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Abstract

In this thesis, we analyse reasons for poor image quality on the Southern

African Large Telescope (SALT) and we analyse control methods of the

segmented primary mirror. Errors in the control algorithm of SALT (circa

2007) are discovered. More powerful numerical procedures are developed

and in particular, we show that singular value decomposition method is pre-

ferred over normal equations method as used on SALT. In addition, this

method does not require physical constraints to some mirror parameters.

Sufficiently accurate numerical procedures impose constraints on the preci-

sion of segment actuator displacements and edge sensors. We analyse the

data filtering method on SALT and find that it is inadequate for control.

We give a filtering method that achieves improved control. Finally, we give

a new method (gradient flow) that gives acceptable control from arbitrary,

imprecise initial alignment.
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Chapter 1

Review of Multi-element

Reflecting Telescopes

This thesis concerns computational and numerical aspects of SALT, the

Southern African Large Telescope. SALT is a reflecting telescope with a 9.4

metres segmented primary mirror. The alignment of segments is maintained

by automatic control. Image quality, on commission in 2005, was unsatisfac-

tory, owing to flaws in the optical path (spherical aberration corrector) and,

it is believed, for errors of measurements owing to the effect of humidity

on capacitive edge sensors. This thesis, in Chapter 2, objectively decides

on significant environmental variables that corrupt segment alignment. In

Chapters 3 and 4, we analyse the control of mirror segments. From this,

it is clear that we approach the problem of SALT image quality as applied

mathematicians, using mathematical statistics and control theory. We do

not concern ourselves with physical optics (individual mirror segments meet

specifications, as does, now, the spherical aberration corrector) or instru-

mentation.

Telescopes with a primary mirror built from many segments are multi-

element telescopes. Note that mirrors of telescopes can be solid, segmented,

meniscus, honeycomb, liquid. Examples of telescopes are given in Table 1.1,

with basic information.

Note in Table 1.1 that:

• Aperture is measured in metres.

• The term Date refers to the year when the telescope was commissioned,

or is expected to be operational.

• IRTF is the Infrared Telescope Facility, located at the National Aero-

nautics and Space Administration (NASA), Mauna Kea, Hawaii.

1



Table 1.1: A short list of telescopes

Name Date Type Aperture (m)

IRTF 1979 Solid 3

INT 1984 Solid 2.5

KECK 1992/96 Segmented 10

ARC 1994 Honeycomb 3.48

HET 1997 Segmented 9.5

SALT 2005 Segmented 9.5

LSST 2013 Honeycomb 8.4

E-ELT 2018 Segmented 42

TMT 2018 Segmented 30

GMT 2019 Honeycomb 21.4

• INT is the Isaac Newton Telescope, located at the Observatory Roque

de los Muchachos, La Palma, Canary Islands.

• KECK is composed of two telescopes, the first operational since 1992

and the second since 1996; the two telescopes are located at the W.

M. KECK Observatory, Mauna Kea, Hawaii.

• ARC is the Astrophysical Research Consortium, located at the Apache

Point Observatory, Sacramento Peak, New Mexico.

• HET is the Hobby-Eberly Telescope, located at the Mc-Donald Ob-

servatory, Mt. Fow Ikes, Texas.

• SALT is the Southern African Large Telescope, located at the South

African Astronomical Observatory, Sutherland, South Africa.

• LSST is the Large Synoptic Survey Telescope, under construction,

expected to be operational in 2013 and located at the Cerro Tololo

Inter-American Observatory, Cerro Pachon, Chile.

• E-ELT is the European Extremely Large Telescope, under construc-

tion, expected to be operational in 2018 and located in Cerro Arma-

zones, Chile.

• TMT is the Thirty Meter Telescope, previously known as CELT (Cal-

ifornia Extremely Large Telescope), under construction, expected to

2



be operational in 2018 and located in Mauna Kea, Hawaii.

• GMT is the Giant Magellan Telescope, under construction, expected

to be operational in 2019 and located at Las Campanas Observatory,

Cerro Las Campanas, Chile.

Until 2018, SALT is, with KECK and HET, among the largest multi-

element telescopes in operation in the world. SALT is important because

it is the largest telescope in the Southern Hemisphere. However, SALT is

not yet in good working order. Of the telescopes listed in Table 1.1, SALT

is the reflector on which our studies and experiments are conducted. We

are only interested in telescopes with a segmented primary mirror, that is,

multi-element telescopes.

1.1 Background

We give basic specifications of a few examples of multi-element telescopes.

1.1.1 SALT

SALT is the Southern African Large Telescope and is an example of a multi-

element telescope, that is, a telescope with a segmented primary mirror. It

is located in Sutherland near Cape Town in South Africa. It is based on the

design of the Hobby-Eberly Telescope (HET is located in Texas).

SALT primary mirror has a spherical shape and each segment has a

spherical top surface. The radius of curvature is GRoC = 26.165 metres.

GRoC stands for Global Radius of Curvature, that is, the radius of the

best-fit spherical surface to the mirror surface after a possible change in

alignment. It (SALT primary mirror) is composed of 91 hexagonal (regular

hexagon) interchangeable numbered mirror segments each with an inscribed

diameter H = 1 metre, three mounting points on an equilateral triangle

at a distance R = 0.313125 metre from the center of the segment, sensors

with one emitting plate and one receiving plate on each edge between any

two adjacent segments, at a distance d = 13.5cm from the nearest corners.

This gives 273 mounting points and 480 sensors. The primary mirror viewed

from the top is illustrated in Figure 1.1, and a few segments with mounting

points and sensor positions in Figure 1.2. Note that SALT uses capacitive

sensors and these are sensitive to humidity. SALT primary mirror rotates in

3
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Figure 1.1: SALT primary mirror viewed

from the top

 

 

1
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emiter plate
receiver plate

Figure 1.2: SALT segments with

sensors and mounting points

azimuth only [42]. SALT was commissioned in 2005 and by 2007 it was clear

that image quality was not satisfactory. The effect of humidity on capaci-

tive edge sensors were considered important and presently (2012), SALT is

tendering for inductive sensors. Errors in the spherical aberration corrector

have now been corrected. In this thesis, we re-examine available data from

2007 in order to give an objective assessment of causes of poor image quality.

Time, truss temperature and humidity have been found significant from our

study. Changes to SALT’s control algorithm were indicated. These were

implemented in 2011 and tested. SALT operates with 91 segments in place.

Alignment is made at nightfall in order for the control to take place through

the night.

1.1.2 HET

As mentioned before (Section 1.1.1), HET (Hobby-Eberly Telescope) is the

source of inspiration for the design of SALT. HET is located at the Mc-

Donald Observatory in Texas. Its construction started in 1994 and ended

in 1996. It has a primary mirror composed of 91 hexagonal segments with

a 1 metre inscribed diameter, a thickness of 52mm and about 115kg weight

each, a total area of 78m2, an aperture of 9.2 metres. The telescope ro-

4



tates in azimuth to access 85% of the sky. The primary mirror is spherically

shaped with a radius of curvature (RoC) of 26 metres. All the specifications

mentioned above are similar to those of SALT primary mirror. Hence the

layout of HET primary mirror is the same as that of SALT primary mirror.

There are (on HET) three spectrographs of low, medium and high resolution.

The low resolution spectrograph (LRS) is at prime focus on the tracker (13

metres above the primary mirror). Medium resolution spectrograph (MRS)

and high resolution spectrograph (HRS) are beneath the telescope in a cli-

mate controlled basement, and fed by fiber optic cable. The spectrographs

are used as optical corrector facilities. The primary mirror weights about

13 tons and the telescope weights about 80 tons.

The control is performed using Singular Value Decomposition (SVD)

with no constraints, which is different from the method used on SALT (de-

tails are given below). GRoC corrections needed due to thermal expansion

of the truss are estimated based on gap measurements at the SAMS sensors,

and the corrections are added open loop according to the solutions of the

control equations. In contrast to SALT, HET uses inductive sensors. GRoC

is similarly used on SALT.

1.1.3 KECK

There are two KECK telescopes and both have the same design. They are

located in Hawaii. The first one was completed in 1992 and the second one

in 1996. Each of the telescopes has a primary mirror with a 10 metres diam-

eter, made up of 36 hexagonal segments. The shape of the primary mirror is

a hyperboloid of revolution. The 36 segments of the primary mirror are dis-

posed over three rings and no central segment. Each segment has a 1.8 metre

inscribed diameter. The primary mirror has 168 sensors and 108 motorised

adjusting devices (actuators). KECK uses capacitive sensors. A simple il-

lustration of a KECK primary mirror is given in Figure 1.3. Sensors measure

relative heights between segments. Actuator adjustments are done twice a

second, which is different from SALT where adjustments are done once every

four minutes. The two telescopes (the KECK telescopes) combined together

are used for interferometry. Other specifications follow: Focal length is 17.5

metres, segment weight is about 400kg, segment thickness is about 75mm,

light collection area is 76m2, total weight of the primary mirror is about

16 tons, the total moving weight of the telescope is about 700 tons. Note

5



Figure 1.3: Layout of one KECK primary mirror

that the air on the site of the KECK telescopes is almost always clear, dry

and not turbulent. The KECK primary mirror has a concave hyperbolic

curvature. Each of the KECK telescopes also has a secondary mirror with

convex hyperbolic curvature, and a flat tertiary mirror.

1.1.4 TMT (Previously known as CELT)

The Thirty Meter Telescope (TMT), previously known as the California

Extremely Large Telescope (CELT) is still under design and is expected to be

completed in 2018. It is supposed to be located in Hawaii, on the same site as

the KECK telescopes, and is inspired by the success of the KECK telescopes.

This success is confirmed, for example, by the collaboration between KECK

and NASA, that resulted in generating a substantial number of scientific

papers. In the initial project as CELT, the primary mirror was designed

to have a 30 metres diameter, a shape of a hyperboloid of revolution, 1080

hexagonal segments with a circumscribed radius of 0.5 metre, where the

out-of-plane degrees of freedom resulting from segment displacements will

be actively controlled by 3240 actuators receiving feedback from 6204 edge

sensors. The radius of curvature is 90 metres, the segment thickness is 0.045

6



Figure 1.4: Layout of the TMT primary mirror

metre, the focal length is 45 metres and the F-ratio is 1.5. The CELT project

has been revised to TMT. The primary mirror of TMT (view from the top

is illustrated in Figure 1.4) is in the shape of a hyperboloid of revolution,

has a 30 metres diameter and is composed of 492 hexagonal segments with a

1.4 metre inscribed diameter each, 2772 sensors, 1476 actuators. TMT also

has a 3 metres diameter secondary mirror and a flat rectangular (3.6 metres

by 2.5 metres) tertiary mirror. The moving mass of TMT is almost 2000

tons. Decision has not been made yet about the type of edge sensors to be

used on TMT, but they will likely be capacitive sensors [29]. TMT control

system is similar to that of KECK and is described in [6].

1.1.5 E-ELT

The European Extremely Large Telescope (E-ELT) is still under design and

is expected to be completed in 2018. It is supposed to be located in Cerro

Armazones, Chile. Its primary mirror, illustrated in Figure 1.5, has 984

hexagonal segments with circumscribed diameter of 1.4 metre, three whiffle

trees and three actuators per segment, which gives 2952 actuators. Edge

7



Figure 1.5: Layout of the E-ELT primary mirror

sensors are used to measure the relative heights between neighboring seg-

ments. Two edge sensors are used for each edge between any two neighboring

segments. There will be approximately 6000 edge sensors. E-ELT intends

to use inductive sensors. The control system is designed and explored in

[13].

One common thing about segmented mirrors is that the control is per-

formed on actuators using information about relative heights as measured

by edge sensors.

1.2 Overview of Optimal Control Problems

The following methods are well known. This thesis focuses on determining

the cause of image deterioration on SALT and thus requires us to critique

the existing control. For later use, we outline some relevant background

results in control theory.

8



1.2.1 Continuous time Formulation

We consider problems formulated as follows:

min
u

J = h (z(T )) +

∫ T

0
f0(t, z(t), u(t))dt

subject to




ż(t) = f (t, z(t), u(t)) , z(0) = z0

s(t) = g (t, z(t), u(t))

(1.1)

The main goal is to find an optimal control u∗ that minimises J where

• z is the state variable and at each time t, z(t) ∈ R
n where n is a

positive integer. In this thesis, z(t) will refer to the vector of actuator

positions at time t.

• u is the control variable and at each time t, u(t) ∈ R
p where p is a pos-

itive integer. In this thesis, u(t) will refer to the vector of corrections

to be performed on actuator positions at time t.

• s is the output variable and at each time t, s(t) ∈ R
m where m is a

positive integer. In this thesis, s(t) will refer to the vector of relative

heights at time t.

• J : Rn+p+1 −→ R is the objective function (J = J (t, z(t), u(t))). In

this thesis, J will refer to the overall relative heights (combined with

the effort to perform the control if the integrand contains a term of

the form uT (t)Ru(t) where R is a symmetric positive definite matrix).

• h : R
n −→ R, g : R

n+p+1 −→ R, f : R
n+p+1 −→ R and f0 :

R
n+p+1 −→ R are functions with nice properties, that is, h, g and

f are continuous and f0 is at least piecewise continuous.

• T is the final time and can be a positive real number or infinite.

Finding an optimal control u∗ that minimises the objective function J

in Problem (1.1) is possible only when the system in Problem (1.1) is con-

trollable, that is, when there exists a control u that can bring the system

from the initial state z0 to any given final state zf in a finite time T . The

optimal control u∗ can therefore be given in the state feedback form using

well known methods such as the Pontryagin Maximum Principle or Dynamic

Programming [3, 22, 40]. Another option, recommended in practical prob-

lems, is to determine the optimal control in the output feedback form. This
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is possible only when the system (in Problem (1.1)) is output controllable,

that is, when there exists a control u that can bring the output of the system

from the initial value s0 = s(0) to any given final value sf at time T . The

optimal control u∗ can therefore be given in the output feedback form using

techniques that involve problem transcriptions and numerical approaches.

1.2.2 Discrete time Formulation

In computational control, when a problem is given in continuous form, we

must discretise in order to be able to implement it using a computer. For

discrete time problems, we consider formulations given as follows:

min
u

J = hN (zN ) +
N−1∑

k=0

hk(zk, uk, wk)

subject to




zk+1 = fk (zk, uk, wk) , z0 given

sk = gk (zk, uk, wk)

(1.2)

The main goal is to find an optimal control u∗ that minimises J where

• k is a step in the process.

• zk is the value of the state variable at step k, and zk ∈ R
n.

• uk is the value of the control variable at step k, and uk ∈ R
p.

• sk is the value of the output variable at step k, and sk ∈ R
m.

• wk is the value of a random disturbance at step k, and wk ∈ R
n.

• J is the objective function and J : R
n+p+1 −→ R.

• N is the number of steps, that is, the number of times the control is

performed, and is a positive integer but can be infinite.

• hN , hk, gk, and fk are functions with nice properties, the same as

in the continuous case, that is, hN : Rn −→ R, gk : R2n+p −→ R,

fk : R2n+p −→ R are continuous and hk : R2n+p −→ R is at least

piecewise continuous. Note that if disturbance is not considered, then

the functions fk, gk and hk are defined from R
n+p to R, and not from

R
2n+p to R.

10



The meaning of the variables in this section is as in the previous section

on continuous time formulation, except variables being evaluated at step k

instead of time t.

Finding an optimal control u∗ that minimises the objective function J

in Problem (1.2) is possible only when the system in Problem (1.2) is con-

trollable, that is, when there exists a control u (or a discrete set of controls

(uk)0≤k≤N−1 also known as policy) that can bring the system from the ini-

tial state z0 to any given final state zf in a finite number of steps N . The

optimal control u∗ can be given in the state feedback form using for example

Dynamic Programming [3, 40]. Another option, recommended in practical

problems, is to determine the optimal control in the output feedback form.

This is possible only when the system in Problem (1.2) is output controllable,

that is, when there exists a control u (or, as above in this paragraph, a policy

(uk)0≤k≤N−1) that can bring the output of the system from the initial value

s(0) to any given final value sf in a finite number of steps N . The opti-

mal control u∗ can eventually be given in the output feedback form using

techniques that involve problem transcriptions and numerical approaches

[5].

1.2.3 From Continuous to Discrete Time and Vice Versa

This will be explained on the particular case of a linear system (that is, a

system governed by an equation of type (1.3) where x is the state variable

and u is the control variable), as that will be the case of interest in our work.

This is explored in [32] pages 703-704, but we recall the description. From

the state equation of a system, if we need to use a computer to determine

the state x(t), we have to take a continuous-time state equation and convert

it into a discrete-time state equation. In the lines to follow, we describe this

procedure. The assumption is that the input vector u(t) changes exclusively

at equally spaced sampling instants. Here the discrete-time state equation

which yields the exact values at t = kT , k = 0, 1, 2, . . . is derived. Note that

T is the time interval between two consecutive steps (steps k and k + 1).

Consider the continuous-time state equation

ẋ = Ax+Bu (1.3)

where at each time t, x ∈ R
n, u ∈ R

p, A is an n × n matrix and B is an

11



n× p matrix, all with real elements. This is a special case of

ẋ(t) = f (t, x(t), u(t))

where f is actually linear in x(t) and u(t) at all times t.

In the following, in order to clarify the analysis, we use the notation kT

and (k + 1)T instead of k and k + 1. The discrete-time representation of

Equation (1.3) will take the form

x ((k + 1)T ) = G(T )x(kT ) +H(T )u(kT ) (1.4)

Note that the matrices G and H depend on the sampling period T .

In order to determine G(T ) and H(T ), we use the solution of Equation

(1.3), that is,

x(t) = eAtx(0) + eAt

∫ t

0
e−AτBu(τ)dτ (1.5)

We assume that all the components of u(t) are constant over the interval

between any two consecutive sampling instants, or u(t) = u(kT ) for the kth

sampling period, that is, for t ∈ [kT, (k + 1)T ). Since

x ((k + 1)T ) = eA(k+1)Tx(0) + eA(k+1)T

∫ (k+1)T

0
e−AτBu(τ)dτ (1.6)

and

x (kT ) = eAkTx(0) + eAkT

∫ kT

0
e−AτBu(τ)dτ (1.7)

it follows that multiplication of Equation (1.7) by eAT followed by subtrac-

tion of the obtained result from Equation (1.6) leads to

x ((k + 1)T ) = eATx (kT ) + eA(k+1)T

∫ (k+1)T

kT
e−AτBu(τ)dτ

= eATx (kT ) + eAT

∫ T

0
e−AtBu(kT )dt

= eATx (kT ) +

∫ T

0
eAλBu(kT )dλ

(1.8)

where λ = T − t. If we define

G(T ) = eAT (1.9)

H(T ) =

(∫ T

0
eAtdt

)
B (1.10)

12



then Equation (1.8) becomes

x ((k + 1)T ) = G(T )x(kT ) +H(T )u(kT ) (1.11)

which is indeed Equation (1.4). Thus Equations (1.9) and (1.10) give the

desired matrices G(T ) and H(T ).

Remark 1.1. The following apply:

1. From the above study, it is possible to move back from discrete-time

dynamics (Equation (1.4)) to continuous-time dynamics (Equation

(1.3)) and determine A and B in terms of G and H, knowing the

sampling period T . More precisely, we obtain:

A =
1

T
log(G) (1.12)

B =

(∫ T

0
eAtdt

)−1

H (1.13)

where log is the matrix logarithm.

2. The method described above in an example also applies on any state

equation (linear or nonlinear ODE) that can be solved analytically and

has to undergo a discretisation process or vice versa.

From Equation (1.4), it can be established that

xn = Gnx0 +
n−1∑

i=0

Gn−1−iHui ∀n ∈ N, n 6= 0 (1.14)

where xn = x(nT ), un = u(nT ), G = G(T ), H = H(T ) and N is the set of

natural numbers (non-negative integers).

1.3 Statement of the Problem for SALT

From the approach described in the SAMS (Segment Alignment Measure-

ment System) control algorithm, the main goal is to keep the relative heights

as close to zero as possible. These relative heights are given from sensors

on the edges of the primary mirror. Indeed, when the segments are in their

ideal position, that is, they approximate a single large spherical mirror, all

together, the relative heights are all zero. When the segments move, the
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relative heights are given for each sensor as the distance between the emit-

ting plate and the corresponding receiving plate in the direction towards the

center of curvature, considered as the z direction in the three dimensional

(x, y, z) space. The control is performed on the actuator displacements. The

actuator displacements are unknown but can be estimated from the relative

heights which are obtained from the sensors. There is a linear relationship

between the relative heights S and the actuator displacements Z and it is

given by S = AZ where A is the actuator-to-heights matrix (known in the

language of segmented mirrors as the interaction matrix ) and is obtained

from the geometry of the primary mirror. The optimal control problem for

SALT can be formulated in discrete time as follows:

min
u

J = ‖sN‖2 +
N−1∑

k=0

‖sk‖2

subject to




zk+1 = zk + uk, z0 given

sk = Azk

(1.15)

and can be translated in continuous time as follows:

min
u

J = ‖s(T )‖2 +
∫ T

0
‖s(t)‖2dt

subject to




ż(t) = Mz(t) +Nu(t), z(0) = z0

s(t) = Az(t)

(1.16)

where M and N are 273 × 273 matrices that can be determined using the

conversion from discrete to continuous time as described above (See item

1 of Remark 1.1), and A (the actuator-to-heights matrix) is a 480 × 273

matrix known from the geometry of SALT primary mirror. It is to be noted

that here, ‖ · ‖ is the Euclidean norm (or the L2 norm). Note that the

random disturbance is not considered. It can be established from the above

formulation (in discrete and continuous time, given by Equations (1.15)

and (1.16)) that the SALT control problem is an output feedback control

problem.

With regard to SALT image quality, numerical techniques, rather than

correctness of formulation, will be of importance.
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1.4 Conclusion

SALT is not yet in acceptable configuration as the images are distorted.

Capacitive edge sensors are suspected to be sensitive to humidity, and as we

will show later in this thesis, the SALT mirror control algorithm gives rise

for concern. This feature is a mathematical problem of robust formulation

of the control algorithm and, as applied mathematicians, this will be our

main interest.

Table 1.2: Dimension of the control vector

Number of Rings 1 2 3 4 5 6 7

Number of Segments 7 19 37 61 91 127 169

Size of the Control Vector 21 57 111 183 273 381 507

Table 1.2 shows the rise of dimension of the control vector. There is a

linear relationship between the size of the control vector and the number

of segments (since each segment has three actuators) and also a quadratic

relationship between the size of the control vector and the number of rings.

These sizes of vectors and matrices involved in the computation constitute

a major source of computational errors. It is also of concern that the single

real number J (value of the objective function which in this case is the

overall measure of relative heights) might not be adequate for the control

of segmented mirrors. It is hoped that this work will help in the control

of next large telescopes with segmented primary mirror, such as TMT and

E-ELT.
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Chapter 2

Statistical Analysis of SALT

Historical Data

Optimising alignment of a multi-element telescope involves theoretical and

experimental work. It is essential to know what the problem is, in order to

attempt providing a solution. Diagnosing the problem requires analysis of

existing data. This includes finding which of the data are the most likely to

explain the problem under consideration, and also finding if there is multi-

collinearity in the data. Note that SALT was built under the strong belief

that the deformation (of the truss) is essentially temperature based. More-

over, there is no geometric information available from measurements. The

data of interest in the SALT case are as in Table 2.1 and respectively repre-

sent: measurement time (time), temperature of truss (ttr), temperatures of

igloos 1 and 2 (ti1 and ti2), wind speed inside the operating room (windin),

wind speed outside at about 30 metres above ground level (wind30), humid-

ity inside the operating room (humin), humidity outside at about 30 metres

above ground level (hum30), change in radius of curvature (dgroc), reference

temperature in the room (tref). Other data of interest are relative heights,

and also figure of merit which is computed and tells us how far the mea-

sured relative heights are from the range of the linear transformation that

maps the actuator positions to relative heights via the actuator-to-heights

matrix known from the geometry of the primary mirror. In other words,

it tells us mostly about errors in the measurements. Note that these data

are collected to find out which explain the figure of merit. Also, change in

radius of curvature is computed and is a linear combination of change in

temperature of truss. This means information we have from temperature

of truss can be obtained from change in radius of curvature and vice versa.

Change in radius of curvature is computed as follows, as given in [42]:

∆GRoC = ∆Ttruss ×GRoC ×CTEsteel
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where GRoC is the global radius of curvature of the primary mirror and is

known (26.165 metres), ∆Ttruss is the change in temperature of truss and

is given in oC/hour, and CTEsteel is the coefficient of thermal expansion of

the steel which is the material used to build the truss, and is also known

(11.7 × 10−6). Change in radius of curvature also gives rise to adjustments

in tip/tilts and pistons as follows [42], and respectively denoted by α and c,

where for notation convenience, GRoC and ∆GRoC are respectively replaced

by R0 and ∆R:

c =

√
∆R2 + (R0 +∆R)2 − 2∆R (R0 +∆R) cos(ω)−R0

tip/tilt = α = arccos

[
(R0 + c)2 + (R0 +∆R)2 −∆R2

2 (R0 + c) (R0 +∆R)

]

Here ω is the dihedral angle between the segment under consideration and

the central segment. It is to be noted that the above equations for tip/tilts

and piston adjustments can be derived from basic knowledge of Euclidean

geometry in the plane.

Table 2.1: Data of interest for SALT in diagnosing imperfection

Variable Units

time hours

ttr oC

ti1 oC

ti2 oC

windin m/s

wind30 m/s

humin %

hum30 %

dgroc metres

tref oC

Figure 2.1 shows the figure of merit, that is, the Root Mean Square

(RMS) of s − Az where at each time, s(t) is the vector representing the

relative heights as measured by sensors and z(t) is the estimation of the

corresponding actuator displacements using the least squares method.
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Figure 2.1: Figure of merit in one night (08 March 2007). Figure of merit increas-

ing with time and going beyond 60nm = 6 × 10−8m indicates failure of primary

mirror control with time

Recall that the RMS of a vector v = (v1, v2, . . . , vn) is given by

RMS (v) =

√
v21 + v22 + · · ·+ v2n

n
(2.1)

This figure of merit was evaluated during the night of 08 March 2007. Note

that there was a failure of primary mirror control with time.

2.1 Method

In this section, we lay out some statistical notions used in the data analysis

investigated in this chapter. The methods are well known. Suppose we have

a list of variables (data sets, such as time series) Y , X1, X2, . . ., Xp from

a sample of size n (the sample size is the length of each of the data sets)

where Y is our response variable. The other variables are the explanatory

variables, as in Table 2.1 for the SALT case.

2.1.1 Tests for Multicollinearity

If we have two or more explanatory variables, then there is multicollinearity

[35, 36] in the model when one of these variables can be approximated as

a linear combination of the other variables. Thus, dgroc (change in radius
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of curvature) is linearly related to change in temperature. In this case an

important optical measure is possibly explained by temperature, which in

turn suggests control solution. Three methods for testing multicollinearity

are explored below.

Correlation between Explanatory Variables

We consider two random vectors X and Y , where X = (X1,X2, . . . ,Xn)

and Y = (Y1, Y2, . . . , Yn). The covariance [2] between X and Y is defined as

follows:

σXY =
1

n

n∑

i=1

(
Xi − X̄

) (
Yi − Ȳ

)

and the correlation coefficient [2] between X and Y is defined as follows:

ρXY =
σXY

σXσY
=

n∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)

√
n∑

i=1

(
Xi − X̄

)2
√

n∑
i=1

(
Yi − Ȳ

)2

where σX and σY respectively stand for the standard deviations of X and

Y (σX =

√
1
n

n∑
i=1

(
Xi − X̄

)2
), and X̄ and Ȳ stand for the means of X

and Y respectively (X̄ = 1
n

n∑
i=1

Xi). Moreover, ρXY is always such that

−1 ≤ ρXY ≤ 1. Note that the covariance and correlation coefficient also

apply for samples of random variables.

Multicollinearity is of concern when for example, two or more explana-

tory variables are highly correlated, that is, if the correlation coefficient of

two of them, X and Y , say, is such that ρXY ≃ ±1. This method gives a

hint on how to divide explanatory variables into small groups, depending on

their correlation coefficients.

Condition Number

As we have seen in Chapter 1, matrix computation is required for the pri-

mary mirror control. We consider an n × n matrix A. The ‖ · ‖2 condition

number of A [19, 28] is defined as follows:

κ(A) =




‖A‖2‖A−1‖2 if A is nonsingular;

∞ if A is singular.
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If A = UΣV T is a singular value decomposition of A (SVD will be explored

later in this thesis), and σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values of A

(note that σi ≥ 0 ∀i), then
κ(A) =

σ1
σn

. (2.2)

Also note that, considering A as the matrix of a linear transformation from

R
n to R

m [28],

‖A‖2 = σ1 = max
‖x‖2=1

max
‖y‖2=1

∣∣yTAx
∣∣ (2.3)

where x varies in R
n, y varies Rm and ‖ · ‖2 is the standard Euclidean norm.

Another way to investigate multicollinearity (and that can be of interest

to SALT) is to check the condition number of the matrix XTX where X

is the augmented matrix of explanatory variables, that is, the matrix of

explanatory variables with a column of 1s added at the beginning, more

precisely:

X =
[
1n X1 X2 · · · Xp

]

where X1,X2, . . . ,Xp are the explanatory variables in column vectors of

length n each, and 1n in a column vector of length n with all entries equal

to one. This (exploration of the condition number ofXTX) is due to the fact

that the ordinary least squares determination of the regression coefficients

associated to the explanatory variables involves the inversion of the matrix

XTX mentioned above in this section. If the condition number of X is

high (an informal approach is to use κ(X) > 30), it means that X is ill-

conditioned. In that case, multicollinearity is of concern. This method just

gives global information about multicollinearity with no specific detail on

any of the explanatory variables.

Variance Inflation Factor

The variance inflation factor [9, 17, 34, 37, 49] is an indicator of multi-

collinearity. The study of multicollinearity using the variance inflation fac-

tor involves multiple regression analysis (as laid out later in section 2.1.2)

between explanatory variables. The variance inflation factor (for each ex-

planatory variable) can be determined in three steps:

1. Choose one variable Xk amongst all p variables and run the multiple
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regression analysis against the other variables

Xk = βk,01n +

p∑

i=1
i6=k

βk,iXi + εk

and do the same for each of the explanatory variables

2. Compute the R2 (coefficient of determination) of the regression model

(denoted by R2
k for the variable Xk)

3. The corresponding variance inflation factor is VIFk = 1
1−R2

k

Note that the variance inflation factor is always such that VIF ≥ 1. It can

be established from the definition of the R2 that

VIFk =

n∑
i=1

(Xk,i − X̄k)
2

n∑
i=1

(Xk,i − X̂k,i)2
1 ≤ k ≤ p

where X̂k is the estimate of Xk in the multiple regression against the other

(Xl)1≤l≤p, l 6=k.

A variance inflation factor VIF > 10, meaning R2 > 0.9 [9, 17, 34, 37, 49]

(or VIF > 5, meaning R2 > 0.8) for the kth explanatory variable is an

indicator that this kth variable is involved in multicollinearity.

How to Handle Multicollinearity

One interpretation of multicollinearity is that the corresponding variables

(those involved in multicollinearity) are very likely to convey similar in-

formation. One way to deal with multicollinearity is sequential variable

selection [35, 36]. In this case, one or more of the many collinear variables

may be dropped. Another option is principal component analysis (PCA)

[9] provided the new variables have a meaningful interpretation. These new

variables are called principal components. However, an efficient way to find

a model with the minimum possible number of explanatory variables is step-

wise regression, explained in the next section.

2.1.2 Regression Analysis

Linear regression analysis is concerned with the estimation of the response

variable as a linear combination of the explanatory variables. In this thesis,
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linear regression will simply be referred to as regression. If we have one

response variable Y and p explanatory variables X1,X2, . . . ,Xp, all column

vectors of length n where n is the number of observations, the regression

problem (approximating Y as a linear combination of X1,X2, . . . ,Xp) can

be formulated as follows [9]:

Y = Xβ + ε (2.4)

where β =
[
β0 β1 · · · βp

]T
, X =

[
1n X1 · · · Xp

]
, 1n is a column

vector of length n with all components equal to one, and ε =
[
ε1 · · · εn

]T

is the error term. If we are only using one explanatory variable, in other

words p = 1, then we are performing a simple regression. If we are using

all the (more than one) explanatory variables, in other words p > 1, then

we are performing a multiple regression. Since the regression coefficients are

determined in order to minimise the error S (β) = (Y −Xβ)T (Y −Xβ),

we obtain [9]: (
XTX

)
β̂ = XTY (2.5)

which is the set of normal equations corresponding to Problem (2.4). If(
XTX

)
is nonsingular, then we obtain the estimated regression coefficients

in a vector form as follows [9]:

β̂ =
(
XTX

)−1
XTY (2.6)

and consequently, the fitted response is given by [9]:

Ŷ = Xβ̂ = PY where P = X
(
XTX

)−1
XT . (2.7)

Note that β̂ is known as the best linear unbiased estimator (BLUE) of β,

and that P is symmetric and idempotent.

The significance of an explanatory variable in a regression model is mea-

sured by its p-value. This is obtained from inference on regression coefficients

done as follows: For a variable Xj , (1 ≤ j ≤ p), we test the null hypothesis

H0 against the alternate hypothesis H1 where:



H0 : βj = 0;

H1 : βj 6= 0.

The test is done by computing the t-statistic

tj =
β̂j

s.e.
(
β̂j

) (2.8)
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and this t-statistic has a student’s t-distribution with n − p − 1 degrees of

freedom. Note that s.e. stands for standard error, which is an estimate of

the standard deviation, for each regression coefficient. Moreover,

s.e.
(
β̂j

)
= σ̂

√
cjj (2.9)

where C =
(
XTX

)−1
and

σ̂2 =
εT ε

n− p− 1
=

Y T (In − P )Y

n− p− 1
(2.10)

with In being the n×n identity matrix and P as given in (2.7). We compare

tj with t(n−p−1,α/2) obtained from the t-table, where α is the significance

level. H0 is rejected at significance level α if [9]

|tj | ≥ t(n−p−1,α/2), or equivalently, p (|tj|) ≤ α.

Here, p (|tj |) is the p-value of the test (for βj) and is the probability that a

random variable having a student’s t-distribution with n− p− 1 degrees of

freedom, is greater than |tj | in magnitude, that is, the area above the x-axis

and under the curve of the probability density function of the student’s t-

distribution with n−p−1 degrees of freedom, outside the range [− |tj | , |tj|].
This is given by:

p (|tj|) = 1− 2

∫ |tj |

0

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
(
1 +

t2

ν

)− ν+1

2

dt (2.11)

where the integrand in (2.11) is the probability density function of the stu-

dent’s t-distribution with ν degrees of freedom [23] and is an even function

defined for all t ∈ R. Here ν = n − p − 1 and Γ is the Gamma function

defined as follows:

Γ (z) =

∫ ∞

0
xz−1e−xdx z > 0. (2.12)

An explanatory variable is considered significant if its p-value is less than a

specified value α, and insignificant otherwise. The goodness of fit of a re-

gression model is explained by the R2 also called coefficient of determination

[14, 27] and defined as follows:

R2 = 1−

n∑
i=1

(Yi − Ŷi)
2

n∑
i=1

(Yi − Ȳ )2
=

n∑
i=1

(Ŷi − Ȳ )2

n∑
i=1

(Yi − Ȳ )2
(2.13)
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or, equivalently [9] by the multiple correlation coefficient R =
√
R2 of the

response variable Y on the explanatory variables X1, . . . ,Xp, where Yi is

the ith component of Y ; Ȳ is the mean of Y (that is Ȳ = 1
n

n∑
i=1

Yi); Ŷi is the

estimated value for Yi from the regression (as given in expression (2.7) or

equivalently in (2.21) for a general case). Since 0 ≤ R2 ≤ 1, the more R2

is close to 1, the better the data fits the model. A modification of the R2

that adjusts for the number of explanatory variables is called the adjusted

R2 and is defined as follows [9]:

R̄2 = 1−
(
1−R2

) n− 1

n− p− 1
. (2.14)

Note that R̄2 ≤ R2 and it is possible that R̄2 < 0. In some documents from

the literature (see for example [9]), the adjusted R2 is denoted by R2
a.

The global significance of all the variables appearing in a model can be

measured by the general p-value of the model. This is obtained by testing

the adequacy of a model against another model as follows [9]: We consider

two models M0 and M1 with q0 and q1 explanatory variables respectively.

We assume that M0 is a sub-model of M1, that is, all the variables appearing

in M0 also appear in M1. We also assume that 0 ≤ q0 < q1 ≤ p. We test the

null hypothesis H0 against the alternate hypothesis H1 defined as follows:



H0 : M0 is adequate;

H1 : M1 is adequate.

If the goodness of fit (the R2) of M0 is greater or equal to the goodness of

fit of M1, then H0 is considered and H1 is rejected. The respective degrees

of freedom for models M0 and M1 are df0 = n− q0− 1 and df1 = n− q1 − 1.

The F -test or F -statistic to see whether model M0 is adequate is given by:

F =
[SSE (M0)− SSE (M1)] /(df0 − df1)

SSE (M1) /df1

=
[SSE (M0)− SSE (M1)] /(q1 − q0)

SSE (M1) / (n− q1 − 1)

(2.15)

where

SSE (M0) =

n∑

i=1

(
Yi − Ŷ 0

i

)2
and SSE (M1) =

n∑

i=1

(
Yi − Ŷ 1

i

)2
(2.16)

are the sums of squared residuals due to respectively fitting models M0 and

M1 to the data, with Ŷ 0 and Ŷ 1 being the estimates (predictions) of Y using
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models M0 and M1 respectively. Note that the F -statistic from Equation

(2.15) has F distribution with q1 − q0 and n − q1 − 1 degrees of freedom.

We compare F , the observed value of the F -test as given in (2.15), with

F(q1−q0,n−q1−1;α) which is the corresponding critical value obtained from the

F table, where α is the significance level. H0 is rejected at significance level

α if [9]

F ≥ F(q1−q0,n−q1−1;α) or equivalently p(F ) ≤ α

where p(F ) is the p-value for the F -test, that is, the probability that a

random variable having F distribution with q1− q0 and n− q1−1 degrees of

freedom, is greater than the observed F -test as given in (2.15). The p-value

is the area above the x axis and under the curve of the probability density

function of the F distribution with q1−q0 and n−q1−1 degrees of freedom,

in the range [F,∞) where F is given in (2.15), that is:

p(F ) = 1−
∫ F

0

Γ
(
ν1+ν2

2

) (
ν1
ν2

) ν1
2

Γ
(
ν1
2

)
Γ
(
ν2
2

) (
1+ν1
ν2

t
) ν1+ν2

2

t
ν1−2

2 dt (2.17)

where the integrand in (2.17) is the probability density function of the F

distribution with ν1 and ν2 degrees of freedom [23] and is defined for all

t > 0, ν1 = q1 − q0, ν2 = n − q1 − 1 and Γ is the Gamma function as given

in (2.12).

Simple Regression

Simple regression [14, 34, 49] is used to check if each explanatory variable

alone is significant to explain the response variable, and how good the data

used fits the corresponding regression model. If we are dealing with only

one explanatory variable, say X1, which is a vector of length n, then from

Equation (2.4), the simple regression problem can be formulated as follows:

Y = β01n + β1X1 + ε (2.18)

where 1n and ε are the same as in (2.4).

In this case, Ŷ = Xβ̂ can be rewritten as

Ŷi = β̂0 + β̂1Xi,1, 1 ≤ i ≤ n (2.19)

with β̂ =
(
XTX

)−1
XTY .

Note that the p-value of the simple regression model is obtained from

(2.17) by taking q0 = 0 and q1 = 1.
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Multiple Regression

Multiple regression [11, 14, 15, 27, 35, 36, 45] is used to check how many

explanatory variables together explain the response variable, and how well

the data fits the regression model. If we want to perform a multiple regres-

sion analysis on the variables given at the beginning of this section (Section

2.1.2), of course under the assumption that p > 1, then Equation (2.4) can

be reformulated as follows:

Y = β01n +

p∑

j=1

βjXj + ε (2.20)

where 1n and ε are the same as in (2.4). A detailed expression using vector

matrix formulation is as follows:



Y1

Y2

Y3

...

Yn




=




1 X1,1 X1,2 · · · X1,p

1 X2,1 X2,2 · · · X2,p

1 X3,1 X3,2 · · · X3,p

...
...

... · · · ...

1 Xn,1 Xn,2 · · · Xn,p







β0

β1

β2
...

βp




+




ε1

ε2

ε3
...

εn




.

In this case, Ŷ = Xβ̂ can be rewritten as

Ŷi = β̂0 +

p∑

j=1

β̂jXi,j , 1 ≤ i ≤ n (2.21)

with β̂ =
(
XTX

)−1
XTY .

Note that the p-value of the multiple regression model is obtained from

(2.17) by taking q0 = 0 and q1 = p.

Stepwise Regression

Stepwise regression [14, 27] is an improvement on multiple regression. It is

used to determine which explanatory variables are significant in explaining

the response variable. This is extremely important in the process of build-

ing a regression model with the least possible explanatory variables. It is a

statistical procedure that considers all the variables as in the multiple re-

gression procedure, and step by step adds significant explanatory variables

and excludes insignificant explanatory variables from the regression model.

This tells us which explanatory variables are the main causes for the re-

sponse variable. Stepwise regression is a combination of forward selection
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(FS) and backward elimination (BE) [9], depending on the criteria for FS or

BE. The procedure for stepwise regression is as follows:

1. On a data set X with p explanatory variables X1,X2, . . . ,Xp, start

with an initial multiple regression model. The default is usually no

term (no explanatory variable), in which case the response variable Y

is approximated by a constant.

2. Add to the regression model the term with the smallest p-value if this

p-value is less than a given entrance tolerance, and repeat the process

until there is no term left to add. The default entrance tolerance is

pin = 0.05.

3. Remove from the model the term with the highest p-value if this p-

value is greater than a given exit tolerance and go back to step 2. The

default exit tolerance is pout = max(pin, 0.1).

4. If there is no term left to remove from the multiple regression model,

then stop.

Note that the p-value mentioned in the stepwise regression procedure given

above is the p-value of an F -statistic used to compare two models (the cur-

rent model and the previous model, or the larger model and the reduced

model). The explanatory variables that appear in the final model are the

significant variables, and those not appearing in the final model are insignif-

icant.

The p-value of the stepwise regression model is obtained after the last

F -test. At each step, since we are adding or removing one variable at a

time, and M0 represents the reduced model whilst M1 represents the larger

model, from (2.15) we take q1 = q0 + 1 and therefore

F =
[SSE (M0)− SSE (M1)]

SSE (M1) / (n− q1 − 1)
(2.22)

has F distribution with 1 and n−q1−1 degrees of freedom. For the forward

selection process (rejecting H0), the default value for significance level α is

0.05 and for the backward elimination process (accepting H0), the default

value for α is 0.1 [20, 49].
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2.1.3 Autocorrelation and Spectral Analysis

These concepts are explored in the literature, see for example [4, 7, 8, 23].

These (autocorrelation and spectral analysis) will be performed on open-

loop1 data sets, especially on relative heights from the portion of the pri-

mary mirror made of the central segment and the first ring, due to the

unavailability of enough man power to maintain the whole primary mirror

for our experiments at the time. This makes 7 segments, 21 actuators and

24 sensors. This can also be performed on the whole primary mirror. These

measured relative heights are considered as a random process X(t, n) where

at each time t, the relative heights as given by the sensors constitute a vec-

tor denoted by Xt,∗. This Xt,∗ is considered as a realization of the random

process at time t. Similarly, for each n, the time series of measurements as

given by a specific sensor (the sensor corresponding to index n) is denoted

by X∗,n. When there is no confusion, Xt,∗ will be denoted by Xt and X∗,n
will be denoted by Xn. One of the objectives is to test for the stationarity

of the process.

Autocorrelation

For one random process X(t, n) with realizations Xs and Xt at times s and

t, the corresponding autocorrelation is defined as follows:

RXX(s, t) = E (XsXt) (2.23)

and the autocovariance is defined as follows:

CXX(s, t) = E [(Xs − µX(s)) (Xt − µX(t))] = RXX(s, t)− µX(s)µX(t)

where µX(s) = E (Xs) and µX(t) = E (Xt) are the respective means of the

(realization of the) random process at times s and t.

A random process X(t, n) is said to be (wide sense) stationary or weakly

stationary [8, 17, 39] if the following conditions are satisfied:

• the mean µX(t) does not depend on t, that is, there exists a constant

µ such that µX(t) = µ for all t ≥ 0

1It consists, in this context, of taking measurements without performing any control

on the system
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• the variance σ2
Xt
, or equivalently the standard deviation σXt does not

depend on t, that is, there exists a constant σ such that σXt = σ for

all t ≥ 0

• the autocovariance CXX(s, t) between Xs and Xt only depends on the

difference between time units t− s, not Xs and Xt. In this case, if we

have τ = t− s then CXX(s, t) = CXX(s, s+ τ) = CXX(τ) is called the

autocovariance coefficient at lag τ , and is sometimes denoted by γτ or

CX(τ).

If X(t, n) is wide sense stationary, then the autocorrelation RXX(s, t) only

depends on t − s, not Xs and Xt. So if τ = t − s, then RXX(s, t) =

RXX(s, s + τ) = RXX(τ) is called the autocorrelation coefficient at lag τ

and is sometimes denoted by RX(τ). However, if X(t, n) is not wide sense

stationary, then we can approximate the autocorrelation coefficient at lag τ

as follows: R̂X(τ) = Et [RXX(t, t+ τ)].

Moreover, in practice, time series are given as measurements in discrete

time, most likely equally spaced, and in a finite range (Xt)t=0,1,...,N−1 where

N is a positive integer. In that case, the (biased) estimate of the autocorre-

lation is given by

R̂X(τ) =
1

N

N−τ−1∑

t=0

XtXt+τ (2.24)

and the unbiased estimate is given by

R̄X(τ) =
1

N − τ

N−τ−1∑

t=0

XtXt+τ . (2.25)

Note that in this case R̄X(τ) = N
N−τ R̂X(τ).

From now on, unless otherwise specified, the term stationary will refer

to weakly stationary.

Spectral Analysis

Spectral analysis is analysis of the spectrum of a time series. The spectrum

is defined for continuous as well as discrete time series, and involves the

notion of Fourier Transform [12, 39], which is also defined in the continuous

as well as the discrete sense. We will focus on the discrete Fourier Transform

and its inverse. Again, we recall that the method is well known.
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Consider a time series, that is, a discrete-time signal, most generally a

complex-valued sequence (xn)0≤n≤N−1 where N is a positive integer. The

discrete Fourier transform (DFT) maps the sequence (xn)0≤n≤N−1 into a

sequence (Xk)0≤k≤N−1 defined as follows:

Xk =
N−1∑

n=0

xne
− 2πi

N
kn 0 ≤ k ≤ N − 1

where e
2πi
N is a primitive N th root of unity in the set C of complex numbers.

A short notation is X = F (x) , or F {x} , or Fx. The inverse discrete

Fourier transform (IDFT) maps the sequence (Xk)0≤k≤N−1 back to the

sequence (xn)0≤n≤N−1 and is defined as follows:

xn =
1

N

N−1∑

k=0

Xke
2πi
N

kn 0 ≤ n ≤ N − 1

and can be denoted as x = F−1(X) or F−1{X} or F−1
X .

Let (xn) be defined for all n ∈ Z and

ω =
2π

N
k = 2πfT

The discrete-time Fourier transform (or DTFT) of xn, is defined as follows:

X(ω) =

∞∑

n=−∞
xne

−iωn − π ≤ ω < π. (2.26)

Here, ω = 2πfT is the continuous normalised radian frequency variable, T

is the period of the DTFT and f is the frequency.

The original discrete-time sequence can be recovered by applying toX(ω)

the inverse transforms defined as follows:

xn =
1

2π

∫ π

−π
X(ω) · eiωn dω

= T

∫ 1

2T

− 1

2T

XT (f) · ei2πfnT df

(2.27)

where XT (f) = X(ω) = X(2πfT ).

In practice, for numerical evaluation of the DTFT, a finite-length se-

quence is needed and recommended. A long sequence can be modified by

truncation (that is, by applying for example a rectangular window function),

resulting in:
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X(ω) =
L−1∑

n=0

xn e
−iωn − π ≤ ω < π (2.28)

where L is the modified sequence length. This is often a useful approxima-

tion of the spectrum of the unmodified sequence. In numerical procedures,

it is natural, or common, to evaluate X(ω) at an arbitrary number N of

uniformly-spaced frequencies across one period (interval of length 2π):

ωk =
2π

N
k for k = 0, 1, . . . , N − 1 (2.29)

which gives:

Xk = X(ωk) =

L−1∑

n=0

xn e
−i2π k

N
n (2.30)

When N ≥ L, this can also be written:

Xk =

N−1∑

n=0

xn e
−i2π k

N
n (2.31)

provided we define xn = 0 for n ≥ L.

This adjustment makes the Xk sequence now recognizable as a discrete

Fourier transform (DFT). Here N is the resolution at which the DTFT is

sampled, and L limits the inherent resolution of the DTFT itself. So N and

L usually have similar (or equal) values.

If a time series is considered as a random process X(t, n) with realization

Xt,∗ = Xt at time t, RX(τ) is the autocorrelation as defined in Equation

(2.23) when the process is stationary and τ = t − s, and R̂X(τ) is the

biased estimate of the autocorrelation as defined in Equation (2.24) when

the process is not necessarily stationary. The spectrum of the time series

(also sometimes called power spectral density) is a periodic function with

period 2π, and is defined as follows:

SXX (ω) = F (RX(τ)) =
∞∑

τ=−∞
RX(τ)e−iωτ = RX(0) + 2

∞∑

τ=1

RX(τ) cos(ωτ)

if the process is stationary [23], and

SXX (ω) = F (Et [RXX(t, t+ τ)]) = F
(
R̂X(τ)

)
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otherwise. Here Et denotes the expected value with respect to t, τ denotes the

lag, and F denotes the discrete time Fourier transform. However, if we are

concerned with a discrete time series in a bounded time range (Xt)0≤t≤N−1

where N is a positive integer, then the alternate form of the spectrum is

given as follows:

SXX (ω) =
1

N

∣∣∣∣∣

N−1∑

k=0

Xke
−iωk

∣∣∣∣∣

2

=
1

N

N−1∑

m=0

N−1∑

k=0

XkXme−iω(k−m)

and it can be established that [23]

SXX (ω) =

N−1∑

τ=−(N−1)

R̂X(τ)e−iωτ

2.2 Application to SALT

Previous studies and assessments before our study resulted in the conclusion

that the poor image quality of SALT was due to high humidity conditions.

Certainly, the performance was unsatisfactory in extremely high humidity

situations, but high humidity situations were not the only causes for unsat-

isfactory performance. Besides relative heights and figure of merit (FoM),

the variables we will study are listed in Table 2.1. In this thesis, we perform

analysis of all available data, both from environmental measurements and

computational methods. We illustrate statistical analyses for the observa-

tions of the night of 08 March 2007, and give a global outcome from 240

data sets. In each of the earlier cases, SALT primary mirror was actively

controlled by the original SALT algorithm. In Figure 2.1, we have illustrated

the behavior of FoM. It can be seen that FoM increases almost linearly with

time, which suggests that errors in measurements are getting bigger with

time. This should be a reason for concern, since faulty sensors alone are not

sufficient enough to explain the behavior of FoM. Figures 2.2 to 2.10 provide

visual comparisons between FoM and each of the explanatory variables from

Table 2.1

Figures 2.2 and 2.3 provide comparison between FoM and both inside

and outside humidities. Inside and outside humidities are increasing on

average, and have similar patterns. Outside humidity is higher than inside

humidity and fluctuations are higher in amplitude on inside humidity than

on outside humidity. Although the figure of merit is highly correlated to
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Figure 2.2: FoM and inside humidity vs time (08 March 2007): humidity is rela-

tively low and highly correlated to FoM, but they don’t have similar behavior
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Figure 2.3: FoM and outside humidity vs time (08 March 2007): humidity is

relatively low and highly correlated to FoM, but they don’t have similar behavior

both humidities (correlation coefficients 0.83 and 0.87), the correlation is

higher (in amplitude) with outside humidity (0.87).

Comparison between FoM and both inside and outside wind speeds is

provided in Figures 2.4 and 2.5. Both wind speeds are stable on average
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Figure 2.4: FoM and inside wind speed vs time (08 March 2007): wind speed

is relatively stable and not highly correlated to FoM, and they don’t have similar

behavior
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Figure 2.5: FoM and outside wind speed vs time (08 March 2007): wind speed

is relatively stable and not highly correlated to FoM, and they don’t have similar

behavior

(around 1 to 1.5m/s for inside wind speed and around 6m/s for outside wind

speed). Outside wind speed is indeed higher than inside wind speed. The
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correlation of FoM with both wind speeds is very low (correlation coefficients

−0.36 and 0.08) and the correlation is higher in amplitude with inside wind

speed (−0.36).
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Figure 2.6: FoM and temp of truss vs time (08 March 2007): temperature is

relatively low and highly correlated to FoM, and FoM increases as temperature

decreases

Figures 2.6 and 2.7 provide visual comparison between FoM and both

temperature of truss and reference temperature. Both temperatures are de-

creasing on average (from about 17.5oC to about 14.5oC for both), and have

similar patterns. Note that FoM is highly correlated to both temperatures

(correlation coefficients −0.9789 and −0.9793) and the correlation is slightly

higher with the temperature of truss (−0.9793).

Figures 2.8 and 2.9 illustrate the behavior of FoM and both igloo tem-

peratures. Note that the igloo temperatures have to be kept as steady as

possible since they have an impact on the electronics of the telescope. And

from both figures, the igloo temperatures are kept as close as possible to

25oC. Whilst temperature of igloo 1 fluctuates mostly between 24.9oC and

25.1oC, temperature of igloo 2 is more stable at 25oC. Moreover, correlation

of FoM with both temperatures is very low (−0.007 and 0.006). This sug-

gests that the igloo temperatures are not likely to contribute in explaining

the behavior of FoM.

Figure 2.10 illustrates the behavior of FoM and the change in radius
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Figure 2.7: FoM and reference temp vs time (08 March 2007): temperature is

relatively low and highly correlated to FoM, and FoM increases as temperature

decreases
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Figure 2.8: FoM and temp of igloo 1 vs time (08 March 2007): temperature is

relatively low, stable and not highly correlated to FoM, and they don’t have similar

behavior

of curvature. The change in radius of curvature decreases in general, and

has a pattern similar to those of the temperature of truss and the reference
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Figure 2.9: FoM and temp of igloo 2 vs time (08 March 2007): temperature is

relatively low, stable and not highly correlated to FoM, and they don’t have similar

behavior
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Figure 2.10: FoM and DGRoC vs time (08 March 2007): DGRoC is relatively low,

highly correlated to FoM, and decreases as FoM increases

temperature. This is to be expected since the change in radius of curvature

is computed and is linearly dependent on the change in temperature. FoM is

highly correlated to the change in radius of curvature (correlation coefficient
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−0.987) and this is to be expected from inspection of Figures 2.6 and 2.7.

All these conclusions suggest temperature of truss and possibly humidity

as the main explanation of the behavior of FoM. Further statistical analysis

will give us more information about the main reasons to explain the behavior

of the figure of merit.

2.2.1 Tests for Multicollinearity on SALT Data

We perform the tests described in Section 2.1.1 and give results from the

night of 08 March 2007 as an illustration, and also global results over 240

data sets.

Correlation Between Explanatory Variables

Table 2.2: Test for multicollinearity using correlation coefficients (08 March 2007)

time tref

time 1

ttr -0.98 1

ti1 -0.003 0.006 1

ti2 0.01 0 0.1 1

windin -0.38 0.39 -0.1 -0.08 1

wind30 0.05 -0.02 0.03 -0.05 0.06 1

humin 0.81 -0.87 -0.01 0.01 -0.33 -0.1 1

hum30 0.86 -0.9 0.004 0.01 -0.34 -0.09 0.98 1

dgroc -0.99 0.99 0.01 -0.01 0.38 -0.03 -0.86 -0.91 1

tref -0.98 0.998 0.01 0.001 0.38 -0.03 -0.86 -0.9 0.99 1

Table 2.2 illustrates the correlation coefficients between explanatory vari-

ables for the night of 08 March 2007. Note that this table is a summary

of a symmetric matrix, in the sense that the missing values above the main

diagonal can be obtained from below the diagonal by transposition. The

high correlation coefficients (we chose correlation coefficients greater than

0.75 in magnitude) indicate that there is a strong correlation between 6 vari-

ables: time, temperature of truss, inside humidity, outside humidity, change

in radius of curvature and reference temperature. This is an indicator of the
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fact that there is multicollinearity in the data.

Table 2.3: Overall test for multicollinearity using correlation coefficients (counting

high correlations over 240 data sets)

time tref

time

ttr 151

ti1 16 10

ti2 42 30 19

windin 0 4 2 2

wind30 24 16 5 2 3

humin 108 115 7 14 4 12

hum30 117 104 10 21 4 25 110

dgroc 163 150 15 34 1 16 93 90

tref 53 69 4 7 1 4 40 34 56

Table 2.3 (which is also a summary of a symmetric matrix) indicates how

many times each pair of explanatory variables has a correlation coefficient

higher than 0.75 in magnitude. This suggests that globally, multicollinearity

is a concern between the following variables: time, temperature of truss,

inside humidity, outside humidity and change in radius of curvature. Note

that inside and outside humidities have the lowest rate of high correlation

(less than 120 over 240 data sets).

Condition Number

The condition number of XTX (as given in Section 2.1.1) on the data ob-

tained on 08 March 2007 with SALT is 6.35×106, and over 240 data sets, this

condition number varies from 1.71 × 104 to ∞. This suggests that globally,

multicollinearity should seriously be of concern.

Variance Inflation Factor

The last column of Table 2.6 gives results of the test for multicollinearity

for the night of 08 March 2007, and the fact that six of the variance infla-

tion factors are greater than 10 is an indicator of multicollinearity. These

variables are: time, temperature of truss, inside humidity, outside humidity,
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change in radius of curvature and reference temperature. Note that these

are exactly the same variables with high correlation in the previous study.

Table 2.4: Test for multicollinearity on 240 data sets using the variance inflation

factor (VIF)

Variable VIF > 5 VIF > 10

time 226 203

ttr 187 161

ti1 30 25

ti2 51 37

windin 2 1

wind30 68 49

humin 135 105

hum30 155 117

dgroc 185 170

tref 66 61

Table 2.4 gives results of the test for multicollinearity with 240 data

sets using the variance inflation factor. It indicates, (out of 240) how many

times each explanatory variable has a variance inflation factor VIF > 5,

and also VIF > 10. This suggests that globally, the variables involved in

multicollinearity are mostly the following: time, temperature of truss, inside

humidity, outside humidity, and change in radius of curvature.

2.2.2 Regression Analysis of SALT Data

From the available data, the figure of merit (FoM) is our response variable

and is expected to stay as close as possible to zero, with a stable or sta-

tionary behavior. The remaining variables are explanatory variables. The

ten explanatory variables are those given in Table 2.1. We recall that the

response variable in regression analysis is expected to stay as close as possi-

ble to zero and the objective function in the optimal control formulation is

to be kept as close as possible to zero, but they are two separate concerns.

Also note that the observatory is not completely closed and air can flow in

and out of the building. Control of humidity, temperature and wind speed

in the dome is not practicable since these are environmental and can only

be measured for interpretation and analysis.
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Simple Regression

Table 2.5: Simple regression with the response variable in terms of each of the

explanatory variables (08 March 2007)

Variable β Std Error p-value R2 R̄2

time 1.51 × 10−8 8.62 × 10−11 0 0.970 0.970

ttr −3.11 × 10−8 2.10 × 10−10 0 0.958 0.958

ti1 −2.23 × 10−9 1.05 × 10−8 0.83 4.78 × 10−5 −0.001

ti2 1.23 × 10−8 6.29 × 10−8 0.84 4.03 × 10−5 −0.001

windin −1.98 × 10−8 1.65 × 10−9 0 0.130 0.129

wind30 2.73 × 10−9 1.16 × 10−9 0.018 0.006 0.005

humin 6.66 × 10−9 1.45 × 10−10 0 0.688 0.688

hum30 6.22 × 10−9 1.12 × 10−10 0 0.762 0.762

dgroc −9.88 × 10−5 5.19 × 10−7 0 0.974 0.974

tref −3.25 × 10−8 2.18 × 10−10 0 0.959 0.959

Table 2.5 is an illustration of the simple regression analysis on each

of the explanatory variables, for the data set of 08 March 2007. It can

be established from this table that according to the p-value, each of the

explanatory variables, except the temperatures of the igloos, is sufficient

to explain the response variable. The case of the igloo temperatures is

confirmed by the fact that the standard error is bigger in magnitude than the

regression coefficient (β). Moreover, according to the R2 (and the adjusted

R2), the wind speeds inside and outside the building do not fit the simple

regression model very well, although their respective p-values suggest each of

them is significant in explaining the figure of merit (response variable). All

this together leads to the statement that six explanatory variables are each

sufficient to explain the response variable. It means these variables might

be of concern regarding multicollinearity. Among these six, the variables

time, ttr, dgroc and tref cannot be separated in significance, at all. We

note that humin and hum30 are neatly significant. The scenario of more

than one explanatory variable being each sufficient to explain the response

variable appears to be common in all the data sets provided. This suggests

that multicollinearity should be a concern.
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Multiple Regression

Table 2.6: Multiple regression with the response variable in terms of all the ex-

planatory variables (08 March 2007)

Variable β Std Error t-stat p-value VIF

time 2.16 × 10−9 1.10 × 10−9 1.9679 0.049 225.99

ttr −3.79 × 10−10 2.82 × 10−9 −0.1343 0.893 349.81

ti1 −1.34 × 10−10 1.56 × 10−9 −0.0858 0.932 1.03

ti2 6.90 × 10−9 9.35 × 10−9 0.7382 0.461 1.02

windin 8.53 × 10−10 2.87 × 10−10 2.9739 0.003 1.21

wind30 1.23 × 10−9 1.79 × 10−10 6.8917 1.01 × 10−11 1.10

humin 1.55 × 10−10 2.08 × 10−10 0.7442 0.457 29.72

hum30 −6.63 × 10−10 2.06 × 10−10 −3.2241 0.001 36.85

dgroc −8.29× 10−5 1.06 × 10−5 −7.8087 1.53 × 10−14 496.34

tref −2.69× 10−9 2.90 × 10−9 −0.9303 0.352 335.40

R2 = 0.97858; R̄2 = 0.978353; General p-value: 0

Table 2.6 is an illustration of the multiple regression analysis on all of

the explanatory variables for data obtained on 08 March 2007. It can be

established from this table that according to the general p-value, the R2

(and the adjusted R2), the data fits the regression model very well. More-

over, according to the p-value, the temperature of truss, the temperatures

of both igloos, the inside humidity and the reference temperature are not

significant, and the remaining variables (time, wind speed in and out of the

building, outside humidity and change in radius of curvature) are signifi-

cant. Once again, the non significance of the explanatory variables ti1, ti2,

wind30 and tref is confirmed by their respective regression coefficients be-

ing smaller in magnitude than the corresponding standard errors. All this

together, with the simple regression outcome, leads to the statement that

indeed some variables might be involved in multicollinearity. The scenario of

variables being significant in the simple regression case and insignificant in

the multiple regression case and vice versa (like for example ttr, humin and

tref in the case of data from 08 March 2007) is also common and suggests

that multicollinearity should indeed be a concern. It is therefore necessary

to deal with the issue of multicollinearity and detect the variables that really
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explain the response.

Stepwise Regression

Table 2.7: Stepwise regression (08 March 2007)

Variable β Std Error t-stat p-value VIF

time 1.83 × 10−9 1.001 × 10−9 1.8317 0.067 188.37

ttr −2.64× 10−9 1.26 × 10−9 −2.0951 0.036 69.85

windin 8.54 × 10−10 2.83 × 10−10 3.0125 0.003 1.18

wind30 1.23 × 10−9 1.78 × 10−10 6.8996 9.52 × 10−12 1.09

hum30 −5.50 × 10−10 1.34 × 10−10 −4.0928 4.62 × 10−5 15.75

dgroc −8.62× 10−5 1.001 × 10−5 −8.6085 0 442.67

R2 = 0.978536; R̄2 = 0.9784; General p-value: 0

Table 2.7 is an illustration of the stepwise regression analysis on all of

the explanatory variables for data obtained on 08 March 2007. It can be

established from this table that according to the general p-value, the R2

(and the adjusted R2), the data fits the model very well. The variables

in this table are the only significant variables from the final model of the

stepwise regression process. Note that all the p-values are smaller than 0.1

and all the standard errors are smaller than the corresponding regression

coefficients in magnitude. The presence of time and change in radius of

curvature suggests that errors grow systematically, independently of the

environmental conditions (temperature, wind speed and humidity in the

dome). Systematic growth of errors in the computation of control of the

mirrors is to be considered as an additional explanation. The scenario of

variables being significant in the stepwise regression case and insignificant in

the multiple regression case and vice versa is also common. However, since

stepwise regression is an improvement on multiple regression, the stepwise

regression is better in providing explanation to the response. The final

model from the stepwise regression process varies with the environmental

conditions. We have to determine which of the explanatory variables appear

the most in the final model of the stepwise regression process, among all 240

available data sets.

Table 2.8 summarises the results of the stepwise regression analysis for
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Table 2.8: SALT overall stepwise regression output from the 240 data sets provided

Data All Dis tref No tref With tref TEnv

time 171 169 115 56 177

ttr 125 131 80 45 149

ti1 64 62 43 21 60

ti2 91 88 56 35 87

windin 66 66 47 19 66

wind30 89 89 61 28 98

humin 119 122 70 49 120

hum30 123 125 77 46 142

dgroc 186 189 128 58

tref 42 42

/240 /240 /157 /83 /240

the 240 samples of data sets provided. Note that these data sets are col-

lected, not continuously, meaning not everyday, over a period from March

2005 to April 2007. Also note that the spherical aberration corrector was

faulty. Reference temperature in the dome was sometimes (157/240) not

provided. It (Table 2.8) indicates how many times each explanatory variable

was significant (part of the final model) in the stepwise regression analysis.

Note that in this table:

• The first column (All) gives results of the overall stepwise regression

on all the 240 data sets, whether the reference temperature was pro-

vided or not. The regression analysis takes into account the reference

temperature when it is provided.

• The second column (Dis tref) gives results of the overall stepwise re-

gression on all the 240 data sets, whether the reference temperature

was provided or not. The regression analysis does not take into ac-

count the reference temperature whether it is provided or not.

• The third column (No tref) gives results of the overall stepwise regres-

sion only on the 157 data sets where the reference temperature was

not provided.
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• The fourth column (With tref) gives results of the overall stepwise

regression only on the 83 data sets where the reference temperature

was provided, and indeed takes into account the reference temperature.

• The fifth column (TEnv) gives results of the overall stepwise regres-

sion on all the 240 data sets, whether the reference temperature was

provided or not. The regression analysis only takes into account time

and environmental data.

Note that considering all the data sets, the main explanations for the figure

of merit are time (which suggests computation issues), temperature of truss

and humidity, but also change in radius of curvature (which is computed

and temperature dependent). Moreover, the rate of significance of reference

temperature cannot be fairly assessed since it is provided only 83 times out

of 240. We can use alternate approaches: discard the reference tempera-

ture, discard reference temperature and change in radius of curvature, split

the data sets in two (those with reference temperature and those without).

Discarding reference temperature slightly decreases the rate of significance

of time, although it still remains a serious concern. It increases the rate of

significance of temperature of truss as well as humidity and change in radius

of curvature. In brief, the main significant explanatory variables remain the

same. Considering only data sets without reference temperature, the main

significant explanatory variables remain time, temperature of truss, change

in radius of curvature and to some extent, humidity. On the other hand,

considering only data sets with reference temperature, the main significant

explanatory variables are time, temperature of truss, change in radius of cur-

vature, humidity and reference temperature. However, considering all data

sets while discarding reference temperature and change in radius of curva-

ture, which we consider as a better approach, leads to the main significant

explanatory variables being time, temperature of truss and humidity. Note

that the main concern is time, followed by temperature of truss, and then

comes humidity. The occurrence of time as significant suggests improve-

ment in computation. Temperature of truss being significant suggests flaws

in engineering design, due to the fact that temperature was a preoccupation

in the designing process.
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2.2.3 Autocorrelation and Spectral Analysis of SALT Data

Autocorrelation
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Figure 2.11: Autocorrelation of relative heights (30 July 2010): this indicates a

non stationary process

Figure 2.11 illustrates the autocorrelation of the relative heights from an

open-loop test conducted on 30 July 2010. It suggests (since it is not close

to a straight line) that the stochastic process illustrated by relative heights

is not stationary. For the overall assessment, we choose the relative heights

at each time to be the RMS (Root Mean Square) of the measurements given

by all the sensors. This indicates on average how far the system is from

the ideal position (corresponding to the best possible alignment). The lag

is measured in seconds and the autocorrelation is a dimensionless output.

Note that autocorrelation can also be done for measurements from each

sensor, and the results are different for different sensors. The purpose of

this on an open-loop test is to extract information, find out if there is a

process happening in a given time scale. From inspection of the figure, we

can conclude that the autocorrelation decreases almost exponentially with

the lag, which doesn’t give us much information about stationarity of the

process under study. Our next move is to move our inspection from time

scale to frequency scale.
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Spectral Analysis

Spectral analysis is mostly investigated to tell us in which frequency range

most of our information is gathered, whether processes are happening fast

or slow, that is, if we have a low pass or high pass process.
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Figure 2.12: Spectrum of relative heights (30 July 2010): this indicates a low pass

process

Figure 2.12 illustrates the spectrum of the relative heights from the open-

loop test conducted on 30 July 2010. The frequency is given in Hertz (but

can also be given in radians per sample) and the spectrum is given in units

of power per Hertz (but can also be given in units of power per radian per

sample). The frequency f ∈ [0, 1] and is illustrated in log scale for visibility

purposes. The figure shows that the spectrum is small in magnitude and

the further we move from 0 in terms of frequency, the smaller the value of

the spectrum. This suggests that most (more than 90%) of the power of the

spectrum is in the frequency range below 10−3Hz (which corresponds to a

time range larger that 20 minutes on average), which indicates a low pass

process. Note that the illustration of spectrum can also be done for each

sensor, and the results are different for different sensors.

47



2.3 Conclusion

Available data have been explored for explanation about the behavior of

the figure of merit. Note that in the early stages of our data analysis, we

were provided data issued from experiments conducted in 11 non consecutive

days. Stepwise regression then gave us results as in Table 2.9.

Table 2.9: SALT overall stepwise regression output from the 11 data sets provided

Data 1 2 3 4 5 6 7 8 9 10 11 Total

time 1 1 1 1 1 1 1 1 1 9

ttr 1 1 1 1 1 1 6

ti1 0

ti2 0

wx 1 1 1 1 4

wy 1 1 1 1 1 1 6

wz 1 1 1 1 1 1 1 1 1 1 10

hum 1 1 1 3

dgroc 1 1 1 1 1 1 6

tref 1 1 1 1 4

In this table, wx, wy and wz stand for wind speeds in the x, y and z

directions respectively, and are given in metres per second; hum stands for

relative humidity, and is given in %. The remaining variables are as given

in Table 2.1 (page 17). Note in Table 2.9 that the first column gives the list

of explanatory variables in the regression process, the last column gives the

rate of significance of each explanatory variable over the 11 experiments,

and the columns inbetween are specific to each of the experiments. Each

nonempty cell from the columns inbetween indicates that the corresponding

explanatory variable was found to be significant in the stepwise regression

analysis for that specific experiment. Recall that explanatory variables in

this case, and in all types of regression in general, are variables from which

we seek explanation to the behavior of the response variable. In this case,

the response variable is the figure of merit. Explanatory variables are not to

be confused with control variables. In the SALT case, the control variables

are the adjustments to be made at the actuators in order to align the mirror
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by minimising the relative heights, which is the objective function in the

optimal control problem. The optimal control problem and the regression

problem are two different problems. In the optimal control problem, the goal

is to align the mirror while in the regression problem, the goal is to detect

variables that explain the behavior of a specific variable we choose to study

– in particular, detect variables that can have some external impact on the

control system. Results on explanatory variables are from a process beyond

the scope of the control system. Recall that environmental variables cannot

be controlled at all. First note from Table 2.9 an unexpected result whereby

the most significant explanatory variable (that is, the most significant ex-

planation to the figure of merit) is wz – the wind speed in the z direction,

which in the first night of the 11 experiments for example varies between

42 and 55 metres per second. This is indeed very unrealistic and requires

more analysis and further studies. Overall, the most significant explanatory

variables (in order) are wz, time, ttr, wy and dgroc, as they appear to be

significant more than 50% of the time. After a discussion with SALT staff

to understand the results of our regression analysis, we were informed that

wx, wy, wz and hum should actually stand for inside wind speed (windin –

in m/s), outside wind speed (wind30 – in m/s), outside humidity (hum30

– in %), and inside humidity (humin – in %), respectively. This clearly

shows that data had been wrongly labelled. More data was then provided

to us (with new labels) for further analysis. Table 2.8 is the final corrected

stepwise regression output.

Tests for multicollinearity have been conducted and they reveal that

multicollinearity should be a serious concern. Regression analysis was also

conducted and it suggests that multicollinearity is a concern. Autocorrela-

tion and spectral analysis conducted on relative heights from an open-loop

test suggests that the process described by the data is not stationary, and

is also a low-pass process.

SALT staff are well aware that sensors fail at high humidity. Note that

stepwise regression is aimed at measuring a defect in the control algorithm.

Stepwise regression applied to a good operating regime shows that at best,

humidity has a relatively minor role to play, since its rate of significance

comes after that of time and temperature of truss. Also note that the ap-

pearance of both temperature and humidity as significant variables in the

final model of stepwise regression shows that they are actually independent
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significant variables. These two variables (in order, temperature of truss and

humidity) are therefore of obvious interest since regression analysis shows

failure to control against these variables. But also, it is clear that time itself

is an independent variable. Thus, stepwise regression analysis suggests (Ta-

ble 2.8) that the main reasons for degrading figure of merit are computation

(because of time as a significant variable), temperature of truss and to some

extent, humidity. The main concern however, is computation, which sug-

gests numerical problems, followed by temperature of truss, which suggests

an imperfection in structure design. This result is quite different from the

(correct) knowledge of the SALT staff that the capacitive edge sensors work

in a particular humidity range.

Temperature is not controlled in the dome, deformation of the truss is a

real concern, and therefore it is essential to control the SALT primary mirror

continuously. In turn, it is important that the control code be re-examined.

Humidity is not controlled in the dome and is found to be a mildly

significant explanation to the degradation of the figure of merit. SALT

has independently identified capacitive edge sensors to be very sensitive to

humidity and has (as of January 2012) prepared a call for tenders to replace

them with inductive devices. Our results indicate that this will contribute

to improved figure of merit only if mathematical control is effective.

Considering that time is the main concern in our data analysis, explo-

ration of computation is an important step in resolving the issue of improving

the performance of the telescope.
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Chapter 3

Control Algorithm

It was established in Chapter 2 that computation is a serious concern in

the unsatisfactory performance of SALT. In this chapter we discuss the

performance of the control algorithm of SALT and propose a few techniques

for improvement of this control algorithm, which can also be helpful for

other large segmented telescopes.

3.1 Overview on the Existing Segment Alignment

Measurement System (SAMS)

As previously mentioned (Section 1.1.1), SALT has a primary mirror com-

posed of 91 segments disposed on a steel truss with a spherical shape. Be-

tween every two neighboring segments, we have two sensors and each seg-

ment is controlled by three actuators. This gives 273 actuators and 480

sensors. The sensors measure the relative heights between neighboring seg-

ments, and these relative heights are due to the fact that the segments can

move independently of one another, and therefore depart from their ideal

positions. The main goal is to keep the segments as close as possible to the

ideal position all the time. The mirror is equipped with a Primary Mir-

ror Alignment System (PMAS) divided into four (building blocks) subsys-

tems, precisely the Mirror Alignment Control System (MACS), the Center

of Curvature Alignment Sensor (CCAS), the Segment Alignment Measure-

ment System (SAMS) and the Segment Positioning System (SPS). We are

interested in CCAS and SAMS, due to the fact that relative heights mea-

sured by CCAS and computed by SAMS are supposed to match at some

level of tolerance, to confirm the efficiency of the control algorithm. The

control problem of the SALT mirrors is a large scale problem and therefore

involves large matrix manipulations. The most reasonable way to handle

this problem is the numerical way.
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SALT was built in such a way that among other conditions, the Pri-

mary Mirror Alignment System must meet some technical requirements as

described in [41]. In brief, the Primary Mirror Alignment System interfaces

with the Telescope Control System (TCS), the computer room, the mirror

truss, the mirror mounts, the primary mirror array and the CCAS tower.

3.1.1 Geometric Modelisation

It is well known from Geometry [1, 16] that in a 3-dimensional space, the

equation of a plane can be written in the form Lx + My + Nz + K = 0,

where L, M , N and K are constants. In particular, if the plane passes

through three known and not aligned points P1(x1, y1, z1), P2(x2, y2, z2) and

P3(x3, y3, z3), then it can be established that

L = y1(z3 − z2) + y2(z1 − z3) + y3(z2 − z1)

M = z1(x3 − x2) + z2(x1 − x3) + z3(x2 − x1)

N = x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1)

K = x1(y2z3 − y3z2) + x2(y3z1 − y1z3) + x3(y1z2 − y2z1)

 x
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Figure 3.1: Different axes types for the SALT primary mirror

If we consider our x, y and z axes as in Figure 3.1 (in their respective

positive directions) where for illustration purposes we only displayed the
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central segment and the first ring, then they define the Telecentric Axes

System as laid out in [38] where we can also find more about the geometry

behind the construction of the SALT primary mirror array. If the x, y

and z axes are defined with reference to any segment at the ideal position,

they define the Segment Local Axes System (SLAS) as explained in [30,

31, 41, 42] and illustrated in Figure 3.1 as the x, y and z axes for the

central segment. If the axes system is fixed with reference to a segment

(and therefore moves as the segment moves) then it defines the Segment

Body Frame (SBF), illustrated in Figure 3.1 as the x′, y′ and z′ axes for

the central segment. When the segment moves, the angle θ between the x

axes of the SLAS and the SBF (the x and x′ axes or equivalently the x and

x1 axes in Figure 3.1 for the central segment) is called tip and is measured

in arcseconds; the angle ϕ between the y axes of the SLAS and the SBF

(the y and y′ axes or equivalently the y and y1 axes in Figure 3.1 for the

central segment) is called tilt and and is measured in arcseconds; the piston,

sometimes denoted as p, is the distance covered by the center of the segment

in the positive z direction of the SLAS (the distance between the origin of

the x, y and z axes and the origin of the x′, y′ and z′ axes in Figure 3.1

for the central segment) and is measured in microns. The Global Radius of

Curvature (GRoC) is the radius of curvature of the spherical surface forming

the closest approximation of the primary mirror array’s optical surface.

The segment alignment takes place as follows: during observations, SAMS

continuously measures segment movement and MACS calculates corrections

and sends commands to SPS to perform the corrections.

Exploring the geometry of the Primary Mirror, the equation of each

segment in SLAS at the ideal position is z = 0; and after a movement,

(assuming this is done in a very small range of actuator displacements) the

equation becomes Lx + My + Nz + K = 0 and since N 6= 0 because of

the assumption (leading to the new equation z = − L
N x − M

N y − K
N ), we

can easily find that the tip (θ) and tilt (ϕ) are given by: tan(ϕ) = L
N ≃ ϕ

and tan(θ) ≃ −M
N ≃ θ, as explained in [30, 31]. Indeed, from a simple

approximation principle, if we consider the respective angles θ and ϕ of the

rotations around the x and y axes, their matrices are given as follows:

Rx =



1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 Ry =




cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ



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Their effect on the positive unit vector in the z direction is described as

follows:

~n = Ry ∗Rx ∗



0

0

1


 =




cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ






1 0 0

0 cos θ − sin θ

0 sin θ cos θ






0

0

1




=




cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ







0

− sin θ

cos θ




=



sinϕ cos θ

− sin θ

cosϕ cos θ




This is a unit vector and is normal to the plane with equation

Lx+My +Nz +K = 0

and is therefore to be identified to the vector



L√
L2+M2+N2

M√
L2+M2+N2

N√
L2+M2+N2




from which we obtain

sinϕ cos θ =
L√

L2 +M2 +N2

− sin θ =
M√

L2 +M2 +N2

cosϕ cos θ =
N√

L2 +M2 +N2

and since θ and ϕ are very small, the approximation rule gives

tanϕ =
L

N
≃ ϕ

tan θ = − M

N cosϕ
≃ −M

N
≃ θ.

Also, the piston is given by p = −K
N . Therefore

z = −x tan(ϕ) + y tan(θ) + p.
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The assumption of very small range of actuator displacements also gives

a one-to-one correspondence between actuator displacements and segment’s

displacement (piston/tip/tilt) for each segment (see [25, 31, 41]), summarised

as follows: 

a1

a2

a3


 =



1 0 R

1 −R
√
3
2 −R

2

1 R
√
3
2 −R

2






piston

tip

tilt


 (3.1)

which is equivalent to:



piston

tip

tilt


 =

1

3R



R R R

0 −
√
3

√
3

2 −1 −1






a1

a2

a3


 (3.2)

where R, piston, as well as the actuator displacements a1, a2 and a3 are in

metres, tip and tilt in radians (and can be converted to arcseconds, with

π rad = 180◦ and 1◦ = 3600 arc-sec). This helps in simplifying the calcula-

tion of relative heights between neighboring segments. These relative heights

are measured by edge sensors. Each edge sensor has two plates: one active,

the emitter plate, and one passive, the receiver plate. The relative heights

are defined for each sensor as the difference of heights between the emitter

plate and the corresponding receiver plate on the neighboring segment. So

for the whole array, this can be written as:

Sl =

273∑

m=1

a
lm
Zm or S = AZ (3.3)

where Sl is the height as read from sensor l and Zm is the displacement

of actuator m. So A is a (sparse) 480 × 273 matrix, S is a column vector

of length 480 and Z is a column vector of length 273. Using the heights

obtained from the sensor readings, the problem is to find the tip/tilt/piston

for each segment. This is done by using the Least Squares method [10,

12, 21, 36] to determine the actuator displacements from relative heights,

and the one-to-one correspondence (3.2) above to find the tip/tilt/piston we

required.

The rank of A is 269 and we have 273 unknowns. Hence finding z

from s using the relation s = Az does not have a unique solution. This is

illustrated in introductory examples on least squares problems (page 58).

Therefore four constraints are needed to bring the rank of A to 273. This

is achieved by locking one segment (the central segment for example) and
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locking the piston of another segment (on the outer ring for example) to

be zero; another way is to lock the pistons of four segments to be zero.

The SALT initial algorithm has the option of choosing between the two

alternatives. This changes the dimensions of the A matrix (from 480 to 483

or 484 according to the number of additional constraints). On the other

hand, it is also required to deal only with valid sensors (those which are

working properly and are not situated around uncontrolled segments) and

controlled segments (those which have at least three of twelve sensors (see

Figure 1.2 for illustration of a few segments with sensors and actuators) to

control their position). This reduces A to a L×M matrix, where L ≤ 480

and M ≤ 273. Note that considering the option to block pistons of some

segments is based on the assumption that the truss is spherical and does

not deform. Hence a better option is to consider constraints not collinear

to the information we have, that is, not collinear to pistons and actuator

displacements.

3.2 On the Numerical Methods for SALT

The numerical issues to handle for linear control problems demand accurate

solutions of linear algebraic systems. This can be done manually for small

size systems. Large scale systems are necessarily handled numerically.

3.2.1 Preliminary Theory

Formulation of the Least Squares Problem

We consider the linear system Ax = b where A is an m × n matrix and b

is a column vector of length m. The problem is to find a column vector

x of length n that minimises ‖Ax − b‖, which is the same as minimising

‖Ax − b‖2 (the norm is the ‖ · ‖2 norm or the Euclidean norm). There

are many approaches to solve the least squares problem. It can be solved

analytically for reasonable sizes of the matrix A. However, for large scale

problems, numerical approaches are more indicated for solving least squares

problems.

Overview We consider A ∈ R
m×n, the set of real m × n matrices, and

R(A) the range of A, that is, R(A) = {Ax : x ∈ R
n}.

Remark 3.1. The following results are well known from the literature [10]
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1. rank(A) ≤ min(m,n)

2. If m ≥ n, then rank(A) = n ⇐⇒ rank
(
ATA

)
= n, that is, ATA is

nonsingular

3. If m ≥ n and rank(A) = n, then the unique vector x∗ that minimises

‖Ax− b‖2 is x∗ =
(
ATA

)−1
AT b

4. If m ≥ n and rank(A) = n, if h ∈ R(A) and h − b is orthogonal to

R(A), then h = Ax∗ = A
(
ATA

)−1
AT b

5. If m ≤ n and rank(A) = m, then the unique solution to Ax = b that

minimises ‖x‖ is x∗ = AT
(
AAT

)−1
b

The following results can also be found in the literature.

Lemma 3.2 (See [10]). Given A ∈ R
m×n with rank(A) = r, there exist

two matrices B ∈ R
m×r and C ∈ R

r×n such that A = BC with rank(B) =

rank(C) = r.

Definition 3.3 (See [10]). Given A ∈ R
m×n, a matrix A+ is a pseudo

inverse of A if:

• AA+A = A

• There exist U ∈ R
n×n and V ∈ R

m×m such that A+ = UAT = ATV

Theorem 3.4 (See [10]). If the pseudo inverse of A exists, it is unique.

Theorem 3.5 (See [10]). Let A ∈ R
m×n, with full rank factorization A =

BC where rank(A) = rank(B) = rank(C) = r; then A+ = C+B+ where

B+ =
(
BTB

)−1
BT and C+ = CT

(
CCT

)−1

Remark 3.6. The following is valid for full rank factorization:

• If A = BC is a full rank factorization of A, then another (equivalent)

expression for A+ is A+ = CT
(
BTACT

)−1
BT

• The equality A+ = C+B+ from Theorem 3.5 does not necessarily hold

if A = BC is not a full rank factorization of A

Theorem 3.7 (See [10]). Let A ∈ R
m×n and b ∈ R

m; then x∗ = A+b

minimises ‖Ax − b‖ on R
n. Furthermore, amongst all vectors in R

n that

minimise ‖Ax− b‖, x∗ = A+b is the unique vector with minimum norm.
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Remark 3.8. The following can be verified [10]:

1.
(
AT
)+

= (A+)
T

2. (A+)
+
= A

3. A+ is the pseudo inverse of A if and only if

• AA+A = A

• A+AA+ = A+

• (AA+)
T
= AA+

• (A+A)
T
= A+A

The Least Squares Problem as an Optimisation Problem

The problem under consideration is

min
x

‖Ax− b‖ (3.4)

where A is an m× n matrix and b is a column vector of length m. Problem

(3.4) is equivalent to minimising ‖Ax− b‖2 = (Ax− b)T (Ax− b). This arises

in the SALT control process when for example actuator positions have to be

determined from relative heights. There are three main methods relevant to

solving (3.4). These will be explored after a few introductory examples.

Introductory Examples Consider the following vectors and matrices:

A1 =



3 2

1 3

4 5


 b1 =




4

−1

3


 bb1 =



5

0

2




A2 =



3 2 1

1 3 2

4 5 3


 b2 =




6

5

11


 bb2 =




5

4

12




Note that A1 is a 3×2 matrix with rank 2 and A2 is a 3×3 matrix with

rank 2. That is, A1 is a full rank matrix and A2 is a rank deficient matrix.

1. Determine x ∈ R
2 that solves min

x
‖A1x− b1‖
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Sketch of Solution A simple calculation gives the unique solution

x1 =

(
2

−1

)
and this can easily be obtained by solving A1x = b1. It

can indeed be established that ‖A1x1 − b1‖ = 0

2. Determine x ∈ R
2 that solves min

x
‖A1x− bb1‖

Sketch of Solution A simple calculation shows that the range of

A1 is the plane a + b − c = 0 in R
3 and obviously bb1 is not in that

plane (Note that b1 given above is in that plane). However, minimising

‖A1x − bb1‖ can be done by finding the point b′1 in the range of A1,

that is closest to bb1 and then find the inverse image of b′1; if we have

many of them, we choose the one with minimum norm. A normal

vector to the range of A1 is ~n =




1

1

−1


. We just need to find a λ ∈ R

such that bb1 + λ~n is in the range of A1. In fact, bb1 + λ~n = b′1. A

simple computation gives λ = −1 and therefore b′1 =




4

−1

3


. Solving

A1x = b′1 gives x1 =

(
2

−1

)
, which is the solution to our least squares

problem min
x

‖A1x− bb1‖. And actually, ‖A1x1 − bb1‖ = |λ|‖~n‖ =
√
3.

3. Determine x ∈ R
3 that solves min

x
‖A2x− b2‖

Sketch of Solution A simple calculation shows that the null space

of A2 is spanned by vector ~u =




1

−5

7


 and that a particular solution

to A2x = b2 is x2p =




1

2

−1


. The solution to A2x = b2 is

x2 = x2p + α~u =




1 + α

2− 5α

−1 + 7α


, with α ∈ R. For each of these x2, we

have ‖A2x2 − b2‖ = 0. Moreover, ‖x2‖ =
√
75α2 − 32α + 6 and this is

minimised when α = 16
75 and hence ‖x2‖ =

√
194
75 ≃ 1.6083.
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4. Determine x ∈ R
3 that solves min

x
‖A2x− bb2‖

Sketch of Solution A simple calculation shows that the range of

A2 is the plane a + b − c = 0 in R3, and obviously bb2 is not in

that plane (Note that b2 given above is in that plane). Therefore

there is no vector x ∈ R
3 such that A2x = bb2. However, minimising

‖A2x−bb2‖ can be done by finding the point b′2 in the range of A2, that

is closest to bb2 and then find the inverse image of b′2; if we have many

of them, we choose the one with minimum norm. A normal vector to

the range of A2 is ~n =




1

1

−1


. We just need to find a λ ∈ R such

that bb2 + λ~n is in the range of A2. In fact, bb2 + λ~n = b′2. A simple

computation gives λ = 1 and therefore b′2 =




6

5

11


. Solving A2x = b′2

gives x2 =




1 + α

2− 5α

−1 + 7α


, with α ∈ R. For each of these x2, we have

‖A2x2− bb2‖ = |λ|‖~n‖ =
√
3. Moreover, ‖x2‖ =

√
75α2 − 32α+ 6 and

this is minimised when α = 16
75 and hence ‖x2‖ =

√
194
75 ≃ 1.6083.

Note that solving Ax = b or min
x

‖Ax−b‖ has at most one solution when A

is a full rank matrix, and infinitely many solutions when A is rank deficient.

As a direct application to the SALT case, since the SALT actuator-to-heights

matrix is rank deficient, this implies that for a given vector of measured

relative heights s, there are infinitely many sets of actuator displacements z

such that ‖s − Az‖ is minimised. Now we explore the three main methods

relevant to solving (3.4).

The Normal Equations Approach [12, 28] This method is used on

SALT. We consider f(x) = (Ax− b)T (Ax− b). Then we have

f(x) = (Ax− b)T (Ax− b)

= xTATAx− xTAT b− bTAx+ bT b

= xTATAx− 2bTAx+ bT b

60



The gradient of f is given by ∇x(f) = 2ATAx − 2AT b. The equation

∇x(f) = 0 or equivalently

ATAx−AT b = 0 (3.5)

is the set of normal equations associated to Problem (3.4).

Provided the matrix ATA is nonsingular (which by item 2 of Remark

3.1 means that A has full rank), the solution to the normal equations is

x∗ = (ATA)−1AT b. Moreover, x∗ is indeed the minimiser of f because the

Hessian of f is ATA which is positive definite. This confirms item 3 of

Remark 3.1.

Example We reconsider the introductory examples (See page 58).

1. We have AT
1 A1 =

(
26 29

29 26

)
which is a nonsingular matrix, and

hence, if we let C1 =
(
AT

1 A1

)−1
AT

1 , a simple calculation gives C1 =

1
21

(
8 −7 1

−5 7 2

)
, and for the first two questions, we respectively ob-

tain by straightforward substitution

C1b1 =
(
AT

1 A1

)−1
AT

1 b1 =
1

21

(
8 −7 1

−5 7 2

)


4

−1

3


 =

(
2

−1

)

C1bb1 =
(
AT

1 A1

)−1
AT

1 bb1 =
1

21

(
8 −7 1

−5 7 2

)

5

0

2


 =

(
2

−1

)

2. We have AT
2 A2 =



26 29 17

29 38 23

17 23 14


 which is a singular matrix, and

hence, it is impossible to determine C2 =
(
AT

2 A2

)−1
AT

2 , therefore the

normal equations approach is not applicable for the last two questions

of the introductory examples.

Remark 3.9. The normal equations approach is fast, but numerically un-

stable and not recommended for large scale problems and rank deficient

problems.
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The QR Approach [12, 28] This involves simplifying the problem under

consideration (Problem (3.4)) by writing the matrix A as a product of an

orthogonal matrix Q and an upper triangular matrix R.

Theorem 3.10 (See [12]). We consider a full rank m×n matrix A with m ≥
n (that is rank(A) = n). Then there exists a unique m×n orthogonal matrix

Q and a unique n × n upper triangular matrix R with positive diagonals

rii > 0 such that A = QR.

Remark 3.11. TheQR factorization as given in Theorem 3.10 is not unique if

A does not have full rank. Moreover, R is singular when A is rank deficient.

Under the assumption that A has full rank, from the QR factorization

of A, we have

x∗ = (ATA)−1AT b

= (RTQTQR)−1RTQT b

= (RTR)−1RTQT b

= R−1(RT )−1RTQT b

= R−1QT b

This approach is numerically more stable than the normal equations

approach, is computationally more expensive and also applies to large scale

problems.

Example We reconsider the introductory examples (See page 58).

1. We have A1 = Q1R1 = Q11R11 with

Q1 =




− 3√
26

− 5√
78

− 1√
3

− 1√
26

− 7√
78

− 1√
3

− 4√
26

2√
78

1√
3


 R1 =




−
√
26 − 29√

26

0 −7
√
3√
26

0 0




Q11 =




− 3√
26

− 5√
78

− 1√
26

− 7√
78

− 4√
26

2√
78


 R11 =

(
−
√
26 − 29√

26

0 −7
√
3√
26

)

The QR formula does not apply to Q1 and R1 since R1 is not square.

However, a straightforward application of the QR formula on Q11 and
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R11 for the first two questions of the introductory examples gives

R−1
11 Q

T
11b1 =

(
− 1√

26
29

7
√
78

0 −
√
26

7
√
3

)(
− 3√

26
− 1√

26
− 4√

26

− 5√
78

− 7√
78

2√
78

)


4

−1

3


 =

(
2

−1

)

R−1
11 Q

T
11bb1 =

(
− 1√

26
29

7
√
78

0 −
√
26

7
√
3

)(
− 3√

26
− 1√

26
− 4√

26

− 5√
78

− 7√
78

2√
78

)

5

0

2


 =

(
2

−1

)

2. We have A2 = Q2R2 with

Q2 =




− 3√
26

− 5√
78

− 1√
3

− 1√
26

− 7√
78

− 1√
3

− 4√
26

2√
78

1√
3


 R2 =




−
√
26 − 29√

26
− 17√

26

0 −7
√
3√
26

−5
√
3√
26

0 0 0




The QR formula does not apply to Q2 and R2 since R2 is square

but singular. Hence the QR approach does not apply to the last two

questions of the introductory examples.

Remark 3.12. The QR approach is about twice as expensive (computation-

ally) as the normal equations approach. It is numerically more stable and

can also be applied to large scale problems, but not to rank deficient prob-

lems. The SALT system is rank deficient and mirror segments must be fixed

via constraints in order to change the system from a rank deficient system

to a full rank system.

The Singular Value Decomposition (SVD) Approach [12, 28] This

involves simplifying the problem under consideration (Problem (3.4)) by

writing the matrix A as a product of two orthogonal matrices U and V , and

a diagonal matrix Σ with nonnegative elements on the main diagonal.

Theorem 3.13 (See [12, 28]). We consider an arbitrary m × n matrix A

with m ≥ n. Then there exist a unitary m ×m matrix U , a unitary n × n

matrix V and a diagonal m× n matrix Σ such that A = UΣV T , where

Σ =




σ1 · · · 0
...

. . .
...

0 · · · σn

0 · · · 0




with σ1 ≥ · · · ≥ σn ≥ 0.
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Definition 3.14. Let A = UΣV T be the SVD (Singular Value Decomposi-

tion) of A as in Theorem 3.13.

• The columns u1, · · · , um of U are called left singular vectors of A.

• The columns v1, · · · , vn of V are called right singular vectors of A.

• The scalars σi on the diagonal of Σ are called singular values of A.

Remark 3.15. Let A = UΣV T be the SVD of the m × n matrix A, with

m ≥ n. The following results can be found in the literature [12]:

1. If A is symmetric, with eigenvalues λi and orthogonal eigenvectors ui

(that is, A = UΛUT is an eigendecomposition of A with the λi on the

diagonal of Λ), then A = UΣV T is an SVD of A, where σi = |λi| and
vi = sign(λi)ui, assuming sign(0) = 1.

2. The eigenvalues of the symmetric matrix ATA are σ2
i and the eigen-

vectors of ATA are the right singular vectors vi of A.

3. The eigenvalues of the symmetric matrix AAT are σ2
i and m−n zeros;

and the eigenvectors of AAT are the left singular vectors ui of A corre-

sponding to nonzero eigenvalues. One can take any m− n orthogonal

vectors as eigenvectors for the eigenvalue 0.

4. If A has full rank, the solution of Problem (3.4) is x = V Σ−1UT b.

5. ‖A‖2 = σ1. If A is square and nonsingular, then ‖A−1‖−1
2 = σn and

the condition number of A is κ(A) = ‖A‖2 · ‖A−1‖2 = σ1

σn
.

6. Suppose σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0. Then the rank of

A is r. The null space of A is the space spanned by columns r + 1

to n of V , that is: N (A) =

{
n∑

i=r+1
αivi with αi ∈ R

}
. The range

space of A is the space spanned by columns 1 to r of U , that is,

R(A) =

{
r∑

i=1
αiui with αi ∈ R

}
.

7. Let A = UΣV T be the SVD of A and let U =
[
u1 u2 · · · um

]

and V =
[
v1 v2 · · · vn

]
. Then A =

n∑
i=1

σiuiv
T
i which is a sum

of rank one matrices. Then a matrix of rank k < n closest to A is

Ak =
k∑

i=1
σiuiv

T
i , and ‖A − Ak‖2 = σk+1. This can also be written
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as Ak = UΣkV
T where Σk is obtained from Σ by replacing all σi for

i > k with 0.

Proposition 3.16 (See [12]). Let A be an m × n matrix with m ≥ n and

rank(A) = r < n. Then there is an n − r dimensional set of vectors x that

minimise ‖Ax− b‖.

Proposition 3.17 (See [12]). Let σmin be the smallest singular value of A

and assume σmin > 0. Then

1. If x minimises ‖Ax − b‖2, then ‖x‖2 ≥ |uT
n b|

σmin
, where un is the column

of U corresponding to σmin in the SVD of A.

2. Changing b to b + δb can change x to x + δx where ‖δx‖2 is as large

as ‖δb‖2
σmin

.

In other words, if A is nearly rank deficient, then the solution x is ill-

conditioned and possibly very large.

Proposition 3.18 (See [12]). Let A be an m × n matrix with rank r < n

where m ≥ n, and A = UΣV T an SVD of A. This SVD can be written as

A =
[
Uc Uu

] [Σc 0

0 0

][
V T
c

V T
u

]
= UcΣcV

T
c

where Σc is the top left (diagonal and nonsingular) r × r sub-matrix of Σ,

Uc is the left m× r sub-matrix of U , Vc is the left n× r sub-matrix of V , Uu

and Vu respectively complete the bases of the spaces spanned by U and V .

Let σ = σmin (Σc) be the smallest nonzero singular value of A. Then

1. All solutions x can be written x = VcΣ
−1
c UT

c b + Vuz where z is an

arbitrary vector (set of coefficients, each corresponding to one column

vector of Vu).

2. The solution x has minimal norm ‖x‖2 precisely when z = 0, in which

case x = VcΣ
−1
c UT

c b and ‖x‖2 ≤ ‖b‖2
σ .

3. changing b to b + δb can change the minimal norm solution x by at

most ‖δb‖2
σ .

In other words, the norm and condition number of the unique minimal norm

solution x depend on the smallest nonzero singular value of A.
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Remark 3.19. The equality A = UcΣcV
T
c in Proposition 3.18 is called com-

pact SVD of A.

Under the assumption that A has full rank, and from the compact SVD

of A, we have:

x∗ = (ATA)−1AT b

=
(
(UcΣcV

T
c )TUcΣcV

T
c

)−1
(UcΣcV

T
c )T b

= (VcΣcU
T
c UcΣcV

T
c )−1(VcΣcU

T
c )b

= VcΣ
−2
c V T

c VcΣcU
T
c b

= VcΣ
−1
c UT

c b

Definition 3.20. We consider an m × n matrix A with rank r ≤ n where

m ≥ n. Let A = UΣV T = UcΣcV
T
c be the SVD and compact SVD of A.

Then the pseudo inverse of A is A+ = VcΣ
−1
c UT

c , which can also be written

A+ = V Σ+UT where Σ+ is the n×m matrix

Σ+ =

[
Σ−1
c 0

0 0

]

So the solution of Problem (3.4) is x = A+b, and when A is rank deficient,

x has minimum norm.

Example We reconsider the introductory examples (See page 58).

1. The singular values ofA1 are σ1 =
√

32 +
√
877 and σ2 =

√
32−

√
877.

These are easily obtained as square roots of eigenvalues of AT
1 A1. The

right singular vectors vi of A1 are obtained as the eigenvectors of AT
1 A1

corresponding to the eigenvalues λ1 = 32+
√
877 and λ2 = 32−

√
877.

These vectors are then normailsed to unity. The left singular vectors

ui of A1 are obtained as the eigenvectors of A1A
T
1 corresponding to the

eigenvalues λ1 = 32 +
√
877 and λ2 = 32 −

√
877 and λ3 = 0. These

vectors are then normailsed to unity. Before normalisation, we obtain

from calculation that

ui =

(
x

y

)
with y =

λi − 26

29
x

where the λi are the two eigenvalues of AT
1 A1 given above. Similarly,
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we obtain from calculation that

vi =



x

y

z


 where y =

19λi − 49

22λi − 49
x

z =
1

22

[
λi − 13− 9

19λi − 49

22λi − 49

]
x

where the λi are the three eigenvalues of A1A
T
1 given above. In brief,

A1 = U1Σ1V1 = U11Σ11V11 where

U1 =
[
u1 u2 u3

]
, Σ1 =



σ1 0

0 σ2

0 0


 , V1 =

[
v1 v2

]

U11 =
[
u1 u2

]
, Σ11 =

[
σ1 0

0 σ2

]
, V11 = V1

After calculation, we obtain

V1Σ
+
1 U

T
1 = V11Σ

−1
11 U

T
11 =

1

21

(
8 −7 1

−5 7 2

)
= C1

where Σ+
1 =

[
1
σ1

0 0

0 1
σ2

0

]
. Therefore the solution to the first two ques-

tions of the introductory examples is x1 =

(
2

−1

)
as in the previous

two approaches.

2. Following a similar procedure, we have A2 = U2Σ2V
T
2 = U22Σ22V

T
22

where

U2 =




− 1√
6

1√
2

− 1√
3

− 1√
6

− 1√
2

− 1√
3

− 2√
6

0 1√
3


 , U22 =




− 1√
6

1√
2

− 1√
6

− 1√
2

− 2√
6

0




Σ2 =



5
√
3 0 0

0
√
3 0

0 0 0


 , Σ22 =

(
5
√
3 0

0
√
3

)

V2 =




− 4
5
√
2

2√
6

− 1
5
√
3

− 1√
2

− 1√
6

1√
3

− 3
5
√
2

− 1√
6

− 7
5
√
3


 , V22 =




− 4
5
√
2

2√
6

− 1√
2

− 1√
6

− 3
5
√
2

− 1√
6



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After calculation, we obtain

V2Σ
+
2 U

T
2 = V22Σ

−1
22 U

T
22 =

1

75




27 −23 4

−10 15 5

−11 14 3




where Σ+
2 =




1
5
√
3

0 0

0 1√
3

0

0 0 0


. A straightforward application of the

SVD formula on U2, Σ2 and V2 (or equivalently on U22, Σ22 and V22)

for the last two questions of the introductory examples gives

V2Σ
+
2 U

T
2 b2 = V22Σ

−1
22 U

T
22b2 =

1

75




27 −23 4

−10 15 5

−11 14 3







6

5

11


 =




91
75
70
75
37
75




V2Σ
+
2 U

T
2 bb2 = V22Σ

−1
22 U

T
22bb2 =

1

75




27 −23 4

−10 15 5

−11 14 3







5

4

12


 =




91
75
70
75
37
75




and this coincides with the solution obtained in questions 3 and 4 of

the introductory examples, that is,

x2 =




1 + α

2− 5α

−1 + 7α


 with α =

16

75
.

Remark 3.21. The SVD approach is about twice as expensive (computation-

ally) as the QR approach. It is the only approach recommended for rank

deficient problems, and can also be applied to large scale problems. Mirror

segments need not be fixed via constraints for the only purpose to change

the system from a rank deficient system to a full rank system.

3.2.2 Assessment of Computing Time, Mirror Displacement

and Alignment Accuracy

In this section, we use 100000 trials of randomly sampled (generated by

simulation) initial configurations of the SALT primary mirror under the as-

sumption that each actuator position is within a given range zmax from the

ideal position, and the mirror may be outside of acceptable alignment. Since
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the SALT control system measures the relative heights and estimates the

actuator positions from those relative heights, we will assess the difference

between simulated actuator positions provided, and the estimated actuator

positions from the corresponding relative heights, using normal equations,

QR and SVD approaches respectively. Thus we may assess critical require-

ments for control of typical algorithm execution time and the precision de-

manded by the algorithm for initial alignment of mirrors by CCAS. Note

that normal equations and QR are used when the system is of full rank,

that is, when there are constraints to the system, in the unique purpose

that from a given set of relative heights, we have a unique corresponding

set of actuator displacements. SVD is used when the system is rank defi-

cient, that is, it corresponds to the original system without constraints on

any segment. In the rank deficient case, there is no unique set of actuator

displacements from a given set of relative heights, and SVD chooses one of

the sets of actuator displacements, with minimum norm. For our simulated

experiments, we choose the maximum actuator displacement from zero to be

10−6 ≤ zmax ≤ 10−4 metre. Each simulated actuator position can take any

value between −zmax and zmax, with equal probability (uniform probability

distribution). Algorithmic precision is acceptable when RMS tip/tilt errors

are less than 0.1 arcsecond.

Mirror Displacements

In this scenario, we use zmax = 10−4 metre, and we randomly generate

actuator positions between −zmax and zmax. Figures 3.2 and 3.3 illustrate,

in a histogram, the RMS of actuator displacements in metres and the RMS of

corresponding tip/tilts in arcseconds. RMS actuator positions vary between

5.06×10−5 and 6.47×10−5 metre, with an average of 5.77×10−5 metre and

a high concentration around 5.8 × 10−5 metre. On the other hand, RMS

tip/tilts vary between 35.73 and 51.74 arcseconds, with an average of 43.88

arcseconds and a high concentration around 44 arcseconds. This indicates

that for each of 100000 trials, the mirror is out of acceptable alignment, and

therefore has to be brought within acceptable alignment.

Computing Time

We give detailed examination of simulations in the case zmax = 10−4 metre.

Table 3.1 gives information about computing times for estimating actuator
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Figure 3.2: Histogram of RMS actuator displacements: with each initial actuator

position between −10−4 metre and 10−4 metre, the probability of misalignment is

very high
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Figure 3.3: Histogram of RMS tip/tilts: with each initial actuator position between

−10−4 metre and 10−4 metre, the probability of the primary mirror being out of

acceptable alignment is very high
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Table 3.1: Computing times (time to estimate actuator positions from a set of

relative heights corresponding to a set of randomly generated actuator positions)

using different methods over 100000 trials: Compared to the approximately 0.1

second actuator response time, computing time is not a concern

Normal Equations QR SVD

Minimum time (s) 1.29 × 10−4 1.22 × 10−4 1.24 × 10−4

Maximum time (s) 0.00471 0.00357 0.00479

Average time (s) 1.375 × 10−4 1.336 × 10−4 1.342 × 10−4

F
(
t ≥ 10−4

)
100000 100000 100000

F
(
t ≥ 2× 10−4

)
248 171 206

F
(
t ≥ 3× 10−4

)
52 42 33

F
(
t ≥ 4× 10−4

)
28 28 13

F
(
t ≥ 5× 10−4

)
21 19 9

F
(
t ≥ 10−3

)
7 8 3

positions from a set of relative heights corresponding to a random set of sim-

ulated actuator positions, using different methods. The methods analysed

are the normal equations method, the QR method and the SVD method. In

each method, the pseudo inverse of the actuator-to-heights matrix is given

and the computation reduces to a matrix-vector multiplication. In this table,

time is given in seconds, F (t ≥ T ) indicates how many times over 100000

trials the computing time is greater than the given value T . With the nor-

mal equations method, the computing time varies from 1.29 × 10−4 second

to 0.00471 second, with an average of 1.375× 10−4 second and a probability

2.48×10−3 of being greater than 2×10−4 second. With the QR method, the

computing time varies from 1.22 × 10−4 second to 0.00357 second, with an

average of 1.336×10−4 second and a probability 1.71×10−3 of being greater

than 2 × 10−4 second. With the SVD method, the computing time varies

from 1.24× 10−4 second to 0.00479 second, with an average of 1.342× 10−4

second and a probability 2.06× 10−3 of being greater than 2× 10−4 second.

Thus, compared to the actuator response time which is approximately 0.1

second, the computing time is not a constraint on control time interval.
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Figure 3.4: Histogram of RMS actuator errors using normal equations: algorithmic

accuracy is not ideal as the actuator errors are a considerable fraction of the actuator

displacements
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Figure 3.5: Histogram of RMS actuator errors using QR: algorithmic accuracy is

not ideal as the actuator errors are a considerable fraction of the actuator displace-

ments
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Figure 3.6: Histogram of RMS actuator errors using SVD: algorithmic accuracy

is not ideal but much better than that of normal equations and QR

Actuator Displacement Errors

Again, we set zmax = 10−4 metre. Figures 3.4, 3.5 and 3.6 illustrate each in a

histogram, the actuator displacement errors from the same simulated data of

the previous paragraph. These errors are given as the RMS of the differences

between the simulated values of actuator displacements, and the estimation

obtained from computation. Of course, perfect algorithmic accuracy is the

case of zero difference. For normal equations and QR methods, these actua-

tor displacement errors vary between 1.48×10−6 and 7.78×10−5 metre, with

an average of 3.26× 10−5 metre, and a high concentration around 3× 10−5

metre. For the SVD method, these actuator displacement errors vary be-

tween 3.01×10−7 and 1.93×10−5 metre, with an average of 6.58×10−6 metre

and a high concentration around 6×10−6 metre. This indicates that for this

simulation, SVD is able to estimate the actuator displacements more accu-

rately than the normal equations and QR methods, and therefore suggests

use of the SVD method and a mirror without physical constraints.
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Figure 3.7: Histogram of RMS tip/tilt errors using normal equations: the prob-

ability is very high that the mirror is out of acceptable alignment (probability is

about 10−4 for the mirror to be in the 0.1 arcsecond range) while SAMS believes

the mirror is under control

RMS of Tip/Tilt Errors

We use, as in the previous paragraphs, zmax = 10−4 metre. Recall image

quality is sensitive to tip/tilts and much less sensitive to pistons. Image

quality is acceptable when the RMS of tip/tilts is less than 0.1 arcsecond.

Figures 3.7, 3.8 and 3.9 illustrate each in a histogram, the tip/tilt errors

from the same simulations. This is, again, the RMS tip/tilts corresponding

to the difference between simulated and estimated actuator positions. For

the normal equations and QR methods, RMS tip/tilt errors vary between

0.09 and 12.76 arcseconds, with an average of 3.61 arcseconds and a high

concentration around 3 arcseconds. For the SVD method, RMS tip/tilt er-

rors vary between 0.0044 and 3.0268 arcseconds, with an average of 0.71

arcsecond and a high concentration around 0.5 arcsecond. Once again, SVD

method is better than normal equations and QR methods. However, it is a

striking result that for zmax = 10−4 metre, only 9 of 100000 simulations give

acceptable RMS tip/tilt errors for normal equations and QR methods with

480 of 100000 simulations acceptable for SVD method. It is clear that max-

imum allowable actuator displacements zmax = 10−4 metre do not lead to
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Figure 3.8: Histogram of RMS tip/tilt errors using QR: the probability is very

high that the mirror is out of acceptable alignment (probability is about 10−4 for

the mirror to be in the 0.1 arcsecond range) while SAMS believes the mirror is

under control

acceptable control because all control algorithms fail with high probability.

3.2.3 Assessment of zmax for Acceptable Controllability

We have carried out the above simulations for various values of zmax. In

Table 3.2, we give the numbers of acceptable solutions in 100000 simulations.

As before, we also give computing time in seconds per individual simulation.

Table 3.2: Rate of configurations with a 0.1 arcsecond RMS tip/tilt error over

100000 trials

QR method SVD method

zmax = 10−4m 9 480

zmax = 5× 10−5m 33 3372

zmax = 10−5m 3154 80261

zmax = 5× 10−6m 19092 99543

zmax = 10−6m 99714 100000

From Table 3.2, we note that SVD is more reliable than QR (and equiv-
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Figure 3.9: Histogram of RMS tip/tilt errors using SVD: the probability is high

(but not as in normal equations and QR) that the mirror is out of acceptable

alignment (probability is about 5 × 10−3 for the mirror to be in the 0.1 arcsecond

range) while SAMS believes the mirror is under control

alently normal equations) for every value of zmax. When zmax = 5 × 10−6

metre, we see that for approximately 0.5% of trials, SVD will fail while QR

remains unacceptable. At zmax = 10−6 metre, approximately 0.3% of trials

would fail for QR while none were found to fail for SVD. Clearly, actuator

displacements must be less than a micron for the control algorithm with QR

to be reliable, and less than five microns for the control algorithm with SVD

to be reliable.

Figures 3.10 and 3.11 illustrate in a histogram, the distributions of simu-

lated actuator displacements and corresponding tip/tilts that allow achieve-

ment of acceptable controllability with a 99.5% probability using SVD, that

is, when zmax = 5 × 10−6 metre. We can see in this case that the primary

mirror, again, is misaligned and out of focus but, as to be expected, in a

smaller range than when zmax = 10−4 metre.

If the algorithms require a precision for individual actuator displacements

of 10−6 metre, then it follows that the precision with which the drive motors

of each actuator operate, must be within this same limit. This mechanical

constraint is to be communicated to SALT engineers.
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Figure 3.10: Histogram of acceptable RMS actuator displacements using SVD:

with zmax = 5 × 10−6 metre, acceptable controllability (less than 0.1 arcsecond

RMS tip/tilt errors) is achieved via SVD with a 99.5% probability
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Figure 3.11: Histogram of acceptable RMS tip/tilts using SVD: with zmax =

5 × 10−6 metre, acceptable controllability (less than 0.1 arcsecond RMS tip/tilt

errors) is achieved via SVD with a 99.5% probability
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Finally, we may note that computing time per simulation remains much

less than the actuator response time (2.48× 10−4 second on average for QR

and 1.51×10−4 second on average for SVD) and is therefore not a constraint

on controllability.

This section is of great importance because it sets limits to acceptable

controllability of the segments, in terms of the degree of misalignment of the

segments.

3.2.4 Filtering Data

This is necessary because of the noise in the sensor measurements. The mea-

surements of relative heights are given with a frequency fm and the control

is performed with a frequency fc. Moreover, fm and fc are chosen in such

a way that there exists a positive integer P such that fm = Pfc. Therefore

the averaging will be performed using the last P measurements including

the current one. The filtering process is meant to estimate the value of

the measurement at the time the control is about to be performed. Note

that most of the results in this section can be derived by straightforward

calculation.

Exploration of filters involves the concept of z-transform.

The z-transform and its Inverse [7, 8]

We consider a time series, or a discrete-time signal, or more generally a

sequence (xn)n≥0. The (unilateral) z-transform is defined as follows:

X(z) = Z (xn) =

∞∑

n=0

xnz
−n

The Region of Convergence (ROC) is the set of points z in the complex

plane for which the z-transform summation converges, that is:

ROC =

{
z :

∣∣∣∣∣

∞∑

n=0

xnz
−n

∣∣∣∣∣ < ∞
}

The inverse z-transform is defined as follows:

xn = Z−1 (X(z)) =
1

2πi

∮

γ
X(z)zn−1dz ∀n ≥ 0

where γ is a counterclockwise closed path encircling the origin of the com-

plex plane and entirely in the region of convergence. The contour path γ

78



must encircle all the poles of X(z). The xn are exactly the coefficients of

the expansion of X(z) in powers of z−1, as long as z is in the region of

convergence.

A simple example is when xn = abn for all n ≥ 0. In this case the

z-transform gives

X(z) = Z (xn) =
∞∑

n=0

xnz
−n =

a

1− bz−1

provided z is in the region of convergence, which from some basic properties

of z-transforms and geometric series, is given by: ROC = {z : |z| > |b|}.

Linear-Time-Invariant digital filters [4, 7, 8]

Background We consider a time series (xt)t∈N and we denote by st the

image of xt after a filtering process.

Overview Linear-Time-Invariant (LTI) digital filters are specific cases

of linear filters and are characterised by their transfer function or by a

difference equation involving the current and some past measurements as

well as some past estimations. We choose two sets of factors (an)0≤n≤M and

(bn)0≤n≤N where M and N are positive integers and a0 = 1. Then (st) is

defined as follows:

st = −
M∑

n=1

anst−n +

N∑

n=0

bnxt−n

or equivalently
M∑

n=0

anst−n =
N∑

n=0

bnxt−n.

If an = 0 for all n > 0 then the filter is a Finite Impulse Response (FIR)

filter; otherwise it is an Infinite Impulse Response (IIR) filter.

Stability, Impulse response and Frequency response of the filter

The transfer function of the filter is the ratio of the Z-transform of the

output to that of the input and is given by

H(z) =
B(z)

A(z)
=

N∑
n=0

bnz
−n

1 +
M∑
n=1

anz−n

79



and the frequency response is H
(
eiω
)
for all frequencies ω.

The filter is considered to be stable if all its poles are in the unit circle

(on the complex plane).

The impulse response is the inverse Z-transform of the transfer func-

tion. This can be obtained by decomposing the transfer function into partial

fractions and summing up the inverse Z-transforms of the obtained simple

expressions using the properties of the Z-transform, or by the long division

of the numerator by the denominator, both in ascending order of z−1. The

long division gives an equation of the form

H(z) =

∞∑

n=0

hnz
−n

and the hn give the impulse response. However, the impulse response can

also be determined recursively as follows:





h0 = b0

hn =
M−1∑
k=0

bkδn−k −
N−1∑
l=1

alhn−l n > 0

where δn is the Kronecker Delta impulse defined on Z as follows:

δn =




1 if n = 0

0 if n 6= 0

Simple moving average (used on SALT) This is an example of FIR

filter.

Overview The simple moving average consists of averaging the values

of x for the last k steps including the current step. Therefore we have

st =
1

k

k−1∑

n=0

xt−n =
xt + xt−1 + · · ·+ xt−k+1

k
= st−1 +

xt − xt−k

k
.

One of the disadvantages of the simple moving average is that st cannot be

determined for t < k. However, in that case we can define st as follows:

st =
1

t

t−1∑

n=0

xt−n =
1

t

t∑

n=1

xn.
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An alternative, as used in many softwares, is to keep the window size con-

stant (size k) precede the available data with zeros to fill the window, and

compute the corresponding average. This gives:

st =
1

k

t−1∑

n=0

xt−n =
1

k

t∑

n=1

xn.

Stability and Impulse response of the filter The transfer function

of the filter is given by

H(z) =
1

k

(
1 + z−1 + · · ·+ z−k+1

)
=

1

k

(
1 + z + z2 + · · ·+ zk−1

zk−1

)
.

It is clear that the zeros of the transfer function are complex numbers on

the unit circle (all the kth roots of unity except 1) and the only pole of the

transfer function is 0, which is in the unit circle. Hence the filter is stable.

This can be illustrated in the so called pole-zero diagram of the transfer

function.

It can easily be established that the impulse response of the filter is given

by hn = 1
k for 0 ≤ n ≤ k − 1.

Weighted moving average This is also an example of FIR filter.

Overview We choose a set of weighting factors (wn)1≤n≤k such that
k∑

n=1
wn = 1 and we define (st) as follows:

st =

k∑

n=1

wnxt+1−n = w1xt + w2xt−1 + · · ·+ wkxt−k+1.

Like the simple moving average, the weighted moving average has the dis-

advantage that st cannot be determined for t < k. However, in that case we

can choose a set of weighting factors (wn)1≤n≤t such that
t∑

n=1
wn = 1 and

define

st =
t∑

n=1

wnxt+1−n.

An alternative, as in the previous case, is to keep the window size constant

(size k) precede the available data with zeros to fill the window, and compute

the corresponding average. This means, using a similar method as in the
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simple moving average case, we consider the same set of weighting factors

(wn)1≤n≤k such that
k∑

n=1
wn = 1 and this time we define (st) as follows:

st =
t∑

n=1

wnxt+1−n = w1xt + w2xt−1 + · · ·+ wtx1.

In practice, and to give a better meaning to the case of incomplete avail-

able data (case when t < k as illustrated in the equation above), it is prefer-

able to choose the set of weighting factors (wn)1≤n≤k as a positive decreasing

sequence so as to give more weights to the most recent measurements in the

data from the time series.

Stability and Impulse response of the filter The transfer function

of the filter is given by

H(z) = w1 + w2z
−1 + · · · + wkz

−k+1

=
wk +wk−1z + wk−2z

2 + · · · + w1z
k−1

zk−1

It can be verified that the zeros of the transfer function are complex numbers

in the unit circle and the only pole of the transfer function is 0, which is

in the unit circle. Hence the filter is stable. This can be illustrated in the

pole-zero diagram of the transfer function.
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Figure 3.12: Pole-zero diagram of the weighted moving average filter using the

last 30 measurements (left) and 240 measurements (right)

The pole-zero diagram in Figure 3.12 (where the corresponding filter

uses a positive decreasing arithmetic sequence of coefficients with a total
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sum equal to 1) suggests that the bigger the number of past measurements

used, the closer the weighted moving average is to the simple moving average.

It can also be established that the impulse response of the filter is given

by hn = wn+1 for 0 ≤ n ≤ k − 1.

Exponential moving average This is an example of IIR filter.

Overview We choose a real number α (called smoothing factor) such

that 0 < α < 1 and (st) is defined as follows:

s0 = x0 and st = αxt + (1− α)st−1 = st−1 + α (xt − st−1) , t > 0.

It can be established that

st = (1− α)t x0 + α
t∑

n=1

(1− α)n−1 xt+1−n.

Stability and Impulse response of the filter The transfer function

of the filter is given by

H(z) =
α

1 + (α− 1)z−1
=

α

1− (1− α)z−1

=
αz

z + (α− 1)
=

αz

z − (1− α)

=

∞∑

n=0

α(1 − α)nz−n.

It is clear that the zero of the transfer function is at the origin and the

only pole of the transfer function is 1 − α, which is in the unit circle since

0 < α < 1. Hence the filter is stable.

The impulse response of the (IIR) filter is given by hn = α(1 − α)n for

all integers n ≥ 0.

Progressive Linear Fit This method is to be considered only when the

measurements follow a linear pattern (with some noise). Progressive linear

fit will not be explored in the scope of this thesis, since by inspection the

measurements do not follow a linear pattern.
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3.2.5 Conclusion

To summarise, we are concerned that SALT minimisation and filtering are

not robust. We suggest singular value decomposition to handle the min-

imisation problem, and weighted moving average and exponential moving

average with appropriate parameters (a suitable set of weighting factors

and therefore time interval for the weighted moving average, and suitable

smoothing factor and time interval for the exponential moving average) to

handle the filtering process, to be added in the SALT software. In the case

of weighted moving average, we suggest a 4 minutes correction time and an

arithmetic sequence of positive decreasing weighting factors with total sum

equal to one while for exponential moving average, we suggest a 30 seconds

correction time and a smoothing factor α = 0.5. This has been done and

experiments have been performed for comparison purposes.

3.3 Effect of Least Squares and Filtering on the

Control of SALT

Here we give results from observations conducted before and after improve-

ment of numerical algorithms, with comments and analyses. For comparison

purposes, we choose samples from nights when environmental conditions are

reasonable and comparable. Note that results obtained before numerical

corrections are from experiments conducted on the telescope with the en-

tire primary mirror, that is 91 segments and 480 sensors. However, during

experiments involving numerical corrections, we only worked with the cen-

tral 7 segments, that is, the central segment and the first ring. Remaining

segments were disabled for work on edge sensors.

Remark 3.22. The legends on illustrative figures have different interpreta-

tions before and after numerical corrections.

1. Before corrections, SAMS refers to output from SAMS using the origi-

nal approach; CCAS refers to output from CCAS; CCAS-All indicates

how many segments are used for CCAS measurements, that is, how

many segments are not obstructed; CAM refers to output from our

approach, for comparison with the original SAMS output and CCAS

output when it is possible.
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2. After corrections, since our approach is implemented in SAMS algo-

rithm, SAMS refers to output from our approach, for comparison with

output from CCAS when it is possible; CCAS refers to output from

CCAS; CCAS-CORR refers to output from CCAS after GRoC cor-

rection, that is, after adjustment of all the segments in tip, tilt and

piston, resulting from the change in radius of curvature; CCAS-All

indicates how many segments are used for CCAS measurements, that

is, how many segments are not obstructed.

3.3.1 Existing SALT Results Before Least Squares and Fil-

tering Corrections
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Figure 3.13: FoM and humidity before corrections (08 March 2007): the behav-

ior of figure of merit shows concern about mirror controllability while humidity,

although strongly correlated to figure of merit, displays a different pattern

Figure 3.13 illustrates how the figure of merit and humidity evolve with

time. It shows the figure of merit growing almost linearly from about 30nm

to about 140nm, though it would have been preferable for it to remain below

60nm at all times. Outside humidity is increasing on average and is highly

correlated to the figure of merit (correlation coefficient 0.87). Moreover,

in this case, it is part of the significant explanatory variables. The behav-

ior of the figure of merit shows concern about the efficiency of the control
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algorithm.
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Figure 3.14: RMS of tip/tilts before corrections (08 March 2007): SAMS believes

the mirror is under control (green), which is in disagreement with CCAS (blue); our

calculations (red) confirms that there might be a problem with SAMS; the system

seems to undergo a sudden disturbance around 11pm, which is not captured by

SAMS

Figure 3.14 illustrates how the Root Mean Square of tip/tilts evolves

with time. According to SAMS, the mirror alignment (emphasising on fo-

cus) is acceptable since the RMS of tip/tilts is almost always below 0.1

arcsecond. However, CCAS measurements of tip/tilts reveal that the RMS

grows almost linearly with time (from 0.05 to about 0.35 arcsecond), which

means the system is going out of focus as time goes, which is not in agree-

ment with SAMS. We show a time-series labelled CAM. This is our code,

using the normal equations approach of SAMS, applied to the SALT data

of 08 March 2007 for time-series of relative heights. Moreover, our approach

implemented for comparison agrees with SAMS to some extent at the begin-

ning, and then gets closer to the CCAS output. The sudden change between

11pm and midnight suggests the system has been disturbed. This period

corresponds to a swing in humidity from decreasing to rapidly increasing

(in our available time-series), which might supply a physical reason for the

disturbance. Our encoding of the normal equations approach (CAM) shows

an abrupt adjustment towards measured CCAS tip/tilts around 11pm. We
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also note increasing tip/tilts from our approach, in agreement with CCAS

while SAMS remains stable. Also note that the RMS tip/tilts from CCAS

goes out of the range of 0.1 arcsecond within a few minutes from the begin-

ning, and never manages to come below 0.1 arcsecond again. This confirms

that there is a flaw in reliability of the control system of SAMS, even with

the normal equations method.
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Figure 3.15: Spots in acceptable range before corrections (08 March 2007): SAMS

(green) believes that almost all the time, at least 80 segments are in acceptable

range (0.1 arcsecond) while CCAS indicates that out of 73 segments in general

(purple), at most 60 and decreasing (blue), are in acceptable range; our approach

(red) agrees with SAMS, then switches to CCAS around 11pm, indicating a possible

disturbance

Figure 3.15 indicates how many segments are close to the ideal position

in terms of tips and tilts. According to SAMS, almost all the time, at least

80 segments are within the range of 0.1 arcsecond. This directly contradicts

the CCAS output revealing that at most 60 segments are within the 0.1

arcsecond range, and decreasing to about 10 segments within six to seven

hours. Note that due to obstruction, CCAS measurements are not provided

for all the 91 segments. However, measurements are provided from CCAS for

about 73 segments at all times, as illustrated by the curve labelled CCAS-

All. A slight difference between the outputs of SAMS and CCAS would be

understandable due to the fact that some segments are obstructed, but not
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Table 3.3: Significant Environmental Variables (08 March 2007)

Variable Minimum Maximum Mean Variance

ttr (oC) 14.5 17.5 15.92 0.81

windin (m/s) 0 3 1.24 0.27

wind30 (m/s) 4 8 5.69 0.63

hum30 (%) 42 55 47.42 16.07

up to about 80 segments at some point. On the other hand, our code (the

CAM implementation of the normal equations approach) is in agreement

with SAMS for the first three hours, and then drastically switches to almost

match CCAS output between 11pm and midnight. This is again strong

evidence of an error in the SAMS implementation of the normal equations

approach. SAMS thinks the system is under control, while CCAS output

suggests otherwise.

The observations were conducted on 08 March 2007. From section 2.1.2,

stepwise regression (assuming we discard dgroc and tref for reasons men-

tioned there) reveals time, temperature of truss, outside humidity, inside

and outside wind speeds to be the main explanations for the figure of merit.

This suggests computational and environmental conditions are the causes,

and indeed these results are supported by Figures 3.13, 3.14 and 3.15. The

environmental variables that are significant for 08 March 2007 are sum-

marised in Table 3.3.

3.3.2 After Least Squares Correction

In July 2010, we visited SALT in order to include our code, the QR/SVD

approach to least squares problems, in the SAMS software using a multi-

plexer. In this section, we therefore give diagrams (Figures 3.16, 3.17 and

3.18) corresponding to the respective diagrams in Figures 3.13, 3.14 and 3.15

of the previous section, but for the data of July 2010.

Indeed, we wrote and implemented a new code in Labview (SALT op-

erational software for the control algorithm) and included this in the SALT

original software using a multiplexer. We were then given one week (12 to

15 July 2010), to conduct our experiments on the telescope, and then the

following week, in order to increase the number of experiments for efficient

comparison with previous results (before numerical corrections). However,
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in this time range, observations were possible only for six nights, for a few

hours per night, due to environmental restrictions such as rain and high

humidity. Note that we were working with 7 segments, and not all the 91

segments, and the results in this section are for this reduced configuration.

The least squares method is used in computing actuator positions from

relative heights. The original SAMS algorithm used the normal equations

approach. We used the QR approach when the actuator-to-heights matrix

has full rank, and the SVD approach when the actuator-to-heights matrix

is rank deficient. The dependence on the rank of the actuator-to-heights

matrix is due to the fact that the configuration of this actuator-to-heights

matrix changes with how many sensors and how many segments are used.

Specifically, the entries in the actuator-to-heights matrix corresponding to

disabled sensors or unused segments will change to zero. Note that the initial

actuator-to-heights matrix with all the sensors and all the segments opera-

tional, is rank deficient and additional constraints are used to transform the

system from a rank deficient system to a full rank system, under the initial

assumption that everything works perfectly well.

We give results for 13 July 2010. In that night, humidity was low. At

SALT, there is mistrust of the performance of capacitive edge sensors in

high humidity.

Figure 3.16 illustrates how the figure of merit and humidity evolve with

time. It shows a sudden jump of the figure of merit from 20nm to about

80nm within about 15 minutes. Then it stabilises for about 90 minutes, and

continues to increase up to about 120nm within 90 minutes. On the other

hand, although the humidity curve follows that of the figure of merit, their

correlation is reduced (correlation coefficient 0.68), compared to Figure 3.13,

which indicates that control has improved.

In Figure 3.17, SAMS denotes the results from the QR/SVD approach,

CCAS is as usual the output from CCAS, CCAS-CORR is the output from

CCAS after software adjustments compensating for the change in radius of

curvature. Figure 3.17 illustrates how the Root Mean Square of tip/tilts

evolves with time. Note that according to our implementation of the least

squares approach using QR/SVD included in the SAMS algorithm, the root

mean square of tip/tilts is almost always around 0.05 arcsecond. This is not

in agreement with CCAS showing a linear increase from 0.05 to about 0.2

arcseconds within three hours. This disagreement is dramatic and suggests
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Figure 3.16: FoM and humidity after least squares corrections (13 July 2010):

figure of merit increases rapidly at start, then stabilises, but still gets out of range;

its curve follows that of humidity, but with reduced correlation compared to the

case before corrections
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Figure 3.17: RMS of tip/tilts after least squares corrections (13 July 2010): from

our approach (QR/SVD), SAMS believes the primary mirror is under control (blue),

which is in disagreement with CCAS (red before GRoC corrections and green after

GRoC corrections); this suggests further improvements should follow
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a need of improvement in the control system, that is, by itself the QR/SVD

approach is not sufficient for the control of SALT primary mirror. We note

that the normal equations method will agree with our method (the QR/SVD

method implemented in SAMS control algorithm) when the least squares

problem is a full rank problem.
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Figure 3.18: Spots in acceptable range after least squares corrections (13 July

2010): according to SAMS (blue), at least 5 of 7 segments are in the 0.1 arcsecond

range almost all the time, while from CCAS, out of 5 or 6 segments, at most

5 (and decreasing) are in the 0.1 arcsecond range; this confirms need of further

improvements

Figure 3.18 indicates how many segments are close to the ideal position

in terms of tips and tilts. Recall that CCAS-All having values less than

7 means that some of the segments are obstructed. According to SAMS,

almost all the time, at least 5 of the 7 segments are within the range of 0.1

arcsecond and according to CCAS, almost all the times, 5 or 6 segments

are provided finite values from measurements, and the number of segments

within the 0.1 arcsecond range decreases from 5 to 1, and sometimes reaches

0, within 90 minutes to two hours. Again, we have a dramatic disagreement.

This suggests that improvement needs to be made in the control algorithm.

The experiments were conducted on 13 July 2010. From section 2.1.2,

stepwise regression reveals time, temperature of truss and temperature of
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Figure 3.19: Figure of Merit and Temperature of Igloo 2 after least squares cor-

rections (13 July 2010): temperature of igloo 2 decreases while FoM increases and

they are strongly correlated; lack of stability of temperature of igloo can have a

serious impact on the outcome of the electronics

igloo 2 to be the main explanation for the figure of merit. The time variable

suggests computation be improved. Moreover, temperature of igloo 2 is not

kept as stable as desired (illustration in Figure 3.19), and can have a serious

impact on the outcome from the electronics. The environmental variables

that are significant for 13 July 2010 are summarised in Table 3.4.

Table 3.4: Significant Environmental Variables (13 July 2010): temperature of

truss is relatively stable, even more stable than temperature of igloo 2, yet tem-

perature of igloos should be kept very stable for reliability of outcome from the

electronics

Variable Minimum Maximum Mean Variance

ttr (oC) 2.4 3.7 3.07 0.15

ti2 (oC) 23.9 25.8 24.89 0.32

Experiments conducted in July 2010 reveal that after least squares cor-

rection using QR or SVD (instead of normal equations) depending on whether

the system is full rank or rank deficient, computation is still to be improved

in the control algorithm.
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3.3.3 Filtering Data for Correction in the Control Process

On SALT, the standard filtering technique is a simple moving average over

4 minutes. We investigated the power of this filter, in search of a fix for the

disagreement discovered in the previous section.

Weighted Moving Average

The results given here are for a weighted moving average filter with a 4

minutes correction time and positive linearly decreasing weighting factors.

This specification, by inspection of all the conducted experiments using the

weighted moving average, gave the best experimental performance.
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Figure 3.20: FoM and humidity after [weighted moving average] filtering correc-

tions (01 March 2011): humidity increases almost linearly but remains relatively

low while figure of merit rapidly increases from 20 nm to about 60 nm and tends to

stbilise at that level for the remaining time; this indicates improvement over simple

moving average previously used

Figure 3.20 illustrates how the figure of merit and humidity evolve with

time. By simple inspection, the figure of merit grows from 20 to 60 nanome-

tres in about 15 minutes and tends to stabilise at that level for the remaining

time. Meanwhile, the humidity grows almost linearly from 23% to about 32%

in 90 minutes, which means humidity is relatively low. The system is under

control in the time range of this experiment. The figure of merit is stable
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around 60 nanometres, which clearly shows an improvement over the exper-

iment illustrated in Figure 3.16. Also note that the correlation between the

figure of merit and humidity is low (correlation coefficient 0.28).
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Figure 3.21: RMS of tip/tilts after [weighted moving average] filtering corrections

(01 March 2011): according to SAMS (blue) the system is under control, which is to

some extent in agreement with CCAS after GRoC corrections (green); output from

CCAS before GRoC corrections goes out of range from time to time but attempts

to recover; this confirms weighted moving average as an improvement over simple

moving average

Figure 3.21 illustrates how the Root Mean Square of tip/tilts evolves

with time. According to SAMS, the RMS of tip/tilts is within acceptable

range the whole time. Output from CCAS, especially after GRoC correction

(CCAS-CORR), reveals that the RMS of tip/tilts is also within acceptable

range. This was not the case in Figure 3.17 and again we see improvement.

Figure 3.22 indicates how many segments are close to the ideal position

in terms of tips and tilts. According to SAMS, almost all the time, at least

6 of the 7 segments are within acceptable range. CCAS has measurements

for 6 segments almost all the time and out of these 6 segments providing

measurements from CCAS, the number of segments within acceptable range

seems to decrease almost linearly from 6 to 1, and sometimes reaches zero,

but most of the time this number is between 2 and 4. Compared to Figure

3.18, the disagreement between SAMS and CCAS has been reduced (from
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Figure 3.22: Spots in acceptable range after [weighted moving average] filtering

corrections (01 March 2011): according to SAMS (blue), at least 6 of the 7 segments

are in acceptable range while from CCAS, out of 6 segments (green), most of the

time 2 to 4 segments are in acceptable range (red)

Table 3.5: Significant Environmental Variables (WMAVG 01 March 2011)

Variable Minimum Maximum Mean Variance

hum30 (%) 23.17 32.45 27.79 10.17

about 6 to about 4) and thus we again have improvement over the previous

method.

The experiments were conducted on 01 March 2011. From section 2.1.2,

stepwise regression reveals time and outside humidity as the main explana-

tion of the figure of merit. This suggests computation and humidity as the

main explanation for the figure of merit. Note that humidity is relatively low

and also that the figure of merit is stable around 60 nanometres after growing

quickly from about 20 nanometres in the first 15 minutes of the experiment.

The environmental variables that are significant for 01 March 2011 using

the weighted moving average as a filtering process are summarised in Table

3.5.

Although humidity is the only significant explanation to the figure of
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merit, it is not highly correlated to the figure of merit, and it is also rel-

atively low, which makes the measurements obtained from the capacitive

edge sensors more reliable. This suggests an improvement has indeed been

achieved in the control algorithm.

Exponential Moving Average

Here we consider the exponential moving average filter with 30 seconds cor-

rection time and smoothing factor α = 0.5. This combination, by inspection

of all the conducted experiments using the exponential moving average, gave

the best experimental performance.

23.8 24 24.2 24.4 24.6 24.8 25
0

0.5

1
x 10

−7 FOM and Outside Hum − Set 1 − Correlation: 0.483194

Time (hours)

F
ig

ur
e 

of
 M

er
it 

(m
)

23.8 24 24.2 24.4 24.6 24.8 25
41

42

43

O
ut

si
de

 H
um

id
ity

 (
%

)

Figure 3.23: FoM and humidity after [exponential moving average] filtering cor-

rections (01 March 2011): figure of merit is stable and below 50 nm, and not highly

correlated to humidity which is relatively low and follows a pattern similar to that

of figure of merit; this suggests exponential moving average is an improvement over

weighted moving average

Figure 3.23 illustrates how the figure of merit and humidity evolve with

time. There is no sudden jump in the figure of merit and this figure of merit

is almost always below 50 nanometres. Humidity is low (between 41.5% and

43%) and has a pattern similar to that of the figure of merit. However, their

correlation is low (correlation coefficient 0.48). The figure of merit has now

fallen (improved) by a factor of 2 over that of the weighted moving average

over 4 minutes illustrated in the previous section. This indicates the system
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is under control, and that improvement has been achieved over the weighted

moving average method.
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Figure 3.24: RMS of tip/tilts after [exponential moving average] filtering correc-

tions (01 March 2011): according to SAMS (our approach using QR/SVD and

exponential moving average, in blue) the system is under control; this is also the

case with the output from CCAS before (red) and after GRoC corrections (green);

this confirms an improvement over previous methods

Figure 3.24 illustrates how the Root Mean Square of tip/tilts evolves with

time. According to SAMS (our version involving the QR/SVD method and

the exponential moving average filtering), the system is under control. Note

that both SAMS and CCAS are within acceptable range of RMS tip/tilts

which is below 0.1 arcsecond.

Figure 3.25 indicates how many segments are close to the ideal position

in terms of tips and tilts. SAMS reveals that all the 7 segments are in

acceptable range of tip/tilts except for very few measurements where 6 of

the 7 segments are in acceptable range. CCAS reveals for all time, that

measurements are provided from exactly 6 segments, and out of these 6

segments, at least 3 are in acceptable range of tip/tilts almost all the time,

with a bigger concentration between 4 and 5. This again shows improvement

has been achieved.

The experiments were conducted on 01 March 2011. Stepwise regression

reveals only time as a significant explanatory variable for the figure of merit
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Figure 3.25: Spots in acceptable range after [exponential moving average] filtering

corrections (01 March 2011): according to SAMS (blue) all the segments are in

acceptable range while from CCAS out of 6 segments (green) at least 3 are in

acceptable range almost all the time (red)

as response. Note that the figure of merit is always below 50 nanometres.

This means computation would be the only explanation to the figure of merit

if this figure of merit was out of reasonable range. It also suggests that, in

the context of the current analysis, humidity is not a serious concern and

that the main aspect to explore is computation.

3.4 Conclusion

The control algorithm for SALT has been explored. Especially, the least

squares method has been explored as it is a part of the control algorithm.

To solve least squares problems using numerical methods, the normal equa-

tions approach was the method initially used on SALT but we find the QR

approach or the SVD approach depending on the rank of the actuator-to-

heights matrix, to be computationally more reliable.

Our approach (the QR/SVD approach) gives us the power to choose

between the QR and the SVD approaches as desired, depending on the

rank of the actuator-to-heights matrix which also depends on how many
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segments and sensors are used, since the whole system is not expected to

work perfectly well at all times. In general, SVD should be used.

It is an important result that random errors in actuator displacements

must be of order one micron for algorithms of any method to give acceptable

tip/tilts.

We investigated filtering by simple moving average as it is used on SALT,

and compared this with weighted moving average and exponential moving

average methods. Recall that control intervals on SALT were set at four

minutes. We find superior control by filtering with exponential moving av-

erage which allows control intervals of thirty seconds.

It is of a great importance that our results be adopted by SALT, because

we have essentially shown that for the full 91 segments, the original normal

equations approach will not be reliable and that simple moving average

filtering is inefficient. Our code is multiplexed into SALT software and

should be used in the future.

We wish to make clear that perfect edge sensors (sensors providing zero

measurement error) will not guarantee that SALT control system will work.

This is because besides the temperature of truss and humidity, time is the

most significant explanation of the figure of merit, which means computa-

tion is the most likely main cause of poor image quality. The numerics

proposed in this chapter provide an improvement on the implementation of

the current control system. In particular, we found unacceptable accumu-

lation of numerical errors unless SVD was implemented with exponential

moving average (see Figure 3.23, page 96). With improved numerics, we

found that RMS actuator precision must be stringently chosen at better

than one micron (Table 3.2). SALT staff will be informed of this. In addi-

tion, we identified errors and omissions in SALT software (that is, deviations

from specification and documentation of SALT). A trivial example was the

inconsistency in the dimensions of tips, tilts and pistons. This chapter pro-

vides consistent documentation with our implementation of the re-designed

SALT control system. Finally, we note that should the edge sensors be re-

placed with more accurate sensors, our software (or any other software used

on SALT to implement the control algorithm), should be retested.

Moreover, improvements can still be made, in particular, to control the

primary mirror from an arbitrary initial misalignment. This involves more

sophisticated mathematical techniques that are explored in the next chapter.
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Chapter 4

Theoretical Approaches to

Control of Segmented

Mirrors for Arbitrary Initial

Misalignment

In this chapter, we explore some theoretical approaches to the mathemati-

cal control of a multi-element telescope, based on a background in optimal

control theory. These approaches can be applied in discrete or in contin-

uous time, and most importantly, can consider the option of aligning the

segments in time under arbitrary initial configuration.

4.1 Fast Alignment by Control

The results from section 3.2.3 clearly show that the normal equations and

QR methods, which give similar results, are unreliable for mirror misalign-

ment described by actuator displacements exceeding one micron each, while

SVD, on the other hand, is unreliable when the mirror misalignment is de-

scribed by each actuator displacement exceeding five microns. From Figure

4.1, we see that such a restriction on actuator displacements corresponds

to RMS actuator displacements of less than 0.65 micron. Such algorithmic

restriction is consistent with RMS tip/tilt errors in acceptable range. If we

suppose that at the start of each night’s viewing, we rely on algorithmic

control, then errors of actuator displacements that have accumulated over

the day may only be controlled if by nightfall, the mirror misalignment is

described by RMS actuator displacements corresponding to individual dis-

placements of order one micron. If this is not the case, the algorithms will

fail as will image quality. We note that for zmax = 10−4 metre, RMS actua-
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Figure 4.1: Histogram of RMS actuators for zmax = 10−6 metre: RMS actuator

displacements varies between 0.5 and 0.65 microns with a distribution close to

normal, and the primary mirror can be controlled with QR or SVD

tor displacements exceeds 50 microns, as is seen from Figure 4.2, and RMS

tip/tilt is unacceptable as it exceeds 34 arcseconds (between 34 and 52 arc-

seconds, with a high concentration around 44 arcseconds, as is seen from

Figure 4.3). Moreover, RMS tip/tilt errors, as illustrated in the histogram

of Figure 4.4, is unacceptable as the probability for these errors to be within

the 0.1 arcsecond range is very low (less than 1/10).

4.2 General Formulation of the Control Problem:

Linear Quadratic Problems

To proceed, we must investigate control algorithms independent of the above

methods. In the following, we will find that the so-called gradient flow and

optimality condition methods can be applied. The former method will be

favoured as it yields a stable control. It applies to the general case of linear

quadratic problems which include the SALT control problem that can be

formulated as given later in (4.1) or (4.2) in discrete time, and (4.3) or (4.4)

in continuous time. However, we will later focus on formulation (4.4) for

our approach to the solution of SALT problem. We will begin this section
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Figure 4.2: Histogram of RMS actuators for zmax = 10−4 metre: RMS actuator

displacements varies between 50 and 65 microns with a distribution close to normal;

this suggests a linear relationship between zmax and RMS actuator displacements;

the primary mirror cannot be controlled with QR or SVD

with the general formulation of linear quadratic problems.

Linear quadratic problems [3, 22, 40, 43] are a specific case of optimal

control problems mentioned in Chapter 1 (See page 8). They can be formu-

lated in discrete time as well as in continuous time. When we don’t have

access to the values of the state variables at all time, the problem is classi-

fied as a linear quadratic problem with imperfect state information [3]. In

this case, the optimal control, if it exists, is most likely an output feedback

control.

4.2.1 Discrete time Formulation

We will only consider problems with a finite number of steps, that is, the

discrete time version of finite horizon problems. However, problems with

infinite number of steps are explored in [5] for nonlinear quadratic problems,

where a state feedback control is investigated. Problems with perfect state
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Figure 4.3: Histogram of RMS tip/tilt for zmax = 10−4 metre: this clearly shows

that the primary mirror is far out of acceptable alignment since RMS tip/tilts is far

greater than 0.1 arcsecond; this corresponds to an uncontrollable primary mirror

configuration

information are formulated in general as follows:

min
u

(
(zN )T QT zN +

N−1∑

k=0

(zk)
T Qzk + (uk)

T Ruk

)

subject to




zk+1 = Mzk +Nuk (and z0 is given)

sk = Azk

(4.1)

On the other hand, problems with imperfect state information are formu-

lated as follows:

min
u

[
E

{
(zN )T QT zN +

N−1∑

k=0

(zk)
T Qzk + (uk)

T Ruk

}]

subject to




zk+1 = Mzk +Nuk (and z0 is given)

sk = Azk

(4.2)

where E stands for the mathematical expectation.

Both formulations (4.1) and (4.2) above are adapted from [3] where in

both cases, M , N , Q and R depend on the step k. The adjustment of the
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Figure 4.4: Histogram of RMS tip/tilt errors for zmax = 10−4 metre using SVD:

this indicates that the primary mirror is not controllable using SVD since the

probability for RMS tip/tilt errors to be within the 0.1 arcsecond is very low (less

than 1/10)

state z (in the SALT case actuator displacements) from step k to step k+1

involves a disturbance wk. In formulation (4.2), the relationship between the

state z (in the SALT case actuator displacements) and the output s (in the

SALT case relative heights) at step k involves an observation noise vector

vk with a known probability distribution. The matrix A in this relationship

depends on k and is known for each value of k.

In both formulations (4.1) and (4.2), M is an n × n matrix, N is an

n × p matrix, A is an m × n matrix, QT and Q are symmetric positive

semidefinite matrices and R is a symmetric positive definite matrix. These

linear quadratic problems can be solved using the discrete time dynamic

programming approach [3].

Remark 4.1. Note that in the SALT case, QT = Q = ATA, R = σI where

A is the actuator-to-heights matrix, σ is a positive real number and I is the

identity matrix of appropriate size. Also note that if σ = 0 in the SALT

case, then the problem reduces to minimising the relative heights without

considering how much effort (energy) is put in the process of controlling

the system. The term (uk)
TRuk is interpreted as a potential energy and we
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thereby seek a minimum energy control.

Controllability (Kalman Condition)

• The controllability matrix of Problem (4.1) [it also applies to Problem

(4.2)] is the n× np matrix

C =
[
N MN M2N · · · Mn−1N

]

• Problem (4.1) [and similarly, Problem (4.2)] is controllable if its con-

trollability matrix has rank n [40].

Output Controllability

• The output controllability matrix of Problem (4.2) [it also applies to

Problem (4.1)] is the m× np matrix

OC =
[
AN AMN AM2N · · · AMn−1N

]

• Problem (4.2) [and similarly, Problem (4.1)] is output controllable if

its output controllability matrix has rank m [40].

Remark 4.2. Note that since Remark 4.1 holds, due to the fact that A

is 480 × 273 with rank 269, a simple substitution reveals that the SALT

system is controllable but not output controllable. And since the control

is performed based on the output, constraints are needed to satisfy output

controllability.

4.2.2 Continuous time Formulation

There are different ways of formulating linear quadratic problems, depending

on the time range, or if the objective function to minimise is an expected

value. These (continuous time linear quadratic problems) can be solved

using the continuous time dynamic programming approach when the optimal

control is to be determined in the state feedback form.
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Finite Horizon

We will consider problems of the form:

min
u

J = z(T )TQT z(T ) +

∫ T

0

[
z(t)TQz(t) + u(t)TRu(t)

]
dt

subject to




ż(t) = Mz(t) +Nu(t), z(0) = z0

s(t) = Az(t)

(4.3)

where Q and QT are symmetric positive semidefinite matrices, R is symmet-

ric positive definite and A is of full rank. A being of full rank guarantees the

equivalence s(t) = Az(t) ⇐⇒ z(t) = Bs(t) where B is the pseudo inverse

of A.

Infinite Horizon

We will consider problems of the form:

min
u

J = E

(
1

2

∫ ∞

0

[
z(t)TQz(t) + u(t)TRu(t)

]
dt|z0

)

subject to




ż(t) = Mz(t) +Nu(t), z(0) = z0

s(t) = Az(t)

(4.4)

where the assumptions are the same as in the finite horizon case but the

final time is infinite.

4.3 Solution to Linear Quadratic Problems

4.3.1 In Discrete Time

There is a difference, depending on whether we are solving a problem with

perfect state information, or a problem with imperfect state information. In

both cases, we apply the discrete time dynamic programming approach [3].

Case with Perfect State Information

For Problem (4.1), as adapted from a similar formulation in [3] (where Q

and R depend on the step k and the adjustment of the state z from step k to

step k+1 involves a random disturbance), we define the cost-to-go function
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as follows:




JN (zN ) = zTNQT zN

Ji(zi) = zTNQT zN +
N−1∑
k=i

zTk Qzk + uTkRuk ∀i ≤ N − 1
(4.5)

and the optimal cost-to-go function by J∗
i (zi) = min

ui

Ji(zi). Then the Bell-

man Equation of Dynamic Programming for Problem (4.1) becomes

J∗
i (zi) = min

ui

[
zTi Qzi + uTi Rui + Ji+1(Mzi +Nui)

]
∀i ≤ N − 1 (4.6)

Therefore we have:

J∗
N−1(zN−1) = min

uN−1

[
zTN−1QzN−1 + uTN−1RuN−1

+ (MzN−1 +NuN−1)
TQT (MzN−1 +NuN−1)

]

= min
uN−1

[
uTN−1RuN−1 + uTN−1N

TQTNuN−1 + 2zTN−1M
TQTNuN−1

]

+ zTN−1QzN−1 + zTN−1M
TQTMzN−1

(4.7)

The above minimisation problem yields

u∗N−1 = −(R+NTQTN)−1NTQTMzN−1

and then

J∗
N−1(zN−1) = zTN−1KN−1zN−1 where

KN−1 = MT
(
QT −QTN(NTQTN +R)−1NTQT

)
M +Q

(4.8)

and proceeding the same way for k = N − 2, N − 3, . . . , 1, 0, we get

u∗k = µ∗
k(zk) = Lkzk

Lk = −(NTKk+1N +R)−1NTKk+1M

KN = QT

Kk = MT
(
Kk+1 −Kk+1N(NTKk+1N +R)−1NTKk+1

)
M +Q

(4.9)

then J∗
k (zk) = zTk Kkzk and therefore J∗ = J∗

0 (z0) = zT0 K0z0 where K0 can

be obtained by solving the above matrix Riccati difference equation. Note

that the above matrix Riccati difference equation can be solved only if the

matrix NTKk+1N +R is nonsingular ∀k ≥ 0.
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Case with Imperfect State Information

This case is similar to the perfect state information case, except that at stage

k, the controller does not have access to the value of the state variable zk, but

has the observed values sk linked to zk by the relation sk = Azk. This case is

closer to the SALT case than the perfect state information case. Instead of

Problem (4.1), the problem to solve is Problem (4.2), adapted from a similar

formulation in [3] where Q and R depend on k, the adjustment in z involves

a random disturbance wk at step k, the relationship between the state z

(actuator displacements) and the output s (relative heights) at each step k

involves an observation noise vector vk with a known probability distribu-

tion, and the A matrix in that relationship (the actuator-to-heights matrix)

also depends on k, and is known for each value of k. Using the same (discrete

time dynamic programming) process as in [3], we define the information vec-

tor as follows: I0 = s0 and ∀k ≥ 1, Ik = (s0, s1, . . . , sk, u0, u1, . . . , uk−1).

Note that ∀k ≥ 0, Ik+1 = (Ik, sk+1, uk). The cost-to-go function is now

defined as follows:




JN (IN ) = E
zN

(
zTNQT zN |IN

)

Ji(Ii) = E
zi

(
zTNQT zN +

N−1∑
k=i

zTk Qzk + uTkRuk|Ii, ui
)

∀i ≤ N − 1

(4.10)

and the optimal cost-to-go function by J∗
i (Ii) = min

ui

Ji(Ii). The Bellman

Equation for Problem (4.2) becomes

J∗
i (Ii) = min

ui

[
E

zi,si+1

{
zTi Qzi + uTi Rui + Ji+1(Ii+1)|Ii, ui

}]
(4.11)

Therefore we have:

J∗
N−1(IN−1) = min

uN−1

[
E

zN−1

{
zTN−1QzN−1 + uTN−1RuN−1

+ (MzN−1 +NuN−1)
TQT (MzN−1 +NuN−1)|IN−1

}]

= E
zN−1

[
zTN−1(M

TQTM +Q)zN−1|IN−1

]

+ min
uN−1

[
uTN−1(N

TQTN +R)uN−1 + 2E(zN−1|IN−1)
TMTQTNuN−1

]

(4.12)

The above minimisation problem yields

u∗N−1 = −(NTQTN +R)−1NTQTME(zN−1|IN−1)
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and then

J∗
N−1(IN−1) = E

zN−1

(
zTN−1KN−1zN−1|IN−1

)

+ E
zN−1

[
(zN−1 − E{zN−1|IN−1})T PN−1 (zN−1 − E{zN−1|IN−1}) |IN−1

]

(4.13)

where KN−1 and PN−1 are given by:

PN−1 = MTQTN
(
R+NTQTN

)−1
NTQTM

KN−1 = MTQTM − PN−1 +Q.

Moreover,

J∗
N−2(IN−2) = min

uN−2

[
E

zN−2,sN−1

{
zTN−2QzN−2 + uTN−2RuN−2

+ JN−1(IN−1)|IN−2, uN−2

}]

= E

[
(zN−1 − E{zN−1|IN−1})T PN−1 (zN−1 − E{zN−1|IN−1}) |IN−2, uN−2

]

+ E
zN−2

(
zTN−2QzN−2|IN−2

)

+ min
uN−2

[
uTN−2RuN−2 + E

(
zTN−1KN−1zN−1|IN−2, uN−2

)]

(4.14)

The above minimisation problem yields

u∗N−2 = −
(
R+NTKN−1N

)−1
NTKN−1ME (zN−2|IN−2) .

In a similar way for lower values of k, we have:

u∗k = µ∗
k(Ik) = LkE (zk|Ik)

Lk = −
(
R+NTKk+1N

)−1
NTKk+1M

KN = QT

Kk = MTKk+1M − Pk +Q

Pk = MTKk+1N
(
R+NTKk+1N

)−1
NTKk+1M

(4.15)

Remark 4.3. Note that since Remark 4.1 holds, the expression of the solution

given above can be rewritten in a simpler form:

u∗k = µ∗
k(Ik) = LkE (zk|Ik)

Lk = − (R+Kk+1)
−1 Kk+1

KN = QT

Kk = Kk+1 − Pk +Q

Pk = Kk+1 (R+Kk+1)
−1 Kk+1

(4.16)

109



4.3.2 In Continuous Time

Finite Horizon

State Feedback The goal is to find an optimal control u∗ = U(t)z(t) for

Problem (4.3) where the gain matrix U(t) is to be determined. Note that

in the SALT case, z(t) is the vector of actuator positions at time t.

Theorem 4.4 below (see [32, 33, 40]) is a characterisation of controllable

linear quadratic systems:

Theorem 4.4 (Kalman Condition). The system (4.3) is controllable if and

only if its controllability matrix has rank n, the controllability matrix being

the n× np matrix

C =
[
N MN M2N · · · Mn−1N

]
.

Theorem 4.5 below [22] indicates how to determine the optimal state

feedback control of Problem (4.3).

Theorem 4.5. The following statements hold:

• The optimal control u∗ of Problem (4.3) is given by

u∗(t) = −R−1NTK(t)z∗(t)

where K is a symmetric matrix that solves the matrix Riccati differ-

ential equation

K̇(t) = −K(t)M −MTK(t) +K(t)NR−1NTK(t)−Q

K(T ) = QT

(4.17)

• The optimal response (optimal trajectory) z∗ satisfies

ż∗(t) =
(
M −NR−1NTK(t)

)
z∗(t), z∗(0) = z0 (4.18)

• The optimal cost is

J(u∗) =
1

2
zT0 K(0)z0 (4.19)
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Output Feedback The goal is to find an optimal control u∗ = −F (t)s(t)

for Problem (4.3) where the gain matrix F (t) is to be determined. Note

that in the SALT case, s(t) is the vector of relative heights at time t.

Theorem 4.6 below (see [32, 33, 40]) characterises output controllable

linear quadratic systems.

Theorem 4.6. The system (4.3) is output controllable if and only if

its output controllability matrix has rank m, the output controllability

matrix being the m× np matrix

OC =
[
AN AMN AM2N · · · AMn−1N

]
.

Remark 4.7. We suggest a few options to find the optimal control of Problem

(4.3) in the output feedback form.

1. A simple option is to consider z(t) in terms of s(t) using the least

squares approach. Considering the pseudo inverse of A denoted by B,

from s(t) = Az(t) we have z(t) = Bs(t) and the new expression of u∗

becomes u∗(t) = R−1K(t)Bs(t) with the same conditions on K as in

Equation (4.17) above.

2. Another approach is to transform the problem into an equivalent prob-

lem, with s as the new state variable. Still considering the fact that

z(t) = Bs(t), and that ṡ(t) = Aż(t) from s(t) = Az(t), Problem (4.3)

becomes

min
u

J = s(T )TBTQTBs(T ) +

∫ T

0

[
s(t)TBTQBs(t) + u(t)TRu(t)

]
dt

subject to ṡ(t) = AMBs(t) +ANu(t), s(0) = Az0
(4.20)

Let Q̃T = BTQTB, Q̃ = BTQB, R̃ = R, M̃ = AMB and Ñ = AN .

Then Problem (4.3) becomes

min
u

J = s(T )T Q̃T s(T ) +

∫ T

0

[
s(t)T Q̃s(t) + u(t)T R̃u(t)

]
dt

subject to ṡ(t) = M̃s(t) + Ñu(t), s(0) = Az0

(4.21)

Note that if Q and QT are symmetric positive semidefinite, so are Q̃

and Q̃T ; and if R is symmetric positive definite, so is R̃. Therefore we
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can apply continuous time dynamic programming to Problem (4.21) to

have the solution u∗(t) = R̃−1K̃(t)s(t) where K̃ is a symmetric matrix

that solves the matrix Riccati differential equation

˙̃
K(t) + K̃(t)ÑR̃−1ÑT K̃(t) + K̃(t)M̃ + M̃T K̃(t)− Q̃ = 0

K̃(T ) = −Q̃T

(4.22)

3. Note that the two options explored above are valid only when A has

full rank.

Infinite Horizon

State Feedback The goal is to find an optimal control u∗ = Uz(t) for

Problem (4.4) where the gain matrix U is to be determined. Note that in

the SALT case, z(t) is the vector of actuator positions at time t.

The controllability of Problem (4.4) is valid under the conditions given

in Theorem 4.4.

Theorem 4.8 below [22] indicates how to determine the optimal state

feedback control of Problem (4.4).

Theorem 4.8. We assume the system in Problem (4.4) is controllable.

Then

• The optimal control u∗ is given by u∗(t) = −R−1NTKz∗(t) where K

is the unique symmetric positive definite matrix that solves the matrix

continuous time algebraic Riccati equation

−MTK −KM +KNR−1NTK = Q (4.23)

• The optimal response (optimal trajectory) z∗ satisfies

ż∗(t) =
(
M −NR−1NTK

)
z∗(t), z∗(0) = z0 (4.24)

• The optimal cost is

J(u∗) =
1

2
zT0 Kz0 (4.25)

Output Feedback The goal is to find an optimal control u∗ = −Fs(t)

for Problem (4.4) where the gain matrix F is to be determined. Note that

in the SALT case, s(t) is the vector of relative heights at time t.

The output controllability of Problem (4.4) is valid under the conditions

given in Theorem 4.6.

112



Remark 4.9. Similar to Remark 4.7, under the assumption that A has full

rank and that B is the pseudo inverse of A, a few suggestions for an optimal

output feedback control for Problem (4.4) are:

1. u∗(t) = −R−1NTKBs∗(t) where s∗ is the optimal trajectory for s.

2. Problem (4.4) can also be rewritten as

min
u

J = E

(
1

2

∫ ∞

0

[
s(t)T Q̃s(t) + u(t)T R̃u(t)

]
dt|s0

)

subject to ṡ(t) = M̃z(t) + Ñu(t), s(0) = s0 = Az0

(4.26)

where Q̃ = BTQB, R̃ = R, M̃ = AMB and Ñ = AN . Note that

if Problem (4.4) is output controllable, then Problem (4.26) is con-

trollable. And by applying the continuous time dynamic program-

ming technique to Problem (4.26), we obtain u∗(t) = −R̃−1ÑT K̃s∗(t)

where K̃ is the unique symmetric positive definite matrix that solves

the matrix continuous time algebraic Riccati equation

− M̃T K̃ − K̃M̃ + K̃ÑR̃−1ÑT K̃ = Q̃. (4.27)

In this case, the optimal cost is

J(u∗) =
1

2
E

(
sT0 K̃s0

)
. (4.28)

4.3.3 A new Approach to Problem (4.4)

Preliminary Result from Literature

When in Problem (4.4), A is a full rank m × n matrix with m ≤ n, the

following result applies.

Theorem 4.10 (See [24]). Assuming that the initial state z0 is a random

vector uniformly distributed on the surface of the n-dimensional unit sphere,

the optimal output feedback gain is given by

F = R−1NTKλAT (AλAT )−1 (4.29)

where

K =

∫ ∞

0
eM

T
0
s
[
Q+ATF TRFA

]
eM0sds (4.30)

λ =

∫ ∞

0
eM0seM

T
0 sds (4.31)

provided M0 = M −NFA is stable.

113



Remark 4.11. TheK and λ from Theorem 4.10 are solutions to the following

equations:

KM0 +MT
0 K +Q+ATF TRFA = 0 (4.32)

λMT
0 +M0λ+ In = 0 (4.33)

The Gradient Flow Approach

The gradient flow technique is a relatively recent mathematical technique.

This technique has been applied to a few classes of optimal control problems,

including nonlinear quadratic optimal control problems in discrete time, lin-

ear quadratic optimal control problems in continuous time with stochastic

jump parameters [5, 44, 47, 48]. This technique can be adapted to the prob-

lems under study, provided we are dealing with infinite horizon problems,

in discrete or in continuous time. This method is stable and robust with

respect to observation errors (or measurement errors), provided the prob-

ability distribution of the error term is known. The main idea behind the

gradient flow approach is to transform an optimal control problem (in con-

tinuous time) into an ordinary differential equation problem whereby solving

the ODE gives the solution to the original optimal control problem. A stan-

dard formulation of a linear output feedback optimal control problem has

the form

min
u

J (t, x(t), u(t))

subject to





ẋ(t) = Ax(t) +Bu(t); x(0) = x0

y(t) = Cx(t)

u(t) = −Fy(t)

(4.34)

In this formulation, x is the state variable; y is the output variable; u is the

control variable; the function J to minimise is called the objective function;

C is the interaction matrix (relationship between the state and the output),

and F is the linear output feedback gain matrix. The solution to the original

optimal control problem is entirely determined by the computation of F .

The gradient flow algorithm determines the F matrix by the addition of a

differential equation for F , of the form

Ḟ = − ∂J

∂F
(4.35)
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called the gradient flow associated with the objective function J . This is

done after J is made a function of F by a transformation

J (t, x(t), u(t)) → J(F,P ) (4.36)

where P = E
(
x0x

T
0

)
, in our case, as in equations (4.39) below, such that

Ḟ → 0 as t → ∞. Intuitively, we place the gain F of the standard control

in a potential well defined on J . Clearly, equation (4.35) finds the value of

F that minimises J . The solution to the new problem gives us the solution

to the original problem. Note that given our original optimal control prob-

lem, computation of F is executed, and then holds throughout the standard

control process (4.34). Moreover, the transformation (4.36) can always be

found. Furthermore, we can ensure controllability of (4.34), given F (see

Theorem 4.18 below). Gradient flow is then no more expensive than other

methods, and is robust.

Problem Transcription Note that the goal is to find a linear output

feedback optimal control, that is, an optimal control in the form u∗(t) =

−Fs(t) that minimises the objective function in Problem (4.4), where F

is the gain matrix to be determined. This will be adapted to the SALT

case where s(t) is the vector of relative heights at time t, also known in

the context of control theory as the output variable. Recall that z(t) is the

vector of actuator displacements at time t, also known in the context of

control theory as the state variable. The result given below in Lemma 4.12

is inspired by a similar result from [47].

Lemma 4.12. The index function given in (4.4) can be reduced to

J =
1

2
trace

(
KP T

)
(4.37)

where K is the unique positive definite solution to the following Lyapunov

equation

KM0 +MT
0 K +Q+ATF TRFA = 0

M0 = M −NFA

P = E
(
z0z

T
0

)
(4.38)

provided M0 is stable.

Proof. We have

ż(t) = Mz(t) +Nu(t) = (M −NFA)z(t) = M0z(t).
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Let v(t) = zT (t)Kz(t) and v̄(t) = E {v(t)} = E
{
zT (t)Kz(t)

}
. Then

˙̄v(t) =
d

dt
E
{
zT (t)Kz(t)

}

= E

{
żT (t)Kz(t) + zT (t)Kż(t) + zT (t)K̇z(t)

}

= E

{
zT (t)

(
MT

0 K +KM0 + K̇
)
z(t)

}
;

but K̇ = 0, thus

˙̄v(t) = E
{
zT (t)

(
MT

0 K +KM0

)
z(t)

}
.

So,

J(F,P ) = E

{
1

2

∫ ∞

0

[
zT (s)Qz(s) + uT (s)Ru(s)

]
ds|P

}

= E

{
1

2

∫ ∞

0

[
zT (s)Qz(s) + (FAz(s))T R (FAz(s))

]
ds|P

}

= E

{
1

2

∫ ∞

0

[
zT (s)Qz(s) + zT (s)ATF TRFAz(s)

]
ds|P

}

= E

{
1

2

∫ ∞

0

[
zT (s)

(
Q+ATF TRFA

)
z(s)

]
ds|P

}

= E

{
1

2

∫ ∞

0

[
zT (s)

(
−KM0 −MT

0 K
)
z(s)

]
ds|P

}

= E

{
1

2

∫ ∞

0
−v̇(s)ds|P

}

=
1

2
E
{
zT0 Kz0

}
− lim

t→∞
E {v(t)|P}

=
1

2
trace

[
K
(
E
{
z0z

T
0

})T ]− lim
t→∞

E {v(t)|P}

=
1

2
trace

(
KP T

)
− lim

t→∞
E {v(t)|P}

But ż(t) = M0z(t), z(0) = z0 andM0 stable imply lim
t→∞

z(t) = 0 and therefore

lim
t→∞

v(t) = 0 since v(t) = zT (t)Kz(t). Henceforth J(F,P ) = 1
2trace

(
KP T

)
.

Remark 4.13. Note that

• A sufficient condition for M0 to be stable is for Λ = −1
2

(
M0 +MT

0

)

to be positive definite.

• From Sylvester’s criterion, Λ is positive definite if and only if the

determinants gj of all its leading principal minors are such that gj ≥ ε

for a small positive real number ε.
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We have J = J(F,P ); let Ξ = {F ∈ R
m×r such that M0 is stable}.

Lemma 4.14 (See [47]). Assume P is positive definite. Then

S (η) = {F ∈ Ξ such that J(F,P ) ≤ η}

is compact, ∀η ≥ 0

Proof. Similar to that of Lemma 1 part (ii) in [48]

Remark 4.15. From Lemmas 4.12 and 4.14, it can be established [47] that

the set S̄ =
⋃
η≥0

S(η) is open in R
m×r. As a result, all global and local minima

of J(F,P ) are interior points of S̄. In addition, F ∈ S̄ if M0 = M −NFA

is stable.

Our original problem formulated in (4.4) then becomes

minJ(F,P ) =
1

2
trace

(
KP T

)

subject to





gj ≥ ε, ε > 0

KM0 +MT
0 K +Q+ATF TRFA = 0

M0 = M −NFA

P = E
(
z0z

T
0

)

(4.39)

Note that if P = E
(
z0z

T
0

)
is known and z0 is not, this is a generalisation of

Problem (4.4). Also note that the gradient flow approach gives the optimal

control in terms of the output while the dynamic programming approach

gives the optimal control in terms of the expected value of the state.

We define the Hamiltonian as follows:

H =
1

2
trace

(
KP T

)
+ trace

[
λ(KM0 +MT

0 K +Q+ATF TRFA)
]

(4.40)

where the co-state λ is an n × n symmetric matrix satisfying the adjoint

equation ∂H
∂K = 0 ⇐⇒ 1

2P+λMT
0 +M0λ = 0; this follows from the following

property of matrices: ∂
∂Atrace(AB) = BT , and some basic properties of the

matrix trace.

Theorem 4.16 below (inspired by a similar result in [47]) shows how to

compute the gradient of J (and similarly the gradient of every gj) with

respect to F .
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Theorem 4.16. The gradient of J with respect to F is given by

∂J

∂F
=

∂H

∂F
= 2RFAλAT − 2NTKλAT

where K and λ satisfy the following Lyapunov equations:

KM0 +MT
0 K +Q+ATF TRFA = 0 (4.41)

1

2
P + λMT

0 +M0λ = 0 (4.42)

Proof. Similar to that of Theorem 3.1 in [46].

Remark 4.17. When A is a full rank m× n matrix with m ≤ n, solving the

equation ∂J
∂F = 0 gives F = R−1NTKλAT (AλAT )−1 as in Theorem 4.10.

The gradient flow associated with J = J(F,P ) is

Ḟ = − ∂J

∂F
= −∂H

∂F
= 2NTKλAT − 2RFAλAT (4.43)

So any global minimum must be an equilibrium of (4.43). The following

theorem (Theorem 4.18, see [47]) gives several properties associated with

the gradient flow (4.43).

Theorem 4.18. Given the initial condition F (0) = F 0 such that F 0 ∈ S̄

1. The gradient flow (4.43) has a unique solution F (t) ∈ S̄ defined on

[0,∞).

2. The index function J(F ) is non-increasing along the solution F (t) with

J (F (t)) = J
(
F 0
)
−
∫ t

0
‖Ḟ (t)‖2F dt (4.44)

where ‖ · ‖F is the Frobenius norm defined by ‖A‖2F = trace
(
ATA

)
.

3. lim
t→∞

Ḟ (t) = 0.

4. There exists a convergent subsequence of {F (t)} as t → ∞ and any

such subsequence converges to an equilibrium of (4.43) in S̄.

Proof. Similar to that of Theorem 2.1 in [48].

Remark 4.19. Solving our approximate problem involves solving the system

(4.41) - (4.42) - (4.43), but we don’t have the initial condition F (0) yet.
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Determining F (0). Sylvester’s criterion says we must find an F such

that M0 = M −NFA is stable, that is, all the leading principal minors of

Λ = −1
2

(
M0 +MT

0

)
are greater or equal to a small positive real number ε0.

If Λ is an n × n matrix, from [18], a constraint transcription of Sylvester’s

criterion is as follows:

min J =

n∑

i=1

gi(F ) (4.45)

where gi(F ) = ϕε (det (Λi)− ε0) with Λi standing for the top left corner i×i

sub-matrix of Λ and ϕε defined on the set R of real numbers (and actually

a smoothing of the function x 7→ max(−x, 0) around x0 = 0) as follows:

ϕε (x) =





−x if x < −ε

0 if x > ε

(x−ε)2

4ε if − ε ≤ x ≤ ε

Problem (4.45) can be solved using any unconstrained optimisation tech-

nique, such as the Quasi-Newton method. Note that F 7→ M0 = M−NFA,

M0 7→ Λ = −1
2

(
M0 +MT

0

)
, Λ 7→ Λi = P TΛP , Λi 7→ yi = det (Λi)− ε0 and

yi 7→ zi = ϕε (yi), where P is the n × i matrix with one on the main diag-

onal and zero everywhere else. An intuitive idea is to use the chain rule to

explicitly find the gradient of the map F 7→ zi. This, however, might not be

recommended for large scale problems. Moreover, since the best approach to

solving system (4.41)-(4.42)-(4.43) is the numerical approach, a better idea

is to arbitrarily choose F (0) in such a way that M0 = M−NF (0)A is stable.

A few algorithms to solve our new problem are investigated below and are

based on the following lemma (lemma 4.20) that assumes the initial state is

a random vector uniformly distributed on the surface of the n-dimensional

unit sphere, but can be adapted to a more general case where the initial

state is not subject to this restriction.

Lemma 4.20 (See [24]). For any positive integer n, let Fn−1 be the solution

of (4.29) with K = Kn−1 and λ = λn−1, that is,

Fn−1 = R−1NTKn−1λn−1A
T (Aλn−1A

T )−1 (4.46)

where Kn is the solution of (4.41) with F = Fn−1, that is,

Kn(M−NFn−1A)+(M−NFn−1A)
TKn+Q+ATF T

n−1RFn−1A = 0 (4.47)
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and λn−1 is the solution of (4.42) with F = Fn−1, that is,

λn−1(M −NFn−1A)
T + (M −NFn−1A)λn−1 + I = 0 (4.48)

1. Then, assuming Q is positive definite and M − NFn−1A is stable, a

unique and positive definite Kn exists.

2. Furthermore, assuming there exists a positive definite solution λn−1 to

equation (4.48), then

trace(Kn) ≤ trace(Kn−1) (4.49)

Now we give three algorithms that can be independently used to solve

our new problem.

Algorithm 1 (See [26])

1. Choose K0 arbitrarily (may be from the full state feedback solution, or

solve equation (4.41) using the F obtained from solving the equation

M − NFA = Ms where Ms is an arbitrarily chosen known stable

matrix)

2. At step n:

(a) Solve (4.29) and (4.42) simultaneously in λn+1 and Fn+1 for fixed

Kn

(b) Actualize Kn into Kn+1 where Kn+1 is the solution of (4.41) for

fixed λn+1 and Fn+1

3. Iterate step 2 until convergence

Algorithm 1 is computationally expensive and is not considered here-

after. The next algorithm is the so-called optimality condition algorithm

and will be implemented below

Algorithm 2 (Optimality Condition - See [26])

1. Choose F0 arbitrarily such that M −NF0A is stable

2. At step n:

(a) Solve (4.41) in Kn+1 for fixed Fn
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(b) Solve (4.42) in λn+1 for fixed Fn

(c) Actualize Fn into Fn+1 through (4.29) for fixed λn+1 and Kn+1

3. Iterate step 2 until convergence

Algorithm 3: (The Gradient Flow Algorithm - See [47])

1. Choose F0 arbitrarily such that M −NF0A is stable

2. At step n:

(a) Solve (4.41) in Kn+1 for fixed Fn

(b) Solve (4.42) in λn+1 for fixed Fn

(c) Actualize Fn into Fn+1 through (4.43) for fixed λn+1 and Kn+1

3. Iterate step 2 until convergence

Remark 4.21. Since Algorithm 1 is computationally expensive, we will be

more interested in algorithms 2 and 3.

If the results in this section (section 4.3.3) applied to the SALT case,

a straightforward substitution would give us the results we need. Unfortu-

nately, in the SALT case, the A matrix is a rank deficient m×n matrix with

m > n, precisely, m = 480 and n = 273, with rank 269. Thus we need to

transform the initial problem to meet the requirements in this section. This

process is described in the next section.

4.4 A Formulation of Linear Quadratic Problems

in the case m ≥ n

We consider Problem (4.4) with m ≥ n and A not necessarily a full rank

matrix. We use the SVD of A to simplify the problem by reformulating it

in the mode space. We have s = Az = UΣV T z ⇐⇒ UT s = ΣV T z, since

by definition of SVD (Theorem 3.13), U and V are square unitary matrices,

that is, UTU = I and V TV = I where I is the identity matrix of appropriate

size. Now let z̃ = V T z and s̃ = UT s. This is equivalent to z = V z̃ and

s = Us̃. Then we have s̃ = Σz̃. We also have zTQz = z̃TV TQV z̃. Moreover,

ż = Mz +Nu ⇐⇒ V T ż = V TMz + V TNu ⇐⇒ ˙̃z = V TMV z̃ + V TNu.

121



But the output s is in the range of A. Hence s̃i = 0 for all i > r, where r is

the rank of A. So s̃ = Σz̃ can be rewritten as[
s̃c

0

]
=

[
Σr

0

]
z̃ ⇐⇒ s̃c = Σrz̃

where Σr is the top sub-matrix of Σ containing the r rows with nonzero

singular values. Note that Σr is a full rank r × n matrix with r ≤ n. Also

note that

s̃ = UT s ⇐⇒
[
s̃c

0

]
=

[
UT
c

UT
u

]
s

where Uc is the left sub-matrix of U composed of the r column vectors

corresponding to nonzero singular values of A, and Uu is the remaining

sub-matrix of U . It follows that s̃c = UT
c s (and indeed UT

u s = 0).

If we let Q̃ = V TQV , M̃ = V TMV , Ñ = V TN , z̃0 = V T z0, our problem

becomes

min
u

J = E

(
1

2

∫ ∞

0

[
z̃(t)T Q̃z̃(t) + u(t)TRu(t)

]
dt|z̃0

)

subject to





˙̃z(t) = M̃ z̃(t) + Ñu(t), z̃(0) = z̃0

s̃c(t) = Σrz̃(t)

(4.50)

Hence from previous work, the problem above can be reduced to:

min
u

J =
1

2
trace(KP̃ T )

subject to





KM̃0 + M̃T
0 K + Q̃+ΣT

r F̃
TRF̃Σr = 0

M̃0 = M̃ − Ñ F̃Σr

P̃ = E(z̃0z̃
T
0 )

M̃0 is stable

Therefore we have u∗(t) = −F̃ s̃c(t) where

F̃ = R−1ÑTKλΣT
r (ΣrλΣ

T
r )

−1

with
KM̃0 + M̃T

0 K + Q̃+ΣT
r F̃

TRF̃Σr = 0

λM̃T
0 + M̃0λ+

1

2
P̃ = 0

M̃0 = M̃ − Ñ F̃Σr

P̃ = E(z̃0z̃
T
0 )

And finally, u∗(t) = −F̃UT
c s(t), which means F = F̃UT

c .
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Remark 4.22. Note that

• Unlike Problem (4.4), Problem (4.50), is more likely to be output

controllable.

• Applying Sylvester’s criterion to M −NFA is equivalent to applying

it to M̃ − Ñ F̃Σr.

• Solving Problem (4.4) is handled by solving Problem (4.50) obtained

from transforming Problem (4.4) via SVD, and then transforming the

solution from the mode space back to the original space via the inverse

transformation.

• If the A matrix in Problem (4.4) is rank deficient, then so is the square

matrix ΣrλΣ
T
r . Hence, the F̃ matrix as given just above this remark,

cannot be determined since the matrix ΣrλΣ
T
r is singular. Therefore

the optimality condition algorithm fails for all rank deficient systems.

4.5 Illustrative Examples

We consider SALT primary mirror alignment problem as an optimal con-

trol problem, more precisely as a linear quadratic problem as formulated in

Problem (4.4). The formulation of Problem (4.4) is recalled below:

min
u

J = E

(
1

2

∫ ∞

0

[
z(t)TQz(t) + u(t)TRu(t)

]
dt|z0

)

subject to




ż(t) = Mz(t) +Nu(t), z(0) = z0

s(t) = Az(t)

(4.51)

where s(t) is the vector of relative heights as read by sensors at time t, z(t) is

the vector of actuator positions at time t, A is the SALT 480×273 actuator-

to-heights matrix, Q = ATA, R = σI with I being the 273 × 273 identity

matrix and σ a positive real number (we chose σ = 0.2 in our computation

to emphasise more on minimising the overall relative heights and less on the

effort or energy involved in the control process), M is the 273 × 273 zero

matrix, N is the 273 × 273 identity matrix. Recall that in the SALT case,

the problem is controllable but not output controllable and yet the control

is performed based on the output since we don’t have information about

the state (actuator positions) unless we estimate from the output (relative
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heights). The goal is to find an output feedback optimal control, that is, an

optimal control in the form u∗ = −Fs(t) where F is the gain matrix to be

determined. Two approaches involving problem transcription and numerical

techniques are the optimality condition and the gradient flow approaches. In

the optimality condition approach, our original problem reduces to solving

(via algorithm 2, page 120) the system (4.41) - (4.42) - (4.29) recalled below:




KM0 +MT
0 K +Q+ATF TRFA = 0

1
2P + λMT

0 +M0λ = 0

F = R−1NTKλAT (AλAT )−1

(4.52)

In the gradient flow approach, our original problem reduces to solving (via

algorithm 3, page 121) the system (4.41) - (4.42) - (4.43) recalled below:




KM0 +MT
0 K +Q+ATF TRFA = 0

1
2P + λMT

0 +M0λ = 0

Ḟ = 2NTKλAT − 2RFAλAT ; F (0) = F0

(4.53)

where M − NF0A is a known arbitrarily chosen stable matrix. In both

cases, P = E
(
z0z

T
0

)
, M0 = M − NFA, and when the gain matrix F is

numerically determined, the dynamics of the state (actuator displacements)

and the output (relative heights) over time are determined as well. Then at

any time t, the root-mean square (RMS) of actuator displacements z(t) is

determined (it can also apply to relative heights and more generally to any

vector). The RMS of a vector v = (v1, v2, . . . , vn) is determined as follows:

RMS (v) =

√
v21 + v22 + · · ·+ v2n

n
(4.54)

As mentioned before (end of section 4.3.3), results from literature would

apply if the actuator-to-heights matrix was a full rank m × n matrix with

m ≤ n, which in this case is not true. Therefore we convert the problem in

the mode space using singular value decomposition, and convert the solution

back to the initial space, as described in the previous section (Section 4.4).

4.5.1 Assessment of Optimality Condition and Gradient Flow

on SALT

Lyapunov equations are inconsistent (for optimality condition and gradient

flow approaches in equations (4.52) and (4.53)) when A is rank deficient. If

124



the system is unconstrained, the matrix Q+ ATF TRFA (in the Lyapunov

equations) is square and rank deficient, hence singular. This is not the

case when A is constrained or regularised. We need to constrain A as in

SALT or regularise via SVD. SVD regularisation is done by changing the

zero singular values using a simple rule such as σi+1 = ξσi for r ≤ i ≤ n− 1

where r = 269 is the rank of A, n = 273 is the number of actuators and

number of columns of A, and ξ is a regularisation factor, with 0 < ξ ≤ 1.

This method’s efficiency depends on ξ and σr (the smallest nonzero singular

value of A). The closer to 1 the regularisation factor ξ is, the stronger

the regularisation. The regularised system is closer to the original system,

compared to the piston constrained system. Recall that A is 480 × 273.

Examples of regularisation factors are:

1. ξ = 1.

2. ξ = σr

σr−1
(last ratio) in this case 1. This choice is unreliable if the

last ratio is too small.

3. ξ = 1
r−1

r−1∑
i=1

σi+1

σi
(average ratio) in this case 0.9835.

4. ξ =

√
1

r−1

r−1∑
i=1

(
σi+1

σi

)2
(RMS ratio) in this case 0.9846.

Note in Table 4.1 that in cases (1), (2), (3) and (4), despite the fact that

the rank of the residual is 202, only four of the singular values are of order

10−2 and the remaining singular values are of order 10−14 or less.

Whether the system is regularised, constrained or unconstrained, the

optimality condition algorithm systematically fails to converge. This is be-

cause in the iterative process of algorithm 2, the matrix AλAT (even in the

mode space) is ill-conditioned, due to the eventual rank deficiency of the λ

matrix. Indeed, the λ matrix is not necessarily a full rank matrix at every

step of algorithm 2.

After regularisation (and similarly after piston constraints), the gradient

flow algorithm converges when zmax ≤ 2.5 × 10−4 metres (250 microns).

This result is obtained from a simulation where the initial configuration

of the primary mirror (z0 in our problem formulation) is generated. Each

actuator displacement is randomly chosen between −zmax and zmax; 200

trials are conducted for each value of zmax, and zmax varies between 100

and 1000 microns with a 10 microns step. However, it is important that
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Table 4.1: The A matrix with constraints and regularisation

A matrix Size Rank Norm Maximum Minimum

Unconstrained 480 × 273 269 4.4844 1.3979 -1.3979

SALT constr. 484 × 273 273 4.4844 1.3979 -1.3979

Diff. (SALT) N/A N/A N/A N/A N/A

Regularised (1) 480 × 273 273 4.4844 1.3986 -1.3988

Diff. (1) 480 × 273 202 0.0347 0.0012 -0.0014

Regularised (2) 480 × 273 273 4.4844 1.3986 -1.3988

Diff. (2) 480 × 273 202 0.0347 0.0012 -0.0014

Regularised (3) 480 × 273 273 4.4844 1.3985 -1.3987

Diff. (3) 480 × 273 202 0.0341 0.0012 -0.0013

Regularised (4) 480 × 273 273 4.4844 1.3985 -1.3987

Diff. (4) 480 × 273 202 0.0342 0.0012 -0.0013

the F matrix be computed fast enough. Time to compute the F matrix

is smaller than 1 second when zmax ≤ 240 microns. This time is always

above 0.5 second, and the probability that it is below 0.7 second is greater

than 95%. Note that when A is regularised, the gradient flow algorithm can

be implemented without conversion to and from the mode space via SVD.

Time to compute the F matrix directly is on average 0.1 second greater than

when the computation of the F matrix is done via conversion to and from

the mode space. This is due to the fact that in the mode space, the matrix

and vector dimensions are substantially reduced and matrices are in simpler

forms. After 200 trials, when zmax = 10−4 metres (100 microns), computing

time for the F matrix via gradient flow is between 0.584541 and 0.974725

second. Sampled probabilities are given in Table 4.2, where P (t ≥ T ) is

the probability that the computing time t of the F matrix is greater than a

given value T (where T is given in seconds):

A pseudo-code to explain how the gradient flow algorithm is imple-

mented, is given below:

Gradient Flow Pseudo-code

(a) Read relative heights s(0) from sensors at start
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Table 4.2: Sampled probabilities of computing time of the F matrix (computing

time in seconds) via gradient flow when zmax = 100 microns

Probability Value

P (t ≥ 0.5) 200/200

P (t ≥ 0.6) 102/200

P (t ≥ 0.7) 11/200

P (t ≥ 0.8) 5/200

P (t ≥ 0.9) 2/200

(b) Estimate actuator positions z0 using SVD (either directly or via

exponential moving average over 30 seconds to compensate for

noise)

(c) Compute the output feedback gain matrix F via algorithm 3

(given in page 121)

(d) At each step (one second or less – time step for numerical integra-

tion of an ODE – since this is a continuous time process), adjust

the actuator positions using the equation ż(t) = Mz(t)+Nu(t) =

(M−NFA)z(t) ⇐⇒ z(t) = exp [(M −NFA)t] z0 – or any stan-

dard numerical technique for solving ODEs

4.5.2 Simulation Results on SALT

We start in a random configuration of the primary mirror. The initial config-

uration (z0 in our problem formulation) is generated by randomly sampling

each actuator displacement between −zmax and zmax via uniform distribu-

tion, for a given value of zmax. One case scenario is when each actuator

displacement is within the range of zmax = 10−4 metre (see Table 3.2), that

is, when the control method of Chapter 3 fails.

We illustrate the gradient flow results in Figure 4.5 for the specific case

zmax = 10−4 metre (100 microns). We see that the RMS actuator displace-

ment (describing the misalignment of the primary mirror) decays exponen-

tially. It takes about 4.7 seconds to have all the actuator displacements (and

consequently the RMS actuator displacements) below one micron. This is,

with this initial configuration, how long it should take for the SALT pri-

mary mirror to be safely controlled by fast alignment via QR after gradient
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Figure 4.5: RMS actuator displacements over time: the gradient flow approach

brings all the actuator displacements below 1 micron within 4.7 seconds, and brings

all the actuator displacements below 5 microns within 3 seconds; then fast alignment

via SVD (or even via QR) can take over after about 5 seconds

flow (4.7 seconds). On the other hand, the gradient flow approach brings

all the actuator displacements below five microns within about 3 seconds.

This is, again, with this initial configuration, how long it should take for

the SALT primary mirror to be safely controlled by fast alignment via SVD

after gradient flow (3 seconds). In Figure 4.6, we simulate for 200 initial mir-

ror configurations. We get from simulations that the gradient flow approach

takes between 4.6 and 4.7 seconds to get all the actuator displacements below

one micron (acceptable safe control by fast alignment via QR), and about 3

seconds to get all the actuator displacements below five microns (acceptable

safe control by fast alignment via SVD). We then have the important result

that gradient flow algorithm is a very efficient alignment process. That is,

after about five seconds, actuator displacements are in the range of control-

lability as in Chapter 3. Of course, we assume that the precision of actuator

drive motors is acceptable.

The gradient flow mirror alignment system takes about five seconds to

bring the primary mirror in a configuration where fast alignment (by SVD or

even by QR) can safely take over. It is clear that the gradient flow approach
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Figure 4.6: Overall actuator displacements over time using 200 trials (Gradient

flow): RMS actuator displacements are illustrated. All actuator displacements are

brought below 1 micron within 4.6 to 4.7 seconds (then fast alignment via QR can

safely take over after 64.7 seconds), and below 5 microns within 3 seconds (then

fast alignment via SVD can safely take over after 3 seconds)

is a reasonable option to consider. RMS actuator displacements of Figure

4.5 is approximately fitted by the function y = 10−4e−t where t is given

in seconds. Assuming this model holds for all initial amplitudes, we note

that when these are order 10−6 metre, gradient flow is in successful long

time control of the mirror segments (RMS actuator displacements order one

micron). In this case, gradient flow control should apply on SALT without

need of SVD control, if it is left active for all time. Recall that gradient

flow will work with constraints on the physical mirror such as are needed in

QR control (Section 4.3), or, with regularisation on the system to guarantee

consistency of the equations to solve. Note that regularisation is a better

approximation to the unconstrained system than piston constraints.

4.6 Conclusion

It has been established that for a multi-element telescope, especially for

SALT, in fast alignment, computing time is not a constraint in the control
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process since this computing time is most likely below 10−3 second, which

is negligible compared to the actuator response time which is around 0.1

second. However, the fast alignment process is not reliable when the mirror

is misaligned in such a way that individual actuator displacements might

exceed one micron each (fast alignment with QR), or five microns each

(fast alignment with SVD). This suggests exploration of alternate control

techniques.

Theoretical approaches to the control system of a multi-element tele-

scope have been explored, using background in control theory. The control

problem has been formulated as a linear quadratic problem. Discrete time

as well as continuous time formulations have been explored and in either

case, optimal control can be applied. When the optimal control is a state

feedback control, the most common tool to achieve it is dynamic program-

ming. However, our control problem is an output feedback control and other

techniques were found useful, involving problem transcription and numerical

techniques. We have found that the system can best be controlled from an

arbitrary initial configuration by the gradient flow method, at least when

zmax ≤ 2.4×10−4 metre, zmax being the maximum displacement from zero for

each actuator, in the positive or negative direction. With zmax ≤ 2.4× 10−4

metre, the time it takes to compute the F matrix is smaller than one sec-

ond, and between 0.5 and 0.7 second with a probability greater than 95%.

Note that the bigger the value of zmax, the longer it takes for the system to

reach acceptable alignment, but acceptable alignment is achieved nonethe-

less. Actuator displacements and therefore RMS actuator displacements

(describing mirror misalignment), can be fitted by decreasing exponential

functions. When zmax = 10−4 metre, the gradient flow approach achieves

acceptable alignment within five seconds for fast alignment via QR, and

within about three seconds for fast alignment via SVD. The time constant

of Figure 4.6 is of importance in deciding controllability of the mirror. For

example, the mirror distorts because of environmental factors that might

change over a time of minutes but if the numerics and actuators respond

on times of hours, control might be impossible. In Figure 4.6, we note a

time scale of about 6 seconds. This is a factor 5 faster than SVD control

(with exponential moving average over 30 seconds) and applies to worse

initial configurations (misalignments); thus gradient flow improves control-

lability over the existing SALT code. The significant variable of temperature
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changes much more slowly than this. All this suggests that in the case of

SALT, alignment by Gradient Flow is a reasonable option to consider when

the misalignment of the primary mirror is out of the QR/SVD acceptable

range.
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Chapter 5

Conclusion

5.1 Assessment of Results Relevant to SALT

In 2007, image quality on SALT could be judged from direct photographic

evidence of star images. Such images are not available to us but from dis-

cussions with SALT staff, it is clear that they were not satisfactory. At the

time, a considerable number of measurements were taken of environmental

factors. From these, it was found that humidity was often high while it was

known that capacitive edge sensors were sensitive to high humidity. Ex-

amination was also made of the spherical aberration corrector. Corrective

decisions were taken to replace edge sensors with inductive devices that are

not humidity-sensitive and to return the spherical aberration corrector to

its manufacturer for realignment. At the present time, tenders have been

called for the edge sensors and the spherical aberration corrector is now in-

deed repaired and reinstalled on SALT. Yet, we note that in 2007 data, the

control algorithm indicated that the mirror was under good control. It was

known that CCAS contradicted the SAMS output.

1. In Chapter 2, we performed a detailed statistical analysis on the en-

vironmental data of 2007 in order to objectively decide the signifi-

cant environmental factors affecting image quality. Stepwise regression

clearly showed that in order of significance, time, truss temperature

and humidity were the relevant variables. Humidity presumably was

significant owing to capacitive edge sensors. Management of truss

temperature is not performed (the dome is open to the sky) and con-

sequent distortions of the truss must of course be managed by active

control of mirror segments. Finally, the appearance of time as the

dominant variable immediately suggested that computational errors

could be accumulating over time. Together with the above-mentioned

contradiction between CCAS and SAMS outputs, it was natural that

we should re-examine the control algorithm.
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2. In Chapter 3, an important initial result is deduced from Figure 3.14

where we run the 2007 SALT algorithm (SAMS – green line) and an

independently written algorithm (CAM – red line), both using normal

equations, where we see that SAMS was unresponsive to change in

environment while our algorithm was responsive and, trended with

CCAS (blue line). It follows that there was indeed an error in the

coding of the original SALT algorithm.

We then considered three control methods. Our findings are as follows:

Normal equations and QR methods both require additional constraints

to the primary mirror configuration in order to give the actuator-to-

heights matrix full rank for the methods to be applicable. Besides the

inconvenience of setting constraints to the mirror, the normal equa-

tions and QR methods were found to be less reliable than the SVD

method. We note from Chapter 1 that the Hobby-Eberly Telescope

uses the SVD method and our conclusion is thus supported.

We implemented QR/SVD control on SALT in July 2010. Consider

now the behavior of the figure of merit with time, recalling that this

should be within 60 microns. Figure 3.13 most clearly shows that the

original SAMS software of March 2007 failed to control because the

figure of merit rises throughout the night and goes above 60 microns.

In Figure 3.16 where QR/SVD is implemented, we find steady control

for about 1.5 hour before control fails. From this it was clear that

problems remain with the control algorithm. In Figure 3.16, the data

was filtered using simple moving average over a four minutes period.

This long averaging period is by itself a source of concern because

alignment errors grow specifically during this period. Any filtering

method that can reduce this period is of interest. We showed that

exponential moving average allows us to reduce the filtering period to

30 seconds and furthermore gives excellent control with SVD method

(Figure 3.23) because stable figure of merit at 20 microns is discovered.

Finally, we see from Figure 3.24 that RMS tip/tilts are well within

acceptable range (0.1 arcsecond) over the viewing period.

In assessing the SVD method for SALT (Section 3.2.3), we found that

individual actuator displacements had to be aligned in the CCAS pro-

cess to within an accuracy of one micron in order for the algorithms

to be reliable. This result implies that the actuator drive motors are
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required to have an accuracy of better than one micron. Reliability

of normal equations and QR methods is inferior to that of SVD and

should be avoided.

3. In Chapter 4, we are concerned with domain of controllability. The de-

gree of misalignment that can lead to acceptable control by QR/SVD

is measured by the range of an actuator displacement (order one mi-

cron - Section 3.2.3). It is clear that during the night, if the alignment

is severely perturbed above this level, QR/SVD may fail to restore

alignment (Table 3.2). If we are confident that this will not happen,

QR/SVD will always serve SALT.

If we are not confident that the mirror is misaligned in such a way that

actuator displacements are always within one micron, a more powerful

algorithm is demanded. If during the night a perturbation of mirror

alignment leading to RMS actuator displacements of a few microns oc-

curs, the gradient flow algorithm will indeed restore controllability in

reasonable time. It has been established that if each actuator displace-

ment is within the range of 10−4 metre, which is equal to 100 microns

(in the positive or negative direction), the gradient flow method can

bring the whole system under control (bring all actuator displacements

below one micron) within five seconds, so that fast alignment (by SVD

or even by QR) can safely take over. This is very important for basic

operation procedure on SALT.

5.2 Future Work

Concerning future SALT operations, our testing of July 2010 was limited

to seven mirror segments with capacitive edge sensors, over less than a two

hours period (we took measurements only when humidity was known to be

sufficiently low that we could trust the edge sensors). If SALT management

decides to continue with standard SVD numerics (as on HET), it is essential

that SALT retests the QR/SVD control algorithm with 91 mirror segments

and inductive edge sensors over a full night of observation before the mirror

and the new software can finally, be safely commissioned.

It may yet be the case that the one micron requirement on actuator dis-

placement precision cannot be met by existing actuator drive motors. Actu-

ator displacements are of the same order of magnitude as relative heights as
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measured by edge sensors. It then follows that edge sensors as well, should be

sensitive to displacements of order one micron. If either precision cannot be

achieved, SALT may yet have to turn to the gradient flow method. Indeed,

we have found that gradient flow gives improved feedback time (less than

order 5 seconds, compared to order 30 seconds for SVD with exponential

moving average) and is robust against measurement errors. We recommend

that gradient flow be multiplexed into the SALT control software, along

with the (corrected) normal equations and SVD (with exponential moving

average) code, and tested on SALT.

Concerning the future of multi-element telescopes, it is of obvious inter-

est to investigate the controllability requirements. We note from Chapter 1

the actuator-to-heights matrix has dimensions (number of sensors by num-

ber of actuators) of 480× 273 for SALT. For the proposed large telescopes,

these dimensions are 2772 × 1476 (TMT) and approximately 6000 × 2952

(E-ELT). We ran simulations on larger versions of the SALT primary mir-

ror where the size of the actuator-to-heights matrix is the closest to those of

TMT and E-ELT respectively (13 rings for TMT and 18 rings for E-ELT).

Compared to SALT, the time it takes to compute the pseudo inverse of the

actuator-to-heights matrix increases by a factor of approximately 120 for

TMT, and approximately 660 for E-ELT. Indeed, the respective computa-

tion times are approximately 0.0572 second for SALT, 6.7245 seconds for

TMT and 37.5371 seconds for E-ELT. However, this pseudo inverse is as-

sumed to be already provided, and what is left to assess is the matrix-vector

operations. We expect matrix operations on these large dimension matrices

to be satisfactory under SVD, given sufficient precision in actuator displace-

ments. From our simulations, compared to SALT, the algorithm execution

time increases by a factor of approximately 40 for TMT and approximately

140 for E-ELT. Indeed, considering the computation of actuator positions

from relative heights, compared to SALT where the average computation

time is around 0.0673 millisecond, we obtain an average computation time

of 2.6755 milliseconds for TMT and 9.1657 milliseconds for E-ELT. This re-

mains small in comparison to actuator response time. However, we have not

investigated precisions required of edge sensors and actuator drive motors

for these mirrors. On TMT, the proposed radius of curvature is 90 metres,

and assuming the acceptable tip/tilts of SALT mirror, we estimate by simple

geometry, that the acceptable tip/tilts on TMT must improve by one order
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of magnitude. In particular, edge sensors and drive motors should work with

precision better than 0.1 micron. If TMT and E-ELT fail to achieve this,

the control algorithm based on SVD will not work. In this case, gradient

flow method will be required for satisfactory image quality.
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