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ABSTRACT 

The main objective of this study is to produce biofuel from waste animal fat (collected from 

abattoirs) using the pyrolysis (thermal cracking) method. To achieve this goal, the study 

investigated the effects of temperature and heating rate on the yield and quality of the bio-oil 

produced. Also investigated was the effect of zeolite nano-catalyst(s) on the quality of the bio-oil 

produced.  

 

Animal waste fat (tallow) was pyrolyzed in a laboratory fixed bed reactor of volume 2200 cm
3 

at 

final temperatures (FT), 450
o
C, 500

o
C, 530

o
C and 580

o
C using heating rates (HR) of 4

o
C/min, 

5
o
C/min and 6

o
C/min. The properties of the resultant bio-oils were tested and analyzed. The 

maximum bio-oil yield of 82.78 % was achieved at 530
o
C FT and 6

o
C /min HR while the highest 

calorific value, 52.41 MJ/kg, was recorded from the bio-oil produced at the FT of 580
o
C and 

6
o
C/min HR. The molecular components of each of the bio-oil samples was analyzed using the 

Gas Chromatography – Molecular Spectrograph (GC-MS) which indicated the predominant 

presence of alkanes, alkenes, carboxylic acids and alkyl esters in the bio-oils produced without a 

catalyst. The introduction of zeolites in nano-form yielded relatively more cyclo-alkanes and 

aromatics. 

 

A maximum yield of 58% was recorded when 1% of the zeolite nano-catalyst was used to 

pyrolyse the tallow at 530
o
C FT and 6

o
C/min HR but with lots of coking and gas formation. The 

viscosity improved with a 35% reduction for the samples produced with 1% zeolites (C1 and 

C2). The viscosity of the bio-oil produced with 2% zeolites improved with a resultant 34% 

reduction in value. For pyrolysis done at 530
o
C FT and 6

o
C/min HR, the bio-oils with 1% (C1) 

and 2% zeolite (C3) resulted in a reduction in acid value of 32% and 30%, respectively. Acid 

value is the mass of potassium hydroxide (KOH) in milligrams that is required to neutralize one 

gram of chemical substance. 
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CHAPTER 1: INTRODUCTION 

 

1.1 BACKGROUND AND MOTIVATION 

The rising global population and economic growth has led to increased demand for protein, 

corresponding to increased production, and slaughter of game and livestock animals (usually in 

abattoirs). In 2010, global meat production was 237.7 million tons, of which 42.7%, 33.4%, 

23.9% were pork, poultry and beef respectively (USDA, 2010). In South Africa, about 436 620 

animals, consisting of 45,360 cattle, 275 439 sheep, and 115 674 goats were slaughtered in 2006, 

(DEAT, 2007). In 2013, the figure was 9 million, of sheep (5 million), pigs (2 million) and cattle 

(2 million), in the 479 registered abattoirs in the country (Neethling, 2014). Between November 

2013 and October 2014, 9 725 299 animals of sheep (4 841 475), pig (2 461 235) and cattle 

(2 422 589) were slaughtered (Neethling, 2014). This figure excludes other livestock like 

chicken, ostrich, crocodile, horse, etc.  

 

Among the five major emerging national economies of BRICS – Brazil, Russia, India, China and 

South Africa, the gross national per capita income of China grew annually at 13.44% between 

2000 and 2010. Correspondingly, China’s meat consumption equally grew annually at 2.3% 

(12.7 million tons) in that period. In India, per capita income growth of 9.23% over the same 

period led to a 6.68% per year (2.2 million tons) increase in meat consumption. Brazil’s 5.22% 

growth from 2000 to 2009 led to an increase in meat consumption of +3.64% per year (4.8 

million tons). A similar phenomenon was observed in Russia where meat consumption grew 

5.07% per year (3 million tons) between 2000 and 2009 (Feddern et al., 2011). 

 

The process of converting these animals to meat, in an abattoir, unavoidably produces a sizable 

amount of waste, especially fat. The South African Department of Agriculture and Rural 

Development (DARD) defines an abattoir as any registered facility that is responsible for the 

conversion of animals to meat via a slaughtering process (DARD, 2009). Bovine produces 

approximately 31kg of solid waste - rumen content, faecal material (manure), condemned 

material, feather, fur, skins, horns and hooves, and bones, and 818 litres of liquid waste - blood, 

bile, urine, dissolved detergents, chemicals and waste water (Neethling, 2014). The waste water 

contains high organic matter, biological nutrients and has alkalinity. Blood constitutes the 
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highest pollution load and highest Chemical Oxygen Demand (COD) of all the components of 

liquid effluents, followed by fat (Chukwu, Adeoye and Chidiebere, 2011). Overwhelmed by this 

huge amount of waste, most abattoirs, especially in developing countries, (including South 

Africa) dispose of them by resorting to environmentally- harmful methods like incineration, 

spraying and burying. Others discharge their waste material in nearby streams and ponds, 

methods which are unhygienic and dangerous to human health. This also contributes to high 

organic and nutrient loads in streams that leads to eutrophication and compromise fresh water 

life (Muchenje et al., 2013).  

 

Some abattoirs have discovered an clever way of disposing their waste mixture of fat and other 

trimmings. They pretreat this bulk waste with sodium hydroxide in an inadvertent saponification 

process to produce a soap-like mass which is then disposed into a stream.. This “soap-like” mass 

slowly dissolves in the stream as it moves along, leaving little residual trace but is harmful to 

organisms living within the water. Additionally, sodium hydroxide is expensive, and added to the 

cost of hiring a waste disposal company, the total expenditure incurred in disposing this waste 

becomes prohibitive. 

 

In South Africa, the management of abattoir waste is regulated through the National 

Environmental Management Act, 1998 (Act 107 of 1998) (NEMA), the National Water Act, 

1998 (Act. 36 of 1998) (NWA), the MSA and sections 24a and 24b of the Constitution of South 

Africa, 1996. In 1989, the abattoir industry consumed about 21% (5.8 million cubic metres) of 

the national water budget (Neethling, 2014) and generally has difficulty in meeting municipal 

quality standards by-laws for fats, oils, greases and suspended solids. About 84% of this water 

(4.87 million cubic metres) was discharged as wastewater effluent (DARD, 2009). According to 

an estimate by the Water Research Commission, discharge costs due to these high organic loads 

amounts to R21.33 million per year at R4.38/m
3
. Also, these wastes pose great human danger 

through food contamination when eaten by scavengers or persons living off refuse sites.  

  

However, energy security is regarded as one of the greatest threats facing humanity presently, 

coupled with anthropogenic climate change (McCartney, Hanlon, and Romanes, 2008). Studies 

confirm that oil reserves have been declining since the 1960s due to high demand and overuse in 

developed countries. It is estimated that the global oil supply will be less than 10 gigabarrels per 
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annum in 2015 and with the current global energy consumption approaching 1 gigabarrel per 

annum (BP, 2013), a looming energy crisis must be averted. Presently, more than 80% of global 

primary energy is derived from fossil fuels with oil accounting for 32.8%, coal, 27.2% and 

natural gas, 20.9% (IEA, 2011).  

 

Studies indicate that the major greenhouse gases are carbon dioxide, methane, nitrous oxide and 

halocarbons respectively with carbon dioxide regarded as the most abundant anthropogenic 

greenhouse gas in the atmosphere, and the main contributor to climate change (Stern, 2008). It is 

produced from the combustion of fossil fuel reserves with 62% released into the atmosphere 

every year. While other studies show that CO2 levels have increased to 390 ppm since 2007 

(Tans and Keeling, 2011), the International Energy Agency predicted that 30 billion tons of CO2 

were emitted from fossil fuels in 2008 (IEA, 2011). Climatologists have predicted that if no 

actions are taken, the levels of CO2 in the atmosphere could increase to 560 ppm by 2035 with an 

atmospheric temperature rise exceeding 5 °C (Stern, 2008), and exacerbating the ongoing global 

warming. This could lead millions of people to poverty, warns the World Bank (2013).  

 

Therefore, an urgent need arises to promote the development of alternative green fuels in order to 

meet the escalating global energy demand and also reduce carbon emissions. 

 

1.2 RESEARCH PROBLEM STATEMENT 

Since the traditional methods of abattoirs wastes’ disposal have become obsolete, and the chosen 

method of first saponifying the fat before disposal is both costly and environmentally harmful, 

South Africa is bound, as a signatory to the Basel Convention (UNEP, 2000) on waste disposal, 

to find alternative methods of waste disposal that are healthy to humans and conducive to the 

environment. One of the most economical benefits of waste animal fat may be their conversion 

into biofuel in order to generate energy and reduce the abattoir’s power demand on the national 

grid especially with the prevalent load-shedding presently in South Africa. This will equally 

reduce the pollution level of the waste water effluent. This research aims to assess the potential 

of converting animal waste fat into biofuel using the pyrolysis (thermal treatment) method. 
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1.3 RESEARCH QUESTIONS 

This research aims to address the following questions: 

a. What is the optimal heating rate and temperature for the production of bio-oil from waste 

animal fat? 

b. Could the quality of the bio-oil derived from the pyrolysis of waste animal fat match those of 

the fossil fuels?  

c. Will the quantity of waste fat derived by each abattoir yield enough biofuel to satisfy their 

energy demand in order to make this process economically viable for them? 

d. Could the properties of the bio-oil derived from the pyrolysis of waste animal fat be 

improved by a suitable nano-catalyst?  

e. Could the nano-catalyst improve the pyrolysis process by reducing the operating temperature 

of the process thus reducing the energy input into the process? 

 

1.4 RESEARCH OBJECTIVES: 

The main objective of this study is to produce biofuel from waste animal fat from abattoirs using 

the pyrolysis (thermal treatment) method. To achieve this goal, the following objectives will be 

investigated:  

  

a. The potential for production of bio-oil from waste animal fat using the pyrolysis method. 

b. The effects of temperature and heating rate on the yield and quality of the bio-oil produced. 

c. The effects of zeolite nano-catalyst on the quality of the bio-oil produced. 

d. The effects of zeolite nano-catalyst on the temperature of the pyrolysis process. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 ABATTOIR WASTE 

 

Figure 2.1 A mixture of animal waste dumped in the open (http://forum.hardware.fr) 

Waste management includes the generation, storage, transport, treatment and the ultimate 

disposal of all types of waste streams (DARD, 2009).  South Africa has been experiencing a 

rapid increase in animal wastes due to increased demand for animal protein. From September 

1990, the South African government banned the use of meat-and-bone meal derived from the 

brain, spinal cord, thymus, spleen, tonsils and intestines of bovine offal because they are believed 

to be the tissues most likely to contain the agent that causes Bovine Spongiform Encephalopathy, 

(BSE) or “mad cow disease” (DARD, 2009). This embargo increased the amount of waste from 

abattoirs, further compounding the waste disposal quandary abattoirs faced. Of the 59 million 

tons of general waste generated in South Africa in 2011, 2.95, 7.88 and 12.1 million tons were 

estimated to have emanated from agricultural, municipal and industrial process effluents 

respectively (DEA, 2012).This quantity is expected to increase in subsequent years due to 
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urbanization and industrialization in most cities across the country (DEA, 2012). Considering the 

amount of residues produced by abattoirs - 45% (wt/wt) for cattle and 25% (wt/wt) for swine and 

poultry, they contain approximately 15% fat (Feddern et al. 2011). 

Globally, about 27.9 million metric tons per year of waste animal fat is produced (Gunstone, 

2001). 

South Africa has 604 registered abattoirs (Neethling, 2014) that produce about 400 billion tonnes 

of solid waste per year (Kruger, 2013) and which excludes blood, fat and other liquid wastes. 

 

 

 

                

   Dead or        Live and healthy animals 

  Diseases animals 

                 Meat for human 

                 consumption 

 

 Edible fats 

 Hides, skins and 

 Pet food Unusable Animal waste not other products 

         required or unfit for        waste   

      human consumption 
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Pet food                                  Meat-and- and-bone meal 

    bone meal     
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Figure 2.2 Typical sources and uses of wastes in a red meat abattoir (DARD, 2009) 
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Table 2.1 Wastes Generated Per Cow & Goat (Aniebo et al, 2011)   

 Cow Goat 

Blood/head (kg) 12.6 0.72 

Intestinal content/head (kg) 8.0 1.25 

Waste tissue/head (kg) 6.4 0.8 

Bone/head (kg) 11.8 2.06 

 

2.2 DISPOSAL OF ABATTOIR WASTES IN SOUTH AFRICA 

Pollution control and environmental protection are vitally important in the disposal of abattoir 

wastes hence rendering is the main disposal method. It involves a series of drying and separating 

processes by which the material is sterilised and the fats and proteins are extracted to produce 

tallow, blood and meat-and-bone meal. Water from the waste material needs to be treated to 

avoid pollution before being removed. The organic nature of the material causes odour pollution 

that requires additional pollution abatement technology. Below is a comparison of a South 

African abattoir waste water effluent against the municipality requirement: 

 

Table 2.2 South African Abattoir Waste Water Effluent (DARD, 2009) 

 Abattoir Effluent Municipality Requirement 

pH 5.7 – 8.4 6 - 10 

Chemical Oxygen Demand (COD) 2380 – 8942 mg 3000 - 5000 

Total Dissolved Solids (TDS) 595 – 2805 mg/L 500 mg/L (TSS) 

Suspended Matter 189 – 3330mg/L  

Total Kjedahl Nitrogen 0.71 – 24 mg/L 200 – 300 mg/L 

 

The main technical alternatives to rendering are landfill, incineration and anaerobic digestion. 

Only small amounts of animal waste are currently disposed of to landfill because of the legal 

requirement that stipulates that abattoir wastes must be adequately sterilised before disposal to 

landfill. Only a few sites are licensed for this. Incineration appears to be more suitable for 

dealing with whole carcasses than for waste offal, which has high water content and low calorific 
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value but the costs of incineration are relatively high. Consequently, it is being phased out 

throughout South Africa as government generally does not support it (DARD, 2009). 

 

Anaerobic digestion is a process whereby organic material such as animal waste is broken down 

by micro-organisms operating in an oxygen-free environment. The costs are more uncertain than 

for other forms of waste treatment and disposal, and the technology for handling abattoir wastes 

is still in the process of development. Developments in this area show considerable promise as 

both a low-cost and low-pollution means of dealing with raw animal and other waste, although 

these newer technologies have yet to be fully tested and commercially proven (DARD, 2009). 

 

Table 2.3 Destination of Abattoir Waste in Developing Countries (World Bank Study, 

2008) 

LOCATION WASTES 
DESTINATION IN DEVELOPING 

COUNTRIES 

Livestock Holding Area 
Bedding, Straw, Truck 

waste, Dead-stock 
Formal and informal landfill, Composting 

Stunning & Bleeding Blood 
Collected as edible or Processed into 

Protein meal, or Discharged in wastewater 

Dressing 

Heads, Hooves, Feet Recovered as edible products 

Hide, Feathers 
Recovered for further processing into 

leather, protein meal, etc 

Horns, Pig Hair Often disposed to landfill 

Evisceration, Splitting 

& Trimming 
Trimmings & Fat Recovered as edible products 

Inspection Pathological material 
Little produced in most countries. Goes to 

landfill, compost, incineration 

Edible Offal Processing Trimmings Recovered as edible products 

Intestinal Offal 

Processing 

Trimmings Recovered as edible products 

Stomach & Intestinal 

Contents 

Formal and informal landfill, Composting, 

Fish feed 

Wastewater 

Contamination with 

blood, body fluids and 

intestinal contents 

Mostly discharged direct to surface water 

without any treatment (even screening), 

occasionally to the Municipal sewer. 
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Figure 2.3 Animal waste dumped near a river in Kaloor, India. (Express News Service, 

2015) 

 

2.3 ENERGY USE IN ABATTOIRS 

According to the Agriculture and Horticulture Development Board (AHDB), the cost of energy 

represents the fourth highest operational cost for many meat plants, after the cost of raw 

materials, waste disposal and labour (AHDB, 2013). This has increased because plants have 

increased their level of processing, yet few companies know how energy is distributed within 

their plants.  

 

A study by AHDB (2013) has shown that typically 50–80% of energy used in an abattoir is 

provided by electricity while the other 20–50% comes from thermal energy. Electricity is usually 

used for refrigeration and compressed air, ventilation, lighting, powering the operating 

equipment in the slaughter, boning and by-product processing areas, e.g. saws, hoists, conveyors, 

packing machines, and electrical stimulation. 

 

Studies show that it takes about 775 kWh of energy to produce a tonne of beef and 685 kWh per 

tonne of sheep meat based on the energy used for slaughtering, cutting and retail packing, 

http://www.ahdb.org.uk/
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although the energy per tonne varied considerably depending upon the type of processes within 

the plant. At ‘slaughter only’ abattoirs for example, the electricity average per head was 

measured at 50 kWh (with a range of 16 to 67) and the total energy use averaged 96 kWh per 

tonne (range 47 to 189). 

 

2.4 BIOFUELS 

2.4.1 Biofuels As Alternative Fuel Source 

With increasing energy consumption, populations and economic developments, and worsened by 

a progressive exhaustion of limited fossil fuels, renewable energy has been widely explored in 

order to replenish the energy sources structure and keep sustainable development safe (Qi et al, 

2006). Biomass is an attractive supplement to fossil fuels because it has negligible content of 

sulphur, nitrogen and ash, which give lower emissions of SO2, NOx and soot than conventional 

fossil fuels (Qi et al, 2006). Compared to other renewable energy sources, biomass is the most 

interesting one since it can be converted directly into liquid, gaseous and solid fuels, usable for 

transport, heat and power production (Bridgwater and Peacocke, 2000) 

 

2.4.2 Sources Of Biomass For Biofuel 

Karaosmanoglu, Tetik, and Gollu (1999) define biomass as encompassing all natural matter of 

vegetables and animals and can include a variety of natural and derived materials while Klass 

(2004) described it as all non-fossil based living and dead organisms and organic materials that 

have intrinsic chemical energy content. Many biomass species have been pyrolyzed, such as 

almond shell, apple pulp, apricot stones, automobile shredder residue (ASR), bagasse, beech 

wood, cellulose, corn–potato starch gel, corn stalk, cotton stalk, extracted oil palm fibers, filter 

pulp, grape, grass, ground nut shell, maize, etc. (Yaman, 2003). The main commodities for 

biodiesel production from inedible oils, which are recommended as they are more economical 

than edible oils are plant species such as jatropha, ratanjyote, seemaikattamankku (J. curcas), 

karanja, honge (P. pinnata), nagchampa (C. inophyllum), rubber seed tree (Hevca brasiliensis), 

neem (Azadirachta indica), mahua (M. indica and Madhuca longifolia), silk cotton tree (Ceiba 

pentandra), jojoba (Simmondsia chinensis), babassu tree, Euphorbia tirucalli, and microalgae 

(Demirbas, 2009). 
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2.4.3 Animal Fat As a Biomass

Fat is one of the sources of biomass. Oils and fats are found in living organisms, consisting 

essentially of fatty acid esters and glycerin mixtures, and are known as triacylglycerols or 

triglycerides (Feddern et al. 2011). These triacylglycerols have higher viscosity and therefore 

cannot be used as fuel in common diesel engines (ibid) but will need to be refined to conform to 

diesel properties. Technologies such as biochemical, thermo-chemical, physical and chemical 

processes are available for recovering bio-fuels from triglyceride based materials. Thermo-

chemical processes include gasification, pyrolysis and combustion (Bridgwater, 2003). Among 

these technologies, pyrolysis is favoured because it is simple and inexpensive to construct (Onay 

and Kockar, 2004).  

 

Table 2.4 Oil and fat feedstock distribution in ten developed countries with self-

sufficiency potential in 2006 (Demirbas, 2009) 

Feedstock % 

Animal fats 52 

Soybean oil 20 

Rapeseed oil 11 

Palm oil 6 

Sunflower oil 5 

Other vegetable oils 5 

 

Beef fat, called tallow, is a mixture of triglycerides, most of which are saturated of which 

tristearin is usually the major component (Ma & Hanna, 1999). These saturated fatty acid 

components in tallow accounts for almost 50% of the total fatty acids. The higher palmitic and 

stearic acid contents endow tallow with its unique properties of high melting point and high 

viscosity (Demirbas, 2009). Table 2.5 shows the average composition of fatty acids in tallow 

(Demirbas, 2008). The total fatty acids in the tallow samples were 51.1% by weight. The major 

fatty acids in the tallow were palmitic (28.7%), stearic (19.5), and oleic (44.4%) acids. Higher 

palmitic and stearic acid contents give the tallow a high melting point (Demirbas, 2008). 
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Table 2.5 Average composition of fatty acids in tallow (Demirbas, 2009) 

Fatty acid wt% 

Myristic (14:0) 2.90 

Palmitic (16:0) 28.70 

Stearic (18:0) 19.50 

Oleic (18:1) 44.40 

Linoleic (18:2) 3.60 

Linolenic (18:3) 0.90 

 
 

2.5 BIODIESEL  

Bio-diesel is formally defined as “a fuel comprising of mono-alkyl esters of long chain fatty 

acids derived from vegetable oils or animal fats, designated B100” (ASTM D 6751-03a, 2005). 

In USA and Europe, soybean oil and rapeseed oil respectively are the major feedstock for 

biodiesel production, but in the East Asian countries, where production was 31.4 million 

tons/year between 2006 and 2010 (Feddern et al, 2011), it is palm oil (Shrestha & Gerpen, 2010).  

 

Table 2.6 Technical properties of biodiesel (Demirbas, 2009) 

Common name Biodiesel (bio-diesel) 

Common chemical name Fatty acid (m)ethyl ester 

Chemical formula range C14–C24 methyl esters or C15-25H28-48O2 

Kinematic viscosity range (mm
2
/s, at 40 

o
C) 3.3–5.2 

Density range (kg/m
3
, at 15 

o
C) 860–894 

Boiling point range (
o
C) >272 

Flash point range (
o
C) 147–177 

Distillation range (
o
C) 197–327 

Vapor pressure (mm Hg, at 22 
o
C) <5 

Solubility in water Insoluble in water 

Physical appearance Light to dark yellow, clear liquid 

Odor Light musty/soapy odor 

Biodegradability More biodegradable than petroleum diesel 

Reactivity Stable, but avoid strong oxidizing agents 
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Brazil produced 2.4 billion litres of biodiesel in 2010, which is 14% of the year’s global 

production but Germany produces half of the EU output (Feddern et al, 2011). In 2007, European 

Union (EU) produced 5.7 million tons of biodiesel and USA production hit 1.7 billion litres 

(Feddern et al, 2011). 

 

Bio-diesel is primarily used as a substitute or blend for diesel fuel, but it can also be used as a 

feedstock in the chemical industry. It is utilized in farm equipment and military vehicles 

(National Biodiesel Board, 2005). Biodiesel also can have application as non-ionic surfactants or 

as emulsifying, thickening and plastifying agents (Schuchardt et al., 1998).  

      

 

Table 2.7 South Africa Automotive Diesel Fuel Specification (SAPIA, 2008) 

Property Units Limit SANS  342 - 2006 

Appearance  max  

Colour  max   

Density @ 20 °C kg/l min 0,8000 

Ash Content % m/m max 0,01 

Cetane Number  min 45 

Carbon Residue, Ramsbottom (on 10 % residue) % m/m max 0,2 

CFPP – Winter  

– Summer 
  

-4 

3 

Corrosion, Copper Strip, 3 hrs @ 100 °C  max 1 

Distillation (90% vol. Recovery) Deg C max 362 

Sulphur Content mg/kg max 500 

Flash point, PMCC Deg C min 55 

Kinematic Viscosity @ 40 
o
C cSt 

min 2.2 

max 5.3 

Water Content, Karl Fischer ppm (v/v) max 500 

Total Contamination mg/kg max 24 

Lubricity Wear scar diameter um max 460 

Oxidation Stability mg/100ml max 2.0 

Fatty Acid Methyl Ester (FAME) content vol % max 5 

 

ASTM D 6751 is a standard that identifies the parameters pure biodiesel (B100) must meet 

before being used as a pure fuel or being blended with petroleum-based diesel fuel. Biodiesel, 

B100, specifications (ASTM D 6751 – 02 requirements) are given in Table 2.8. 
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Table 2.8 Biodiesel (B100) spec. - ASTM D 6751 – 02 requirements (Demirbas, 2009) 

Property Method Limits Units 

Flash point D 93 130 min 
o
C 

Water and sediment D 2709 0.050 max % volume 

Kinematic viscosity at 40 
o
C D 445 1.9–6.0 mm2/s 

Sulfated ash D 874 0.020 max wt% 

Total sulfur D 5453 0.05 max wt% 

Copper strip corrosion D 130 No. 3 max  

Cetane number D 613 47 min  

Cloud point D 2500 Report 
o
C 

Carbon residue D 4530 0.050 max wt% 

Acid number D 664 0.80 max mg KOH/g 

Free glycerine D 6584 0.020 wt% 

Total glycerine D 6584 0.240 wt% 

Phosphorus D 4951 0.0010 wt% 

Vacuum distillation end point D 1160 
360 _C max, 

at 90% distilled 
o
C 

 
        

2.6 ADVANTAGES OF BIOFUEL OVER FOSSIL FUEL 

 Bio-diesel easily meets the cetane requirement for diesels, an indicator of diesel combustion 

and quality, and can be used in a regular diesel engine with little or no modification.  

 Many harmful emissions, which are a major concern of fossil fuel combustion, are reduced.  

 Bio-diesel exhibits superior lubricity to conventional diesel. Lubricity has become significant 

because the new low sulfur diesels, required for regulatory reasons, exhibit low lubricity 

resulting in failure of fuel injectors and pumps (Knothe and Steidley, 2005). 

 Bio-diesel has a net positive energy balance. Life-cycle analysis of bio-diesel has shown that 

approximately 3.2 units of fossil energy are generated for every unit of fossil energy used to 

produce the fuel (Sheehan et al., 1998). 
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 Other notable advantages of biodiesel over diesel fuel are its portability, ready availability, 

renewability, higher combustion efficiency, lower sulphur and aromatic content, higher 

biodegradability, safer handling, besides being non-toxic (Lapuerta et al., 2008). 

 

2.7 DISADVANTAGES OF BIODIESEL OVER FOSSIL FUEL 

 Bio-diesel exhibits poor cold flow properties, which can impact negatively on engine 

performance, and increase NOx emissions.  

 Bio-diesel contains oxygen which may not be desirable for certain applications:  

a. The presence of oxygen can also cause stability problems and lowers the heat content; the 

heating values of bio-diesel is 9–13% lower than those of diesel fuels on a mass basis 

(Demirbas, 2003).  

b. Vegetable oil derivatives are prone to deterioration through hydrolytic and oxidative 

reactions.  

 It causes higher copper strip corrosion. 

 It creates fuel pumping difficulty due to its higher viscosity.  

 Currently, biodiesel is more expensive to produce than diesel, which appears to be the 

primary factor in preventing its more widespread use.  

 Current worldwide production of vegetable oil and animal fat is not enough to replace liquid 

fossil fuel use (Bala, 2005). 

 

2.8 RENEWABLE ENERGY PROGRESS IN SOUTH AFRICA 

In South Africa, progress in the biofuels industry has been very modest. The main driver for the 

development of the industry is neither the economic threat of erratically increasing oil prices nor 

a mitigation agenda for anthropogenic climate change, as obtained internationally. Instead, it is 

driven by the need to stimulate economic development and alleviate poverty by promoting 

farming in the areas that did not have market access for their produce, most of which are in the 

former homeland areas that were previously neglected by the apartheid system (Letete and von 

Blottnitz, DME 2007).  

 

In 2007, the South Africa government released the National Biofuels Industrial Strategy (NBIS) 

proposing a five (5) year pilot of biofuels market penetration target of 2% of national liquid fuel 



16 

 

supply, or 400 million litres per year to be based on local agricultural and manufacturing 

production by 2013 (Letete and von Blottnitz, 2009; DME, 2007). The Strategy proposes to set a 

fixed margin price and offer a 100% petrol tax exemption for bioethanol, and 50% fuel levy 

exemption for biodiesel (Letete and von Blottnitz, 2009; DME, 2007). Energy Development 

Corporation (EDC), a division of the state-owned Central Energy Fund, is working with Sasol to 

study the feasibility of converting soya beans into 100-million litres of biofuel, mostly biodiesel, 

per year (SouthAfricaInfo, 2006). 

 

At the 2009 Copenhagen climate conference, the South African government committed to reduce 

the country’s carbon emissions by 34% and 42% by 2020 and 2025 respectively by substituting 

most of the 90% of power generation that came from coal-fired stations, which is responsible for 

half the country’s carbon emission. Government hoped that this would be achieved by setting up 

the Independent Power Producer Programme – a transparent public-private partnership to 

develop renewable energy. It is estimated that through the Integrated Resource Plan 2010, 

renewable energy sources would supply 40% (18 000MW) of the country’s power by 2030. 

 

So far, sorghum and soy beans have been approved as the bioethanol and biodiesel feedstock 

respectively. Excluded from consideration are maize - for food security issues, and jatropha - an 

alien to South Africa with a very high calorific value of seed oil but which produces a toxic 

seedcake remnant after biofuels production (Gilder and Mamkeli, 2014). This consideration 

conforms to the United Nations World Water Development Report of 2014 which states that 

biofuels development needs to be considered in the context of food security, energy 

requirements, the availability of land and national priorities (Gilder and Mamkeli, 2014). With 

the failed initial target of implementing mandatory blending of biofuels with fossil fuels by 1 

October 2015, a policy that would create up to 25 000 new jobs (Letete and von Blottnitz, 2009; 

DME, 2007), the government has granted eight companies provisional licenses to produce 

bioethanol or biodiesel in the country. Rainbow Nation Renewable Fuels Ltd plans to erect a 1.1 

Mt/yr soybean crushing facility that will produce about 228 ML biodiesel (Gilder and Mamkeli, 

2014) while Mabele Fuels is ready to start building a 158-million litre per year bio-ethanol 

refinery near Bothaville, Free State, with sorghum as its preferred feedstock once the regulations 

are finalized (Gilder and Mamkeli, 2014). Industrial Development Corporation (IDC) is planning 

to invest in at least five projects for the production of fuel-grade ethanol and has approved R3.2b 
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to build a bioethanol plant in Kwazulu Natal (South Africa Info, 2013). A solar plant outside De 

Aar in the Northern Cape created 2000 jobs during construction, and R1-million from the project 

went to black women in the area for the development of ostrich farms.  Turbine production 

factories have been built in Cape Town and Port Elizabeth. Fuel firm, Ethanol Africa has 

announced a deal with Sterling Waterford to build the first of eight bioethanol plants in the Free 

State town of Bothaville - the heartland of South African maize production - at a cost of R700 

million (ibid). They plan to further build a string of maize-to-ethanol plants in South Africa at a 

total cost of about $1-billion (about R6-billion), partly pegged on the hope that new laws could 

make its product mandatory (South Africa Info, 2013). 

 

2.9 PYROLYSIS 

Pyrolysis is regarded as one of the reasonable and promising technologies to compete with and 

eventually replace non-renewable fossil fuel resources (Qi et al, 2006). It is a thermo-chemical 

process in which organic materials are heated to temperatures greater than 400°C in the absence 

of oxygen to transform low-density biomass into a high-energy-density liquid known as bio-oil, a 

high-energy-density solid known as biochar, and a relatively low energy-density gas known as 

syngas (Bridgwater et al., 1999). Pyrolysis mechanisms of triglycerides were proposed by 

several authors (Chang and Wan, 1947; Alencer et al., 1983; Vonghia et al., 1995; Idem et al., 

1996) who all postulated that elimination of heavy oxygenated hydrocarbons as esters, 

carboxylic acids, ketones, and aldehydes is a dominant step in the cracking reactions of 

triglycerides. At these temperatures, organic materials thermally decompose, with the long 

chains of carbon, hydrogen and oxygen compounds in the biomass breaking down into smaller 

molecules. This consists of both simultaneous and successive reactions. The pyrolysis vapor 

condenses out as liquid (bio-oil), a polar and high molecular-weight compounds while low-

molecular-weight volatile compounds remain in the gas phase (syngas). The physics and 

chemistry occurring during a pyrolysis reaction are very complex and depend on both the nature 

of the biomass and the reactor conditions (Babu, 2008). The bio-oil yield could be as much as 

70–80%.  
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Figure 2.4 Molecular components of pyrolysis products (www.pyrolysisplant.com) 

Pyrolysis can be classified into four general categories: slow pyrolysis, flash pyrolysis, 

gasification, and fast pyrolysis (Laird et al., 2009). 

 

Slow pyrolyzers are either batch systems known as ‘charcoal kilns’, or continuous systems that 

slowly heat the biomass to >400°C. Moisture content and particle size are not critical for 

charcoal kilns while continuous systems do specify some size reduction and drying for optimal 

results. Product yields are approximately 35% biochar, 30% bio-oil, and 35% syngas by mass 

(Goyal et al., 2008) Typically, the bio-oil, in the form of vapors and aerosols, is not separated 

from the syngas. 

Flash pyrolysis is designed to maximize biochar production. It involves the heating of biomass 

under moderate to high pressure. Its yields are typically 60% biochar and 40% volatiles (bio-oil 
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and syngas). Flash pyrolyzers are more likely to include heat-recovery equipment than traditional 

kilns (Laird et al., 2009).  

 

Gasification is designed to maximize production of syngas. A typical gasifier allows a small, 

controlled amount of oxygen into the reaction chamber which causes partial combustion of the 

biomass, and generates the heat needed to sustain the reaction. The reaction temperature is 

generally quite high, about 800–1200°C (ibid). A gasifier produces very little char or bio-oil 

although many commercial gasifiers can produce 5–15% char and traces of bio-oil, which is 

referred to as ‘tar’ (Laird et al., 2009). 

 

 

Figure 2.5 Schematic diagram of the pyrolysis process 

Fast pyrolyzers are continuous flow systems designed to maximize production of bio-oil. The 

biomass must first be dried to <10% water content and ground to <2 mm particle size before 

entering a fast pyrolyzer. The product yields by mass are typically 50–70% bio-oil, 10–30% 

biochar, and 15–20% syngas (Laird et al., 2009). 

http://i0.wp.com/www.bioenergyconsult.com/wp-content/uploads/2012/04/biomass-pyrolysis-liquefaction.jpg
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Depending on the thermal environment and the final temperature, pyrolysis will yield mainly 

biochar at low temperatures, less than 450 
0
C, when the heating rate is quite slow, and mainly 

gases at high temperatures, greater than 800
 0
C, with rapid heating rates. At an intermediate 

temperature and under relatively high heating rates, the main product is bio-oil. 

 

2.10 FACTORS THAT AFFECT PYROLYSIS YIELD 

The quality and distribution of pyrolysis products depend on the pyrolysis final temperature, 

heating rate, residence time, type of reactor, feedstock, etc (Zanzi, Sjostrom and Bjornbom, 

1996). 

2.10.1 Final temperature 

In many pyrolysis studies, the increase of final temperature is always followed by an increase in 

the bio-oil yield, a decrease of bio-char yield and a slight increase in the gases amounts. In the 

pyrolysis of lard, Hassen-Trabelsi et al. (2013) showed that increasing the pyrolysis temperature  

 

 

Figure 2.6 Effect of final temperature on pyrolysis products of lamb fatty wastes 
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(Hassen-Trabelsi et al., 2013) 

from 400 °C led to a gradual increase in the fraction of bio-oil from 54 wt.% to  76 wt.% at 500 

°C but there was no significant effect on the bio-oil yield when the temperature was raised from 

500 °C to 550°C.  The fraction of bio-char decreased from 32 wt.% and the gas fraction also 

showed an increase from 14 wt.% at 400 °C to 21 wt.% at 550 °C.  

 

In the pyrolysis of bagasse, Asadullah et al. (2007) showed that increasing the pyrolysis 

temperature from 300 °C to 600 °C induced an increase in the bio-oil and gaseous products 

yields from 18.66 wt.% to 66.63 wt.% and from 4.34 wt.% to 14.71 wt.% respectively with a 

corresponding decrease of bio-char yield from 77 wt.% to 24.66 wt.%. 

 

2.10.2 Heating rate 

Different trends were reported by authors working with different type of wastes. Hassen-Trabelsi 

et al. (2013) showed that the effects of the heating rate on the pyrolysis products distribution of 

animal fat waste are almost the opposite of those observed for pyrolysis temperature. Increasing 

the heating rate from 5 °C /min to 15 °C /min significantly decreased the bio-oil yield from 80  
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Figure 2.7 The effect of heating rate on pyrolysis products of lamb fatty wastes (Hassen-

Trabelsi et al., 2013) 

wt.% to 5 wt.% while the bio-char yield increased from 3 wt.% to 33 wt.% and the syngas  

proportion increased from 17 wt.% to 62 wt.%. They explain these behaviors to be the cracking 

of the liquid phase due to the increase of the heating rate. In fact, the long carbon chains 

contained in condensable vapors can be broken into short ones, inducing an increase in gaseous 

products (ibid).  

 

2.10.3 Residence time  

Adebanjo, Dalai and Bakhishi (2005) defines residence time as a ratio of packing volume and 

carrier gas volumetric flow rate at the reactor temperature. They showed that the volume of the 

product gas increased with increase in residence time (2.8 – 1.2 s) but the calorific values were 

high for all residence times. A maximum value of 133 MJ/m3 was obtained at residence time of 

1.8 s. The yields of both the total and the diesel-like liquid decreased with increase in residence 

time. 
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Figure 2.8 Effects of residence time on liquid yield of lard pyrolysis (Adebanjo, Dalai and 

Bakhishi, 2005) 

Therefore, an increase in residence time (from 1.2 to 2.8 s) is detrimental to liquid production as 

well as the viscosity, which increased from 1.8 to 3.8 mPa. s as the residence time increased. The 

Cetane Index (CI) is maximized at a residence time of 1.8 s. This implies that too low residence 

time can also be detrimental to the quality of the liquid product.  

 

2.10.4 Type of reactor 

The reactor, of which they are various types, is at the heart of pyrolysis process. There have been 

considerable research, innovation and development to improve the essential characteristics. 

Initially, reactor developers had assumed that small biomass particles size and very short 

residence time would achieve high bio-oil yield. However, later research found that particle size 

and vapour residence time have little effect on bio-oil yield but influence bio-oil composition 

(Wang et al., 2005). With continuous reactor design development, a number have been 

developed to optimize the pyrolysis performance and to produce high quality bio-oil. However, 

each reactor type has specific characteristics, bio-oil yielding capacity, advantages and 

limitations. The different types of reactors are Fixed Bed, Fluidized Bed, Ablative, Vortex, 

Vacuum Pyrolysis, Rotating Cone, PyRos, Auger, Plasma, Microwave, Solar (Jahirul et al., 

2012). 

 

2.10.4.1 Fixed-Bed Reactor 

This reactor consists of a gas cooling and cleaning facility. In the reactor, the solids move down 

a vertical shaft and contact a counter-current upward-moving product gas stream. Typically, this 

reactor is made of firebricks, steel or concrete with a fuel feeding, ash removal and gas exit units. 

They operate with high carbon conservation, long residence time, low gas velocity and low ash 

carry over (Altafini, Wander and Barreto, 2003). They are considered for small scale heat and 

power applications. The cooling system and gas cleaning consists of filtration through a cyclone, 

wet scrubbers and dry filters (Barker, 1996). The major problem of fixed bed reactors is tar 

removal; however recent progress in thermal and catalytic conversion of tar has offered options 

for removing tar (Rao et al., 2004) 
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2.10.4.2 Fluidized-Bed Reactor 

Fluidized-bed reactors, as shown in Figure 2.9 consist of a fluid-solid mixture that exhibits fluid-

like properties when pressurized fluid is introduced through the solid particulate substance. 

These reactors seem popular for fast pyrolysis as they provide rapid heat transfer, good control 

for pyrolysis reaction and vapour residence time, extensive high surface area contact between 

fluid and solid per unit bed volume, good thermal transport inside the system and high relative 

velocity between the fluid and solid phase (Lv et al., 2004). The different types of fluidized-bed 

reactors are Bubbling Fluidized-Bed and Circulating Fluidized-Bed, Rotating Disk, Reactors. 

 
 

Figure 2.9 Fluidized Bed Reactor (Hughes, 2007) 
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2.10.4.3 Ablative Reactor 

Ablative pyrolysis is fundamentally different from fluid bed processes in that heat transfer is 

through a molten layer at the hot reactor surface with the absence of a fluidizing gas. Mechanical 

pressure is used to press biomass against a heated reactor wall which then “melts” and, as it is 

moved away, the residual oil evaporates as pyrolysis vapours (Jones et al., 2009). Advantages of 

ablative reactors are that feed material does not require excessive grinding, and the process 

allows much larger biomass particle size than other types of pyrolysis reactors. This 

configuration is more complex due to the mechanical nature of the process. Scaling is a linear 

function of the heat transfer as this system is surface area controlled.  

 

 

Figure 2.10 Ablative Reactor (Bridgwater, 2012) 

 

2.10.5 Feedstock 

Almost any form of organic material can be introduced into a pyrolyzer as the feedstock because 

the high temperature of the pyrolysis process neutralizes any organic toxins and pathogens in it. 

Chemical properties of the feedstock have a significant influence on both product yields and 

product quality (Laird et al., 2009). Among cellulosic feedstocks, bio-oil yield decreases with 

increasing ash content while the average molecular weight of the bio-oil fraction increases with 

lignin content of the feedstock (Fahmi et al., 2008). 
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In the pyrolysis of lamb, poultry and swine fats, Hassen-Trabelsi et al. (2013) showed that lamb 

fats produced the highest liquid yield of 77.9 wt.% while poultry and swine wastes produced 

67.6 and 58.0 wt.%, respectively. The liquid condensate consisted of the aqueous (bottom phase) 

and organic-rich (upper phase). For the three studied samples, the organic-rich phase had the 

highest percentage of liquid fraction (between 45.8 and 61.6 wt.%) compared to the bottom one 

which presented small amounts (between 12.2 and 21.5 wt.%). Other authors who worked with 

similar type of triglycerides based wastes recorded higher yields of bio-oil. Demirbas (2007) 

reported a 77.1 wt.% of bio-oil for pyrolysis of beef tallow at 500 °C while Wiggers et al. (2009) 

obtained a yield of 73 wt.% for fish oil wastes at 525 °C and Wisniewski et al. (2010) reported a 

72–73 wt.% from waste fish oil pyrolysis Wisniewski et al. (2010).  

 

Mohan et al. (2006) concurs with Hassen-Trabelsi et al. (2013) that the increase of the heating 

rate induced an enhancement of bio-oil production in the pyrolysis of woody materials. 

However, Inguanzo et al. (2002), who studied the pyrolysis of sewage sludge established that the 

higher the pyrolysis heating rate, the more efficient the pyrolysis, i.e.  a higher production of 

pyrolytic oil. This suggests that the pyrolytic behavior resulting from the heating rate variation 

can be linked to the raw feedstock composition: fatty materials differ from lignocellulosic 

biomass in their constitutional compounds (mainly fatty acids), high C, O, H and low ash 

contents (Hassen-Trabelsi et al., 2013). Thus, in the case of triglycerides materials, a high 

heating rate can induce a cracking of condensable vapors (Hassen-Trabelsi et al., 2013). 

 

2.11 ADVANTAGES OF PYROLYSIS OVER TRANS-ESTERIFICATION 

 Lower processing costs. 

 Compatibility with infrastructure, engines and fuel standards. 

 Feedstock flexibility.  

 The final products are similar to diesel fuel in composition (Stumborg et al., 1996). 

 

2.12 PRODUCTS OF PYROLYSIS 

 

2.12.1 Bio-oil 
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The liquid product from biomass pyrolysis is known as biomass pyrolysis oil, bio-oil, or bio-

crude. It is dark brown in colour. It is composed of a very complex mixture of oxygenated 

hydrocarbons with an appreciable proportion of water from both the original moisture and 

reaction product and can be used directly as a liquid fuel or as source of synthetic chemical 

feedstocks (Bridgwater, 2012). Solid char may also be present. It is unstable during pyrolysis but 

its chemical composition tends to change toward thermodynamic equilibrium during storage (Qi 

et al., 2006). The primary disadvantages of using the bio-oil as a diesel fuel include the low 

Higher Heating Value (HHV) which is approximately 40% less than that of fuel oil, high 

viscosity, and substantial solids content (Bridgwater, 2003). Additionally, the high water content 

that cannot be readily separated causes miscibility problems with conventional fuel oils, making 

blending impossible (Bridgwater, 2012).   

 

Table 2.9 Typical properties of wood pyrolysis bio-oil and of heavy fuel oil (Mohan, 

Pittman, and Steele, 2006) 

Physical property Bio-oil Heavy fuel oil 

Moisture content (wt%) 15–30 0.1 

pH 2.5 - 

Specific gravity 1.2 0.94 

Elemental composition 

(wt%) 
  

C 54–58 85 

H 5.5–7.0 11 

O 35–40 1.0 

N 0–0.2 0.3 

Ash 0–0.2 0.1 

HHV (MJ/kg) 16–19 40 

Viscosity (at 50 C) (cP) 40–100 180 

Solids (wt%) 0.2–1 1 

Distillation residue (wt%) up to 50 1 

       

Adebanjo et al. (2005) pyrolyzed lard in a continuous microreactor loaded with different sized 

quartz chips at atmospheric pressure and temperatures of 600°C and 800°C to produce a 37 wt.% 
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yield of liquid product of which a portion of its fraction resembled diesel fuel. Some of the 

components that determine the quality of bio-oil are:  

 

2.12.1.1 Water 

Bio-oil has water content of 15–30 wt% derived from the original feedstock moisture and the 

product of dehydration of the pyrolysis reaction and storage. The presence of water lowers the 

heating value and flame temperature, but on the other hand, it reduces the viscosity and enhances 

the fluidity, which is good for its atomization and combustion in the engine. Shihadeh and 

Hochgreb (2002) compared bio-oils from two sources and found that additional thermal cracking 

improved its chemical and vaporization characteristics. The better performance and ignition of 

one derived from its lower water content and lower molecular weight (Qi et al., 2006). 

 

2.12.1.2 Oxygen 

The structural oxygen content of a fuel improves its combustion efficiency due to an increase in 

the homogeneity of oxygen with the fuel during combustion. The oxygen in biodiesel improves 

the combustion process and decreases its oxidation potential. Thus, the combustion efficiency of 

biodiesel is higher than that of petrodiesel (Demirbas, 2009). But high oxygen content in the bio-

oil leads to its poor stability and non-miscibility with hydrocarbons (Oasmaa and Peacocke, 

2010). The oxygen content of bio-oils is usually 35–40% (Oasmaa and Czernik, 1999) 

distributed in more than 300 compounds depending on the feedstock and severity of the pyrolytic 

processes. Its presence creates the primary issue for the differences between bio-oils and 

hydrocarbon fuels. The high oxygen content lowers by 50%, the energy density in relation to the 

conventional fuel (Qi et al., 2006). 

 

2.12.1.3 Viscosity 

Depending on the feedstock and pyrolytic process, the viscosities of bio-oils vary widely. Those  

produced from Pterocarpus indicus and Fraxinus mandshurica by Luo et al. (2004) had a kinetic 

viscosity of 70–350 mPa s and 10–70 mPa s, respectively, while that from rice straw had 5–10 

mPa s because of its high water content. Sipila et al. (1998) investigated the bio-oils from 

hardwood, softwood and straw by flash pyrolysis in an atmospheric fluidized bed and found that 

their viscosities were reduced in those with higher water content and less water insoluble 
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components. Viscosity was also affected by alcohols: a 5 wt% methanol introduced into 

hardwood pyrolysis oil with low methanol content decreased its viscosity by 35%. The straw oil 

is less viscous and had the highest methanol content of 4 wt%. Boucher et al. (2000) added 

methanol to bio-oil and this reduced its density and viscosity and increased its stability with the 

limitation of a lowered flash point. The flash point of a chemical is the lowest temperature where 

enough fluid can evaporate to form a combustible concentration of gas. 

 
 

2.12.1.4 Acidity 

Bio-oils comprise substantial amounts of carboxylic acids, such as acetic and formic acids, 

which leads to low pH values of 2–3. The bio-oil of pine had a pH of 2.6, while that of hardwood 

was 2.8 (Sipila et al., 1998). Acidity makes bio-oil extremely unstable, very corrosive and 

extremely severe at elevated temperature, which imposes more requirements on construction 

materials of the vessels and the upgrading process before using bio-oil in transport fuels 

(Bridgwater, 2012).    

 

2.12.1.5 Heating value 

Usually the bio-oils of oil plants have a higher heating value than those of straw, wood or 

agricultural residues. Beis, Onay and Kockar (2002) conducted pyrolysis experiments on 

safflower seed and obtained bio-oil with a heating value of 41.0 MJ/kg and a maximum yield of 

44%. Ozcimen and Karaosmanoglu (2004) produced bio-oil from rapeseed cake in a fixed bed 

with a heating value of 36.4 MJ/kg and a yield of 59.7%. But bio-oils from wood and agricultural 

residues had a heating value of about 20 MJ/kg and a yield of up to 70–80%. 

 

2.12.1.6 Ash 

The presence of ash in bio-oil can cause erosion, corrosion and kicking problems in the engines 

and the valves, and even deterioration when the ash content is higher than 0.1 wt% (Qi et al., 

2006). However, alkali metals are problematic components of the ash. More specifically, 

sodium, potassium and vanadium are responsible for high temperature corrosion and deposition, 

while calcium is responsible for hard deposits. The H50 bio-oil was found to contain 2 ppm K, 6 

ppm Na and 13 ppm Ca (Boucher et al., 2000). The best job of hot gas filtering to date at NREL 

http://www.engineeringtoolbox.com/flash-point-d_924.html
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resulted in <2 ppm alkali metals and 2 ppm alkaline earth metals in the bio-oil (Scahill, Diebold, 

and Feik, 1996). 

 

Table 2.10 lists the cause and effects of the characteristic problems of pyrolized bio-oil.  

 

Table 2.10 Characteristics of bio-oil (Bridgwater, 2012) 

CHARACTERISTIC CAUSE EFFECTS 

Acidity or Low pH Organic acids from 

biopolymer degradation 

Corrosion of vessels and pipework 

Aging Continuation of secondary 

reactions including 

polymerisation 

Slow increase in viscosity from 

secondary reactions such as 

condensation 

Potential phase separation 

Alkali metals Nearly all alkali metals 

report to char; so not a big 

problem 

High ash feed, 

Incomplete solids 

separation 

Catalyst poisoning  

Deposition of solids in combustion 

Erosion and corrosion 

Slag formation 

Damage to turbines 

Char Incomplete char separation 

in process 

Aging of oil 

Sedimentation 

Filter blockage 

Catalyst blockage 

Engine injector blockage 

Alkali metal poisoning 

Chlorine Contaminants in biomass 

feed 

Catalyst poisoning in upgrading 

Colour Cracking of biopolymers 

and char 

Discolouration of some products such as 

resins 

Contamination of feed Poor harvesting practice Contaminants notably soil act as 

catalysts and can increase particulate 

carry over. 

 

Distillability is poor Reactive mixture of 

degradation products 

Bio-oil cannot be distilled - maximum 

50% 

typically. Liquid begins to react at below 

100 _C and substantially 

decomposes above 100 _C 

 

High viscosity  Gives high pressure drop increasing 

equipment cost 

High pumping cost 

Poor atomisation 
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Low H:C ratio Biomass has low H:C ratio Upgrading to hydrocarbons is more 

difficult 

Materials 

incompatibility 

Phenolics and aromatics Destruction of seals and gaskets 

Miscibility with 

hydrocarbons is very 

low 

 

Highly oxygenated nature 

of bio-oil 

Will not mix with any hydrocarbons so 

integration into a refinery is more 

difficult 

Nitrogen Contaminants in biomass 

feed 

High nitrogen feed such as 

proteins in wastes 

 

Unpleasant smell  

Catalyst poisoning in upgrading NOx in 

combustion 

 

Oxygen content is very 

high 

Biomass composition Poor stability,  

Non-miscibility with hydrocarbons 

Phase separation or In-

homogeneity 

High feed water,   

High ash in feed,   

Poor char separation, 

Phase separation  

Partial phase separation, 

Layering; 

Poor mixing,  

Inconsistency in handling, storage and 

processing 

 

Smell or odour Aldehydes and other 

volatile organics, many 

from hemicellulose 

While not toxic, the smell is often 

objectionable 

Solids See also Char  

Particulates from reactor 

such as sand 

Particulates from feed 

contamination 

Sedimentation  

Erosion and corrosion 

Blockage 

Structure The unique structure is 

caused by the rapid de-

polymerisation and rapid 

quenching of the vapours 

and aerosols 

 

Susceptibility to aging such as viscosity 

increase and phase separation 

Sulphur Contaminants in biomass 

feed 

Catalyst poisoning in upgrading 

Temperature sensitivity Incomplete reactions Irreversible decomposition of liquid into 

two phases above 100 _C 

Irreversible viscosity increase above 60 

_C 

Potential phase separation above 60 _C 

 

Toxicity Biopolymer degradation Human toxicity is positive but small 
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products Eco-toxicity is negligible 

 

Viscosity Chemical composition of 

bio-oil. 

Fairly high and variable with time  

Greater temperature influence than 

hydrocarbons 

 

Water content Pyrolysis reactions, 

Feed water 

Complex effect on viscosity and 

stability: 

Increased water lowers heating value, 

density, stability, and increase pH 

Affects catalysts 

 

 

 

2.13 BIO-CHAR 

The byproduct char is typically about 15 wt.% of the products but about 25% of the energy of the 

biomass feed (Bridgwater, 2011). The low thermal conductivity of biomass gives low heating 

rates through larger particles which leads to increased char formation and hot char is known to be 

catalytically active. It cracks organic vapours to secondary char, water and gas both during 

primary vapour formation and in the reactor gas environment. Therefore, its rapid removal from 

the hot reactor environment and minimal contact with the pyrolysis vapour products is essential 

(Bridgwater et al., 1999). As particle size increases, liquid yields reduce as secondary reactions 

within the particle become increasingly significant (Scott and Piskorz, 1984).  

 

The char can be used to provide the process heat requirements by combustion or it can be 

separated and exported, in which case an alternative fuel is required. The fresh char is pyrophoric 

i.e. it spontaneously combusts when exposed to air so careful handling and storage is required. 

This property deteriorates with time due to oxidation of active sites on the char surface 

(Bridgwater, 2011). 

 

Low-ash bio-chars are used in metallurgy and as a feedstock for production of activated carbon, 

which is used as an adsorbent to remove odorants from air streams, and both organic and 

inorganic contaminants from waste-water streams (Laird et al., 2009). An emerging new use of 

biochar is as a soil amendment (Laird et al., 2009). 

2.14 BIO-GAS 
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Biogas (syngas) in pyrolysis is the incondensable gases emanating from the process while the 

condensable gases form the bio-oil. Syngas is primarily a mixture of H2 and CO, but often 

contains CH4, CO2, H2O, and several low molecular-weight volatile organic compounds 

(Ioannidou et al., 2009). The heating value of syngas is relatively low (~6 MJ kg-1) compared to 

that of natural gas (~54 MJ kg-1) (Laird 2009). This syngas could be used to generate the heat 

and electricity needed to run the pyrolyzer. 

 

 

2.15 CATALYSIS IN THE PYROLYSIS OF FATS 

Catalysis plays a central role in chemical transformations and lies at the heart of countless 

chemical protocols (Hemalatha et al., 2013). Through catalysis, one can reduce the temperature 

of a reaction, reduce waste and enhance selectivity of a desired reaction. In the absence of a 

catalyst, variety of products would not be feasible. Among the three well-known catalysis 

categories - homogeneous, heterogeneous and enzymatic catalysis, enzymatic catalysis is the 

most efficient and greenest. The homogeneous and heterogeneous catalysis have their own 

merits and demerits hence there is urgent need for a new catalytic system, which should embrace 

all the merits of both catalysis (Gawande et al., 2013). 

 

Product selectivity and yield determines the catalyst to be used. The two major groups of 

catalysts used are transition metal catalysts and molecular sieve type catalysts. When transition 

metal catalysts are used under high hydrogen partial pressures, the result is diesel-like products 

while molecular sieve catalysts result in highly aromatic, gasoline type products. Pure insulator 

oxides, most notably activated alumina, and sodium carbonate represent the two other groups of 

catalysts. 

 

2.15.1  Transition Metal Catalysts 

Many researchers have used the transition metal catalysts to produce diesel like hydrocarbons 

from triglycerides (Maher et al., 2007). da Rocha Filho et al. (1993) investigated the formation of 

alkanes, alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable 

oils using a NiMo/Al2O3 catalyst in the presence of elemental sulfur at temperatures ranging 

from 350–450 °C and pressures between 7–14 MPa. The primary reaction products consisted 

primarily of C11–C18 alkanes (65.3–76.8 wt.% of feed).  
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In a similar study, da Rocha Filho et al. (1992) cracked seringa and ucuuba oils using the same 

catalyst at 360 °C and 14 MPa. Conversions of almost 100% were obtained and the primary 

products were found to be alkanes and cycloalkanes. The gas phase, aromatics, and acid values 

were not as significant.         

 

Craig and Coxworth (1987) used a conventional fluid catalytic cracking (FCC) bench scale unit 

and hydrocracking/hydrotreating techniques to convert canola oil into hydrocarbons with yields 

similar to conventional petroleum based feedstocks in the FCC unit. Subsequent hydrotreating 

yielded fuels in the diesel boiling range. The success of these studies has led to the 

commercialization of a ‘‘super cetane’’ product to be used as a diesel fuel additive. This 

technology utilizes conventional refining technology with different fatty feeds. The product is 

separated into three fractions: naptha, middle distillates, and waxy residues. The middle distillate 

or super cetane, composed primarily of straight chain hydrocarbons, has similar characteristics to 

diesel fuel and a cetane number of approximately 100 (CANMET Energy Technology Center, 

2004). 

 

2.15.2 Molecular Sieve Catalysts 

Molecular sieve catalysts are highly crystalline and porous whose activity and selectivity depend 

on factors such as acidity, pore size and distribution, and pore shape (Twaiq et al., 1999). 

Through size selectivity, they allow only molecules of a certain size to pass through, hence the 

pore size can be altered to obtain specific reaction products (Maher et al., 2007). 

 

Zeolite is the broad term used to describe a family of minerals called tectosilicates.  These 

minerals contain small pores which provide a generous surface area. Currently, there are 40 

known natural zeolites and in excess of 140 synthetic zeolites (Marcus and Cormier, 

1999). Zeolite catalysts are crystalline alumino-silicate materials based on a three dimensional 

network of AlO4 and SiO4 tetrahedrally linked through oxygen atoms which offer significant 

advantages over amorphous silica–alumina catalysts (Campbell, 1983). 
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Figure 2.11 Basic Zeolite structure (www.cheresources.com/zeolitezz.shtml) 

A high-silica zeolite catalyst, HZSM-5, has the ability to convert a huge range of materials to 

high-octane, aromatic, gasoline like products (Milne et al., 1990). Katikaneni et al., (1995a,b,c) 

has shown that the HZSM-5 catalyst was the most effective type of zeolite catalyst for 

converting vegetable oil to gasoline range hydrocarbons but according to Twaiq et al. (1999), 

they still exhibit high gas formation, which will decrease the formation of the desired liquid 

fraction.  

 

A mesoporous catalysts, MCM-41 which has shown selectivity for C5 olefinic products was used 

to study the effect of the percentage of alumina incorporated into a catalyst on the product 

distribution of cracked palm oil by Twaiq et al. (2003). They found that an increase in alumina 

increased catalyst acidity and activity to an optimum level. This resulted in lower gas formation 

but they were more selective for linear hydrocarbons in the diesel boiling range rather than 

gasoline range. However, the activity was lower than the HZSM-5 catalyst.  

 

Sang et al. (2003) compared the performance of HSZM-5, MCM-41 and their composite 

catalysts. The composite catalyst resulted in the highest conversion (99 wt.%) and highest 

gasoline yield. They found that reaction temperature, catalyst ratio, and WHSV (Weight Hourly 

Space Velocity) were the important operating variables in terms of the final product distribution. 

The optimum yield of gasoline was found at a reaction temperature of 440 °C, fatty acid to 

catalyst ratio of 9.64, and WHSV of 3.66 h
-1

. According to Putin and Putun, (2009), biomass-

derived oils are generally best upgraded by HZSM-5 or ZSM-5, as these they promote high 

yields of liquid products and propylene.  
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The motivations for using zeolite nano-catalysts are basically for cost effectiveness and 

environmental regulation compliance.  Zeolites can help yield products at milder temperatures 

and pressures which lowers operating costs.  They also have superior control of reaction 

selectivity which saves on feed costs and by reducing waste streams saves on treatment costs 

(Marcus and Cormier, 1999). Unfortunately, they tend to coke easily, and give high TANs (Total 

Acid Number) and undesirable byproducts such as water and CO2.  

 Advantages of Zeolite as a Catalyst 

a. Reduction of NOx emission by selective catalytic reduction (SCR). 

b. Direct oxidation of benzene to phenol which eliminates cumene as an intermediate and uses 

nitrous oxide (N2O) as a reactant.  Nitrous oxide is a typical waste stream from adipic acid 

production. 

c. Conversion of ethylbenzene to styrene at moderate temperatures and pressures.   This process 

eliminates xylene as a by-product and which further eliminates several purification steps. 

d. Caprolactam via oxidation which drastically reduces the number of processing steps as well 

as waste streams. 

e. It has the ability to regenerate/recycle a process' catalyst.  Many catalysts must be disposed 

of after they are spent, but the impregnating of zeolites is a process that can be repeated over 

and over.  Ironically, zeolites themselves help reduce waste. (Marcus & Cormier, 1999). 

2.15.3 Activated Alumina 

It has been shown that activated alumina is an effective catalyst for decarboxylation of fatty 

acids at atmospheric pressure and 450 °C (Vonghia et al., 1995). Pure insulator oxides including 

MgO, SiO2 and Al2O3 are important catalysts that are not notably acidic, and their main activity 

is dehydration (Campbell, 1983). Konar et al. (1994) pyrolysed trinolein, canola oil, trilaurin and 

coconut oil over activated alumina at 450 °C under atmospheric pressure and the liquid yields of 

65–79% were hydrocarbon mixtures containing n-alkanes and n-alkenes with a marked absence 

of oxygen.  Dos Anjos et al. (1983) pyrolyzed crude and hydrogenated soya oil over MgO and 

alumina at temperatures of 300–350 °C and the result was only a partial conversion to 

hydrocarbons. The products contained approximately 50% carboxylic acids and 25– 28% 

hydrocarbons. 
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2.15.4 Sodium Carbonate 

Dandik and Aksoy, (1998b), Konwer et al. (1989), and Zaher and Taman, (1993) have all used  

sodium carbonate catalyst in the pyrolysis of vegetable oils. Konwer et al. (1989) catalysed the 

production of liquid fuel from Mesua ferrea L. seed oil and the pure forms of its primary fatty 

acids including linolinic, linoleic, oleic, palmitic, and stearic acid with solid sodium carbonate.  

They catalyzed this oil with 1% sodium carbonate at 500 °C to produce black pyrolytic oil whose 

fractions are suitable for various applications including gasoline and diesel. 

 

Dandik and Aksoy (1998b) used sodium carbonate in the pyrolysis of used sunflower oil in a 

reactor equipped with a fractionating packed column but contrary to the results of Konwer et al.  

(1989) their study showed very low conversions and concentrations of aromatics in the pyrolysis 

products and almost half of the feed formed coke-residual oil. The primary pyrolysis products 

consisted of liquid and gaseous hydrocarbons phases with lesser amounts of acids, water, H2, 

CO, and CO2. The liquid phase contained mostly C5–C11 hydrocarbons (19.45–32.87%) and the 

gaseous phase was mainly composed of C1–C3 hydrocarbons (13.65–26.18%).  

 

Zaher and Taman (1993) pyrolyzed cottonseed oil in the presence of 1% sodium carbonate. The 

product, approximately 70 wt.% of the original oil comprised of nearly 70% Alkanes and 21.7% 

aromatics. Dandik and Aksoy (1999) compared the pyrolysis of used sunflower oil using sodium 

carbonate, silica–alumina, and HZSM-5 catalysts and obtained the highest conversion (73.17 

wt.%) with sodium carbonate as catalyst, resulting in the highest yield of liquid product primarily 

consisting of gasoline range hydrocarbons. A possible concern with sodium carbonate is that 

traces of sodium may be present in the product, impeding its use, though, there were no reports 

of such. It is however, likely that the sodium carbonate first reacts with fatty acids to produce 

sodium salts which are then further decomposed into hydrocarbons (Konwer et al., 1989). 

 

2.16 NANO-CATALYSIS 

Nanoparticles (NPs) are particles sized between 1-100 nano-meters (10
-9

 meters). Synthesis of 

stabilized nanoparticles sized between 1-100 nm is the main task of the nanochemistry. As 

restriction arises from its definition, the chemistry of nanoparticles depends mainly on two things 

- synthesis of NPs well controlled in size and shape, and molecular approach to find more 

selective applications of NPs especially in nanocatalysis. 
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Nano-catalysts have combined advantages of both the homogeneous and heterogeneous catalytic 

systems. Nano-catalytic system allows the rapid, selective chemical transformations with 

excellent product yield coupled with the ease of catalyst separation and recovery. Recovery of 

catalysts from the system is the most important characteristic of any catalyst in industry. Because 

of nano size (high surface area) the contact between reactants and catalyst increases dramatically 

creating a pseudo-homogeneous phase. Insolubility in the reaction solvent makes the catalyst 

heterogeneous and hence can be separated out easily from the reaction mixture (Luo et al., 2012). 

 

Table 2.11 Comparative efficiency of homogeneous, heterogeneous and nanocatalysis 
(Singh and Tandon, 2014) 

Homogeneous Catalysis Nano-Catalysis Heterogeneous Catalysis 

High activity 
High activity 

High selectivity 

Excellent stability 

Easily separable 

Energy efficiency 

Atom economy 

Excellent stability 

High chemo-and region- 

selectivity 

Easy accessibility 

Easily separable 

Demerits 

Cumbersome product 

purification and difficulty in 

catalyst recovery 

Demerits 

1. Inferior catalystic activity  

    relative to their counterpart 

2. Homogeneous and requires   

    more reaction time 

 

Recovery and recyclability of catalysts is an important factor in catalysis (Astruc et al., 2005). 

Recyclability of catalyst behaves like the bottleneck for industrial application of NPs in the 

solution phase. For this purpose, the deposition of pre-formed NPs onto supports to get 

heterogeneous systems easy to recover is being explored. But the use of magnetic supports to 

recover a catalyst from the catalytic media by simply applying a magnet appeared recently.  
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2.17 BENEFITS OF NANO-CATALYSIS  

 

 

 

 

 

 

 

 

 

Figure 2.12 The benefits of nano-catalysis (Singh and Tandon, 2014) 

 

2.18 SODIUM SILICATE AS A NANO-CATALYST IN THE PYROLYSIS OF FAT 

According to Guo et al. (2010), inorganic solid bases, such as sodium silicate are low-cost and 

easy-to-use heterogeneous catalysts. They are used to catalyze the transesterification reaction for 

soybean oil to biodiesel with a yield of almost 100% with a sodium silicate of 3.0 wt %, a molar 

ratio of methanol/oil of 7.5:1, reaction time of 60 min, reaction temperature of 60 ºC, and stirring 

rate of 250 rpm. 

 

In addition to high catalyst activity, sodium silicate also has other similar characteristics to 

supported-solid base catalysts. Most of its basic sites are in the interior of the solid catalyst due 

to low surface area and high density. A nano-sized sodium silicate catalyst will increase its 

surface area, exposing the highly reactionary sites, thus enhancing its catalyzing properties. The 

calcined sodium silicate could tolerate 4.0 wt% water or 2.5 wt% FFAs contained in soybean oil. 

This water tolerance is related to its special crystal and porous structure. 

 

Long et al. (2011) used sodium silicate as catalyst for transesterification of rapeseed oil for 

several recycles, and subsequently the used sodium silicate without any modification was 

catalyzed for the hydrothermal production of lactic acid from glycerol at 300 °C. A yield of 

80.5% lactic acid and only minor amounts of formic, acetic acid and acrylic acid were produced. 
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1 MATERIALS 

The feedstock used in this study, waste cow fat (tallow), was obtained from Karan Beef (Pty) Ltd 

in City Deep, Johannesburg, South Africa. It was preserved in a freezer at -10 
o
C throughout the 

period of the experiments. 

 

The commercially available zeolite powder (Product Number: 96096) manufactured by Sigma 

and of composition, 0.6 K2O : 4.0 Na2O : 1 Al2O3 : 2.0 " 0.1 SiO2 : x H2O and Particle Size 

<10μm was selected as the catalyst for the catalytic pyrolysis of the feedstock in the second part 

of the experiments. 

 

3.2 TESTS TO CHARACTERIZE RAW MATERIALS AND PRODUCTS 

 

3.2.1 CHNS-O Elemental Content 

Prior to the pyrolysis experiments, the waste fats were freeze-dried and analyzed using elemental 

analysis (CHNS-O). The CHN-content of the input materials were determined by Flash 2000 

CHNS-O analyzer fitted with an auto sampler (produced by Thermo Scientific).  

 

A sample with a mass between 1.5 - 2.0 mg is weighed into a tin capsule and the capsule is 

folded and re-weighed. The sample is then placed into an auto sampler of the Flash 2000 CHNS-

O and the instrument is set according to the following parameters: 

He pressure   : 250 kPa 

O2 pressure   : 250 kPa 

Furnace temperature  : 950 °C 

Carrier flow   : 140 ml/min 

Reference flow  : 100 ml/min 

Oxygen flow   : 250 ml/min 

Column oven temperature : 65 °C 

Sample holder   : tin capsules. 
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For the determination of CHNS-O, the sample is introduced into a quartz reactor filled with 

electrolytic copper. The oxygen causes the combustion of the sample and the carrier gas 

(Helium) carries the sample through the reactor to the thermal conductivity detector (TCD) 

which is housed in an oven kept at 65 °C. The results are then processed and displayed onto the 

PC. Before the analysis can be conducted, a bypass sample, blank and calibration standards 

(BBOT, CYSTINE, METHIONINE AND SULFANIMIDE) are analyzed. The Oxygen 

determination is performed with the TCD detector polarity reversed. The oxygen content was 

calculated by difference. 

 

3.2.2 Acid Value 

702 SM Titrino was used to determine the acid value of the samples.  5 g of the sample was put 

into a 250 ml beaker and 30 ml of a mixed solvent of toluene, water and propanol was added. 

The ratio of the added mixture - toluene: water: propanol was 500:5:495. The content of the 

beaker was then titrated with 0.1 mol/l KOH to determine the acid number. 

 

3.2.3 Ash Content 

1 g of the sample was weighed into a porcelain crucible and then transferred into a muffle 

furnace which was set at 850° C. The sample was left overnight in the oven until the ashing 

process was complete. This was evident when the sample turned white. The % ash was then 

calculated after the sample was cooled and re-weighed. 

 

3.2.4 pH 

The Orion pH meter was calibrated using buffer solutions (pH 4, 7 and 9) and the sample then 

stirred into a slurry. The pH electrode was then inserted into a beaker containing the slurried 

sample and the reading obtained.  

 

3.2.5 Density 

The sample was stirred into a slurry and poured into a measuring cylinder which was placed over 

an analytical balance and weighed. Using the volume measured into the measuring cylinder, the 

density was the determined. 
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3.2.6 Calorific Value 

A bomb calorimeter was used for the determination. The sample was weighed and transferred 

into a calorie meter cup, and the ignition wire was mounted. The bomb was tightly closed and 

then put under pressure with a gas. The bomb was placed into the calorimeter device were the 

ignition took place and the CV value was displayed on the device. 

 

3.2.7 Mass Spectrometry-Gas Chromatography (GC–MS) 

GC–MS analyses of the neutral fraction from bio-oils were performed using an Pegasus 4D GC x 

GC-MS TOF Low Resolution gas chromatograph. The injector was set at 250 
o
C and helium was 

the carrier gas. The GC oven was held at 40 
o
C for 2 min then heated to 300 

o
C at a rate of 5 _C 

min_1 and finally 30 min hold at 300 _C. The identification of the compounds was accomplished 

by advising a NIST database and comparing with published mass spectra. 

 

3.2.8 Viscosity 

This was performed by an Ubbelohde- viscosity meter. The sample is agitated into a viscous 

slurry and introduced into a capillary tube in order to determine its flow by using an equation by 

Poiseuille. 

 

3.2.9 X-Ray Diffraction  

The sample is dried in a conventional oven at 110 °C then it is milled until it is a fine powder. 

The milled sample is then mounted onto a sample holder which is then introduced   into the XRD 

machine were measurement is then performed. 

 

3.3 METHODS 

3.3.1 PYROLYSIS EXPERIMENTAL SET UP AND PROCEDURE 

The pyrolysis experiments were carried out in an Elite Pyrolysis Reactor Model - a laboratory 

scale fixed bed reactor heated by an electric furnace that was controlled by a PID Controller. The 

programming instruction of this PID Controller is in Appendix II. The reactor was made of 

stainless steel but protected with a plastic mesh that covered the whole circumference. The silica 

cylindrical tube inside which the pyrolysis takes place has the 
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Figure 3.1 The ELITE Reactor and Temperature Controller (PID) 

following dimensions: height – 100cm; external diameter - 60 cm; mass - 822 g; volume – 2200 

cm
3
. The control board was adjusted to the desired temperature and heating rate for each 

experimental run according to Table 3.1. 
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Table 3.1: Control parameters for the pyrolysis experiments without a catalyst 

Sample Final Temp (
o
C) Heating Rate (

o
C/min) Mass of Fat (g) 

B1 450 4 50 

B2 450 5 50 

B5 500 5 50 

B6 500 6 50 

B7 530 4 50 

B8 530 5 50 

B9 530 6 50 

B10 580 4 50 

B11 580 5 50 

B12 580 6 50 

 

 

Figure 3.2 Fat samples in silica boats about to be placed inside the reactor (Picture taken 

by author in Wits, 2015) 
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The silica tube containing the fat samples which were placed inside the reactor and during 

experiments had a height of 100cm, and internal diameter, 60cm. The extended ends of the silica 

tube kept the entry point of the Nitrogen carrier gas and the exit pyrolysis vapour from the 

furnace. The temperature was controlled by a thermocouple immersed inside the reactor. All 

pyrolysis experiments were carried out under atmospheric pressure and inert conditions. During 

experiments, the reactor was continuously flushed with nitrogen gas maintained at 50cm
3
/min in 

order to remove air from the reactor and all the gases produced during pyrolysis. The joints were 

sealed with Parafilm and Gel to prohibit any form of leakage. 

 

In all experiments, approximately 50 g of tallow of particle sizes between 0.6-0.85 mm were 

placed in silica boats inside the reactor, and were heated from room temperature until the desired 

temperature, and at different heating rates. They were held at the final temperature for 15 

minutes until no further significant release of gas was observed.   

 

Figure 3.3 The pyrolysis experiment in progress (Picture taken by author in Wits, 2015) 
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Gas and vapors formed during pyrolysis, flow out from the top of the reactor, and passed through 

a trapping system that consisted of a condenser cooled by cold water from a tap. The round-

bottomed flask that trapped the condensed vapour product from the condenser, which is the bio-

oil, is kept inside a container and the temperature maintained at 0 
o
C. The bio-oil consisted of 

two phases - an aqueous (bottom phase) and organic rich compounds (upper phase) that were 

separated by decantation. The yield of collected bio-oil was calculated by,  

mass of bio−oil collected

total amount of initial feedstock 
   X 100 

 

The residual bio-char was collected after completing the pyrolysis reaction and when the reactor 

was at room temperature. The bio-char yield was calculated by  

mass of bio−char collected

total amount of initial feedstock 
   X 100 

 

The non-condensable vapors passed through an exit line. The amount of non-condensable gases 

produced was determined by difference from mass balance. 

 

Figure 3.4 The zeolite powder used in the pyrolysis and its container. (Picture taken by 

author in Wits, 2015) 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 RESULTS AND DISCUSSION 

4.1.1 PROPERTIES OF THE BEEF FAT (TALLOW) USED IN THE PYROLYSIS 

The physical properties of the tallow used in the pyrolysis experiments are given in Table 4.1. 

 

Table 4.1 Properties of the tallow feedstock 

Properties Values 

pH 5.72 

Acid Value 225.32 

% Ash 6.33 

% C 76.06 

% H 11.72 

% O 12.21 

% N - 

% S 0 

Density (g/cm
3
) 0.63 

Calorific Value (MJ/kg) 39.41 

 

The Calorific Value (CV) of the raw waste animal fat, 39.41 MJ/kg is within expected values but 

its density, 0.63 g/ cm
3
 is slightly low. It is expected to increase in the product after pyrolysis due 

to the dehydrating nature of the process.  

 

The trace amount of sulfur in the table, important criteria for its application as fuel, infers that 

the combustion product would contain trace amounts of the SOx pollutants.  

 

The absence of nitrogen in the fat would have implied that there wouldn’t be any of the nitrogen 

oxides (NOx) pollutants on combustion but because nitrogen was used as the carrier gas, the 

NOx pollutants would be formed on combustion at high temperature. The atmospheric nitrogen 

(N2) entering the combustion zone as part of the combustion air also increases the nitrogen 

content of the fuel though not all of the fuel nitrogen is released during combustion.  
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It has high carbon and low oxygen contents. Its high ash content (6.33%) is cause for concern 

with regards to the aging and sedimentation of the produced oil, and which will cause filter 

blockage, engine injector blockage, etc. 

 

The pH value is almost neutral, hence acceptable but when we consider the dehydrating nature of 

pyrolysis, it will be expected to reduce towards acidic values. 

 

Table 4.2 Molecular composition of the fat feedstock 

Organic Acid Content (%) 

Linoleic acid 1.69 

Linolenic acid 1.05 

Myristic acid 1.01 

Oleic acid 52.82 

Palmitic acid 17.73 

Stearic acid 11.58 

Others 14.12 

 

 

4.2 PYROLYSIS EXPERIMENTS WITHOUT A CATALYST 

Table 4.3 shows the result of the pyrolysis experiments performed by alternating the heating 

rates and the temperatures without a catalyst. 
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Table 4.3 The result of the pyrolysis experiments done without a catalyst 

Sample FT HR 
Vol of 

Biofuel 

produced 

Mass  of 

Biofuel 

produced 

Mass of 

Char 

Produced 

Mass of 

Incondensable 

gases 

Yield of 

Biochar 

Yield of 

Bio-oil 

wrt mass 

 
o
C oC/min ml g g g % % 

B1 450 4 36.00 19.16 27.18 3.66 54.36 38.32 

B2 450 5 35.00 18.43 15.00 16.57 30.00 36.86 

B5 500 5 41.67 26.81 6.50 16.69 13.00 53.62 

B6 500 6 44.80 28.28 9.85 11.87 19.70 56.56 

B7 530 4 36.00 29.72 8.00 12.28 16.00 59.44 

B8 530 5 37.00 31.00 8.32 10.68 16.64 62.00 

B9 530 6 53.29 41.39 8.00 0.61 16.00 82.78 

B10 580 4 40.00 33.30 4.00 12.70 8.00 66.60 

B11 580 5 45.00 36.45 3.00 10.55 6.00 72.90 

B12 580 6 39.00 33.00 8.00 9.00 16.00 66.00 

 

 

4.2.1 Effect of Temperature on Yield 

 

Figure 4.1 Yield of bio-oil using 4, 5 and 6
o
C /min heating rates. 
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At the heating rate of 6
o
C /min, as shown in Figure 4.1, there was an increase in the bio-oil yield 

from 56.56 % to 82.78 % when the final temperature was raised from 500
o
C to 530

o
C but 

declined to 66 % when the temperature was increased further to 580 
o
C. The 82.78 % yield from 

final temperature of 530
o
C and heating rate of 6

o
C /min happens to be the highest yield obtained 

for all the pyrolysis experiments conducted. The bio-oil yield at 5 
o
C /min heating rate and final 

temperatures of 450
o
C, 500 

o
C, 530 

o
C and 580 

o
C are 36.86 %, 53.62 %, 62 % and 72.90% 

respectively, showing a markedly progressive trend. 

 

 

Figure 4.2 Yield of bio-char using 4, 5 and 6 
o
C /min heating rates. 

As expected, the yield of the biochar (Figure 4.2) gradually declined; 30 %, 13 %, 16.64 % and 

6% at final temperatures of 450
o
C, 500 

o
C, 530 

o
C and 580 

o
C, respectively. Likewise, the 

incondensable gases mass declined (Figure 4.3), resulting in yields of 33.14 %, 33.38 %, 21.36 

% and 21.1 % at the final temperatures of 450
o
C, 500 

o
C, 530 

o
C and 580 

o
C, respectively.  
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Figure 4.3 Yield of bio-gas at 4, 5 and 6 
o
C /min heating rates. 

At the heating rate of 4 
o
C /min, the bio-oil yield (Figure 4.1) at the final temperatures of 450

o
C, 

530 
o
C and 580 

o
C were 38.32 %, 59.44 % and 66.60 % respectively, showing a progressive 

trend. Concerning the yield of the biochar (Figure 4.2) at 4 
o
C /min, there is a gradual decline 

which corresponds to 54.36 %, 16 % and 8% at final temperatures of 450
o
C, 530 

o
C and 580 

o
C, 

respectively. Also, the yield of the incondensable gases (Figure 4.3) shows a gradual decline like 

that of the biochar. At the final temperatures of 450
o
C, 530 

o
C and 580 

o
C, the yield of the 

incondensable gases are 7.32 %, 24.56 % and 25.40 %, respectively. 

 

These results compare favourably with the 58 wt% yield produced by Hassen-Trabelsi (2014) in 

his pyrolysis of swine fat. He produced much better yields though, with lamb (77.9 wt%) and 

poultry (67.6 wt%) fats. Lower yields of bio-oil were recorded with similar type of triglycerides- 

based wastes: Demirbas (2007) reported 77.1 wt.% with beef tallow at 500 
o
C; Wiggers et al. 

(2009) obtained around 73 wt.% for fish oil wastes at 525 
o
C and Wisniewski et al. (2010) 

reported 72–73 wt.% yield from waste fish oil pyrolysis. This yield also agrees with results from 

pyrolysis of different feedstocks: woody biomass (60 - 75 wt.%, Mohan et al., 2006); marine 

algae (37.5 - 47.4 wt.%, Bae et al., 2011); poly-ethylene based materials (around 86.2 wt.%, 

Grieco and Baldi, 2012); sewage sludge (27 - 54 wt.%, Fonts et al., 2012).  
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4.2.2 Effect of Heating Rate on Yield 

One of the key objectives of this investigative research was to find out the optimum temperature 

and heating rate at which the maximum yield of bio-oil would be produced. Keeping the final 

temperatures at 450, 500, 530 and 580
 o

C, and alternating between heating rates of 4, 5 and 6 

o
C/min for each temperature, there was a gradual change in the composition of the products. 

 

 

Figure 4.4 Yield of bio-oil at different Final Temperatures 

With the final temperature set at 500
o
C, the yield increased from 53.62 % (B5) to 56.56 % (B6) 

with increase in heating rate (HR) from 5 
o
C /min to 6 

o
C /min (Figure 4.4). At a final 

temperature of 530
o
C, the same trend continued with yields of 59.44 % (B7), 62 % (B8) and 

82.78 % (B9) with corresponding heating rates of 4, 5 and 6 
o
C/min. This corresponds to the 

result of Hassen-Trabelsi et al. (2013) in the pyrolysis of lard where the increase in the pyrolysis 

temperature from 400°C to 500°C led to a gradual increase in the bio-oil from 54 wt.% to 76 

wt.%. Incidentally, at 580
o
C, there was a decline in the yield thus leaving 82.78 % (B9) as the 

maximum yield of the pyrolysis experiments. This also corresponds to the result of Hassen-

Trabelsi et al. (2013) where there was no significant increase in the bio-oil yield when the 

temperature was raised from 500°C to 550°C. 
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4.2.3 Bio-char 

 

Figure 4.5 Biochar Yield at different Final Temperatures 

B1 and B2 resulted in a yield of char and re-condensed bio-oil, hence both values should not be 

taken as completely bio-char. This is not unexpected considering the relatively low final 

temperature (450
o
C) at which they were pyrolyzed (Figure 4.5). The lowest char yield came 

from B11 (6%) but it did not produce the highest bio-oil yield. This is expected as B11 was 

pyrolyzed at a higher temperature (580
o
C) than B9 (530

o
C) which produced the highest bio-oil 

yield. The plot of the bio-oil and bio-char yields show an inverse proportionality which is 

expected – increasing the temperature increases the yield of bio-oil and effects a corresponding 

decline in the yield of bio-char. 

 

4.2.4 Fatty Acid Methyl Esters 

The results of the GC-MS of the samples show a composition of mostly carboxylic acids, esters, 

alkanes, alkenes, and alkadienes, aromatics. This conforms to the results found by Lima et al. 

(2004) who studied the chemical composition of pyrolytic products from soybean and castor oils, 

and Srivastava and Prasad (2000) who reviewed fuel compositions from pyrolysis of triglyceride 
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materials. Table 4.4 shows the fatty acid methyl esters that appeared in all the samples and the 

number of samples they appeared in.  

 

Table 4.4 The most occurring alkyl esters in the bio-oils produced without a catalyst 

Name  Weight Formula Frequency CV (MJ/Kg) 

9-Octadecenoic acid (Z)-, methyl ester  296 C19H36O2 10 40.16 

Docosanoic acid 340 C22H44O2 10 41.06 

13-Docosenoic acid, methyl ester, (Z)- 352 C23H44O2 10 41.06 

9-Hexadecenoic acid, methyl ester, (Z)  268 C17H32O2 10 39.40 

cis-10-Heptadecenoic acid, methyl ester  282 C18H34O2 10 
 

Decanoic acid, methyl ester 186 C11H22O2 10 36.50 

Hexadecanoic acid, methyl ester 270 C17H34O2 9 37.43 

Heptadecanoic acid, methyl ester  256 C16H32O2 8 39.18 

Phthalic acid, cyclohexyl pentyl ester 318 C19H26O4 8 
 

Sulfurous acid, Dodecyl 2-ethylhexyl ester  362 C20H42O3S 8 
  

The alkanes have relatively high calorific values (between 44 MJ/kg – 50 MJ/kg) and appeared 

in all the samples but their concentration in each of the 12 samples could not be derived due to 

the tediousness of such calculation. The alkanes that are prevalent in most of the samples are 2-

bromo dodecane, eicosane, 2-methyl-heptadecane, 2,4,6-trimethyl-heptane, tetramethyl-silane, 

tridecane, and hexadecane.  

 

The alkenes that are most common are, 1-methylene-1H-Indene, 1-dodecene, 1-tridecene, 2-

tetradecene and 6-tridecene. The alkenes generally have slightly higher calorific values than the 

alkanes and are formed from the cleavage of the carboxyl side of triglycerides entities, followed 

by the decarboxylation.  

 

However, the occurrence of carboxylic acids is usually linked to the cleavage of the glycerol 

moieties (Maher and Bressler, 2007). The most prevalent fatty acid methyl esters in the samples 

and the number of samples they appeared in are 9-octadecenoic ME (10), docosanoic acid (10), 

13-docosenoic acid (10), 7-hexadecenoic acid (10), cis-10-Heptadecenoic acid (10), Decanoic 

acid (10), and hexadecanoic acid (9). These carboxylic acids have high calorific values and they 
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generally increase as their carbon chains increase. Their concentration in the bio-oils impacts 

significantly on the calorific value of each bio-oil.  

 

Hexadecane (C16H38) is an alkaline hydrocarbon commonly called Cetane. It appeared in eight 

(8) of the ten (10) samples. It ignites very easily under compression and is assigned the cetane 

number of 100 hence it is a reference to the ignition quality of other fuel mixtures. Its presence 

enhances the fuel nature of the bio-oils especially if its calorific value (47.35MJ/Kg) is 

considered. Incidentally, B11 recorded the highest concentration of Hexadecane (8998.05 ppm) 

but a low CV, 33.58 MJ/kg, which is 64% of CV of B12 (52.41 MJ/kg), the highest. Meanwhile, 

B12 recorded a Hexadecane concentration of 5753.48 ppm, which is 64% of its concentration in 

B11. The absence of Hexadecane in samples B7 and B8 could explain their recording two of the 

three lowest calorific values - 31.80 and 32.01 MJ/Kg respectively. But its concentration does 

not predict the calorific values of the samples. The lowest recorded CV, 29.86 MJ/kg is from B6 

with a Hexadecane concentration of 5753.80 ppm, the third highest. 

 

Apart from Hexadecane, the other sizeable components in B12 are 2,6,8-trimethyldecane 

(3651.13 ppm) and Eicosane (1369ppm). 2,6,8-trimethyldecane, with a total of C13  predictably 

has a low CV of 10.56MJ/Kg while Eicosane, an alkane with a CV of 47.23 MJ/kg seem to have 

greater impact on the total CV of the sample. Hexadecane, Eicosane and 2,6,8-trimethyldecane 

appeared in all the samples except in B7 and B8, which incidentally recorded the two lowest 

CVs of the whole experiment. Considering that the FT of B7 and B8 is 530 
o
C, it is deductible 

that their FT was too low for the depolymerization of the molecules that could only be broken 

down at higher temperatures.  

 

The formation of the aromatic moieties in the samples is generally attributed to secondary 

reactions - cyclization of olefin structures and Diels–Alder reactions. 1,2,3,4-tetramethyl 

benzene, tert-butyl benzene and p-cymene are the aromatics that appeared in all the samples 

except B7 and B8. 
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4.2.5 Analysis of Bio-oils Properties  

 

Table 4.5 Properties of the pyrolysis bio-oil samples 

 pH A.V. Ash C H N S O Viscosity Density C.V 

   % % % % % % mm
2
/ s g/cm

3
 MJ/ Kg 

B1 4.62 204.00 4.39 85.13 11.87 0.91 0.41 2.09 13.97 0.78 34.47 

B2 3.99 194.95 3.84 74.10 11.78 0.53 0.00 13.59 10.76 0.81 37.80 

B5 4.69 171.33 4.50 75.41 11.44 0.62 0.00 12.53 10.63 0.83 38.21 

B6 4.05 125.88 3.25 75.40 11.88 0.53 0.00 12.19 9.75 0.79 29.86 

B7 4.22 129.32 3.50 73.57 11.68 0.00 0.00 14.75 9.62 0.80 31.80 

B8 3.78 166.22 3.44 79.79 11.55 0.05 0.00 8.60 9.56 0.78 32.01 

B9 4.01 179.52 4.42 75.27 11.67 0.54 0.00 12.52 9.56 0.79 39.09 

B10 4.07 179.52 6.41 75.38 11.86 0.24 0.00 12.22 7.17 0.78 35.70 

B11 3.67 170.85 1.28 74.21 11.52 0.34 0.00 13.93 6.97 0.80 33.58 

B12 4.70 180.87 2.66 74.51 11.66 0.38 0.00 13.45 6.79 0.68 52.41 

 
 

B12 (580
o
C & 6

 o
C/min) produced the highest Calorific Value (52.41 MJ/kg). This exceeds the 

typical CVs of biodiesels (39–41 MJ/kg), gasoline (46 MJ/kg), diesel (43 MJ/kg), petroleum (42 

MJ/kg), and coal (32–37 MJ/kg) (Demirbas, 2008). It is also higher than the 41 MJ/kg obtained 

by Beis et al. (2002) from safflower seed, the 36.4 MJ/kg obtained by Ozcimen and 

Karaosmanoglu (2004) from rapeseed cake and the 40 MJ/kg obtained by Adebanjo et al. (2005) 

from lard. The lowest CV (29.86 MJ/kg) came from B6 (500
o
C & 6

o
C/min). Incidentally, both 

samples were produced at 6
o
C/min HR. B12, however, recorded the lowest density (0.675 g/cm

3
) 

which might explain, partly, its extraordinarily high CV, as an inverse relationship exists 

between density and CV. The others recorded average CVs, ranging between 31 – 39 MJ/kg and 

with a relatively higher density (0.77 – 0.83 g/ cm
3
). 
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Figure 4.6 Calorific Value of Bio-oil at 4, 5, and 6
o
C/min HR 

The pH of the samples ranging from 3.46 – 4.80, indicate mild acidity which conforms to 

literature, but are better than, 2.5 from wood-derived crude bio-oil by Bridgwater (2012), 2.6 

from pine bio-oil, and 2.8 from hardwood bio-oil (Sipila et al., 1998), 2.4 – 2.8 obtained by 

Oasmaa and Czernik (1999) and the 2.5 by Mohan et al. (2006). This mild acidity could stem 

from the presence of organic acids during biopolymer degradation (Bridgwater, 2012). Reducing 

the retention time to forestall secondary reactions would help to thwart this molecular 

depolymerization. 

 

The samples’ densities range from 0.68 to 0.83 g/cm
3
. The specification for South Africa petrol 

diesel SANS 342-2006 is 0.80 g/cm
3
 minimum. Virtually all the samples meet this specification 

except B1 (0.78), B6 (0.79), and B8 (0.78) which are very close. This problem could be solved 

by reducing the amount of water in the tallow prior to introduction into the reactor as increased 

water content lowers density. The other source of water in the bio-oil is through the reactions 

that occur during pyrolysis. These reactions are complex and are not easily controlled. 
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Figure 4.7 Density of Bio-oil at 4, 5, and 6 
o
C/min HR 

 

The carbon content of the samples are in the high range, 74 – 76 % but B1 have an abnormally 

high 85.13 %. This partially explains the moderately high CVs of the samples. 

 

This abnormally high N2 in the samples - 0.24 % to 0.91 % is the nitrogen used as the carrier gas 

during the experiments. There was no N2 in the feedstock. 

 

In Figure 4.8, high Acid Values (AV) ranging from 125.88 (B6) – 204 mg KOH/g (B1) 

highlights the presence of free fatty acids in the samples. While this conforms to results from 

other researchers (107 – 142 mg KOH/g by Wiggers et al., 2009), it is way above the 

specification (0.80 mg KOH/g maximum) for the B100 (ASTM D 6751 – 02). This could be 

remedied by acid esterification - treating the oil with an alcohol in the presence of acid catalyst. 

The optimum conditions that  could reduce FFA content in the feedstock to less than 1.88% (acid 

value 3.76 mg KOH/g waste cooking oil) were 50 °C, 20% methanol to oil ratio (by volume) and 

0.4 vol.% H2SO4 after 5 h (Ding et al., 2012). 
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Figure 4.8 Acid Values of Bio-oil at 4, 5, and 6 
o
C/min HR 

There is a remarkably consistent amount of hydrogen in all the samples, ranging between 11.44 – 

11.88 %. This conforms to the hydrogen content of heavy fuel oil. These hydrogens could have 

been as a result of either of formation of cycloolefins and aromatics, polymerization of olefins 

and aromatics, polycondensation of triglyceride, splitting of hydrocarbons, and dehydrogenation 

of olefins (Adebanjo et al, 2005). 

 

The trace amount of sulphur in the samples is as a result of the quantity in the feedstock. 

Naturally, the combustion product would contain trace amounts of the SOx pollutants. Potential 

problem is that it will lead to catalyst poisoning during upgrading. 

 

The ash contents of the samples range from 1.28 – 6.41 % m/m which is well above the South 

African specification of 0.01 % m/m for petrol diesel SANS 342-2006 and a great handicap of 

the bio-oil. The inherent problems are aging of the oil, sedimentation, filter blockage, catalyst 

blockage, engine injector blockage, alkali metal poisoning. Hot-vapour filtration can reduce this 

ash content of the oil to less than 0.01% (Bridgwater, 2012). 
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Figure 4.9 Ash Content of Bio-oil at 4, 5, and 6 
o
C/min HR 

Most of the samples recorded O2 values in the range of 12 % to 14 % except B1 and B8 with 

very low values, 2.09 and 8.60 respectively. B12 recorded a moderate 13.45%. These values are 

far better than the 35-40% O2 content as stated by Oasmaa and Czernik (1999) which reduces 

considerably, the potential danger of instability caused by oxidation as it improves the 

combustion efficiency. 

 

There is progressive decline in the viscosity of the samples as the temperature and heating rates 

are increased. All the samples recorded viscosities (6.79 – 13.97 mm
2
/s) which are above the 

range of the specification of the South African specification of 2.2 – 5.3 mm
2
/s for petrol diesel 

SANS 342-2006. At 500
o
C FT and 5 

o
C/min HR bio-oil of viscosity, 10.63 mm

2
/s was produced 

but the bio-oil of 6
o
C/min HR recorded 9.75 mm

2
/s. Likewise, at 530

 o
C, samples produced at 

4
o
C/min, 5 

o
C/min and 6

o
C/min recorded viscosities of 9.62, 9.56 and 9.56 mm

2
/s respectively.  
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Figure 4.10 Viscosity of the Bio-oils at 4, 5, and 6
o
C/min HR 

Significantly, B12, which recorded the highest calorific value (52.41 MJ/Kg) recorded the lowest 

viscosity, 6.79 mm
2
/s. Water addition would help to reduce this viscosity values but there is a 

limit to the amount of water which can be added to the liquid before phase separation occurs. 

Also, water addition does improve stability but it reduces heating value. Bio-oil’s miscible with 

polar solvents such as methanol, acetone, etc. would help reduce viscosity but it would also 

increase cost of production. 
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4.3 EFFECT OF ZEOLITE CATALYST ON THE PYROLYSIS EXPERIMENT 

 

Table 4.6 The result of the pyrolysis experiments with Zeolite nano-catalyst. 

PYROLYSIS WITH ZEOLITE CATALYST AT 6 
o
C/min HEATING RATE 

 Final 

Temp 
 

 

Volume  

of Biofuel 

produced 
 

Mass  of 

Biofuel 

produced 
 

Yield of 

Bio-oil 
 

 

Mass of 

Char 

Produced 
 

Mass of 

Incondensable 

gases 
 

% Zeolite  
 and  

Remark 

 
o
C cm

3
 g % g g  

C1 530 35 29 58.00 10 11.00 
0.5g (1%) - Sludge 

in tube 

C2 500 33 28 56.00 11 11.00 
0.5g (1%) -  Sludge 

in tube 

C3 530 33 27 54.00 8 15.00 
1g (2%) - Sludge in 

tube 

 

An initial 1% zeolite was used in the pyrolysis experiment at a maximum temperature of 500 
o
C 

and it resulted in a yield of 56% (C2). With the zeolite quantity kept at 1% but the final 

temperature raised to 530 
o
C, a yield of 58% (C1) was achieved. When the zeolite quantity was 

then raised to 2%, the yield reduced to 54% (C3). Therefore, instead of improving the yield, 

zeolite inhibited any increase in yield, and with a high degree of coking and gas formation as 

stated by Twaiq et al. (1999).  

 

There was no marked change in the mass of biochar and incondensable gases produced. C1 and 

C2 recorded identical values for the incondensable gases – 11g, while the difference in the mass 

of biochar – 10 g for C1 and 11 g for C2, is negligible. 

 

Table 4.7 Properties of the samples of the pyrolysis with zeolite catalyst. 

Sample pH 
Acid 

Value 
Ash C H N S O 

Visco

sity 
Density C.V 

  
mg 

KOH/g 
% % % % % % mm

2
/s g/cm

3
 

MJ/K

g 

C1 4.11 121.44 3.34 73.89 11.30 0.34 0 14.81 6.25 0.55 35.47 

C2 4.08 121.86 3.36 74.07 11.31 0.36 0 14.23 6.33 0.55 35.40 

C3 4.11 125.88 3.33 74.39 11.46 0.36 0 13.78 6.31 0.55 35.21 
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The acid values (121.86 – 125.88) are lower than all the samples produced without a catalyst 

except for B6 which recorded 125.88, the same as C3. This anomaly could have occurred 

because B6 is produced at 500
o
C while C3 at 530

o
C – increase in temperature causes an increase 

in acidity due to increased dehydration. 

 

 

Figure 4.11 Acid Value of Bio-oils of B6 and C2 produced at 500
o
C and 6

o
C/min  

Both B6 and C2 were produced at 500
o
C FT and 6 

o
C/min HR but with C2 produced with 1% 

zeolites (Figure 4.11). C2 showed a minor 3% reduction in the acid value.  

 

 

Figure 4.12 Acid Value of Bio-oils of B9, C1 & C3 produced at 530
o
C and 6

o
C/min  
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But when the FT is increased to 530
o
C and the zeolites’s quantity is increased to 2% in C3 

(Figure 4.12), C1 recorded a significant 32% reduction while C3 recorded an equally significant 

30% reduction in the acid value. This paradox in the reduction of the acid value as the amount of 

zeolites is increased could likely have emanated from the acidic nature of zeolites (Weitkamp, 

Jens, 2000). Also, the values of the samples produced with 1% zeolites – C1 (121.44) and C2 

(121.86), are much lower than the sample produced with 2% zeolites – C3 (125.88). This attests 

to the acidic nature of zeolites (Guo and Fang, 2011) even though it reduced the acidity of the 

bio-oil considerably. All these values are far above the specified value of 0.80 mg KOH/g 

maximum for the B100 (ASTM D 6751 – 02). 

  

The pH values (4.08 – 4.11) are in the same range as those samples obtained without a catalyst.  

 

The viscosities are in the range, 6.25 – 6.31 mm
2
/s, and much lower than most of the bio-oils 

produced without a catalyst, which are in 6.79 - 13.97 mm
2
/s. All of these values fall above the 

specification for South Africa petrol diesel SANS 342-2006 of 2.2 cSt – 5.3 cSt. (cSt = mm
2
/s). 

 

 
Figure 4.13 Viscosity of Bio-oils of B6 & C2 produced at 500

o
C and 6 

o
C/min  

As shown in Figure 4.13, both B6 and C2 were produced at 500
o
C and 6 

o
C/min but only 1% 

zeolites was added into C2. The result is a massive 35% reduction in viscosity. 
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Figure 4.14 Viscosity of Bio-oils of B9, C1 & C3 produced at 530 
o
C and 6

o
C/min  

And as can be seen from Figure 4.14, B9, C1 and C3 were produced at 530
o
C and 6 

o
C/min but 

1% and 2% zeolites were used in C1 and C3 productions respectively. The change from C1 to 

C3, a 0.96% increase, is minor though not without reckoning. Hence the increase in the zeolites 

quantity, from 1% to 2% increased the viscosity, but only slightly. But what is worthy of note is 

the increase in viscosity when C1 and C3 are compared to B9. C1 recorded a 35% reduction to 

B9 while C3 recorded a 34% reduction to B9. 

  

The ash content, 3.33 – 3.36 % is similar to those samples produced without a catalyst, and 

which are above the specification of 0.01 % m/m for South Africa petrol diesel SANS 342-2006.   

The samples have identical densities, 0.55 g/cm
3
 which is below the 0.80 g/cm

3
 minimum 

specification for South Africa petrol diesel SANS 342-2006.  

 

The values of the elemental components remained almost the same for all three samples and 

close to the values recorded for the bio-oils produced without a catalyst but the latter set of 

samples showed a wider range of values for Carbon, Nitrogen and Oxygen.  
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Table 4.8 Methyl esters of significant concentration in bio-oils produced with a catalyst 

Name  Weight Formula CV (MJ/Kg) 

5,8,11,14,17-Eicosapentaenoic acid, methyl ester, (all-Z)- 316 C21H32O2 
 

7-Hexadecenoic acid, methyl ester, (Z)- 268 C17H32O2 
 

Heptanoic acid, methyl ester 130 C6H10O3 31.89 

Pentanoic acid, 5-oxo-, methyl ester 130 C6H10O3 21.83 
 

Table 4.8 shows the methyl esters that appeared in the three samples with significant 

concentrations. The highest concentration in all three samples was 5877.25 ppm of pentanoic acid, 

5-oxo-, methyl ester in C2 followed by 1146.98 ppm of heptanoic acid, methyl ester in C3 but since they 

recorded identical CVs (35.21 – 35.47 MJ/Kg), the concentrations of these components loses much of 

their significance. Nevertheless, there is a cluster of cyclo-olefins - 4,4-dimethyl-cyclohexene, butyl-

cyclohexane, butyl-cyclopentane, 1-pentyl-cyclopentene, etc. which are formed from the cyclization of 

C=C bonds present in unsaturated acids, and cycloparaffins produced by the addition of proton to 

cycloolefins (Adebanjo et al., 2005). These cyclo-olefins have CVs that are comparative to alkyl 

esters and alkanes. Aromatic hydrocarbons - 2-propenyl-benzene, 1-ethenyl-2-methyl-benzene, 

1-methyl-4-propyl-benzene - were formed from thermal reaction of olefins and diolefins, 

aromatization reactions, and hydrogen elimination from C6+ cycloolefins at high temperature 

(Adebanjo et al., 2005). 

 
 

4.4 ECONOMIC IMPACT ASSESSMENT OF BIO-OIL PRODUCTION FROM 

ABATTOIR WASTE 

Consider that the typical amount of residues produced by an abattoir from a cattle is 45% (wt/wt) 

and they contain approximately 15% fat (Feddern et al. 2011). Karan Beef (abattoir in this 

investigation) slaughters about 1200 heads of cattle per day (Karan Beef, 2015) and since the 

average weight of a cattle is 753 kg, they would be producing,  

 

1200 X 753  X  0.45  X  0.25 =  101,655 kg of fat per day. 

 

For a high yield of 82.78% of bio-oil produced during the pyrolysis experiments,  
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101,655  X  0.8278 =  84 150.01kg of bio-oil would be produced. 

 

This will produce an equivalent of,  

 

84 150.01 kg  X  39.09 MJ/Kg = 3,289,423.85 MJ of Biofuel. 

Converting it to Watts, 

P(W) = E(J) / t(s) =  3,289,423,850,000 / 86400  =  38072035 Watts per day 

   = 38072035 / 24  =  1586334.79 Watts per hour  

= 1586 kWh per day 

Factoring in the electric power transmission and distribution losses (% of output) in South Africa 

and using the 2011 value of 8.47% (www.indexmundi.com), 

 1586 X (1 - 0.0847) = 1451.67 kWh per day    

 

And in a 22-day month, they will produce 

 1451.67 X 22 = 31,936.74 kWh per month.   

 

According to Agriculture and Horticulture Development Board (AHDB, 2013), it costs about 

50Kwh to process a cattle. Therefore,  

1451.67 KWh per day will process, 

 

  1451.67 /50 = approx. 29 cattles per day. 

 

At an Eskom electricity rate of R1.48 per KWh (Eskom, 2016), the company would have saved, 

  R1.48/KWh  X  1451.67 KWh = R2,148.47 

 

And in a month of 22 working days, they would save, 

.  R2,148.47  X  22 = R47, 266.38 

  

If you consider a township like Diepsloot in the north of Johannesburg, with a population of 

about 350,000 people (www.diepsloot.com), and considering that an average household contains 

four (4) people, then Diepsloot will have, 

http://www.indexmundi.com/
http://www.ahdb.org.uk/
http://www.diepsloot.com/
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Figure 4.15 Diepsloot (http://www.joburg.org.za) 

350 000/4 = 87 500 households. 

 

If an average household uses the following per day: 

 Electric bulb  =  60W X 5h  = 300 Wh 

 Small Hotplate  = 1275W X 0.2h  = 255 Wh 

 Kettle   = 1900W X 0.3h  = 570 Wh 

 Iron   = 1235 X 0.4h  = 494 Wh 

 TV    = 50W X 6h  = 300 Wh 

TOTAL   1919 Wh 

 

So, if a household uses 1.9 kWh (1919Wh) in a day, then in a month, it will use, 

  1.919 X 30 = 57.57 kWh per month 

 

From (1) above, Karan Beef could produce enough energy to take care of,  

  31,936.74 kWh / 57.57 = 554.75 households every month. 

 

And when you factor in the 87 500 households of Diepsloot, the number of abattoirs of Karan 

Beef size that would supply the electricity need of Diepsloot is, 

  87 500 / 554.75 = 157.73 abattoirs. 
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It wouldn’t be too difficult to find the approximately 158 abattoirs within the 479 registered 

abattoirs in South Africa (Neethling, 2014) to supply the electricity need of Diepsloot. This will 

have a huge impact in the following ways: 

 It will halt the adverse effect on the environment caused by the traditional disposal of waste 

fat and considerably reduce the harmful effect of other abattoir wastes.  

 It will enhance the “green” status of South Africa globally.   

 About its greatest impact is the relief it will bring to the country’s national electricity grid. 

Considering that electricity theft is high in South Africa and prevalent in places like 

Diepsloot which is littered with informal settlements, this project will obliterate the theft of 

electricity and drastically reduce the theft of the accompanying infrastructure. 

 It will crush crime which thrives on darkness. Street lights would light up the place. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

 

5.1 CONCLUSION 

Production of biofuel from waste animal fat using the pyrolysis (thermal cracking) method was 

achieved with the highest yield of bio-oil (82.78 %) obtained at 530
o
C final temperature and 

6
o
C/min heating rate with the sample recording a calorific value of 39.09 MJ/Kg. The bio-oil 

with the highest calorific value, 52.41 MJ/Kg was produced at 580
o
C FT and 6

o
C/min HR. In the 

absence of a catalyst, the yield of bio-oil declined after it reached the optimum value of 82.78 % 

with further increase in temperature beyond 530
o
C.    

 

Some of the properties of the bio-oils produced – carbon, hydrogen, sulphur, oxygen, density and 

calorific value conformed to the specification of South Africa petrol diesel SANS 342-2006 

and/or Biodiesel (B100) specification - ASTM D 6751 – 02 requirements, where the 

specification is not stated, as to be used as a transport fuel. However, the values for pH, acid 

value, ash % and viscosity were found to be outside the South Africa petrol diesel SANS 342-

2006 specification, hence unacceptable. The zeolite catalyst (Zeolite 96096) did not improve the 

yield of the bio-oil, but stimulated a marked improvement in some of the bio-oils’ properties. 

The viscosity improved by 35% for each of the samples produced with 1% zeolite and 34% for 

those produced with 2% zeolite. Once again, the properties of the bio-oils produced were 

compared to the South Africa petrol diesel SANS 342-2006 specification – carbon, hydrogen, 

sulphur, oxygen, density and calorific value and were found to conformed to the specification 

required for South Africa petrol diesel SANS 342-2006, or where the specification is not stated, 

are of acceptable values as to be used as a transport fuel. The pH, acid value, ash content, 

nitrogen %, and density did not conform to the specification required for South Africa petrol 

diesel SANS 342-2006 and would need to be improved. 
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5.2 RECOMMENDATIONS  

 

In order to improve the yield and quality of the biofuel produced so that it could be used directly 

in automobiles, further work needs to be done: 

 

1. A catalyst that will improve the quality of the bio-oil produced so that it would be suitable as 

a fuel for automobiles needs to be found and investigated. 

2. To improve the yield of the bio-oil to values above 90% through adjustment of the 

operational conditions needs to be investigated. One possible method is to increase the carrier 

gas flow rate with rise in temperature to ensure that increase in the residence time when the 

vapour volume inside the pyrolysis reactor is increased would ensure complete molecular 

depolymerization but hinder commencement of secondary reactions. 

3. Improvement of the yield of the bio-oil should be investigated through the use of a basic 

catalyst that will further reduce the acid value and viscosity but increase the density of the 

bio-oil produced. This has to be a catalyst that can withstand temperatures above 350
o
C.   

4. Recovery of the catalyst should be attempted. 

5. Characterization of the incondensable gases and the bio-char should be done with a view to 

assessing their usage as energy sources for heating the pyrolysis reactor. 
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