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We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment
of inertia, a variable linealmass density𝑔(𝑥), and the applied load denoted by𝑓(𝑢), a function of transverse displacement𝑢(𝑡, 𝑥).The
complete Lie group classification is obtained for different forms of the variable lineal mass density 𝑔(𝑥) and applied load 𝑓(𝑢). The
equivalence transformations are constructed to simplify the determining equations for the symmetries.The principal algebra is one-
dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential,
and log type of applied loads for different forms of 𝑔(𝑥). For the linear applied load case, we obtain an infinite-dimensional Lie
algebra. We recover the Lie symmetry classification results discussed in the literature when 𝑔(𝑥) is constant with variable applied
load𝑓(𝑢). For the general power-law and exponential case the group invariant solutions are derived.The similarity transformations
reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load
case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-
order ordinary differential equation with appropriate initial and boundary conditions.

1. Introduction

Daniel Bernoulli and Leonard Euler developed the theory
of the Euler-Bernoulli beam problem. Let 𝑢(𝑡, 𝑥) be the
transverse displacement at time 𝑡 and position 𝑥 from one
end of the beam taken as the origin, 𝑛(𝑥) the flexural rigidity,
and 𝑚(𝑥) > 0 the lineal mass. The transverse motion of an
unloaded thin beam is represented by the following fourth-
order partial differential equation (PDE):

(𝑛 (𝑥) 𝑢
𝑥𝑥

)
𝑥𝑥

+ 𝑚 (𝑥) 𝑢
𝑡𝑡

= 0, 𝑡 > 0, 0 < 𝑥 < 𝐿. (1)

Euler-Bernoulli beam equation (1) has been frequently
studied in the literature. Gottlieb [1] studied the isospectral
properties of this equation and its nonhomogeneous variants
with 𝑚 = 1 and 𝑛 = 1. Soh [2] considered the equiva-
lence problem for an Euler-Bernoulli beam utilizing the Lie
symmetry approach. Later onMorozov and Soh [3] attempted
the problem with the aid of Cartan’s equivalence method.

Recently, Ndogmo [4] obtained the complete equivalence
transformations of the Euler-Bernoulli equation which were
initially considered in the work [3] in terms of some unde-
termined set of functions. Özkaya and Pakdemirli [5], using
the symmetry method, investigated the transverse vibrations
of a beam moving with time-dependent axial velocity and
obtained approximate solutions for an exponentially decay-
ing and harmonically varying problem.

Now let 𝐸 be the elastic modulus, let 𝐼 be the area of
inertia, let 𝜇 be the mass per unit length, let 𝑢(𝑡, 𝑥) be the
transverse displacement at time 𝑡 and position 𝑥, and let 𝑓

be the applied load. The transverse motion of a loaded thin
elastic beam is governed by the following dynamic beam
fourth-order PDE [6]:

(𝐸𝐼𝑢
𝑥𝑥

)
𝑥𝑥

+ 𝜇𝑢
𝑡𝑡

= 𝑓 (𝑢) , (2)

where the applied load 𝑓 is a function of 𝑢. Bokhari et al.
[7] studied the following dynamic Euler-beam equation from
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the symmetry viewpoint with 𝐸, 𝐼, 𝜇 as constants and 𝑓

dependent on 𝑢:

𝑢
𝑡𝑡

+ 𝑢
𝑥𝑥𝑥𝑥

= 𝑓 (𝑢) . (3)

A complete group classification was obtained for (3). The
symmetry reductions were derived to reduce the fourth-
order PDE to fourth-order ordinary differential equations
(ODEs). For the power-law load function, compatible initial-
boundary value problems corresponding to clamped end and
free end beams were formulated and the reduced fourth-
order ODEs were determined. The static beam problem was
discussed by Bokhari et al. [8].

The dynamic fourth-order Euler-Bernoulli PDE having
a constant elastic modulus and area moment of inertia, a
variable lineal mass density 1/𝑚(𝑥) = 𝑔(𝑥), and the applied
load denoted by 𝑓(𝑢), a function of transverse displacement
𝑢(𝑡, 𝑥), is given by

𝑢
𝑡𝑡

+ 𝑔 (𝑥) 𝑢
𝑥𝑥𝑥𝑥

= 𝑓 (𝑢) . (4)

In this paper we study dynamic Euler-Bernoulli beam
equation (4) from the symmetry point of view.

We give a complete classification of the Lie symmetries for
dynamic Euler-Bernoulli beam equation (4). The principal
algebra is one-dimensional and it extends to two- and
three-dimensional algebras for an arbitrary applied load,
general power-law, exponential, and log type applied loads
for different forms of 𝑔(𝑥) (see Table 1). For the linear applied
load case, we obtain an infinite-dimensional Lie algebra. We
recover the Lie symmetry classification results discussed by
Bokhari et al. [7] when 𝑔(𝑥) is a constant with variable
applied load 𝑓(𝑢). We derive the group invariant solutions
for the general power-law and exponential cases. The fourth-
order PDE reduces to a fourth-order ODE with the help
of similarity transformations. For the power-law applied
load case compatible initial-boundary value problems for the
clamped and free end beam cases are formulated. We deduce
the corresponding fourth-order ODEwith appropriate initial
and boundary conditions. We show that the solution fails to
satisfy the initial or boundary conditions for the exponential
and logarithmic cases.

The paper is organized as follows. In Section 2, the com-
plete Lie point symmetry classification up to equivalence
transformations is presented. The nontrivial symmetry
reductions and initial-boundary value problems which cor-
respond to clamped and free end beams are discussed in
Section 3.The conclusions are summarized in the last section.

2. Complete Lie Symmetry Classification

We derive the equivalence transformations which are impor-
tant for the simplification of the determining equations and
for obtaining disjoint classes [9]. Equivalence transforma-
tions of the PDE (4) are point transformations in the space
of independent and dependent variables of the equation and
these point transformations leave invariant family (4). That
is, the equivalence transformations transform any equation
(4) with arbitrary functions 𝑓 and 𝑔 into the same family
(4) with, in general, different functions 𝑓 and 𝑔. Equivalence

transformations of the PDE (4) are easy to obtain although
the computations are tedious. These are

𝑡 = 𝑎
1
𝑡 + 𝑎
2
,

𝑥 = 𝑏
1
𝑥 + 𝑏
2
,

𝑢 = 𝑑
3
𝑢 + 𝑑
4
,

𝑓 =
𝑑
3

𝑎2
1

𝑓,

𝑔 =
𝑏
4

1

𝑎2
1

𝑔,

(5)

where 𝑎
𝑖
, 𝑏
𝑖
, and 𝑑

𝑖
are constants and 𝑎

1
𝑏
1
𝑑
3

̸= 0.
The Lie point symmetry generator

𝑋 = 𝜏 (𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑡
+ 𝜉 (𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑥
+ 𝜂 (𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑢
, (6)

of dynamic Euler-Bernoulli equation (4), is derived by solving

𝑋
[4]

[𝑢
𝑡𝑡

+ 𝑔 (𝑥) 𝑢
𝑥𝑥𝑥𝑥

− 𝑓 (𝑢)]
(4)

= 0, (7)

where 𝑋
[4] is the fourth prolongation of the operator 𝑋. The

fourth prolongation of the generator 𝑋 is defined as

𝑋
[4]

= 𝑋 +

4

∑

𝑠=1

𝜁
𝑖
1
,𝑖
2
,...,𝑖
𝑠

𝜕

𝜕𝑢
𝑖
1
,𝑖
2
,...,𝑖
𝑠

, (8)

where 𝜁
𝑖
1
,𝑖
2
,...,𝑖
𝑠

can be determined from

𝜁
𝑖
= 𝐷
𝑖
(𝜂) −

2

∑

𝑗=1

𝑢
𝑗
𝐷
𝑖
(𝜉
𝑗

) ,

(𝜉
1

, 𝜉
2

) = (𝜏, 𝜉) , 𝑖 = 1, 2,

𝜁
𝑖
1
,𝑖
2
,...,𝑖
𝑠

= 𝐷
𝑖
𝑠

(𝜁
𝑖
1
,𝑖
2
,...,𝑖
𝑠−1

) −

2

∑

𝑗=1

𝑢
𝑗𝑖
1
,𝑖
2
,...,𝑖
𝑠−1

𝐷
𝑖
𝑠

(𝜉
𝑗

) ,

𝑠 = 2, 3, 4, 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑠
= 1, 2

(9)

in which

𝐷
𝑖
=

𝜕

𝜕𝑥𝑖
+ 𝑢
𝑖

𝜕

𝜕𝑢
+ 𝑢
𝑖𝑗

𝜕

𝜕𝑢
𝑗

+ ⋅ ⋅ ⋅ , (𝑥
1

, 𝑥
2

) = (𝑡, 𝑥) (10)

is the total derivative operator. Equation (7) is separated
according to the derivatives of 𝑢 and an overdetermined
system of partial differential equations for the unknown
coefficients 𝜏, 𝜉, and 𝜂 is obtained.The determining equations
finally yield

𝜏 = 𝑐
1

+ 𝑐
2
𝑡,

𝜉 = 𝑐
3

+ 𝑐
4
𝑥 +

𝑐
5

2
𝑥
2

,

𝜂 =
1

2
(3𝑐
4

+ 3𝑐
5
𝑥 + 𝑐
6
) 𝑢 + 𝑎

2
(𝑡, 𝑥)

(11)
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Table 1: Complete Lie symmetry classification of beam PDE (4).

Equation Lie symmetries

𝑢
𝑡𝑡

+ 𝑔(𝑥)𝑢
𝑥𝑥𝑥𝑥

= 𝑓(𝑢)
𝜕

𝜕𝑡

𝑢
𝑡𝑡

+ 𝛿
1
𝑥
4

𝑢
𝑥𝑥𝑥𝑥

= 𝑓(𝑢)
𝜕

𝜕𝑡
, 𝑥

𝜕

𝜕𝑥

𝑢
𝑡𝑡

+ 𝛿
1
𝑢
𝑥𝑥𝑥𝑥

= 𝑓(𝑢)
𝜕

𝜕𝑡
,

𝜕

𝜕𝑥

𝑢
𝑡𝑡

+ 𝛿
1
𝑒
𝑥

𝑢
𝑥𝑥𝑥𝑥

= 𝛿𝑢
𝑛

𝜕

𝜕𝑡
, 𝑡

𝜕

𝜕𝑡
− 2

𝜕

𝜕𝑥
+

2𝑢

1 − 𝑛

𝜕

𝜕𝑢

𝑢
𝑡𝑡

+ 𝛿
1
𝑥
(4−2𝑐/𝑏)

𝑢
𝑥𝑥𝑥𝑥

= 𝛿𝑢
𝑛

𝜕

𝜕𝑡
, 𝑐𝑡

𝜕

𝜕𝑡
+ 𝑏𝑥

𝜕

𝜕𝑥
+

2𝑐𝑢

1 − 𝑛

𝜕

𝜕𝑢

𝑢
𝑡𝑡

+ 𝛿
1
𝑢
𝑥𝑥𝑥𝑥

= 𝛿𝑢
𝑛

𝜕

𝜕𝑡
,

𝜕

𝜕𝑥
, 𝑡

𝜕

𝜕𝑡
+

𝑥

2

𝜕

𝜕𝑥
+

2𝑢

1 − 𝑛

𝜕

𝜕𝑢

𝑢
𝑡𝑡

+ 𝛿
1
𝑥
4

𝑢
𝑥𝑥𝑥𝑥

= 𝛿𝑢
𝑛

+ 𝑓
2

𝜕

𝜕𝑡
, 𝑥

𝜕

𝜕𝑥

𝑢
𝑡𝑡

+ 𝛿
1
𝑢
𝑥𝑥𝑥𝑥

= 𝛿𝑢
𝑛

+ 𝑓
2

𝜕

𝜕𝑡
,

𝜕

𝜕𝑥

𝑢
𝑡𝑡

+ 𝛿
1
𝑒
𝑥

𝑢
𝑥𝑥𝑥𝑥

= 𝛿 exp(𝑢)
𝜕

𝜕𝑡
, 𝑡

𝜕

𝜕𝑡
− 2

𝜕

𝜕𝑥
− 2

𝜕

𝜕𝑢

𝑢
𝑡𝑡

+ 𝛿
1
𝑥
(4−2𝑐/𝑏)

𝑢
𝑥𝑥𝑥𝑥

= 𝛿 exp(𝑢)
𝜕

𝜕𝑡
, 𝑐𝑡

𝜕

𝜕𝑡
+ 𝑏𝑥

𝜕

𝜕𝑥
− 2𝑐

𝜕

𝜕𝑢

𝑢
𝑡𝑡

+ 𝛿
1
𝑢
𝑥𝑥𝑥𝑥

= 𝛿 exp(𝑢)
𝜕

𝜕𝑡
,

𝜕

𝜕𝑥
, 𝑡

𝜕

𝜕𝑡
+

𝑥

2

𝜕

𝜕𝑥
− 2

𝜕

𝜕𝑢

𝑢
𝑡𝑡

+ 𝛿
1
𝑥
4

𝑢
𝑥𝑥𝑥𝑥

= 𝛿 exp(𝑢) + 𝑓
2

𝜕

𝜕𝑡
, 𝑥

𝜕

𝜕𝑥

𝑢
𝑡𝑡

+ 𝛿
1
𝑢
𝑥𝑥𝑥𝑥

= 𝛿 exp(𝑢) + 𝑓
2

𝜕

𝜕𝑡
,

𝜕

𝜕𝑥

𝑢
𝑡𝑡

+ 𝛿
1
𝑥
4

𝑢
𝑥𝑥𝑥𝑥

= 𝛿 ln(𝑢) + 𝑓
2
, 𝜕

𝜕𝑡
, 𝑥

𝜕

𝜕𝑥

𝑢
𝑡𝑡

+ 𝛿
1
𝑢
𝑥𝑥𝑥𝑥

= 𝛿 ln(𝑢) + 𝑓
2

𝜕

𝜕𝑡
,

𝜕

𝜕𝑥

(𝑓
2

̸= 0 or 𝑓
2

= 0)

𝑢
𝑡𝑡

+ 𝛿
1

(±𝑥
2

−
𝑏
2

2𝑎
+ 𝑐)

4

𝑢
𝑥𝑥𝑥𝑥

= 𝑢,

𝜕

𝜕𝑡
, 𝑢

𝜕

𝜕𝑢
, 𝑎
2
(𝑡, 𝑥)

𝜕

𝜕𝑢
, 3𝑢𝑥

𝜕

𝜕𝑢
+ (𝑥
2

−
𝑏
2

2𝑎
+ 𝑐)

𝜕

𝜕𝑥

𝑎
2𝑡𝑡

+ 𝛿
1

(±𝑥
2

−
𝑏
2

2𝑎
+ 𝑐)

4

𝑎
2𝑥𝑥𝑥𝑥

= 𝑎
2

𝑢
𝑡𝑡

+ 𝑔(𝑥)𝑢
𝑥𝑥𝑥𝑥

= 1, or 𝑢
𝑡𝑡

+ 𝑔(𝑥)𝑢
𝑥𝑥𝑥𝑥

= 0,
𝜕

𝜕𝑡
, 𝑢

𝜕

𝜕𝑢
, 𝑎
2
(𝑡, 𝑥)

𝜕

𝜕𝑢
,
𝑡𝑑
1

2

𝜕

𝜕𝑡
+ (𝑥
2

−
𝑏
2

2𝑎
+ 𝑐)

𝜕

𝜕𝑥
+ 3𝑢𝑥

𝜕

𝜕𝑢

(±𝑥
2

−
𝑏
2

2𝑎
+ 𝑐) 𝑔

𝑥
+ (𝑑
1

∓ 8𝑥)𝑔 = 0

and the following classification equations for 𝑓(𝑢) and 𝑔(𝑥):
𝜂
𝑡𝑡

− 𝜂𝑓
𝑢

+ 𝑔𝜂
𝑥𝑥𝑥𝑥

− 2𝑓𝜏
𝑡
+ 𝑓𝜂
𝑢

= 0, (12)

−4𝑔𝜉
𝑥

+ 2𝜏
𝑡
𝑔 + 𝜉𝑔

𝑥
= 0, (13)

where 𝑐
1
, . . . , 𝑐

6
are constants. For the case, 𝑓 arbitrary in 𝑢

and 𝑔 arbitrary in 𝑥, the only symmetry is

𝑋
1

=
𝜕

𝜕𝑡
(14)

which constitutes the one-dimensional principal algebra of
(4). Now we investigate all the possibilities of 𝑓(𝑢) and 𝑔(𝑥)

for which an extension of the principal algebra is possible.

Differentiating classification equation (12) with respect to
𝑢, we have

𝜂𝑓
𝑢𝑢

+ 2𝜏
𝑡
𝑓
𝑢

= 0. (15)

Further differentiating (15) twice with respect to 𝑢 yields

𝜂𝑓
𝑢𝑢𝑢

+ 𝑓
𝑢𝑢

𝜂
𝑢

+ 2𝜏
𝑡
𝑓
𝑢𝑢

= 0, (16)

𝜂𝑓
𝑢𝑢𝑢𝑢

+ 2𝜂
𝑢
𝑓
𝑢𝑢𝑢

+ 2𝜏
𝑡
𝑓
𝑢𝑢𝑢

= 0. (17)

Equation (17) after using 𝜂 from (16) becomes

(𝑓
𝑢
𝑓
𝑢𝑢

𝑓
𝑢𝑢𝑢𝑢

− 2𝑓
𝑢
𝑓
2

𝑢𝑢𝑢
+ 𝑓
2

𝑢𝑢
𝑓
𝑢𝑢𝑢

) 𝜏
𝑡

= 0. (18)
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Now differentiating (15) with respect to 𝑡, we have

𝜂
𝑡
𝑓
𝑢𝑢

= 0. (19)

We at once look at the possible cases of 𝑓(𝑢) from (18) and
(19).

Case 1 (𝜏
𝑡

= 0). If 𝜏
𝑡

= 0 then (15) gives 𝜂 = 0 and we have

𝜏 = 𝑐
1
,

𝜉 = 𝑐
3

+ 𝑐
4
𝑥,

𝜂 = 0,

(20)

where 𝑓(𝑢) is arbitrary and (13) gives 𝑔(𝑥) = (𝑐
3

+ 𝑐
4
𝑥)
4.

Case 2 (𝜏
𝑡

̸= 0 and 𝑓
𝑢𝑢

̸= 0). If 𝜏
𝑡

̸= 0 and 𝑓
𝑢𝑢

̸= 0 then (18)
yields the following possible forms of 𝑓(𝑢):

(i) 𝑓(𝑢) = 𝑓
1
(𝑎𝑢 + 𝑏)

𝑛

+ 𝑓
2
for 𝑛 ̸= 0, 1, 𝑎 ̸= 0;

(ii) 𝑓(𝑢) = 𝑓
1
𝑒
𝑎𝑢

+ 𝑓
2
, 𝑎 ̸= 0;

(iii) 𝑓(𝑢) = 𝑓
1
ln(𝑎𝑢 + 𝑏) + 𝑓

2
, 𝑎 ̸= 0,

where 𝑓
1
, 𝑓
2
, 𝑎, 𝑏, 𝑛 are constants and from (19), 𝜂

𝑡
= 0. It is

worth mentioning here that the principal algebra extends for
these forms of 𝑓(𝑢).

After equivalence transformations, the simplified forms
for 𝑓(𝑢) are

(i) 𝑓(𝑢) = 𝛿𝑢
𝑛

+ 𝑓
2
for 𝑛 ̸= 0, 1,

(ii) 𝑓(𝑢) = 𝛿 exp 𝑢 + 𝑓
2
,

(iii) 𝑓(𝑢) = 𝛿 ln 𝑢 + 𝑓
2
.

Case 2.1 (𝑓(𝑢) = 𝛿𝑢
𝑛

+ 𝑓
2
). Equation (12) for 𝑓(𝑢) = 𝛿𝑢

𝑛

+ 𝑓
2

with 𝑓
2

= 0 results in the following operators:

𝜏 = 𝑐
1

+ 𝑐
2
𝑡,

𝜉 = 𝑐
3

+ 𝑐
4
𝑥,

𝜂 =
2𝑐
2

1 − 𝑛
𝑢

(21)

with 𝑔(𝑥) from (13) satisfying

(𝑐
3

+ 𝑐
4
𝑥) 𝑔
𝑥

+ (2𝑐
2

− 4𝑐
4
) 𝑔 = 0. (22)

The solution of (22) is 𝑔(𝑥) = (𝑐
3

+ 𝑐
4
𝑥)
4−2𝑐
2
/𝑐
4 . When 𝑓

2
̸= 0

then 𝑐
2

= 0 in (21) and (22).

Case 2.2 (𝑓(𝑢) = 𝛿 exp 𝑢 + 𝑓
2
). Equation (12) for 𝑓(𝑢) =

𝛿 exp 𝑢 + 𝑓
2
with 𝑓

2
= 0 results in the following operators:

𝜏 = 𝑐
1

+ 𝑐
2
𝑡,

𝜉 = 𝑐
3

+ 𝑐
4
𝑥,

𝜂 = −2𝑐
2

(23)

with 𝑔(𝑥) satisfying (22). When 𝑓
2

̸= 0 then 𝑐
2

= 0 in (22)
and (23).

Case 2.3 (𝑓(𝑢) = 𝛿 ln 𝑢 + 𝑓
2
). In this case 𝜏

𝑡
= 0, we have

𝜏 = 𝑐
1
,

𝜉 = 𝑐
3

+ 𝑐
4
𝑥,

𝜂 = 0

(24)

with 𝑔(𝑥) from (13) satisfying

(𝑐
3

+ 𝑐
4
𝑥) 𝑔
𝑥

− 4𝑐
4
𝑔 = 0. (25)

The solution of (25) is 𝑔(𝑥) = (𝑐
3
+𝑐
4
𝑥)
4. We deduce the same

results for both cases 𝑓
2

= 0 and 𝑓
2

̸= 0.

Case 3 (𝑓
𝑢𝑢

= 0). For the case 𝑓(𝑢) = 𝑓
1

+ 𝑓
2
𝑢, the equiva-

lence transformations yield 𝑓(𝑢) = 0, 𝑓(𝑢) = 1, and 𝑓(𝑢) =

𝛿𝑢, where 𝛿 = ±1.

Case 3.1 (𝑓(𝑢) = 𝛿𝑢). Equations (12) and (13) yield

𝜏 = 𝑐
1
,

𝜉 =
𝑐
5

2
𝑥
2

+ 𝑐
4
𝑥 + 𝑐
3
,

𝜂 =
1

2
(𝑐
6

+ 3𝑐
4

+ 3𝑐
5
𝑥) 𝑢 + 𝑎

2
(𝑡, 𝑥) ,

(26)

where 𝑔(𝑥) and 𝑎
2
(𝑡, 𝑥) satisfy

(
𝑐
5

2
𝑥
2

+ 𝑐
4
𝑥 + 𝑐
3
) 𝑔
𝑥

− (4𝑐
4

+ 4𝑥𝑐
5
) 𝑔 = 0,

𝑎
2𝑡𝑡

− 𝑎
2

+ 𝑔 (𝑥) 𝑎
2𝑥𝑥𝑥𝑥

= 0.

(27)

Case 3.2 (𝑓(𝑢) = 1). From (12) and (13), we have

𝜏 = 𝑐
1

+ 𝑐
2
𝑡,

𝜉 =
𝑐
5

2
𝑥
2

+ 𝑐
4
𝑥 + 𝑐
3
,

𝜂 =
1

2
(𝑐
6

+ 3𝑐
4

+ 3𝑐
5
𝑥) 𝑢 + 𝑎

2
(𝑡, 𝑥)

(28)

with 𝑔(𝑥), 𝑎
2
(𝑡, 𝑥) satisfying

(
𝑐
5

2
𝑥
2

+ 𝑐
4
𝑥 + 𝑐
3
) 𝑔
𝑥

+ (2𝑐
2

− 4𝑐
4

− 4𝑥𝑐
5
) 𝑔 = 0, (29)

𝑎
2𝑡𝑡

+ 𝑔 (𝑥) 𝑎
2𝑥𝑥𝑥𝑥

− 2𝑐
2

+
1

2
(𝑐
6

+ 3𝑐
4

+ 3𝑐
5
𝑥) = 0. (30)

Case 3.3 (𝑓(𝑢) = 0). For this case the symmetry generator is
the same as that given in (28) with 𝑔(𝑥) satisfying (29) and
𝑎
2
(𝑡, 𝑥):

𝑎
2𝑡𝑡

+ 𝑔 (𝑥) 𝑎
2𝑥𝑥𝑥𝑥

= 0. (31)
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Remark 1. The Lie algebras for all the nonlinear cases in
Table 1 are easily seen by inspection. For the linear cases, they
are infinite-dimensional and well known (see also [9]). Also
the solution 𝑔 of the linear equation in the final linear case of
Table 1 is easy to obtain and is not given as we do not use it
here.

Now we work out the equivalence transformations for
different forms of 𝑔(𝑥) arising from Cases 2 and 3. After
equivalence transformations 𝑔(𝑥) becomes as follows:

(i) 𝑔(𝑥) = 𝑔
1
(𝑎𝑥 + 𝑏)

4, 𝑔
1

̸= 0, becomes 𝑔 = 𝛿
1
𝑥
4 for

𝑎 ̸= 0, 𝛿
1

= ±1; if 𝑎 = 0, then 𝑔 = 𝛿
1
;

(ii) 𝑔(𝑥) = 𝑔
1
(𝑎𝑥+𝑏)

4−2𝑐/𝑏,𝑔
1

̸= 0, 𝑎 ̸= 0, becomes𝑔(𝑥) =

𝛿
1
𝑥
4−2𝑐/𝑏, 𝑏 ̸= 0; if 𝑏 = 0, then 𝑔(𝑥) = 𝛿

1
exp 𝑥 with

𝛿
1

= ±1;
(iii) if 𝑔 solves

(
𝑎

2
𝑥
2

+ 𝑏𝑥 + 𝑐) 𝑔
𝑥

− (4𝑏 + 4𝑎𝑥) 𝑔 = 0, (32)

then after equivalence transformations it reduces to
(±𝑥
2

− 𝑏
2

/(2𝑎) + 𝑐)𝑔
𝑥

∓ 8𝑥𝑔 = 0 with solution

𝑔 (𝑥) = 𝛿
1

(±𝑥
2

−
𝑏
2

(2𝑎)
+ 𝑐)

4

; (33)

(iv) if 𝑔 satisfies

(
𝑎

2
𝑥
2

+ 𝑏𝑥 + 𝑐) 𝑔
𝑥

+ (2𝑑 − 4𝑏 − 4𝑎𝑥) 𝑔 = 0, (34)

then after equivalence transformations it becomes

(±𝑥
2

−
𝑏
2

(2𝑎)
+ 𝑐) 𝑔

𝑥
+ (𝑑
1

∓ 8𝑥) 𝑔 = 0, (35)

where 𝑑
1

̸= 0 is arbitrary.

The Lie symmetries for the simplified forms of 𝑓 and
𝑔 are presented in Table 1 and all cases discussed in [7] are
recovered for 𝑔(𝑥) = 𝛿

1
.

3. Symmetry Reductions and Boundary
Value Problems

Now we find the symmetry reductions.The initial conditions
are

𝑢 (0, 𝑥) = 𝑚 (𝑥) ,

𝑢
𝑡
(0, 𝑥) = 𝑛 (𝑥) .

(36)

The four types of boundary conditions (see [7]) are as follows:

hinged end:

𝑢 (𝑡, 0) = 0,

𝑢
𝑥𝑥

(𝑡, 0) = 0;

(37)

clamped end:

𝑢 (𝑡, 0) = 0,

𝑢
𝑥

(𝑡, 0) = 0;

(38)

free end:

𝑢
𝑥𝑥

(𝑡, 0) = 0,

𝑢
𝑥𝑥𝑥

(𝑡, 0) = 0;

(39)

sliding end:

𝑢
𝑥

(𝑡, 0) = 0,

𝑢
𝑥𝑥𝑥

(𝑡, 0) = 0;

(40)

consider the power-law case:

𝑢
𝑡𝑡

+ 𝛿
1
𝑥
(4−2𝑐/𝑏)

𝑢
𝑥𝑥𝑥𝑥

= 𝛿𝑢
𝑛

. (41)

If we take a linear combination of the symmetries 𝑋
𝑖
, the

initial condition 𝑡 = 0 and boundary condition 𝑥 = 0 are
left invariant only by the scaling symmetry 𝑋

2
. The group

invariant solution corresponding to 𝑋
2
is

𝑢 (𝑡, 𝑥) = 𝑥
2𝑐/(1−𝑛)𝑏

𝑓 (𝑧) , (42)

where 𝑧 = 𝑥/𝑡
𝑏/𝑐 is the similarity variable.The substitution of

(42) into (41) yields the following ODE:

𝛿
1
𝑧
4

𝑓


+
8𝛿
1
𝑐

(1 − 𝑛) 𝑏
𝑧
3

𝑓


+
𝑏
2

𝑐2
𝑧
2(1+𝑐/𝑏)

𝑓


+
12𝑐𝛿
1

𝑏 (𝑛 − 1)
2

(𝑛 − 1 +
2𝑐

𝑏
) 𝑧
2

𝑓
+𝑏

𝑐
(1 +

𝑏

𝑐
)

⋅ 𝑧
1+2𝑐/𝑏

𝑓


−
16𝛿
1
𝑐

𝑏 (𝑛 − 1)
3

(𝑛 − 1 +
2𝑐

𝑏
) (𝑛 − 1 +

𝑐

𝑏
)

⋅ 𝑧𝑓


+
12𝛿
1
𝑐

(𝑛 − 1)
4

𝑏
(𝑛 − 1 +

2𝑐

𝑏
) (𝑛 − 1 +

𝑐

𝑏
)

⋅ (𝑛 − 1 +
2𝑐

3𝑏
) = 𝛿𝑓

𝑛

.

(43)

For the clamped end beam, the initial and boundary con-
ditions (36) and (38) yield

𝑓 (∞) = 𝑓
0
,

𝑓


(∞) = 0,

𝑓 (0) = 0,

𝑓


(0) = 0,

(44)

where 𝑚(𝑥) = 𝑥
2𝑐/(1−𝑛)𝑏

𝑓
0
. Note that the boundary condition

at 𝑥 = ∞ added is due to the solution of the ODE.
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We solve (43) subject to conditions (44) and then (42)
forms the solution of the clamped end beam (41).

For the free end beam, the initial and boundary condi-
tions (36) and (39) yield

𝑓 (∞) = 𝑓
0
,

𝑓


(∞) = 0,

𝑓 (0) = 0,

𝑓


(0) = 0,

𝑓


(0) = 0,

𝑓


(0) = 0.

(45)

For the hinged end beam, the ODE (43) should be solved
subject to boundary conditions (44) as well as 𝑓



(0) = 0. For
the case of the sliding end beam one has to solve ODE (43)
subject to (45).

For the following power-law case, the PDE is

𝑢
𝑡𝑡

+ 𝛿
1
𝑒
𝑥

𝑢
𝑥𝑥𝑥𝑥

= 𝛿𝑢
𝑛 (46)

and reduction via 𝑋
2
yields the invariant solution

𝑢 (𝑡, 𝑥) = 𝑒
(1−𝑛)𝑥

𝑓 (𝑧) , 𝑧 = 𝑥 + 2 ln (𝑡) . (47)

Here the second boundary condition 𝑢
𝑥
(𝑡, 0) = 0 for the

clamped end is not satisfied.
An asymptotic solution was found by Bokhari et al.

[7] corresponding to the clamped or free end case for the
following power-law case

𝑢
𝑡𝑡

+ 𝛿
1
𝑢
𝑥𝑥𝑥𝑥

= 𝛿𝑢
𝑛

. (48)

For the remaining cases the solution does not satisfy the
initial or boundary conditions. We take one example below.

Consider the following exponential case:

𝑢
𝑡𝑡

+ 𝛿
1
𝑥
(4−2𝑐/𝑏)

𝑢
𝑥𝑥𝑥𝑥

= 𝛿𝑒
𝑢

. (49)

The group invariant solution of (49) is of the form

𝑢 (𝑡, 𝑥) = ln (𝑥
−2𝑐/𝑏

) + 𝑓 (𝑧) , 𝑧 =
𝑥

𝑡𝑏/𝑐
. (50)

The substitution of (50) into (49) yields the following fourth-
order ODE:

𝛿
1
𝑧
4

𝑓


+
𝑏
2

𝑐2
𝑧
2(1+𝑐/𝑏)

𝑓


+
𝑏

𝑐
(1 +

𝑏

𝑐
) 𝑧
1+2𝑐/𝑏

𝑓


+ 12𝛿
1

𝑐

𝑏
= 𝛿𝑒
𝑓

,

(51)

and thisODE fails to satisfy the boundary conditions at𝑥 = 0.
Similarly for the rest of the cases, the initial or boundary

conditions are not satisfied when the load is of exponential or
logarithmic form. We have ignored the linear cases as much
attention has been already focused on these cases.

4. Concluding Remarks

We have performed the complete Lie symmetry classification
of the dynamic fourth-order Euler-Bernoulli PDE having a
constant elastic modulus and area moment of inertia, a vari-
able lineal mass density 𝑔(𝑥), and the applied load denoted
by 𝑓(𝑢), a function of transverse displacement 𝑢(𝑡, 𝑥). The
equivalence transformations are constructed to simplify the
determining equations for the symmetries. The simplified
forms of lineal mass density 𝑔(𝑥) and applied load 𝑓(𝑢) are
constructed via equivalence transformations. The principal
algebra is one-dimensional for arbitrary 𝑓(𝑢) and 𝑔(𝑥). The
principal algebra is extended to a two- and three-dimensional
algebra for arbitrary applied load, general power-law, expo-
nential, and log type of applied loads for different forms of
𝑔(𝑥) whereas an infinite-dimensional algebra is obtained for
the linear applied load case (see Table 1). We recover the
Lie symmetry classification results discussed in the literature
when 𝑔(𝑥) is constant with variable applied load 𝑓(𝑢). The
similarity transformations reduce the fourth-order PDE to a
fourth-order ODE. Only for one case with the applied load
power-law, compatible initial-boundary value problems for
the clamped and free end beam cases are formulated. We
deduce the fourth-order ODE with appropriate initial and
boundary conditions.
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