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Abstract

Learning-based methods have recently become popular in control engineering, achieving
good performance on a number of challenging tasks. However, in complex environments
where data efficiency and safety are critical, current methods remain unsatisfactory. As
a step toward addressing these shortcomings, we propose a learning-based approach that
combines Gaussian process regression with model predictive control. Using sparse spec-
trum Gaussian processes, we extend previous work by learning a model of the dynamics
incrementally from a stream of sensory data. Utilizing learned dynamics and model uncer-
tainty, we develop a controller that can learn and plan in real-time under non-linear con-
straints. We test our approach on pendulum and cartpole swing up problems and demon-
strate the benefits of learning on a challenging autonomous racing task. Additionally, we
show that learned dynamics models can be transferred to new tasks without any additional
training.
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Chapter 1

Introduction

Since its introduction in the early eighties (Cutler and Ramaker, 1980), model predictive
control (MPC) has become a standard tool in control engineering. Today MPC is widely
used in industry with applications in power electronics (Vazquez et al., 2014), aeronautics
(Di Cairano et al., 2012) and robotics (Erez et al., 2013). MPC is a class of feedback
control methods that use a model to predict the future behavior of a process. By taking the
predicted dynamics into account, MPC can plan a sequence of control inputs that drives
the process to a desired state. For example, consider an autonomous car racing along a
track. Using predicted responses to acceleration and steering, MPC determines how best to
control the car while optimizing for speed and avoiding collisions.

The success of MPC is reliant on accurate predictions and depends on a precise de-
scription of the process dynamics. As a result, considerable engineering effort is spent
on developing models of complex systems. However, modeling from first principles can
be difficult. Non-linear dynamics are often ignored and time consuming experiments are
required to identify and characterize effects like friction and tyre slip (Voser et al., 2010).

Data-driven methods try to address this issue by learning a controller or a process model
directly from data. Learning-based approaches sidestep the need for known dynamics but
come with their own set of challenges. Firstly, data-efficiency is essential. Running exper-
iments on physical hardware can be onerous and costly, highlighting the need for methods
that learn quickly from limited data. Secondly, to avoid damage and potentially dangerous
behavior, safety constraints must be accounted for. Learning-based methods need to han-
dle obstacles, boundaries, and actuator limits consistently and reliably. Finally, real-time
feasibility is a key requirement. For processes with fast dynamics, learning-based control
must operate on time scales of a few milliseconds.

To tackle these challenges we propose GP-RHC — Gaussian Processes for Receding
Horizon Control. GP-RHC combines Gaussian process regression for data-efficient model
learning with real-time model predictive control. This work includes three main contribu-
tions and was first presented in our paper Van Niekerk et al. (2017).

i) For many applications, we can approximately model complex dynamics by mak-
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ing some simplifying assumptions. GP-RHC can take advantage of an approximate
nominal model by learning to correct for unmodeled disturbances. By exploiting
prior knowledge GP-RHC significantly improves controller performance in settings
where learning from scratch is difficult or impossible.

ii) Using sparse spectrum Gaussian processes (Lázaro-Gredilla et al., 2010), GP-RHC
extends previous work by incrementally updating the dynamics model from a stream
of sensory data. Experiments demonstrate that incorporating online data results in
more efficient and robust learning.

iii) GP-RHC integrates Gaussian process models with structure exploiting interior point
methods for control. At each time step the control problem is formulated as a large
convex program. By leveraging structure in the convex program and efficient inte-
rior point optimization, GP-RHC is able to plan in real-time while safely handling
constraints.

The remainder of this thesis is structured as follows. In chapter 2 we explore Gaussian
processes and discuss their application to model learning. We review sparse approxima-
tions for scaling up GPs and demonstrate how to incorporate new data through incremen-
tal updates. Chapter 3 introduces constrained convex optimization. Following Domahidi
et al. (2012) we develop a structure exploiting interior point method for real-time model
predictive control. In chapter 4 we introduce autonomous racing (Verschueren et al., 2014;
Liniger et al., 2015; Rosolia et al., 2017) as a test-bed for GP-RHC. Autonomous racing is a
challenging test-bed for learning-based control, highlighting challenges of data-efficiency,
safety, and real-time feasibility. Finally, in chapter 5 we evaluate GP-RHC on three dif-
ferent tasks: pendulum swing up, cartpole swing up, and autonomous racing. Our exper-
iments demonstrate that: a) models can be learned quickly from limited data, b) complex
non-linear constraints can be handled safely in real-time, and c) online updates improve
learning and result in more consistent performance.

1.1 Related Work

Due to their data-efficiency and ability to estimate model uncertainty, Gaussian processes
have become increasingly popular in learning-based control. Early work by Kocijan et al.
(2004) demonstrated that GPs can be successfully combined with model predictive control
on a small trajectory tracking problem.

More recently, trajectory optimization based on differential dynamic programming has
been applied to learned dynamics. Methods such as PDDP (Pan and Theodorou, 2014),
AGP-iLQR (Boedecker et al., 2014), and MPC via probabilistic trajectory optimization
(Pan et al., 2017) combine models learned using sparse Gaussian processes with an iterative
linear quadratic regulator for planning and control. These methods can take simple box
constraints into account but cannot handle general non-linear constraints.

Building on these ideas Kamthe and Deisenroth (2017) propose GP-MPC which uses
Pontryagin’s maximum principle and sequential quadratic programming for control. GP-
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MPC demonstrates impressive data-efficiency and reliably handles constraints. However,
experiments are limited to cartpole and pendulum swing up problems with simple box
constraints.

Our work is most closely related to RL-RCO (Andersson et al., 2015) which leverages
sparse Gaussian processes for learning the dynamics and trajectory optimization based se-
quential quadratic programming. We improve upon RL-RCO by proposing an approach
which allows the dynamics model to be updated online as the controller interacts with the
environment. Furthermore, in contrast to the work of Andersson et al. (2015), we present
results that highlight the ability to handle non-linear constraints. We show how these en-
hancements improve data efficiency, learning rate and constraint handling.

Finally, as an alternative to model predictive control, PILCO (Deisenroth and Ras-
mussen, 2011) combines policy search with a Gaussian process model of the dynamics.
The policy search relies on analytic gradients of the long term expected cost and requires
the cost function and policy to take specific functional forms. This makes it difficult or
impossible to incorporate general constraints.
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Chapter 2

Gaussian Processes

In this chapter we consider the problem of learning a model of the system dynamics. In
general, we have a training set of observations and want to learn the relationship between
the inputs and outputs. Using this relationship, we can make predictions for a new input
that was not part of the initial data. For example, given inputs of steering angle and throttle
of a car we’d like to predict its position and velocity at the next time step. To tackle
this problem we make use of Gaussian processes or GPs, introduced in section 2.1. In
sections 2.2 and 2.3 we discuss Gaussian process regression and outline a common method
for learning hyperparameters from data. Finally, section 2.4 describes the sparse spectrum
approximation - a practical approach to reducing the computational costs of GPs.

2.1 Defining a Gaussian Process

Gaussian processes define a prior distribution over functions which potentially describe
some dataset. To fit a GP to the data, this prior is updated using Bayesian inference. For-
mally, a Gaussian process is a collection of random variables, any finite subset of which
have a joint Gaussian distribution (Rasmussen and Williams, 2006). In other words, a
collection of random variables {f(x) : x ∈ X ⊆ Rm} is said to be drawn from a Gaus-
sian process with mean function m(·) and kernel k(·, ·) if for any finite set of points
x1, . . . ,xn ∈ X , the associated set of outputs or target values f(x1), . . . , f(xn) are jointly
normally distributed:



f(x1)

...
f(xn)


 ∼ N






m(x1)

...
m(xn)


 ,



k(x1,x1) · · · k(x1,xn)

... . . . ...
k(xn,x1) · · · k(xn,xn)





 . (2.1)

It is clear from this definition that k(·, ·) must be a positive semidefinite function in order
to specify a valid distribution for any choice of x1, . . . ,xn.

The kernel captures a measure of similarity between outputs in a Gaussian process.
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Under assumptions of smoothness and stationarity, we expect nearby inputs from X to
produce similar target values. This allows us to make predictions about the behavior of f
at a point x based on neighboring input-target pairs in the training data.

In this work we use the popular squared exponential (SE) kernel defined by

k(x,x�) := σ2
s exp

�
−1

2
(x− x�)�Λ−1(x− x�)

�
, (2.2)

where Λ := diag(l21, . . . , l
2
m) is a positive diagonal matrix and σs is the signal amplitude.

Functions drawn from a Gaussian process with a SE kernel will tend to be locally smooth
since correlation drops off as a function of distance in input space. The parameters li
determine how quickly the correlation drops off and define the characteristic length-scales
of the GP. Figure 2.1 demonstrates the effect of each hyperparameter on a GP fit to six data
points sampled from the sine function.

2.2 Regression with Gaussian Processes

Suppose we have a training set of n measurements {(xi, yi) : i = 1, . . . , n}, where each
xi ∈ Rm is an input vector, yi = f(xi) + ε denotes a noisy output or target, and ε is
Gaussian noise with zero mean and variance σ2

n. The aim of this section is to describe how
to predict the value of f at a test point x∗.

Assuming a zero mean GP prior1 on f , the joint distribution of target data and test
output is: �

y
f∗

�
∼ N

�
0,

�
K(X,X) + σ2

nI K(X,x∗)
K(x∗, X) K(x∗,x∗)

��
, (2.3)

where X = [x1, . . . ,xn] is a stacked matrix of inputs, y = [y1, . . . , yn]
� is the correspond-

ing vector of targets, and K(·, ·) denotes the covariance matrix evaluated at each pair of
inputs i.e. the entries of the covariance matrix are defined by K(X,X)i,j := k(xi,xj).
Then, conditioning on the training data results in a normal distribution

f∗|y, X ∼ N (µ(x∗),Σ(x∗)), (2.4)

with mean and covariance given by:

µ(x∗) := K(x∗, X)Q−1y, (2.5a)
Σ(x∗) := K(x∗,x∗)−K(x∗, X)Q−1K(X,x∗), (2.5b)

where Q := K(X,X) + σ2
nI . By sampling from this distribution we can predict the value

of f at the test point x∗.

1Gaussian process priors with non-zero mean functions are not used in this work so for simplicity we only
consider the zero mean case.
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A practical implementation of GP regression is shown in algorithm 1. To invert the n×n
matrix Q we first find its Cholesky decomposition and then use forward and backward
substitution to find the mean and variance in (2.5). Note that evaluating the mean and
variance are O(n) and O(n2) operations respectively. This makes the computational costs
prohibitively expensive for large data sets or applications with fast real-time constraints.
Fortunately, there are a number of approximation schemes that significantly reduce the
computational costs (see section 2.4 for details).

Algorithm 1: Gaussian process regression
Data: Inputs X , targets y, covariance function K, noise variance σn, test input x∗

1 Compute the matrix Q := K(X,X) + σ2
nI

2 Compute the Cholesky decomposition Q = LL�

3 Find α := L�\L\y using backward and forward substitution
4 Compute the predictive mean (2.5a): µ(x∗) = K(x∗, X)α
5 Compute the predictive variance (2.5b): Σ(x∗) = K(x∗,x∗)− v�v, with

v := L\K(x∗, X)
6 return mean µ(x∗), variance Σ(x∗)

2.3 Learning the Hyperparameters

A kernel will typically have some free hyperparameters θ that must be tuned to find a good
fit of the data. For example, the parameters θ = {σs, l1, . . . , lm} in (2.2) can be varied to
alter the signal amplitude and characteristic length-scales of the squared exponential kernel.
In this section we describe a common method for determining the hyperparameters from
the data.

To find the hyperparameters we maximize the marginal likelihood — the likelihood of
the training data given the hyperparameters:

p(y|X,θ) =

�
p(y|f , X,θ)p(f |X,θ)df . (2.6)

The likelihood y|f , X,θ ∼ N (f , σ2
nI) is normally distributed, and under a Gaussian pro-

cess prior we have f |X,θ ∼ N (0, K(X,X)). In this case the marginal likelihood is an
integral over the product of two Gaussians and can be computed analytically giving:

log p(y|X,θ) = −1

2
log |Q|− 1

2
y�Q−1y − n

2
log(2π). (2.7)

The log marginal likelihood in (2.7) can then be minimized using gradient based optimizers
(Rasmussen and Williams, 2006). Since Q needs to be inverted each time the log marginal
likelihood is evaluated — an O(N3) operation in general — hyperparameter learning rep-
resents the main computational bottleneck for GP regression.
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Figure 2.1: Gaussian process hyperparameters. The noise variance σn, signal amplitude
σs, and length-scale l are independently varied while the remaining parameters are kept
fixed. Top-left: Hyperparemeters are determined by minimizing the negative log likelihood
(σ2

n = 0.001, σ2
s = 0.8, l = 1.58) for the sparse spectrum Gaussian process (SSGP)

discussed in section 2.4. Top-right: Noise variance set to σ2
n = 0.1. The predictive mean

no longer interpolates the data points exactly and has a larger envelope of uncertainty.
Bottom-left: Signal amplitude set to σ2

s = 2. The predictive variance increases away from
the data points. Bottom-right: Length-scale set to l = 0.6. A smaller length scale results
in a rapidly varying signal.

2.4 Sparse Approximations

Due to their computational costs, GPs do not scale well to large datasets. There are, how-
ever, a number of approximation schemes designed to scale GPs (Quiñonero-Candela and
Rasmussen, 2005). In this section, we discuss sparse spectrum approximations of the kernel
(Lázaro-Gredilla et al., 2010). Sparse spectrum GPs were chosen for this work because: (a)
online data can be incorporated through incremental updates (Gijsberts and Metta, 2013),
and (b) the learned model can be efficiently linearized for model predictive control (see
section 4.8).
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2.4.1 Sparse Spectrum Approximation

The idea behind sparse spectrum GPs is to use random Fourier features to approximate
the kernel (Rahimi and Recht, 2008). By mapping the input data into the low-dimensional
space defined by the features we can significantly reduce computational costs.

In this section, we assume that the kernel is stationary, i.e. that k(x,x�) is a function of
r = x − x� only. In this case, Bochner’s theorem (Lázaro-Gredilla et al., 2010) states that
k(r) can be represented as the Fourier transform,

k(r) =

�

Rm

eiω
�rdµ(ω), (2.8)

of a positive finite measure µ. With proper scaling, this means that equation (2.8) can be
rewritten as an expectation

k(r) = α2Ep[e
iω�r], (2.9)

where p is a probability measure over Rm and α is a constant of proportionality.

To approximate the expectation, we use Monte Carlo integration drawing D sample
frequencies ω1, . . . ,ωD from p. In order to guarantee that k(r) is real valued for all r, we
also include ω−j = −ωj for each sample frequency. This results in the sparse spectrum
approximation (Lázaro-Gredilla et al., 2010):

k(x,x�) ≈ α2

2D

D�

j=−D

eiω
�
j (x−x�). (2.10)

In the particular case of the squared exponential kernel α2 = σ2
s , and the frequencies are

drawn from the normal distribution N (0,Λ−1).

Since the exponential in (2.10) can be represented in terms of sinusoidal functions, we
define the feature mapping φ : Rm → R2D by,

φ(x) :=
α√
D
[cos(ω�

1x), sin(ω
�
1x), . . . , cos(ω

�
Dx), sin(ω

�
Dx)]

�. (2.11)

In order to make use of the sparse spectrum approximation, the matrix inversion lemma is
applied to equations (2.5a) and (2.5b), giving

µ(x∗) = φ(x∗)
�A−1φ(X)�y, (2.12a)

Σ(x∗) = σ2
n + σ2

nφ(x∗)
�A−1φ(x∗), (2.12b)

where A = φ(X)�φ(X) + σ2
nI , and φ(X) is the matrix obtained by applying φ to each

column of X . Instead of inverting the N × N matrix Q, we now only require the inverse
of the 2D × 2D matrix A. This constitutes a significant saving in computation if D � N .
Importantly, the size of A is independent of the number of training points, which makes it
amenable to incremental updates (Gijsberts and Metta, 2013).
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Applying the same idea to the log marginal likelihood (2.7) gives the expression

logP(y|X,θ) =− 1

2
log |A|+ D

2
log σ2

n −
n

2
log(2πσ2

n)

− 1

2σ2
n

�
y�y − y�φ(X)A−1φ(X)�y

�
.

(2.13)

Again, the smaller size of A results in reduced computational complexity for hyperparam-
eter inference. In particular, each step of the gradient based optimization is O(nD2).

2.4.2 Incremental Updates

To incrementally handle a stream of data, the matrix A and the vector b = φ(X)�y need to
be updated in real-time. Given a new sample, (x, y), the updates are computed according
to the rules (Gijsberts and Metta, 2013):

A ← A+ φ(x)φ(x)� and b ← b+ φ(x)y. (2.14)

Since A remains positive semidefinite after each update, we do not need to store it explic-
itly. Instead, we can keep track of its upper triangular Cholesky factor. This allows us to
make use of fast, numerically stable rank-1 Cholesky updates (Gijsberts and Metta, 2013).
A demonstration of incremental updating is shown in figure 2.2. Additional samples can
be incorporated to improve predictions in areas far away from our initial training dataset.
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Figure 2.2: Incrementally updating a sparse spectrum GP. Left: SSGP fit to six data points
sampled from the sine function. Hyperparameters set to (σ2

n = 0.001, σ2
s = 0.8, l = 1.58).

Right: Incrementally updated SSGP using an additional six data points.
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Chapter 3

Constrained Convex Optimization

This chapter reviews some fundamental ideas from convex optimization and introduces
structure exploiting solvers for model predictive control. We begin by defining convex
programs in section 3.1 and then discuss primal-dual interior point methods in sec-
tion 3.2. Next, we introduce convex multistage problems in section 3.3 and show how
to exploit their structure for real-time optimization. Finally, section 3.4 provides some
examples and applications of the fast interior point methods outlined in this chapter.

3.1 Basic Definitions

This section serves as a brief summary of chapters 4 and 5 of Boyd and Vandenberghe
(2004). We introduce convex programs and some basic definitions relevant to the rest of
the chapter.

Consider the convex program:

minimize
z

f(z)

subject to Az = b,

g(z) ≤ 0,

(3.1)

where A is a p × n matrix with full row rank, b is a vector in Rp, and z is a vector of
primal variables in Rn. The objective function f : Rn → R and non-linear constraints
g : Rn → Rm are convex.

Optimality: We say that a point z∗ in Rn is locally optimal if:

i) it is (primal) feasible — that is, Az∗ = b and g(z∗) ≤ 0; and
ii) there is a scalar ρ > 0 such that f(z) ≥ f(z∗) for all feasible z with ||z− z∗|| < ρ.

If condition ii) holds for any ρ > 0 then z∗ is globally optimal. A fundamental property
of convex problems is that any local solution is also a global solution (Boyd and Vanden-
berghe, 2004).
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Lagrangian: An important function in mathematical optimization is the Lagrangian, de-
fined by

L(z,ν,λ) := f(z) + ν�(Az− b) + λ�g(z). (3.2)

The components of the vectors ν ∈ Rp and λ ∈ Rm are known as dual variables. We also
define a closely related function — the Lagrangian dual — to be the minimum of (3.2)
over the primal variables z ∈ Rn i.e.

d(ν,λ) := inf
z
L(z,ν,λ). (3.3)

Dual problem: For λ ≥ 0 and any feasible point, the Lagrangian dual is a lower bound
on f . We can find the tightest lower bound by solving the dual problem associated with
(3.1):

maximize
ν,λ

d(ν,λ)

subject to λ ≥ 0.
(3.4)

Quantifying the relationship between primal and dual problems is a major area of study in
convex optimization. We refer the reader to Boyd and Vandenberghe (2004) and Wright
(1997) for an overview of duality theory and its application to the design and analysis of
interior point methods.

Duality gap: As a final note, duality allows us to bound the sub-optimality of a feasible
point z ∈ Rn. If (ν,λ) is dual feasible and p∗ denotes the solution to the primal problem,
then

f(z)− p∗ ≤ f(z)− d(ν,λ). (3.5)

The difference between the primal and dual objectives is called the duality gap and pro-
vides a useful stopping criterion for iterative optimization methods.

3.1.1 Karush-Kuhn-Tucker Conditions

Under the assumption that (3.1) is strictly feasible, the Karush-Kuhn-Tucker (KKT) con-
ditions are necessary and sufficient conditions for a primal-dual pair to be optimal. Let
z∗ ∈ Rn, ν∗ ∈ Rp, λ∗ ∈ Rm, and let s∗ ∈ Rm be a nonnegative vector of slacks. Then z∗

and (ν∗,λ∗) are primal-dual optimal if and only if they satisfy the KKT conditions:

∇f(z∗) + A�ν∗ +G(z∗)�λ∗ = 0, (stationarity)
Az∗ − b = 0, g(z∗) + s∗ = 0, (primal feasibility)

s∗iλ
∗
i = 0, for i = 1, . . . ,m (complementary slackness)

(s∗,λ∗) ≥ 0. (dual feasibility)

12



3.2 Primal-dual Methods

Primal-dual methods find a solution to problem (3.1) by applying Newton’s method to the
KKT conditions. This defines an iterative procedure where we compute a search direction
by linearizing the KKT conditions and solving the resulting system of equations:




H(z,λ) A� G(z)� 0
A 0 0 0

G(z) 0 0 I
0 0 S Λ







Δz
Δν
Δλ
Δs


 = −




∇f(z) + A�ν +G(z)�λ
Az− b
g(z) + s
ΛS1


 , (3.7)

where Λ := diag(λ1, . . . ,λm) and S := diag(s1, . . . , sm) are diagonal matrices and

H(z,λ) := ∇2f(z) +
m�

i=1

λi∇2gi(z). (3.8)

Taking a full step in the Newton direction (Δz,Δν,Δλ,Δs) is usually not admissible,
since it would violate the bounds (s,λ) ≥ 0 (Wright, 1997). Consequently, we perform a
line search to ensure that the next iterate:

(z,ν,λ, s) ← (z,ν,λ, s) + α(Δz,Δν,Δλ,Δs), (3.9)

is dual feasible for some α ∈ (0, 1]. Unfortunately, this often restricts us to small steps
in the Newton direction — hindering progress toward a solution in practice. Primal-dual
methods address this issue by biasing the search direction toward the interior of the non-
negative orthant where (s,λ) ≥ 0. This allows us to take larger steps without violating the
feasibility conditions.

3.2.1 The Central Path

To bias the Newton direction, primal-dual methods typically track the central path to the
solution. The central path is a set of points (zτ ,ντ ,λτ , sτ ), parameterized by τ > 0, that
solves the relaxed KKT conditions:

∇f(z) + A�ν +G(z))�λ = 0, (3.10a)
Az− b = 0, g(z) + s = 0, (3.10b)
siλi = τ, for i = 1, . . . ,m (3.10c)

(s,λ) > 0. (3.10d)

The key idea is to solve (3.10) for a decreasing sequence of τ . As τ decreases to zero, the
central path guides us toward a solution while keeping the products siλi strictly positive.

More concretely, we introduce a centering parameter σ ∈ [0, 1] and the duality mea-
sure, µ := s�λ/m. The biased search direction is found by solving the following system
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of equations:



H(z,λ) A� G(z)� 0
A 0 0 0

G(z) 0 0 I
0 0 S Λ







Δz
Δν
Δλ
Δs


 = −




∇f(z) + A�ν +G(z)�λ
Az− b
g(z) + s

ΛS1− σµ1


 . (3.11)

At one extreme, choosing σ = 0 results in the standard Newton direction (also known as
the affine-scaling direction). Moving in this direction typically pushes iterates close to the
boundary of the feasible set, limiting step size in practice.

At the other extreme, setting σ = 1 gives us a centering direction pointing towards
the point (zµ,νµ,λµ, sµ) on the central path. Centering steps are usually biased strongly
towards the interior of the nonnegative orthant but make little headway at reducing µ. How-
ever, moving closer to the central path allows us to take relatively large steps in subsequent
iterations without violating feasibility.

A basic implementation of the primal-dual interior point method is shown in algo-
rithm 2. Typically, we use the duality gap or the infinity norm of the residuals as stopping
criteria.

Algorithm 2: Basic primal-dual interior point method
Data: Initial iterates z0, ν0, λ0 > 0 and s0 > 0, centering parameter σ ∈ (0, 1]

1 for k = 0, 1, 2, . . . do
2 Compute the duality measure µk = s�kλk/m
3 Find the search direction (Δzk,Δνk,Δλk,Δsk) by solving (3.11)
4 Update the solution:

(zk+1,νk+1,λk+1, sk+1) = (zk,νk,λk, sk) + αk(Δzk,Δνk,Δλk,Δsk)
choosing a step size αk such that sk+1 > 0 and λk+1 > 0

5 end

3.2.2 Mehrotra’s Predictor-Corrector Method

Since its introduction in 1992, Mehrotra’s predictor-corrector method (Mehrotra, 1992) has
become a standard tool in convex optimization (Mattingley and Boyd, 2012; Czyzyk et al.,
1999; Vanderbei, 1999). Mehrotra’s algorithm builds on the basic primal-dual method by
adding:

i) an affine-scaling “predictor” step;
ii) an adaptive heuristic for choosing the centering parameter; and

iii) a “corrector” step that addresses linearization error in the complementary slackness
conditions.
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Predictor step: Given a point (z,ν,λ, s) with (λ, s) > 0, we begin by by solving (3.11)
with σ = 0 to compute the affine-scaling direction (Δzaff,Δνaff,Δλaff,Δsaff). Then we
perform a line search to find the maximum feasible step size in this direction:

αaff := max{α ∈ [0, 1] : s+ αΔsaff ≥ 0,λ+ αΔλaff ≥ 0}. (3.12)

As a measure of progress, we can then predict the duality resulting from a step in the
affine-scaling direction:

µaff := (s+ αΔsaff)�(λ+ αΔλaff)/m. (3.13)

Centering step: If µaff � µ, we can make good progress toward the solution by following
the affine-scalling direction. This motivates choosing a small value for σ. However if µaff

is roughly equal to µ, we should take a centering step by setting σ close to one. Mehrotra
(1992) proposes the following heuristic to determine the centering parameter:

σ := (µaff/µ)3. (3.14)

The centering direction can then be computed by solving the following system:



H(z,λ) A� G(z)� 0
A 0 0 0

G(z) 0 0 I
0 0 S Λ







Δzcent

Δνcent

Δλcent

Δscent


 =




0
0
0

σµ1


 . (3.15)

Corrector step: To motivate the corrector step, consider the complementary slackness
conditions after a step in the affine-scaling direction is taken:

(si +Δsaff
i )(λi +Δλaff

i ) = siλi + λiΔsaff
i + sΔλaff

i +Δsaff
i Δλaff

i (3.16a)

= Δsaff
i Δλaff

i . (3.16b)

Instead of going to zero, the pairwise products siλi become Δsaff
i Δλaff

i . To compensate for
this error a corrector direction can be found by solving the system:




H(z,λ) A� G(z)� 0
A 0 0 0

G(z) 0 0 I
0 0 S Λ







Δzcor

Δνcor

Δλcor

Δscor


 =




0
0
0

−ΔSaffΔΛaff1


 , (3.17)

where ΔSaff := diag(Δsaff) and ΔΛaff := diag(Δλaff) are diagonal matrices.

The final search direction is then a sum of the affine-scaling, centering and corrector
terms. Note that the coefficient matrices in (3.11), (3.15) and (3.17) are identical so we can
save on computation by combining the right-hand sides to form the following system:




H(z,λ) A� G(z)� 0
A 0 0 0

G(z) 0 0 I
0 0 S Λ







Δz
Δν
Δλ
Δs


 = −




∇f(z) + A�ν +G(z)�λ
Az− b
g(z) + s

ΛS1− σµ1+ΔSaffΔΛaff1


 . (3.18)

Figure 3.2.2 highlights the differences between the basic primal-dual method and Mehro-
tra’s predictor-corrector method.
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Figure 3.1: Contrasting the basic primal-dual interior point method with Mehrotra’s
predictor-corrector method. Left: Using centering the basic primal-dual method biases
the affine-scaling search direction. Moving towards the central path allows for larger steps
in subsequent iterations. Right: Mehrotra’s predictor-corrector computes a search direc-
tion using a combination of predictor, centering and corrector terms. The resulting iterates
track the central path more closely, giving better performance in practice.

Algorithm 3: Mehrotra’s predictor-corrector method
Data: Initial iterates z0, ν0, λ0 > 0 and s0 > 0

1 for k = 0, 1, 2, . . . do
2 Compute the duality measure µk = s�λ/m
3 Find the affine direction (Δzaff

k ,Δνaff
k ,Δλaff

k ,Δsaff
k ) by solving (3.11)

4 Perform a line search to find the affine step size:
αaff
k = max{α ∈ [0, 1] : sk + αΔsaff

k ≥ 0,λk + αΔλaff
k ≥ 0}

5 Compute the predicted affine duality measure:
µaff
k = (sk + αΔsaff

k )�(λk + αΔλaff
k )/m

6 Compute the centering parameter σk = (µaff
k /µk)

3

7 Find the combined direction (Δzk,Δνk,Δλk,Δsk) by solving (3.18)
8 Perform a line search to find the final step size:

αk = max{α ∈ [0, 1] : sk + αΔsk ≥ 0,λk + αΔλk ≥ 0}
9 Update the solution:

(zk+1,νk+1,λk+1, sk+1) = (zk,νk,λk, sk) + αk(Δzk,Δνk,Δλk,Δsk)

10 end

3.3 Exploiting Problem Structure

In principle, the interior point methods introduced in section 3 can be used to solve opti-
mization problems arising in a broad range of applications. However, the computational
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burden of solving large linear systems at each iteration can be limiting in practice. In light
of this issue, there has been growing interest in efficient optimization for real-time appli-
cations (Wang and Boyd, 2010; Domahidi et al., 2012; Frison et al., 2014). A particularly
successful approach has been the combination of interior point methods with structure ex-
ploiting multistage solvers (Kouzoupis et al., 2015). In this section we introduce convex
multistage problems and show how to leverage their structure to efficiently compute the
search directions in algorithm 3. The approach outlined in this section follows Domahidi
et al. (2012).

3.3.1 Convex Multistage Problems

Problem 1. Consider the multistage problem:

min
z1,z2,...

N�

k=0

lk(zk), (stage costs)

subject to

L0(z0) = 0 (initial equality)
Lk(zk−1, zk) = 0, k = 1, . . . , N (inter-stage equality constraints)
gk(zk) ≤ 0 k = 0, . . . , N (inequality constraints)

with N + 1 stage variables zk ∈ Rnk , convex stage costs lk : Rnk → R, convex inequal-
ity constraints gk : Rnk → Rmk with non-empty interior and affine inter-stage equality
constraints L0 : Rn0 → Rp0 and Lk : Rnk−1 × Rnk → Rpk defined by:

L0(z0) := D0z0 + c0,

Lk(zk−1, zk) := Ck−1zk−1 +Dkzk + ck k = 1, . . . , N

Here Ck and Dk are pk × nk matrices such that [Ck−1Dk] has full row rank and ck ∈ Rpk .
Altogether we have n := n0 + . . . + nN stage variables, m := m0 + . . . +mN inequality
constraints and p := p0 + . . .+ pN affine equality constraints.

Model predictive control: Note that any model predictive control problem with affine
time-varying dynamics can be reformulated as a multistage problem. For example, consider
a system described by the dynamics

xk+1 = Akxk + Bkuk + bk, and x0 = x̂0, (3.20)

where xk and uk are the state and control vectors at time step k. Our goal is to compute
a sequence of control inputs that minimize some cost function. We can rewrite (3.20) as a
sequence of inter-stage constraints by setting

zk := [uk,xk+1], k = 0, . . . , N − 1 (3.21a)
Ck−1 := [0, Ak], Dk := [Bk,−I], ck := bk, k = 1, . . . , N (3.21b)

D0 := [B0,−I], and c0 := A0x̂0 + b0. (3.21c)
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The resulting multistage problem can then be solved to find the optimal control.

Search directions: For multistage problems search directions can be found by solving the
following linear system:




H(z,λ) A� G(z)� 0
A 0 0 0

G(z) 0 0 I
0 0 S Λ







Δz
Δν
Δλ
Δs


 = −




rc
re
ri
rs


 , (3.22a)

where the residuals rc ∈ Rn, re ∈ Rp, ri ∈ Rm and rs ∈ Rm are defined by the right hand
side of (3.11). Stage variables, duals and slacks are concatenated into vectors

z :=
�
z0, . . . , zN

�
∈ Rn, ν :=

�
ν0, . . . ,νN

�
∈ Rp, (3.22b)

λ :=
�
λ0, . . . ,λN

�
∈ Rm, s :=

�
s0, . . . , sN

�
∈ Rm, (3.22c)

and the remaining terms are given by:

b :=
�
− c0, . . . ,−cN

�
∈ Rp, (3.22d)

g(z) :=
�
g0(z0), . . . ,g0(z0)

�
∈ Rm, (3.22e)

∇f(z) :=
�
∇l0(z0), . . . ,∇lN(zN)

�
∈ Rn, (3.22f)

A :=




D0 0 · · · 0 0
C0 D1 · · · 0 0
...

... . . . ...
...

0 0 · · · CN−1 DN


 ∈ Rp×n, (3.22g)

G(z) := blkdiag
�
∇g0(z0), . . . ,∇gN(zN)

�
∈ Rm×n, (3.22h)

H(z,λ) := blkdiag
�
H0(z0,λ0), . . . , HN(zN ,λN)

�
∈ Rn×n, (3.22i)

with Hk(zk,λk) := ∇2lk(zk) +

qk�

j=1

λkj∇2gkj(zk) ∈ Rnk×nk . (3.22j)

Note that the multistage structure results in block diagonal matrices H(z,λ) and G(z), and
a block banded equality constraint matrix A.

3.3.2 Reduction by Block Elimination

As a first step towards exploiting the structure of (3.22), we eliminate Δs to obtain the
following symmetric indefinite system:



H(z,λ) A� G(z)�

A 0 0
G(z) 0 −Λ−1S





Δz
Δν
Δλ


 = −



rc
re
rw


 , (3.23a)

Δs = −Λ−1(rs + SΔλ), (3.23b)
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where we define rw := ri − Λ−1rs. Note that (3.23b) is well-defined since the elements of
Λ are strictly positive at any step of Mehrotra’s method. To further reduce (3.23) we can
eliminate Δλ to obtain the augmented system:

�
Φ A�

A 0

� �
Δz
Δν

�
= −
�
rd
re,

�
, (3.24a)

Δλ = S−1Λ(G(z)Δz+ rw), (3.24b)

with the matrix Φ ∈ Rn×n and residual rd ∈ Rn defined by

Φ := H(z,λ) +G(z)�S−1ΛG(z), (3.25a)
rd := rc +G(z)�S−1Λrw. (3.25b)

Finally, the most compact representation of the step equations can be obtained by finding
the Schur complement of the coefficient matrix in (3.24a). This results in the normal
equations form:

YΔν = β, (3.26a)
Δz = −Φ−1(rd + A�Δν), (3.26b)

where the matrix Y ∈ Rp×p and the vector β ∈ Rp are defined by

Y := AΦ−1A�, (3.27a)
β := −Φ−1(rd − A�Δν). (3.27b)

Primal-dual methods based on the normal equations use sparse Cholesky decomposition
to solve (3.26a). For multistage problems we can leverage tailored block-wise Cholesky
factorization for additional speedups (see section 3.3.4).

3.3.3 Efficiently Computing the Matrix Y

Since the augmented Hessian Φ is block diagonal, its inverse is block diagonal too. Coupled
with the block banded structure of A, the coefficient matrix Y := AΦ−1A� is symmetric
and block tri-diagonal i.e.

Y :=




Y0,0 Y �
1,0

Y1,0 Y1,1 Y �
2,1

Y2,1
. . . . . .
. . . . . . Y �

N,N−1

YN,N−1 YN,N




(3.28)

with blocks defined as follows:

Y0,0 := D0Φ
−1
0 D�

0 , (3.29a)
Yk,k := Ck−1Φ

−1
k−1C

�
k−1 +DkΦ

−1D�
k, k = 1, . . . , N (3.29b)

Yk+1,k := CkΦ
−�D�

k. k = 0, . . . , N − 1 (3.29c)
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Domahidi et al. (2012) propose the following three steps to form the matrix Y from the
inter-stage equality constraints:

Step 1: Compute the Cholesky decomposition of each block in Φ, i.e. find lower triangular
factors Lk such that Φk = LkL

�
k.

Step 2: Solve Vk−1L
�
k−1 = Ck−1 for Vk and WkL

�
k = Dk for Vk for Wk using matrix

forward substitution.

Step 3: Compute the terms in (3.29), i.e.

Y0,0 = W0W
�
0 , (3.30a)

Yk,k = Vk−1V
�
k−1 +WkW

�
k , k = 1, . . . , N (3.30b)

Yk+1,k = VkW
�
k . k = 0, . . . , N − 1 (3.30c)

The above procedure improves on method of Wang and Boyd (2010) both in terms of
numerical stability and efficiency. Computational costs are shown in table 3.1.

Table 3.1: Cost of computing Yk,k and Yk+1,k

Step Operation Cost (flops)

1 Factor Φk = LkL
�
k 1/3n3

k

2 Solve Vk−1L
�
k−1 = Ck−1 for Vk n2

k−1pk
2 Solve WkL

�
k = Dk for Wk n2

kpk
3 Compute Yk,k = Vk−1V

�
k−1 +WkW

�
k (nk−1 + nk)p

2
k

3 Compute Yk+1,k = VkW
�
k 2nkp

2
k

3.3.4 Block-wise Cholesky Factorization of Y

Finally, by finding the Cholesky decomposition of Y we can solve (3.26) for Δν. Since
the matrix Y is block tri-diagonal, its Cholesky factor LY has a block banded structure:

LY :=




L0,0 0 0 · · · 0 0
L1,0 L1,1 0 · · · 0 0
0 L2,1 L2,2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · LN−1,N−1 0
0 0 0 · · · LN,N−1 LN,N



, (3.31)

where Lk,k ∈ Rrk×rk are lower triangular matrices and Lk+1,k ∈ Rrk+1×rk are dense. Lever-
aging this structure, we see that

Y0,0 = L0,0L
�
0,0, (3.32a)

Yk+1,k = Lk+1,kL
�
k,k, k = 0, . . . , N − 1 (3.32b)

Yk,k − Lk,k−1L
�
k,k−1 = Lk,kL

�
k,k. k = 1, . . . , N (3.32c)
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We can solve (3.32b) for Lk+1,k with a forward substitution, while each Lk,k is found by
applying Cholesky factorization to (3.32a) or (3.32c) (Wang and Boyd, 2010). The compu-
tational costs for the Cholesky factorization are given in table 3.2.

Table 3.2: Cost of block-wise Cholesky factorization of Y
Step Operation Cost (flops)

(3.32a) Factor Y0,0 = L0,0L
�
0,0 1/3p3k

(3.32b) Solve Yk+1,k = Lk+1,kL
�
k,k for Lk+1,k p2kpk+1

(3.32c) Solve Yk,k − Lk,k−1L
�
k,k−1 = Lk,kL

�
k,k for Lk,k p2krk

After factorizing Y we can find Δν by solving the normal equations (3.26a). Then we
successively compute Δz, Δλ and Δs using (3.26b), (3.24b) and (3.23b) respectively.

3.4 Examples and Applications

In this section we apply Mehrotra’s method (with structure exploiting solver) to some sim-
ple model predictive control problems. In the first example we investigate the control of
a simple double integrator system. The second example discusses slew rate (or input rate)
constraints, and the final example demonstrates soft constraints.

For performance we generate problem specific C-99 code taking advantage of static
memory allocation and fixed problem dimensions. Note that model predictive control prob-
lems typically have a small number of stage variables so custom linear algebra routines
often out perform BLAS/LAPACK (Domahidi et al., 2012; Houska et al., 2011).

Example 1. In this example we consider the following linear MPC problem:

minimize
xk,uk

x�
NPxN +

N−1�

k=0

x�
kQxk + u�

kRuk

subject to x0 = x̂0,

xk+1 = Axk + Buk,

u ≤ uk ≤ u,

(3.33a)

where

Q :=

�
10 0
0 15

�
, P := 15Q,R := 1, A :=

�
0.7115 −0.4345
0.4345 0.8853

�
,

B :=

�
0.2173
0.0573

�
,u := −0.5,u := 2, x̂0. :=

�
−2
6

�
.

(3.33b)

At each time set we solve (3.33) and apply the first control input to the system. We use
a planning horizon of N := 15 and plot the controlled dynamics over 30 time steps (see
figure 3.2). The goal is to regulate the initial state x̂0 = [−2, 6]� to the origin [0, 0]�.
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Figure 3.2: Controlled dynamics of the system in example 1. Left: State dynamics. Start-
ing from the point x̂0 = [−2, 6]� the system is regulated to [0, 0]�. Middle: Control signal.
The input limits are shown by the dashed pink lines. Right: Phase portrait of the dynamics.

Example 2. In this example we add an additional slew rate constraint to the controller:

− 1 ≤ uk − uk−1 ≤ 0.5. (3.34)

Slew rate constraints stabilize the controller by preventing rapid changes in the control
signal. To incorporate the slew rate constraint we augment the state with the previous
control input and define the augmented dynamics:

x̃k :=

�
xk

uk−1

�
, x̃k+1 =

�
A B
0 I

�
x̃k +

�
B
I

�
ũk, where ũk := uk − uk−1. (3.35)

Then the slew rate and input constraints become simple constraints on ũk and x̃k respec-
tively. The state dynamics, control inputs, and slew rate are shown in figure 3.3.
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Figure 3.3: Controlled dynamics with slew rate constraint. Time steps 0 − 5: The input
signal is maximally increased (with a slew rate of 0.5) until it reaches an upper bound of 2.
Time steps 6 − 8: the input signal is maximally reduced (with a slew rate of −1) until it
reaches a lower bound of −0.5.
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Example 3. In the final example we demonstrate how to incorporate soft state constraints
into the control problem. First, we introduce and penalty matrix S and additional variables
δk which represent the magnitude of the constraint violation. Then the soft constrained
MPC problem is:

minimize
xk,uk

x�
NPxN +

N−1�

k=0

x�
kQxk + u�

kRuk + δ�
k+1Sδk+1

subject to x0 = x̂0,

xk+1 = Axk + Buk,

u ≤ uk ≤ u,

x− δk ≤ xk ≤ x+ δk,

δk ≥ 0.

(3.36)

Typically S is chosen to be much larger that Q and R so that the soft formulation does
not have a significant effect when all constraints can be satisfied. We set S := 104 and
constrain the inputs and the first component of the sate vector:

− 1.2 ≤ uk ≤ 0.5, and − 4− δk ≤ xk[0] ≤ 1.3 + δk. (3.37)

Finally, the initial state is set to x̂ := [−4, 1]�. The resulting system dynamics and con-
straint violation are shown in figure 3.4.
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Figure 3.4: Controlled dynamics with soft constraints. Left: State dynamics. The state
constraints are shown by the pink dashed lines. Between time steps 6− 8 the upper bound
is violated. Right: Magnitude of the constraint violation.
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Chapter 4

Problem Formulation

In this chapter we formulate autonomous racing as a model predictive control problem.
The idea is to plan a trajectory around the race track by solving a sequence of optimization
problems with the objective of maximizing progress while avoiding collisions. To ensure
that the plan is feasible, the optimization is also constrained by the vehicle dynamics out-
lined in section 4.1 and the control input constraints discussed in section 4.3. In section 4.2
we describe the race track model and introduce ribbon coordinates. Finally, section 4.4
reviews the contouring control framework.

4.1 Car Dynamics

Formally, we consider the control of a 1:43 scale racing car described by the dynamics:

ẋ = fc(x,u) +W (δc(x,u) + ε) , (4.1)

composed of a known nominal model fc and unmodeled disturbances δc. The disturbances
are assumed to lie in a subspace spanned by the columns of the matrix W and are subject
to additive process noise ε. The state vector x = [x, y,φ, vx, vy,ω]

� consists of the position
(x, y) of the car, its orientation φ, longitudinal and lateral velocities (vx, vy), and yaw rate
ω. The control inputs u = [d, δ]� are the duty cycle d of the drive train motor and the
steering angle δ.

4.1.1 Bicycle Model

Following Liniger et al. (2015), the cars are modeled using a bicycle model with nonlinear
tyre forces (see figure 4.1). Pitch and roll dynamics are neglected so only in-plane motion
is considered. The symmetry of the car is used to approximate the pairs of front and back
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tyres as single wheels resulting in the equations of motion:

fc(x,u) =




vx cosφ− vy sinφ
vx sinφ+ vy cosφ

ω
1
m

�
Fr,x(x,u)− Ff,y(x,u) sin δ +mvyω

�
1
m

�
Fr,y(x,u) + Ff,y(x,u) cos δ −mvxω

�
1
Iz

�
Ff,y(x,u)lf cos δ − Fr,y(x,u)lr

�



, (4.2)

where m is the mass of a car, Iz is the moment of inertia about the z-axis and lf and lr are
the distances of the center of gravity from the front and rear wheels respectively. Finally,
Fr,x, Fr,y and Ff,y are tyre forces which describe the interaction between the car and the
road (see section 4.1.2 for details).

αr

vx

vy ϕ˙

lr

lf

Frx

Fry

Ffy

δ
αf

Figure 4.1: Schematic diagram of the bicycle model. Tyre forces (pink), slip angles (blue),
velocities (green).

4.1.2 Tyre Model

Tyre forces play an important role in vehicle dynamics and have been investigated exten-
sively since the introduction of Pacejka’s Magic Tyre Formula (Pacejka, 2005). In this
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work, Fr,x, Ff,y and Fr,y are modeled using a simplified Pacejka model (Liniger et al.,
2015):

Ff,y = Df sin(Cf arctan(Bfαf )) where αf = − arctan

�
ωlf + vy

vx

�
+ δ,

Fr,y = Dr sin(Cr arctan(Brαr)) where αr = arctan

�
ωlr − vy

vx

�
.

Subscripts f and r are used to distinguish the parameters of the front and rear tyres and
the constants B, C and D define the shape of the force curve resulting from a slip angle α.
Figure 4.2 shows the tyre force curves for the parameters in table 4.1.

slip angle α
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Figure 4.2: Tyre force curves for the front (left) and rear (right) tyres.

Finally, the drivetrain force Fr,x is a combination of a DC motor term and a friction term:

Fr,x = (Cm1 − Cm2vx)d− Cr − Cdv
2
x.

The model identification procedure has been discussed in previous work (Voser et al.,
2010). The parameters used in this thesis are reported in table 4.1:

Table 4.1: The model parameters for the bicycle model introduced in section 4.1.
Physical Parameters Tyre Parameters Drivetrain Parameters

Iz 2.78e−5 Bf 2.579 Br 3.3852 Cm1 0.2870
m 0.041 Cf 1.200 Cr 1.2691 Cm2 0.0545
lf 0.029 Df 0.192 Dr 0.1737 Cr0 0.0518
lr 0.033 Cr2 3.5e−4
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4.1.3 Model Discretization

For use in discrete-time model predictive control (see chapter 3) we integrate equation (4.1)
using the 4th order Runge-Kutta method. This results in the dynamics:

xt+1 = f(xt,ut) +W (δ(xt,ut) + εt), (4.3)

where f is the known nominal component, δ is the unknown disturbance model and εt ∼
N (0,Σn) is uncorrelated Gaussian noise.

4.1.4 Learning the Disturbance Model

To learn the disturbance model in equation (4.3) we apply Gaussian process regression (see
chapter 2). Using data collected from interactions with the environment we train a GP to
predict deviations from the nominal system dynamics:

g(xk,uk) = δ(xk,uk) + εk = W † (xk+1 − f(xk,uk)) , (4.4)

where W † is the pseudo-inverse of W . Since g is modeled as a GP, the states xk should be
treated as random variables.

4.2 The Race Track

The race track, pictured in figure 4.4, is modeled as a ribbon-like surface described by a
center line and a fixed track width. The ribbon defines a curvilinear coordinate system
in which points are specified by a distance l along the center line and an offset ρ (see
figure 4.3).

To represent the center line we use a parametric cubic spline. For our application we
fit an arc-length parametrized curve, γ(l) = [xc(l), yc(l)], where l is in the interval [0, L]
and L is the total length of the path. To find an arc-length parametrization, the center line
is interpolated using the method described in Wang et al. (2002a).

4.2.1 Arc-length Parametrization

Starting from a spline curve λ(t) with parameter t in [t0, tn] and break points {t0, t1, . . . , tn}
we compute an approximate arc-length parametrization in three steps. First, the arc-lengths
of each segment in λ(t) are calculated and summed to find the total path length L. Next,
we find m + 1 points spaced equally along λ(t). Finally, we fit a new cubic spline using
the equally spaced points as knots. The full procedure can be described as follows:
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l

ρ

Figure 4.3: The ribbon coordinate system: l is the distance along the center line of the track
and ρ is the offset from the center line.

Step 1: The arc-length of the ith segment in λ(t) is given by the integral

Li =

� ti+1

ti

||λ�(t)||dt, (4.5)

which can be evaluated using standard numerical methods e.g. adaptive Gauss-Kronrod
quadrature (Calvetti et al., 2000). After computing the arc-length of each segment, the total
length the curve is given by the sum L =

�n
i=0 Li.

Step 2: Next, we find m + 1 points on λ(t) positioned at increments of L̃ = L/m along
the curve. These points are defined in terms of parameters values t̃i satisfying

� t̃i

0

||λ�(t)||dt = iL̃, where i = 0, . . . ,m. (4.6)

To determine t̃i we first find a segment, indexed by j, which satisfies:

j−1�

k=0

Lk ≤ iL̃ <

j�

k=0

Lk,

ensuring that t̃i lies in the interval [tj, tj+1). After the segment has been identified, the
integral in (4.6) can be rewritten as:

� t̃i

0

||λ�(t)||dt =
� tj

0

||λ�(t)||dt+
� t̃i

tj

||λ�(t)||dt =
j−1�

k=0

Lk +

� t̃i

tj

||λ�(t)||dt,

and the problem can be reduced to finding the value of t̃i such that

� t̃i

tj

||λ�(t)||dt = iL̃−
j−1�

k=0

Lk. (4.7)
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Figure 4.4: The race track is 18.86 meters long and has a width of 0.375 meters. The track
contains a number of chicanes, straights and turns to encourage interesting racing lines.
The start line is marked in green.

Since the solution to (4.7) lies in the interval [tj, tj+1] we can use the bisection method to
compute t̃i to a desired level of accuracy.

Step 3: Applying the above procedure we can compute a set of break points {t̃0, . . . , t̃m}
that divide λ(t) into segments of equal length. Then, evaluating λ(t) at each t̃i gives us a
set of equally spaced points which are used as knots for fitting a new spline γ(l).

4.2.2 Mapping Between Cartesian and Ribbon Coordinates

Since the car’s dynamics are simulated in Cartesian coordinates but the track constraints are
expressed in ribbon coordinates we need an efficient mapping between the two coordinate
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systems. In this work we use the method proposed by Wang et al. (2002b).

Ribbon to Cartesian Coordinates: Suppose that we are given the ribbon coordinates (l, ρ)
of a point, where l is the distance along the center line and ρ is an offset (see figure 4.3).
Then mapping from Cartesian coordinates can be computed in three steps:

Step 1: Evaluate the spline to find the point γ(l) a distance l along the center line.

Step 2: Compute the unit normal n(l) to the center line at the point γ(l).

Step 3: Find the point offset a distance ρ in the direction of n(l), i.e. the Cartesian coordi-
nates of the point are given by γ(l) + ρn(l).

Cartesian to Ribbon Coordinates: The inverse mapping, from Cartesian to ribbon coor-
dinates, presents a bigger computational challenge. Given the car’s position p = (x, y), the
corresponding ribbon coordinates can be computed using the following three steps:

Step 1: Project p onto the center line of the track i.e. find the parameter l∗ which minimizes
the function

d(l) =
��p− γ(l)

��2. (4.8)

Note that the width of the track is less than the minimum radius of curvature so (4.8) has a
unique minimum.

Step 2: Compute the unit normal n(l∗) to the center line at the point γ(l∗).

Step 3: Find the scalar projection of γ(l∗)− p onto n(l∗) i.e. ρ = n(l∗) · (γ(l∗)− p).

The key step in this procedure is computing the closest point to p lying on the center
line of the track (step 1 above). Although standard optimization techniques can minimize
equation (4.8), Wang et al. (2002b) note that these approaches often fail in practice. To
address this issue they propose a combination of quadratic minimization and Newton’s
method.

Quadratic minimization: The idea behind quadratic minimization is to successively opti-
mize a local quadratic approximation to the objective function. Given l0, l1 and l2 as initial
estimates of l∗, we can fit a quadratic polynomial,

p(l) =
(l − l1)(l − l2)

(l0 − l1)(l0 − l2)
d(l0) +

(l − l0)(l − l2)

(l1 − l0)(l1 − l2)
d(l1) +

(l − l0)(l − l1)

(l2 − l0)(l2 − l1)
d(l2), (4.9)

that interpolates (4.8) at l0, l1 and l2. The minimizer of d(l) is then approximated by the
minimizer of p(l), given by

l∗k =
1

2

(l21 − l22)d(l0) + (l22 − l20)d(l1) + (l20 − l21)d(l2)

(l1 − l2)d(l0) + (l2 − l0)d(l1) + (l0 − l1)d(l2)
. (4.10)

The parameter resulting in the largest value of p(l) is replaced by l∗k and we fit a new
quadratic using (4.9). This procedure repeats for a fixed number of iterations or until some
error tolerance is reached. With a sufficiently good set of initial guesses, this process will
converge to l∗ at a superlinear rate (Luenberger et al., 1984).
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A key step in quadratic minimization is determining a good set of initial guesses. For-
tunately, we can usually guess which segment of the track contains l∗ based on the previous
position and velocity of the car.

Newton’s method: The parameter l∗ that minimizes (4.8) satisfies the condition d�(l∗) = 0.
So, given an initial guess l∗0, we can use Newton’s method to find the root of this equation:

l∗k+1 = l∗k −
d�(l∗k)

d��(l∗k)
, for k = 0, 1, 2, . . . (4.11)

Since Newton’s method utilizes gradients it typically converges faster than quadratic min-
imization. However, Wang et al. (2002b) observe that a poor starting point can severely
impede progress. On the other hand, quadratic minimization is good at refining course ini-
tial guesses, motivating a combination of the two methods. The composite algorithm uses
a few iterations of quadratic minimization to initialize Newton’s method.

4.3 Constraints

To plan a safe trajectory around the track we impose a set of constraints on the car’s position
and the control inputs. This ensures that the controller will avoid collisions while remaining
safely within operational limits.

4.3.1 Track Constraints

First, the car must remain within the boundaries of the track. Let p = (x, y) denote the
position of the car and let (l∗, ρ) be the corresponding ribbon coordinates. Then the distance
between the car and the point γ(l∗) on the center line must not exceed half the track width
(see figure 4.6) i.e. the car must lie within the set

X (l∗) =
�
x :
��p− γ(l∗)

�� ≤ r/2
�
, (4.12)

where r is the track width.

4.3.2 Input Constraints

Second, we limit the maximum steering angle of the car and constrain the duty cycle to lie
between zero and one resulting in the input constraint set:

U =

�
u :

�
0

−δmax

�
≤
�
d
δ

�
≤
�

1
δmax

��
. (4.13)

For our experiments we set δmax to π/9 radians.
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Figure 4.5: To demonstrate the combined approach each point of a typical racing trajectory
(green) is projected onto the center line of the track (purple).

4.4 Contouring Control

Contouring control was originally designed for industrial applications such as machine
tool control and laser profiling (Lam et al., 2010). Recently, contouring control has also
been shown to be an effective framework for autonomous racing (Liniger et al., 2015).
The objective of the controller is to track a given reference path while maximizing some
measure of progress. Often these are competing interests and we need to find a balance
between speed and tracking accuracy.

In contrast to standard tracking approaches, the reference path is described only in
terms of spatial coordinates. This allows the contouring controller to trade-off speed and
accuracy by setting the velocities and orientations of the planned trajectory.
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Figure 4.6: Any point along the planned trajectory must lie within the track boundaries
descibed by the constraint set X in equation (4.12).

Let pk = (xk, yk) denote the position of the car at time tk. Then, the contouring error,

εck = n(l∗k) · (pk − γ(l∗k)), (4.14)

is defined as the normal deviation from the path γ. Here l∗k is the projection of the point
pk onto the path, and n(l∗k) is the unit normal to γ at l∗k. Calculating the contouring error
requires us to determine the value of l∗k at each point along the planned trajectory. This
is too computationally expensive to use as a cost function for real-time model predictive
control. To address this issue, we introduce an approximation to l∗k as a state variable. The
car’s dynamics are augmented by the equation:

lk+1 = lk +Δtvk, vk ∈ [0, vmax], (4.15)

where lk denotes the approximation to l∗k at time tk, and vk is a virtual control input. Since
the path is parameterized by arc length, vk can be thought of as the velocity of the car along
the center line.

For the auxiliary state lk to be a useful approximation we introduce a lag error term εl

defined as the distance between the points γ(l∗k) and γ(lk) along the track. Since neither the
contouring nor lag error can be used directly in the cost function, approximations defined
only in terms of pk and lk are made. The approximate contouring error ε̃ck and approximate
lag error ε̃lk are defined as the orthogonal and tangential component of the error between
the points pk and γ(lk), i.e.

ε̃ck = n(lk) · (pk − γ(sk)) and ε̃lk = t(lk) · (pk − γ(sk)), (4.16)
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where t(lk) is the unit tangent to γ at lk. It is clear from figure 4.7 that ε̃ck approaches εck, and
lk approaches l∗k as the lag error is reduced. Therefore, in order to get a good approximation
of l∗k the lag error ε̃l is heavily penalized in the cost function (4.17).

γ(s*)

εc

γ(s
k
)

εl

εc

εl

˷

˷

Figure 4.7: Contouring error εc, lag error εl and their respective approximations ε̃c and ε̃l.

Using the approximate contouring and lag errors the stage cost function can be defined

L = ||ε̃l(xk, yk, lk)||2ql + ||ε̃c(xk, yk, lk)||2qc − αΔtvk + Lreg(Δuk,Δvk). (4.17)

The term −αΔtv can be thought of as a reward for progressing along the track and the
weights qc and α represent the relative importance of fast progress and accurate path track-
ing. Finally, the term

Lreg(Δuk,Δvk) = ||uk − uk−1||2qu + ||vk − vk−1||2qv , (4.18)

is a slew-rate cost penalizing large changes in control inputs.

4.5 Control Problem

Based on the contouring control framework, we define the autonomous racing problem
which incorporates a learned disturbance model, track constraints and input limits:
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Problem 2. The Autonomous Racing Problem.

Given: L− the contouring stage cost function (section 4.4);
f − a known nominal model of the system’s dynamics (section 4.1);
g − a learned disturbance model (section 4.1.4);
X − the track constraint set (section 4.3.1);
U − the control constraint set (section 4.3.2); and
x̂0 − the initial state of the car.

The autonomous racing problem is defined as the following stochastic non-linear program
over a finite horizon of length N :

minimize
xk,uk

E

�
N−1�

k=0

L(xk, lk,uk, vk)

�
,

subject to x0 = x̂0, l0 = 0,

xk+1 = f(xk,uk) +Wg(xk,uk), k = 0, . . . , N − 1

lk+1 = lk +Δtvk, k = 0, . . . , N − 1

p(xk+1 ∈ X (lk+1)) > 1− ε, k = 1, . . . , N − 1

uk ∈ U , k = 0, . . . , N − 1

0 ≤ vk ≤ vmax, k = 0, . . . , N − 1

(4.19)

where the disturbances are assumed to lie in a subspace spanned by the columns of the ma-
trix W and the track constraints have been reformulated as chance constraints with proba-
bility of violation less that ε.

4.6 Approximate Uncertainty Propagation

Since the disturbance term in problem 2 is modeled as a Gaussian process, we need to
account for input uncertainty when making predictions. Given a control input and a distri-
bution over our current state, we can predict the next state by computing the marginal:

p(xk+1) =

�
p(xk+1|xk,uk)p(xk)dxk. (4.20)

Unfortunately, this integral is intractable in general and the resulting distribution is non-
Gaussian.

To address this issue, Candela et al. (2003) and Girard et al. (2003) propose i) approxi-
mating all the distributions over states as Gaussian i.e.

xk ∼ N (x̄k,Σk), for all k ≥ 0, (4.21)
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and ii) applying a first order Taylor expansion to the dynamics. Using the law of iterated
expectation and the law of total variance, assumption i) allows us to completely describe
the marginal (4.20) by the following mean and variance dynamics:

x̄k+1 := E [xk+1] = E [E [xk+1 | xk]] (4.22a)
= E [f(xk,uk) +Wµ(xk,uk)] , (4.22b)

Σk+1 := Var(xk+1) = E [Var(xk+1 | xk)] + Var(E [xk+1 | xk]) (4.22c)
= E [WΣ(xk,uk)W

�] + Var (f(xk,uk) +Wµ(xk,uk)) . (4.22d)

Taking a Taylor expansion of f , µ and Σ about the point x̄k, equations (4.22b) and (4.22d)
can be approximated by:

x̄k+1 ≈ f(x̄k,uk) +Wµ(x̄k,uk), (4.23a)
Σk+1 ≈ WΣ(x̄k,uk)W

� + (Ak +WCk)Σk(Ak +WCk)
�

=
�
Ak W

� � Σk Σ�
kC

�
k

CkΣk Σ(x̄k,uk)

� �
Ak W

��
, (4.23b)

where

Ak :=
∂f(x,u)

∂x

����
x̄k,uk

, and Ck :=
∂µ(x,u)

∂x

����
x̄k,uk

.

Together, the approximations (4.23a) and (4.23b) offer a simple method of propagating un-
certainty through the system dynamics. As an alternative, exact moment matching is often
used for uncertainty propagation (Deisenroth et al., 2009; Kuss, 2006). Although moment
matching is more accurate than the linearization approach, the added computational cost
may be prohibitive for real-time applications. For more detail on propagating uncertainty
with sparse spectrum Gaussian processes see Pan et al. (2017).

4.6.1 Chance Constraint Reformulation

Making use of the above approximations also allows us to simplify the chance constraint
(4.19). In particular, we use Lemma 1 (Hewing et al., 2018) to reformulate the constraint
as

X̃ (lk+1) :=
�
xk+1 :

��pk+1 − γ(lk+1)
�� ≤ r/2−

�
χ2
2(1− ε)λmax(Σ

p
k+1)
�
, (4.24)

where χ2
2 is the quantile function of the χ-squared distribution with 2 degrees of freedom,

Σp
k+1 is the marginal variance of the joint distribution of pk+1, and λmax(Σ

p
k+1) is the max-

imum eigenvalue of Σp
k+1.

4.7 Simplified Autonomous Racing Problem

Using approximate uncertainty propagation and the chance constraint reformulation dis-
cussed in section 4.6, the autonomous racing problem can be simplified as follows:
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Problem 3. The simplified Autonomous Racing Problem.

minimize
xk,uk

N−1�

k=0

L(x̄k, lk,uk, vk),

subject to x̄0 = x̂0, l0 = 0, Σ0 = 0,

x̄k+1 according to (4.23a), k = 0, . . . , N − 1

lk+1 = lk +Δtvk, k = 0, . . . , N − 1

Σk+1 according to (4.23b), k = 0, . . . , N − 1

x̄k+1 ∈ X̃ (lk+1) according to (4.24), k = 0, . . . , N − 1

uk ∈ U , k = 0, . . . , N − 1

0 ≤ vk ≤ vmax, k = 0, . . . , N − 1

(4.25)

In principle, any non-linear programming method can be used to solve the above prob-
lem. However, to meet real-time requirements we combine sequential convex program-
ming (SCP) with the structure exploiting solver introduced in section 3.3.

4.8 Sequential Convex Programming

In the SCP framework, problem 3 is repeatedly approximated by a convex program formed
by linearizing (4.28a) about a nominal trajectory

z := [x̄guess
0 ,uguess

0 , x̄guess
1 ,uguess

1 , . . . , x̄guess
N ] . (4.26)

The trajectory can then be improved according to the update,

z ← (1− α)z+ αz∗, (4.27)

where α is the step size and z∗ is the solution to the convex program defined by problem 4.
We then re-linearize about the updated trajectory and the process repeats until convergence.
The SCP algorithm for model predictive control is shown in algorithm 4.

Algorithm 4: Sequential convex programming for model predictive control
Data: Initial state x̂0 , solution at previous time step z, and step size α

1 Shift z backwards according to (4.29)
2 for i = 0, 1, 2, . . . do
3 Form the convex program 4
4 Solve the convex program to find z∗ (see algorithm 3)
5 Update the trajectory: z ← (1− α)z+ αz∗

6 end
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Problem 4. Sequential convex program.

minimize
xk,uk

N−1�

k=0

�
xk

lk

��
Hk

�
xk

lk

�
+ fks

�
�
xk

lk

�
− αΔtvk +

�
Δuk

Δvk

��
R

�
Δuk

Δvk

�
,

subject to x̄0 = x̂0, l0 = 0,

x̄k+1 = Akx̄k + Bkuk + bk,

lk+1 = lk +Δtvk,

x̄�
k+1Qx̄k+1 + p�x̄k+1 ≤ rk+1,

u ≤ uk ≤ u,

0 ≤ vk ≤ vmax.

(4.28a)

The cost function is a quadratic approximation of the contouring cost (4.18) and the dy-
namics are a linearization of (4.23a). Specifically, for the cost function, we have:

Hk := ql∇ε̃l(x̄guess
k , lguess

k )∇ε̃l(x̄guess
k , lguess

k )�

+ qc∇ε̃c(x̄guess
k , lguess

k )∇ε̃c(x̄guess
k , lguess

k )�,
(4.28b)

fk := 2

�
∇ε̃l(x̄guess

k , lguess
k )�

∇ε̃c(x̄guess
k , lguess

k )�

� �
ql 0
0 qc

� �
ε̃l(x̄guess

k , lguess
k )

ε̃c(x̄guess
k , lguess

k )

�
− 2Hk

�
x̄guess
k

lguess
k

�
, (4.28c)

and for the linearized dynamics:

Ak :=
∂f(x,u)

∂x

����
x̄

guess
k ,u

guess
k

+W
∂µ(x,u)

∂x

����
x̄

guess
k ,u

guess
k

, (4.28d)

Bk :=
∂f(x,u)

∂u

����
x̄

guess
k ,u

guess
k

+W
∂µ(x,u)

∂u

����
x̄

guess
k ,u

guess
k

, (4.28e)

bk := f(x̄guess
k ,uguess

k ) +Wµ(x̄guess
k ,uguess

k )− Akx̄
guess
k − Bku

guess
k . (4.28f)

To reduce computational costs the variances can be evaluated using the nominal tra-
jectory and kept constant over the optimization. Variances are then reevaluated using the
updated trajectory for the next optimization. Using this idea we can exclude the variance
dynamics from problem 4 while still making use of model uncertainty in the formulation
of the constraints. For model predictive control problems we usually have a good guess for
the nominal trajectory based on the solution at the previous time step. As a result, fixing the
variance dynamics over an optimization step should not significantly affect the accuracy of
the solution. The previous trajectory is shifted backwards to warm start the optimization:

x̄guess
k ← x̄∗

k+1, k = 0, . . . , N − 1 (4.29a)
uguess
k ← u∗

k+1, k = 0, . . . , N − 2 (4.29b)
uguess
N−1 ← uguess

N−2, x̄N ← f(x̄guess
N−1,u

guess
N−1) +Wµ(x̄guess

N−1,u
guess
N−1). (4.29c)

Given a good initial guess, it is often unnecessary to iterate to convergence before a rea-
sonable improvement is found. In real-time settings this is important because we need to
maintain a balance between efficiency and accuracy. An example of this trade-off can be
seen in figure 4.8.
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Figure 4.8: An example of planned trajectories in the autonomous racing task. Note how
early termination yields a solution trajectory that is still near-optimal over a short horizon.

4.9 Gaussian Process Receeding Horizon Control

Finally, putting all the pieces together gives us the complete GP-RHC algorithm shown in
algorithm 5:

Algorithm 5: The complete GP-RHC algorithm
Data: A stage-cost function L, a known nominal model of the dynamics f , state and

control constraints X and U , number of sparse spectrum frequencies D,
planning horizon N , step size α, an initial nominal trajectory z, and an initial
set of training data.

1 Fit a sparse spectrum GP to the initial set of training data (see algorithm 1);
2 foreach episode do
3 foreach step do
4 Measure the current state of the system x̂0;
5 Apply sequential convex programming (see algorithm 4);
6 Apply the control u0 to the system;
7 Optionally update dynamics model (see (2.14));
8 Using the nominal model predict the state of the system given the input u0;
9 Store the error between the current state and predicted state;

10 end
11 Retrain the dynamics model on all available data;
12 end
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Chapter 5

Experiments

Although we focused on autonomous racing in chapter 4, GP-RHC is applicable to a broad
range of control problems. In this chapter we evaluate GP-RHC on three different tasks:
pendulum swing up (section 5.1), cartpole swing up (section 5.2), and autonomous racing
(section 5.3). The experiments are designed to assess the feasibility and performance of
GP-RHC. In particular, we aim to answer the following questions:

i) Can GP-RHC learn an accurate dynamics model for predictive control?
ii) Do incremental updates improve sample efficiency and performance?

iii) Is GP-RHC competitive with state-of-the-art learning-based methods like (Deisen-
roth and Rasmussen, 2011)?

iv) Can GP-RHC make effective use of known nominal dynamics by learning to correct
for unmodeled disturbances?

v) How well does GP-RHC handle non-linear constraints?

In all the experiments GP-RHC was able to run in real-time with appropriate choices for
the planning horizon and the number of frequencies in the sparse spectrum approximation.

5.1 Pendulum Swing Up

For our first experiment we apply GP-RHC to a simple pendulum of mass m = 1kg and
length l = 1m. By applying a torque u, the objective is to swing up and balance the pendu-
lum in the inverted position (see figure 5.1). The system state [θ,ω] is described by the pen-
dulum’s angle θ and its angular velocity ω. The torque u is limited to the range[−2, 2]Nm
and is applied to the pendulum at intervals of 0.1s. A full description of the system dynam-
ics can be found in Deisenroth (2010).

The pendulum is simulated using a 4th order Runge-Kutta method, adding Gaussian
measurement noise to the result. Each episode is 4 seconds long and the cost function is
given by a least squares objective penalizing the distance between the tip of the pendulum
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and the set point [0, l]:

cost(x) := l2 sin2 θ + (l + l cos θ)2. (5.1)

We mark an episode as successful if the tip of the pendulum remains within 6cm of the set
point for the last 0.5 seconds of the episode.

set point [0, l]

torque u

set point [0, l]

Figure 5.1: By applying a torque u the goal is to swing up and balance the pendulum.

For this experiment we compare GP-RHC against PILCO and a baseline controller
using the ground truth dynamics. We assume that no nominal model is given and simply
set f in (4.3) to the identity function. For the sparse spectrum approximation, 50 sample
frequencies are drawn and a planning horizon of 20 time steps is used. Choosing the
number of sample frequencies essentially involves a trade-off between model accuracy
and computational costs. The pendulum swing up task has relatively simple dynamics and
only requires a few sample frequencies to learn a sufficiently accurate model. We found no
difference in performance for a range of sample frequencies between 20 and 200.

Each trial is initialized with 40 data points collected using random control inputs. After
each episode the GP dynamics model is retrained on all the preceding data using a random
restart to avoid occasional poor minima. PILCO can potentially have problems with least
squares costs (Deisenroth, 2010) so we used (the preferred) saturating cost function and
post-processed the results.

Figure 5.2 shows that GP-RHC matches the performance of the ground truth controller
after 2 to 3 episodes and is competitive with PILCO in terms of sample efficiency and
success rate. However, PILCO is able to balance the pendulum earlier than GP-RHC and
performs slightly better in this task. Note that the saturating cost function (which incorpo-
rates model uncertainty) used by PILCO may account for the difference in performance.
An interesting direction for future work would be to incorporate a saturating cost function
into GP-RHC.

Finally, comparing the two variants of GP-RHC shows that incremental updates im-
prove efficiency and reduce variance. Overall GP-RHC with updates performs more con-
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sistently and is less sensitive to the initial training data. As expected, the asymptotic perfor-
mance of the two variants are similar, however GP-RHC with updates achieves a success
rate of about 75% with 50% less data. Figure 5.3 shows an example rollout using GP-RHC
after completing training.
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Figure 5.2: Comparison of GP-RHC, PILCO, and a ground truth controller. Results are
aggregated over 20 trials. Left: Median cost of the pendulum swing up task, bounds on
the confidence envelope represent the interquartile range. GP-RHC is able to quickly learn
a model of the dynamics and matches the performance of the ground truth controller after
2 to 3 episodes. Middle: Success rate, the confidence envelope gives the standard error.
Online updates improve data efficiency and performance. Right: Number of time steps
until the pendulum is stabilized during the final episode. Due to differences in the cost
function PILCO is able to stabilize the pendulum earlier, leading to lower costs.
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Figure 5.3: Example trajectory from GP-RHC. Left and Middle: Control signal and state
dynamics. The input limits are shown by the dashed pink lines. Initially GP-RHC rotates
the pendulum clockwise. At 1.2 seconds the torque switches direction, swinging the pen-
dulum up and balancing it at θ = π. Towards the end of the episode, fluctuations in the
control signal towards correct for measurement noise. Right: Learned error in the angular
velocity ω. The GP’s predictive mean is indicated by the blue line while the shaded region
represents the 95% confidence envelope.
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5.2 Cartpole Swing Up

Cartpole experiments are a common benchmark in both reinforcement learning and optimal
control (Furuta et al., 1991; Kober et al., 2013). The basic set-up consists of a cart, with
an attached pendulum, running along a track. By applying horizontal forces to the cart, the
goal is to swing the pendulum up and balance it at the center of the track (see figure 5.4).
This is a difficult control problem with fairly non-linear dynamics. Additionally, a long
planning horizon is required because the cart must be pushed back and forth in order to
develop enough momentum to swing the pendulum up.

force u

set point [0, l] set point [0, l]

Figure 5.4: By applying a force u to the cart, the goal is to swing the pendulum up and
balance it at the center of the track.

The state of the system, x = [x, v, θ,ω], is described by the position of the cart, the
velocity of the cart, the angle of the pendulum and its angular velocity. A horizontal force
u in the range of −10N to 10N can be applied to the cart at time steps of 0.1s. For a full
description of the system dynamics see Deisenroth (2010).

Again, we compare GP-RHC against PILCO and the ground truth controller. Addition-
ally, given a nominal model of the dynamics, we demonstrate that GP-RHC can learn to
correct for unmodelled disturbances. The nominal part of the dynamics is given by ran-
domly perturbing the system parameters by up to ±10% of their original value. GP-RHC
must learn to account for process noise and mismatch in the dynamics. Disturbance models
are only learned for the cart’s velocity v and the pendulum’s angular velocity ω.

Trials are initialized with 40 data points collected using a uniform random controller.
We sample 200 frequencies for the sparse spectrum approximation and use a planning hori-
zon of 20 time steps. Each episode is 4 seconds long and the cost function is given by a
least squares objective penalizing the distance between the tip of the pendulum and the set
point [0, l]:

cost(x) := (x+ l sin θ)2 + (l + l cos θ)2. (5.2)

Again, an episode is considered successful if the tip of the pendulum remains within 6cm
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of the set point for the last 0.5 seconds of the episode.
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Figure 5.5: Comparison of GP-RHC, PILCO, and a ground truth controller. Results are
aggregated over 20 trials. Left: Median cost of the cartpole swing up task, bounds of the
confidence envelope represent the interquartile range. GP-RHC approximately matches the
performance of the ground truth controller after about 6 episodes. Middle: Success rate,
the confidence envelope gives the standard error. GP-RHC is able to learn a disturbance
model to compensate for model mismatch. Right: Number of time steps until the pendulum
is stabilized during the final episode.

Figure 5.5 shows that GP-RHC is slightly less efficient than PILCO for cartpole swing
up but achieves a better final success rate. GP-RHC can also take advantage of known
nominal dynamics — learning to compensate for model mismatch. With a learned distur-
bance model, GP-RHC is able to match the performance of the ground truth controller and
consistently stabilize the pendulum. Figure 5.6 shows an example rollout using GP-RHC
after completing training.
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Figure 5.6: Example trajectory from GP-RHC. Left: Control signal, the input limits are
shown by the dashed pink lines. Middle: State dynamics, the pendulum is balanced at an
angle of θ = −π. Right: Velocity dynamics. GP-RHC pushes the cart to the left then
rapidly switches direction to swing the pendulum up and balance it. Towards the end of the
episode, fluctuations in the control signal correct for measurement noise.
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Finally, we evaluate the effect that the number of sample frequencies has on perfor-
mance. First, we collect a small dataset of dynamics using the ground truth cartpole con-
troller. We train SSGPs to predict changes in the angle of the pendulum given the control
input and current state of the system. The dataset is split into 350 training points and 50 test
points. The left panel of figure 5.7 reports the normalized mean square error as a function
of the number of sample frequencies used in the sparse spectrum approximation. Addi-
tionally, we apply GP-RHC to the cartpole task over a range of sample frequencies. The
center and right panels of figure 5.7 show that using a larger number of sample frequencies
improves the success rate and reduces the steps to stabilize. However, there is a trade-off
between performance and computational costs.
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Figure 5.7: Effect of number of sample frequencies on performance. Left: Median nor-
malized mean square error as a function of number of sample frequencies. Bounds of the
confidence envelope represent the interquartile range. Middle: Success rate for a selection
of sample frequencies. The confidence envelope gives the standard error. Increasing the
number of sample frequencies improves performance. Right: Number of time steps until
the pendulum is stabilized during the final episode as a function of the number of sample
frequencies.

5.3 Autonomous Racing of 1:43 Scale Cars

In our final experiment we apply GP-RHC to the autonomous racing problem discussed in
chapter 4. For the nominal dynamics we randomly perturb the parameters in table 4.1 by up
to ±15% of their original value. The car is then driven around the track for a single lap and
the errors between the nominal and true dynamics are recorded. This dataset is split into
350 training points and 100 test points. We learn disturbance models for the longitudinal
velocity vx, lateral velocity vy, and yaw rate ω. For the yaw rate model, figure 5.8 reports
normalized mean square error as a function of the number of sample frequencies. For our
final models we use 150 sample frequencies for a balance of accuracy and computational
cost. Predicted deviations from the nominal dynamics are shown in figure 5.9.
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Figure 5.8: Normalized mean square error as a function of the number of basis functions
used in the sparse spectrum approximation.

time steps

0 50 100 150 200 250 300 350

-0.02

-0.01

0.00

0.01

0.02

error in yaw-rate

time steps

0 50 100 150 200 250 300 350

-0.03

-0.02

-0.01

0.00

0.01

0.02

error in lateral velocity

time steps

0 50 100 150 200 250 300 350

-0.02

-0.01

0.00

0.01

0.02

0.03

error in longitudinal velocity

Figure 5.9: Learned disturbance models for the longitudinal velocity vx, lateral velocity vy,
and yaw rate ω.

We use a planning horizon of 40 steps and simulate the system using a sampling time of
Δt = 20ms. Since the optimal racing line operates at the limits of the constraints we use a
soft constraint formulation (see example 3 in chapter 3) to avoid infeasibility problems.

In figure 5.10 we compare the lap times of GP-RHC, the nominal baseline, and the
ground truth controller. Using a learned disturbance model, GP-RHC significantly im-
proves on the nominal baseline achieving an average lap time of 9.3s (a relative improve-
ment of about 8.65%). This represents a dramatic saving considering the high speeds and
small length scales involved in the problem. In fact, a back-of-the-envelope calculation
shows that naively scaling up to full size gives an average speed increase of 27.16km/h
over a 811m track.

Figure 5.11 shows the racing lines for GP-RHC and the nominal baseline over 10 dif-
ferent trials. Due to model mismatch the nominal baseline cannot guarantee safety and
occasionally collides with the track boundary. This is evident around sharp corners and the
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Figure 5.10: Lap times of GP-RHC, the nominal baseline and the ground truth controller.
Results are aggregated over 10 runs.

chicane at the bottom left of the track. GP-RHC learns to correct for errors in the nominal
model, resulting in fast, safe, and consistent racing lines. Figure 5.12 shows the control
inputs and lateral velocity of the car. The lateral velocity is non-zero over large portions
of the lap, showing that GP-RHC can exploit drift dynamics and operate at the limits of
friction.
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GP-RHCnominal baseline

Figure 5.11: Control inputs and lateral velocity of the car over a single lap around the
racing track.
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Finally, we demonstrate that GP-RHC can transfer to new tasks without any further
learning. To do this we adapt the autonomous racing problem, adding a set of static obsta-
cles to the track. Obstacles are included in the MPC constraints by manually adjusting the
track boundaries following our work in Van Niekerk et al. (2017). GP-RHC can implic-
itly take advantage of data collected in the autonomous racing task by simply reusing the
learned disturbance model. With no additional learning GP-RHC is able to avoid collisions
by planning around the obstacles (see figure 5.13).
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Figure 5.12: Racing lines of GP-RHC and the nominal baseline over 10 trials. The color
scale displays the longitudinal velocity of the car.

Figure 5.13: Obstacle avoidance problem. GP-RHC is able to avoid collisions by planning
around the obstacles.
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Chapter 6

Conclusion and Future Work

In this thesis we introduce GP-RHC for learning-based control. By combining data-efficient
sparse spectrum Gaussian processes with model predictive control, GP-RHC is able to learn
and plan in real-time. We show that incorporating online updates results in faster learning
and more reliable performance. We test our method on a complex autonomous racing task,
showing that unmodelled disturbance can be learned from limited data. By learning di-
rectly from data, GP-RHC is able to improve both lap times and constraint handling —
an important feature for safety critical applications. Finally, learned models can be trans-
ferred to new tasks with no additional training. GP-RHC provides a promising approach to
deploying learning-based control on real-world systems.

In future work it would be interesting to extend GP-RHC and address some of its short-
comings. Firstly, Deisenroth (2010) have noted that least squares costs do not work well
with probabilistic dynamics models. To address this issue they propose the use of saturating
cost functions. With relatively minor modifications to the optimization methods discussed
in chapter 3 saturating costs could be incorporated into GP-RHC. Secondly, in order to
meet real-time requirements, we have made a number of trade-offs between accuracy and
computational costs. Specifically, we excluded the variance dynamics from the SCP opti-
mization (see section 4.8) and we chose to use a sparse spectrum approximation instead of
full Gaussian processes to model the dynamics (see section 2.4). It would be interesting to
quantify the effect of these decisions through a set of ablation studies.
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Juš Kocijan, Roderick Murray-Smith, Carl Edward Rasmussen, and Agathe Girard. Gaus-
sian process model based predictive control. In Proceedings of the 2004 American Con-
trol Conference, volume 3, pages 2214–2219. IEEE, 2004.

51



D Kouzoupis, A Zanelli, Helfried Peyrl, and Hans Joachim Ferreau. Towards proper assess-
ment of qp algorithms for embedded model predictive control. In Control Conference
(ECC), 2015 European, pages 2609–2616. IEEE, 2015.

Malte Kuss. Gaussian process models for robust regression, classification, and reinforce-
ment learning. PhD thesis, Technische Universität, 2006.

Denise Lam, Chris Manzie, and Malcolm Good. Model predictive contouring control. In
Decision and Control (CDC), 2010 49th IEEE Conference on, pages 6137–6142. IEEE,
2010.
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