Hyg, (b) HindIII-digested 

genomic DNA, probed with GUS and (c) HindIII and EcoRI-double digested genomic DNA, 

probed with BC1 unmodified DIG-labelled fragment to detect  2575 bp MM4hp cassette; +veC = 

HindIII and EcoRI-double digested pTZR5/T containing MM4hp cassette. 
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Table 3. 5 Transgene copy numbers of 16 A-MM4 lines detected by DIG-labelled Hyg, GUS and 

BC1 unmodified fragment probes 

Line ID Hyg GUS MM4hp cassette 

10 1 1 0 

11 2 1 0 

21 1 2 1 

25 1 2 1 

33 1 1 1 

34 1 1 1 

37 1 1 1 

39 1 1 1 

46 1 2 1 + an insertion containing copy 

48 1 2 1 

52 1 2 1 

59 1 1 1 

68 1 1 1 

70 0 2 1 +4 insertion containing copies 

71 1 1 1 

79 0 2 1 
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3.5.7.3 Group B transgenics 

B-MM2, B-MM3 and B-MM4 transgenic lines (T200 transformed with mismatched RNAi 

constructs) were screened for transgene copy number using DIG labelled-Hyg probe. A total of 

50 B-MM2 lines, 29 B-MM3 and 50 B-MM4 lines were screened. Screening results of B-MM2 

lines indicated that 44/50 had a single transgene copy, 2/50 lines had 2 transgene copies while no 

transgene could be detected in 4/50 of the lines (fig. 3.22a). Screening of 29 B-MM3 transgenic 

lines with Hyg probe indicated that 25/29 had a single transgene copy, 3/29 lines had 2 transgene 

copies and 1 line was negative (fig 3.22b). A total of 50 B-MM4 lines were screened; 43/50 had 

a single transgene copy number, 4/50 lines had 2 transgene copies and no transgene could be 

detected in 3/50 lines (fig 3.22c). Not all B-MM2, B-MM3 and B-MM4 Southern blot pictures 

have been included; only one Southern blot figure for each is shown. 

 

Figure 3.22 Southern blot of B-MM2, B-MM3 and B-MM4 HindIII-digested genomic DNA 

probed with DIG-labelled Hyg probe for transgene copy number. (a) 13/50 B-MM2 lines (B-

MM2 27-39), (b) 13/29 B-MM3 lines (B-MM3 14-26) and (c) 11/50 BMM4 lines (B-MM4 14-

24). M = DIG molecular weight marker (Roche), wt = untransformed cv.60444 and +ve = 

pC1305.1 plasmid control. 
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3.5.7.4 Group C transgenic lines 

 

C-MM6 transgenic lines 

Transgene integration analysis was performed on 15 C-MM6 lines using DIG-labelled Hyg, GUS 

and MM6 XbaI fragment probes. Probing with DIG labelled-Hyg, 6/15 lines had a single 

transgene copy, 4/15 had 2 transgene copies, 2/15 had 4 transgene copies while no transgene 

could be detected in 3/15 lines (fig. 3.23a). When probing the same 15 lines with DIG-labelled 

GUS probe, 9/15 lines had a single transgene copy, 2/15 had 2 copies and while no transgene 

could be detected in 4/15 lines (fig. 3.23b).  

 

 
Figure 3. 23 Southern blot analysis of C-MM6 transgenic lines for transgene integration using 

DIG-labelled probes. M = DIG molecular weight marker (Roche), wt = untransformed cv.60444 

and +veC = pC1305.1  (a) HindIII-digested genomic DNA, probed with Hyg and (b) HindIII-

digested genomic DNA, probed with GUS. 
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Table 3. 6 Transgene copy numbers of 15 C-MM6 lines detected by DIG-labelled Hyg and GUS 

probes. 

Line ID Hyg GUS 

1 4 1 

2 1 1 

4 0 1 

6 1 1 

7 2 1 

8 0 0 

9 2 1 

10 1 2 

11 2 0 

12 1 2 

13 4 1 

14 2 0 

15 0 0 

16 1 1 

19 1 1 

 

  c 
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C-MM8 lines 

Fifteen of 30 lines were selected for transgene integration pattern analysis. When screening with 

DIG-labelled Hyg gene probe 1 line had a single transgene copy, 12/15 lines had 2 transgene 

copies and no transgene was detected in 2/15 lines (fig. 3.24a). DIG-labelled GUS probe results 

showed that, 12/15 lines had a single transgene copy and no transgene was detected 3/15 lines 

(fig. 3.24b).  

 

 
Figure 3. 24 Southern blot analysis of C-MM8 transgenic lines for transgene integration analysis 

using DIG-labelled probes. M = DIG molecular weight marker (Roche), wt = untransformed 

cv.60444 and +veC = pC1305.1 plasmid control (a) HindIII-digested C-MM8 genomic DNA, 

probed with Hyg and (b) HindIII-digested C-MM8 genomic DNA, probed with GUS.  
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Table 3. 7 Transgene copy numbers of 15 C-MM8 transgenic lines. Lines were probed with 

DIG-labelled Hyg and GUS probe. 

Line ID Hyg GUS 

1 2 1 

2 2 1 

3 1 0 

4 2 1 

5 2 1 

6 2 1 

7 2 1 

9 2 1 

10 2 1 

11 2 1 

17 0 0 

18 0 0 

23 2 1 

25 2 1 

27 2 1 
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3.5.7.5 Group D transgenic lines 

D-MM6 and D-MM8 lines were screened for transgene copy number using DIG-labelled Hyg 

probe. Southern blot results of D-MM6 lines showed that 6/8 had a single transgene copy and 2/8 

D-MM6 lines had 2 transgene copies. D-MM8 results showed that 7/10 lines had a single 

transgene copy, 2/10 lines had 2 transgene copies and 1 line had 3 transgene copies. 

 

 

Figure 3. 25 Southern blot of D-MM6 1-8 lines and D-MM8 1-10 lines, genomic DNA digested 

with HindIII-digested genomic DNA probed with DIG-labelled Hyg probe for transgene copy 

number. M = DIG molecular weight marker, wt = untransformed cv.60444 and +ve = pC1305.1 

plasmid control. 

 

Selected single-copy group A and C transgenic lines with positive transgene inserts were used 

for virus challenge trials (chapter 4) to determine level of virus resistance. Group B and D 

transgenic lines were maintained in tissue culture for screening at a later stage.  

M 
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3.6 Discussion 

Cassava SE and FEC induction 

High quality somatic embryos (SE) from both cv.60444 and T200 axillary buds were 

successfully generated. Similar to Nyaboga et al. (2013), initiation of primary (immature) SE 

was achieved within 2 weeks.  Mature cv.60444 SE were obtained after 4 weeks of SE induction 

while T200 required an additional 2 weeks. Cultivar 60444 SE were more finger-like and 

trumpet shaped in morphology compared with the  flat and coral shaped T200 SE. However after 

8 weeks, cv.60444 started proliferating into predominantly flat coral shaped SE.  At 10 weeks of 

culture and maintenance, choral- shaped SE started changing from the characteristic pale yellow 

colour and developed a green tinge around the edges. At this stage the SE were discarded and a 

new SE induction was initiated.  

 

Using the SE as starting material, high quality mature cv.60444 FEC, suitable for transformation 

experiments, was induced after the 4
th

 transfer (8 weeks). This was similar to the results obtained 

by Bull et al. (2009), but different to the study by Hankoua et al. (2006), who reported a 12 week 

FEC induction period for cv.60444 using a slightly different FEC induction protocol compared to 

Bull et.al.   In contrast, high quality T200 FEC was only obtained after the 7
th

 GD media transfer 

and therefore required a total of 14 weeks.  Hankoua et al. (2006) also reported longer FEC 

induction periods for other cassava genotypes other than cv.60444. Similar to Chetty et al. 

(2013), in this study T200 FEC proliferated better in constant darkness unlike cv.60444 FEC 

which were maintained in 16 h light and 8 h dark. Chetty et al. (2013), Nyaboga et al. (2013) and 

Zainuddin et al. (2012) reported that FEC induction conditions and ease of induction is cultivar 

or landrace dependent. The length of time to generate FEC was also found to vary in the East 

African cultivars tested by Nyaboga et al. (2013), ranging from 9 to 22 weeks. Obtaining high 

quality FEC is critical for successful cassava genetic transformation. High transformation 

efficiencies also depend on efficient FEC regeneration protocols.  

 

Agrobacterium-mediated transformation of FEC 

Using the Bull et al. (2009) protocol, we were able to successfully transform cassava cv.60444 

and T200 FEC. Embryo formation from hpRNA construct-transformed T200 FEC was slower 
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than cv.60444 FEC. Embryo initiation from transformed cv.60444 FEC occurred a few days after 

the 1
st
 transfer to MSN+H15 while T200 FEC embryo initiation only occurred on the 2

nd
 

MSN+H15 transfer. This was seen for all mismatch and non-mismatch hpRNA construct-

transformed FEC. Green cotyledons emerged for transformed cv.60444 and T200 FEC on the 2
nd

 

and 3
rd

 MSN+H15 transfer, respectively. On average, 57% more cotyledons were produced per 

cv.60444 FEC clump than per T200 FEC clump. Results suggest that cotyledon regeneration 

efficiency is genotype-dependent and further shows that cv.60444 is more amenable to 

transformation than most cassava cultivars or landraces. It was also observed that mismatched 

hpRNA construct transformation experiments generated 4 fold more cotyledons per FEC clump 

than non-mismatched transformation experiments. This could be linked to T-DNA transfer 

efficiency. Reports have shown that the efficiency and stability of T-DNA integration into plant 

genomes decreases with T-DNA size (Hamilton et al., 1996). Non-mismatched constructs in this 

study have a 800 bp larger T-DNA region as a result of the 800 bp PDK intron associated with 

pHellsgate vectors.  

 

Regeneration problems from FEC and off-target effects on host plants  

MM1hpRNA-transformed cv.60444 FEC become necrotic 4 weeks after co-cultivation with 

Agrobacterium. T200 FEC transformation with MM1hp produced a mixture of necrotic and 

yellow swollen FEC-like tissue. Both cv.60444 and T200 MM1hp transformed FEC did not 

regenerate however both showed distinct phenotypic differences on MSN media. Since 

transformation with the vector only did not demonstrate this necrotic phenotype, this suggests 

possible negative transgene effect in the two different cassava genotypes, which may have led to 

suppression or misregulation of gene expression pathways involved in FEC development and 

regeneration.  This detrimental effect on development of transformed FEC may be due to 

insertion locations, and also variable preferences between T200 and cv.60444, dictating resultant 

phenotypes. Even though transgene integration cannot be controlled and is not well understood it 

is suggested that insertion-site integration is non-random (as previously thought) and may be 

host genome sequence-dependent (Bartlett et al., 2014; Li et al., 2006; Salvo-Garrido et al., 

2004).  Siddiqui et al. (2008) researched the phenotypic effects caused by the expression of 

transformed virus RNA silencing suppressors in N. benthamiana and N. tabacum. They reported 

that expressing RNA silencing suppressor, P1, of Rice yellow mottle virus (RYMV) N. 
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benthamiana and N. tabacum resulted in distinctly different symptoms. Expression of this 

silencing suppressor in N. benthamiana resulted in severe stunting and leaf malformation. These 

results were seen even at very low expression levels. Expression of the same suppressor in N. 

tabacum produced no adverse effects. Based on these findings we postulate that the 

developmental defects in FEC development seen in MM1 transformed cv.60444 and T200 FEC 

could partially be transgene-cultivar/landrace induced phenotypic changes due location insertion.   

 

Interestingly, however, transformation success and undesirable FEC phenotypic differences were 

also observed in transformation experiments of cv.60444 and T200 FEC with the MM3 hpRNAi 

construct. In cv.60444, FEC produced finger-like protrusions could not be regenerated into 

plantlets, however transgenic plantlets were regenerated from MM3-transformed T200 FEC. 

Notwithstanding possible effects of transgene insertion-cassava germplasm genetic differences 

contributing to FEC or cotyledon regeneration, it seems more likely that off-target effects 

occurred, caused by the transcribed transgene hpRNA derived siRNAs.  Both MM1 transformed 

T200 and cv. 60444 did not regenerate, and additionally neither did MM3 and MM7 

(mismatched and non-mismatched hybrid EACMV AC1/4: EACMV AC2/3, respectively) 

transformed cv.60444 and T200 FEC, respectively, regenerate lines. Co-cultivation of both 

cv.60444 and T200 FEC with the MM5construct also did not generate any transformed lines, and 

FEC failed to develop and regenerate cotyledons. MM1and MM5 hybrid hp RNA constructs 

both target ACMV-NG:Ogo:90 and EACMV-UG2 AC1/4 ORFs, but the difference is that MM1 

is a mismatched hybrid while MM5 is a non-mismatched hybrid construct. However, what these 

four constructs have in common is an AC1/AC4 overlap fragment of EACMV-UG2 in the 

transgene.  AC4 is a potent virus suppressor of host RNA silencing and is also known to induce 

developmental effects in plants (Incarbone & Dunoyer, 2013; Vanitharani et al., 2004; Zvereva 

& Pooggin, 2012). Developmental abnormalities were reported in cassava expressing AC4 of 

ACMV-[CM] (Chellappan et al., 2005). They suggested that these abnormalities were caused as 

a result of ACMV-[CM] AC4-derived siRNA that were negatively inactivating miRNA 

regulating plant development. ACMV-[CM] AC4 was reported to cause developmental 

abnormalities in ACMV-[CM] AC4 expressing Arabidopsis thaliana plants (Chellappan et al., 

2005). We therefore postulate that the off-target inducing siRNAs are more likely to be 

generated from the EACMV AC1/4 targeted region and not the ACMV-NOg:90 AC1/4 gene 
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sequence, also  based on the observation that the same ACMV-NOg:90 AC1/4 gene sequence is 

present in two other hpRNA constructs, MM2 and MM6, and yet no undesired off-target 

developmental effects were observed from FEC transformed with these constructs.  Additionally, 

MM3 transgene has an EACMV-UG2 AC2/3 fragment, and AC2 is also a known virus 

suppressor of RNA silencing, and modulator of symptom severity in plants (Pumplin & Voinnet, 

2013; Trinks et al., 2005; Vanitharani et al., 2004). 

 

EACMV-UG induced more severe symptoms in cassava compared to ACMV in  N. benthamiana  

(Sserubombwe et al., 2008), and this may in part also be due to the RNA silencing suppressor 

proteins encoded by AC1/4 and AC2/3 ORFs, as discussed above. Vanitharani et al. (2004) 

provided evidence that similar proteins encoded by different virus species can and do exhibit 

different silencing suppressor activities (discussed in chapter 1). Njock (2014) reported more 

severe symptoms in ACMV-CM infected N. benthamiana than in EACMV-CM infected N. 

benthamiana. Arabidopsis-expressing suppressors from different plant viruses resulted in 

developmental abnormalities and disease-like symptoms (Chapman et al., 2004). Observed 

effects were reported to be a result of a disruption in the miRNA pathway involved in plant 

development.  Collectively, this would support the hypothesis that in cv.60444, specific siRNAs 

generated from the MM1 (stacked ACMV AC1/4 and EACMV or MM3 (stacked EACMV 

AC1/4: EACMV AC2/3) constructs are causing toxicity, either each overlapping ORF, or 

synergistically. Transgene-derived siRNAs could have negatively affected miRNA regulatory 

pathway(s) involved in FEC or cotyledon development. We were able to generate putative 

transgenic MM3hp plantlets from T200 FEC but not from cv.60444 FEC. This suggests that 

T200 FEC were not negatively affected by the MM3 transgene with regard to cotyledon 

initiation or development. Again, as suggested previously, this may have been due to the genetic 

differences between these two germplasm, in the miRNA-responsive pathways. Despite strong 

evidence from this study for a role of geminivirus genotype and transgene ORF-derived RNA in 

off-target detrimental effects on FEC and cotyledon development, we do not rule out a role for 

cultivar background genetics in these interactions.  

 

However not all morphological off-types can be attributed to the constructs and gene-derived 

sequences.  Taylor et al. (2012a) reported 5% off-types from regenerated transgenic plantlets, 
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and these lines were usually discarded.  The authors suggest that FEC (cv. 60444) should not be 

cycled more than three cycles at the time of Agrobacterium co-culture. In our first FEC 

transformation experiment, using 15-24 months old FEC, we did encounter mismatched hpRNA 

construct-transgenic plants showing abnormal phenotypes.  Many transgenic lines generated 

from this transformation event were stunted, had emerging leaves that appeared lancolate as 

opposed to trifoliate, some plants had thin contorted stems and very short internodes (data and 

figure not shown).  However, in a repeat transformation experiment, using younger than 20 

months old FEC, we obtained transgenic cassava displaying morphology similar to the 

untransformed control. We attributed the undesirable phenotypic differences to prolonged FEC 

cycling prior to Agrobacterium co-cultivation and not to the mismatched constructs. Taylor et al. 

(2001) reported leaf morphological aberrations when using older embryonic tissue. The authors 

suggested a disturbance in endogenous auxin metabolism due to prolonged picloram exposure in 

the cycling medium.  Raemakers et al. (2001) also reported morphological aberrations, reduced 

transformation efficiencies and longer plantlet regeneration periods when using 24 months old 

FEC compared with 6 months old FEC.  However in contrast, the cassava research group at ETH 

Zurich (Bull et al., 2009) cycle the FEC for up to 20 rounds (10-12 months) with comparable 

low off-type percentages.  

 

Early cassava transformation experiments reported low transformation efficiencies (Raemakers 

et al., 2001; Taylor et al., 2004; Zainuddin et al., 2012).  During the earlier experiments, cassava 

transformation involved co-cultivation of explants, such as cotyledons generated from somatic 

embryo, with the Agrobacterium-construct inoculum. These methods produced low (1-30 %) 

putative transgenic shoots and therefore results in low transformation efficiencies (Raemakers et 

al., 1997; Sarria et al., 2000). According to Raemakers et al. (2001) construct-transformed FEC 

have a greater chance of regenerating into embryos than untransformed FEC. They state that a 

‘strict correlation’ exists between the percentage transgenic FEC and percentage transgenic 

embryos generated. They go further and say that there is a positive correlation between the 

number of putative transgenic lines and final number of actual transgenic lines generated.  In this 

study we observed a similar trend in group A transformation event, where 12 cotyledons per FEC 

clump were generated, and this in turn resulted in 8 putative transgenic shoots per FEC clump, 

resulting in high (over 100) putative transgenic lines being generated and this then has a direct 
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effect on high (94-98 %) transgenic transformation efficiencies (table 3.3). And as suggested by 

Raemakers et al. 2000 low cotyledon regeneration efficiency per FEC clump, resulted in low 

shoot production efficiency per FEC clump. Low shooting efficiency negatively affected the 

number of putative transgenic lines produced, and resulted in lower transformation efficiencies 

(67-83 %) observed in group C and D transformation event. 

 

Transformation efficiencies and transgenic plant production  

With the advent of more robust, improved protocols, much higher transformation efficiencies are 

now attainable.  Recovery of independent putative transgenic lines is assured using methods by 

Bull et al. (2009) and Taylor et al. (2012). However as reported by Nyaboga et al. (2013) 

comparing transformation efficiencies is relatively complicated because of different 

transformation protocols, different cultivars and FEC quality and age. In this study we 

regenerated 1639 putative transgenic cv.60444 lines per 430 FEC clumps with a ~1 cm diameter 

(average of 4 putative transgenic lines per FEC clump). Bull et al. (2009) anticipated in excess of 

50 putative transgenic lines per 100 FEC clumps (average of 0.5 putative transgenic lines per 

FEC lump). Chetty et al. (2013) regenerated 154 putative transgenic lines per 140 FEC clumps 

(average of 1.1 putative transgenic lines per FEC clump).  Zainuddin et al. (2012) regenerated 59 

putative transgenic lines from 72 FEC clumps (average of 0.8 putative transgenic lines per FEC 

clump). All these studies used FEC clusters on solid media, and the range of transformation 

efficiencies from these collective studies, including this study, was 0.1 – 4.0 transgenic lines per 

~1cm FEC clump. Taylor et al. (2012a) on the other hand transform FEC in liquid culture, and 

reported an average of 22 putative transgenic lines per 1 cm
3
 of FEC settling volume. 

 

Transformation and regeneration of cassava is also genotype dependent and few cultivars or 

landraces have been successfully transformed in Asian cultivars (Raemakers et al., 2001) and 

African cultivars (Hankoua et al., 2006; Nyaboga et al., 2013; Zainuddin et al., 2012), 

suggesting an underlying genetic control in the capability of a given genotype.  In the study by 

Nyaboga et al. (2013) three local farmer-preferred cultivars were successfully transformed and 

regenerated, although not all somatic embryos produced plantlets, and L-tyrosine was required to 

improve regeneration of FEC (Zainuddin et al., 2012).  Nyaboga et al. (2013) did however report 

lower efficiencies for three East African farmer-preferred cultivars (Serere, Kibandameno and 
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Ebwanateraka) compared with cv.60444. In the study by Zainuddin et al. (2012), on cassava 

landraces provided by IITA-Ibadan, an increase in the number of maturing embryos was 

achieved by doubling FEC time on recovery and proliferation medium, this was done prior to 

placing construct-transformed FEC on MSN medium. Lower transformation efficiencies are 

usually obtained for cultivars and landraces other than the model cv.60444 cultivar. In the first 

cassava transformation report in our lab, using the Bull et al. (2009) method, we reported 

transformation efficiencies of 45 % and 33% for cv.60444 and T200, respectively (Chetty et al., 

2013). These transformation efficiencies were based on putative transgenic cv.60444 and T200 

shoots that rooted successfully on hygromycin-containing rooting media. Here we demonstrate a 

great improvement in transformation efficiencies for both cv.60444 and T200.  We obtained an 

average transformation efficiency of 79 % and 76 % for cv.60444 and T200, respectively. 

According to Bull et al. (2009), transformation efficiency is directly proportional to FEC quality 

and regeneration capacity, and therefore the establishment of efficient and reproducible 

transformation platform in our lab could have had resulted in the higher efficiencies  observed in 

this study. 

 

Molecular-based techniques proved to be reliable transformation screening methods. PCR 

screening and Southern blot were more reliable than histochemical GUS assays.  Using PCR 

amplification of Hyg and GUS to screen putative transgenic plantlets we were able to report 

average transformation efficiency of 92 %.  PCR screening using hpRNA primers were not as 

efficient in amplification of the hairpins (inverted repeats) and demonstrate an average 

transformation efficiency of 44 %. Difficulties associated with amplifying through IR sequences, 

especially those longer than 200 bp, could cause the discrepancies in transformation efficiencies 

(Hauge et al., 2009; Hommelsheim et al., 2014; Rattray, 2004; Yang et al., 2014).  

Hommelsheim et al. (2014) proposed several models to explain difficulties in IR amplification, 

and they suggested disturbances in polymerase activity due to complex structures that form 

during PCR re-annealing and denaturation cycles and polymerase dissociation as IR sequences 

are approached. They suggested using polymerases with better strand displacement activity, 

using polymerase cocktails and even including thermostable polymerase-associated proteins in 

IR-PCR amplification.  
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Overall, lower transformation efficiency results were obtained in this study from GUS assay-

based screening, when transformation efficiency was calculated on the number of putative 

transgenic shoots showing positive blue GUS assay. The GUS assay results provided high under-

representation of the true transformation efficiency results. The observed under-representation 

was suggested to be a result of assaying the uppermost leaves of tissue culture plantlets.  

Jefferson et al. (1987) reported decreased GUS activity in young leaves of transgenic N. tabacum 

var. Samsun expressing GUS. They also reported tissue dependent GUS expression levels with 

differential GUS transcription and translation being observed in leaves and stems. They reported 

that maximal GUS transcription requires mature chloroplasts. GUS assays are widely used but 

from our results and other transformation groups, and according to Halder & Kombrink (2015), it 

is subjective and ‘biased hit selection’ prone. Halder & Kombrink (2015) developed a more 

robust and reliable GUS assay-based method in Arabidopsis thaliana that is both qualitative and 

quantitative. This fluorimetric assay quantifies the fluorescence released from 4-

methylumbelliferyl-β-D-glucuronide (4-MUG) cleavage by β-galactosidase. Similar less reliable 

results were reported in transformation experiment of farmer-preferred cultivars, Ebwanatereka, 

Kibandameno and Serere, by Nyaboga et al. (2013). In cassava landraces, Oko-iyawo and 

Abbey-ife, GUS assay transformation efficiency results were also lower than rooting test results 

(Zainuddin et al., 2012). From our data we also observed that the rooting test is more accurate 

than the GUS assay. Rooting test results closely correlated with molecular screening results, and 

provided a good starting point for screening for selected transgenics, particularly when a large 

number of putative transgenic lines needed to be screened. We then consolidated and verified 

visual screening and PCR based screening tests by performing Southern blot analysis, which not 

only confirms integration, but provides transgene copy number. 

 

T-DNA integration analysis 

In addition to performing Southern blot analysis for copy number using the routine Hyg probe 

(Bull et al., 2009; Hiei et al., 1994) or nptII probe (Honda et al., 2002; Schreuder et al., 2001; 

Taylor et al., 2012) we probed with  GUS , and in the A group of transformations, with hpRNA 

construct probes. These regions lie within the vector T-DNA borders. Most cassava 

transformation studies have used plant transformation binary vector reporter genes, such as Hyg 

(Bull et al., 2009; Vanderschuren et al., 2009; Zainuddin et al., 2012)  or nptII (Taylor et al., 
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2012) to determine transgene copy number only. This method however is slightly limited in 

providing crucial information regarding transgene organisation post integration in the plant 

genome.  Detailed analysis of T-DNA integrations, re-arrangements, deletions, insertions and 

inversions have been a focus only in a few transformation studies, in context of transgene 

detection, organization and expression. Several studies (Bartlett et al., 2014; Latham et al., 2006; 

Liu et al., 2014; Zeng et al., 2009) have shown that integration does not always follow the 

expected and predicted insertion of all genes lying within the right and left borders of the 

transformation vector. Transgene truncations, deletions, insertions, inversions, re-arrangements 

and segregation into different loci have been reported (Liu et al., 2014; Müller et al., 1999). T-

DNA integration of several transgenic lines was analysed in this study (data not shown) using 

Southern blot, we discovered that using just one gene probe did not give a true reflection of T-

DNA integration integrity. In A-MM4 line 70, failure to probe with Hyg suggested that the line 

had no transgene integrated, while probing with GUS we were able to identify two transgene 

copies, and surprisingly, when probing with a hpRNA probe, one intact T-DNA and four 

additional copies which appeared to have insertions were identified. The majority of C-MM8 

lines appeared to be single copy transgenics when probed with Hyg, however probing with GUS, 

lines appeared to have two transgene copies. Our observed results also suggest possible 

additional truncated transgene and gene insertions and deletions.  T-DNA usually integrates from 

right to left border (Gelvin, 2003a; Pitzschke & Hirt, 2010; Riva et al., 1998; Wang et al., 1984). 

On plant transformation vector, pCAMBIA 1305.1, Hyg is located closer to the left border while 

GUS is located closer to the right border and in addition the right border is associated with 

‘overdrive’ sequences which are known to enhance right border transmission and insertion 

(Gelvin, 2003a). This could explain the suggestion that integration of an intact T-DNA does not 

always occur. 

 

In a study by Müller et al. (1999) transgene re-arrangements and illegitimate recombination was 

seen in twelve tobacco transgenic lines. They discovered that all sites of recombination contained 

palindromic sequences. Kohli et al. (1999) implicated the CaMV35S promoter in the re-

arrangements events observed in the 12 transgenic tobacco lines. They demonstrated that 

imperfect palindromic sequences and AT rich DNA sequences present in CaMV35S promoted 

illegitimate recombination events.  These sequences form secondary structures, such as hairpins 
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which are amenable to re-combination and rearrangements. A combination of Southern blot 

analysis, PCR-based methods and sequencing would give a more detailed picture of transgene 

integrity. Identification of integration site/location by amplifying junction sequences as described 

by Bartlett et al. (2014) would also prove valuable information. 

 

In conclusion, comparable high efficiencies of FEC transformation and transgenic plant 

regeneration, was achieved with both the model cultivar cv. 60444 and the SA high-starch 

landrace T200. However despite this success, cassava transformation remains laborious and 

fastidious, requiring a large amount of technical resources and screening of a large number of 

lines for selection of single copy insertions of non-truncated transgenes.  T-DNA integration 

detection using the current methods also remains somewhat unreliable.  Two of the most 

successful cassava transformation platforms (Taylor et al.2012a and Vanderschuren et al.2009 at 

the Donald Danforth Plant Science Center and ETH Zurich, respectively) have both similarities 

and differences, one notable one being the use of hptII hygromycin resistance gene (Bull et al., 

2009) and nptII kanamycin resistance gene (Taylor et al., 2012). In our hands, we find hptII 

gives better results (compared to experiments using kanamycin in our laboratory in the early 

2000’s; data not reported), while Taylor et al. 2012a found that kanamycin worked better in their 

hands.  Again, this points out that cassava transformation is not entirely reproducible in different 

conditions, and certainly we know it is genotype dependent.  Furthermore, if more traits are to be 

engineered in cassava in future, the scale and reproducibility of cassava transformation needs 

further investigation. 
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CHAPTER 4 

SCREENING OF TRANSGENIC PLANTS FOR SACMV AND ACMV 

RESISTANCE 
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4.1 Introduction 

4.1 Development of virus resistant transgenic cassava 

On the African subcontinent food insecurity is a major problem with small and large scale 

farmers as well as subsistence farmers relying on cassava cultivation (Kolawole et al., 2010). 

However, cassava infecting begomoviruses cause a huge threat to cassava cultivation. Methods 

used to try and limit these losses include traditional breeding for resistance, which is time 

consuming, and introgression of resistance genes into preferred cultivars is challenging (Fargette 

et al., 1996; Rudi et al., 2010). Various transgenic strategies to engineer virus resistant or 

tolerant lines have been explored (Shepherd et al., 2009). Over the last two decades different 

research groups working toward engineering begomovirus resistance in cassava have reported 

varying levels of susceptibility, tolerance and resistance.  

 

However within the plant virology community there are disparities associated with the terms 

susceptibility, tolerance and resistance. The terms have no standard definitions (Lapidot & 

Friedmann, 2002). For purposes of this research we have adopted a similar definition as that 

described by Lapidot and Friedmann. We define resistance as showing no symptoms and 

supporting very low to no virus replication, tolerance as supporting normal to lower virus 

replication however with reduced/mild symptoms and susceptible as supporting normal or even 

higher virus replication and high to severe symptoms. Recovery is defined as no to mild 

symptoms and low viral load. It would also seem that plant breeders and farmers have a different 

view or concerns to virologists with regards to plant - virus interactions and disease. Farmers and 

plant breeders are more concerned about the visual and crop yield effects of the virus on the 

plant (Lapidot & Friedmann, 2002). Plants showing normal to high viral load but with low virus 

symptoms are still considered comparatively more favourable, as this has a lesser impact on 

yield.  Plant pathologists and virologists on the other hand are more interested in the behavior of 

the virus in the plant and virus replication (Lapidot & Friedmann, 2002), as plants with high 

virus levels may exacerbate vector transmission in the field..  

 

4.2 Challenges associated with engineering resistance 

Several factors can contribute to reduced levels of resistance; these factors can be virus, plant 

and environmentally derived. Geminiviruses are able to overcome RNA silencing mechanism by 
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encoding silencing suppressors (Bisaro, 2006). The multigenic nature of resistance is also a 

potential problem in breeding and engineering for virus resistance (Rabbi et al., 2014). In certain 

reports the resistance phenotype has been broken by slight changes in temperature, light and 

virus inoculum  dosage (Chellappan et al., 2005; Kotakis et al., 2010; Vanderschuren et al., 

2009).  Chellappan et al. (2005) reported temperature-induced changes in PGTS-based silencing 

levels in cassava and N. benthamiana. An overall attenuation in symptoms was observed at 

higher temperatures (30 °C) than at 25 °C in cassava and N. benthamiana infected with ACMV-

[CM], EACMCV and EACMV-[UG]. Decrease in symptoms was linked to a 6-fold increase in 

virus-derived siRNA accumulation at higher temperatures. The study by Kotakis et al. (2010) in 

GFP transgenic N. benthamiana showed that an increase in light intensity resulted in increased 

mRNA levels of enzymes involved in the RNA silencing pathway and in siRNA accumulation. 

More recently, it has also been shown that light intensity and temperature affects systemic spread 

of the silencing signal (Patil & Fauquet, 2014). In transient Nicotiana benthamiana 

agroinfiltrated with seven species on cassava mosaic geminiviruses, at higher light intensities 

and higher temperatures (>30 
o 
C), gene silencing was localized to infiltrated leaves only, and the 

plants recovered from viral symptoms due to reduced systemic spread of the silencing signal  

(Patil & Fauquet, 2014). Additionally, in a study by Vanderschuren et al. (2009), an increase in 

infection rate from 22 % to 90 % was observed when transgenic cassava expressing ACMV AC1 

was infected with higher a ACMV-NOg virus inoculum dosage. They concluded that an increase 

in virus titre can break resistance. 

 

Once proof of concept has been shown in greenhouse trials, the next step is confined field trials 

(CFT).  However environmental factors can  contribute to the different results observed between  

repeat greenhouse trials  and between greenhouse trials and CFT (Anand et al., 2003; Viswanath 

et al., 2011). Data from cassava CFT for virus resistance transgenic cassava (Taylor et al., 

2012b) and β-carotene bio-fortification (Sayre et al., 2011) is not fully available as CFT are still 

underway. CMD-resistant transgenic cassava has been confirmed in CFT at the National 

Research Institute, UK, however CFT using natural virus pressure still need to be performed 

(Taylor, et al., 2012b). Virus Resistant Cassava for Africa (VIRCA) was established in Uganda 

in October 2009. Since its establishment three CFT on CMD-resistant cassava and one on 

cassava brown streak disease (CBSD)-resistant cassava have been performed. Two CMD CFT in 
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Kenya are also currently underway (Taylor et al., 2012b). The VICRA report by Taylor et al. 

(2012b) on CFT has confirmed greenhouse trial data of transgenic cv.60444 targeting EACMV. 

CFT of CMD-resistant cv.60444 developed by ETH are still ongoing in Puerto Rico (Adenle et 

al., 2012; Vanderschuren et al., 2009; Zhang et al., 2005). At the time of print, CFT in Africa, on 

ETH-developed CMD-resistant cassava were still yet to occur  (Adenle et al., 2012). 

 

4.3 Methods used to infect plants 

Begomovirus transmission in nature is whitefly-mediated (Bock et al., 1978), however in the 

laboratory, agro-inoculation or biolistics with infectious clones and grafting are performed 

especially for DNA viruses (Ariyo et al., 2006; Kheyr-Pour et al., 1994; Vanderschuren et al., 

2012). Mechanical transmission, such as rubbing leaves with virus infected sap, is effective for a 

large number of RNA viruses and plant species, such as tobacco plants, but is not suitable for 

cassava (Berrie et al., 1997). Grafting can be time consuming, and requires a large starting 

number of virus-infected scions but can result in 75-85% infection success (Wagaba et al., 

2013).  In CBSD, grafting has been found to be more reliable in virus transmission for transgenic 

evaluation of cassava plants, but again this takes a longer time period before evaluations can be 

performed (Mohammed et al.,  2012; Wagaba et al., 2013). Virus transmission using biolistics is 

faster, however requires optimisation, has low infectivity rate and it is relatively more expensive 

(Ariyo et al., 2006; Lapidot et al., 2007). Agro-inoculation of plants is time consuming, however 

it is low cost with high infectivity success (Kheyr-Pour et al., 1994). Agro-inoculation of virus 

clones can be used for a wide range of plant hosts and is the choice for geminivirus infection 

(Biswas & Varma, 2001; Saeed, 2008), as in many cases these ssDNA viruses are not 

mechanically transmitted (Lal et al., 2015; Rigden et al.,1996).   

 

Parameters and scales for monitoring and scoring of CMD is variable. At present no procedures 

and protocols defining plant inoculation age, sample size, amount of virus inoculum, symptom 

evaluation (whole plant or leaf scoring), sampling procedure, time and frequency of sampling, 

have been standardised. Symptom severity scoring indices vary slightly between different plant 

transformation and screening scientific groups with the scoring scale ranging from 0-5 (0= no 

symptoms and 5= most severe symptoms) (Fauquet & Fargette, 1990) or 1-5 (1= no symptoms 

and 5= most severe symptoms) (Hahn et al., 1980) or 0-4 (0= no symptoms and 4= most serve 
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symptoms) (Calvert & Thresh, 2002). Some scoring systems even include intermediate scores 

such as 0.5 and 1.5. More recently Ntui et al. (2015) adopted a 0-3 scale in evaluating Sri Lankan 

cassava mosaic virus (SLCMV) in genetically engineered cassava cv.KU50.  Another factor that 

should be considered is that symptom severity can be both cultivar and virus dependent (Fauquet 

& Fargette, 1990). There also are two approaches to calculating the mean severity score, namely 

collecting symptom scores for all plants, including asymptomatic, or  only considering diseased 

plants, and to an extent, both approaches can be misleading and confusing (Sseruwagi et al., 

2004).  

 

Along with visual symptom analysis, viral load quantification is also essential when evaluating 

plant resistance levels. The most reliable and sensitive technique is real-time PCR (qPCR). A 

positive correlation between observed symptoms and viral load is often reported and it is 

suggested that correlation is also cultivar specific (Chellappan et al., 2004; Kaweesi et al., 2014; 

Medina-Hernández et al., 2013; Moreno et al., 2011). However this is not always the case, and a 

lack of correlation was reported in tomato infected with single or mixed Pepino mosaic virus 

(PepMV) strains (Gómez et al., 2009).  A correlation was also not established in pepper plants 

infected with the begomovirus Pepper golden mosaic virus (PepGMV) (Carrillo-Tripp et al., 

2007). Surprisingly, a positive correlation between PepGMV siRNA accumulation and symptom 

severity was observed; siRNA accumulation was associated with severe symptoms. High virus-

derived siRNA accumulation was also reported in severely infected transgenic N. benthamiana 

expressing the Rep gene of Tomato yellow leaf curl Sardinia virus (TYLCV) (Lucioli et al., 

2003). Nonetheless, there are several reports relating to the inverse correlation between siRNA 

accumulation levels and viral load as well as symptoms. Such observations were seen in N. 

benthamiana and cassava infected with ACMV-[CM], and symptom recovery was also observed 

(Chellappan et al., 2004). Plant recovery was reported in transgenic cassava expressing 

bidirectional promoter of ACMV, where recovery correlated with high accumulation of virus-

derived siRNA (Vanderschuren, Akbergenov, et al., 2007). In transgenic cassava expressing 

ACMV AC1-derived hairpin construct, total immunity against ACMV was also associated with 

high accumulation of virus derived siRNA accumulation (Vanderschuren et al., 2009), and more 

recently resistance positively correlating to PTGS and transgene-derived siRNAs was reported in 

SLCMV-transgenic cassava (Ntui et al., 2015). 
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In our study, transgenic cassava lines expressing virus-derived RNAi constructs were screened 

for resistance by agro-inoculation with infectious ACMV and SACMV clones for the DNA A 

and B components, respectively. Transgenic lines were then monitored for symptom 

development and resistance/tolerance levels. Virus load and siRNA production was also 

monitored. 

4.2  Specific Aims 

i. Micro-propagation of cv.60444 transgenic lines (MM2 MM4 MM6 and MM8) and 

acclimatization for (6 weeks)  

ii. Agro-infection of cv.60444 transgenic lines with infectious virus clones 

iii. Plant evaluations for virus infection severity, plant height, and leaf harvesting at 12, 32 

and 67 days post inoculation (dpi) 

iv. Viral load quantification using absolute real time qPCR 

v. siRNA screening for final selection trials 
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4.3 Methodology flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acclimatisation of plants 

Figure 4. 1 Flow diagram of methodology followed to screen transgenic plants for virus resistance. 

Micropropagation (bulking up) of cv.60444transgenic lines 

Agro-inoculation of plants with infectious virus clones 

Collection of leaves, symptom severity scoring, plant height 

measurements at 12, 32 and 67days post inoculation (dpi) 

DNA extraction from collected leaves followed by absolute viral load 

qPCR using virus coat protein primers 
SACMV and ACMV 

standard curves 

Non-mismatch transgenic lines Mismatch hairpin transgenic lines 
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4.4 Materials and Methods 

4.4.1 Bulking up and acclimatisation of selected transgenic plants   

Mismatch (MM2 and MM4) and non-mismatch (MM6 and MM8) cv.60444 transgenic lines 

(generated in Chapter 3) were micro-propagated for virus-challenge experimental trials. 

Following bulking up, transgenic and non-transgenic control plants were acclimatised using the 

procedure described below. The acclimatisation protocol was initiated with propagation of 

transgenic cassava plantlets in tissue culture on MS2 media. After roots developed (10-14days) 

plantlets were removed from tissue culture and transferred to peat jiffies (Jiffies International), 

placed in plastic trays and covered with plastic wrap. Trays were placed in a phytotron facility at 

28 °C, with 16 h light (8000-10000 lux) and 8 h dark cycles and 60 % humidity. Over a period of 

3-4 weeks, slits were cut through the plastic wrap to gradually help acclimatise the plants. A total 

of 20-30 plants were acclimatised for each transgenic line and additional plants for controls.  

 

4.4.2 Agro-inoculation of plants 

Following successful acclimatisation, 15-20 transgenic lines were agro-inoculated with 

infectious virus clones. ACMV (MM2) transgenic plants were agroinoculated with A. 

tumefaciens C58C1 ACMV-[NG-Ogo:90] DNA-A and DNA-B infectious dimers and SACMV 

(MM4) transgenic plants were infected with A. tumefaciens AGL1 SACMV DNA-A and DNA-B 

infectious dimers. DNA-A and DNA-B components for each pair were grown overnight to an 

OD600 of 2.  Cultures were centrifuged and pellets resuspended in Yeast extract peptone (YEP) 

broth to obtain an OD600 of between 1.8 and 2.0.  Equal amounts of the appropriate components 

were mixed.  To each plant, 100µl of the culture was inoculated in the stems and petioles just 

below the apical leaves. Plants were then covered with plastic wrap and slits introduced over 3 

days until all the plastic had been removed.   Non-transgenic cassava plants (tolerant TME3 and 

susceptible cv.60444) were agro-inoculated, as virus infection controls, in the same manner.  

Uninfected transgenic lines and wild-type uninfected plants were also included in the trial.  The 

infected plants kept in the phytotron chamber for the duration of the experiment. The growth 

conditions mentioned above in 4.4.1 were maintained.  
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4.4.3 Sampling and symptom monitoring 

At 3 time points post infection (12, 32 and 67dpi) plant height was measured, and the upper-most 

fully grown leaves were scored for symptom development using a symptom severity score index 

by Fauquet and Fargette  (1990) (0= no symptoms, 1= faint mosaic, 2= yellow mosaic with slight 

leaf deformation and 5% size reduction, 3=severe mosaic, leaf distortion and reduced size, 4= 

severe mosaic, severe distortion and up to 5 0% size reduction and 5= leaf reduced to veins and 

50-80 % size reduction).  These upper-most fully grown leaves were harvested and frozen in 

liquid nitrogen and stored at -70 °C until further processing. For each transgenic line and control 

plant, 6 plants showing symptoms were selected, scored and monitored.  

 

A total of 12 A-MM2 and 16 A-MM4 transgenic lines were randomly selected and challenged 

over 4 separate trials following methods 4.4.1-4.4.3. However from the screening results 

(symptom severity scores and viral load quantified) 7 A-MM2 and 7 A-MM4 transgenic lines 

showing promising virus resistance/tolerance were identified and selected for a large scale virus 

challenge trial (table 4.1).  Six C-MM6 and 5 C-MM8 transgenic lines were also selected for 

trials (table 4.1). Virus-free tissue culture stocks of these lines were used and micro-propagated, 

acclimatised, challenged and re-evaluated for resistance levels following methods described in 

4.4.1-4.4.3. Agro-inoculated plants were evaluated at 12, 32, 67 dpi, and transferred to larger 

pots and monitored for a further 10 months (300 days) in the greenhouse at a temperature 

between 25-30 °C day temperature and 15-22°C night temperature, and a mid-day light intensity 

ranging between 8000-10,000 lux in summer (September- April). Winter light intensity was not 

measured.  

Student’s t-test was performed on values obtained for symptom severity scores, plant height and 

viral load. This was performed to determine if the observed values between the transgenic lines 

and cv.60444 and TME3 were significantly different. Pearson’s correlation test was performed to 

determine if a correlation between viral load and symptom existed. Tests were performed using 

Microsoft Excel.  
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Table 4. 1 Virus challenge trials of transgenic lines.   

Trial number Infectious virus clone Transgenic lines screened dpi monitoring 

Trial 1 

 (A-MM2) 
ACMV-[NG-Ogo:90] A-MM2 45, 41, 54, 52, 53, 44, 30 12, 32, 67, 365 

Trial 2  

(A-MM4) 
SACMV A-MM4 11, 33, 34, 46, 59, 68, 79 12, 32, 67, 365 

Trial 3  

(C-MM6) 
ACMV-[NG-Ogo:90] C-MM6 2, 1, 8, 10, 11, 19 12, 32, 67 

Trial 4  

(C-MM8) 
SACMV C-MM8 1, 3, 23, 25, 27 12, 32, 67 

 

4.4.4 TNA extraction and absolute viral load quantification 

TNA was isolated from the harvested samples using CTAB based method described by Doyle 

and Doyle (1987). For each harvested plant sample, approximately 50 mg of leaf tissue was snap 

frozen in liquid nitrogen and crushed into a fine power. To each eppendorf of crushed leaf tissue, 

500 µl of preheated CTAB extraction buffer (2% hexadecyltrimethylammonium bromide, 1.4 M 

NaCl, 0.2 % 2-mercaptoethanol, 20 mM EDTA, 100 mM Tris-HCl, pH 8.0) was added and 

thoroughly vortexed, and incubated in a water-bath at 65 °C for 60 min and the tube occasionally 

inverted. After incubation, 500 µl of chloroform-isoamyl alcohol (24:1) was added followed by 

mixing and centrifugation at 13400 rpm for 10 min at 4 °C. The aqueous layer containing the 

DNA was placed into a clean tube and the above chloroform-isoamyl alcohol extraction step 

repeated. Purified TNA in the upper aqueous layer was precipitated using 500 µl isopropanol and 

centrifugation for 10 min at 13400 rpm at 4 °C. TNA pellet was washing with 1ml of ice-cold 70 

% ethanol followed by centrifugation for 10 min at 13400 rpm at 4 °C, this ethanol pellet 

washing step was repeated. The pellet was air dried and resuspended in 50 µl TE (10 mM Tris 

pH 8.0 and 1 mM EDTA) containing 20 µg/ml RNase A (Fermentas) and incubated at 37 °C for 

at least an hour. The extracted DNA was quantified on the Nanodrop 1000 spectrophotometer 

(Nanodrop). 
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4.4.5 Generation of ACMV and SACMV standard curves  

To quantify SACMV and ACMV viral load, standard curves for both SACMV and ACMV were 

generated by real-time PCR using the Maxima SYBERGreen (Fermentas) in the LightCycler 480 

instrument (Roche Applied Science). Standard curves were generated using tenfold dilutions 

(ranging from 1 ng/ul to 0.1 pg/ul) of pBS SACMV DNA-A and pBS ACMV DNA-A clones. To 

generate a standard curve for each virus, qPCR reaction mixture was set up according to 

manufactures instructions, 1X master mix, 0.3 mM of appropriate reverse and forward primers, 1 

µl of appropriate standards (1 ng/µl -0.1 pg/µl) and nuclease free water to a final volume of 10µl. 

To generate the ACMV standard curve, forward primer APA9 FP2 

5’CAATTTCCACCCCAACATTCA3’ and reverse primer APA9 RP2 

5’GCGTAAGCATCATTCGCTGAT3’ were used. The SACMV standard curve was generated 

using forward primer CCPF 5’ GCACAAACAAGCGTCGA3’ and reverse primer CCPR 

5’CTGCCAGTATGCTTAACGTCA3’ The cycling conditions consisted of initial denaturation 

at 95 °C for 10 min and 40 cycles of denaturation at 95 °C for 15 s, annealing at 60 °C for 30 s 

and extension at 72 °C for 30 s. 

 

4.4.6 ACMV and SACMV viral load quantification 

The amount of virus DNA A present in the harvested leaf samples was quantified using qPCR in 

the LightCycler 480 instrument (Roche Applied Science). Extracted TNA of infected transgenic 

lines, infected untransformed control plants and healthy negative control plants were diluted to 

50 ng/µl. For each transgenic line and control plants, extracted TNA from 6 plants were 

randomly pulled into 3 groups of two to reduce leaf-to-leaf variation. Viral load quantification of 

each pooled sample was performed in triplicate and non-template control was also included. The 

qPCR reaction was performed as described in 4.4.5. The viral load in ACMV (A-MM2 and C-

MM6) and SACMV (A-MM4 and C-MM8) infected transgenic lines, and infected control plants, 

was calculated from the ACMV and SACMV standard curves, respectively. The viral load was 

expressed as the mean viral molecules per g of extracted TNA, and graphs plotted using 

Microsoft Excel.  
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4.4.7 Trangene expression and Northern blots for siRNA detection 

Total RNA was isolated from in vitro plant stocks of transgenic lines (table 4.1) selected for 

virus challenge experiments. Total RNA was isolated using the QIAzol lysis reagent kit 

(Qiagen). RNA was quantified on a nanodrop and the quality and integrity determined on a 1.2 

% agarose gel containing 10ug/μl ethidium bromide run in 0.5X TBE.  

 

4.4.7.1 Transgene expression 

To determine transgene expression 1µg from the total RNA isolated was retreated with DNase I 

(Fermentas). The DNase I treated RNA was then used for cDNA synthesis using random 

hexamers following the RevertAid First Strand cDNA Synthesis Kit (Fermentas) protocol.  First 

Strand cDNA Synthesis products were then used directly in PCR amplification reaction of Hyg, 

GUS and both arms of the inverted repeat (hairpin). PCR amplification reaction conditions used 

to screen MM2 and MM4 transgenic lines for transgene expression were the same as those 

described in 2.4.2.14. MM6 and MM8 transgenic lines were screened for transgene expression 

following PCR reaction conditions described in 2.4.3.7. PCR amplicons were visualised on a 1 % 

agarose gel containing 10ug/μl ethidium bromide run in 1X TAE. 

 

4.4.7.2 Northern blots 

Probes targeting ACMV AC1/4: AC2/3 and SACMV BC1 regions used to make the IR were 

PCR amplified and DNase I (Fermentas) to produce randomly sheared fragments of different 

sizes. This was followed by PCR purification using the PCR clean-up Gel extraction kit 

(Machery-Nagel). Purified fragments derived from the ACMV AC1/4: AC2/3 and SACMV BC1 

sequences were then end labelled with radioactive 32
P
- isotope (BLU502H250UC EASYTIDES 

ATP,[g-32P]- 250uCi, Perkin Elmer). Labelling reaction was performed using PNK (Fermentas). 

Probes were then purified and unbound isotope removed using the illustra™ MicroSpin™ G-25 

Columns (Amersham GE healthcare). The same 32
P
-isotope labelling and purification steps were 

followed to synthesise Arabidopsis miRNA167 loading control probe. 

 

Total RNA (20µg) was denatured in 2X RNA loading dye (Fermentas) at 80 ºC for 5 min and 

then loaded and separated on a 15% polyacrylamide gel in 0.5% TBE. Total RNA was then 

transferred to Hybond-N+ membrane (Amersham GE Healthcare) using a semi-dry electro 
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blotter (Sigma Aldrich, SV20-SDB, UK). RNA was mobilised on the nylon membrane using the 

UV cross-linker CL-508 (Uvitec Cambridge) twice on the RNA side at 0.120J/cm
2
. Membrane 

was pre-hybridised in Rapid-hyb buffer (Amersham GE Healthcare) at 42 ºC in a rotating oven. 

The synthesised probe was heated at 100 ºC for 5 min, cooled on ice and then added to the 

hybridisation buffer with the blot. This was allowed to hybridise overnight in the rotating oven at 

42 ºC. The following day the hybridisation-probe solution was harvested and the membrane 

washed of unbound probe in 2X (SSC + 0.1 w/v SDS) solution at 42 ºC, this was step was 

repeated. The membrane was sealed and placed in an X-ray cassette and exposed to a sheet of 

Hyperfilm™MP (Amersham GE Healthcare) at 70 ºC for 2 days and developed. The membrane 

was then stripped in 1 % w/v SDS at 80 ºC for 30 min. Membrane was then re-probed with 

miRNA167 probe and the above hybridisation, washing, exposure and development steps 

performed. 
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4.5  Results 

 

4.5.1 Standard curves for absolute viral load determinations 

ACMV and SACMV standard curves were generated from crossing points (read off the 

exponential phase of the amplification curves) vs. the logged concentration virus DNA-A 

concentration. Each reaction was performed in duplicate. An efficiency of 1.970 and an 

acceptable error rate of 0.00695 were obtained for the ACMV standard curve. SACMV standard 

curve efficiency was 1.909 with an acceptable error rate of 0.00181. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



163 

 

 

 

Figure  4. 2  Amplification curves from real-time qPCR of 5 serial (10-fold) dilutions of 10 ng 

of (a) ACMV-[NG-Ogo] DNA-A in linearised pCambia 1305.1(above). ACMV standard curve 

was generated from crossing points (read off the exponential phase of the amplification curves) 

plotted against log ACMV virus concentration (below). (b) Amplification curves from real-time 

PCR of 5 serial (10-fold) dilutions of 10 ng of SACMV DNA-A in linearised pBS (above). 

 

b 
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SACMV standard curve generated from crossing points points (read off the exponential phase of 

the amplification curves) plotted against log SACMV virus concentration (below). 

4.5.2 Screening of transgenic lines for virus resistance levels 

Cassava cv.60444 transgenic lines from each transformation event were selected and challenged 

with infectious begomovirus clones and monitored for virus resistance levels. Plants were 

monitored and evaluated for virus symptom severity, plant height and viral load accumulation. 

Transgenic lines, from each transformation event, showing reduced symptoms as compared to 

wild-type infected cv.60444, and/or lines with delayed symptoms or a recovery phenotype at 67 

dpi were selected for repeat virus resistance screening trials. A symptom severity score (sss) 

index (fig.4.3) was used to evaluate severity based on a scale of 0-5 (Fauquet & Fargette, 1990). 

The images were obtained from the virus challenge experiments performed in this study. In total 

9 virus challenge trial experiments were performed however data from the preliminary screening 

trials is not shown. Only data from the final 4 trials was reported (table 4.1). Differences in 

symptom scores between controls and transgenic lines were considered significant at p< 0.05. 

Values less than this confidence interval were considered insignificant. P values for the t-tests 

are in (appendix A-F) 
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Figure 4. 3 Images of cassava mosaic disease symptomatic leaves. Leaves scored according to 

symptom severity scale by Fauquet & Fargette (1990). Two images representing each level of 

the 0-5 scale (0 being asymptomatic and 5 being fully symptomatic). Images complied from 

trials performed in this study. 

 

0 = No symptoms 

 

 

 

 

 
 

1 = Faint mosaic 

 

 

 

 

 
 

2 = Faint mosaic and 5 % leaf reduction 

 

 

 

 

 

  

3 = Severe mosaic, leaf distortion and reduced leaf 

size 

 

 

 

 

4 = Severe mosaic, severe leaf distortion and up to 

50 % leaf size reduction 

 

 

 

 

  

5 = Leaf reduced to veins, 50-80 % leaf size 

reduction 
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4.5.2.1 A-MM2 resistance screening 

Severity scores are depicted in fig. 4.4a. Overall, what was most noticeable is that symptom 

severity in the transgenic lines never exceeded a score of 2.0, and was always lower than the 

susceptible cv.60444 control. At 12 dpi, mean sss was lower than 1 for all wild-type infected 

susceptible cv.60444 and all transgenic lines. No symptoms were visible in A-MM2 54 and 

tolerant TME3 landrace control. At 32 dpi, an increase in sss was recorded for all transgenic 

lines and both susceptible and tolerant controls, however susceptible cv.60444 had the highest 

average sss (2.3) followed by transgenic line A-MM2 45 (2.2). Lines A-MM2 44, A-MM2 30, 

A-MM2 54 and A-MM2 52 sss were significantly lower than cv.60444, while A-MM2 54 and A-

MM2 44 sss were comparable to TME3. At 67 dpi, sss for all transgenic lines, except A-MM2 

44, was significantly lower than cv.60444. An increase in sss was only observed in cv.60444 and 

A-MM2 44. A-MM2 45 had the lowest sss and this greatest decrease; the sss was also 

significantly (appendix A) lower than TME3 sss. 

 

Transgenic lines were on average 8.5 cm, 16 cm and 35 cm at 12, 32 and 67 dpi, respectively, 

while control infected lines were on average 7.9 cm, 13 and 33.1 cm at 12, 32 and 67 dpi, 

respectively (fig.4b). At 12 dpi, overall no significant difference in transgenic plant height and 

control plant height was observed, however A-MM2 54 was significantly more stunted than 

cv.60444. At 32 dpi, an increase in height was observed for all infected lines however a 

significant increase was observed for A-MM2 41, A-MM2 44 and A-MM2 45 height was 

significantly. These lines grew significantly taller than both cv.60444 and TME3. At 67 dpi, only 

A-MM2 52 was significantly taller than cv.60444 (p= 0.02) (appendix A). 

 

In all infected transgenic lines viral load was unexpectedly high at 12 dpi (fig.4.4c). Viral load in 

A-MM2 41, 54, 52 and 53 was lower than in cv.60444 however only A-MM2 54 was considered 

significant (p< 0,05). Viral load measured in A-MM2 54 was 190-fold lower than cv.60444 viral 

load. The viral load was more comparable to TME3 viral load. At 32 dpi, the viral load 

decreased for all infected plants except A-MM2 54 and TME3. Transgenic line A-MM2 30 had 

the largest decrease in viral load. However the amount of viral load was still higher than 

cv.60444 viral load. At 32 dpi, viral load quantified in both A-MM2 45 and 30 was 52 and 53-

fold lower, respectively, than at 12 dpi. What was noticeable was that at 67 dpi lines A-MM 45, 
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41, 52 and 30 lines had viral loads lower than cv.60444 and more comparable to tolerant TME3. 

However p-values were not significant (between 0.09 and 0.42) (appendix A). 

  

 

Figure 4. 4 A-MM2 transgenic lines and control plants agroinoculated with infectious ACMV-

[NG-Ogo] clones. Plants were evaluated at 12dpi (blue), 32dpi (red) and 67dpi (green) for (a) 

Mean symptom severity scores, (b) Mean plant growth height  and (c) Mean absolute viral load 

quantification (virus molecules/g of TNA).  
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4.5.2.2 A-MM4 resistance screening 

At 12 dpi, all transgenic and cv.60444 plants presented with very mild symptoms, the mean sss 

were below 1(fig. 4.5a). Tolerant TME3 only became mildly symptomatic from 18 dpi. At 32 

dpi, sss of all infected transgenic lines and control plants increased.  A-MM4 59 sss was 3 fold 

lower than cv.60444 (p<0.05). Both A-MM4 11 and A-MM4 79 lines presented with a 2.4 fold 

lower sss than cv.60444 and a 1.7 fold lower sss was seen for both A-MM4 33 and A-MM4 46, 

and the observed differences were considered statistically significant (appendix B). At 67 dpi, 

an increase in sss was seen for all plants infected except TME3, A-MM4 34 and A-MM4 68. 

Average sss for A-MM4 34 and A-MM4 68 decreased to 1 and 1.3, respectively What was 

notable was that the sss were significantly lower in all transgenic lines compared with the 

susceptible non-transgenic cv.60444 control. A constant average sss below 1 was maintained for 

TME3 (fig. 4.5a).  

 

At 12 dpi, no significant difference in plant height was seen for all transgenic lines and cv.60444 

and TME3 controls. At 32 dpi the only notable and significant difference in plant height was 

measured for A-MM4 46, this transgenic line appeared more stunted than cv.60444 and the other 

transgenic lines. At 67 dpi, the measured plant height for cv.60444 was on average 30 % lower 

than all transgenic lines and control TME3 observed differences were considered statistically 

significant (fig.4.5b) (appendix B). 

 

A similar trend to A-MM2 was observed, at 12 dpi the viral load in cv.60444 and transgenic 

lines, except A-MM4 11, was higher compared with 32 and 67 dpi (fig. 4.5c). The lowest viral 

load was recorded in A-MM4 46; between 12 and 32 dpi the viral load decreased 1159-fold, this 

was 552-fold and 4.4 fold lower than cv.60444 and TME3 viral load, respectively. Viral load 

recorded in A-MM4 33 was 225-fold lower at 32dpi than 12dpi. A-MM4 46 and A-MM4 11 

viral load was significantly lower than cv.60444. At 32 dpi, a decrease in viral load was recorded 

in all transgenic lines, except in TME3 and A-MM4 11. As with A-MM2 transgenic lines, all A-

MM4 lines had lower virus titers compared with the non-transgenic susceptible cv.60444 control 

at 67 dpi. Viral loads in tolerant TME3 were generally lower than cv.60444 and transgenic lines 

at all time points.  At 67dpi, viral load was 61.5-fold lower than cv.60444 viral load. Transgenic 
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lines viral load was comparable to TME3. Statistical analyses (appendix B) indicated that the 

differences between TME3 control and transgenic lines were not highly significant. 

 

 

Figure 4. 5 A-MM4 transgenic lines and control plants agroinoculated with infectious SACMV 

clones. Plants were evaluated at 12dpi (blue), 32dpi (red) and 67dpi (green) for (a) Mean 

symptom severity scores, (b) Mean plant growth height and (c) Mean absolute viral load 

quantification (mean viral molecules/g TNA). 
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4.5.2.3 C-MM6 resistance screening 

Notably, at all 3 time points post-ACMV challenge, transgenic lines and wild-type tolerant 

TME3 had lower severity scores (<2.0) than susceptible non-transgenic cv.60444 (fig.4.6a). 

Transgenic lines presented with a mean sss between 0 and 1.5. At 12 dpi, C-MM6 1 was the only 

asymptomatic line. The other transgenic lines had severity scores lower than cv.60444. Severity 

scores recorded for all transgenic lines, except C-MM8 8 and C-MM8 1, were significant. 

Transgenic line C-MM6 1 becoming symptomatic from 20 dpi and at 32 dpi a mean sss of 1.5 

was recorded and a similar sss was recorded at 67 dpi. At 32 dpi, C-MM6 11 and C-MM6 10 had 

a 4-fold and 3-fold lower sss than cv.60444, respectively (p<0.05). At 67 dpi, all transgenic lines 

had sss lower than cv.60444 however only C-MM6 10 and 11 sss were statistically significant 

(p<0.001 and p<0.007, respectively) (appendix C). 

 

At all 3 time points, no significant increase in transgenic plant height as compared to cv.60444 

was observed. Only C-MM6 10 was considered significantly higher than cv.60444 at 67 dpi 

(p=0.02). C-MM6 2 was however significantly shorter than cv.60444 at 67 dpi. TME3 did not 

grow significantly taller than the transgenic lines at all 3 time points (fig. 4.6b) (appendix C). 

 

While, at all 3 time points, viral load in susceptible cv.60444 was higher than the viral load 

recorded in all the transgenic lines and TME3 (fig.4.6c), the overall p-values were >0.05. The 

viral load considered significantly lower than cv.60444 was measured in C-MM6 1 and C-MM6 

19 at 12 dpi. All the other viral loads were marginally high. At 12 dpi, C-MM6 1 had the lowest 

viral load and this was 220.3-fold lower than cv.60444. Tolerant TME3 had the lowest viral load 

and this was 109.6-fold lower than cv.60444 recorded viral load. At 32 dpi, viral load decreased 

in TME3 and transgenic lines except C-MM6 1. In C-MM6 1 the viral load increased 1.7-fold.  

Viral load in cv.60444 decreased 15.9-fold at 32 dpi; however this was still the highest recorded 

viral load at 32dpi. At 67 dpi, cv.60444 viral load was higher than all transgenic lines. TME3 

viral load increased 98.2-fold, this was the highest viral load increase at 67 dpi. At 67 dpi, the 

viral load in C-MM6 19, C-MM6 2, C-MM6 11, C-MM6 8, C-MM6 1 and C-MM6 10 were 

73.9-fold, 64.9-fold, 19.9-fold, 9.6-fold, 8.3-fold and 3.3-fold lower than cv.60444 viral load, 

respectively. Statistical analyses (appendix C) indicated that the differences between cv.60444 

control and transgenics were not highly significant. 
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Figure 4. 6 C-MM6 transgenic lines and control plants infected with infectious ACMV-[NG-

Ogo] clones. Plants were evaluated at 12dpi (blue), 32dpi (red) and 67dpi (green) for (a) Mean 

symptom severity scores, (b) Mean plant growth height and (c) Mean absolute viral load 

quantification (mean viral molecules/g TNA). 
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4.5.2.4 C-MM8 resistance screening 

At 12 dpi, cv.60444 viral load was higher than all transgenic lines, however statistical analyses 

(appendix D) indicated that the differences between control and transgenic were not highly 

significant (fig. 4.7a). TME3 was remained asymptomatic until 21 dpi. At 32 dpi, cv.60444 had 

the sss highest increase; a 2.5-fold increase was seen. C-MM8 25 mean sss was 2.1-fold lower 

than cv.60444 sss (p=0.007). C-MM8 27 sss was 1.5 and this was significantly lower than 

cv.60444 (p= 0.04). At 67 dpi, a decrease in sss was seen for all transgenic lines. With the 

exception of C-MM8 3, sss for all transgenic lines were significantly lower than cv.60444. Mean 

sss for C-MM8 27 decreased by 2.3-fold and this represented the highest decrease and it was 

significantly lower than cv.60444 sss (p=0.003).  

 

Overall at 12dpi, 32 dpi and 67 dpi no significant difference in mean plant height was recorded 

for all plants, except for C-MM8 25 which was slightly more stunted than the other transgenic 

lines and cv.60444 at 32 and 67 dpi (fig. 4.7b). Line C-MM8 1 was also significantly more 

stunted than cv.60444 at 67 dpi (appendix D). 

 

At all 3 time points the viral load in cv.60444 was higher than all transgenic lines and TME3. 

However statistical analyses (appendix D) indicated that the differences between control and 

transgenic were not highly significant with the exception of C-MM8 23 at 32 dpi (fig. 4.7c). At 

32 dpi, C-MM8 23 viral load was 7.5-fold lower than cv.60444 (p< 0.02). At 32 and 67dpi, the 

highest viral was recorded in cv.60444 and the lowest was recorded in TME3. TME3 viral load 

was 1077.5-fold lower than cv.60444 viral load. 
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Figure 4. 7 C-MM8 transgenic lines and control plants infected with infectious SACMV clones. 

Plants were evaluated at 12dpi (blue), 32dpi (red) and 67dpi (green) for (a) Mean symptom 

severity scores, (b) Mean plant growth height and (c) Mean absolute viral load quantification 

(viral molecules/g TNA). 
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4.5.2.5 Evaluation of A-MM2 and A-MM4 transgenic lines at 365 dpi 

At 365 dpi, ACMV infected transgenic lines A-MM2 30, A-MM2 52, A-MM2 53, A-MM2 41 

and A-MM2 45 and tolerant TME3 appeared asymptomatic. AMM2 54 presented with very faint 

mosaic (sss=1). The sss for cv.60444 WT infected plants remained similar (fig.4.8) to sss 

recorded at 67 dpi (sss= 2-3) (fig 4.4a). ACMV virus replication was detected in all 7 transgenic 

lines and WT infected cv.60444 and TME3, despite recovery from symptoms.  However ACMV 

titers in all the transgenic lines, except A-MM2 30, were significantly lower (3500-fold, 2884-

fold, 2310-fold, 2320-fold and 41-fold for A-MM2 41, AMM2 54, A-MM2 52, A-MM2 53 and 

A-MM2 41, respectively) to susceptible non-transgenic cv.60444. Viral load in TME3 was 152-

fold lower than cv.60444. In transgenic lines A-MM2 41, A-MM2 54, A-MM2 52 and A-MM2 

53, ACMV viral load was 23-fold, 18-fold, 15.2-fold and 15.3-fold lower than in TME3.  ACMV 

viral load in A-MM2 30 was similar to that in cv.60444. However this line was asymptomatic. 

At 365 dpi, an increase in viral load was quantified in A-MM2 30; this represented a 2.1-fold 

difference/increase at 67 dpi to 365 dpi. At 365 dpi, a 768-fold, 35399-fold, 230-fold and 7412-

fold decreased in ACMV viral load was recorded in A-MM2 41, A-MM2 45, A-MM2 52 and A-

MM2 53, respectively, at 67 dpi.  A 31.2-fold viral load decrease was recorded in TME3 at 365 

dpi (fig 4.9 a).  

 

Similar to the MM2 lines, SACMV-challenged A-MM4 59, A-MM4 46 and A-MM4 68 were 

asymptomatic at 365 dpi, mild symptoms were observed for A-MM4 34, A-MM4 11 (fig 4.8 e 

and f). Wild-type cv.60444 infected plants presented with yellow mosaic speckles throughout 

the leaf surface but no leaf curling. At 365 dpi, no virus was detected in A-MM4 33, A-MM 46, 

A-MM4 59, A-MM4 68, A-MM4 79 and TME3. SACMV was detected in A-MM4 34 and 

infected WT cv.60444; however this was 24-fold and 3.65-fold lower, respectively, than at 67 

dpi. SACMV viral load quantified in A-MM4 34 was 31-fold lower than in cv.60444. 

Differences in viral loads between infected susceptible non-transgenic cv.60444 and transgenic 

lines, as well as between 67 and 365 dpi were statistically significant (p<0.05) (fig 4.9 b) 

(appendix E). 
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A-MM2 transgenic line sss at 365 dpi 

A-MM2 30 0 

A-MM2 52 0 

A-MM2 53 0 

A-MM2 41 0 

A-MM2 45 0 

A-MM2 54 1 

Untransformed cv.60444 3 

Untransformed TME3 0 

 

 

 

Table 4. 2 Symptom severity scores of A-MM2 transgenic lines at 365 dpi with ACMV 

Table 4. 3 Symptom severity scores of A-MM4 transgenic lines at 365 dpi with SACMV 

A-MM4 transgenic line sss at 365 dpi 

A-MM4 11 1 

A-MM459 0 

A-MM4 46 0 

A-MM4 68 0 

A-MM4 34 1 

A-MM4 79 0 

A-MM4 33 0 

Untransformed cv.60444 2 

Untransformed TME3 0 
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Figure 4. 8 CMD symptoms collected from ACMV and SACMV infected cassava plants at 365 

dpi, (a) ACMV infected cv.60444, showing mosaic, leaf curl and size reduction, (b) ACMV 

infected A-MM2 54 leaf with faint yellow spots on entire leaf surface, (c, d) SACMV infected 

cv.60444 (WT) with yellow mosaic spotting on entire leaf surface, (e) SACMV infected A-MM4 

11 leaf showing slight leaf curl and mosaic on leaf edge and (f) SACMV infected A-MM4 34 

showing slight mosaic on the leaf margin and faint yellow spots on leaf surface. 
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Figure 4. 9 Mean viral molecules/g of TNA at 365 dpi, quantified using qPCR, (a) ACMV 

infected A-MM2 transgenic lines and controls lines and (b) SACMV infected transgenic lines 

and control plants. 
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4.5.3 Transgene expression and siRNA detection 

Only the lines selected in the final 4 trials were evaluated for transgene expression and siRNA 

detection 

 

4.5.3.1 RNA extraction  

High quality intact total RNA with very little residual DNA was successfully extracted from 

unchallenged tissue culture stocks of A-MM2, A-MM4, C-MM6 and C-MM8 transgenic lines 

screened above (fig 4.10). DNase I treatment step was performed to eliminate any remaining 

DNA following RNA extraction.  

 

Figure 4. 10 1.2% agarose gel electrophoresis (10mg/ml EtBr) of total RNA extracted from (a) 

A-MM2 transgenic lines 41, 30, 44, 52, 53, 54 and non-transgenic cv.60444 WT, (b) A-MM4 

transgenic lines 11, 33, 34, 46, 59, 68 and 79, (c) C-MM6 transgenic lines 2, 1, 8, 10, 11, 19 and 

non-transgenic cv.60444 and (d) C-MM8 transgenic lines 1, 3, 23, 25, 27 and non-transgenic 

cv.60444. 

 
a b 

c d 



179 

 

4.5.3.2 RT-PCR results 

cDNA synthesis using Random hexamers and/or OligodT primers was used for RT-PCR 

amplification of Hyg (485 bp), GUS (181 bp) and transgene insert.  In all seven A-MM2 selected 

lines, GUS and Hyg were successfully amplified and as expected no amplicons were detected in 

wildtype cv.60444, and the PCR amplification reaction controls were positive for both GUS and 

Hyg (fig. 411a). However in all seven A-MM2 lines, amplification of the RNAi hairpin was 

unsuccessful; amplification of the mutated sense-arm (319bp) fragment and non-mutated 

antisense arm (337bp) fragment of the MM2 hairpin construct from cDNA synthesised from  

random hexamers and oligodT primers yielded no amplicons (gel images not shown).  In all 

seven A-MM4 transgenic lines both the 181bp GUS and 485 bp Hyg fragments were successfully 

amplified from cDNA synthesised using random hexamers. PCR amplification reaction controls 

for both GUS and Hyg were positive and no amplicons were amplified from cv.60444 

synthesised cDNA.  In all seven A-MM4 lines, the 221 bp MM4hp non-mutated strand was 

strongly amplified and the 239 bp MM4 hp mutated strand was weakly amplified. Amplicons 

were also generated for both MM4 XbaI and MM4 XhoI positive controls, while wild-type non-

transgenic control cv.60444 was negative for MM4 XbaI and MM4 XhoI amplicons (fig. 4.11b). 

The 181bp GUS fragment, 485 bp Hyg fragment, the 319bp MM6 XbaI and 319 bp MM6 XhoI 

fragments were all successfully amplified from cDNA synthesised from C-MM6 transgenic 

lines. All PCR amplification positive controls produced expected amplicons while negative 

control reactions yielded no amplicons (fig 4.11c). RT-PCR was also performed using cDNA 

synthesised from RNA extracted from C-MM8 transgenic lines, and RT-PCR yielded the 181 bp 

GUS, 485 bp Hyg, 221 bp MM8 XbaI and 221 bp MM8 XhoI amplicons in all five C-MM8 

transgenic lines.  PCR amplification control and negative control produced expected results (fig 

4.11d). 

 

 

 

 

 

 

 



180 

 

 

Figure 4. 11 RT-PCR amplification of transgne cDNA from (a) A-MM2 transgenic lines: 181 bp 

GUS (above) and 485 bp Hyg (below). M= O’GeneRuler 1kb Plus DNA ladder (Fermentas), (b)   

A-MM4 transgenic lines: 181 bp GUS (above, left) and 485 bp Hyg (below, left), 221 bp non-

mutated anti-sense-arm (above, right); GU: 239 bp mutated sense-arm (below, right), (c) C-MM6 

transgenic lines: 181 bp GUS (above, left) and 485 bp Hyg (below, left), 319 bp MM6 XbaI-arm 

(above, right) and 319 bp MM6 XhoI-arm (below, right) and (d) C-MM8 transgenic lines: 181 bp 

GUS (above, left) and 485 bp Hyg (below, left), 221 bp MM8 XbaI-arm and 221 bp MM8 XhoI-

arm. cv is an untransformed uninfected control.  
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4.5.3.3 siRNA detection 

ACMV AC1/4:AC2/3-derived siRNA molecules were detected at high levels in ACMV 

AC1/4:AC2/3 transgenic lines (A-MM2 and C-MM6) (fig 4.12 a and c, respectively) and in 

untransformed cv.60444. A dsAC1 transgenic line (known to be ACMV resistant 

(Vanderschuren et al., 2009) was used as a positive control. Accumulation of SACMV BC1-

derived siRNA was detected at low levels in A-MM4 11, 33, 34 and 59 and weakly in A-MM4 

48, 68 and 79 (fig 4.12 b). In C-MM8 transgenic lines, SACMV BC1 probe hybridised to higher 

molecular weight RNA (fig 4.12 d).  

 

 

Figure 4. 12 siRNA detection in healthy transgenic lines and control lines. Probes were 

radioactively labelled with P
32

, (a) A-MM2 transgenic lines and controls probes with ACMV 

AC1/4:AC2/3 generated probe, (b) SACMV BC1-derived probes used to probe A-MM4 

transgenic lines, (c) C-MM6 transgenic lines probed with ACMV AC1/4:AC2/3-derived probe, 

(d) C-MM8 transgenic lines probed with SACMV BC1-derived probe and (e) radioactively 

labelled 21, 22 and 24 nt oligonucleotides used as markers. 
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Loading control miRNA 167 was detected  in A-MM2, A-MM4 and C-MM6 transgenic lines 

and control lines (fig 4.13 a-c). In C-MM8 transgenic lines miRNA167 loading control probe 

detection was not as strong as in fig 4.13a-c. 

 

 

Figure 4. 13 Arabidopsis miRNA167 probe used for loading control in siRNA detection 

experiment to probe healthy control lines and transgenic (a) A-MM2 lines, (b) A-MM4 lines, (c) 

C-MM6 lines and (d) C-MM8 lines. Left lane is over loaded marker 
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4.6 Discussion 

In the study cassava plants were successfully agro-inoculate with infectious geminivirus clones. 

SACMV or ACMV resistant transgenic plants were not identified in the screening process, 

however improved cv.60444 transgenic lines, expressing ACMV AC1/4: AC2/3 and SACMV 

BC1 ORF, showing ACMV and SACMV tolerance, respectively, were observed, where 

tolerance is described as plants having lower symptoms despite virus still being present (Fraile & 

García-Arenal, 2010; Oliver & Fuchs, 2011). Ideally, resistant plants would not show any 

symptoms, and no detectable viral titer (Oliver & Fuchs, 2011). Conversely, tolerance to virus 

infection leads to reduced crop damage or symptoms in the presence of the virus (Oliver & 

Fuchs, 2011). While none of the transgenic lines were symptom-free at 67 dpi, several   

transgenic lines presented mild tolerant phenotype, with either delayed symptoms or lower 

severity despite continuous virus replication, especially at 67 dpi, where these lines had 

significantly lower symptoms and viral loads compared to wild-type non-transgenic cv. 60444 

control plants, but comparable with tolerant TME3.  Notably, in transgenic lines, A-MM2 30, A-

MM2 52, A-MM4 59, C-MM6 10, C-MM6 11 and C-MM8 25, lower CMD symptoms severity 

scores were observed, with no stunting, instead showing favourable growth while supporting 

relatively high virus multiplication. Significantly lower virus symptoms were recorded in these 

transgenic lines than in control infected wild-type cv.60444.  In a study by Vanderschuren et al. 

(2007), ACMV resistant transgenic cassava was not engineered, however they were able to 

report attenuated CMD symptoms in two transgenic cassava lines expressing an ACMV 

bidirectional promoter hairpin construct. Virus resistance transient assays in leaf discs were 

performed, but unlike in our study they were able to report significant reduction in viral load 

correlating to lower symptom severity. Delayed symptom development was observed in 

transgenic lines A-MM2 54 and C-MM6 1. In these lines virus symptoms appeared between 18 

and 21 dpi and not earlier stages between 10-12 dpi. Delays in symptom development were seen 

in transgenic tomato expressing Tomato leaf curl virus (TLCV) C2 gene (Bian et al., 2006). 

Unexpectedly, a steady increase in TLCV viral load was observed even though siRNA 

accumulation was reported to be high. At 25 dpi, viral load accumulated at higher levels than in 

wild-type tomato plants. To try to understand the observed results, Bian and colleagues 

performed further experiments using a TLCV C4 expressing RNA silencing marker tobacco 

plant. The tobacco plant was engineered to have distinct mosaic and leaf margin phenotype. 
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Upon infection with TLCV, plants lost the distinct phenotype and C4 transcripts were 

undetectable. The constitutive 35S promoter, C4 ORF and TLCV genome were found to be 

highly methylated. These results suggested that geminiviruses are able to escape RNA silencing 

mechanism using ‘geminivirus-induced transcriptional silencing’. This has been demonstrated in 

many other studies (Aregger et al., 2012; Paprotka et al., 2011; Pooggin, 2013; Raja et al., 2010; 

Wang et al., 2012).  

 

Reduction in viral load in transgenic lines A-MM2 30, A-MM4 46, A-MM4 59, A-MM4 33 and 

C-MM8 25 as compared to control infected wild-type cv.60444 was also recorded, despite 

variations between plants within a selected line.  Notably, in transgenic lines MM2 41, 52, 53 

and 54, and A-MM4 transgenic lines (A-MM4 33, A-MM4 46, A-MM4 59, A-MM4 68 and A-

MM4 79) a significant decrease in virus load was detected at 365 dpi which accompanied 

recovery from symptoms. Challenging of these promising lines will be repeated in a larger trial.  

Cassava geminivirus resistance engineering reports by Vanderschuren et al. and (2007) and 

Zhang et al. (2005) reported on transient ACMV replication assays in leaf discs. Virus in 

infected leaves was detected using DNA blotting and not qPCR.  However while in this study we 

measured virus levels using qPCR, it is not possible to compare levels of virus replication 

between our study and theirs. Using semi-quantitative PCR, Vanderschuren et al. (2009) 

detected no virus in transgenic cassava expressing ACMV AC1 hairpin construct.  

 

Transgenic line A-MM2 54 resembled cassava geminivirus tolerant TME3 landrace infection 

profile in terms delayed symptom development and viral load accumulation at both 12 and 32 

dpi. A decrease in viral load similar to the tolerant TME3 control was observed at 67 dpi in A-

MM4 33 and A-MM4 59. A decrease in viral load and reduction in symptoms was associated 

with the recovery phenotype in Pepper gold mosaic virus infected pepper plants (Carrillo-Tripp 

et al., 2007)  and cassava (Vanitharani et al., 2003). The very mild symptoms recorded in C-

MM6 10 and C-MM6 11 at all 3 dpi resembled symptoms recorded for TME3, however viral 

load result did not show a profile similar to TME3. These lines deviated from the generally 

accepted positive correlation that exists between symptoms and viral load (Chellappan, 

Vanitharani, et al., 2004; Elegba et al., 2013). Plants showing mildly infected shoots but with 

very high Cassava brown streak virus (CBSV) titers were reported in Uganda field evaluation 
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trials of cassava varieties (Kaweesi et al., 2014).  Because of the negative correlation between 

symptoms and viral load observed in NASE 1, TZ/130, AR40-6 and NDL06/132 cassava 

varieties, it was suggested that virus multiplication restriction and restriction of symptom 

expression were controlled by different mechanisms.  

 

A positive correlation between a high symptom severity score and high viral load was recorded 

for A-MM4, C-MM6 and C-MM8 at all 3 dpi (12, 32 and 67 dpi). (appendix F). This suggests 

that an increase in symptoms results in higher viral loads. In C-MM6 infected transgenic lines, 

the Pearson’s correlation test performed on viral load and sss gave coefficients of 0.79, 0.65 and 

0.70 at 12 dpi, 32 dpi and 67 dpi, respectively.In A-MM4 transgenc lines correlation coefficient 

for symptom severity and viral load were 0.65, 0.72 and 0.53 at 12, 32 and 67 dpi, respectively. 

In C-MM8 transgenic lines, coefficients of 0.67, 0.81 and 0.64 were obtained at 12, 32 and 67 

dpi, respectively.  In A-MM2, a very weak correlation efficient of 0.38, 0.03 and 0.22 at 12, 32 

and 67 dpi was calculated, respectively. No significant level of viral knockdown was observed in 

most of virus challenged transgenic lines was observed at 12, 32 and 67 dpi  Instead level of 

virus replication was generally variable and high between plants. Virus replication was also 

detectable in geminivirus-challenged tolerant TME3 controls. However, ACMV and SACMV 

tolerant A-MM2 and A-MM4 cassava plants  showed a decrease or recovery from  symptoms at 

67 or 365 dpi, with a lower detectable virus replication compared to wild-type non-transgenic 

cv.60444 may be considered in further repeat greenhouse  trials. 

 

According to  Koochakpour & Fakheri (2014) and Lin et al. (2007), RNAi-mediated resistance is 

less effective against DNA viruses than RNA viruses and engineering complete resistance 

against DNA viruses is rarely obtained. Engineering of CBV resistant transgenic cv.60444 

cassava expressing sense, antisense or hairpin RNA silencing constructs has been reported by 

only a few research groups such as the Plant Biotechnology Group at ETH Zurich and the 

Donald Danforth Plant Centre (Chellappan et al., 2004; Taylor et al., 2012; Vanderschuren et al., 

2007, 2009; Zhang et al., 2005). Several vectors have been developed for the efficient expression 

and processing of dsRNA hairpins in plants (Helliwell & Waterhouse, 2003;  Wesley et al., 

2001). Linking the sense and antisense arms by an intron has been shown to be the most efficient 

in plants (Smith et al., 2000; Wesley et al., 2001), however, although intron-containing IR 
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constructs can stabilize some silencing constructs and efficiently induce RNA silencing, we 

found in early studies that the Pdk intron did not stabilize SACMV silencing constructs 

(unpublished data).  In the construction of the mismatch contiguous IRs (MM2 and MM4 lines) 

tested in this study, the intention was to reduce the size of the transgene and create mismatch IRs 

without introns (Taylor et al., 2012b), and the two arms were joined by a small spacer loop 

which does stabilize the construct (Smith et al., 2000). Smith et al. showed that a 63 bp hpRNA 

with a spacer loop demonstrated 69% PTGS efficiency.  We conclude that it is highly probable 

that our constructs were stable, as SACMV BC1 (MM4) was expressed in N. benthamiana 

(Taylor et al., 2012), but this may not hold true for cassava.  In comparison with smaller 

hpRNAs (100-200 bp), our constructs were much longer, but did not detrimentally affect PTGS 

in N. benthamiana. Using hpRNA constructs containing sense/anti-sense arms ranging from 98 

to 853 nt gave efficient silencing in a wide range of plant species (Wesley et al., 2001). The non-

mismatch IR constructs (with an intron) (MM6 and MM8 lines), while demonstrating some level 

of tolerance compared to wild-type non-transgenic controls, also did not confer high levels of 

resistance, and therefore we cannot unequivocally attribute the lack of resistance to mismatches 

in the sense arm of the IRs. 

 

The mismatch and non-mismatch ACMV constructs tested in this study comprised a contiguous 

set of four sequence stretches derived from regions of the AC1, AC2, AC3 and AC4 ORFs. It 

was expected that targeting these regions would deliver efficient silencing. However both 

constructs delivered only mild tolerance in some lines. In a transient study in N. benthamiana, 

three hairpin RNAi constructs were tested against Cotton leaf curl Multan virus (CLCuMV) 

(Mubin et al., 2011). However, only the construct targeting the overlapping Rep/AC1, TrAP 

/AC2 and Ren/AC3 was able to prevent systemic movement. The other two constructs, (i) 

targeting Rep and C4 genes and (ii) targeting the intergenic region, only managed to reduce viral 

replication.  Based on the observed results they suggested that targeting the TrAP gene offers the 

most efficient resistance. They also concluded that that not all virus-derived sequences will result 

in efficient resistance against begomoviruses.  In our study we targeted the 5’-terminal sequence 

of Rep and only the 3’-terminus of TrAP, unlike Mubin et al., (2011) who targeted the entire 

TrAP gene. Small interfering RNA studies have shown that siRNAs target several ORFs of 

geminviruses, and in Arabidopsis infected with Cabbage leaf curl virus, siRNAs covered the 
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entire viral genome sequence in both polarities (Aregger et al., 2012). In deep sequencing of the 

sRNAome cassava landraces T200 and TME3 (unpublished data), siRNAs were also shown to 

cover almost the entire genome of SACMV in both susceptible T200 and tolerant TME3 

landraces, however siRNA populations derived from AC1/AC4 and AC2/AC3 were weakly 

represented in comparison siRNA derived from AC1, AC2 and AV1 regions. A study by 

Chellappan et al. (2004), siRNA derived from the Rep C-terminal, which overlaps with the 5’- 

terminal of TrAP, accumulated at high levels in  ACMV-CM recovery N. benthamiana and 

cassava plants.  In the same study, similar siRNA populations derived from the Rep/TrAP 

overlapping region were seen in N. benthamiana and cassava recovery plants infected with Sri 

Lankan cassava mosaic virus (SLCMV). While the natural accumulation of siRNAs derived 

from the Rep C-terminal/TrAp N-terminal overlap was found in ACMV-CM recovered plants 

(Chellappan et al., 2004), plants infected with three distinct CBV species, EACMCV; isolate 

from Cameroon, EACMV-[UG] and Indian cassava mosaic virus (ICMV; isolate from India), 

did not result in a recovery phenotype or high accumulation of Rep/TrAP-derived siRNA.  

Instead in EACMCV infected plants, high siRNA populations were derived from the DNA-B 

component, especially off the C terminal of BC1 cell-to-cell movement protein (MP).  

 

In our study, in addition to the DNA-A component-derived constructs, the 221 bp region within 

BC1 movement protein (MP) (in the middle of the C and N terminus) of SACMV was targeted 

as this has not been evaluated widely as a target gene in GM crops, including in a natural host 

such as  cassava.  We also speculated that a Rep transgene, such an essential multifunctional 

geminivirus protein (Hanley-Bowdoin et al., 2013), could be under great silencing or 

suppression pressure from incoming virus, and BC1, under less constraints, may offer tolerance 

rather than complete resistance.   The geminivirus Tomato golden mosaic virus MP has been 

shown to have a deleterious effect on systemic infection of ACMV DNA in Nicotiana 

benthamiana plants (Von Arnim and Stanley, 1992). Furthermore, SACMV BC1 (MM4) 

mismatch IR constructs were expressed in the model test plant N. benthamiana and shown to 

produce siRNAs which resulted in a reduction in viral BC1 transcript levels and reduced 

symptoms upon SACMV infection (Taylor et al., 2012).  However no significant decrease in 

viral load was observed in cassava in this study up to 67 dpi. Chellappan et al. (2004) suggested 

that efficiency of PTGS may be dependent on geminivirus-cassava variety/landrace interactions. 
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Whether the siRNAs from the mismatch sense arm had any specific role in interfering with the 

SACMV or ACMV silencing specifically in the natural host cassava at 365 dpi needs to be 

explored further.   

 

Only seven lines were screened in this study, and more lines need to be evaluated. However, 

most unexpectedly, some of the BC1 MM4 lines that were transferred to the greenhouse 

recovered from symptoms and had no detectable virus titers (fig4.9b). Whether the higher 

temperatures and light intensity in the greenhouse contributed to more efficient movement of the 

systemic silencing siRNAs is not clear, but this recovery was also observed in some MM2 lines. 

High light intensity and temperature showed the opposite effect in N. benthamiana plants in 

transient agroinfiltration experiments with several cassava begomoviruses (Patil & Fauquet, 

2014). However this study was conducted in a highly susceptible experimental host, and in 

transient assays, which may not reflect the situation in planta or in the natural perennial host 

cassava over long periods of time (Romon et al., 2013). The observation of recovery of 

transgenics has been observed in several studies (Carrillo-Tripp et al., 2007; Ingelbrecht et al., 

1999; Jovel & Walker, 2007) as well as in some non-transgenic cassava varieties in the field 

(Gasura et al., 2008; Gasura & Mukasa, 2010).  However, since infected non-transgenic TME3 

and cv.60444 did not recover at high temperatures and light intensity, we can probably rule out 

endogenous RNA silencing (Patil & Fauquet, 2014) as a possible cause, and conclude that the 

expression of the transgene is likely playing a role in recovery.  

 

Interestingly, in a small RNA deep sequencing (Illumina Platform) experiment carried out in our 

laboratory (unpublished), siRNAs (21-24 nt) in both polarity were found to target SACMV, in 

infected T200 non-transgenic cassava, along the length of DNA A and B components, and in the 

intergenic region, but the 3’AC1/5’ TrAP ORF regions had the highest hits. Our Rep targets were 

focused at the 5’AC1/AC4 and 3’AC2/5’AC3 overlapping DNA sequences, while in the 

Vanderschuren et al. (2009) study, a short 3’end (1690-1844) AC1 155 bp hairpin was used for 

transformation.  Nonetheless, it is not possible to predict for certainty, without testing with site-

targeted probes for our specific transgenic constructs, which populations of siRNAs will be 

generated, and at what level. 
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The lack of efficient silencing in MM4 (mismatch SACMV-transgenic cv.60444) at 12, 32 and 

67 dpi was unexpected. A mismatch IR construct derived from SACMV AC1 alone induced 

PTGS more efficiently compared to a non-mismatch IR construct in a N. benthamiana callus 

system (Taylor, 2009). In A-MM2 transgenic lines, ACMV AC1/4:AC2/3 RNAi region was 

undetectable using RT-PCR even though integration of this region had been previously 

confirmed by PCR and Southern blot.  Results observed suggest weak expression of the ACMV 

AC1/4:AC2/3 derived sequence or even low transcript accumulation levels due to rapid 

processing of dsRNA into siRNA molecules leading to transcript decay. Dalakouras & 

Tzanopoulou (2011) used a cytoplasmic reoviral dsRNA binding protein to identify possible 

transcript decay in Cucumber mosaic virus (CMV) CP expressing N. benthamiana lines. The 

protein prevented Dicer-mediated processing of dsRNA in CMV susceptible lines previously 

identified as hairpin RNA transcription deficient. It is unlikely that the lack of transcript 

amplification is a result of transcriptional inactivation triggered by multiple transgene copies 

(Schubert et al., 2004). All seven A-MM2 lines had a single RNAi copy, except A-MM2 33 

which had a single copy and additional a truncated copy.  In transgenic lines A-MM4 and C-

MM6 and C-MM8 virus-derived transcripts were detected by RT-PCR, however lines showed 

only mild virus tolerantce. In other CMV CP expressing N. Benthamiana, high transcript and 

siRNA accumulation was observed (Dalakouras & Tzanopoulou, 2011). However these lines 

were still presented with a CMV susceptible phenotype. They concluded that transcription of 

hairpin derived sequences does not always lead to efficient RNA silencing; production of high 

quality effective siRNA is more important than siRNA quantity (Dalakouras & Tzanopoulou, 

2011).   

 

Other factors can influence the expression level of hairpins such as promoter strength, hairpin 

length and structure, introns and their distance to the promoter (Rose, 2004). Low transcripts 

levels can also occur due to “transcriptional interference” by an upstream promoter on a 

downstream promoter leading to a decreased promoter activity and hence low transcript levels 

(Bhullar et al., 2009). The 35S promoters used in the vectors in this study are widely used and 

are thought not to play a factor herein. Low RT-PCR detection of the BC1 mutated-arm of 

MM4hp was seen in A-MM4 transgenic lines. The position of the target gene within the T-DNA 

could possibly explain the observed RT-PCR results. Gene position effects on transcript 
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detection levels was  reported by Breyne et al. (1992). By inserting gusA reporter gene in the 

middle of the T-DNA, Breyne et al., (1992) found that it was expressed in very low levels unlike 

when placing it towards the right border which resulted in four times higher expression levels. 

This could explain the lower RT-PCR detection of the mutated BC1 hairpin arm. 

 

While transcription of the SACMV and ACMV transgenes was detected by RT-PCR, it is 

possible that the mismatch transcripts were not processed efficiently due to mismatches in the 

sense arm, and further processed by the RISC complex. However this would not explain why the 

non-mismatch constructs would not have been efficiently processed. Again, it is possible that 

temperature and light intensity in the growth chamber (60 000-80 000 lux) might have been too 

low for optimal spread of the silencing signal, if indeed recovery (mentioned earlier) was a result 

of higher temperatures and light intensity in the greenhouse after the plants were moved. It is 

becoming evident from several recent studies  (Chellappan, Vanitharani, Ogbe, et al., 2005; 

Ghoshal & Sanfaçon, 2014; Patil & Fauquet, 2014; Szittya et al., 2003) that environmental 

factors can play a critical role in RNA silencing expression. 

 

Another consideration is the dosage of geminivirus administered in the resistance trials.  

Previous work by Zhang et al. (2005) showed that geminivirus resistance can be broken in 

transgenic cassava when the ACMV load (bombardment) is increased.  In a later study by 

Vanderschuren et al. (2009), they demonstrated that increasing the viral pressure from 350ng to 

700 ng increased the infection rate of line dsAC1-105 from 22.2 to 90%. This infection rate was 

similar to wild type cv.60444 infection rate (84%). In our study, we used agro-inoculation of 

SACMV or ACMV to challenge transgenic lines, wild type cv.60444 and wild type TME3, and 

average infection rates of between 90-100 % were achieved. Agro-infection with ACMV of 

resistant cassava lines performed the same as with biolistic bombardment, but the infection rate 

of transgenics remained significantly lower compared with wild-type. While in our study we use 

Agrobacterium containing the infectious DNA A and B clones at an OD of ~1.8-2, as this proved 

effective in our hands (Pierce, 2013), it is possible that this represents a high dosage which was 

sufficient, along with other factors, to break the RNAi effect.  
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Agro-inoculation of plants with infectious virus clones introduces higher virus pressure and is 

more infection efficient than bombardment and possibly natural infection (Ariyo et al., 2006; Bi, 

et al., 2010; Kheyr-Pour et al., 1994). The lack of attenuated symptoms and viral load at the 

earlier time points (12, 32 and 67 dpi) post agroinoculation, in this study, could  be due to a high 

initial virus inoculum pressure, which in some lines was overcome leading to tolerance later 

on.Kheyr-Pour et al. (1994) observed that, under natural field conditions, using natural vector-

mediated virus transmission, wild Lycopersicon species are usually resistant to Tomato yellow 

leaf curl virus (TYLCV). However this resistant phenotype was lost following agro-inoculation 

with TYLCV. It was believed that the high virus pressure presented by agro-inoculation was the 

main contributor for the break in resistance. These findings suggest that under field trials, 

transgenic lines showing tolerance could present with a more improved tolerance or resistance 

phenotype. Dosage responses in transgenic lines are also not uniform, as in the ACMV-cassava 

study Vanderschuren et al. (2009) three lines (dsAC1-2; dsAC1-101 and dsAC1-152) showed no 

infectivity by agro-inoculation and biolistics.  Together with several other geminivirus studies, 

such as TYLCV resistance in tomato (Fuentes et al., 2006), high loads of hairpin-derived small 

RNAs correlated to high resistance. Contrary to this, in other studies a negative correlation 

between siRNA accumulation and resistance has also been shown to exist (Carrillo-Tripp et al., 

2007; Gómez et al., 2009; Lucioli et al., 2003). In some lines in the ACMV-cassava dosage 

experiment (Vanderschuren et al., 2009) gave low (almost undetectable) to medium 

accumulation of siRNAs. TME3 has to date been considered a CMD resistant landrace (Bi et al., 

2010), however in our laboratory,  infectivity studies showed clearly that this is a tolerant 

landrace (Allie et al., 2014). In this study, TME3 was used as a virus-infection control, and was 

confirmed as being CMD tolerant, due to lower symptom severity while supporting virus 

replication. In our study we could successfully infect TME3 using agro-inoculation with 

infectious virus clones and symptoms were seen in up to 70% of infected TME3 plants.  Real 

time qPCR results also confirmed that virus replication was supported in TME3 which 

demonstrated similar virus titers to some transgenic lines. We were able to report faint mosaic 

symptoms as well as stunted growth for TME3 in some of the virus challenge trials. 

 

In our study, 5-6 week old transgenic plantlets were agro-inoculated with virus this was based on 

the idea that farmers transplant 2-3 node cassava stem cuttings at a very early developmental 
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stage.  Vanderschuren et al. (2009) performed green-house resistance screening experiments on 

12 week old ACMV AC1 expressing cassava plantlets, and demonstrated resistance. Plant 

developmental stage has been shown to direct affect resistance or susceptible phenotype 

displayed in transgenic plant studies (Jan et al., 2000; Law et al., 1989; Tenllado & Diaz-Ruiz, 

1999; Tennant et al., 2001; Vassilakos et al., 2008). In transgenic squash lines expressing CP of 

Squash mosaic virus (SqMV) the resistance phenotype was only observed in when lines were 

inoculated with SqMV at a later developmental stage (31-45 days post germination) (Jan et al., 

2000). Lines were susceptible to SqMV when inoculated at early developmental stage (17 days 

post germination). Transgenic papaya line expressing CP of Papaya ringspot virus (PRSV) was 

susceptible to PRSV when inoculated at 6 weeks after germination however when inoculated at 

16 weeks after germination transgenic line showed resistance to PSRV (Tennant et al., 2001). 

Jan et al. (2000) suggested that PTGS induction is timing dependent and more active at later 

developmental stages. Kalantidis et al. (2002) not only investigated the effects that temperature 

has on resistance but also the influence the plant developmental stage has on siRNA mediated. 

They reported that at 30 days post germination (dpg) tobacco transgenic plants expressing a 

883bp Cucumber mosaic virus (CMV) gene fragment accumulated siRNA at higher levels than 

at 20dpg. This positive correlation between increase in resistance and increase in plant age was 

also demonstrated in transgenic papaya expressing coat protein of papaya ringspot virus (PRSV) 

HA from Hawaii (Tennant et al., 2001). Resistance to PRSV HA was observed at older 

developmental stages. Resistance to other PRSV isolates was also seen at older developmental 

stages. Similar results were reported in tobacco plant expressing a replicase gene of Tobacco 

rattle virus (TRV). Elevated TRV tolerance levels were observed in older (4-5 leaf stage) 

transgenic tobacco plants expressing TRV replicase gene than in younger (2-leaf stage) 

transgenic plants  (Vassilakos et al., 2008). In experiments involving transgenic tobacco 

expressing Pepper mild mottle virus (PMMoV), resistance against PMMoV was achieved in 

older plants (30-35 dpg) than in younger plants (15-20 dpg) (Tenllado & Diaz-Ruiz, 1999).  

 

To establish the relationship between resistance and transgene-siRNA production levels, 

Northern blots for siRNA detection were performed. However unlike in Chellappan et al. (2004) 

and Patil & Fauquet (2014) no positive correlation in siRNA accumulation levels and resistance 

was observed. This was clearly demonstrated in A-MM2 and C-MM6 lines, which accumulated 



193 

 

high levels of ACMV AC1/4:AC2/3-derived siRNA fragments. Low levels of SACMV BC1-

derived siRNA molecules were detected in SACMV BC1 transgenic lines (A-MM4 and C-

MM8). Surprisingly, ACMV AC1/4:AC2/3-derived siRNA fragments were detected in 

untransformed cv.60444 and TME3 also. In a NGS small RNA study in our laboratory, in mock- 

inoculated T200.  Low number of CBV-derived siRNA molecules were identified (unpublished), 

and this was attributed to possible integration of small viral fragments in the cassava genome.  It 

is not unknown to find integrated or non-integrated viral-derived sequences from plant EST 

libraries or more recently virus metagenomics studies.  However band intensities shown in 

fig.4.12 demonstrate a high number of siRNAs and the reason for this is unknown. The probes 

used in this study were specific to SACMV and ACMV, but it is possible that shearing of the 

transgene-derived probes may have led to non-specific RNAs. However, CBSV-derived siRNA 

probes were derived from chemical random shearing of the transgene and did not give false 

positives in cassava (Ogwok et al., 2012). According to López et al. (2010) and Dalakouras & 

Tzanopoulou (2011) high transcription and siRNA accumulation does not necessarily lead to 

efficient silencing and resistance. Detection of ACMV AC1/AC4:AC2/3-derived siRNA 

molecules in untransformed healthy cv.60444 also suggest integrated ACMV DNA-A sequences 

in the cv.60444 genome (Harper et al., 2002; Hull et al., 2000). The tolerant phenotype observed 

at 67 dpi in most transgenic lines could be due to primary siRNA biogenesis as a result of 

efficient processing of constitutive/early transgene-derived dsRNA expression (Aregger et al., 

2012). This tolerant phenotype at 67 dpi may be more time induction dependant rather than level 

of accumulation dependent. The recovery phenotype observed in A-MM2 and A-MM4 at 365 

dpi could be due to efficient late developmental stage transgene-derived siRNA biogenesis of 

production (discussed above). siRNA detection was however not performed at 365 dpi.  In C-

MM8 transgenic lines transgene-derived siRNA were not detected instead the SACMV-BC1-

derived probe hybridized to higher molecular weight RNA. C-MM8 siRNA detection blots 

suggest low MM8 RNAi transcript levels, which is consistent with fig 4.11d, MM8 RNAi RT-

PCR results. Low transcript levels generally results in low siRNA molecule accumulation 

(Dalakouras & Tzanopoulou, 2011).  Alternatively, low siRNA molecule detection could be due 

to sequestering and trapping of siRNA molecules by the higher molecular weight RNA.  
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As previously mentioned, temperature-dependent effects on virus resistance levels have been 

demonstrated in transgenic plants studies (Bonfim et al., 2007; Chellappan et al., 2005; Ntui et 

al., 2014; Romon et al., 2013; Szittya et al., 2003; Vassilakos, 2012). Temperature is therefore 

an important factor to consider in future resistance screening trials. Chellappan et al. (2005) 

challenged tobacco plants with ACMV-[CM] and observed symptom severity at three 

temperatures. Symptoms of tobacco plants infected with ACMV-[CM] were found to be greater 

at 25°C than at 30°C. And at temperatures between 25°C and 30°C, they also reported moderate 

symptoms. Chellappan et al. (2005)  infected cassava with ACMV-[CM] and monitored siRNA 

accumulation at 25°C, between 25-30°C and at 30°C. They observed a rise in siRNA 

accumulation with an increase in temperature. Work by Kalantidis et al. (2002) and Szittya et al. 

(2003) confirmed this positive correlation. Chellappan et al. (2005) concluded that slight changes 

in temperature can have an effect on PTGS. They suggested that this effect was as result of 

higher siRNA-derived plant defense activity or reduced PTGS suppressor activity at higher 

temperatures. However according to Schwind et al. (2009) at 21°C and 31°C there is no 

difference in siRNA accumulation levels. Differential siRNA accumulation was only observed at 

15°C and 24°C. Further testing of transgenic lines at a range of temperatures may provide 

different, but while improved virus resistance may be obtained, this has serious implications for 

field implementation of the RNA silencing strategy and transgenic crops. 

 

In conclusion, a large number of transgenic lines screened presented mild ACMV or SACMV 

tolerance at 67 dpi, with viral load and symptom phenotype more similar to non-transgenic 

tolerant landrace TME3, but with clearly lower than susceptible non-transgenic cv.60444. Some 

of the CMM6 and CMM8 lines that showed reduced virus load and symptom delay or reduction 

have been selected for further screening, but we could not establish a positive correlation 

between virus load and symptoms in many of the lines, and more in depth siRNA and transgene 

expression studies are required, as well as the relationship between endogenous gene silencing, 

transgene silencing and environmental factors. What was of considerable interest was the 

recovery of some A-MM2 and A-MM4 lines after several months in the greenhouse at higher 

temperature and light intensities. At 365 dpi, a reduction in ACMV viral load was recorded in 

four A-MM2 infected transgenic lines. These lines presented with lower symptoms and reduced 

viral load relative to susceptible cv.60444. No virus was detected in five A-MM4 transgenic lines 
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at 365 dpi. These five A-MM4 transgenic lines presented a full recovery phenotype, and repeat 

trials are planned in future. Tolerance and recovery may be desirable or useful in come field 

cultivation situations, but often can be unpredictable and can be overcome in mixed infections.  

Further transgenic lines need to be screened for resistance under different light and temperature 

regimes. While CMD-transgenic cassava expressing virus-targeted RNA silencing has been 

achieved in some studies under laboratory and greenhouse conditions, and is highly desirable, 

there remains many conflicting reports in the literature on the stability and efficacy of RNA 

silencing, and more research is needed if this technology is to be adopted, not only for cassava, 

but for other field crops.  
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CHAPTER 5: SUMMARY AND CONCLUSIONS 
 

In the current study, four mismatched (mutated sense-arm) RNA silencing hairpin constructs and 

four non-mismatched (Gateway technology) RNA silencing hairpin constructs were created. 

These were designed to target SACMV BC1 and several ACMV genome regions 

simultaneously, namely the Rep (AC1), Ren (AC3) and the host gene silencing suppressor AC4 

and AC2 (TrAP). Both design methods targeting the selected regions required numerous digest, 

ligation and cloning steps, however lower construction costs were associated with mutated sense-

arm constructs compared with Gateway technology constructs as the conventional E.coli DH5α 

strainand standard plant transformation pCAMBIA 1305.1 vector,  available in the lab, were 

used. Gateway constructs required the less conventional ccdB tolerant E.coli strain, DB3.1. 

pHellsgate 8 vector and DB3.1 cells had to be sourced. The reduced costs associated with 

mutated sense-arm construct technology makes this method favourable especially for research 

occurring in developing countries. Another limitation to the Gateway technology was the lengthy 

screening of clones for correct IR fragment orientation.   

 

Cassava cv.60444 and T200 FEC were successfully transformed using Agrobacterium-mediated 

transformation. High FEC transformation efficiencies in these processes, comparable with those 

reported by Taylor et al. (2012) and Bull et al. (2009) were obtained. Transformation and 

regeneration of cassava is genotype dependent and few cultivars or landraces have been 

successfully transformed and even far less have been transformed with virus-derived sequences 

(Hankoua et al., 2005; Nyaboga et al., 2013; Raemakers et al., 2001; Zainuddin et al., 2012). In 

a study by Nyaboga et al. (2013) three local farmer-preferred cultivars (Serere, Kibandameno 

and Ebwanateraka) were successfully transformed and regenerated, although not all somatic 

embryos produced plantlets, and L-tyrosine was required to generate FEC. In this study, 

unexpected high transformation and regeneration results were obtained for the SA landrace 

T200. Successfully transformed cv.60444 and T200 were achieved for subsequent virus 

challenging. 

 

In order to further understand the molecular processes in our transgenic lines, further studies 

investigating the processing and action of the transgene-derived siRNAs are required.  
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Information on transgene insertion sites would also prove informative.  Levels of resistance to 

geminivirus diseases in crop plants must be durable under agronomic growth conditions in the 

field. Although the transformation efficiency in cassava has improved (Bull et al., 2009), it is 

still estimated that at least 100 transformation events need to be established, and from that an 

estimated 30 independent transgenic lines have to be evaluated. Cassava transformation is a 

labour intensive process however platforms established by Bull et al. (2009) and Taylor et al. 

(2012) are aimed at high-throughput production and screening of transgenic lines. ACMV and 

SACMV transgenic lines showing milder symptoms and relatively reduced viral load compared 

to control infected wild-type cv.60444, but similar to tolerant TME3. An enhanced recovery 

phenotype was observed in certain A-MM2 and A-MM4 transgenic lines than control infected 

wild-type cv.60444. Currently more lines are being evaluated in our laboratory, under 

greenhouse controlled growth conditions, and new constructs are being developed, but even if 

these yield promising results, extensive natural field conditions need to be stringently tested over 

several generations before improved lines can be released for cultivation.  In the framework of 

the recovery of MM2 and MM4 cassava lines in the greenhouse over longer periods of 

fluctuating temperature and light effects, factors such as plant developmental age, temperature 

and infectivity method could potentially have effects on the behaviour of resistant plants in the 

field.While tuber yields were not measured in these trials as these were restricted pot studies, this 

should also be performed in future experiments. Furthermore, more in depth molecular 

characterization of siRNA production, transgene expression and natural RNA silencing 

interactions in the mismatched hpRNA transformed transgenic plants needs to be performed. As 

a novel approach, more information needs to be gathered in regard to potential off targets of this 

mutation technology, and more in depth comparisons with analogous non-mismatched 

counterparts,  

 

Implementation of the by Bull et al. (2009) cassava FEC induction and transformation protocol 

enabled successful transformation of model cassava cultivar cv.60444 and South African 

landrace T200 with virus-derived sequences. The objective of the Bull et al. research was to 

distribute detailed cassava transformation information to allow establishment and 

implementation of cassava genetic engineering technology in developing countries. Currently, 

few cassava virus resistance transformation reports have emerged directly from the African 
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continent. The Virus Resistant Cassava for Africa (VIRCA) initiative established in Kenya in 

collaboration with several institutions is such an example (Taylor et al., 2012). In the last 5 years 

preliminary cassava transformation research on the African continent was with empty plant 

transformation vectors. Not only do we report successful high transformation efficienies, we 

report successful cassava transformation with virus-derived sequences.  

 

Transgenic lines showing higher SACMV and ACMV tolerance compared with wild-type 

cv.60444 have been identified. Some of these lines further showed a recovery phenotype, 

associated with reduced CMD symptoms and in certain transgenic lines absence of virus titre, 

compared to wild type cv.60444 plants when evaluated a year after infection. While these 

transgenic lines displayed resistance, it is not really understood why this was not evident in the 

earlier sample period (up to 67 dpi).  Also the failure to achieve complete resistance at least in 

some lines needs to be investigated. Unexpectedly, in some of our data, no positive correlation 

was observed between symptom expression and viral load. This suggests an existing underlying 

mechanism that supports some virus replication while simultaneously reducing symptom 

expression.  Tolerance and recovery in non-transgenic plants is not well understood, but has been 

reported to be, in part, associated with RNA silencing and high production of siRNAs targeting 

the virus (Chellappan et al., 2004; Ntui et al., 2015; Ogwok et al., 2012). Plant recovery from 

viral induced symptoms is phenotypically manifested by a progressive reduction in symptoms 

severity or appearance of symptomless leaves at the apices, and in some cases, a key genotypic 

indicator of tolerance is the RNA silencing defense mechanism (Rodríguez-Negrete et al., 2009).  

Tolerance to a virus is the ability to minimize viral-induced disease severity, while resistance is 

the ability to limit the parasite burden to non-detectable levels of virus replication. TME3 is a 

known tolerant cassava landrace (Allie et al., 2014) also displaying persistent ACMV and 

SACMV replication in this study, but demonstrating lower symptoms and viral loads, 

comparable to some transgenic lines in this study. More recently, high throughput profiling of 

transcriptomes either covering partial or complete recovery processes in DNA and RNA-viruses 

(Allie et al., 2014; Góngora-Castillo et al., 2012) are available, providing new insights on the 

molecular interconnections between tolerance and recovery. 

 



199 

 

Currently, available research has revealed complexities that were previously not known to exist 

in the field of RNA silencing. A large majority of available data on the use of RNA silencing 

technology in cassava for virus resistance report difference resistance levels and tolerance, 

complete resistance has been reported by the ETH research group. Substantial research on host 

endogenous mechanisms and pathways that regulate RNA silencing, virus encoded RNA 

silencing suppressors and abiotic factors are still required in the field of RNA silencing and 

genetics involved in resistance, especially against DNA viruses. This will then advance research 

in the field of the cassava genetic engineering for resistance against cassava infecting 

geminiviruses. 
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APPENDICES 
 

Appendix A Student’s t-test accessing the mean statistical difference between A-MM2transgenic line and cv.60444symptom severity 

score index, plant height and ACMV viral load, at 12, 32 and 67dpi. 

 
Symptom severity score  Plant height   ACMV viral  load   

Line ID 12 dpi 32 dpi 67 dpi 12 dpi 32 dpi 67 dpi 12 dpi 32dpi 67dpi 

A-MM2 45 0.36 0.36 0.00015 0.11 0.03 0.15 0.09 0.17 0.25 

A-MM2 41 0.2 0.005 0.01 0.27 0.01 0.07 0.19 0.16 0.14 

A-MM2 53 0.1 0.06 0.01 0.37 0.47 0.21 0.13 0.06 0.15 

A-MM2 52 0.03 0.03 0.002 0.5 0.2 0.02 0.15 0.2 0.16 

A-MM2 30 0.3 0.01 0.007 0.34 0.33 0.29 0.5 0.23 0.34 

A-MM2 54 0.03 0.0027 0.00031 0.01 0.23 0.29 0.05 0.19 0.09 

A-MM2 44 0.1 0.09 0.08 0.18 0.05 0.08 0.18 0.37 0.42 

 

Appendix B Student's t-test accessing the mean statistical difference between A-MM4transgenic line and cv.60444symptom severity 

score index, plant height and SACMV viral load, at 12, 32 and 67dpi. 

 
Symptom severity score Plant height   SACMV viral load 

  12 dpi 32 dpi 67 dpi 12 dpi 32 dpi 67 dpi 12 dpi 32 dpi 67 dpi 

A-MM4 11 0.1 0.001 0.2 0.14 0.08 0.009 0.18 0.44 0.13 

A-MM4 33 0.04 0.05 0.02 0.45 0.37 0.003 0.44 0.05 0.12 

A-MM4 34 0.4 0.34 0.001 0.16 0.17 0.003 0.16 0.1 0.16 

A-MM4 46 0.04 0.01 0.02 0.003 0.02 0.05 0.3 0.05 0.48 

A-MM4 59 0.04 0.001 0.0001 0.32 0.41 0.004 0.45 0.42 0.12 

A-MM4 68 0.5 0.34 0.001 0.01 0.29 0.004 0.08 0.06 0.14 

A-MM4 79 0.04 0.007 0.003 0.08 0.26 0.001 0.11 0.47 0.13 
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Appendix C Student’s t-test accessing the mean statistical difference between C-MM6 transgenic line and cv.60444symptom severity 

score index, plant height and ACMV viral load, at 12, 32 and 67dpi. 

 
Symptom severity score Plant height   ACMV viral load   

  12 dpi 32 dpi 67 dpi 12 dpi 32 dpi 67 dpi 12 dpi 32 dpi 67 dpi 

MM6 2 0.01 0.01 0.06 0.15 0.01 0.05 0.1 0.15 0.16 

MM6 1 0.001 0.08 0.07 0.38 0.4 0.08 0.04 0.16 0.45 

MM6 8 0.25 0.003 0.07 0.01 0.002 0.31 0.08 0.24 0.16 

MM6 10 0.03 0.0003 0.001 0.27 0.07 0.02 0.07 0.39 0.17 

MM6 11 0.07 0.0002 0.007 0.35 0.2 0.06 0.05 0.16 0.09 

MM6 19 0.004 0.001 0.08 0.01 0.01 0.34 0.1 0.25 0.11 

 

 

Appendix D Student’s t-test accessing the mean statistical difference between A-MM2transgenic line and cv.60444symptom severity 

score index, plant height and ACMV viral load, at 12, 32 and 67dpi. 

 
Symptom severity score Plant height   SACMV viral load 

  12 dpi 32 dpi 67 dpi 12 dpi 32 dpi 67 dpi 12 dpi 32 dpi 67 dpi 

MM8 1 0.13 0.04 0.04 0.173 0.068 0.007 0.17 0.3 0.11 

MM8 3 0.36 0.14 0.5 0.036 0.230 0.484 0.12 0.13 0.01 

MM8 23 0.13 0.07 0.03 0.291 0.411 0.328 0.15 0.02 0.17 

MM8 25 0.07 0.007 0.02 0.032 0.003 0.008 0.11 0.28 0.14 

MM8 27 0.07 0.04 0.003 0.148 0.183 0.361 0.13 0.25 0.07 
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Appendix E Student’s t-test accessing the mean statistical difference between transgenic lines, 

A-MM2 and AMM4, and cv.60444 viral load at 365 dpi. 

  356 dpi 

MM2 30 0.01 

MM2 41 0.01 

MM2 45 0.47 

MM2 52 0.01 

MM2 53 0.01 

MM2 54 0.01 

    

MM4 11 0.06 

MM4 33 0.051 

MM4 34 0.056 

MM4 46 0.051 

MM4 59 0.051 

MM4 68 0.051 

MM4 79 0.051 
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Appendix F Pearson’s correlation coefficient measuring the relationship (correlation) between 

symptom severity score (sss) and plant height,   correlation between viral load and symptom 

severity score and the correlation between viral load and plant height for A-MM2, A-MM4, C-

MM6 and C-MM8, at 12, 32 and 67 dpi. 

A-MM2 lines 12 dpi 32 dpi 67 dpi 

sss and plant height 0.610447 0.492424 -0.08328 

        

viral load and sss 0.384241 0.036675 0.221859 

        

viral load and height 0.332099 0.127402 -0.46538 

        

        

A-MM4 lines 12 dpi 32 dpi 67 dpi 

sss and plant height -0.1357 0.287488 -0.49311 

        

viral load and sss 0.653513 0.719185 0.53428 

        

viral load and height -0.45104 0.472436 -0.65425 

        

        

C-MM6 lines 12 dpi 32 dpi 67 dpi 

sss and plant height 0.000803 -0.17019 -0.37778 

        

viral load and sss 0.785741 0.651456 0.700429 

        

viral load and height -0.02671 0.212623 0.033412 

        

        

C-MM8 lines 12dpi 32 dpi 67 dpi 

sss and height 0.056928 0.037954 0.377394 

        

viral load and sss 0.676871 0.814072 0.643269 

        

viral load and height 0.669174 0.279488 0.852673 

        

 


