
CHAPTER 2  
 

LITERATURE SURVEY 
 

 

2.0 INTRODUCTION 

This chapter starts with a brief overview of the problem of missing data in 

developing countries. Then, the concepts of entropy, EM and ANN techniques are 

presented. 

 

2.1 MISSING DATA AND DEVELOPING COUNTRIES 

The existence of adequate, accurate and timely data is a vital element for 

supporting development planning, implementation and program monitoring 

(Sadowsky, 1989). In the area of water resources planning and management, 

complete data sets are required on many variables such as rainfall, streamflow, 

evapotranspiration and temperature, etc. Unfortunately, records of hydrological 

processes are usually short and often have missing observations (Feldman, 1972). 

The inadequacy of hydrological data; i.e. observation error, shortness of the 

sample size, etc can severely affect the reliability of the design (Akiri, 1972). 

Harmancioglu et al. (1999) stipulated that developed countries could sometime 

suffer from what he calls “data-rich but information-poor” networks. However, 

the problem of missing data becomes sometime even worse in developing 

countries or Third World.  

 

The existence of gaps might be attributed to a number of factors such as 

interruption of measurement because of equipment failure, effects of extreme 

natural phenomena such as hurricanes or landslides of human-included factors 

such as wars and civil unrest, mishandling of observed data by field personnel, or 

accidental loss of data files in the computer system (Elshorbagy et al., 2000a) and 

most of the old data for developing countries were lost due to an inexistent 

database storage (Medeiros, et al., 2002). In South Africa, for example, the 

overwhelming majority of gaps are caused by temporary absence of observers, the 
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cessation of measurement or absence of observations prior to the commencement 

of measurement (Makhuvha et al. 1997a, 1997b). In Bolivia, due to the limited 

financial resources, even a minimum national network could not be achieved 

according to the meteorological network density ration (Balek, 1972).  

 

Gaps are also due to the political instability, i.e. everlasting war in the Democratic 

Republic of Congo is only one case among others. In the context of the Zambezi 

basin, Balek (1972) pointed out that one of the basic problems is the collection of 

all existing data; the basin’s boundaries are not identical with political boundaries, 

thus precipitations are of short length (i.e. 7 years).  The author proposed that the 

non-uniformity of the observing periods have to be eliminated for the data to be 

used.  

 

Developing countries generally lagged in the use of new technologies to process 

their statistical data (Sadowsky, 1989). Yet the needs are just great; they need to 

achieve a viable statistical data processing capability if they are to provide, on a 

continuous and sustained basis, the essential statistical information needed for 

development planning and administration in their countries (Sadowsky, 1989). 

This author gives some special problems impeding development in statistical data 

processing and data banks for developing countries: physical infrastructure, 

human resources infrastructure, financial poverty, technology transfer assistance. 

For more details, the reader is referred to that author.  

 

In Brasilia, the information from the CERB institution came out from the water 

supply systems implanted by the referred institution: for most wells, waters were 

analyzed just once during the evaluation of the supply system implementation 

(Medeiros, et al., 2002). Another analysis from an identical system happens only 

if a requested repair is required by the same manager, due to the low frequency of 

analysis; not all sampling points have coordinates and many wells are abandoned 

with their water pumps being stolen (Medeiros, et al., 2002).  
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It is very rare from the literature survey to have a fixed range for the missing 

hydrological data proportion such that a data series can used. However, attempts 

were made in some cases and that depends on the case at hand. Deficiencies in 

hydrological data series vary from 5 % to 10 % in the case of runoff data and up 

to 25 % in the case of oceanic storm surges (Panu et al., 2000). However, Gyau-

Boakye (1994) mentioned that the daily runoff records (in Ghana) considered for 

the Nabogo basin and the Ayensu basin (from 1962 to 1980) and for the Tano 

basin (from 1962 to 1980) contained respectively 9.04%, 8.30% and 13. 94% of 

missing data. These missing data were assumed randomly distributed over the 

entire record ranging from one day to a year.  This assumption was also made by 

Makhuvha (1997a, 1997b), on a case study for rainfall patching in South Africa. 

Zucchini et al. (1984), in his study for rainfall patching in South Africa, pointed 

out that so long as the number of estimated values is small relative to the length of 

the target record the bias in the estimated values will be negligible, but this is not 

the case if a large proportion of values is estimated. Thus, it becomes difficult to 

determine what proportion of missing values alternative methods should be used 

because this depends on a number of factors such as the multiple-correlation 

between the selected control records and the target record.  

 

Zucchini et, al.(1984) gave a very rough rule: no more than 25 % of the target 

rainfall record should be estimated using the regression methods (that he 

proposed), unless the multiple correlation is greater than about 0.90 in which case 

the target record can be extended without introducing much bias. Midgley et al., 

(1994) gave a report which contained the revised of appraisal of the surface water 

of South Africa where for example the proportion of monthly rainfall patched for 

stations used in drainage “D”and “F” varies from 0.6 % to 65.2%. It should be 

noted that 69 years usable for 65.2 % (Rondawel station) data patched and 25 

years usable for 0.6% patched (Bundu station). Ilunga (2002a) used rainfall data 

whose proportion of missing was in the range between 1.68 % and 46.21 %, for 

the intervening catchments between Mtera reservoir and Kidatu reservoir (in the 

Rufiji of Tanzania). Makhuvha (1997b) compared EM and PEM (that he called 

Pseudo-EM) by conducting a Monte Carlo simulation where various proportions 
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of one site data (rainfall) were hidden purposely; these proportions of artificial 

missing data varied from 10 to 20 %. Ilunga and Stephenson (2002b) used 20 % 

of artificial missing data at a potential target station (of the Orange River system) 

for assessing hydrological data infilling techniques using entropy approach.    

 

Most hydrological models do not tolerate missing observations and thus, data 

interpolation (infilling) techniques have evolved to deal with incomplete data sets. 

The problem of missing data estimation in hydrology has been treated by several 

authors among others Elshorbagy et al. (2000a, 2000b); Panu et al. (2000), 

Elshorbagy et al. (2001), Gyau-Boakye (1994), Hirsch (1979, 1982). The only 

work for which the methodology was tested specifically on developing countries 

is Gyau-Boakye’s (1994). The present study develops merely a methodology 

based mainly on three concepts reputedly known as dealing with missing data viz; 

Entropy, ANNs and EM. The methodology was tested on selected catchments in 

South Africa.  

 

2.2 HYDROLOGICAL INFORMATION 

2.2.1 Value of information in hydrology 

2.2.1.1 Types of data 

Information as the usefulness of data is more important in any discipline. 

Yevyevich (1972) gives different types of data: (a) historic data or chronological 

data, or observations of processes in time; (b) the field data observations along 

lines, or observations hydrologic phenomena across areas or space; (c) the third is 

laboratory and field experimental data related to hydrology acquired by methods 

similar to data obtained in hydraulic and (d) the fourth type is the simultaneous 

measurements of two or more random variables in order to establish a relationship 

among these variables, mainly for the purpose of transferring statistical 

information among variables.  

 

A distinction is often useful and necessary between a true, virgin and observed 

value of any hydrologic variable; the true value of any observation is never known 

because of the data obtained, through inevitable errors in observation, are not 
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exact values. Hence, streamflow processes are considered to be stochastic process 

because of the natural, or inherent, randomness apparent in the observed 

streamflow traces (Vicens et al., 1975). The virgin value is the value produced by 

unchanged conditions of an environment; data are or either unpredictable natural 

or man-made significant changes in hydrologic environments. The observed value 

is available as the result of various surveys, recordings, or experiments; this value 

is usually published hydrologic services. For example precipitation is normally 

the most variable hydrological element over a territory, and its characterization is 

most commonly needed for water balance studies and for floods forecasting 

(Rodriguez-Itube and Meija, 1974). 

 

2.2.1.2 Levels of information 

There is always an amount of uncertainty associated with data that engineers and 

planners have to use for water resources problems and it is this uncertainty that 

causes the questions of how much information is enough and what kind of data 

one needs deal within real-life problems. The answer will always depend on the 

particular objectives that are being pursued, and this why is it is so difficult to 

provide for example guidelines for the design of data collection programs 

(Rodriguez-Itube and Meija, 1974).  

 

The U.S. Office of Water Data Coordination has defined three levels of 

information concerning the network design (Rodriguez-Itube and Meija, 1974). 

The level 1 is to provide a base level of information for wide regional or national 

planning to be used for resource inventory and as background information for the 

design of more intensive and specific network systems. The level 2 concerns 

networks called to provide general water resources planning data, and level 3 is 

restricted to data collection programs for specific planning and managing 

activities. Levels 1 and 2 are called to provide regional estimation type of data. 

The level of information, on the other hand is connected with accurate data of 

local as well as a regional nature, which are gathered and analyzed for use of with 

a specific system design. 
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Klemes (1977) examined the value of information in optimization of storage 

reservoir operation (e.g. search for optimal release rules). In this context, it should 

be noted that the term “information level” as used implies both the adoption of a 

set of assumptions about the structure of the input (annual flows) process and the 

availability of a set of sample of certain number of processed parameters. For 

example in level 1, the input, which is supposed to comprise the complete of 

hydrologic information is being considered stationary, ergotic and purely random 

process having finite mean and variance. Nothing is made about the marginal type 

of its distribution. In level 2, the input is defined as in level 1, but its distribution 

is assumed to be normal; thus a wrong distribution is being used and fitted by 

method of moments. The available information is given in terms of the mean and 

the variance. In level 3, the input is defined as in level 2, but its marginal 

distribution is assumed to be lognormal. In this case, this distribution was shown 

to be the correct one and is fitted with the aid of the normal model applied to the 

log transformed of input variable. However, in the absence of information about 

distribution of floods and the economic losses associated with the design of flood 

reduction measures, it could be shown that the use of normal distribution to 

represent the distribution of floods was generally better than either: Gumbel, log-

normal or Weibull distribution (Slack et al., 1975).      

 

2.2.2 Information measures of hydrological variables 

2.2.2.1 Traditional statistical methods 

The term “traditional” is only used here to make a difference between the usual 

or current statistical methods and the entropy concept. 

 

Traditionally, the hydrological variable information content (e.g. rainfall, 

streamflow, etc.) is mostly measured by the variance; the higher the variance the 

greater the measurement error of the variable. The variance of a given set of data 

gives a measure of the variability of the data with respect to the mean (Yevjevich, 

1972); for example more gauging stations will be needed (Krstanovic and Singh, 

1992a).  
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Harmancioglu, et al. (1994) and Krstanovic and Singh (1992a) used the term 

current techniques to mean traditional statistical methods. As an example, in the 

analysis of empirical data, the variance has been often interpreted as measure of 

uncertainty and as revealing gain or loss of information (Singh, 1998c). 

 

Another measure of information is the cross-correlation, amongst records (e.g. 

rainfall) at nearby sites (Krstanovic and Singh, 1992a; Chow, 1964). At this stage, 

the cross-covariance matrix helps generally examine the space dependency 

between hydrological variables while the auto-covariance matrix will therefore 

determine the time dependency (Krstanovic and Singh, 1992b).      

 

Generally the majority of the current techniques is based on the classic correlation 

and regression theory, which basically constitutes a means of transferring 

information in space and time (Krstanovic and Singh, 1992a; Yevjevich, 1972; 

Harmancioglu and Yevjevich, 1987). The use of regression theory in transfer of 

information has some justification; however, regression approaches transfer of 

information on the basis of certain assumptions regarding the distributions of 

variables and the form of the transfer function such as linearity and non-linearity 

(Harmanciogu, et al. 1994). Thus, how much information is transferred by 

regression under specific assumptions has to be evaluated with respect to the 

amount of information that is actually transferable. On may refer to Harmancioglu 

et al. (1987) for the definition of terms “transferred information” and “transferable 

information”. The correlation coefficient cannot take care of arbitrarily relation 

between coordinates and classes (Battiti, 1994).  

 

The traditional methods suffer also where information is insufficient (missing 

data), e.g. case of most developing countries. For example, the variance is not the 

appropriate measure of uncertainty (information content) if the sample size is 

small (Singh, 1998c). Some time both control and target stations are chosen 

arbitrarily in the regression analysis (French et al., 1992). The major difficult 

associated with these current methods (e.g. in network design) is related to the 

lack of precise definition for information. They either do not give a precise 
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definition of how information is measured, or they try to express it intuitively in 

terms of other statistical parameters like standard error or variance. Although 

current methods stress the distinction between data and information, a direct link 

between them has not yet been established (Harmancioglu et al., 1994).  

 

Harmancioglu et al. (1994) summarizes the shortcomings of the current 

(traditional) methods within the context of water quality network design 

(nonetheless, this can extended to other fields): (a) a precise definition of 

“information” contained in the data and how it is measured is not given; (b) the 

value of data is not precisely defined, and consequently; existing networks are not 

“optimal” either in terms of information contained in these data or in terms of 

getting the data; (c) the method of information transfer in space and time is 

restrictive; (d) cost–effectiveness is not emphasized in certain aspect of 

monitoring; (e) the flexibility of the network in responding to new monitoring 

objectives and conditions is not measured and not generally considered in the 

evaluation of existing or proposed networks.  

 

Since 70’s hydrologists tried to find another way of applying theoretic 

information (entropy concept) as information measure, which was used to 

alleviate many of the above shortcomings of the existing network design methods. 

The entropy concept was applied to many disciplines such as water quality 

modeling (Singh, 1998a), in rainfall network design (Krstanovic and Singh, 1992 

a and 1992b), in river flow network design (Yang and Burn, 1994), in water 

quality monitoring design (Harmancioglu et al.1994, 1999). The entropy concept 

was then applied to many other fields, among others; water resources (Singh and 

Florentino, 1992; Amorocho and Espildora, 1973), in sediment yield calculation 

(Singh and Krstanovic, 1987), in flood frequency analysis (Singh, 1988; Sonuga, 

1972 and 1976; Jowitt, 1979), in streamflow forecasting (Krstanovic and Singh, 

1991), in hydraulics (Chiu, 1987), in groundwater resources management and 

planning in developing countries (Mogheir and Singh 2002), in environmental and 

water resources (Singh, 1998c), etc.  
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2.2.2.2 Entropy concepts 

2.2.2.2.1 Preamble 

Entropy originated from physics. In 1872, Boltzman defined entropy as a measure 

of the degree of ignorance as to the true state of a thermodynamic system. Thus, 

he defined entropy a mathematical quantity sometimes described as disorder. 

Since the pioneering work of Shannon and Weaver (1949), much attention has 

been focused on the use of entropy and energy dissipation rate relationships in 

environmental and water resources engineering. Entropy can be also considered as 

a measure of the degree of uncertainty or disorder associated with a system. These 

features have been mathematically formulated in the theory of entropy by 

Shannon and Weaver (1949) and the principle of maximum entropy (POME) by 

Jaynes in 1957. This is also repeated in Jaynes (1982). Since then, entropy 

concepts could find a wide range of application in hydrology and water resources 

as mentioned in the previous section. 

 

Engineering decisions are made frequently with less than perfect information. 

Such decisions may often be based on experience, professional judgment, rules of 

thumb, safety factors or probabilistic methods. Although probabilistic methods 

allow for more explicit and quantitative accounting of uncertainty, their major 

difficulty stems from the availability of limited data. The entropy concept enables 

determination of the least biased probability distributions with limited data. Singh 

(1998c) recommended the application of entropy to developing countries as they 

suffer very often from insufficient data. The entropy concept does not assume the 

variables to be normal unlike in the classic correlation coefficient (Chapman, 

1985). 

 

Generally, entropy can be viewed in three different but related contents and is 

hence typified by three forms: Thermo-dynamical entropy, statistical-mechanical 

entropy, and information-theoretic entropy. In water resources (hydrology), the 

most frequently used form is the information theoretic entropy by Shannon and 

Weaver (1949); thus it has got a great appeal in this field. Singh and Florentino 
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(1992) established an analogy between the hydrologic system and the 

thermodynamic system. 

 

2.2.2.2.2. Formulation of entropy in hydrology 

According to the entropy concept as defined in communication (or information) 

theory, the term “information content “ refers to the capability of signals to create 

communication. The problem is the generation of correct communication by 

sending a sufficient amount of signals, leading neither to any loss nor to repetition 

of information. Application of engineering principles to the problem of data 

collection calls for a minimum number of signals to be received to obtain the 

maximum amount of information. Redundant information does not help, reduce 

the uncertainty further; it only increases the costs of obtaining data. In the case of 

redundant information for example an existing monitoring network should be 

reduced and in the case of shortage of information, the existing network should be 

expanded (Mogheir and Singh, 2002). These considerations represent the essence 

of the field of communications and therefore hold equally true for hydrologic data 

sampling, which is essentially communicating with the natural system. Since the 

reduction of the uncertainty by means of making observations is equal to the 

amount of information gained, the entropy criterion indirectly measures the 

information content of a given series of data (Harmancioglu and Yevjevich, 

1987).  

 

The early works of theoritic entropy in hydrology dated around 1970’s (Sonuga 

1972,1976; Amorocho and Espildora, 1973).  

 

In information theory, the definition of entropy can be traced in the following 

argument (Shannon and Weaver, 1949). It is in fact the theoretic entropy. Imagine 

in fact the outcome of a process with N equally probable outcomes is known to all 

but a single person. The number of binary questions (i.e. question with yes or no) 

that need to be asked from the person in the know to ascertain the true outcome is 

given by: 
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( )NI 1log2−=                                                                                                 (2.1) 

 

Where N
1 : is the probability of positive identification after a single question 

when all outcomes are equally likely; I: is the minimum amount of information 

needed to obtain a positive identification of the outcome.  

 

In general, whether or not all the outcomes are equally likely, the information 

needed, now called entropy is defined as the expectation of I, e.g.  or: { }IE

 

( ) { } i

n

i
i ppIEXH 2

1
log∑

=

−==                                                                      (2.2) 

 

Where equation (2.2) is the discrete form of the entropy for a random variable x; i 

= 1, 2, 3,…, N;  is the probability of occurrence of the event i.  ip

 

Intuitively, the larger the amount of information required identifying the outcome, 

the greater a prior uncertainty of this outcome. Thus, a series of observations of an 

uncertain event contains more information about the event itself than that of a less 

uncertain event does. Hence, entropy is an indication of uncertainty represented 

by the probability distribution. Expression (2.3) can be written as    

 

( ) i

n

i
i ppKXH 2

1

log∑
=

−=                                                                                 (2.3) 

 

where K: is a function of the base used or the scale factor (bits for base 2, napiers 

for base e, decibels for base 10). So, this definition holds only numbers of 

outcomes, which are countable and equal to some integer.  

 

Considered as a measure of the amount of chaos or lack of information about a 

system, if complete information is available, i.e. if there is a pure state, the 

entropy is zero. Otherwise it is greater than zero.  The entropy can be viewed as a 
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measure of ignorance about the system described in classical sense by a 

probability distribution. Indirectly, it measures the information about the system. 

Hence a scalar is assigned to a probability distribution.  

 

It can be shown that the value of ( )XH  is maximum when all variate values  

are equally likely, that is, when the outcome has maximum uncertainty. In this 

case the entropy becomes 

ix

 

( ) NXH logmax =                                                                                            (2.4) 

 

The ratio of the actual (marginal entropy) to the maximum entropy is called the 

relative entropy to the source. The more the uncertain the outcome is, the closer 

the relative entropy is to unity. 

 

One minus the relative entropy is the redundancy. This is the fraction of the 

structure of the message; which is determined not by the free choice of the sender 

(station), but rather than by the accepted statistical rules governing the use of the 

symbols in question (Shannon and Weaver, 1949). It is sensibly called 

redundancy, for this fraction of message is in fact redundant in something close to 

the ordinary sense; that is to say, this fraction of the message is unnecessary (and 

hence repetitive or redundant) in the sense that if it were missing, the message 

would still be essentially complete, or at least could be complete.      

 

Given two random hydrological variables X and Y the joint entropy of X and Y in 

the discrete form is given by (note that the marginal entropy of Y is ): )(YH

 

( ) ( ) ( )yxp
yxpYXH

N

i

M

j ,
1log,,

1 1
∑∑
= =

=                                                                  (2.5) 

 

where  is the joint probability of x and y. ( yxp , )
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Equation (2.5) represents the common uncertainty of their measured records X 

and Y.  can be interpreted as the information about the statistic at site X 

and  is the information about the statistic at site Y. 

)(XH

)(YH

 

The conditional entropy of X given Y can be regarded as the uncertainty of X 

given Y or the loss of information and it is expressed by: 

 

( ) ( ) ( yxpyxpYXH
N

i

M

j
/log,/

1 1
∑∑
= =

−= )

)

                                                            (2.6) 

 

where  is the conditional probability of x given y. ( yxp /

 

For two discrete random variables X, Y, the following expression defines then the 

amount of transferred information from X to Y; which is represented by the 

mutual information or the transinformation given by the following equation 

 

( ) ( ) ( YXHXHYXT /, −= )                                                                            (2.7) 

 

Equation (2.7) can be viewed as the reduction in uncertainty of X, i.e. , due 

to the knowledge of Y or the information inferred by X about Y (Amorocho and 

Espildora, 1973). The transinformation is another entropy measure that measures 

the redundant information between X and Y (Ozkul et al., 2000). 

)(XH

 

The minimum transinformation has been used as a criterion in the networking 

design and evaluation, e.g. in rainfall network design (Krstanovic and Singh, 

1992a, 1992b; Al-Zahrani and Hussein, 1998), in river flow network design (Yang 

and Burn, 1994), in water quality monitoring design (Harmancioglu et al.1994); 

groundwater design (Mogheir and Singh, 2002). 

 

For a multivariate records (e.g. rainfall / river flow), the multi-dimensional joint 

entropy for n gauging stations in a region represents the common uncertainty of 
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their measured records. For more details the reader is referred to Krstanovic and 

Singh (1992a, 1992b).   

 

The continuous form of entropy is mostly used in formal analysis while in actual 

numerical sense; the discrete form should be used. However, the latter form 

implies a much more complex calculation than the former one (Singh, 1998b; 

Amorocho and Espildora, 1973). The selection of the interval size for estimating a 

discrete bivariate distribution seems to be arbitrary. This can lead to different 

values of entropy. Amorocho and Espildora (1973) showed that both continuous 

form and discrete form could lead approximately to the same answer for entropy 

and thus, they recommended the continuous form for formal analysis since its 

computation is straightforward and lesser demanding.  

 

For a continuous random variable X, equation (2.2) or the Shannon entropy 

becomes: 

 

( ) ( ) ( )∫−=
b

a
dxxfxfXH log                                                                             (2.8) 

 

Under the following normality condition 

 

( )∫ =
b

a
dxxf 1                                                                                                   (2.9) 

 

where  is the probability distribution function of the random variable and 

 is the marginal entropy of the random variable which describes the 

information contained in x. 

( )xf

( )xH

  

In the context of hydrology, the random variable can be streamflow, rainfall, etc… 

The conditional entropy of X given Y in a continuous form becomes 

 

( ) ( ) ( ) ( ) ( ) ( )[ ]dxdyyxfyxfxfdyyXHyfYXH /log/// ∫ ∫∫
+∞

∞−

+∞

∞−

+∞

∞−
−==  
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                                                                                                                     (2.10) 

 

where  is the conditional probability density of x given y; and ( yxf / ) ( )xf ( )yf  

are the marginal probability density of x and y respectively.  

 

It follows that: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]dxdyyxfyxfxfdxxfxfYXT /log*/log, ∫ ∫∫
+∞

∞−

+∞

∞−

+∞

∞−
+−=  

                                                                                                                     (2.11) 

 

Equation (2.11) can be written as:  

 

( ) ( ) ( )
( ) ( )dxdy

yfxf
yxfyxfYXT ,log,, ∫ ∫

∞+

∞−

∞+

∞−
=                                                 (2.12) 

 

where is the joint probability distribution of x and y. ),( yxf

 

For continuous multivariate distributions, the reader can be referred to Krstanovic 

and Singh (1992a). 

  

Yang and Burn (1994) showed that equation (2.8) measures the relative 

information with  serving as the datum when x∆− log x∆  approaches zero (e.g. 

range of X is divided into N intervals of width x∆ ). As a measure of relative 

information,  can be positive, zero or negative and therefore the 

information lost, can be also negative, zero or negative. Therefore the information 

lost  (or ) can be also positive, zero or negative since it is a part of 

the information  and bounded from above by . But negative 

information or negative entropy lost has no physical meanings although both 

cases are mathematically possible. This difficulty arises from the use of the 

relative coordinate for which the origin is set at 

)(XH

)/( YXH lostH

)(XH )(XH

x∆− log . If H and  are 

considered in absolute coordinate in which, the origin is set at minus infinity, then 

lostH
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both  and  are no longer negative and regain their normal physical 

meanings.  

)(XH )/( YXH

 

The mutual information T is symmetric, i.e. ),(),( XYTYXT = . If the two 

stations are statistically independent of each other so that no information is 

mutually transmitted, then 0),( =YXT . When the two stations are functionally 

dependent, the information at one site can be fully transmitted to another site with 

no loss at all. Subsequently )(),( XHYXT = . In case where  

is the two stations are between totally independent and fully dependent. Thus 

 is a measure of dependency between stations and  is seen to be the 

upper limit for . Note that great values of  correspond to great 

amounts of information transmitted from X to Y.  

( ) (XHYXT ≤≤ ,0 )

),( YXT )(XH

),( YXT ),( YXT

 

),( YXT  does not assume variables to be normal like in the classic correlation 

coefficient (Harmanciouglu and Yevjevich, 1987) and it does not depend on 

coordinates (Yang and Burn, 1994). The correlation coefficient cannot take care 

of arbitrarily relation between coordinates and classes while the mutual 

information does (Battiti, 1994). It should be noted that the entropy concept does 

not provide any means to transfer information but it can only measure whether all 

the transferable information is transferred via a model (e.g. regression, etc.). 

  

The concept of T although indicating the dependency of two stations has been 

criticized by Yang and Burn (1994) as being not good index of the dependency 

since its upper bound varies from site to site. In the following section, the original 

definition of mutual information is improved.  

 

2.2.2.2.3 Directional information transfer index (DIT) 

The directional information transfer index was introduced because of the above 

criticism about transinformation. In order to normalize the upper bound of the 

mutual information, the original definition of mutual information has been altered 

to a directional information transfer index (Yang and Burn, 1994). The DIT notion 
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was initially defined for streamflow network design. The directional information 

transfer index (DIT) is given by 

 

( ) HHHH
TDIT lost /−==  

                                                                                                (2.13) HH lost /1−=

 

DIT  is physically the fraction of information transferred from one site to another. 

As , thus DIT will range from zero to unity whenHH lost ≤ HT ≤≤0 . 

0=DIT  when no information is transmitted (i.e. independent situation). 

1=DIT  corresponds to the case where a fully dependent situation with no 

information is lost. 

10 pp DIT   is a situation between independent and fully dependent.  

If  is the fractional information inferred by station X about Y and if  

the fractional information inferred by station Y and X, thus  is not 

necessarily equal to  since 

xyDIT yxDIT

xyDIT

yxDIT ( )XH
TDITxy =  for station X will not be in 

general equal to )(YH
TDITyx = .  

 

A direct application of DIT  is the regionalization of the network. Two related 

stations should be arranged in the same group since the hydrometric event patterns 

represented by then are strongly dependent and consequently information can be 

mutually inferred between them. Thus  and  should be high. If neither xyDIT yxDIT

DIT  is high, then the 2 stations should remain in separate groups. If only DIT  

(say ) is high, then the station Y, whose information can be predicted by X, 

can join station X if station Y does not belong to any another group; otherwise it 

stays in its own group. The 

xyDIT

DIT  is based on the stations essential connection, and 

is thus distinguished from the traditional similarities measures, such as the 

correlation coefficient (Yang and Burn, 1994). In traditional methods, the 

connections between the stations are quantified by similarities, which may be 

based on one of numerous measures of associations.  
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2.2.2.2.4 Principle of maximum entropy (POME)   

Janes, for the first time in 1957, formulated the principle of maximum entropy 

(POME). Later, this principle was widely used in hydrology and water resources, 

e.g. Amorocho and Espildora (1973); Sonuga (1972, 1976); Chapman (1985), etc.  

 

According to the POME, as quoted by Singh (1998a); when making inferences 

based on incomplete information, the probability distribution to be drawn must 

have the maximum entropy permitted by the available information expressed in 

the form of constraints. In other words, this distribution results in minimally 

prejudiced assignment of probabilities on the basis of given information.  

 

The POME-based distribution is favored over those with less entropy among 

those, which satisfy experimentally given constraints called “testable 

information”. Thus, entropy defines a kind of measure on the space of probability 

distributions. Intuitively, distributions of higher entropy represents more disorder, 

are smoother, are more probable, are less predictable, or assume less. So the 

POME-base distribution is maximally non-committal with regard to missing 

information and does not require invocation of ergodic hypotheses. According to 

POME, the probabilities should be assigned by maximizing the entropy function. 

 

Mathematically the POME is expressed through the following: 

 

Maximize                            (2.14) ( ) ( ) ( )∫−=
b

a
dxxfxfXH log

 
under the m linearly independent constraints sCi '  
 

( )∫=
b

a ii dxxfxyC )(  , i = 1, 2,…,m.                                       (2.15) 

 
and the normality condition 
 

( )∫ ==
b

a
dxxfC 10                                                               (2.16) 
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Where  are some functions whose average over  is specified. iy )(xf

Then, it can be shown that the maximum of  subject to the conditions in 

equation (2.15) and (2.16) is given by the distribution: 

)(XH

 

))(exp()(
1

0 xyxf i

m

i
i∑

=

−−= λλ                    (2.17) 

 
where si 'λ  are the Lagrange multipliers and can be determined from (2.13) to 

(2.17) with the normality condition. 

 

Indeed, most frequency distributions produced in real experiments are maximum 

distributions (Singh, 1998a). In other words, these distributions are the least 

biased. Singh and Fiorentino (1992) showed that the distribution derived by 

maximization of entropy, is the one that maximizes the likelihood, that is, a 

relationship between the Shannon entropy and the maximum likelihood. When a 

POME-based distribution departs statistically significantly from an experimental 

one, it provides a conclusive evidence of the existence of new constraints that 

were not taken into account in the calculation.  

 

The strength of POME is that this principle provides the most efficient procedure 

by which, if unknown constraints exist, they can be discovered (Singh, 1998a).  

 

The POME-based approach has several advantages (Singh and Fiorentino, 1992): 

(1) It requires little data or information 

(2) Availabity of information can be expressed in a variety of different ways 

(information may be available in terms of moments, bounds, points value, mean, 

variance, probability, etc). 

(3) The derived distribution is most unbiased and consistent with the available 

information. 

 

Using the POME, Shannon and Weaver (1949) and Singh (1998b) derived a 

univariate normal distribution under specific conditions. Singh and Kristanovic 

(1987) used the POME to derive a bivariate normal distribution.  
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John and Rodney (1980) derived an axiomatic derivation of the principle of 

maximum entropy and the principle of minimum cross entropy; however the two 

principles were shown to be equivalent. This was confirmed by Singh (1998a). 

 

Since entropy is a measure of uncertainty or chaos, and variance is a measure of 

variability, the connection between them is of interest. In general, an explicit 

relation between entropy and variance does not exist but does exist in the case of 

specific distributions (Singh, 1998a). For example, using the principle of POME, 

when the standard deviation and mean of a random variable X are supposed to be 

known, it can be shown that (Shannon and Weaver, 1949; Singh, 1998a, 1998b): 

 

[ ]5.0)2(ln)( esXH x π=                                                   (2.18) 

 

where  is the standard deviation of the hydrological variable X computed from 

the available data. Thus the entropy can be seen as another measure of dispersion-

an alternative to variance and this suggests that it is possible to determine the 

variance whenever it is possible to determine the entropy measures, but the 

reverse is not necessarily true (Singh, 1998c).   

xs

 

Under the assumption that if the marginal distributions of X and Y are normal, 

and if their joint distribution is normal too, hence, using the POME, it can be 

shown that (Amorocho and Espildora, 1973)  

 
2121)2log(),( Σ= πYXH                           (2.19) 

 

[ ]{ }212 )1(2ln)/( ReYXH x −= πσ                  (2.20) 

 

)1ln(
2
1),( 2RYXT −−=                  (2.21) 
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Where R  is the correlation coefficient of the gauge X  with Y . 

Σ  is the determinant of the covariance matrix and xσ  is the variance of the 

random variable x. The essential condition for existence of the entropy is the 

positive-definiteness of the covariance matrix (cross correlation matrix).   

 

In a multivariate case (Kristanovic and Singh, 1992b), expression (2.29) can be 

written as 

 

)1ln(
2
1)),,...,,(( 2

121 RXXXXT Nn −−=−                                                     (2.22) 

 

where R  is the multiple correlation between the independent variables 

 and the dependent variable . 121 ,...,, −nXXX nX

 

Formulas (2.18)-(2.22) can be applied to any distribution, which can be 

normalized (Chapman, 1985). 

 

Ahmed and Gokhale (1989) gave the entropy calculations for multivariate 

distributions other than the multivariate normal distribution.  

 

2.2.2.2.5 Prior distributions for entropy calculations  

A number of frequency distributions, commonly employed in hydrology, have 

been using the POME-based methodology. Sonuga (1972) was probably the first 

to use POME in hydrologic frequency analysis; he essentially derived a normal 

distribution. Jowitt (1979) analyzed the extreme-value type I distribution. 

Examples demonstrating application of POME to the gamma, Pearson-type III, 

lognormal, and the log-Pearson type III distributions are described by Singh 

(1998b). Krstanovic and Singh (1992a) extended the POME –based method to 

multivariate distributions. 

 

Most of the studies on rainfall network design and on river flow network design 

made use of a prior (assumed) distribution (e.g. normal, log-normal) to fit the 
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hydrological data in the calculation of entropy (Amorocho and Espildora, 1973; 

Chapman; 1985; Harmancioglu and Yevjevich, 1987, Yang and Burn, 1994). 

Normally a variety of distributions should be in general tried and the most likely 

adopted by applying decision theory techniques (Amorocho and Espildora, 1973). 

 

Chapman (1986) showed that the lognormal distribution was better (than the 

gamma distribution) to fit the data and was subsequently used for entropy 

calculation.  Singh and Krstanovic (1987) assumed a bivariate normal distribution 

in the derivation of a stochastic model sediment yield using the POME. In entropy 

calculations for univariate (bivariate and multivariate) cases, it is simpler to use 

univariate and multivariate normal distributions than other distributions such as 

gamma, Pearson type or Weibull. The normal distributions are known because of 

the complexity involved in application of entropy with other distributions 

(Krstanovic and Singh, 1992a). Yang and Burn (1994) criticized the normality 

assumption (for entropy calculation) in their formulation of the non-parametric 

estimation of probability density function. Although their criticism; they used the 

logarithmic transformation of the data in that formulation and they also used a 

gaussian normal kernel. So Yang and Burn (1994) recognized that normal and 

lognormal distributions could be used for entropy computation in the multivariate 

case because the description of multivariate probability density functions for other 

skewed density functions is very difficult.  

 

The normal distributions are known as the most important widely used continuous 

probability distributions because of their early connections with the “theory of 

errors”. Thus, many statistical techniques such as analysis of variance and test of 

certain hypotheses rely on the assumption of normality (Haan, 1977). In a strict 

sense, most hydrological variables cannot be normally distributed (Yevijevich, 

1972). If the normality is not a viable assumption and if one ignores the normality 

check and proceeds as if the data were normally distributed, this could lead to 

incorrect conclusions (Johnson and Winchern, 1996). It should be noted that many 

continuous distributions could be approximated by the normal distribution for 

certain values of the parameters (Haan, 1977). Slack et al. (1975) showed that 
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when the information about the distribution of floods and economics losses 

associated with the design of floods retardation structures was lacking, it was 

better to use the normal distribution than other distributions such as Extreme 

Value, Weilbull, etc…  

 

In addition, for random variables that have characteristically skewed distributions, 

the lognormal distributions could be used (Yevjevich, 1972; Yang and Burn, 

1994). Because of its simplicity, readily available tables for evaluation and the 

fact that many hydrologic variables are bounded by zero on the left and positively 

skewed, the lognormal distribution has received wide usage in hydrology (Haan, 

1977; Feldman, 1972, Amorocho and Espildora, 1973; Yang and Burn, 1994, 

Alley and Burn, 1983).  

 

Because of the simplicity of multivariate normal distribution for the computation 

of entropy, Krstanovic and Singh (1992a) applied the Box-Cox transformation to 

rainfall data to follow approximately a multivariate normal distribution. The Box-

Cox transformation family is mostly used for normality and is equivalent to the 

family of power transformations (Weisberg, 2001; Krzanowsky and Marriott, 

1994; Mason et al., 1989; Johnson and Wichern, 1996). 

Power transformations are defined only for positive values. However, this is not 

as restrictive as it seems, because a single constant can be added to each 

observation in the data set if some of the variables are negative (Johnson and 

Wichern, 1996).   

 

The following is a Box-Cox family of transformation: 

 

(i)                  (2.23) 
⎩
⎨
⎧

=
≠−

=
0ln

0/)1(
λ

λλλ

ifx
ifx

y

 

where λ  is the transformation parameter and x should be strictly positive 

numbers; x represents the data before transformation.  
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This family of transformation is includes the important special cases of 

untransformed, inverse, logarithmic, and square and cubic root. 

(Weisberg, 2001).  

 

Given the observations  from a univariate process, the Box-Cox 

solution for the choice of an appropriate power 

nxxx ,...,, 21

λ  is the one, which maximizes the 

following expression of the maximum likelihood (ML) 
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Generally in hydrological studies, whatever the transformations of the variable, it 

has to be reminded that the principles of and assumptions regarding parameter 

estimation method (e.g. Least Squares, etc) apply to the transformed model, not to 

the original model (Haan, 1977). The method of analysis can be applied to the 

transformed data and, if appropriate, the results can be transformed back so that 

conclusions are presented in relation to the original units of measurement 

(Krstanowsky and Marriot, 1994). In other words, if inappropriate, the results 

cannot get transformed back and conclusions can be drawn on the transformed 

variables. McCuen et al. (1990) pointed out the following: for the logarithmic 

transformation (where appropriate), the correlation coefficient reflects the 

accuracy of the unbiased log space; not the accuracy of the original data; 

otherwise the results become biased. Thus, the logarithmically derived parameters 

are not necessarily unbiased estimators (McCuen et al., 1990). 
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Many other authors drew conclusions in term of parameter estimation (model 

efficiency) with regard to the transformed variables (Chapman, 1985; Hirsch, 

1979, Hirsch 1982, Amorocho and Espildora, 1973; Krstanovit and Singh 1992 b; 

Singh and Krstanovit, 1987; Kilmartin and Peterson, 1972; Yang and Burn, 1994; 

Harmacioglu and Yevjevich, 1987).  Attempts (to reduce the bias for example in 

the log transformation) were made and analytical solutions were then proposed 

(Zucchini et al., 1984; Yevjevich; 1972). However, the analytical solution could 

lead sometimes to unsatisfactory results (McCuen, 1990). For correcting sensibly 

the bias, a numerical method was also proposed in the case of a power model 

(original model); which leads to a log transformation through linearization 

(McCuen et al., 1990).  

 

In some applications of ANN to water resources, conclusions could be drawn on 

the transformed variables from the model parameters obtained after 

transformation, e.g. scaling or standardization of variables (Minns and Hall, 1996; 

Deo and Thirumalaiah, 2000; Thirumalaiah and Deo, 2000; Shin and Salas, 2000, 

Abrahart et al., 1999). It is strongly believed that these authors thought in terms of 

bias introduced when transforming back to the original data, though they did not 

state it clearly in they studies  

 

Generally, it is much easier to select appropriate transformations for the marginal 

distributions than for the joint distributions (Johnson and Wichern, 1996).  

 

Simple normality tests (for a univariate distribution) are based on the variance, 

mean, skewness, etc. (Yevjevich, 1972; Haan, 1977; Krzanowsky and Marriot, 

1994). However, the mostly used normality test for multivariate distributions is 

the plot of the Mahalannobis distance and the chi-squared distribution (Panu et al., 

2000; Johnson and Wichern, 1996). In the following, this test is briefly described. 

 

2.2.2.2.5.1 Normality test 

Before embarking an analysis that makes distributional assumptions about the 

data, it is prudent to check that those assumptions are reasonable for the data 
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under consideration. The majority of techniques to be described rely on the 

assumption of multivariate normality of data, so testing this assumption is often 

an important aspect of initial data analysis. Very many tests exist for assessing 

univariate normality of a sample of values on a single variable. One possible 

approach in multivariate situation would be to test the marginal normality of each 

variable separately, using one of these statistics, i.e., coefficient of skweness and 

kurtosis (Krzanowsky and Marriott, 1994). However, this approach would ignore 

the covariance between the variables in its execution. Also marginal normality of 

all variables does not ensure joint normality of the ensemble (Krzanowsky and 

Marriott, 1994); while in practical applications it may be good enough and easy to 

test the marginal normality (Richard and Wichern, 1996).  

 

2.2.2.2.5.1.1 Univariate distributions 

In the case of univariate, it is important to add that the Q-Q plots are not 

particularly informative unless the sample size is moderate too large (Johnson and 

Wichern, 1996). The straightness of the Q-Q plot can be measured by calculating 

the correlation coefficient of the points in the plot and a powerful test of normality 

based on it. Formally, the hypothesis of normality at a level of significance is 

rejected if the value of the computed correlation coefficient falls below the 

appropriate critical value.   

 

2.2.2.2.5.1.2 Multivariate distributions 

One would like to check on the assumption of normality for all the distributions of 

2, 3,…, p dimensions. However, as pointed out before, for practical applications it 

is usually sufficient to test the marginal normality. In the case of a multivariate 

normal distribution, each bivariate distribution would be normal and the contours 

of constant density would be ellipses (Johnson and Wichern, 1996). Thus, it is 

expected that the set of bivariate outcome x such that  

 

                                                                        (2.27) )5.0()()( 2
2

1 χµµ ≤−Σ− − xx
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has a probability 0.5. Thus, one should expect roughly the same percentage, 50% 

of ample observations to lie in the ellipse 

                    

                        all x such that )5.0()()( 2
2

1 χ≤−− − xxSxx  

 

where µ  has been replaced by its estimates x  and 1−Σ by its estimates . If not 

the normality assumption is suspect. 

1−S

 

Somewhat more formal method for judging the joint normality of a data set is 

based on th squared generalized distances or Mahalannobis distances. For more 

details the reader should be referred to Johnson and Wichern (1996)  

 

2.2.2.2.6 Limitations of entropy theory 

Despite the overwhelming advantages offered by the entropy theory, some 

limitations of the method must also be noted (Harmancioglu et al., 1994). The 

following limitations are done with much experience related to network design, 

however it can be extended to other cases. As the situation holds true for the 

majority of statistical techniques, a sound evaluation of network features by the 

entropy method requires the availability of reliable data. Applications with 

inadequate data often cause numerical difficulties and hence unreliable results.  

For example, when assessing spatial and temporal frequencies in the multivariate 

case, the major numerical difficulty is related to the proprieties of the covariance 

matrix and the determinant of the matrix is too small, entropy measures cannot be 

determined reliably since the matrix becomes ill-conditioned. This often occurs 

when the available sample size is very small. On the other hand, the question with 

respect to data availability is “how many data would be considered sufficient?” 

Particularly, it difficult to determine when a data record can be considered 

sufficient (Harmancioglu et al., 1994). The presence of gaps in data series puts 

limitations on entropy estimates particularly in the time domain such that 

temporal design cannot be realized after certain lags (Harmancioglu et al., 1999). 

The same difficulty extends to space/time design, which leads to unreliable 

results.  
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Another important point in entropy applications is that the method requires the 

assumption of a valid distribution-type. The major difficulty occurs here when 

different values of the entropy function are obtained for different probability 

distribution functions assumed for the same variable. On the other hand, the 

entropy method works quite well with multivariate normal and lognormal 

distributions. The mathematical definition of entropy is easily developed for other 

distributions in bivariate cases; however, the computational procedure becomes 

much more difficult when their multivariate distributions is considered. When 

such distributions are transformed to normal, the uncertainties in parameters need 

to be assessed. Shannon’ s basic definition of entropy is developed for a discrete 

random variable, and the extension of this definition to the continuous case entails 

the problems of selecting the discretizing class interval to approximate 

probabilities with class frequencies. Different measures of entropy vary with class 

intervals such that each selected class constitutes a different base level or scale for 

measuring uncertainty. Consequently, the same variable investigated assumes 

different values of entropy for each selected class interval. It may take even on 

negative values, which contradict the positivity property of the entropy function in 

theory. However, this problem can be alleviated by working in absolute 

coordinates where the origin is set to minus infinity (Yang and Burn, 1994).  

 

Despite these limitations, within the context of the development of a quantitative 

definition of information and the value of data, application of the concept of 

information in entropy theory has produced promising results in several 

disciplines (Harmancioglu et al., 1994; Singh, 1998c; Krstanovic and Singh, 1992 

a, 1992 b; Singh and Mogheir, 2002 and many others).         

 

2.2.2.2.7 Entropy and developing countries  

As emphasized before, one of the main problems plaguing environmental and 

water resources development in developing countries is the lack of data or lack of 

sufficient data.  
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Very often, the data is missing or incomplete or are not of good of good quality or 

the record is not of sufficient length. As a result, more often that not, it is the data 

that dictates the type of model to be used and not the availability of modeling 

technology (Singh, 1998c). Subjective information such as professional 

experience, judgment and thumb or empirical rules has played a significant role in 

hydrologic practices in many developing countries. Conventional models do not 

have the capability to accommodate such subjective information, although such 

information may be good quality or high value.  

 

The potential for application of the entropy theory is enormous in developing 

countries, for it maximizes the use of information contained in data however little 

it may be; it permits the use of subjective information and furthermore, it offers an 

objective avenue for drawing inferences as the model results (Singh, 1998a, 

1998c). Thus, in the face of a limited data, the entropy theory can result in a 

reliable solution of the problem at hand; in addition the entropy-based modeling is 

efficient requiring relatively little computational effort and versatile in its 

applicability across many disciplines (Singh, 1998a).    

 

2.3 EXISTING DATA INTERPOLATION (INFILLING) TECHNIQUES 

2.3.1 Preamble  

Generally, there are two basic problems in dealing hydrologic time series data. In 

the first case the time-series are of adequate time length but suffer from the 

presence of data gaps. Data interpolation (infilling), in this case, has been referred 

to as data augmentation. In the second case, the historic span of the data series is 

inadequate, and thus efforts are made to extend the historic time span to a desired 

one. This latter case of data infilling has commonly seen referred to as a data 

extension.  

 

Panu et al. (2000) recall what other authors have suggested on missing values. The 

missing values can be viewed as belonging to three categories. Firstly, missing 

data values are of trivial importance; that is, in a long historic record only a few 

data are missing, and there are not consecutively distributed. In this case, simple 
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infilling methods such as infilling by simple average could be satisfactory. It is 

undesirable to encounter any peaks or extreme values in data gaps while using 

simple data infilling techniques. Secondly, fundamental data values may be 

missing; that is, a number of lengthy segments or many intermittent observations 

are missing; which renders data patterns or data structure unrecognizable from the 

available or remaining records. Beale and Little (1975) suggest that according to 

the current state of available techniques, any attempt to infill missing records in 

this case may be unreliable, and as such the entire record may be dropped from 

further consideration. Thirdly, significant data values may be missing; that is, a 

sequence of consecutive observations is missing. In this case the missing values 

quantitatively or qualitatively considered important and it is deemed useful to 

develop techniques and methods capable of estimating such missing values as 

accurately as possible. Further, the number of missing values in this case is 

considered too short to have any significant damaging effects on the data patterns 

or data structures of the whole record. The missing values under the third category 

occur more often (Panu, et al., 2000). The third category will be the focus of this 

study. 

 

While modeling hydrological data for use in the design of the water resources, it is 

imperative that all the characteristics of hydrological times-series be considered. 

Thus, Elshobagy et al. (2000 a, 2000 b) and Panu et al. (2000) have evoked the 

notion of group and single valued-data. This discussion is not done here.   

 

2.3.2 Assessment of data infilling methods and techniques 

Researchers have been tackling the problem of missing data in different ways and 

from different perspectives as well. The definitions of “missing data” and the 

expressions that they have used to describe the in-filling process are no less 

diversified than the different techniques that they used (Panu et al.; Elshorbagy et 

al., 2000 a, 2000 b).  

 

A group of researchers tackled the problem of intermediate missing data where 

data or observations before and after the missing observations are available 
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(Gyau-Boakye and Schultz, 1994; Bennis et al., 1997).   The words patching 

(Hughes and Smakhtin, 1996; Makhuvha et al. 1997 a, 1997 b; Pegram; 1985; 

Zucchini, 1984) or infilling (Panu et al., 2000; Gayau-Boakye and Schultz, 1994, 

Khalil et al., 2001) could be used to express the in-filling in these cases. In cases 

where historic data are available from only one side of the gap, or in which the 

gap is so large that the historic data set is only considered bounded from one side, 

the methods have been called data extension by Hirsch (1979, 1982), Alley and 

Burns (1983), Hughes and Smakhtin (1996). The word synthesizing or 

interpolation (Simonovic, 1995) or estimation, which is use to indicate the 

patching type of infilling process (Berkowitz et al., 1992, Bennis et al., 1997; 

Knotters and van Walsum, 1997). Data augmentation is used especially when the 

overriding objective is to estimate the model parameters and the estimation of 

missing data comes as a direct result of applying the developed model (Vogel and 

Stedinger, 1985; Moran, 1974). The term such as reconstruction by Hirsch (1979) 

has been also used to indicate the estimation of missing values.  

 

As said before, data can be categorized into 3 groups, viz data of trivial 

importance are missing (e.g. a few sparsely distributed, not consecutive, missing 

observations in a long historical record); fundamental data are missing (e.g. 

lengthy segments or many intermittent observations) where patterns or structure 

cannot be recognized from the remaining record and significant data are missing 

at the same time data gaps are too short to have significant damaging effect on the 

patterns and the structure of the whole records (Elshorbagy et al., 2000a). 

 

Since the missing values under the third category occur more often in developing 

countries more often in general, this category should be first the focus in this 

paper. The available literature on estimation of missing hydrological data can be 

classified into single-valued approach and group approach (Elshorbagy, 2000 a, 

2000 b and Panu et al., 2000).  

 

Only research works closely to the topic of this thesis are reviewed hereafter to 

give a general view of the available literature on estimating of missing data (i.e. 
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expectation-maximization and artificial neural networks techniques). Time series 

methods for data infilling purposes are not part of the current study as the theory 

on entropy for normal distributions and the expectation maximization techniques 

for exponential families assume independent hydrological variables. Also, 

rainfall-runoff models used for extending or/and infilling runoff data as in Bennis 

et al. (1997) and Kachroo (1992a, 1992b), etc. are not thoroughly discussed here.  

 

The overriding objective of record extension is to maintain statistical proprieties 

of the time–series (e.g. mean, variance, etc), like in Alley and Burns (1983), 

Hirsch (1979, 1982). The objective in this study is to estimate missing values (few 

consecutive observations, viz third category) in a way that minimizes the error 

(difference between actual and estimated values). However, at the same time 

statistical properties should be maintained. In the following, traditional regression 

methods are not discussed.  

 

2.3.2.1 EM techniques 

2.3.2.1.1 Background 

The EM algorithm was first introduced formally by Dempster et al. (1977). The 

EM algorithm as formulated for the first time can be called Standard EM 

algorithm.  

 

This technique is an iterative procedure where the E-step (expectation) adjusts the 

values of the sufficient statistics, given the incomplete data and the current values 

of the parameters. The M-step (maximization) solves the likelihood equations 

using the adjusted values of the sufficient statistics in a sample of complete data. 

The repeated applications of the E and M steps lead ultimately to the maximum 

likelihood-ML (Dempster et al., 1977; Little and Rubin; 1987; Schaffer, 1997).              

 

Some modifications of the standard EM exist and were done for example by 

Makhuva (1997 a, 1997 b), Xu (1997), Meng and Rubin (1991), Jamshidian and 

Jennrich (1997), Jennrich and Sampson (1976), etc. For the past two decades the 

use of the expectation maximization (EM) algorithm has become intensive for 
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problems involving incomplete (missing) data on multivariate normally 

distributed variables (Little et Rubin, 1987, Laird and Ware, 1982). However, the 

literature on EM techniques dealing with missing data is very sparse in hydrology, 

a part from the studies led by Makhuvha (1997 a, 1997b) and Kuczera (1987).   

 

Some of the fields of application of EM techniques are the following: missing 

data, categorical data analysis, finite mixture analysis, factor analysis, robust 

statistical modeling, variance-components estimations, survival analysis, repeated 

measures designs, tissue classes and regression analysis.  

 

The repeated applications of the E and M steps lead ultimately to the maximum 

likelihood (Dempster et al., 1977). The fact that the missing data are estimated 

along the way is regarded as an artifact of the procedure. Thus, the EM algorithm 

copes with little information (missing values). Although implementation of the 

algorithm involves the estimation of the missing values, the main focus of the 

literature is on the model parameters (Little and Rubin, 1987). Nonetheless, in this 

study, the missing values are of primary interest, not the model parameters. 

 

The EM algorithm formalizes a relatively old ad hoc idea for handling missing 

data: (1) replace missing values by estimated values, (2) estimate parameters, (3) 

re-estimate the missing values assuming the new parameter estimates are correct, 

and so forth, iterating until convergence.         

 

Suppose that one has a model for complete data Y, with associated density 

)/( θYf  indexed by unknown parameter θ . One can write ),( misobs YYY = , where 

 represents the observed part and  denotes the missing values. In this 

chapter, for simplicity, it is assumed that the data are missing randomly (MAR), 

thus the mechanism of missing-data does not depend on the missing values and 

that the objective is to maximize the likelihood 

obsY misY
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mismisobsobs dYYYfYL )/,()/( θθ ∫=                  (2.28) 

   

with respect to the parameter θ . 

 

The distribution of the complete data can be found as  

                        

          ),/()/()/,()/( θθθθ obsmisobsmisobs YYfYfYYfYf ==                         (2.29) 

 

 

where the )/( θobsYf  is the density of the observed data  and obsY ),/( θobsmis YYf  

is the density of missing data given the observed data. The decomposition that 

corresponds to (2.49) is  

 

),/(ln)/(),/()/( θθθθ obsmisobsmisobs YYfYlYYlYl +==                             

 

The wish is to estimate θ  by maximizing the incomplete-data likelihood 

)/( obsYl θ  with respect to θ  for fixed ; this task, however, can be difficult to 

accomplish directly.  

obsY

 

This expression can be re-rewritten as  

 

),/(ln)/()/( θθθ obsmisobs YYfYlYl −=                                                          (2.30) 

 

where )/( obsYl θ  is the observed loglikelihood to be maximized, )/( Yl θ is the 

complete-data loglikelihood, which is presumably relatively easy to maximize, 

and ),/( θobsmis YYf  is the missing part of the complete data loglikelihood. The 

expectation of both sides of (2.30) over the distribution of the missing data , 

given the observed data  and a current estimate of 

misY

obsY θ , say , is  )(tθ

 

)/()/()/( )()( tt
obs HQYl θθθθθ −=                                                                 (2.31) 
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where 

 

[ ] mis
t

obsmismisobs
t dYYYfYYlQ ),/(),/()/( )()( θθθθ ∫=  

 

and  

 

[ ] mis
t

obsmisobsmis
t dYYYfYYfH ),/(),/(ln)/( )()( θθθθ ∫=    

 

Note that  

         

)/()/( )()()( ttt HH θθθθ ≤                                                                              (2.33) 

 

by Jensen’s inequality (Little and Rubin, 1987). 

 

Consider a sequence of iterates  where  for some 

function . The difference in values of 

...,,, )1()0( θθ )( )()1( tt M θθ =+

(.)M )/( obsYl θ  at successive iterates is 

given by 

 

[ ])/()/()/()/( )()()()1()()1( tttt
obs

t
obs

t QQYlYl θθθθθθ −=− ++  

    [ ])/()/( )()()()1( tttt HH θθθθ −− +                    (2.33) 

 

An EM algorithm chooses  to maximize  with respect to )1( +tθ )/( )(tQ θθ θ . More 

generally, a generalized EM algorithm chooses  so that  )1( +tθ

)/()/( )()()()1( tttt QQ θθθθ ≥+ .  Hence, for any EM or Generalized EM algorithm, 

the change from  to  increases the loglikelihood. )(tθ )1( +tθ

 

2.3.2.1.2 The E-step and the M-step of EM 

The steps (E and M) are generally easy to construct conceptually, to program for 

calculation, and to fit into computer program. The M step is particularly simple to 
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describe: perform the maximum likelihood estimation of θ  just as if there were no 

missing data, that is, as if they had been filled in. Thus the M step uses the 

identical computational methods as ML estimation from )/( Yl θ . The E step finds 

the conditional expectation of the “missing data” given the observed data and 

current estimated parameters, and then substitutes these expectations for the 

“missing data”. The key idea of EM, which delineates it from the ad hoc idea of 

filling in missing values and iterating, is that “missing data” is not  but the 

functions of  appearing in the complete loglikelihood, that is 

misY

misY )/( Yl θ . 

 

Specifically, let  be the current estimate of the parameter )(tθ θ . The E step of EM 

finds the expected loglikelihood  if )/( )(tQ θθ θ  were :  )(tθ

 

∫ == mis
t

obsmis
t dYYYfYlQ )/()/()/( )(

,
)( θθθθθ               (2.34) 

 

The M – step of EM determines  by maximizing this expected loglikelihood: )1( +tθ

 

)/()/( )()()1( ttt QQ θθθθ ≥+ , for all θ .               (2.35) 

 

  

An advantage of this method is that it can be shown to converge reliably, in the 

sense that under general conditions, each iteration increases the loglikelihood 

)/( obsYL θ , and if )/( obsYL θ is bounded, the sequence  converges to a 

stationary value of 

)/( )(
obs

t YL θ

θ . If )/( θYf  is a regular exponential family and )/( obsYl θ is 

bounded, then  converge to a stationary point )(tθ *θ . Quite generally, if the 

sequence  converges, it converges to a local minimum or saddle point of)(tθ θ . A 

disadvantage of the algorithm is that its rate of convergence can be painfully slow 

if a lot of data are missing (Dempster et al., 1977).  

 

To start the iteration, one needs to give . In this case, one can compute for 

example  using the imputing conditions means (Little et al., 1987).  

)0(θ
)0(θ
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2.3.2.1.3 EM theory for exponential families 

The EM algorithm is particularly simple and useful interpretation when the 

complete data Y have a distribution from the regular exponential family (Little et 

al., 1987) defined by 

 

)(/))(exp()()/( )( θθθ aYsYbYf t =                                                                (2.36)    

 

Where θ  denotes a  parameter vector,  denotes a  vector of the 

complete-data sufficient statistics, and a and b are functions of 

)1( ×d )(Ys )1( d×

θ  and Y, 

respectively. This family contains among others, the normal, gamma, inverse 

Gaussian, binomial and Poisson distributions (Ibrahim, 1991). The E-step for   

(7.21) consists in estimating the complete-data sufficient statistics by )(Ys

 

),/)(( )()1( t
obs

t YYsEs θ=+                                                                               (2.37) 

 

The M step determines the new estimates  of )1( +tθ θ  as the solution of the 

likelihood equations 

 
)()/)(( tsYsE =θ                                                                                             (2.38) 

 

However, the normal distribution is much simpler from its theoretical aspect than 

other distributions (Makhuva, 1997 a; Little and Rubin, 1987; Ibrahim, 1991). For 

these families, the observed information can be seen as the difference between the 

unconditional and conditional variance of the complete-data sufficient statistics 

(Little and Rubin, 1987).  

 
2.3.2.1.4 The bivariate case with data missing from one site only in the     

context of linear regression 
Consider a dataset with variables and  where  is observed units but  

 is observed only for units  with . The missing data will 

1Y 2Y 1Y 2Y

n,...,2,1 m,...,2,1 nm p
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be MAR if the probability that  is missing does not depend on , although it 

may possibly depend on . Let and denote the values of  and , 

respectively, for unit i .  

2Y 2Y

1Y 1iy 2iy 1Y 2Y

 

The assumption made here is that observation pairs  from a bivariate 

normal distribution are independently and identically distributed as 

),( 21 ii yy

),( ΣµN , 

where Σ,µ  are the mean vector and the covariance matrix such that ),( 21 µµµ =  

and the determinant of  is given by Σ

 

 
12

11)det(
σ
σ

=Σ=Σ
22

12

σ
σ

                                                                               (2.39) 

 

The likelihood for a bivariate normal sample with  complete bivariate 

 and 

m

),...,2,1);,(( 21 miyy ii = mn −  univariate observation is 

given by: 

),...,1,( 1 nmiyi +=

 

∑
=

− −Σ−−Σ−=Σ
m

i

T
iiobs yymYl

1

1 )()(
2
1ln

2
1)/,( µµµ    

  ∑ −
−−−

11

2
11

11
)(

2
1ln)(

2
1

σ
µ

σ iy
mn                          (2.40) 

 

ML estimates of µ  and  can be found by maximizing this function with respect 

to 

Σ

µ  and Σ . The likelihood equations however do not have an obvious solution.  

The joint distribution of  and  can be expressed as a factor of the marginal 

distribution of  and the condition al distribution of  given : 

1iy 12y

1iy 12y 1iy

 

),,,/(),/(),/,( 1.221.211.2012111121 σββσµµ iiiii yyfyfyyf =Σ ,             (2.41) 

 

where 1µ̂  and 11σ̂  are the mean and the variance of the n population (site) having 

the longest period of records. 
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),/( 1111 σµiyf  is the normal distribution with mean 1µ  and variance 11σ  and  

 

),,,/( 1.221.211.2012 σββii yyf  is the normal distribution with mean 

 

1.1.211.20 iyββ +    

 

and variance 1.22σ . The parameter 

T),,,,( 1.221.211.20111 σββσµφ =  

 

is one-one monotone function of the original parameter 
T),,,,( .22121111 σσσµµθ =  

 

of the joint distribution of  given . The betas are regression coefficients 

of  on .   

iy2 1iy

iy2 1iy

 

Maximizing the likelihood corresponding to the two components in equation 

(2.40) and assuming the population parameters can be replaced by the sample 

parameters, i.e. s=µ  will give the following respectively (Little et al., 1987): 

 

∑
=

=
n

i
iyn

1
11 )/1(µ̂                        (2.42) 

 

∑
=

−=
n

i
iyn

1

2
1111 )ˆ()/1(ˆ µσ ,                  (2.43) 

 

and  

 

11121.21 / ss=β                          (2.44) 
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11.2121.20
ˆ yy ββ −=                       (2.45)  

 

1.2211
2

12221.22 /ˆ ssss =−=σ                    (2.46) 

 

where  ∑
=

=
m

i
ijymy

1
)/1( ,  for j, k = 1, 2   ∑

=

−−=
m

i
kikjijij yyyyms

1
))(()/1( r

These are initial values of the statistics. As there are no missing values for site 1, 

its values will remain unchanged throughout at any t-th iteration. Consequently 

the estimate of the mean and variance of site 1 will also remain unchanged 

throughout. These quantities need to be computed at t-th iteration 

 

(i.e. ) )(
11

)(
12

)(
1.21 / ttt σσβ =

 

E-step 

In the t+1 iteration, ones compute the conditional expectation vector sufficient 

parameters given the observed values and the current estimate of θ . 

 

The linear terms are computed as follows: 

 

⎪⎩

⎪
⎨
⎧

−+
== +

gmisisyifyyy

observedisyify
yYXyE

ii
tt

iit
i

t
obsi sin)(ˆ),,/(

211
)(

1.21
)(

2

22)1(
2

)(
2 β

θ  

                                                                                                                        (2.47) 

 

The square terms are computed by: 

 

⎪
⎩

⎪
⎨

⎧

+

==
+

+

gmisisyify

observedisyify
yYXyE

i
t

i
t

i

ii
t

i
t

obsi

sin

),,/(

2
2)(2

2
2)1(2

2

2
2

2
)1(

2
)(2

2

2

σ

θ  

                                                                                                                        (2.48) 

 

M-step. 
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In the  iteration, one computes: +t

 

∑
=

++ =
n

i

t
i

t y
n 1

)1(
2

)1(
2

1µ̂                        (2.49) 

 

1)ˆ)(ˆ(1ˆ )1(
2

1

)1(
2

)1(
2 =−−= +

=

++ ∑ jforyy
n jij

t
n

i

t
i

t
j µµσ               (2.50) 

 

In case of linear regression, the M corresponds to the least squares analysis on the 

original design (Little et al., 1987). Consequently the EM iterations can omit the 

M - step estimation of and the E-step estimation of and find 2
2ˆ jσ ),/( )(2 t

i XYyE θ

1.22β  by iteration after convergence and then calculate   2
2ˆ jσ

 

As initial estimates for µ  and Σ , here one could apply the usual maximum 

likelihood estimators to the set of complete concurrent data. The imputing 

conditional means (Buck’s method) mentioned so far, can be used to estimate the 

missing values  of  as 2ˆ iy 2iy

 

 )(ˆ 111.2122 yyyy ii −+= β                                (2.51) 

 

to start EM algorithm.  

 

2.3.2.1.5 The bivariate case with data missing at both sites  

The general pattern of missing data is as follows:  is observed but are missing 

, the second group of units has both  and  observed, and the third group of 

units has  observed but are missing . The log likelihood is not linear in the 

data, but rather is linear in the sufficient statistics (Little and Rubin, 1987): 

1Y

2Y 1Y 2Y

2Y 1Y

 

∑=
n

iys
1

11 , , , , ,  ∑=
n

iys
1

22 ∑=
n

iys
1

1
2

11 ∑=
n

iys
1

2
2

22 ∑=
n

ii yys
1

2112

                                                                                                                        (2.52) 
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which are simple functions of the sample means, variances, and covariances. 

The task at the E step is to find the conditional expectation given and obsY ),( Σµθ  

of the sums in equation (2.52). For the group of units with both  and  

observed, the conditional expectations of the quantities equal their observed 

values. For the group of units with  observed but  missing, the expectations 

of  and  equal their observed values; the expectations of ,  

and  are found from the regression of the  on . 

1iy 2iy

1iy 2iy

1iy 1
2

iy 2iy 2
2

iy

21 ii yy 2iy 1iy

 

11.211.20
)1(

1
)(

1 ),,/( i
t

i
t

obsi yyYXyE ββθ +== +               (2.53)  

 

1.22
2

11.211.20
)1(

1
)(2

1 )(),,/(
2

σββθ ++== +
i

t
i

t
obsi yyYXyE              (2.54) 

 

111.211.20
)1(

1
)(

12 )(),,/(
2

ii
t

i
t

obsii yyyYXyyE ββθ +== +              (2.55) 

 

These quantities are computed if  is observed, otherwise they are equal to zero. 1iy

1.20β , 1.21β  and 1.22σ  are functions of Σ  corresponding to the regression of  on 

 as defined previously. For the units with  observed and  missing, the 

regression of  and  is used to calculate the missing contributions to the 

sufficient statistics. Having found the expectations of , , ,  

and  for each unit in the three groups, the expectations of the sufficient 

statistics in (2.52) are found as the sums of these quantities over all n units. The M 

step calculates the usual moment-based estimators of 

2iy

1iy 2iy 1iy

1iy 2iy

1iy 2iy 1
2

iy 2
2

iy

21 ii yy

µ  and Σ  from those filled-

in sufficient statistics: 

 

ns /ˆ 11 =µ , ns /ˆ 22 =µ ,                 (2.56) 

 
2

1111
2 ˆ/ˆ µσ −= ns , ,              (2.57) 2

222
2

2 ˆ/ˆ µσ −= ns 2
2

2
212

2
12 ˆ/ˆ µµσ −= ns
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The EM algorithm for this problem consists of performing these steps iteratively 

until convergence. 

 

Although the assumption of multivariate normality may appear restrictive, the 

methods discussed here can provide consistent estimates under weaker 

assumptions about the underlying assumptions (Little and Rubin, 1987). It should 

be noted that even the normality assumption is slightly violated, Mahkhuva et al. 

(1997 a) pointed out that the EM and the subset selection methods could not lead 

to nonsensical estimates. The independence assumption can be checked by 

computing the first order serial autocorrelation; this value can be tested if it is 

significant within predetermined confidence limits (Yevjevich, 1972; Makhuvha, 

1997 a, 1997 b; Xu, 2002; Mkhandi et al. 2000)     

 

The above-described method is the standard EM algorithm. Other variants of the 

EM algorithm exist. This will be set out from the next section.  

 

It should be worth noting that other methods for handling missing data exist and 

are outlined in General FAQ #25 (1999) and are explained by Schaffer (1997). 

The methods are listwise or casewise data deletion, pairwise data deletion, mean 

substitution, Hot deck imputation, raw maximum likelihood methods, multiple 

imputation. General FAQ #25 (1999) mentioned that regression methods are 

somewhat better, but not as good as hot deck imputation or maximum likelihood 

approaches. The EM method falls somewhere in between: it is generally superior 

to listwise, pairwise data deletion, and mean substitution approaches, but it lacks 

the uncertainty component contained in the raw maximum likelihood and multiple 

imputation methods. 

 

2.3.2.1.6 Momentum EM (MEM) algorithm  

It is recalled that the EM algorithm is a general methodology for the maximum 

likelihood (ML). The EM algorithm, while being simple to implement and 

numerically very stable, is generally slow as repeatedly pointed out (Dempster et 
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al. 1977; Louis, 1982 and many others).  The start of ways of improving the speed 

of EM is the fact that EM is a first order or linearly convergent algorithm (Xu, 

1997). The variant described is the Momentum EM algorithm (MEM).  

 

For an iterative algorithm with a current incremental in the parameter 

, one can always modify the obtained  into  

or  

tt θθθ −=∆ + )1( )1( +tθ tt θηηθ )1()1( −++

 

θηθθ ∆+=+ *)1( tt , 0fη        (2.58) 

 

Usually, this is called the momentum approach. The MEM is easily got by using 

equation (2.58) to modify the incremental . The momentum has 

been considered to speed up the convergence (Melijson, 1989) with an appropriate 

tt θθθ −=∆ + )1(

η  that is usually chosen heuristically. Xu (1997) demonstrated that the MEM 

could speed up the convergence of the EM algorithm if a suitable amount of 

momentum is added and the momentum term should be chosen at least with 

5.0fη . 

 

2.3.2.1.7 Expectation constrained maximization (ECM) algorithm 

Two major reasons for the popularity of the EM algorithm are that its maximum 

step involves only complete-data maximum likelihood estimation, which is often 

computationally simple, and that its convergence is stable, with each iteration 

increasing the likelihood. When the associated complete-data maximum 

likelihood estimation itself is complicated, EM is less attractive because the M-

step is computationally unattractive. In many cases, however, complete data 

maximum likelihood estimation is relatively simple when conditional on some 

function of the parameters being estimated. Thus, Meng and Rubin (1993) 

introduced the ECM algorithm, which takes the advantage of the simplicity of 

complete data conditional maximum likelihood estimation by replacing a 

complicated M-step of EM with several computationally simpler CM –steps.   
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In general, let { SsgG s ,...,1);( }== θ  be a set of  pre-selected (vector) functions 

of 

S

θ . Starting with , at the )0(θ 1+t  st iteration, t  = 0, 1, 2,…, the ECM algorithm 

first performs the E-step and the  CM-steps instead of the M-step, where CM-

steps are defined as follows. For   = 1, 2,…, , find  that maximizes 

over subject 

S

s S )/( Sst+θ

)/( )(tQ θθ Θ∈θ to the constraint That is, for 

 = 1, 2, … , the sth CM-step in the th iteration of ECM finds such that  

)()( )/)1(( Sst
ssg g −+= θθ

)

s S )/( Sst+θ

 

   /()/( )()()/( ttSst QQ θθθθ ≥+

                          for all { })/)1(()/)1(( ()(:)( Sst
ss

Sst
s gg −+−+ =Θ∈≡Θ∈ θθθθθ  

                             

                                                                                                                        (2.59) 

     

Then the value of θ  for starting the next iteration of ECM, , is defined as the 

output of the final step of (2.59), that is  

)1( +tθ
)1()/( ++ ≡ tSSt θθ

 

The following can be viewed as main convergence properties of ECM algorithm 

(Meng and Rubin, 1993): 

-Any ECM is a Generalized EM. As a result of that any propriety established by 

Dempster et al. (1977) and Wu (1983) for GEM holds for ECM. 

-Suppose that all conditional maximizations in (2.59) of ECM are unique. Then all 

limit points of any ECM sequence { }0,)( ≥ttθ  are stationary points of 

)/( obsobs YL θ if the G  is space of filling at all . )(tθ

-Suppose that all conditional maximizations in (2.59) of ECM are unique. Then all 

limit points of any ECM sequence { }0,)( ≥ttθ  belong to the set 

         

2.3.2.1.8 Expectation conditional maximization either (ECME1) algorithm 

This algorithm can be viewed as a simple extension of the EM and ECM 

algorithm with fast monotone convergence. This algorithm shares with both EM 

and ECM the stable monotone convergence and basic simplicity of 

implementation relative to competing faster convergence methods and was 
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introduced by Liu and Rubin (1994). The basic idea is to replace the M-step of 

each EM iteration with a sequence of  conditional or constrained 

maximization, or CM, steps, each of which maximizes the expected complete-data 

loglikelihood found in the preceding E-step subject to constraints on 

1fS

θ , where the 

collection of all constraints is such that the maximization is over the full 

parameter space of θ . That is, each EM maximizes the expected complete-data 

loglikelihood over some function of θ , say ),...,1)(( Ssss == θθθ , where sθ  span 

the θ  space. A CM might be in a closed form or may require iteration, but 

because the CM maximizations are over small dimensional spaces, often they are 

simpler, faster and more reliable than the corresponding full maximization called 

for in the M-step of EM.  

 

The same benefits of working in a lower space hold for maximizing the actual 

likelihood function subject to the same constraints.  So the ECME as suggested by 

Liu and Rubin (1994) leads to cases where CM-steps maximize either the 

expected complete-data loglikelihood, as with ECM, or the actual likelihood 

function subject to the same constraints on θ .           

 

Let  be the complete-data with density ℑ∈X )/( θXf  and the observed 

incomplete data, where 

∈℘Y

Θ∈θ , and )(XYY = is a many-to-one mapping 

from toℑ ℘. Also let )/( θYg  denote the density of Y  and ),/( θYXk  the 

conditional density of X  givenY ; then 

 

∫ℑ=
)(

)/()/(
Y

dXXfYg θθ ,                                                                           (2.60) 

 

where 

 

{ }YXYXXY =ℑ∈=ℑ )(,:)( , ),/()/()/( θθθ YXkYgXf =  

 

The objective is to find the maximum likelihood estimate of   

 

 2-46



)/()/()/(log)( θθθθθθ ′−′=≡ HQYgL                                                      (2.61)      

 

where 

 

{ }θθθθ ′≡′ ,/)/(log)/( YXfEQ  

 

is the expected complete-data loglikelihood, and  

 

{ }θθθθ ′≡′ ,/)/(log)/( YXkEH  

 

is the expected missing-data loglikelihood.  

 

The definition of ECME can be traced in the following: 

The ECME is an iterative algorithm, , consisting of an E-step, which 

computes  as a function of 

)1()( +→ tt θθ

)/( )(tQ θθ θ  and  constrained maximization steps 

indexed by s with input  and output . For 

S

)/)1(( Sst −+θ )/)1(( Sst −+θ Qs ϕ∈ , 

 for all)/()/( )()()/( ttSst QQ θθθθ ≥+ θ  satisfying ; for )()( )/)1(( Sst
ss hh −+= θθ

Ls ϕ∈ ,  for all )()( )/( θθ LL Sst ≥+ θ  satisfying ; )()( )/)1(( Sst
ss hh −+= θθ

{ }SLQ ...,,2,1=∪ϕϕ  

 

Different algorithms, in the sense of different sample paths , ,…are 

obtained for different orderings of the  steps. More precisely, the method of 

Jamshidian and Jennirich (1993) can be viewed technically as a special case of 

ECME where each CM-step maximizes the actual likelihood and the constrained 

functions corresponding to different conjugate linear combinations of the 

parameters across iterations. 

)0(θ )1(θ

S

  

When the ECME sequence of the loglikelihood values { })( )(tL θ  is bounded 

above, converges monotonically to a finite limit . As with EM and 

ECM, the limit  is not necessarily a stationary value of . If 

)( )(tL θ *L
*L )( )(tL θ
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{ Sshs ,...,1:)( }== θh  is space-filling at each iteration, then from Wu (1983), 

Meng and Rubin (1993) it follows that all limits points of any instance { })(tθ  of an 

ECME algorithm are stationary points of )(θL , and converges 

monotonically to for some stationary point . 

)( )(tL θ

)( ** θLL = *θ

 

The convergence of ECME sequence of likelihood values { })( )(tL θ  in general 

does not imply the convergence of the corresponding ECME sequence  { })(tθ  (Liu 

and Rubin, 1994).  

 

A multi-cycle version of ECM (Meng and Rubin, 1993) is obtained by performing 

a second E-step before the second CM-step to find the expected complete-data 

loglikelihood givenθ . In other words an E-step precedes each CM step. Since the 

second CM-step of ECME is for the actual likelikehood, multi-cycle in this case is 

the same as ECME. 

 

2.3.2.2 Artificial neural networks (ANNs) 

2.3.2.2.1 Background  

ANNs were first developed in 1940’s by McCulloch and Pitts who were inspired 

by a desire to understand the human brain and its functioning. The past two 

decades have witnessed a tremendous surge of interest in the application of 

artificial neural networks (ANNs) for a variety of purposes.  

 

It ‘s recognized that Rumelhart is one of the pioneers who introduced the back 

propagation algorithm in ANN, around 1986 (i.e. gradient descent search 

optimization technique). This algorithm has become quite popular modeling 

technique in diverse areas such as bio-medical engineering, animal sciences, 

image processing, water resources engineering, electric engineering, computer 

science, acoustics, cybernetics, robotics, image processing, financing and others. 

 

Since the early nineties, ANNs have been successfully used in hydrology related 

areas such as rainfall / runoff forecasting (Minns and Hall, 1996; Abrahart et al., 
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1999; French et al., 1992; Deo and Thirumalaiah, 2000; Agarwal and Singh, 

2001), in grass geographical information systems (Muttiah et al., 1998), 

streamflow forecasting, groundwater modeling, water quality modeling, rainfall-

runoff modeling (Tokar and Markus, 2000), regional drought analysis (Shin and 

Salas, 2000), solute transport in soils (Wostern et al., 2001), in infilling 

streamflow data (Panu et al., 2000; Elshorbagy et al. 2000 a , 2000 b; Khalil et al. 

2001). Nelson and Illingworth (1991) gives a list of possible applications for 

neural networks in general. ASCE Task Committee (2000 b) gave a summary of 

different hydrologic applications. However, the literature on ANN for streamflow 

interpolation (infilling) remains very sparse (Panu et al., 2000). The same applies 

to rainfall data.  

 

There are two kinds of researchers, which may be identified within the field of 

neural network technology. There are those who are involved in the development 

of ANN themselves-attempting to find faster, smatter and more efficient ways of 

implementing ANN theory using computer software and hardware. The second 

area of research involves the application of neural networks. This area considers 

how ANNs can be applied to both new and existing domains. It is within this area 

of research that the ANN techniques fall; i.e. ANNs are viewed as hydrological 

data interpolation (infilling) techniques as EM techniques.  

It is important that some general concepts related to NN are put forward. 

 

2.3.2.2.2 Introduction to ANNs 

An ANN is a kind of massive parallel connectionism originated from the research 

of the human neural system and consists of processing units (representing 

biological neurons), where each processing unit in each layer is connected to all 

processing in the adjacent layers representing biological synapses and dendrites. 

Strictly speaking the networks here should term “artificial” neural networks 

(ANNs) so as to distinguish them from the biological neural networks occurring in 

the brains of humans and other living organisms. However as there is no danger of 

confusion, the prefix “artificial “ can be used or not in what follows. ANNs have 
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been developed as a generalization of mathematical models of human cognition or 

neural biology. Their development is based on the following rules: 

- Information processing occurs at many single elements (nodes, cells or 

neurons). 

- Signals are passed between nodes through connection links. 

- Each connection link has an associated weight that represents its connection 

strength. 

- Each node typically applies a non-linear transformation called an activation 

function to its net input to determine its output signal. 

 

2.3.2.2.3 Architecture of neural networks 

Generally, the architecture for a given neural network can be described by 

specifying the number of layers, the number of neurons in each layer, each layer 

activation function, the number of inputs, the number of outputs, how the layers 

are connected to each other. The number of processing elements for the inputs and 

outputs layers depends on the number of inputs and outputs for the system. No 

general rule yet exists for determining of the number of elements to use in the 

inner or hidden layers (Nelson and Illingworth, 1991). However, if too many 

nodes are available in the hidden layers, it becomes hard for the network to make 

a generalization. Too few nodes available leads to an inability to form an adequate 

representation and to encode what the network thinks are the signification features 

of the input data. In this situation, the neural network “forgets” too easily 

(Watanabe, 1997). So hidden layers hold the key to more complex computation.  

 

On way of classifying neural networks is by the number of layers (ASCE Task 

Committee, 2000a): single (Hopfield nets), bilayer (Carpenter/Grossberg adaptive 

resonance networks), and multi-layer (most backpropagation). Models using only 

two layers, directly mapping input patterns and this suffices when there is good 

similarity of input to output and the encoding provided by the external 

environment alone can perform the mapping.  
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ANNs can also be categorized based on the direction of information flowing and 

and processing. A network where outputs can be passed only to the next layer is 

said to be a feedforward network. In this category the nodes are generally 

arranged in layers, starting from a first input layer and ending at the final output 

layer. The nodes are connected in one layer to those in the next, but not to those in 

the same layer. Thus, the output of a node in a layer is only dependent on the 

inputs it receives from previous layers and the corresponding weights. While a 

feedback network would allow outputs to be inputs to the preceding layers; and a 

feed lateral connections would send some inputs to other nodes in the same layer 

(Kothari and Kwabena, 1996).  Sometimes networks have closed loops; thus they 

are said to be recurrent; information flows through the nodes in both directions, 

from the input to the output side and vice versa. This is generally achieved by 

recycling previous network outputs as current inputs. Thus allowing the feedback. 

The network, in which every output from one layer is passed along to every node 

in the next layer, is said to be fully connected.  

 

The application of any type of neural network depends on the problem at hand. 

For example, recurrent networks perform function such as automatic gain control 

or energy normalization and selecting a maximum in complex systems whilst 

feedback loops permits trainability and adaptability (Nelson and Illingworth, 

1991). However, the feedforward networks are faster than feedback nets, because, 

one can set a solution with only one pass and guaranteed to reach stability. On the 

other hand, feedback networks must iterate over many cycles until the system 

stabilizes.  

 

In most networks, the input (first) layer receives the input variables for the 

problem at hand. This consists of all quantities that can influence the output. The 

input layer is thus transparent and is a means of providing information to the 

network. The last or output layer consists of values predicted by the network and 

thus represents model output. The number of hidden layers and the number of 

nodes in each hidden layer is determined by trial-and-error procedure. The nodes 

within neighboring layers of the network are fully connected by links. A synaptic 
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weight is assigned to each link to represent the relative connection strength of two 

nodes at both ends in preceding the input-output relationship.  

 

Figure 2.1 shows the configuration of a feedforward three-layer ANN. These 

kinds of ANNs can be used in a wide variety of problems, such as storing and 

recalling data, classification pattern, performing general mapping from input 

pattern (space) to output pattern (space), grouping similar patterns, or finding 

solutions to constrained optimization problems. In this figure,  

is a system-input vector composed of a number of causal variables that influence 

system behavior, and 

)...,,,( 21 nxxxX =

Y  is the system output vector composed of a number of 

resulting variables that represent the system behavior. In most hydrological 

applications, three-layered feedforward ANNs are used (Minns and Hall, 1996; 

Deo and Thurumalaih, 2000; Thurumalaih and Deo, 2000; French et al., 1992; 

Zealand et al., 1999) and they are thought to be universal approximators (Tateishi 

and Tamura, 1997). For that, this study will mainly focus on three-layered feed 

forward neural networks.    

 

2.3.2.2.4 Training methods for neural networks          

The ability to change the weights allows the processing element to modify its 

behavior in responses to its inputs; this is called learning or adaptation (Nelson 

and Illingworth, 1991). It is understood here that training is the way a neural 

network learns. It can be also understood as the process by means of which a 

network is taught to predict and interpret its informational environment (Freeman 

and Skapura, 1991). 

 

 The following types of training are briefly explained: supervised training; grade 

training and self organized training. Some researchers term supervised / 

unsupervised modes as learning modes (Nelson and Illingworth, 1991). 
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2.3.2.2.4.1 Supervised training 

A supervised training implies a regimen where, at the same time, the network is 

presented the input vectors and the “desired” or “target” or “correct” output 

vectors. In this case, the network is told exactly what it should be generating as its 

output. With supervised training, it is necessary to train the neural network before 

it becomes operational. Usually in practical application, there are training pairs 

(Freeman and Skapura, 1991). The training pairs may be presented to the network 

in two different modes, namely pattern (sequential) mode and batch mode. In 

pattern mode or sequential mode, each time a single training pair is presented, 

learning takes place; while in batch mode learning takes place after all the training 

pairs have been presented to the network. One complete presentation of the entire 

training set is called epoch.  

 

2.3.2.2.4.2 Grading training  

It is a kind of the reinforcement or the performance of the neural network whereby 

a network receives a score or grade.   

 

2.3.2.2.4.3 Self organized training  

Self-organizing is the modification of many processing elements at once in 

response to the input vector. No grade or target is provided. Training session 

exercises the rules for learning as modifications take place throughout on the 

entire network system. It is as if the neural network is developing its own heuristic 

as they go through iterations.  

 

In self-organizing (unsupervised) training, the network uses no external influence 

to adjust their weights (Nelson and Illingworth, 1991). Instead there is an internal 

monitoring of performance. The network looks for regularities or trends in the 

input signals, and makes adaptations according to the function of the network. At 

the present state of the art, unsupervised training is not well understood and is still 

the subject of much research; supervised training procedures, on the other hand, 
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have achieved a reputation for producing good results in practical applications and 

are gaining in popularity (Nelson and Illingworth, 1991).    

 

Most of the hydrologic applications have used supervised training. That is, this 

training is used in this study. 

 

2.3.2.2.5 Learning laws 

Many learning laws are in common use. Most of the common laws are some sort 

of variation of the best known and oldest learning law, Hebb’s Rule, or Hebb 

synapse. Research has continued, however, and new ideas are being tried. Some 

researchers have made the modeling of biological learning as their main objective; 

others are experimenting with adaptation of their perceptions of how nature 

handles learning. Unfortunately there is still a great deal one does not know about 

how learning happens, and experimental evidence is not easy to obtain. Learning 

is certainly more complex than the simplifications represented by the laws 

developed in theory. These learning laws include Hebb’s rule (which is the oldest 

one), delta rule, steepest descent rule, Backpropagation (BP) learning. Kohonen’s 

learning rule, Grossberg learning, drive-Reinforcement theory, stochastic learning, 

etc  

 

In what follows the first three laws will be briefly described and much emphasis 

will be put on the backpropagation (BP) learning because it’s widely applied in 

many disciplines; particularly in water resources engineering. For the rest of laws, 

details are given by Nelson Illingworth (1991). 

 

2.3.2.2.5.1 Hebb’s rule  

Donald Hebb first introduced this learning rule in 1949. This basic rule simply 

states: “When a neuron stimulates another neuron at a time when the receiving 

cell is actively firing; the connection from the first cell to the second is 

strengthened.”  

 

 2-54



This law was later found incomplete in the sense that it does not specify, for 

example how much the connection between neurons should increase, nor how to 

compute the activity of the two neurons. Also Hebb’s statement of learning does 

not specify the exact conditions under which the connection should strengthen. 

Thus the neo-hebbian learning has been introduced. For example in 1960’s 

Michael Cohen’s and Grossberg tried to explain learning process by introducing 

two dynamical differential equations. One of the equations governing the activity 

change of an arbitrary network at a given instant in time and the other one 

governing the weight changes of an arbitrary connection in the network at any 

instant in time. More details are given by Maureen (1992). 

 

2.3.2.2.5.2 Delta rule 

This rule is also referred to as the Windrow–Hoff learning rule (Widrow and Hoff 

used in their ADALINE Model) and the Least Mean Square (LMS) learning rule, 

because it minimizes the mean square error. It is commonly used and based on the 

simple idea of continuously modifying the strengths of the connection to reduce 

the difference (delta) between the desired output value and the correct output 

value of the processing element. 

 

2.3.2.2.5.3 Steepest (gradient) descent rule  

The steepest or gradient decent rule is based on a mathematical approach of 

minimizing the error between the actual and the desired outputs. The weights are 

modified by an amount proportional to the first derivative of the error with respect 

to the weight. Pictorially, one could think of this procedure as descending along 

the curve to the bottom of a hyperboloidal surface is reached; once one reaches 

the bottom, the error is at its minimum. So the delta rule can be seen as an 

example of this rule. This rule is commonly used, even though it converges to a 

point of stability very slowly (Nelson and Illingworth, 1991; Freeman and 

Skapura, 1991).  
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2.3.2.2.5.4. Backpropagation (BP) learning law  
This learning algorithm was proposed for the first time by Rumelhart in 1986 and 

is referred to as a generalization of the gradient descent technique to the network 

that contains hidden layers. In general terms, the root mean square (RMS) error 

signal computed at the output layer is used by the hidden layers to update their 

weights. The fact that the RMS is propagated backwards, as it will be seen later, 

gives the name of the algorithm. The backpropagation is the most widely used 

method in neural networks. It usually provides a benchmark for other methods.  

 

The BP concept is an important concept, because high a percentage of all 

networks today employ this learning law (Nelson and Illingworth, 1991). In this, 

the term BP algorithm or technique will be much of use.  

 

The BP is a supervised learning algorithm applied to a multi-layer feedforward 

network. In a multi-layer feedforward network, the nodes in the network can be 

divided into three or more layers. Nodes in the input layer receive the data (input 

vector). Example of a three-layered feedforward network is shown in Figure 2.1. 

The signals are carried along the connections to each of the other adjacent layer 

and can be amplified or inhibited through weights, , associated with each 

connection. The nodes in the adjacent layer act as summation devices for the 

incoming (weighted) signals (Figure 2.2). The incoming signal is transformed into 

an output signal , with the processing units by passing it through a threshold 

function. A common threshold function for the ANN is the sigmoid function 

defined as (Dawson and Wilby, 1998): 

iw

jO
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x
xf

−+
=                    (2.62) 

 

which provides an output in the range between 0 and 1. When using the sigmoid 

function, the output values are preferably scaled to fall into the range between 0 

and 1 (Freeman and Skapura, 1991; Minns and Hall, 1996; Hines, 1997). Because 

of the form of the sigmoidal function, the network outputs will never reach the 
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values 0 and 1. Thus one can use the values 0.1 and 0.9 (Freeman and Skapura, 

1991). Sajikumar and Thandaveswara (1999) suggested to scale both inputs and 

outputs values into a range FMIN (minimum) to FMAX (maximum), rather than 0 

and 1 but he did not give any specific value.  )10( pf FMAXandFMIN

 

The threshold function is chosen for mathematical convenience because it 

resembles a hard limiting step-function for extremely large positive and negative 

values of the incoming signal and also gives useful information about the 

threshold value. Furthermore, the sigmoid function has a very simple derivative 

that makes the subsequent implementation of the learning algorithm much easier.  

In its general form, equation (2.62) can be written as follows 

 

)exp(1
1)(

bax
xf

+−+
=                                                                                   (2.63)      

 

where a is the gain or scaling factor and b is the bias or the amount of translation 

of the sigmoidal transfer function on the x-axis and it has been shown that BP 

networks are equivalent to Fourier series approximation when these sigmoidal 

units are used (Muttiah et al., 1998). The factor a is also called the shape factor 

(Reddy and Wilamowski, 2000).   
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Figure 2.1 A three-layered feedforward ANN  
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Figure 2.2 A typical ANN node 

 

This output  is subsequently carried along the weight connections to the 

following nodes and the process is repeated until the signal reaches the output 

layer.  The one or more layers of processing units located between the input and 

output layers have no direct connections to the outside world and are referred to as 

hidden layers. The output signal can be interpreted as the response of the ANN to 

the given input stimulus. The ANN can be trained to produce known or desired 

responses for given stimuli. Weights should be initialized to small, random values 

to the connections, as should be the bias numbers (Hines, 1997; Freeman and 

Skapura, 1991). Input is then introduced to the input layer and the resulting output 

is compared to the desired output signal. The input/output vectors can be scaled or 

normalized before the initialization of the training of the network. Normalization 

or scaling of input data and output data has the advantage on the speed of 

convergence of the system and it gives each input equal importance and prevents 

premature saturation of the activation function (Hines, 1997). The interconnection 

weights are then adjusted to minimize the error between the ANN output and the 

desired output.  This process is repeated many times with many different 

input/output patterns until a sufficient accuracy for all the set has been obtained.  

jO

 

The adjustment of the interconnection weights during training employs a method 

as error backpropagation in which the weight associated with each connection is 

adjusted by an amount proportional to the strength of the signal in the connection 
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and the total measure of the error. The total error at the output layer is then 

reduced by redistributing this error value backwards through the hidden layers 

until the input layer is reached. The next input/output pattern is then applied and 

the connection weights readjusted to minimize this new error. In this way, the 

backpropagation algorithm is seen to be a form of gradient descent for finding the 

minimum value of the multi-dimensional error function. This procedure is 

repeated until all training data sets have been applied. The whole process is then 

repeated starting from the first data set once more and continued until the total 

error for all data set is sufficiently small and subsequent adjustments to the 

weights are inconsequential. The ANN is now said to have learned a relationship 

between input and training data sets. This way of learning is referred to as pattern 

or sequential learning. After the ANN has been trained on sufficiently large 

number of input-output pairs, it can then correctly predict all future input-output 

pairs, even for those inputs that the network has not seen previously: the ANN is 

said to have generalized. As said before, no fixed rules as to how many nodes 

should be included in hidden / layer/s (Freeman and Skapura, 1991; Agarwal and 

Singh, 2001, Nelson and Illingworth, 1991). If there are too few nodes in the 

hidden layer, the network may have difficulty to generalize. On the other hand if 

there are many nodes in the hidden layer, the network may take long to learn.  The 

method normally suggested to reduce the complexity of network is to start with 

one hidden layer with number of nodes in hidden layer approximately equal to the 

double of the input nodes (Agarwal and Singh, 2001). The above description of 

this algorithm is the standard backpropagation.  

 

In addition, other activation functions such as hard-limit, linear, etc. can be also 

used (Nelson and Illingworth, 1991; Demuth and Beale, 1998). Another activation 

function commonly used is the hyperbolic tangent function (Hines, 1997), which 

is given by 
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=                                                                                (2.64) 
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It should be worth noting that weights should be initialized to small, random 

values to the connections, as should be the bias numbers before even the input is 

introduced to the input layer  (Hines, 1997; Freeman and Skapura, 1991). Deo and 

Thirumalaiah (2000); Agarwal and Singh (2001) as well as Freeman and Skapura 

(1991) suggested that the initial values weights should be within the range (-0.5, 

0.5). Agarwal and Singh (2001) mentioned also other ranges of the initial 

selection of weights, e.g. (-1.0, +1.0) and (-0.1, +0.1). On its side, the ASCE Task 

Committee (2000b) suggested that the weights and threshold values are assigned 

small random values initially, usually in the range (-0.3, 0.3). Patnaik et al. (1996) 

used the following ranges (0, +0.6), (-0.6, +0.6) and (-0.9, +0.9). 

 

The sequential mode is the mostly used and is recommended in the ANN training 

process (Minns and Hall, 1996; Hines, 1997; Agarwal and Singh, 2001) for 

weights updating. Sometime the sequential training may be more stochastic when 

the pattern are chosen randomly and may reduce the chance of getting stuck in a 

local minimum (Hines, 1997), in this situation the batch learning mode can be 

tried. During the batch training all the patterns are processed before a weight is 

update and the process is governed by the error of the data having the highest 

error in the data domain (Agarwal and Singh, 2001).   

 

The steepest descend method means, whenever one is on the surface of error 

function; one always goes in the steepest direction towards the down slope within 

the step size. Consequently, the solution often follows a zigzag path while trying 

to reach the minimum error position, which may slow down the training process 

(ASCE Task Committee, 2000a). The method guarantees that the algorithm will 

find the nearest local minimum. It will not be necessary to find a global minimum 

on the error surface despite the use of the learning rate. The performance of the 

BP algorithm, i.e. in function approximation, becomes unsatisfactory when gross 

errors are present in the training data, however the BP technique is popular for 

solving practical problems (Chen and Jain, 1994). Despite the error propagation 

does not guarantee convergence to an optimal solution since local minima may 

exist, it appears that in practice the standard back propagation leads to solutions in 

 2-61



almost every case (Lawrence et al., 1996; Minns and Hall, 1996, Raman and 

Sunilkumar, 1995). If a network reaches an acceptable solution from an error 

standpoint, it does not matter, whether the minimum is global or local (Freeman 

and Skapura, 1991). The step size, which is decided by the learning rate η  (which 

is normally between 0 and 1), plays an important role in the convergence of error 

(Freeman and Skapura, 1991; Hines, 1997). A small step size ensures a low and 

smooth convergence with possibility of falling in local minimum. A large step 

size speeds up the convergence but may cause the network to become 

paralyzed/oscillate and further training does little/no convergence. French et al. 

(1992) worked within the range η  = 0.01-0.1 and Freeman and Skapura (1991) 

recommended to use η  = 0.05 – 0.25.  

 

The standard BP algorithm of a single training vector in a sequential mode can be 

summarized as follows (Freeman and Skapura, 1991): 

 

(i). Apply the input vector, to the inputs units. '
21 ),...,,( pNppp xxxx =

where p is the pattern. 

 

(ii). Calculate the net-input values to the hidden layer units: 
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θ ,  h: hidden                (2.65) 

where  is the net input for i unit to hidden node j and  is the bias term to 

node j.   

h
pjnet h
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(iii). Calculate the outputs from the hidden layer: pji

)( h
pj

h
jpj netfi =                    (2.66) 

 

(iv). Move to the output layer. Calculate the net-input  values to each unit: 0
pknet
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(v). Calculate the outputs: 

 

)( 00
pkkpk netfo =                    (2.68) 

 

(vi). Calculate the error terms for the output units: 

)()( 0'00
pkkpkpkpk netfoy −=δ                  (2.69) 

 

(vii). Calculate the error terms for the hidden units (e.g. the error terms on the 

hidden units are calculated before the connection weights to the units have 

updated): 
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(viii). Update weights on the output layer: 

 

pjpkkjkj itwtw ηδ+=+ )()1( 00                              (2.71)  

 

The learning rate is the proportionality factor between the weight change and the 

negative direction of the gradient. A learning rate is used to increase the chance of 

avoiding training process being trapped in a local minimum instead of global 

(ASCE Task Committee, 2000). 

 

(ix). Update weights on the hidden layer: 

 

i
h

pj
h
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h

ji xtwtw ηδ+=+ )()1(                  (2.72) 

 

The order of the weight updates on an individual layer is not important. 

Nonetheless one has to be sure to calculate the error term for a training pattern p 
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where N is the total number of output nodes and the factor 1/2 in (2.73) is 

normally added for mathematical differentiation purposes (Freeman and Skapura, 

1991). 

 

In any training, algorithm, the aim is to reduce the global error, E (Mean of Sum 

of Squared Errors (MSSE)), defined as (Thirumalaiah and Deo, 2000; Chen and 

Jain, 1994):  
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where P is the total number of patterns. 

 

On their side Freeman and Skapura (1991) define the global error, E (Sum of 

Squared Errors (SSE)) as follows: 
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(ASCE Committee Task, 2000 a) gave the same expression for global error but 

without the factor 1/2 when computing .  SSE remains the mostly used error 

function as pointed out by Hines (1997) and this happens in most hydrological 

applications. 

pE

 

The definition of the error term is usually determined by the user’s experience and 

preference (ASCE Committee Task, 2000 b). 
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For practical considerations, it ‘s suggested sometime to remove the bias terms 

altogether: their use is optional (Freeman and Skapura, 1991; Demuth and Beale, 

1998). 

 

When it comes to consider pairs of gauging stations, the model becomes a single 

input-output model. The three-layered ANN can implement the transformation 

through the following function (Wei and Qing, 1991): 

∑= ),,()( iiii xvwxy θϕ                    (2.76) 

 

ii andw ϑ  are  respectively the weights to the hidden layer and the weights to the 

output layer.  

 

To speed up the convergence for the  BP algorithm, the following modifications of 

this algorithm in were proposed. 

 

2.3.2.2.5.5 Other ANN techniques 

2.3.2.2.5.5.1 BP algorithm with momentum (MBP) 

Sometime the standard BP technique may be slow. Increasing η  as the network 

decreases will often help to speed convergence by increasing the step size as the 

error reaches the minimum, but the network may bound around too far from the 

actual minimum value if η  gets too large. In other words, if the learning rate is 

too large, learning can become unstable and errors may even increase (Demuth 

and Beale, 1998). In this case, the training process may not converge, instead 

either an oscillation, non-optimal solution is approached or no recognizable 

solution is developed (French et al., 1992). Thus another way of increasing the 

speed of convergence is to use a technique with momentum α . This has been 

analyzed by Phansalkar and Sastry (1994). The momentum factor can speed up 

the training in very flat regions of the error surface and help prevent oscillations in 

the weights (ASCE Task Committee, 2000a).  
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When calculating the weight change value, wp∆  a fraction of the previous change 

is added. This additional term tends to keep the weights change going in the same 

direction, hence the term momentum. Referring to equations 2.71 and 2.72, the 

weights change equations on the output layer and hidden layer then become: 

 

)1()()1( 00 −∆++=+ twitwtw kjppjpkkjkj αηδ                                      (2.77) 

 

)1()()1( −∆++=+ twxtwtw jipi
h

pj
h

ji
h

ji αηδ                (2.78) 

 

where  and  are the weight change values corresponding to the output 

and hidden layers respectively. The momentum parameter 

kjp w∆ jip w∆

α  is usually set to 

positive values less than 1. The use of momentum term can also be optional as 

well as the use of bias term (Freeman and Skapura, 1991). 

 

2.3.2.2.5.5.2 Variable learning rate BP (VLR) algorithm 

In the previous sections, a fixed learning rate was used. When training a neural 

network iteratively, it is more efficient to use an adaptive learning rate (Hines, 

1997; Hagan et al., 1996; Demuth and Beale, 1998; Patnaik et al., 1996). The 

learning rate can be thought of as the size of a step down of the error gradient. If 

very small steps are taken, one is guaranteed to find an error minimum, but this 

may take a very long time. Larger steps may result in unstable learning since one 

may step over a minimum. To speed training and still have stability, a heuristic 

method is used to determine the step size.     

 

1. If training is “went well “(error decreased) then increase the step size. 

ρηη *=    ( )1fρ .                 (2.79) 

 

Thus, the weight update is accepted. 

 

2. If training is “went poor “(error increased) then decrease the step size. 

δηη *=   )1( pδ                 (2.80) 
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Thus, the weight update is discarded. 

Hines (1997) suggested 1.1=ρ , 5.0=δ  while Demuth and Beale (1998) 

suggested these values be 1.05 and 0.7 respectively. Patnaik et al. (1996) did not 

give any specific value for these parameters. 

 

2.3.2.2.5.5.3 Generalized BP (GenerBP) algorithm 

The main reason for problems of the standard backpropagation is due to the 

derivative of the activation function (Ng et al., 1996). When the actual  is 

approaching to either the extreme values, such as 0 or 1, the derivative of the 

activation function having the factor 

pko

)1( pkpk oo − (where  is the actual output 

of the k -th output neuron for the 

pko

p -th pattern) will vanish, and the BP error 

signal will become very small (Ng et al., 1996). Thus the output can be maximally 

wrong without producing a large error signal. The algorithm can be trapped into 

local minima.  Consequently the weight adjustment of the algorithm can be very 

slow or ever suppressed. Therefore a generalization on the derivative of the 

activation function (i.e. logistic) is proposed so as to improve the convergence of 

the learning process by preventing the error signal drop to a very small value. 

 

The error signals for the output layer and hidden layer become now: 

 

b
pkkpkpkpk netfoy /10'00 )))()(( −=δ                  (2.81) 

 

∑= kjpk
bh

pj
h

j
h

pj wnetf 0/1'
))(( δδ                  (2.82) 

  

where the activation function is sigmoid. In this case . For , one gets 

the BP algorithm. The effect of GenerBP is to change the slope of the sigmoid 

function in the two “tail” regions. For , error will be significantly enlarged 

when  will approach a wrong value, the error signals will reflect the true error 

1≥b 1=b

1fb

pko
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( ) more appropriately. This technique was applied to different problems 

including XOR, 3-bit parity and the 5-bit counting problems. 

pkpk oy −

 

2.3.2.2.5.5.4 Quick backpropagation (QBP) algorithm 

This algorithm appears to the one of the fastest algorithm reported in the literature  

(Alexander et al., 1994). Despite the name, quick backpropagation (Patnaik, 1996, 

Alexander et al., 1994) is not necessarily faster than standard BP, although it may 

prove significantly faster for some applications; i.e. multisensor data fusion for a 

single target scenario as detected by Airborne Track While Scan radar (Patnaik, 

1996). 

 

QBP works by making the (typically ill-founded) assumption that the error 

surface is locally quadratic, with the axes of the hyper-ellipsoid surface aligned 

with the weights. If this true, then the minimum of the error surface can be found 

after only a couple of epochs.  

 

QBP is batch-based and it uses the following formula for weight updating  

(Patnaik et al., 1996) 

  

)1(
)()1(

)()( −∆
−−

=∆ tw
tsts

tstω                                        (2.83) 

 

where ,  are current and previous values )(ts )1( −ts wE ∂∂ / . 

The above formula is numerically unstable if  is very close to, equal, or 

greater than . In this case the weight formula becomes: 

)(ts

)1( −ts

 

)1()( 1 −∆=∆ twt αω                                                                                        (2.84) 

 

Where 1α  is the accelerator coefficient. 

On the other hand Alexander (1994) gave proposed the following weight update 

expression: 
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 )()1(
)()1(

)()( tstw
tsts

tst ηω +−∆
−−

=∆                                                          (2.85) 

 

The second term in expression (2.85), a gradient descent term based on the error 

gradient and some learning rate η , is added only when two consecutive error 

gradients have the same sign; otherwise it is omitted. Initialization of the learning 

process is accomplished by considering only the second term, because the first 

term makes no contributions during the first iteration. 

 

In hydrology, i.e., the standard BP technique remains the most popular. Other 

techniques have been sparsely applied in this field, e.g. conjugate gradient 

method, Levemberg – Marquandt method (Deo and Thirumalaiah, 2000; ASCE, 

Committee Task, 2000 a; Thirumalaiah and Deo, 2000; Reddy and Wilamoski, 

2000) while some others have not even probably been tried within the same field, 

specifically for problems of data interpolation (infilling). With regards to the 

hydrological data interpolation techniques, the literature of ANNs remains very 

sparse (Panu, 2000); if ANNs have been used, it ‘s mostly with the BP learning 

law.         

 

2.3.2.2.6 Strengths and limitations of neural networks 

The strengths have been summarized by ASCE Committee Task, 2000 a. Some of 

the features of neural networks that can be usefully employed in hydrology are: 

(a) neural networks are useful when the underlying problem is either poorly 

defined or not clearly understood and where information is little (missing 

hydrological data), (b) their application do not require a prior knowledge of the 

underlying process, (c) they are advantageous when specific solutions do not exist 

to the problem posed, (d) they can be able to recognize the relationship between 

the input and the output variables without explicit physical consideration, (e) they 

possess other inherent information-processing characteristics and once trained are 

easy to use. 
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The particular advantage of the ANNs even if the “exact” relationship between 

sets of inputs and outputs data is unknown but is acknowledged to exist, the 

network can be trained to learn that relationship, requiring no prior underlying 

assumptions (e.g. non-linear versus linear versus multiple regression) as in 

conventional methods (Minns and Hall, 1996; Muttiah et al., 1998; Corne et al., 

1998; Abrahart et al., 1999). ANNs seek to learn patterns not to replicate the 

physical processes in transforming input to output (Minns and Hall, 1996) and 

they regarded as ultimate black-box models (Agarwal and Singh, 2001; Minns and 

and Hall, 1996). As opposed to conventional methods, the ANNs are thought to 

have the ability to cope with the missing data (limited data) and perhaps mostly 

important are able to generalize a relationship from the small subsets of data 

whilst remaining relatively robust in the presence of noisy or missing inputs, thus 

they can learn in response to changing environment (Dawson and Wilby, 1998; 

Corne et al., 1998; ASCE Committee Task, 2000 a). The neural networks have the 

capabilities of approximating functions and they are regarded as a generalization 

of regression analysis (Wostern et al., 2001). In situations where information is 

needed only at specific sites in a river basin and where adequate meteorological or 

topographic information are not available, specific and simple neural networks 

seem alternatives to apply (Deo and Thirumalaiah, 2000).   

 

Although several studies indicate that ANNs have proven to be potentially useful 

tools in hydrology, their disadvantages should not be ignored (ASCE Committee 

Task, 2000 b). The success of an ANN application depends both on the quality 

and the quantity of data available. This requirement cannot go back far enough. 

Quite often the requisite data is not available and has to be generated by other 

means, such as another well-tested model. Even when long historic records are 

available, one is not certain that conditions remain homogeneous over the time 

span. Therefore, data sets recorded over a period that is relatively stable and 

unaffected by human activities are desirable. Yet another limitation of ANNs is in 

the lack of physical concepts and relations. The fact that there is no standardized 

way of selecting network architecture also received criticism. The choice of 

network archtecture, training algorithm, and definition are usually determined by 
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the user’s experience and preference, rather than the physical aspect of the 

problem. Despite these shortcomings, ANNs remain greatly used in hydrology 

and resources related fields. 

 

2.4 MODEL PEFORMANCE EVALUATION CRITERIA 

It is the objective of the application of models for interpolating (infilling) 

hydrological data gaps to achieve optimum agreement between computed and 

observed data. The optimum should be specified by some criteria, which have to 

be formulated in mathematical terms and quantified with the aid of the relevant 

data. The criteria are chosen according to their suitability to a given study 

(Sajikumar and Thanveswara, 1999). 

 

To evaluate the adequacy of the proposed models or techniques (i.e. EM and 

ANNs) as given previously, the evaluation of the models should be measured 

analytically and related to stable statistics. There are several model criteria for 

assessing the performance of the models. Several hydrological evaluation criteria 

available in the literature are applied in hydrology modeling (Panu et al., 2000; 

Agarwal and Singh, 2001; Hu et al., 2000; Gyau-Boaye and Schultz, 1994). Those 

criteria include the following: Transinformation (T), ratio between T and H 

( ),  (difference of marginal entropies), Mean Square Error (MSE), 

volumetric error (VE), relative mean square error (RME). 

HTR / D

 

(i) Transinformation (T); Conditional entropy ; ratio  (of 

o ); (difference of marginal entropies)                                                     

)/( YXH HTR /

TYXT =),(  t HXH =)( D

 

)1ln(
2
1),( 2RYXT −−=                                   (2.86) 

 

 

),()()/( YXTXHYXH −=                                                                           (2.87) 
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H
TR HT =/                                           (2.88) 

 

)()( XHYHD −=                                                                                          (2.89) 

 

cccompcc HHHd /)((%)Re −=                                                                        (2.90) 

where  and  are entropy values before and after infilling the data series. ccH compH

 

In the above equations, X and Y are the observed and simulated values 

respectively. R is the usual correlation coefficient of X and Y. Formula (2.86) is 

better used when models have to be compared on the same set of data or same 

catchment (Amorocho and Espildora, 1973; Chapman, 1985; Singh and 

Fiorentino, 1992). The higher the value of , the better the model. 

Expression (2.87) can be used for assessing the performance of a given simulation 

model in terms of the degree of accuracy in terms of its predictions. Formula 

(2.88) can be used for evaluating models applied to different catchment areas 

(Chapman, 1985). The difference in expression (2.89) was proposed as a criterion 

for measuring the performance of models (Chapman, 1985); thus a big difference 

is interpreted as failure of the model to predict flow extremes (minima or 

maxima). On the other hand, a good model will have a very small difference. 

(Panu, 1992) defined equation (2.90) as the reduction in uncertainty at the subject 

station before and after infilling the data series.  

),( YXT
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MSE is simply defined by (Agarwal and Singh, 2001) as the Root Mean Square 

Error (RMSE). The mean square error (MSE) shows the measure of mean residual 

variance summed over the given period (e.g., Argawal and Singh, 2001; 

Sajikumar and Thandavewera, 1999).  
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This is the absolute prediction error. 
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A value of RME near zero implies that the model is providing a good estimate of 

the missing values (Panu et al., 2000). A higher relative error is indicative of 

greater deviation from the observed and vice versa. 

 

(iv) A scatter plot of the simulated versus observed (Sajikumar and 

Thandavewera, 1999; Stephenson, 2002; etc). 

 

2.5 CONCLUSION OF THE LITERATURE REVIEW 

The problem of missing hydrological data is prevalent in developing countries.  

The proportion of missing values can vary from 0 % to about 65 % in some cases 

(Midgley et al., 1994). In other cases, the records are even inexistent.  For 

application of different data interpolation (infilling) techniques, there is not yet a 

universal agreement on the range of missing data proportion.  

 

Entropy approach is a versatile tool where hydrological information is little 

(limited or missing) since it maximizes the use of information in data, however, 

little it may be (Singh, 1998c). This concept only measures whether all 

transferable information is transferred via a model (e.g. regression, etc.) but it 

does not give any means to transfer information. Entropy can be used to measure 

the information content of a hydrological variable. Entropy is also used to 

measure hydrological model performance. Recall that entropy computations of 

both continuous and discrete distributions lead approximately to the same results. 
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But with the former distributions, the computation is more efficient than with the 

latter ones. Entropy within the context of hydrological data infilling is not yet 

fully exploited.   

 

Within the context of regression methods, recent techniques (EM algorithm and 

its extensions) have been used intensively in problems dealing with missing data. 

From their iterative procedure, these techniques are reputedly known to dealing 

with little information unlike traditional regression methods. However, the 

literature on EM techniques dealing with missing data remains very sparse in 

hydrology and water resources related fields apart from articles published by 

Makhuvha (1997a, 1997 b) and Kuczera (1987).     

 

Generally, the normality assumption of hydrological data makes easier the 

computation of both entropy  (Kristanovic and Singh, 1992a, 1992b; Amorocho 

and Epilsdora, 1973 and others) and EM techniques for univariate and 

multivariate distributions than for other distributions (Makhuva, 1997a, 1997b; 

and others). The transformation of data to follow approximately a normal 

distribution is mostly made by the family of Box Cox transformations. Hence in 

hydrology, it often happens that model parameters are determined from the 

transformed variables not from the original data (Haan, 1977; Yevjevich, 1972; 

Chapman, 1985; Yang and Burn, 1994; etc). Conclusions should be drawn on the 

transformed data if the analytical (numerical) back transformation to original data 

can cause some biasness (McCuen et al., 1990). This remark is more general. 

 

Besides the EM techniques, ANNs have been intensively used in hydrology and 

water resources related fields. These techniques reveal to be powerful tools in 

coping with missing data (or limited information). However, the literature on 

neural networks dealing with missing data remains vary sparse in hydrology apart 

from few researches led for example by Elshorbagy et al. (2000 a, 2000 b); Panu 

et al. (2000); Eshorbagy et al. (2001) and Khalil (2001). In hydrology, model 

parameters for ANNs are sometime computed from the transformed (e.g. scaled, 

standardized) data when using the sigmoid function. The conclusions are, in most 
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cases, made (for untransformed variables) from the parameters computed from the 

transformed variables. In this case, the model efficiency on untransformed 

variables is seen to be satisfactory (i.e. relatively high). However, other authors, in 

their hydrological studies, drew conclusions on model performance with regards 

to transformed data (Minns and Hall, 1996; Deo and Thirumalaiah, 2000; 

Thirumalaiah and Deo, 2000; Salas and Shin, 2000, Abrahart et al., 1999). It is 

strongly believed that these authors thought in terms of bias (e.g. negative values 

or unrealistic results) occurred during the mathematical back transformation to 

original data, although they did not state it. Therefore, in this case the model 

efficiency for transformed data and original (untransformed) data is not thought to 

be the same.   

 

Several model evaluation criteria have been compiled in this chapter. The criteria 

are chosen according to their suitability to a given study (Sajikumar and 

Thanveswara, 1999). 

 

In the light of the above, the literature with regard to the combined concepts of 

entropy, ANNs and EM remains sparse in hydrology, specifically for data 

interpolation (infilling) problems. This study takes the opportunity to combine the 

three concepts and to present merely a methodology for hydrological data 

infilling. The methodology as explained in the next chapter was tested specifically 

to some selected catchments of South Africa. 
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