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Abstract

The work presented extends and contributes to research in mitigating the effects
of turbulence in long-range Free Space Optical (FSO) links using structured modes
of light. While there is an extensive body of existing research in the use of Orbital
Angular Momentum (OAM) modes for mode division multiplexed communication
channels, there has not been an investigation into the use of alternative mode
sets and their resilience to atmospheric turbulence. In this thesis several different
approaches are investigated, each with a corresponding journal publication.

In the research presented it is found that a carefully chosen subset of Hermite-
Gauss modes are significantly more resilient to propagation in turbulence than the
more commonly used Laguerre-Gauss modes. Knowledge of this independence is
exploited in a “modal diversity” proof-of-principle system which is shown to be
effective - an intriguing result which exposes several questions about the propaga-
tion of higher order modes in turbulence. In this research it is also found that the
resilience of vector vortex modes over scalar vortex modes is in fact a misconception
and the choice of mode set for FSO should not be based on its vectorial nature.

Motivated by the predominant effects of beam wander in the previous investiga-
tions, it is shown that turbulence-induced beam wander is neither a memoryless nor
a first order memory system as expected when Taylor’s frozen-turbulence model is
invoked. A more accurate modelling approach for the time-varying nature of turbu-
lence induced beam wander is presented which may be used to design optimised
mode sets and digital signal processing schemes in future FSO systems.
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1
Introduction

COMMUNICATION in the modern era was revolutionised by the invention of the electric
telegraph and subsequently the conventional telephone in 1837 and 1876 respectively.
The use of the copper and microwave radio infrastructure built for telephones even-

tually led to the Internet, which is now ubiquitous. In the 1970s, fibre optic communications
technology began to replace the existing copper back haul infrastructure due to the fact that
it is cheaper, higher bandwidth and longer range [1]. Globally, annual growth rates have
been between approximately 30% and 90% since the advent of the internet [2].

In terms of the access network it is clear that consumers were delighted with the
service provided by copper wires and even today many Internet users still make use
of Asynchronous Digital Subscriber Line (ADSL) instead of Fibre To The Home (FTTH),
which is often unavailable. The cost and complexity of upgrading the historical copper
infrastructure has been a limiting factor in the deployment of FTTH. For instance, in 2017
according the the FTTH/B Global Rankings from the IDATE for FTTH Council in Europe,
the household penetration of FTTH was approximately 17% in the Netherlands, 14% in the
United States and only 4% in South Africa. All other continental African countries have less
than 1% FTTH penetration.

In developing countries such as those in Africa, access to the Internet with bandwidth
sufficient for audio or video streaming, for example, is rare. Africa has 16% of the world’s
population but only 4% of the internet users. This is the basis of the so-called “digital divide”
and is due to various factors both socio-economic and geographic [3]. Using Africa as an
example, the distances between human settlements and existing fibre infrastructure can be
immense and given that the installation of fibre is expensive, bridging this digital divide in
Africa is a significant challenge.

Existing internet infrastructure in Africa, where fibre is not available, is provided by
satellite and terrestrial microwave links. Terrestrial microwave links consist of point-to-point,
line of sight towers typically situated tens of kilometres apart, depending on the terrain. For
instance, on flat ground, two 50 m high towers could be separated by approximately 40 km
before the curvature of the Earth becomes an issue. Carrier-grade microwave technology is
able to sustain throughputs in the region of 10 Gbps per link.

Current satellite connectivity is also limited by high latencies, low bandwidth and high
cost. The fledgling Starlink project by SpaceX, among others, is a commercial attempt to
provide world-wide high-speed, low latency access to Internet via thousands of Low Earth
Orbit (LEO) satellites [4]. The satellites will rely on a high speed Free Space Optical (FSO)
mesh network between each other, but currently require radio for connectivity to the ground.
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Chapter 1 — Introduction

The ground connectivity will likely be on the order of Megabits per second (Mbps) due
to the 550 km altitude. It is unknown whether this technology will be viable for typical
consumers, especially those affected by the digital divide.

FSO communication technology may be a viable technology to provide high bandwidth
over longer distances, without the expense of installing long distance fibre back haul [3,
5, 6]. Existing high-sites and towers that are currently used for microwave links could be
retro-fitted with FSO which can operate in parallel to the existing infrastructure to maintain
high availability albeit at lower capacity. This may be seen as an interim technology to
bridge the gap until higher bandwidth fibre is installed, in the case of large towns and cities.

Unfortunately, existing commercial in-atmosphere FSO solutions have a limited range of
about 2 km at several Gigabits per second (Gbps). It is relatively trivial to increase the band-
width of a short range FSO system by simply harnessing additional degrees of freedom such
as polarisation or wavelength. Approximately one hundred, 10 Gbps (12.5 GHz) channels
are available through off the shelf Dense Wavelength Division Multiplexing (DWDM) com-
ponents [7]. The so-called “capacity crunch”, which is due to the bandwidth of fibre optic
communications fast approaching the non-linear Shannon limit, has spurred research into
the spatial degree of freedom in both fibre and free space [1, 8–11]. There have been multiple
demonstrations of extremely high bandwidth but short range FSO communication links as
well as numerous theoretical investigations using Mode Division Multiplexing (MDM) [6,
11–13].

MDM is a subset of the degree of freedom afforded by Space Division Multiplex-
ing (SDM), where a physical separation of information carrying beams is created through
the use of orthogonal spatial modes which can propagate co-linearly without conventional,
“physical” separation. There are numerous modal bases that may be used for MDM, for
example Laguerre-Gauss (LG) and Hermite-Gauss (HG) modes. Each of these sets has an
infinite number of orthogonal modes, making them attractive for high capacity communica-
tion systems. Unfortunately, the long distance challenge for MDM-FSO has not been solved,
although there have indeed been some promising demonstrations of MDM links outside a
lab environment [14–23].

One of the primary issues with FSO is atmospheric turbulence, which arises from
localised changes in temperature and pressure, causing spatial variations in the refractive
index of the atmosphere [24–27]. This results in what is typically called optical scintillation
and manifests as the random fluctuations (or fading) of the received signal’s intensity. For
MDM, turbulence also distorts the wavefront resulting in crosstalk, thus reducing the link
capacity. It is difficult to mitigate the effects of turbulence and common strategies are to use
signal processing techniques such as Multiple Input Multiple Output (MIMO) and strong
forward error correction as well as adaptive optics [11, 28]. Channel diversity is another
well-known technique where multiple transmitters or receivers are spatially separated to
reduce the probability of errors [29–31].

Almost all of the aforementioned high-speed demonstrations have made use of Orbital
Angular Momentum (OAM) modes. It has been suggested that the use of OAM modes in
isolation do not provide a channel capacity gain but these information theoretical claims
may not be completely accurate as they rely on turbulence models that are not physically
verified for higher order modes [20, 32–35].

The question of whether there are “better” optical modes, for example modes that may
be more resilient to atmospheric turbulence than a standard Gaussian mode, is longstanding
as this would be an effective way to passively increase the range of a FSO link. This is
also an important goal for quantum systems such as Quantum Key Distribution (QKD)
[36]. Typical beams that have been well investigated in turbulence are OAM or LG modes,
Bessel-Gauss modes and also vector modes with spatially varying polarisation, with varying
degrees of success [37–41]. In general it has been found that higher order modes are indeed
more resilient than Gaussian modes [38]. In the presence of a restricted aperture, LG (often
colloquially referred to as OAM) modes have a larger information capacity than HG modes
[42], but if this is not the case then HG modes are a promising candidate as they are robust
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against lateral displacements (or beam wander) and angle of arrival aberrations [35, 43–45].
The range and capacity of FSO links are inextricably linked. While there has been

much work in increasing the bandwidth of FSO links, there has been very little work in
increasing their range, which is critical to their versatility. The focus of this PhD is therefore
on increasing the range of free space optical communication links. As this is an extremely
large field, this work is focused on the physical aspects of a FSO link rather than digital
techniques.

This thesis is structured into chapters that individually address the research questions
in Sec. 1.1 below. There is some overlap in the introductions to each chapter to provide
context for the work within. In Chapter 2, a broad background of FSO is provided in
order to supplement the readers understanding of subsequent chapters, which are largely
self contained due to the fact that they are based on publications. General topics such as
spatial modes of light, atmospheric attenuation and atmospheric turbulence are summarised.
Chapter 7 provides a summary and conclusions of the findings present in this thesis and
suggests some future avenues of research.

1.1 Research Question and Contributions

The ability to achieve more robust FSO communication “passively” (rather, optically), before
the use of DSP, MIMO, FEC and other digital techniques, would be highly beneficial. Firstly,
lower error rates could be achieved, which is especially important to ultra high bit-rate
communication. At multi-terabit bit-rates, which is the current state-of-the-art for a single
optical channel, digital processing resources are an extremely valuable and scarce resource
[1]. As a result, it is not always possible to implement robust error correction that is capable
of operating in real-time, for instance. Secondly, if extremely high speed is not a priority, the
range of a link can be increased within similar error margins. To this end, the overarching
question driving this PhD research is as follows:

How can spatial modes of light be used to improve the resilience of laser-based free-space optical
communication to atmospheric turbulence?

The research is focused on several high-impact sub-questions, each of which forms part of
the overall contribution of the thesis.

1. Is there a specific mode set that is more robust than other sets in atmospheric turbulence?
There are numerous sets of modes that can be used for FSO communications. LG
modes are the most widely used, probably due to the ease with which they can be
created and detected for MDM. HG modes have not been as rigorously studied in
FSO communications, but due to their symmetry we hypothesised that they should
be more robust to beam wander than LG modes. It was found that this is indeed
the case and the results have published and details of the research can be found in
Chapter 3 [35].

2. Are vector modes more resilient to atmospheric turbulence than scalar modes?
In existing literature it is commonly implied that so-called vector vortex modes (modes
with a spatially varying polarisation) are more robust to atmospheric turbulence
aberrations than their scalar counterparts (modes with uniform polarisation). Only
weak arguments on the topic have been put forward, however, if true, vector modes
would be an excellent way to increase the range of FSO links. In light of this, we have
shown that there is in fact no significant difference between the two types of modes in
atmospheric turbulence insofar as modal crosstalk is concerned, and the publication
of this result has been highly cited so far [40, 46]. This work is described in Chapter 4.
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3. Given that HG modes are more robust than LG modes in turbulence, can this independence be
used to achieve “modal diversity”, without the conventionally required r0 physical separation
of the co-propagating beams?
Since the wavefronts of HG and LG beams are significantly different, when they co-
propagate through turbulence we hypothesise that they will experience independent
aberrations. If the two beams do in fact experience independent aberrations then
there will be a diversity gain, which will manifest as an improvement in Bit Error
Rate (BER). One consequence of this would be significantly more robust FSO systems
in the same form-factor as existing systems; no additional apertures are required for
“modal diversity” as opposed to standard “spatial diversity” schemes. This hypothesis
was tested and shown to be feasible with details in Chapter 5 [47].

4. Several of the conclusions drawn from the previous research questions can be attributed to
the effects of turbulence-induced beam wander. Existing models for beam wander assume a
memoryless random system. Is there a more accurate model for the time-varying nature of
beam wander?
The dynamics of beam wander can be used to explain the difference in propagation
performance of HG and LG modes in turbulence. In addition, if beam wander is
a memory process, the dynamics can be used to explain the slow-fading, “bursti-
ness” of the FSO channel - one of the main reasons why long distance, high speed
communications is so challenging.
In Chapter 6, it is found that existing memoryless, or single order memory mod-
els brought about by Taylor’s frozen turbulence hypothesis for beam wander are
insufficient. A more accurate memory modelling approach for turbulence-induced
beam wander is presented based on experimental measurements. This model may
be useful in developing optimised burst error correcting codes and perhaps even
less computationally complex diversity schemes and MIMO. The work has been
submitted for publication in The Journal of Lightwave Technology.

4



C
H

A
P

T
E

R

2
Background

THIS chapter provides a general background on Free Space Optical (FSO) communi-
cation systems, as well as some optical theory that is applicable to this thesis. The
focus is on the physical aspects of the system rather than electronics, communication

theory and signal processing. In subsequent chapters, elements of this background may be
repeated and sometimes extended where necessary.

A typical Single Input Single Output (SISO) free-space optical communication system is
illustrated in Fig. 2.1. An intensity modulated beam produced by a laser diode is expanded
to a size so that beam divergence is minimised. After some distance, a large receive aperture
collects as much light as possible and a telescope arrangement is used to reduce the size of
the beam for detection by a photodiode. In essence, the intensity of the received signal with
time, y(t), in this setup can be expressed mathematically as

y(t) = x(t)
Signal

∗[ hd(t)
Divergence

+ ha(t)
Attenuation

+ ht(t)
Fading

] + n(t)
Noise

, (2.1)

where x(t) is an arbitrary transmitted signal. The channel response (hx) factors represent
beam divergence, attenuation and fading, which will be described later. The noise term,
n(t), may be assumed to be Additive White Gaussian Noise (AWGN), but realistically is
made up of noise from the transmit and receive electronics as well as noise from stray light
interference. While this model appears simple, there are numerous trade-offs and issues
associated with each term and indeed each component of the system - as expected in any
complex system.

The beam produced by the laser diode can be structured optically to attain characteristics
that suit the design of the FSO communication system. The physical properties of an optical
beam have a significant impact on its propagation characteristics. As such, the various
channel response factors in Eq. 2.1 strongly depend on this initial structuring, forming the
basis of the contributions of this thesis. In Sec. 2.1, some introductory theory of optical
modes and their propagation characteristics is provided.

When a laser beam propagates through the atmosphere, it is attenuated by absorption
and scattering. The transmitted beam will also diverge, and since the receiver is of finite size,
the detected intensity will be reduced if the size of the beam at the receiver is larger or not
centred on the aperture. These attenuation effects are relatively constant and mainly depend
on the initial alignment as well as the weather, which typically changes quite slowly, and
can be largely mitigated by careful selection of wavelength and by increasing the transmit
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Figure 2.1: Simplified schematic of a typical FSO link. The Rayleigh range is labelled as zR
and a telescope arrangement is used at the transmitter and receiver. A turbulence phase
screen, described in Sec. 2.3, is illustrated at the center of the link.

power (or intensity), within reason. Careful design of transmit and receive aperture sizes, as
well as tracking systems to mitigate the effects of building sway, for example, are important
engineering problems [48]. Atmospheric attenuation due to absorption and scattering is
described in Sec. 2.2, after which these issues will not be discussed further as they are not
the focus of this research.

A more severe source of attenuation in long distance links is atmospheric turbulence,
described in Sec. 2.3. Random fluctuations in the atmosphere cause wandering and scintilla-
tion of the beam which manifests as signal fading at the receiver. Typical solutions to the
turbulence issue are adaptive optics, which are often prohibitively expensive and complex
signal processing.

Multiple Input Multiple Output (MIMO) based FSO systems that make use of Mode
Division Multiplexing (MDM), which is a subset of Space Division Multiplexing (SDM),
are largely similar to their SISO counterparts in terms of attenuation, but respond very
differently to misalignment and turbulence. MDM uses orthogonal spatial modes of light
to create multiple separate channels that propagate co-linearly, with Orbital Angular Mo-
mentum (OAM) modes often being the mode of choice due to their ease of use [8, 11]. In
theory, there are an infinite number of orthogonal spatial modes, but in practise their use is
not feasible.

Extremely high bandwidth systems have been successfully demonstrated. One of the
first high capacity demonstrations was in 2011 over 1 m using four OAM modes and both
polarisations at 1.4 Tbps [49], and soon after, by combining 24 OAM modes with Wavelength
Division Multiplexing (WDM), just over 1 Pbps has been achieved [50]. To date, almost all
high capacity demonstrations are over very short distances in lab environments.

The reason for this is that spatial modes are extremely susceptible to aberrations (from
atmospheric turbulence, for instance), which degrade their orthogonality. The detection of
optical modes is also difficult, and alignment is critical. Both of these effects lead to crosstalk
between channels which must be mitigated using signal processing, if it cannot be done
optically. Clearly if a set of orthogonal modes is more robust to these effects, they would be
highly desirable.

2.1 Spatial Modes of Light

From Maxwell’s equations, electromagnetic fields in free space, such as laser beams, can be
described by the so-called Helmholtz equation, given by

[∇2 + n2k2]E = 0, (2.2)

for vector electric fields, E. Here, k = (2π)/λ is the wave number in vacuum and n is the
refractive index of the medium in which the field propagates, where n = 1 in a vacuum. The
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Figure 2.2: Left: The propagation of a Gaussian beam with the beam waist (with radius ω0)
in the centre. Right: An intensity profile of a Gaussian beam indicating the approximate
position of the beam radius, w. The red line above the profile indicates the amplitude of the
beam, |U|, and is the square root of the intensity.

wavelength is given by λ and for visible and infrared wavelengths (for example between
400 and 1600 nm) is on the order of hundreds of terahertz. In the case of scalar fields where
the electric and magnetic components of the field have similar directions at all points in
space (i.e. a uniform polarisation), we treat the electric field as a scalar field, U, and call this
the scalar Helmholtz equation:

[∇2 + n2k2]U(s, z) = 0, (2.3)

where s refers to the transverse coordinates which can be Cartesian where s , (x, y) or
cylindrical where s , (r, φ) and z refers to the propagation direction of the field. Here
we have separated the temporal component from the field and ignored it as we are only
interested in its spatial characteristics.

Solutions to the Helmholtz equation are often referred to as modes. There are many
solutions to the equation, typically characterised by the choice of coordinate system and
boundary conditions. In general, it is convenient to express solutions after making the
so-called paraxial approximation, where the scalar field vector is written in the form in
Eq. 2.4. The paraxial approximation assumes that the fields propagation is predominantly
in the z direction, and thus reduces the second order Helmholtz equation into a first order
partial differential equation.

U(s, z) = a(s, z)e−jkz, (2.4)

where a(s, z) is the complex amplitude that describes the mode and e−jkz represents a plane
wave travelling in the positive z direction. Gaussian beams are widely used in free space
optical communications since they are readily produced by laser diodes and are discussed
in Sec. 2.1.1. Higher order beams are described in Sec. 2.1.2 since they have interesting
properties and are the primary subject of this research.

2.1.1 Gaussian Beams

One solution of the paraxial wave equation leads to what is called a Gaussian beam, which
has a Gaussian intensity profile and a uniform phase on the transverse (xy) plane at z = 0.
Figure 2.2 diagrammatically shows many of the variables in this section. The field that
describes a Gaussian beam is

U(r, z) =
1

z + jzR
exp

[
−r2

w2(z)

]
exp

[
−jπr2

λR(z)

]
(2.5)

where z is the distance to the beams focus or “waist” and r is the radial position. There
is no azimuthal (φ) dependence as a Gaussian beam is radially symmetric. The radius of
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the beam is w, which is the point at which the field amplitude drops to 1/e (or intensity
1/e2 ≈ 13.5%) of the axial value, and as a function of z is

w(z) = w0

√
1 +

z2

z2
R

. (2.6)

The Rayleigh range is zR, given by Eq. 2.7, which is a parameter that defines the the form of
the Gaussian beam:

zR =
πw2

0
M2λ

, (2.7)

where the beam propagation factor M2 = 1 for a perfect Gaussian beam. If z� zR then the
beam is collimated, which implies a flat wavefront and the beam radius is approximately
constant. If z� zR then the beam is diverging, which implies a spherical wavefront with a
radius of curvature R(z) ≈ z. The radius of curvature of the wavefront as a function of z is
more precisely defined as

R(z) = z

(
1 +

z2
R

z2

)
. (2.8)

In long distance FSO, it is unlikely that it is possible to operate close to the Rayleigh range
(i.e. when z � zr), and so the radius of the beam can be approximated as a cone with
half-angle, θ, in radians as

θ ≈ M2λ

πw0
, (2.9)

which results in the beam radius

w(z) = z tan
(

M2λ

πw0

)
. (2.10)

A pertinent question for any optical system with apertures is how much power is collected
by a certain aperture. In reality, since we use 1/e2 for the definition of the beam waist, an
aperture must usually be slightly bigger than the waist at the aperture. As a rule of thumb,
for 99% collection efficiency, the aperture radius, r = 1.52w(z). Factors for 95% and 90% are
1.22 and 1.07 respectively. The general calculation for the fractional power is given by

P(r, z)
P0

= 1− e−2r2/w2(z) (2.11)

Most of the equations given in this section can be used as approximations for higher order
beams as well - the M2 factor should be adjusted accordingly. The obvious exception is the
power through an aperture. Beams such as Laguerre-Gauss (LG) beams have a ring-like
intensity structure and so Eq. 2.11 would be a poor estimate, for example.

2.1.2 Higher Order Beams

The higher order solution to the paraxial wave equation in cylindrical coordinates is called a
LG mode and in Cartesian coordinates is called a Hermite-Gauss (HG) mode, with examples
of the mode intensity and phase in Fig. 2.3 [51, 52]. The modes within each of these sets
are orthogonal to each other, making them useful for multiplexing. When the beams are
generated using a hologram or Spatial Light Modulator (SLM) we encode the modes at
z = 0, resulting in Eqs. 2.12 and 2.13 respectively [53, 54].

ULG
`,p (r, φ) = CLG

`,p

(
r
√

2
w0

)|`|
L|`|p

(
2r2

w2
0

)
exp

(
− r2

w2
0

)
exp(−i`φ) (2.12)
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Figure 2.3: Examples of LG and HG modes showing intensity (amplitude squared) and
phase. The phase colourmap of the LG modes represents a 0 to 2π phase change (blue to
yellow) and a 0 and π for the HG modes (blue and yellow). The intensity colourmap is 0 to
1 (blue to yellow).

where ` and p are the mode indices, CLG
`p is a normalisation constant and L|`|p (·) is the

generalised Laguerre polynomial and

UHG
n,m(x, y) = CHG

n,m Hn

(√
2 x

w0

)
Hm

(√
2 y

w0

)
exp

(
− x2 + y2

w2
0

)
(2.13)

where n and m are the mode indices, CHG
nm is a normalisation constant and Hn(·) and Hm(·)

are Hermite polynomials of order n and m respectively. The normalisation constants for LG
and HG modes are given by Eqs. 2.14 and 2.15, respectively.

CLG
`,p =

√
2p!

π(p + |`|)! (2.14)

CHG
n,m =

1
ω0

√
2(1−n−m)

πn!m!
(2.15)

There are numerous other higher order modes but they are not considered in this research.
Two common examples are Ince-Gauss modes (elliptical coordinates) and Bessel-Gauss
modes (cylindrical coordinates). The so-called OAM modes are in fact a subset of LG modes
with p = 0 [55].

The propagation of LG and HG modes is similar to Gaussian modes except that the
beam propagation factor, M2, is different and depends on the order of the mode. Higher
order modes expand faster with propagation distance than those with lower orders, and
so the size of the transmit and receive apertures of a system must be carefully considered.
The M2 values of HG and LG beams are simply M2 = n + m + 1 = 2p + |`|+ 1 respectively.
The beam waist can be calculated using Eqs. 2.6 and 2.7, but only in the case that the beam
radius is defined using the second moment of the intensity, which is called the D4σ method,
which results in 1/e2 for a Gaussian beam. Clearly, the M2 factor has a direct influence on
how rapidly a beam diverges and so for higher-order modes where M2 > 1, this must be
considered.

It has been shown that the number of modes that is supported by a link is given by
the product of the Fresnel number of the transmitter and receiver [56, 57]. For identical
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apertures separated by L with diameter D on both sides of a link, the highest order modes
are governed by the limit

M2 ≤ πD2

4λL
. (2.16)

2.1.3 Detection of Higher Order Modes

Gaussian beams in an FSO system can be detecting simply by using a photodiode. Their
intensity profile is such that, when focused, it forms a point of light which fills a photodiode
well. An LG beam on the other hand has a ring shape even when focused, so it is likely
that the photodiode will be in the dark region at the centre of the ring. In an MDM
system, multiple modes are used which must be separated and directed to individual
photodiodes. The technique to do this is called Modal Decomposition (MD). There are
numerous approaches to MD and it is the subject of much research and development [58–65],
but a first-principles approach using holograms will be explained in this section as it is the
approach that is used for the work presented in later chapters [66, 67].

Any unknown field, U(s), can be written in terms of an ortho-normal basis set, Ψn(s),

U(s) =
∞

∑
n=1

cnΨn(s) =
∞

∑
n=1
|cn|eiφn Ψn(s), (2.17)

with complex weights cn = |cn|eiφn where |cn|2 is the power in mode Ψn(s) and φn is
the inter-modal phase, satisfying ∑∞

n=1 |cn|2 = 1. In typical communication systems, the
inter-modal phase is not required, simplifying the MD requirements. Equation 2.17 can
ideally be thought of as the sum of several multiplexed modes, each of which is a separate
communication channel.

The unknown modal coefficients, cn, which carry the modulated information, can be
found by the inner product

cn = 〈Ψn|U〉 =
∫

Ψ∗n(s)U(s)ds, (2.18)

where we have exploited the ortho-normality of the basis, namely

〈Ψn|Ψm〉 =
∫

Ψ∗n(s)Ψm(s)ds = δnm. (2.19)

Note that Dirac notation, borrowed from quantum optics, has been used for the inner
products. The calculation of Eq. 2.19 may be achieved experimentally using a lens to execute
an optical Fourier transform, F . Accordingly we apply the convolution theorem (using k as
an auxiliary variable)

F{ f (s)g(s)} = F(k) ∗ G(k) =
∫

F(k)G(s− k)dk (2.20)

to the product of the incoming field modulated with a transmission function (for example a
hologram), Tn(s), that is the conjugate of the basis function, namely,

W0(s) = Tn(s)U(s) = Ψ∗n(s)U(s), (2.21)

to find the new field at the focal plane of the lens as

W f (s) = A0 F{W0(s)} = A0

∫
Ψ∗n(k)U(s− k)dk (2.22)

Here A0 = exp(i4π f /λ)/(iλ f ) where f is the focal length of the lens and λ the wavelength
of the light. If we set s = 0, which experimentally is the on-axis intensity in the Fourier
plane, then Eq. (2.22) becomes

W f (0) = A0

∫
Ψ∗n(k)U(k)dk (2.23)
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Figure 2.4: Example atmospheric transmittance of different wavelengths due to molecular
absorption in the atmosphere according to the LOWTRAN7 model [69].

which is the desired inner product of Eq. (2.18). Therefore we can find our modal weightings
from an intensity measurement of the on axis light

|W f (0)|2 = |A0|2| 〈Ψn|U〉 |2 = |cn|2. (2.24)

Practically, the transmission functions are encoded onto Spatial Light Modulators (SLMs)
which can be thought of as digital holograms. Usually there is more than one mode of
interest in a system. In order to detect all of the modes, several holograms can be cycled
on the SLM in a time division multiplexed manner, or alternatively they can all be added
together with different grating functions so that the “spots” that represent each mode can
be spatially separated. A photodiode can then be placed at the appropriate location at the
focal length of the MD lens.

There exists a significant challenge in the placement of these photodiodes. The on-axis
intensity must be measured precisely, and not any of the surrounding light, otherwise
crosstalk will manifest. A simple approach is to ensure that the size of the photodiodes is
sufficiently small. Alternatively, the spots can be carefully aligned with the tips of Single
Mode Fibres (SMFs) [68].

2.2 Atmospheric Attenuation

Beam divergence is a critical factor in FSO communication where the Signal to Noise
Ratio (SNR) is important for high capacity. Only a limited amount of light can be collected
by the receive aperture, and so only a fraction of the transmitted light can be detected if
the beam has expanded beyond the size of the aperture. This is a significant but almost
unavoidable issue for long range links, for example Earth to Satellite or even terrestrial links
over multiple kilometre distances. The only way to avoid this problem is to use lower order
modes and to carefully design the optics of the system to capture as much light as possible.

As we are interested in atmospheric FSO, there is the additional issue of attenuation due
to absorption and scattering as well as atmospheric turbulence which is described in detail
in Sec. 2.3 as it is the focus of this research.

Figure 2.4 shows the typical atmospheric absorption of various wavelengths due to the
different molecules present in the atmosphere. The precise amount of attenuation depends
on the concentrations of these molecules, notably water vapour in the visible and Near
Infrared (NIR) bands, which varies depending on the weather, for instance. In addition to
absorption by molecules, there is scattering which is caused by small particles such as dust,
pollution and water droplets (rain, fog, snow, etc.). There is also an element of scattering by
molecules and absorption by particles. The Beer-Lambert law enables us to calculate the
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overall atmospheric transmission loss taking all of these effects into account [48, 70]. This
loss per unit length is called “specific attenuation” as is given by

β(λ) =
10
L

log
(

P0

PR

)
=

10
L

log
(

eγ(λ)L
)

[dB/km], (2.25)

where
γ(λ) = αm(λ) + αa(λ) + βm(λ) + βa(λ), (2.26)

which is called the atmospheric attenuation coefficient, L is the link length, P0 is the transmit
power and PR is the received power. The first two terms in Eq. 2.26 represent the molecular
and aerosol (particles) absorption coefficients, and the second two terms represent the
respective scattering coefficients.

There are numerous models that describe these coefficients [70]. For common telecom-
munication wavelengths such as 850 nm and 1550 nm, where opto-electronic devices are
readily available, the specific attenuation per kilometre is 0.41 dB and 0.01 dB respectively
[70]. However, scattering clearly depends on the visibility (clarity) of the atmosphere and
so rules of thumb should not be relied on. From Fig. 2.4, which is for LOWTRAN absorp-
tion/transmittance only, the transmittance of a mid-latitude summer, 1 km path at 850 nm
is 0.988 and at 1550 nm is 0.999. If scattering is included using MODTRAN (30

◦
C, 16 km

visibility, which is good), the transmittance is 0.880 and 0.942 respectively - a significant
difference. Over 10 km using MODTRAN, the transmittance’s for 850 nm and 1550 nm are
0.764 and 0.895 respectively [69, 71].

Clearly, the choice of wavelength is a critical factor for a FSO communication system.
This is largely an engineering problem and is therefore not discussed in detail in this work.
While it may be tempting to increase the transmit power and use a wavelength that is not
significantly attenuated by the atmosphere, energy consumption and eye safety must be
taken into account.

2.3 Atmospheric Turbulence

When a laser beam propagates through the atmosphere it encounters spatially and tem-
porally varying refractive indices, mainly due to random temperature variations and con-
vective processes. This randomly aberrates the beam wavefront. The Kolmogorov model
for turbulent flow is the basis for many contemporary theories of turbulence and is able to
relate these temperature fluctuations to refractive index fluctuations [72]. The average size
of the turbulent cells are specified by a so-called inner scale, l0, which is typically on the
order of millimetres and an outer scale, L0, which is on the order of meters [73]. Kolmogorov
turbulence assumes l0 = 0 and L0 = ∞ which simplifies the model significantly.

Models of turbulence typically only provide statistical averages for the random varia-
tions of the atmosphere, but in most cases this is sufficient. The power spectral density of
the refractive index fluctuations given by the Kolmogorov model is described by

ΦK
n (κ) = 0.033C2

n κ−11/3 for 1/L0�κ�1/l0, (2.27)

where κ = 2π( fx · x̂ + fy · ŷ) is the angular spatial frequency vector and C2
n is the refractive

index structure parameter, which is essentially a measure of the strength of the refractive
index fluctuations. Values of C2

n vary from 10−17 m−2/3 in “weak” turbulence and up to
about 10−13 m−2/3 in “strong” turbulence [73]. It is natural to assume that long distance
propagation in weak turbulence may be “just as bad” as short propagation in strong turbu-
lence. This assumption is indeed true and so the strength of turbulence is in fact denoted by
a different parameter, the Rytov variance, which is given by

σ2
R = 1.23C2

nk7/6L11/6 (2.28)
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Figure 2.5: Example Kolmogorov turbulence screens with varying strength. A raw tur-
bulence screen is shown in (a), however, when the screen is used on a digital hologram a
grating is applied. Frames (b) to (d) show turbulence screens from weak to strong with
gratings applied.

for plane wave propagation in Kolmogorov turbulence. As usual, k is the wave number
given in Sec. 2.1 and L is the propagation distance in meters. Typically, weak fluctuations in
turbulence are when σ2

R � 1, moderate fluctuations when σ2
R ≈ 1 and strong fluctuations

when σ2
R � 1.

There are several more accurate turbulence power spectrum models with increasing
complexity, for example the Hill power spectrum (which has no analytical solution), the
Tatarskii power spectrum and the von Kármán power spectrum, which is [73]

ΦvK
n (κ, l0, L0) = 0.033C2

n
exp (−κ2/k2

m)

(κ2 + k2
0)

11/6
for 0≤κ<∞, (2.29)

where km = 5.92/l0 and k0 = 2π/L0. The current most accurate power spectrum is called
the Modified Atmospheric Spectrum, and builds from the von Kármán and Hill spectrums:

ΦM
n (κ, l0, L0) = 0.033C2

n

[
1 + 1.802

(
κ

kl

)
− 0.254

(
κ

kl

)7/6
]

exp (−κ2/k2
l )

(κ2 + k2
0)

11/6
for 0≤κ<∞,

(2.30)
where kl = 3.3/l0. We can use these power spectrums to generate individual snapshots of
turbulence in the form of phase screens with appropriate statistics, with examples shown
in Fig. 2.5 [74]. These phase screens can be encoded as holograms for use experimentally.
Several well-known methods exist to generate these phase screens and so it will not be
discussed here [75].

The Fried parameter, r0, commonly known as the atmospheric coherence length, is a
useful alternative to C2

n as is given by Eq. 2.31 for a plane wave in Kolmogorov turbulence
[76]:

r0 = 1.68
(

C2
nLk2

)−3/5
(2.31)

and more generally for a plane wave in unspecified turbulence,

r0 =

(
0.423k2

∫ L

0
C2

n(z)dz
)−3/5

. (2.32)

The atmospheric coherence length is a radius after which the atmospheric turbulence
becomes uncorrelated. In other words, in an FSO system, two beams separated by at least r0
meters will experience uncorrelated fading - an excellent opportunity for channel diversity.

Finally, a common but less descriptive parameter to specify turbulence strength is the
Strehl Ratio (SR), which is the ratio of the average on-axis beam intensity with, 〈I(0)〉,
and without, I0(0), turbulence and is given by Eq. 2.33 generally and for a plane wave in
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Chapter 2 — Background

Figure 2.6: Example OAM crosstalk for no turbulence (SR = 1.0), weak turbulence (SR =
0.7) and strong turbulence (SR = 0.1) showing increasing crosstalk with turbulence strength.
The crosstalk normalisation for the higher order modes (for example ` = ±2) is inaccurate.

Kolmogorov turbulence.

SR =
〈I(0)〉
I0(0)

≈ 1
[1 + (D/r0)5/3]6/5 , (2.33)

where D is the aperture diameter. In summary, turbulence leads to scintillation, beam
wandering and other effects, and is the reason why the on-axis beam intensity, I(0), is
reduced on average. The scintillation index, σ2

I , is another common parameter similar to the
SR, but is useful where knowledge of the intensity in the absence of turbulence is unknown.

σ2
I =
〈I2(0)〉 − 〈I(0)〉2

〈I(0)〉2 =
〈I2(0)〉
〈I(0)〉2 − 1 (2.34)

Similarly to the Rytov index, the scintillation index may be used to roughly characterise
turbulence strength. Weak turbulence is when σ2

I < 0.3, medium is when σ2
I ≈ 1 and strong

is defined as σ2
I � 1. For weak fluctuations where σ2

R � 1, σ2
R = σ2

I .

In an MDM system, the effect of turbulence not only causes attenuation of individual
modes, an extension of the SR called Mode Dependent Loss (MDL), but also crosstalk
between modes due to aberration of the wavefronts. An example measurement of this for
OAM modes ` = −2 to 2 is shown in Fig. 2.6. The precise mechanism and modelling of how
turbulence induces crosstalk is very complex and not well studied but will be discussed
further in Sec. 2.3.2.

For the intensity reduction of the individual modes, MDL, we use the intensity of
individual modes, Si, instead of the overall intensity of the beam, I,

MDLi = 1− Si
Si,0

, (2.35)

where Si,0 is the intensity of mode i in the absence of turbulence. Typically, the energy in the
individual modes is spread to neighbouring modes [9]. This mode crosstalk with respect to
mode i is defined as the fraction of the total intensity not in mode i:

Ci = 1− Si

∑j Sj
, (2.36)

where ∑j Sj is the sum of the intensities in all the modes, including mode i.
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Chapter 2 — Background

2.3.1 Temporal Effects

Since air is constantly mixing, turbulence effects change with time. It is possible to calculate
a workable bandwidth for the changing turbulence. Using Taylor’s “frozen turbulence”
hypothesis, we can assume that the state of atmospheric turbulence is frozen for a period
of time which changes at the Greenwood frequency and is typically on the order of Hz to
several kHz [77]. Under this assumption, we imagine that the turbulence cells are stationary
and are driven by the wind at a certain velocity. Accordingly, faster wind speed results in a
higher Greenwood frequency.

The tilt Greenwood frequency, fT , describes beam wander, which results from tip and
tilt aberrations due to turbulence.

fT = 0.33D−1/6λ−1 sec1/2 (β)

[∫ L

0
C2

n(z)V
2
Wind(z)dz

]2

, (2.37)

where β is the azimuthal angle of the beam propagation, 0
◦

being horizontal, and VWind(z)
is the wind speed as a function of propagation distance in meters per second. The higher
order aberrations of the beam are included in the Greenwood frequency, fG,

fG = 2.31λ−6/5
[

sec (β)
∫ L

0
C2

n(z)V
5/3
Wind(z)dz

]3/5

. (2.38)

The expression for the Greenwood frequency can be dramatically simplified if we assume a
constant wind speed,

fG = 0.43(VWind/r0). (2.39)

2.3.2 Turbulence Induced Fading Models

Much the same as in radio, the statistics of a signal (a modulated laser beam) propagating
though the atmospheric channel can be modelled stochastically with varying degrees of
accuracy and complexity. There are several models that describe the random fluctuations
of the received intensity, known as fading, of plane and spherical waves in atmospheric
turbulence [73].

The most widely used model for fading is the log-normal model which was derived
based on the first-order Rytov approximation with Probability Distribution Function (PDF)
given by [78, 79],

pI(i) =
1

i
√

2πσ2
I

exp

(
−
[ln(i) + σ2

I /2]2

2σ2
I

)
where i > 0 (2.40)

The log-normal model is inaccurate over long distances and is inappropriate for moderate
to strong turbulence. In strong turbulence conditions a negative exponential distribution
may be used [80],

pI(i) =
1
〈I〉 exp

(
− i
〈I〉

)
where i > 0 (2.41)

where 〈I〉 is the expected (or mean) received intensity. Naturally, there have been efforts
to determine a good model that is suitable under a wide range of turbulence conditions.
The Double Generalised Gamma-Gamma distribution is currently the most accurate fading
model available and relies on the doubly stochastic nature of turbulence on both large and
small scales [81].

There are also some models for higher order modes, but analytical solutions of these
modes are extremely difficult and thus empirical measurements are relied upon [9, 82].
Higher order modes have a wavefront that is not well approximated by a plane wave and
as a result the effect of turbulence on these modes is not well understood. Experimental

15
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results have shown that a Johnson-SB distribution is a good fit for OAM modes [82]. There
has been no work identifying how the parameters of the Johnson-SB distribution map to
standard variables such as C2

n or r0, for example. There has been no work determining
fading distributions for other higher-order mode sets such as the HG or general LG modes.

2.3.3 Turbulence Induced Modal Crosstalk Models

Crosstalk is an important statistic for MDM FSO channels and so it has been studied in
some detail both empirically and analytically for OAM modes [9, 82–84]. The ensemble
average, 〈Pj〉 of the normalised power in an OAM mode specified by `j when mode `i is
transmitted is given by

〈Pj〉 =

1− 1.01
(

D
r0

)5/3
for ∆ = 0

0.142 Γ(∆−5/6)
Γ(∆+11/6)

(
D
r0

)5/3
otherwise

(2.42)

where ∆ = |i − j| and Γ(·) is the gamma function. Equation 2.42 has been verified but
recently was shown to be inaccurate over long distances (1.7 km), probably due to beam
wander [20]. Similar expressions for LG radial modes as well as HG modes do not currently
exist.
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3
The Resilience of Hermite- and
Laguerre-Gauss Modes in Turbulence

This chapter is based on the following publication:

M. A. Cox, L. Maqondo, R. Kara, G. Milione, L. Cheng and A. Forbes, “The Resilience
of Hermite- and Laguerre-Gaussian Modes in Turbulence,” Journal of Lightwave Tech-
nology, vol. 37, no. 16, pp. 3911–3917, Aug. 2019.

The author conceptualised the work, assisted with experimental measurements, anal-
ysed the data and wrote the majority of the paper.

ONE of the primary issues with Free Space Optical (FSO) communication is turbulence,
which results in what is typically called optical scintillation and manifests as the
random fluctuations (or fading) of the received signal’s intensity. For Mode Division

Multiplexing (MDM), turbulence also distorts the wavefront resulting in crosstalk, thus
reducing the link capacity. It is difficult to mitigate the effects of turbulence and common
strategies are to use techniques such as Multiple Input Multiple Output (MIMO) signal
processing, strong forward error correction as well as adaptive optics [11]. Channel diversity
is another usable technique, detailed further in Chap. 5.

The question of whether there are optical modes that are more resilient to atmospheric
turbulence than a standard Gaussian mode is pertinent as this would be an effective way to
passively increase the range of a FSO link. Typical beams that have been well investigated in
turbulence are Orbital Angular Momentum (OAM) or Laguerre-Gauss (LG) modes, Bessel-
Gauss modes and also vector modes with spatially varying polarisation, with varying
degrees of success [37–41]. Specifically, the use of vector vortex modes is investigated in
Chap. 4. In general it has been found that higher order modes are indeed more resilient
than Gaussian modes [38]. In the presence of a restricted aperture, LG (or rather OAM)
modes have a larger information capacity than Hermite-Gauss (HG) modes [42], but if this
is not the case then HG modes are a promising candidate as they are robust against lateral
displacements (or beam wander) [43–45].

Given this observation, assuming no aperture restrictions, are HG modes (or a subset
of HG modes) more resilient than LG modes in atmospheric turbulence and what gains in
terms of propagation distance can be expected? We hypothesise that since the dominant
effect of turbulence is tip/tilt [85], HG modes will indeed be more resilient than LG modes,
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however, it is unknown whether the higher order effects of turbulence will counteract this
gain.

In Sec. 3.1 we provide a summarised background of HG and LG modes, as well as a
convenient, phase-only approximation of an HG mode which we call a Binary Hermite-
Gauss (BHG) mode. Orthogonality is critical to MDM and so we briefly discuss and show
how the BHG modes are not always orthogonal, as one might naively assume. Furthermore,
we provide a short overview of atmospheric turbulence and how it affects the orthogonality
of these mode sets. Due to their different phase structure, it is logical to assume that different
modes will be affected by atmospheric turbulence in different ways. It would be highly
advantageous to an MDM system if a certain set of modes exhibited lower losses or less
crosstalk. An experimental setup and methodology to determine whether (B)HG modes are
“better” than LG modes in these respects is described in Sec. 3.2 with results and discussion
in Sec. 3.3. The chapter is concluded in Sec. 3.4.

3.1 Preliminaries

For the reader’s convenience, we provide a brief background of HG, Binary HG and LG
modes, their orthogonality and how the impact of atmospheric turbulence on the modes is
typically measured.

3.1.1 Laguerre- and Hermite-Gaussian Modes

The higher order solution to the paraxial wave equation in cylindrical coordinates is called a
LG mode and in Cartesian coordinates is called an HG mode, with examples of the mode
intensity and phase in Fig. 3.1. The modes within each of these sets are orthogonal to
each other, making them useful for multiplexing. When the beams are generated with a
Spatial Light Modulator (SLM) we encode the modes at z = 0, resulting in Eqs. 3.1 and 3.2
respectively.

ULG
`,p (r, φ) = CLG

`,p

(
r
√

2
w0

)|`|
L|`|p

(
2r2

w2
0

)
exp

(
− r2

w2
0

)
exp(−i`φ) (3.1)

where ` and p are the mode indices, CLG
`p is a normalisation constant and L|`|p (·) is the

generalised Laguerre polynomial and

UHG
n,m(x, y) = CHG

n,m Hn

(√
2 x

w0

)
Hm

(√
2 y

w0

)
exp

(
− x2 + y2

w2
0

)
(3.2)

where n and m are the mode indices, CHG
nm is a normalisation constant and Hn(·) and Hm(·)

are Hermite polynomials of order n and m respectively.
We can encode HG modes without amplitude (i.e. only phase) information, resulting in

what we call a Binary HG (BHG) mode. A BHG mode has only two phase values (similar
to an HG mode) of 0 and π with the amplitudes constrained to be either 0 or 1. This is
achieved simply using Eq. 3.3:

UBHG
n,m (x, y) =

1
2
+

1
2

sign
[
UHG

n,m(x, y)
]

(3.3)

We consider BHG modes in addition to standard HG modes because they can easily be
created and decomposed with a refractive element. Unfortunately, while LG and HG modes
form an orthonormal basis, the BHG modes are not always orthogonal:

〈UBHG
n,m 〉UBHG

n′ ,m′ =

 0 m 6= m′ and m is even
0 n 6= n′ and n is even
c elsewhere,

(3.4)
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Figure 3.1: Modes used in the experiment, with wavefront to the left and intensity to the
right of each, corresponding to Tab. 3.1. The arrows in the centre indicate the translational
(or rotational) axis where the mode is robust and will still be detected correctly. The HG1

1
mode does not have a robust axis.

where c is some normalisation constant. The HG modes are also not always orthogonal to
BHG modes, as an example, the orthogonality result is an asymmetric matrix when you
keep one index equal to zero, m = 0 or n = 0.

Since the detection system for higher order modes often makes use of a hologram which
works as a matched filter or inner product measurement, the alignment of the incoming beam
onto the hologram is critical. Adaptive optics are effective at reducing Mode Dependent
Loss (MDL), which is the intensity reduction, or fading, of individual modes making up the
beam and mode-crosstalk [86]. This is because adaptive optics, and indeed even a simple
tip/tilt mirror, are able to correct any misalignments in addition to wavefront corrections.

Figure 3.1 shows the phase and intensity of several different LG and HG modes. For
an LG mode to be correctly detected it must be aligned so that the vortex of the mode is
centred on the corresponding phase singularity encoded on the hologram. Any translation
(called tip or tilt) from this overlap will manifest as crosstalk into neighbouring modes,
however, because the beam is radially symmetric, rotation of the beam will not affect the
detection. HG modes are symmetric with respect to a horizontal and/or vertical axis. Unlike
LG modes, rotation of an HG mode will adversely affect the integrity of the measurement,
however, it is clear from the figure that HG modes which are symmetric about only one axis
will be resilient to translation along that axis. For instance, the HG1

0 mode can move left or
right without any detection error whereas the HG1

1 mode must be well aligned similar to
the LG modes.

The completeness property of the LG and HG bases allow us to express any element of
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one basis as a linear combination of elements from the other basis using the transformation
relations in Eqs. 3.5 and 3.6 [87]. Note that here the LG modes have been written in terms of
n and m, which are indices typically used for HG modes. The usual indices can be recovered
as ` = n−m and p = min(n, m).

ULG
n,m(x, y, z) =

N

∑
k=0

ikb(n, m, k)UHG
N−k,k(x, y, z) (3.5)

b(n, m, k) =
[
(N − k)!k!

2Nn!m!

]1/2 1
k

dk

dtk [(1− t)n(1 + t)m]|t=0 (3.6)

where N = n + m = 2p + |`| is the order of the beam. It has been shown that because of
this unitary transformation between all LG and HG modes, there is no capacity benefit
in atmospheric turbulence when the average of the entire basis is considered [88]. This
appears contradictory to the hypothesis presented in this work, however, we propose that a
carefully chosen subset of HG modes is not subject to the work in [88]. In addition, there is
a diversity benefit due to differences in the wavefront of the modes and short-term changes
in atmospheric turbulence [47].

3.1.2 Atmospheric Turbulence

When a laser beam propagates through the atmosphere it encounters spatially and tem-
porally varying refractive indices, mainly due to random temperature variations and con-
vective processes. This randomly aberrates the beams wavefront. The Kolmogorov model
for turbulent flow is the basis for many contemporary theories of turbulence and is able to
relate these temperature fluctuations to refractive index fluctuations [72]. The average size
of the turbulent cells are specified by a so-called inner scale, l0, which is typically on the
order of millimetres and an outer scale, L0, which is on the order of meters [73]. Kolmogorov
turbulence assumes l0 = 0 and L0 = ∞, thus the model’s simplicity.

While models of turbulence typically only provide statistical averages for the random
variations of the atmosphere, in most cases this is sufficient. The power spectral density of
the refractive index fluctuations given by the Kolmogorov model is described by

ΦK
n (κ) = 0.033C2

n κ−11/3 for 1/L0�κ�1/l0, (3.7)

where κ = 2π( fx · x̂ + fy · ŷ) is the angular spatial frequency and C2
n is the refractive index

structure parameter. We can use this to generate individual snapshots of turbulence in the
form of phase screens with appropriate statistics [74]. Instead of C2

n , turbulence strength
is often specified using the Fried parameter [76], commonly known as the atmospheric
coherence length,

r0 = 0.185
(

λ2

C2
n L

)−3/5

(3.8)

where λ is the wavelength and L is the propagation distance. Furthermore, a more general
parameter to specify turbulence strength is the Strehl Ratio (SR), which is the ratio of the
average on-axis beam intensity with, I, and without, I0, turbulence and is given by

SR =
〈I〉
I0
≈ 1

[1 + (D/r0)5/3]6/5 , (3.9)

where D is the aperture diameter. In summary, turbulence leads to scintillation, beam
wandering and other effects, and is the reason why the on-axis beam intensity, I, is reduced
on average. For the intensity reduction of the individual modes (the MDL) we use the
intensity of individual modes, Si, instead of the overall intensity of the beam, I,

MDLi = 1− Si
Si,0

, (3.10)
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Figure 3.2: Modal decomposition setup with sample insets of the holograms used: (a) LG0
1,

(b) HG0
1 and (c) BHG0

1.

where Si,0 is the intensity of mode i in the absence of turbulence. Typically, the energy in the
individual modes is spread to neighbouring modes, as mentioned in the introduction. This
mode crosstalk with respect to mode i is defined as the fraction of the total intensity not in
mode i:

Ci = 1− Si

∑j Sj
, (3.11)

where ∑j Sj is the sum of the intensities in all the modes, including mode i.

3.2 Experimental Setup and Methodology

In order to determine whether the MDL and crosstalk characteristics of HG, BHG and
LG modes is different and ultimately if one mode set performs better than the others in
Kolmogorov turbulence, we use a modal decomposition setup which makes use of a Spatial
Light Modulator (SLM) [66]. The SLM is used to create the required mode, aberrate that
mode using emulated Kolmogorov turbulence, and finally perform a modal decomposition.
The MDL and crosstalk for each set is then calculated.

A diagram of the experimental setup is shown in Fig. 3.2. A 633 nm laser beam from
a Helium-Neon laser is expanded using an objective lens and lens f1. The flat wavefront
from the small central region of the expanded beam is selected using an aperture and is
imaged onto the SLM screen using a 4 f system. A HoloEye Pluto SLM is divided into two
halves, for two separate holograms. The first hologram is used to modulate the incoming
flat beam into the desired mode as well as to add turbulence. The resulting field is imaged
to the second half of the SLM where modal decomposition is performed. A camera is placed
at the focal point of lens f4 to measure the on-axis intensity, which represents Sj in Sec. 3.1.2,
Eqs. 3.10 and 3.11.

For each mode in each set, HG, BHG and LG, modal decomposition was performed
for one hundred random turbulence screens for each Strehl Ratio from 1.0 (no turbulence)
to 0.1 (strong turbulence). The results were then averaged according to Strehl Ratio. To
ensure a fair comparison, we used modes with the same beam propagation factor, M2 =
n + m + 1 = 2p + |`|+ 1, for (B)HG and LG modes respectively. Table 3.1, below, details
which modes are used for each set, graphically shown in Fig. 3.1. Note that for M2 = 3, we
also include a case which does not include the “symmetrical” (B)HG1

1 mode, denoted by the
asterisk. This case is considered because the HG1

1 mode does not have the same benefit of
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tip/tilt invariance as the other (B)HG modes in the set. It is expected that when this mode is
included, the average performance of the set will be more similar to the performance of the
LG modes.

Table 3.1: Mode sets used in the experiment. The asterisk denotes the case that excludes
the symmetrical (B)HG1

1 mode.

M2 LG (`, p) Modes (B)HG (n, m) Modes
2 (-1,0), (1,0) (1,0), (0,1)
3 (-2,0), (2,0) (2,0), (1,1), (0,2)
3∗ (-2,0), (2,0) (2,0), (0,2)

The experimental setup was verified by performing a modal decomposition for each
mode set without turbulence. As shown in Fig. 3.3, there is no crosstalk except where it is
expected in the case of the BHG modes.

Figure 3.3: Experimental setup verification showing the crosstalk matrices for the various
mode sets at different turbulence strengths. Top: no turbulence (SR=1.0). Middle: mild
turbulence (SR=0.7). Bottom: strong turbulence (SR=0.1). Mode groups corresponding
to modes in Fig. 3.1 and Tab. 3.1 are highlighted as it is clear that there is relatively little
crosstalk within each group.
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3.3 Results and Discussion

Figure 3.4: Mode Dependent Loss (top) and Crosstalk (bottom) of the LG, HG and Binary
HG mode sets for different turbulence strengths form strong turbulence (SR=0.1) to no
turbulence (SR=1.0). The shaded area of each curve represents the measurement error. From
Tab. 3.1, the 3∗ case excludes the HG1

1 mode and is shown as the additional HG* and BHG*
curves.
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Figure 3.5: Effective propagation distance calculated from the Strehl Ratio using Eqs. 3.9
and 3.12 for the average (M2 = 1, 2 and 3∗) of each mode set. At the vertical dotted line
the difference between HG and LG is 51 km and BHG and LG is 12 km. This represents an
upper bound due to weak turbulence alone as aperture collection losses due to divergence
and beam wander are neglected, as are atmospheric attenuation effects such as aerosol
scattering.

The MDL results are shown at the top of Fig. 3.4. We show three cases, defined by the
beam propagation factor, M2. The Gaussian case, where M2 = 1 is not shown explicitly as it
corresponds to the measurement of the Strehl Ratio but it is included in the average case.
We see that compared to LG modes, HG modes almost always exhibit a lower (better) or
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similar MDL. The BHG modes exhibit similar MDL to the LG modes, and are thus worse
than HG modes, but this is expected because of their weaker orthogonality.

Interestingly, when the (B)HG1
1 modes are included (M2 = 3), the set exhibits signif-

icantly poorer performance in turbulence than without the (B)HG1
1 mode (M2 = 3∗). As

visible in Fig. 3.1, the (B)HG1
1 is not tip or tilt invariant, making it more similar to an LG

mode.
The crosstalk results shown at the bottom of Fig. 3.4 agree with the MDL results in

that HG modes exhibit lower crosstalk than LG modes. As expected, the BHG modes
consistently show more crosstalk than either the HG or LG modes. Again, when the (B)HG1

1
mode is excluded, the results agree with our hypothesis that HG modes are more resilient to
turbulence than LG modes.

Strangely, the percentage crosstalk of the HG modes excluding the HG1
1 is very low. This

result agrees with a visual inspection of Fig. 3.3, where it is clear that in general the M2 = 3∗

case experiences low crosstalk within the set, lending confidence to the result. While it has
not been explicitly shown elsewhere, it is logical that the tip/tilt resilience of HG modes
should extend to higher order modes with the same symmetry [45]. This resilience is visible
in Fig. 3.3 in the crosstalk between the M2 = 2 and 3∗ sets.

The consequences of these results are important for FSO communications. Carefully
chosen modes from the HG basis should result in superior MDM performance over modes
from the LG basis, assuming the optical components such as the transmit and receive
apertures have suitable geometry or are larger than the beams. The very low crosstalk
results for HG modes with orthogonal symmetry is of particular interest. More important is
the impact on FSO link distances. We see from Eqs. 3.8 and 3.9 that a lower Strehl Ratio is
equivalent to a longer propagation distance, obviously ignoring atmospheric attenuation
and beam divergence, for example. Using MDL as the factor of comparison, we can find the
effective propagation difference for each turbulence strength,

L ≈ 0.060λ2

C2
nr5/3

0

, (3.12)

and arbitrarily assuming C2
n = 10−14 m−2/3, which is a typical value [73]. The effective

propagation distance for each mode set is plotted in Fig. 3.5, where is it clear that HG and
often BHG modes are superior to LG modes in terms of effective propagation distance for
most MDL values. For instance, arbitrarily choosing a MDL of 50% in a turbulence strength
C2

n = 10−14 m−2/3, an LG mode could propagate 31 km whereas an HG mode would
propagate 83 km. This is a significant increase in range. It must be emphasised, however,
that this calculation represents an upper bound due to weak turbulence alone as aperture
collection losses due to divergence and beam wander are neglected, as are atmospheric
attenuation effects such as aerosol scattering.

Our study has considered the typical scenario where the beam is sufficiently expanded
so that the Rayleigh length is much larger than the propagation distance. In this case the
beam is assumed always to be in the near field (weak turbulence) and so the turbulence
can be approximated as a single phase screen. This is also valid for any beam when the
turbulence is weak, or when the turbulence is indeed a thin screen, e.g., a vertical path to
a satellite. A consequence is that the aberrations remain phase-only, e.g., tip/tilt remain
as angle of arrivals. In a real-world FSO link more practical issues such as divergence,
attenuation and beam wander must be considered.

To this end we point out that we have selected modes with identical beam propagation
factor and so their divergence is the same. Attenuation and scattering are largely beam size
and wavelength dependent, so again the mode sets will have the same response, while it
is already known that HG modes are more tolerant to beam wander (lateral off-sets at the
detector as shown in Fig. 3.6) [43–45]. Thus, while the realisable propagation distance would
indeed be limited by practical factors, the benefit of certain (B)HG modes over LG modes
should still enable longer range FSO communications because of the lower MDL than LG
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Figure 3.6: Experimental images of Gaussian beam wander in the far field of the turbulence
screen. The top left image is the beam without turbulence.

modes and the identical or better resilience to other real-world effects. We hope that this
laboratory prediction will encourage just such a real-world realisation.

3.4 Conclusion

Atmospheric turbulence predominantly manifests as angle of arrival fluctuations (tip/tilt)
and thus wandering of a FSO laser beam, resulting in fading (or MDL) as well as mode-
crosstalk. Given the complex phase structure of LG and HG modes, it was unknown whether
the higher order effects of turbulence would overcome the known beam wander resilience of
HG modes over LG modes. In this work we experimentally show that carefully chosen HG
and binary HG modes are significantly more resilient to single phase screen Kolmogorov
turbulence than LG beams with the same beam propagation factor, M2. Lower crosstalk
results in higher capacity mode division multiplexed systems, but more importantly, the
lower MDL experienced by HG modes over LG modes means that they can propagate
significantly further. At a MDL of 50%, we show a 167% increase in theoretical range
of non-symmetric HG modes over similar order LG modes. FSO communications are a
possible technology which can be used to bridge the digital divide in Africa where large
geographical distances must be traversed, provided the range of such systems makes this
course economical over the cost of laying fibre. This work is a significant step towards
improving the range of FSO links.
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On the Resilience of Scalar and Vector
Vortex Modes in Turbulence

This chapter is based on the following publication:

M. A. Cox, C. Rosales-Guzmán, M. P. J. Lavery, D. J. Versfeld and A. Forbes, “On
the resilience of scalar and vector vortex modes in turbulence,” Optics Express, vol. 24,
no. 16, p. 18105, Aug. 2016.

The author conceptualised the work, performed the experimental measurements,
assisted with the theoretical calculations, analysed the data and wrote the majority of
the paper.

VECTOR vortex modes are non-separable states of light in which polarisation and
Orbital Angular Momentum (OAM) are coupled, which results in an in-homogeneous
polarisation distribution [89, 90]. Recently, the use of vector modes was proposed as

an alternative to scalar modes to encode information [91]. It has been shown numerically
that non-uniformly polarised beams such as a vector vortex beams are analogous to partially
coherent beams, in as far as their resilience to atmospheric turbulence is concerned [41, 92].
Another study has postulated that the polarisation distribution of a vector vortex beam
is maintained even after its intensity distribution has degraded and thus a portion of the
information encoded in polarisation is still present [93]. From these studies it has been
inferred that vector vortex beams are more resilient to turbulence as compared to their scalar
counterparts [41, 92, 93].

Here we show that Cylindrical Vector Vortex (CVV) modes are not more resilient to
atmospheric turbulence than their scalar OAM counterparts. We confirm this experimen-
tally by measuring the crosstalk between basis elements of both mode sets, perturbed by
Kolmogorov, thin phase screens encoded on a polarisation invariant Spatial Light Modu-
lator (SLM). In comparing the modal crosstalk induced in each case, it is determined that
although the crosstalk between modes within the scalar vortex and CVV bases is distributed
differently, the total crosstalk is in fact identical within experimental error. The coupling
between OAM and polarisation in CVV beams is not sufficient to make their phase variation
less susceptible to atmospheric turbulence when compared to circularly polarised scalar
vortex beams.
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Figure 4.1: Illustration of the scalar (top) and CVV (bottom) modes described in Eq. 4.1 and
Eq. 4.2 respectively, with arrows indicating polarisation distribution which is constant for
scalar and variable for CVV modes, for ` = ±1. The phase of the four scalar modes in the
transverse plane increases from −π (red) to π (blue) for positive `s and decreases in the
opposite direction for negative `s whereas the phase for CVV modes is a superposition of
both.

4.1 Theory

A scalar basis set can be constructed by combining the degree of freedom provided by
circular polarisation with the degrees of freedom given by the infinite set of OAM modes,
illustrated in Fig. 4.1. These modes can be written, using Dirac notation for brevity, as:

|R+〉 = |`〉 |R〉 , (4.1a)

|L+〉 = |`〉 |L〉 , (4.1b)

|R−〉 = |−`〉 |R〉 , (4.1c)

|L−〉 = |−`〉 |L〉 , (4.1d)

where, R and L denotes right and left circular polarisation, respectively, as opposed to link
length as is used elsewhere in this work, and ` ∈ Z relates to the amount of orbital angular
momentum, `h̄, per photon [94]. The elements of this set are orthogonal to each other.

CVV modes are non-separable states of light where polarisation and OAM modes
are coupled. A basis set of four orthogonal CVV modes can be constructed as linear
combinations of the scalar mode set in Eq. 4.1. The resulting modes carry no overall angular
momentum and their transverse polarisation state is not constant, illustrated in the bottom
row of Fig. 4.1. Akin to the scalar case, these modes can be represented in the circular
polarisation basis using Dirac notation as:

|TM〉 = 2−1/2(|`〉 |R〉+ |−`〉 |L〉), (4.2a)

|TE〉 = 2−1/2(|`〉 |R〉 − |−`〉 |L〉), (4.2b)

|HEe〉 = 2−1/2(|`〉 |L〉+ |−`〉 |R〉), (4.2c)

|HEo〉 = 2−1/2(|`〉 |L〉 − |−`〉 |R〉). (4.2d)

Each mode in a given set (vector and scalar) is orthogonal with the others in the set, and
mutually unbiased across the sets. Moreover, each of the modes described by Eq. 4.1 and 4.2
can be represented on a high order Poincaré sphere [89, 95]. Note that in Eq. 4.2 the relative
amplitude and phase between the two components has not been shown.

27



Chapter 4 — On the Resilience of Scalar and Vector Vortex Modes in Turbulence

4.1.1 Inter-mode crosstalk

In the presence of atmospheric turbulence, the polarisation of a beam is not affected because
the atmosphere is not birefringent, which can readily be validated by tilting ones head when
wearing polarised sunglasses (e.g., Kolmogorov turbulence assumes a homogeneous and
isotropic atmosphere) [96]. The spatial degree of freedom, however, experiences aberrations
which result in the coupling of modes into neighbouring modes, degrading their orthog-
onality. The amount of mode coupling or crosstalk is dependent on the strength of the
turbulence in the channel, which can be expressed, in general, by:

|`〉 turb.−−→∑
`′

p`−`′ |`′〉, (4.3)

where p`−`′ are the mode coupling weightings described by some distribution (e.g., p0
would represent the modal power in the original OAM mode). This is used to find general
expressions for what a given mode propagating through turbulence will transform into. For
instance, the final state of the scalar mode |R+〉 will be given by:

|R+〉 turb.−−→ p0 |`〉 |R〉+ p2` |−`〉 |R〉 = |R+
turb.〉 (4.4)

Analogous expressions can be found for |R−〉, |L+〉 and |L−〉. Similarly, applying Equa-
tion 4.3 to a vector mode |TM〉:

|TM〉 turb.−−→ p0 |`〉 |R〉+ p0 |−`〉 |L〉+ p−2` |`〉 |L〉+ p2` |−`〉 |R〉 = |TMturb〉 . (4.5)

Analogous relations for |TE〉, |HEe〉 and |HEo〉 can also be found.
The crosstalk for each input mode is the magnitude of the inner product between each

input mode and all the expected output modes after turbulence. By way of example, the
inner product of the scalar mode |R+〉 with the mode |R+

turb〉, will be:

|| 〈R+|R+
turb〉 ||

2 = || 〈`| 〈R| (p0 |`〉 |R〉+ p2` |−`〉 |R〉)||2 = ||p0||2. (4.6)

Similarly, the inner product of the vector mode |TM〉 with the mode |TMturb〉 will be:

|| 〈TM|TMturb〉 ||2 = ||( 1√
2
(〈`| 〈R|+ 〈−`| 〈L|)(p0 |`〉 |R〉 p0 |−`〉 |L〉+ p−2` |`〉 |L〉

+ p2` |−`〉 |R〉)||2 = ||p0||2
(4.7)

The crosstalk terms for all of the modes can be summarised in the form of a matrix as

Mscalar =


||p0||2 0 ||p−2`||2 0

0 ||p0||2 0 ||p−2`||2
||p2`||2 0 ||p0||2 0

0 ||p2`||2 0 ||p0||2

 , (4.8)

Mvector =


||p0||2

||p−2`+p2` ||2
4 0 ||p−2`−p2` ||2

4
||p−2`+p2` ||2

4 ||p0||2
||(p−2`−p2` ||2

4 0

0 ||p−2`−P2` ||2
4 ||p0||2

||p−2`+P2` ||2
4

||p−2`−p2` ||2
4 0 ||p−2`+p2` ||2

4 ||p0||2

 . (4.9)

Note that here M is different to the beam quality factor, M2. Notice that the terms in
the diagonal are identical both cases. Under zero turbulence, where the mode coupling
weightings for the crosstalk terms can be assumed to be zero (p2` = p−2` = 0), only the
terms in the diagonal remain. This is consistent with the notion that when propagating
in free-space with no aberrations induced by atmospheric turbulence, the output mode
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equals the input mode. The total crosstalk, N, in each case can be computed by adding the
off-diagonal elements as:

Nvector = ∑
i 6=j

Mvector = (||p2` + p−2`||2 + ||p2` − p−2`||2) = 2(||p−2`||2 + ||p2`||2), (4.10)

Nscalar = ∑
i 6=j

Mscalar = 2(||p−2`||2 + ||p2`||2), (4.11)

which therefore leads to our claim that the total crosstalk in each case is in fact identical:

Nscalar = Nvector = 2(||p−2`||2 + ||p2`||2). (4.12)

4.2 Experiment

Figure 4.2 shows the experimental setup used to corroborate our theoretical findings. It
consisted of three main stages: generation of scalar and CVV modes, turbulence using a
Spatial Light Modulator (SLM) and finally, detection. In the first stage, both scalar and CVV
modes were generated using a q-plate (q = 1/2) in conjunction with polarisers and wave
plates [97]. For the second stage, a HoloEye Pluto SLM was used (PLUTO-VIS, 1920× 1080
pixels with 8 µm pitch, calibrated for a 2π maximum phase shift at 633 nm) to simulate
atmospheric turbulence. Random Kolmogorov phase screens were used, specified by their
Strehl Ratio (SR) [98]. Since this SLM is only able to modulate horizontally polarised light, a
polarisation invariant arrangement was implemented, as illustrated in Fig. 4.2, following the
approach in [99, 100]. In the last stage, the perturbed modes were detected by inverting the
creation stage (exploiting the reciprocity of light) followed by an inner product measurement
to quantitatively infer the mode coupling weightings by using a technique known as modal
decomposition [58, 101].

Figure 4.2: Simplified schematic diagram of the experimental setup showing the three main
parts. The polarisation invariant SLM is made up by a PBS, mirror and half wave plate
rotated to 45◦ so that arbitrarily polarised scalar and vector beams can be modulated by
the SLM, which is encoded with random Kolmogorov turbulence screens. The perturbed
beams which return along the same path as the incoming beams are directed by a BS to the
detection part of the setup which performs modal decomposition.
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Figure 4.3: Comparison of vector and scalar crosstalk for SR = 1.0 (top) for experimental
setup validation and SR = 0.6 (middle) and SR = 0.2 (bottom).

Each input mode was perturbed by one hundred discrete instances of thin phase at-
mospheric turbulence of a specific strength. The strength of turbulence was increased in
increments of 0.1 from SR 0.1 to 1.0. The channel matrices, Mscalar and Mvector, described in
Sec. 4.1 were then generated for each turbulence strength using the averaged and normalised
intensity data for comparison to the theoretical calculations in Eqs. 4.8 and 4.9.

4.3 Results and discussion

The experimental setup was verified by encoding the SLM with SR = 1.0 turbulence, which
is simply a grating. This is the control measurement for the experiment and the crosstalk
was zero, as expected, shown in Fig. 4.3.

Figure 4.3 also shows the channel matrix comparison for SR = 0.6 and 0.2 of scalar and
vector cases. These two Strehl Ratio’s are arbitrary but were chosen because they demon-
strate cases for medium and strong turbulence and the clear effect of stronger turbulence,
where power is spread from the signal on the diagonal into the crosstalk elements.

The distribution of crosstalk visible in Fig. 4.3 is very similar to the theory presented in
Eqs. 4.8 and 4.9. However, according to the theory and the assumption that crosstalk does
not occur across polarisation states, some elements in the matrices shown in Fig. 4.3 should
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Figure 4.4: Percentage of the signal in the crosstalk of scalar and vector cases showing
insets of the beam with increasing turbulence. Both mode sets have the same crosstalk
performance. Error bars are the standard error of the mean.

be dark blue (zero) when in fact they show a small amount of signal. This is attributed to
the normalisation of the low dynamic range signal in strong turbulence and the efficiency of
the PBS.

In order to compare the scalar and vector cases against each other, the crosstalk elements
for each input mode were added to each other according to Eq. 4.13, similar to the theory
in Sec. 4.1.1. Since each row of the crosstalk matrix is already normalised, the sum must
be re-normalised to a percentage, resulting in a total average crosstalk percentage for each
turbulence strength for each mode set, visible in Fig. 4.4.

C =
1
4
×∑

i 6=j
M× 100%, (4.13)

where M is the measured scalar or vector channel matrix and C is the associated crosstalk
percentage. The crosstalk performance for both scalar and vector modes is identical within
the measurement error for all turbulence strengths. These results agree well with the theory
presented in Sec. 4.1 and indicate that there is no performance benefit to using CVV modes
over scalar vortex modes in a thin phase turbulence regime with no birefringence. It should
be noted that a similar approach may be used for other basis sets of vector and scalar modes,
however, the results in this paper cannot be extended to modes with asymmetric spatial
indices such as |`〉 |R〉 + |p〉 |L〉, for example, as their resilience to turbulence cannot be
assumed to be equal. Additionally, while it is expected that scalar and CVV modes with
higher topological charge will continue to have identical overall crosstalk performance as
the theory is general, the absolute values of the crosstalk percentage will vary [38].

Although the overall crosstalk performance for scalar and CVV beams is identical, the
crosstalk distribution across modes within the bases are different. It is clearly visible in
Fig. 4.3 that the polarisation component of the scalar basis strongly limits crosstalk between
certain modes, however in the vector basis this is not the case. Consequently, the use of
CVV modes may in fact limit the possible information capacity of a communication system.

4.4 Conclusion

It has been inferred in the literature that vector vortex modes are more resilient to atmo-
spheric turbulence than their scalar counterparts. Here we define two similar scalar and
cylindrical vector vortex mode bases and theoretically show that their crosstalk in turbulence
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is the same. This result was then verified experimentally in the thin phase, Kolmogorov
regime with various turbulence strengths. The experimental results show identical crosstalk
performance within the experimental error.
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Modal Diversity for Robust Free-Space
Optical Communications

This chapter is based on the following publication:

M. A. Cox, L. Cheng, C. Rosales-Guzmán and A. Forbes, “Modal Diversity for Robust
Free-Space Optical Communications,” Physical Review Applied, vol. 10, no. 2, p. 024020,
Aug. 2018.

The author conceptualised the work, performed the experimental measurements,
analysed the data and wrote the majority of the paper.

UPON propagation through the atmosphere, turbulence distorts the wave-front, am-
plitude and phase of the launched modes. Amplitude and phase fluctuations lead
to so-called fading errors in a communication system with a certain probability, and

hence deteriorate the overall performance. In an MDM system these distortions also cause
correlation between channels, leading to crosstalk and which usually results in further com-
munication errors [9, 82]. These effects are dependent on the path that the beam propagates
through and so when several statistically independent paths are used, due to a separation of
at least r0 (the Fried Parameter, which is a measure of the transverse distance over which the
refractive index is correlated [76]), the probability of error is reduced [31]. This is the basis
for what is known as diversity and the so-called diversity gain can often be predicted by
using probabilistic models applied to a range of mode types [81, 82, 102–106]. Diversity is
considered the complement to multiplexing, reducing errors rather than directly increasing
capacity [48]. While optical MDM has been extensively studied, diversity, and in particular
modal diversity, has received little attention. This is not the case in fields such as radio
communications, where diversity is harnessed as a matter of course [107, 108].

In this work, we hypothesize and then experimentally demonstrate that a carefully
chosen combination of identical radius HG and LG modes, each transmitted co-linearly
at a lower intensity to conserve the total transmit power, will result in a diversity gain,
thus alleviating the issue of large (or multiple) transmit and receive apertures while also
significantly improving the robustness of the channel.

In the following section, a generalised model for the diversity channel is provided. An
explanation of the difference between conventional multiplexing and diversity is also given.
Section 5.2 describes the specific choice of modes required to achieve diversity without r0
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Figure 5.1: Illustrative comparison of spatial multiplexing which is used for increased
bandwidth (top left), conventional spatial diversity which is used for increased robustness
(top right) and our modal diversity scheme which does not require path separation (bottom).
In conventional diversity the transmitted beams, irrespective of mode, take different paths
separated by some distance greater than r0. In modal diversity, different modes are used
with half the original transmit power (gi) but with each travelling the same path: the
separation is in mode space not physical space.

aperture separation, as well as the experimental setup. Results of the experiment and a
discussion thereof can be found in Sec. 5.3 and the conclusion is in Sec. 5.4.

5.1 Channel Model

In a typical, un-coded diversity model, multiple (N) transmitters (lasers) transmit identical
signals, xi(t), at the same time with amplitude gi. In comparison to a single transmitter case,
the amplitude of each transmitter is scaled by 1/N to conserve overall transmit power. These
signals propagate through separate channels represented by channel impulse responses,
hi(t). This impulse response is typically modelled using a so-called “fading” probability
distribution. The signal is then detected by a single receiver (photodiode) with receiver
sensitivity r. The resulting received signal, y(t), is then found from

y(t) =
r
N

N

∑
i

gixi(t) ∗ hi(t) + n(t), (5.1)

where an Additive White Gaussian Noise (AWGN) component, n(t), may be incorporated.
Traditionally, “separate channels” means physically distinct paths, which in atmospheric

turbulence requires a physical separation of at least r0 (atmospheric coherence length). This
is because atmospheric turbulence results in spatially distributed random changes in the
refractive index of air, which cause random distortions to the spatial profile of a beams
wave-front [76]. In modal diversity we interpret “separate channels” as distinct modes with
differing behaviour in turbulence without being separated by a distance of r0. We illustrate
this concept in Fig. 5.1.

If the channel impulse responses are statistically independent, as well as the noise, then
we can simply summarise the overall probability of an error in the diversity case as

Pr[Ediversity] = ∏
i

Pr[Ei], (5.2)
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Figure 5.2: Experimental demonstration of the orthogonality of HG2
2 and LG1

2 modes with
no turbulence (SR = 1.0 or D/R0 < 0.01) and slight turbulence (SR = 0.95 or D/r0 = 0.05)
with measurement points shown as “+”. On the left, only an HG2

2 is transmitted and it is
clear that there is no LG1

2 component after modal decomposition. Similarly, on the right
there is an LG1

2 component but no HG2
2 component in the decomposed beam.

Figure 5.3: Experimental setup showing two transmitters and a single receiver for transmit
diversity with example turbulence as an inset (a). The holograms along the bottom are for
(b) generating an LGp=1

`=2 beam, (c) generating an HGm=2
n=2 beam and (d) superposition for

decomposition of the generated LG and HG beams to a single detector. The flat grey areas
on the holograms is due to complex amplitude modulation.

where the probability of an error occurring for the ith channel is defined as Pr[Ei]. This
always results in a lower probability of error than a single channel case (since Pr[Ei] ≤ 1).
This particular diversity scheme is similar to Equal Gain Combining (EGC) which is well
known in radio communications [109, 110] and is in fact one of the reasons why we find
multiple antennas on WiFi routers, for instance. The pertinent point is that if the different
channels, whether formed by spatial modes or spatial paths, are not statistically independent
then we can expect that there will be no gain in terms of robustness, measurable by Bit Error
Rate (BER) or outage probability.

35



Chapter 5 — Modal Diversity for Robust Free-Space Optical Communications

5.2 Experiment

5.2.1 Choice of Modes for Diversity

In Ref. [111], diversity was simulated using LG modes with a large mode spacing, with
indices ` = +1, +8 and +15. The results showed an improvement to the outage probability,
or robustness, of a FSO link. Using modes from the same set necessitates differing (larger)
mode orders, with the result that the receive aperture becomes impractically large with long
propagation distances.

We address this issue in a novel manner by using identical order yet orthogonal HGm
n

and LGp
` beams, motivated by the fact that HG modes are robust to tip/tilt which are the

primary aberrations of atmospheric turbulence [45]. Beams with the same mode order have
the same propagation parameters resulting in the same field size at the receiving aperture
(or detector). The order of the beams is given by N = n + m = 2p + |`| for HG and LG
beams respectively. An example of this are the modes in Fig. 5.1.

The completeness property of both bases allow us to express any element of one basis
as a linear combination of elements from the other basis using the transformation relations
below [87]:

LGn,m(x, y, z) =
N

∑
k=0

ikb(n, m, k)HGN−k,k(x, y, z) (5.3)

b(n, m, k) =
[
(N − k)!k!

2Nn!m!

]1/2 1
k

dk

dtk [(1− t)n(1 + t)m]|t=0 (5.4)

The LG modes have been written in terms of n and m, which are indices typically used for
HG modes. Traditionally, LG modes are given in terms of azimuthal index ` and radial
index p, which can be recovered as ` = n−m and p = min(n, m). For example, the LG1

2
mode may be written as

LG1
2 =

1
2

HG0
4 −

i
2

HG1
3 + 0× HG2

2 −
i
2

HG3
1 −

1
2

HG4
0 . (5.5)

Notice that the HG2
2 component has a zero weighting, making the HG2

2 mode orthogonal
to the LG1

2 mode. Figure 5.2 shows an experimental verification of this orthogonality.
Conveniently, both of these modes have an order of N = 4, however, not all LG modes
contain an orthogonal HG mode with the same mode order, and vice versa. Similarly, HG4

4
is orthogonal to LG1

6 with N = 8. Both of these mode sets were tested in the experiment.

5.2.2 Experimental Setup

The experimental setup consisted of two laser diodes which were individually modulated
with identical On-Off Keying signals. In this modulation scheme, which is common in FSO
systems, the presence of light (on) represents a binary “1” and the absence of light (off) is a
binary “0”. For demodulation, a threshold is used to determine whether the received signal
if "off" or "on". As mentioned in the introduction, atmospheric turbulence will randomly
modify the intensity of the signal by attenuation or crosstalk which may lead to incorrect
detections and subsequent errors. The modulation was performed at low bandwidth using a
custom Arduino-based system at approximately 1 kbit/s. A high bandwidth demonstration
using expensive telecommunications equipment was deemed unnecessary for the purposes
of this investigation as it is a proof of concept only.

As shown in Fig. 5.3, each beam was transformed using a Spatial Light Modulator (SLM)
into either an LG or HG mode. The first diffraction order from each SLM was spatially
filtered and both beams were then combined using a beam splitter to propagate co-linearly.
Kolmogorov turbulence and modal decomposition were performed by another SLM [54,
73]. Finally, the resulting beam was filtered using a 50 µm precision pinhole after which the
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Figure 5.4: Bit Error Rate of modes with order N = 4 and 8 where D = 1.4 and 1.98 mm
respectively with varying turbulence strength showing a clear improvement for the diversity
cases. Larger modes are expected to experience lower turbulence in comparison to smaller
modes.

intensity was measured by a photodiode for demodulation. The experiment was performed
with varying turbulence strengths corresponding to a range of atmospheric coherence
lengths (r0) from 0.1 to 17 mm. These coherence lengths correspond to the Strehl Ratios 0.01
to 0.9 when applied to the beams with mode order N = 4. For each turbulence strength
and each mode, one million random bits were tested against 1024 random Kolmogorov
phase screens. The Bit Error Rate (BER) was then determined for each test case. Each
mode was first tested individually at a specific intensity in a conventional single channel
configuration to determine baseline BER performance for the experimental setup without
diversity. Transmit diversity was then tested by transmitting a random bit-stream over the
HG and LG modes simultaneously. It is important to note that in the diversity case half
of the single channel intensity was used for each transmitter, resulting in the same total
intensity as in the single channel case at the receiver. This is done to ensure a fair SNR
comparison.

5.3 Results and Discussion

The BER results versus turbulence strength (D/r0) are shown in Figs. 5.4 and 5.5. The BER of
the diversity case is on average 23% better than that of the LG single channel case for almost
all turbulence strengths. At the weakest turbulence strength, the improvement in diversity
BER over both single channel cases is 54%. Due to the fact that the laser intensities were
normalised, this can only be due to a diversity gain. It should be noted that the measured
BER values are worse than what would be normally expected due to SLM flickering at a
frequency close to that of the signal, which introduces noise and thus degrades the SNR.
This issue does not affect our diversity claims, however, in a commercial communication
system, BER’s with an order of magnitude improvement over the results presented here can
be expected.

Interestingly, the HG case is noticeably better than the LG case at medium turbulence
strengths. Given that tip/tilt is the dominant aberration in atmospheric turbulence, this
result agrees with the findings in Ref. [45] which demonstrate that HG modes are more
resilient to tip/tilt aberrations than LG modes. At weaker turbulence strengths, characterised
by smaller D/r0 values, the difference between the HG2

2 and LG1
2 is no longer clearly visible

where the difference between the HG4
4 and LG1

6 is quite prominent. The exact reason for
this difference is the subject of further study, but we assume that this difference is due
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Figure 5.5: Bit Error Rate of modes with order N = 4 and 8 with varying turbulence
strength in terms of the Strehl Ratio for D = 1.4 mm. The diversity case is typically better
than the non diversity cases with significant gains in weaker turbulence.

to the fact that in comparison to lower order modes, the wavefronts of the higher order
modes have a larger diameter as well as more phase variation and therefore would interact
with turbulence in a more dissimilar manner. It is for this reason that modal diversity is
possible. The diversity gain for the lower order modes is indeed still present because of the
independent nature of the effect of turbulence on the HG and LG modes.

It is interesting to note that in the N = 4 case the BER converges to the worst case of 0.5
at D/r0 > 1, as expected, however in the N = 8 case this only happens at approximately
D/r0 > 6. This indicates that even in stronger turbulence, where a conventional “single
mode” system is overcome by errors, there is still a margin provided by the diversity which
may prove useful when engineering a FSO link.

These results can be put into context by calculating the effective propagation distance
gain at a specific BER [73]. If Kolmogorov turbulence is assumed, then we can write r0
as a function of C2

n, the refractive index structure parameter, the wavelength, λ, and the
propagation distance, z:

r0 = 0.185
(

λ2

C2
nz

)3/5

(5.6)

This equation can then be solved for z, resulting in:

z ≈ 0.0600647λ2

C2
nr5/3

0

(5.7)

In this experiment, λ = 660 nm was used for ease of alignment as opposed to a standard
telecommunications wavelength of 850 nm or even 1550 nm, for example. A typical value
for C2

n is 10−14 m−2/3 in strong turbulence [73]. Three arbitrary BERs were selected and in
Table 5.1 the corresponding D/r0 values are provided. From Eq. 5.7, the corresponding
theoretical propagation distances have been calculated are shown in the table. It is clear that
significant improvements in propagation distance are possible using modal diversity. In a
well engineered system, with the inclusion of additional techniques such as forward error
correction, robust modulation and interleaving as well as sensitive, low noise detectors and
laser drivers, the BER performance will be improved significantly.
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Table 5.1: Example relations between D/r0 and the equivalent propagation distance, z,
with C2

n = 10−14 m−2/3 for selected BERs according to Eq. 5.7 for the LG and diversity cases.

Bit Error Rate
0.04 0.08 0.15

LG1
2 D/r0 (mm) 0.08 0.14 0.31

Diversity D/r0 (mm) 0.10 0.19 0.52
LG1

2 Distance (km) 0.24 0.55 2.13
Diversity Distance (km) 0.37 0.93 5.06

Distance Gain (%) 54 71 137

5.4 Conclusion

Traditionally, diversity has been theoretically and experimentally demonstrated with a r0
(or greater) separation between transmit and/or receive apertures. In this work we have
extended the concept of diversity to the modal diversity case, where a physical separation r0
is not required, and have achieved significant diversity gain. Based on the proof-of-principle
results presented in this letter, our technique is able to increase the allowable propagation
distance (determined by a certain error rate) by a significant margin at both strong and
weak turbulence strengths. This finding can be used to significantly improve future FSO
communication links in terms of range and reliability.

Our novel approach makes use of two or more orthogonal, co-propagating beams from
different modal bases to take advantage of the fact that modes with different spatial profiles
will interact differently with turbulent space. Although modal diversity can also be achieved
using sufficiently spaced LG modes [111], the required receive aperture size may become
prohibitive. In our approach it is possible to choose orthogonal modes with the same order
and thus the same size, negating the need for larger receive apertures than would otherwise
be required.

A further implication of the use of different mode types is that the co-propagating modes
may experience a lower degree of correlation than neighbouring adjacent modes within a
single basis. This hypothesis should be tested in future, but this may indeed have interesting
consequences and provide significant benefits to MDM or when MIMO signal processing is
used. We speculate that it should be possible to formalise the concept of “separate” in terms
of a newly defined modal distance, rM, akin to the previous definition in terms of a physical
distance, r0. That is, how far would two modes have to be separated by in mode space, rM,
in order to ensure the same diversity gain as a physical separation of r0?
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Modelling the Memory of
Turbulence-Induced Beam Wander

This chapter is based on the following publication:

M. A. Cox, L. Gailele, L. Cheng and A. Forbes, “Modelling the Memory of Turbulence-
Induced Beam Wander,” submitted to Journal of Lightwave Technology, 2019.

The author conceptualised the work, performed the experimental measurements,
analysed the data to create the model and wrote the majority of the paper.

ATMOSPHERIC turbulence can be described as two independent random processes,
namely small and large scale [73]. The small scale effects of turbulence cause scintil-
lation of a beam. This appears spatially as random deformations of intensity as well

as phase aberrations of the beam wavefront which result in mode crosstalk - a significant
problem for MDM. Large scale effects cause the beam itself to be deflected randomly as
it propagates. This “cork-screwing” through the air eventually manifests as a lateral dis-
placement at the receiver plane, where the beam randomly moves around the vicinity of
the detection aperture (assuming reasonable alignment). Lateral displacement, in addition
to angle of arrival fluctuations, manifest as beam wander at the focal (Fourier) plane of a
receive aperture lens. Therefore, a small detector placed at this focal plane will measure
fluctuations in intensity predominantly caused by beam wander, but also to a lesser extent
by scintillation in the weak-to-moderate turbulence regime.

In a communication system, this is called turbulence induced signal fading. There have
been numerous studies into mitigating this using spatial modes, diversity and various
signal processing techniques [11, 13, 35, 44, 45, 47, 112], but turbulence remains a significant
challenge. A key reason why turbulence is difficult to mitigate using signal processing
and error correction coding is because the significant probability that the received intensity
will drop below a usable threshold for an extended period of time. The situation when the
received intensity is too low for reliable communication is called a “deep fade”. In addition
to this, the channel has memory which causes the received intensity to remain in a certain
state for a finite period of time. The combined effect of deep fading and memory is gen-
erally catastrophic to communication, where millions or even billions of bits can be lost.
Techniques exist to deal with these so-called slow fading memory channels in power-line
communications, for instance, but they cannot be applied or tailored to FSO communications
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in the absence of a suitable channel model [113].
This memory behaviour is not sufficiently accounted for in existing models for turbu-

lence induced fading. Existing fading models, for example the recent double generalised
gamma-gamma model [81], are able to accurately predict the average time a channel will
be in deep fade over the long term, but inherently cannot provide information about the
channel memory, which in this case is the average duration of deep fade intervals.

A potential solution exists in Taylor’s frozen turbulence hypothesis. In this hypothesis,
turbulent cells are assumed to move across the beam at a constant velocity. This would in
essence result in a first order memory system. Based on this hypothesis, some temporal
statistics of propagating beams have been measured and calculated in Refs. [30, 114, 115].
While these works make progress towards finding expressions for the temporal evolution of
turbulence, there are still significant inaccuracies in the results when compared to measured
data.

In this work we propose a novel approach to modelling beam wander and beam wander
induced fading, which is the dominant cause of fading in weak-to-moderate turbulence
[73]. This approach is based on the hypothesis that the movement of the wandering beam is
not a true random walk, but rather a random walk that has a level of correlation between
successive position samples. To demonstrate this new approach, we experimentally measure
beam wander over a 150 m link and present an Auto-Regressive Moving-Average (ARMA)
based random walk modal which not only reproduces the results of existing models, but
more importantly, allows for accurately simulating and determining the parameters of the
channel memory. We show how this approach allows for the simulation of beam wander
induced modal crosstalk using Orbital Angular Momentum (OAM) modes as an example.
The unique ability of this approach to realistically simulate the evolution of modal crosstalk
may facilitate the future development of robust FSO-MDM systems.

6.1 Existing Beam Wander Models

In existing models, beam wander is spatially modelled by a Gaussian distribution which is
characterised by a long-term average radial variance, 〈r2

c 〉, as well as the size of the received
beam without any averaging (the short-term beam), denoted by ωST, illustrated in Fig. 6.1
[73, 116–120]. It is intuitive to think that a smaller short-term beam which wanders around
a receive aperture will result in a larger Gaussian shaped long-term beam, according to the
central limit theorem [121]. The size of the long-term beam, ωLT, is given by

ω2
LT = ω2

ST + 〈r2
c 〉 . (6.1)

Several analytical solutions for the beam wander radial variance exist. For infinite outer
scale Kolmogorov turbulence, the beam wander radial variance is given by

〈r2
c 〉 = 2.42C2

nL3ω−1/3
0 2F1(1/3, 1; 4; 1− |Θ0|) , (6.2)

where C2
n is the refractive index structure constant which describes the strength of the

turbulence, L is the propagation distance, ω0 is the initial beam waist, 2F1 is the hyper-
geometric function and Θ0 is the beam parameter [73]. For a collimated beam (Θ0 = 1) the
expression reduces to

〈r2
c 〉 = 2.42C2

nL3ω−1/3
0 , (6.3)

and for a finite outer scale turbulence and a collimated laser beam, Eq. 6.2 becomes

〈r2
c 〉 = 2.42C2

nL3ω−1/3
0

1−
(

κ2
0ω2

0
1 + κ2

0ω2
0

)1/6
 . (6.4)

In addition to the information provided by long-term averages and variances, it is often
a requirement to perform Monte-Carlo simulations which require short-term information.
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In a well aligned optical communication system, the receiver photodiode would ideally
be situated at the centre of the long term beam. By approximating the received beam as
Gaussian with size ωST , the received intensity at a moment in time when the beam wanders
to a random radius is given by

It(r) = I0 exp

[
−2

r2
c,t

ω2
ST

]
, (6.5)

where I0 is the intensity at the centre of the beam and as before, the random variable
rc = N(0, 〈r2

c 〉). The position of the short-term beam can instead be represented in Cartesian
rather than Polar coordinates, and the angle can be ignored due to symmetry:

r2
c,t = β2

x,t + β2
y,t (6.6)

where βx,t and βy,t are Cartesian coordinates for beam wander. The use of Cartesian
coordinates is required for reasons important to the new modelling approach proposed
in this work. As an aside, the effects of scintillation may be incorporated into this beam
wander induced fading model by treating I0 as a random variable representing scintillation
[122, 123].

The Probability Distribution Function (PDF) of the received intensity, I, due to beam
wander, as measured at the centre of the long-term beam is given by

p(I) = γIγ−1 where 0 ≤ I ≤ 1, (6.7)

where γ is a parameter related to the ratio of beam wander displacement and the receiver
size [124].

While these expressions are extremely useful, they are limited by a lack of temporal
information about the evolution of the beam wander: there is no correlation from one
moment to the next as rc is simply a normal random variable. Consequently, while it is
indeed possible to determine the overall percentage of time a link may be in deep fade, for
instance, it is impossible to accurately determine the average duration of the deep fades. This
information is required to inform the design of optimised Forward Error Correction (FEC)
code rates and lengths, interleaving depth and other techniques used to make a link more
robust to atmospheric turbulence and in its absence results in over- or under-engineered
systems based on potentially incorrect assumptions.

6.2 Methods

6.2.1 Experimental Setup

Empirical measurements of beam wander were performed on a L = 150 m horizontal
outdoor link that was built at the CSIR in Pretoria, South Africa, which is at an altitude of
1.4 km. The link was approximately 5 m above the ground and used a 635 nm collimated
laser beam with a diameter of approximately ω0 = 7 mm at the transmit aperture. A
simplified diagram of the setup is shown in Fig. 6.1 (a). The transmitted and received laser
beams were expanded and reduced by a telescope and imaged onto a high speed camera
at the Fourier plane. The received beam was measured by a camera to resolve the spatial
movement of the beam over approximately ten seconds.

The frame rate of the camera is an important parameter in this experiment as the
movement of the beam must be recorded without loss of information. The Greenwood
frequency, fG, is a measure of the rate at which turbulence affects a beam and is easily
calculated given the wind speed and atmospheric coherence length, r0, as fG = 0.43(V/r0)
in Hertz [77]. The weather at the time of measurement was clear, 28 ◦C with an average wind
speed of V = 10 km/h with gusts of up to V = 12 km/h. With preliminary measurements of
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Figure 6.1: (a) Simplified schematic diagram of the experimental setup with insets of the
beam intensity at the transmitter and receiver. (b) A diagram that illustrates the relationship
between short- and long-term beam wander parameters.

r0 and assuming a constant but worst-case wind speed over the the course of a measurement,
the Greenwood frequency was approximately fG = 130 Hz. The camera frame rate was
therefore conservatively set at 300 Frames Per Second (FPS) to capture the movement of the
beam without loss of temporal information.

The position of the beam in each frame is found using the weighted centroid and stored
as separate time series of x and y coordinates. Since the atmosphere is isotropic and the axes
are orthogonal and thus independent, we restrict analysis to a single axis for convenience.
When both axes are required for simulation of the resulting beam wander model, we simply
run two models independently.

6.2.2 ARMA-based Memory Model

There are several classes of model that are suitable for correlated time series, depending on
the characteristics of the signal [125–127]. For stationary signals such as beam wander a
so-called ARIMA (Auto-Regressive Integrated Moving Average) model is elegantly suitable,
as evidenced by the results presented in Sec. 6.3, and can be fit using the Box-Jenkins method
[125]. Auto-Correlation and Partial Auto-Correlation Functions (ACFs and PACFs) are used
to approximately determine the order and suitability of the various model parameters,
but ultimately the model fits performed using least-squares regression are verified by
minimising the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC).

A long term trend in the data is not expected, since a constant turbulence strength is
assumed over the short duration of the measurements. Consequently, an ARMA(p,q) model
can be used without any Integral terms, where in general the position of the current sample
is given by

βx,t = c +
p

∑
i=1

Miβx,t−i +
q

∑
j=1

Njεt−j + εt, (6.8)

where c is a constant mean term, p is the order of the auto-regressive series, q is the order of
the moving average series and Mi and Nj are the model factors of their respective series.
Randomness is introduced to the model by the addition of εt which is zero mean Gaussian
white noise with a suitable variance, σ2.

As Eq. 6.8 is directly modelling the position of the beam at a specific time, βx,t, we are
conveniently able to map this to a receive intensity using Eqs. 6.5 and 6.6. The required
βy,t values are found using an identical but independent model since the atmosphere is
isotropic.
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0.4 mm

Figure 6.2: Experimental measurements of the beam wander showing a plot of the centroid
position in (a), the long-term beam in (b) and sample short term beam images in (c).

Table 6.1: Weights for the ARMA(2,2) model. As expected, the constant term is zero.

c M1 M2 N1 N2 σ2

0 1.759 -0.7626 -1.289 0.3166 2150

6.3 Fitting the Memory Model

To demonstrate the feasibility, effectiveness and advantages of the proposed modelling
approach, we present a model for the link described in Sec. 6.2.1 under moderate-to-strong
turbulence conditions where deep fading is more likely than in weak turbulence.

The turbulence parameters at the time of measurement are as follows, with images of
the long- and short-term beams as well as the path that the short term beam took over the
10 s measurement window shown in Fig. 6.2. The average refractive index structure constant
C2

n = 4.1× 10−13, the atmospheric coherence length r0 = 0.01 m and the scintillation index
is σI = 0.55, indicating that the link is in the weak to moderate turbulence regime.

One thousand samples of the change in centroid position over time, focusing on βx,t, are
shown in Fig. 6.3 (a). Note that while we refer to discrete samples of t, the sample period is
in fact 3.3 ms. The hypothesised temporal correlation between subsequent samples is made
clear by simply plotting βx,t against the previous position, βx,t−1, shown in Fig. 6.3 (b). It
is clear that there is a correlation with sample t− 1 and also a correlation at sample t− 3,
however, at a lag of t− 10 there is no obvious correlation. The ACF and PACFs of the beam
position are a more rigorous measure for this and are shown in Fig. 6.3 (c). Clearly, a strong
correlation exists for multiple samples and hence several milli-seconds. We can use this
observation to build a model of the beam wander that is not simply a random walk as
historically assumed, but rather a time series with temporal structure.

It was found that βx,t (and by nature βy,t) is well modelled by an ARMA(2,2) process
with the model factors shown in Tab. 6.1, which were found using a least squares regression
on the approximately 3000 measurement samples. The order of the model was verified
by testing orders from zero to twenty and simultaneously minimising the AIC and BIC
criterion’s, as per Sec. 6.2.2. Another test of the resulting model is given by the statistics
of the residuals, which should resemble random noise. Some of the residual statistics
are visualised in Fig. 6.4. It is clear from the figure that there is no correlation between
subsequent residual samples and a histogram of the residual values has a Gaussian shape,
implying that the residuals are Gaussian white noise. The proposed ARMA(2,2) model is an
excellent fit of the measured data in a theoretical sense, but is it a good fit in the physical
sense and how can we use it to our advantage?
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Figure 6.3: (a) A short sample of the beam wander in x. (b) Scatter plots showing temporal
correlation between samples at t− 1, some correlation at t− 3 but no correlation at t− 10.
(c) Auto-correlation and partial auto-correlation plots of the data with the 95% significance
region shaded (±0.037).

6.4 Modelling Beam-Wander Induced Fading

In order to verify this new model, and hence this new approach, we must show that it
is able to reproduce the results of existing models for beam wander. For a fair statistical
comparison to the experimental data, the same number of samples of the ARMA(2,2) model
presented in Sec. 6.3 are generated as the number of experimental data samples. Plots of the
results in this section are shown in Fig. 6.5.

As discussed in Sec. 6.1, it is possible to calculate a simulated long-term intensity by
summing the short-term beams over all of the simulated position samples. The resulting
long term intensity distribution should have a Gaussian shape with a radial variance that
matches that of the experimental data. The radial variance of the measured data gives
〈r2

c 〉 = 4.31× 10−4 and for the simulated data 〈r2
c 〉 = 4.26× 10−4. According to theory

in Eq. 6.3 for the estimated C2
n of the experiment, 〈r2

c 〉 = 7.10× 10−4. The simulated and
measured beam wander radial variances are very similar whereas the theory value is in the
same order of magnitude but slightly different. This is due to the fact that the theory used
does not take outer-scale effects into account because the outer scale was not measured.
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Figure 6.4: Plots to show that the residuals of the model and the measured samples are
white Gaussian noise. (a) The ACF and PACF indicate no correlations. (b) A short sample of
the standardised residuals showing no visible pattern. (c) The histogram of the residuals
has a random Gaussian characteristic shape.

In addition to the long term intensity, by applying Eq. 6.5 to the simulated and measured
data, a comparison between the fading PDFs of the two data sets can be made. For a valid
model, the shape of the simulated PDF must be similar to that of the measured data. Upon
examination of Fig. 6.5, we see that this is indeed the case. It is clear that this new approach
results in models that accurately reduce to existing models for beam wander, however, their
real benefit is the ability to model the channels memory.

6.5 Modelling Memory and Deep Fading

As discussed in the introduction and Sec. 6.1, an important property in the design of a
FSO link with memory is the average length of time the received intensity spends above
or below a certain threshold. If the threshold is set to a low value that represents a deep
fade for example, one can estimate the expected average duration of a deep fade and
optimally design the system. This complements the conventional metric that is the expected
probability that the link will be in deep fade, which is typically used to calculate channel
capacity.

Rather than referring to the length of time on either side of a threshold in seconds, for
example, we instead refer to the so-called “transition run length” which is the number of
consecutive samples on either side of the threshold. If required, this can be converted to
time by multiplying by the sample period. This terminology is typically used for memory
channels, for instance those described by Gilbert-Elliot Markov processes [113].

A Run Length Distribution (RLD) is a histogram of the number of occurrences of a
certain transition run length above or below the specified threshold. Logically, with more
data, longer transition run lengths (which have correspondingly lower probabilities) will
begin to appear. For this reason, we can only compare data sets with the same number of
samples. Due to the limited number of experimental samples available, we set the transition
threshold to the mean intensity value for illustrative purposes.
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Figure 6.5: Plots to demonstrate the fading statistics of the model in comparison to experi-
mental data. (a) and (b) are PDFs of simulated and measured intensities with an overlay
(orange) of the theoretical PDF showing excellent agreement with existing theory. (c) Simu-
lated beam wander positions with the resulting long-term intensity in (d).

Figure 6.6 shows run length distribution plots for the ARMA simulated and experi-
mentally measured beam wander induced fading data. The simulated data matches the
experimental data well. Superimposed on the figure is a run length distribution plot for
simulated data based on the conventional PDF-based model for beam wander (see Eq. 6.7
with γ = 0.7, which is shown in Fig. 6.5). The run length distribution of the conventional
PDF-based model drops off steeply and is clearly not a match for the experimental data.

Run lengths of longer than eight consecutive samples above or below the threshold are
rare when using the existing PDF model when using only 3000 samples. Obviously, if a
larger number of random samples were generated, longer run lengths would be measured,
but this would also be the case with more experimental data. In comparison with the
measured data, longer run lengths of up to 15 consecutive samples are present even in a
small data set.

This is a clear deficiency of a PDF-based model: it is unlikely that any PDF which
simultaneously matches both the PDF of the received intensity and of the run length
distribution can be found. In contrast, the model produced by the approach proposed in this
work accurately matches both the measured run length distribution as well as the fading
distribution with only a marginal increase in complexity.
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Figure 6.6: Run length distribution plots of the simulated ARMA model and the ex-
perimental measurements with a transition threshold set at 50% intensity for illustrative
purposes. Overlaid on the plots in green is the run length distribution of data simulated
using the conventional PDF-based model which clearly does not match the experimental
measurements.

6.6 Modelling Mode Crosstalk

The proposed model has further utility than modelling received intensity fluctuations
and their memory. Reliable and high speed long distance MDM systems are extremely
challenging because of crosstalk issues. The computational complexity of strong error
correction codes and MIMO is prohibitive at link speeds requiring the use of MDM in
the first place. One of the dominant causes of crosstalk error in MDM systems is lateral
displacement and tip / tilt at the receiver [35, 128, 129]. Alternatively, in modal diversity
systems, modal crosstalk may be advantageous, in a sense, and can be used to design longer
distance or more robust FSO systems [47, 130, 131]. Using the modelling approach in this
paper it becomes possible to simulate and even predict the temporal evolution of mode
crosstalk due to lateral displacement and hence facilitate the creation of optimised (and
possibly less computationally intensive) schemes to correct errors due to crosstalk in both
MDM and modal diversity.

Here we briefly demonstrate this concept using Laguerre-Gaussian (LG) mode crosstalk.
A transmitted LG mode with ` = 0, which is a standard Gaussian, will result in a spectrum
of detected OAM modes at the receiver. Similarly, a transmitted higher-order mode in the
presence of lateral displacement would result in a different spectrum of received modes.

This is often thought of simply as misalignment, where it is a challenge to efficiently
couple the received light into a single mode optical fibre. In essence, it is for this reason that
the use of few- or even multi-mode fibres (which can accept neighbouring OAM modes)
has been demonstrated to be advantageous, especially when combined with digital signal
processing [131]. A knowledge of the expected number of modes in this system could inform
the choice of few-mode fibre.

The detected OAM spectrum due to a lateral displacement of rc,t at a time t is given by
[128]

C` = exp

(
−

r2
c,t

ω2
ST

)
I|`|

(
r2

c,t

ω2
ST

)
(6.9)

where C` is the weight for the `th mode and In(x) is the nth-order modified Bessel function
of the first kind. Figure 6.7 shows a sample of consecutive OAM crosstalk calculations from
the simulated beam wander. Since we have shown a temporal correlation between beam
wander positions, there will also be a similar temporal correlation between mode crosstalk
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Figure 6.7: (Top) Mode crosstalk from the transmitted Gaussian mode (` = 0) into OAM
modes ` = −5 to 5 due to lateral displacement over time. (Bottom) The corresponding
normalised beam wander radii, rc. The highlighted section shows good examples of crosstalk
with well aligned (minimal crosstalk) and misaligned (high crosstalk) cases.

spectrums. This may be harnessed in a predictive manner to implement more efficient signal
processing strategies for MDM or modal diversity.

6.7 Conclusion

We have experimentally shown that turbulence induced beam wander has significant
temporal correlation that is not predicted by existing models for atmospheric turbulence.
In addition, using the run-length distributions for the intensity of the received beam, we
show that there is a significant difference in what is expected according to conventional
probabilistic models for beam wander and reality. These differences can be explained by
considering turbulence induced beam wander - and perhaps the mechanisms for turbulence
itself - as a high-order memory system, as opposed to the conventional memoryless or
first-order frozen-turbulence assumptions as visible in other works.

We have developed a new approach for modelling turbulence-induced beam wander
and tested the approach on a model for a 150 m experimental link in weak-to-moderate
turbulence. The resulting models are able to accurately reproduce the effects of memory in
the atmospheric turbulence channel, where there is a temporal correlation in the movement
of the beam. In addition to accurately modelling the received intensity distribution as
well as the temporal evolution of the received intensity, we briefly show how the model
may be used to simulate the evolution of crosstalk in MDM systems using OAM as an
example. Our model will enable the development of optimised signal processing and
error correction coding techniques for free-space optical communications which were not
previously possible, for instance, interleaving. Models based on this new approach will
inform the depth of the required interleaving code for mitigating beam wander induced
errors.
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Conclusion

Every day the demand for fast, low latency internet connectivity increases. The demand
for data globally has been increasing exponentially, with annual growth rates between 30%
and 90% since the advent of the Internet. This incredible growth was initially supported by
fibre-optic back-haul and dial-up modems. Eventually, consumers moved from dial-up to
ADSL. Personal WiFi networks became pervasive and connectivity requirements increased
further, resulting in the demand for even faster Internet. Many people now have their
own personal fibre connection to their homes that is faster than the undersea cables of the
1990’s. One cannot forget smart phones - with 3G technology data became a commodity
and the ability to browse the Internet on demand, anywhere, drove the deployment of 4G
which provided lower latencies and faster data rates. Deployment of 5G is now imminent,
promising one hundred times faster data-rates to consumers - but can the network sustain
such high aggregate bandwidths?

Fibre optic interfaces are extremely fast, and in laboratory experiments they have been
demonstrated to sustain bandwidths of over one terabit per second per wavelength. Con-
ceivably, this is sufficient even for massive 5G connectivity - but what about in developing
countries where major cities are fed via old terrestrial microwave and satellite links that can
only sustain gigabits per second? Huge geographical distances in Africa, for example, make
it prohibitively expensive for inter-city optical fibre to be widely deployed in the short term.

Free Space Optical (FSO) communication is a possible solution to this issue. Not only
can FSO be used for the relatively short distances between cell towers (where line of site
permits) thus avoiding the need to trench, but if their range can be improved, they may form
part of a retrofit interim solution for long-haul terrestrial infrastructure. Current commercial
FSO solutions can sustain bandwidths of several gigabits per second over distances on
the order of 2 km. In laboratory experiments, massive data-rates (hundreds of gigabits to
just over one petabit per second) have been demonstrated over several meters. Military
FSO systems have been demonstrated to sustain hundreds of megabits per second over
approximately 100 km. A clear gap is gigabits per second over tens of kilometres. This thesis
makes several contributions to the field in order to try bridge this gap in the hope that one
day the so-called “digital divide” may be bridged too.

One of the dominant, unsolved issues with FSO is the effect of atmospheric turbulence.
Broadly speaking, the resulting effect of turbulence is a degradation in the Signal to Noise
Ratio (SNR), limiting the possible data rates of a system. Strong Forward Error Correction
(FEC) could be coupled with signal processing techniques such as Multiple Input Multiple
Output (MIMO) which can harness channel diversity to increase the resilience of a link,
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however, this is predominantly a subject for future investigation.
This work is focused on “passive” optical techniques to improve the resilience, and hence

the range, of FSO links at a more fundamental level through the use of higher order spatial
modes, before the addition of digital techniques. Three pertinent answers to the question
“How can spatial modes of light be used to improve the resilience of laser-based free-space
optical communication to atmospheric turbulence?” have been published over the duration
of this work and have been described in detail in this thesis. Finally, a memory model for
beam wander is proposed in an attempt to describe the nature of the effects observed in the
previous contributions. In addition, this model can be used to describe the “burstiness” of
the FSO channel. The bursty nature of the FSO channel has not been previously modelled,
but it is in fact one of the primary reasons why reliable communications and conventional
digital processing schemes do not work as expected.

Atmospheric turbulence predominantly manifests as angle of arrival fluctuations (tip/tilt)
and thus wandering of a FSO laser beam, resulting in fading (or Mode Dependent Loss
(MDL)) as well as mode-crosstalk. Given the complex phase structure of Laguerre-Gauss
(LG) and Hermite-Gauss (HG) modes, it was unknown whether the higher order effects
of turbulence would overcome the known beam wander resilience of HG modes over LG
modes. In Chapter 3 we experimentally show that carefully chosen HG and binary HG
modes are significantly more resilient to single phase screen Kolmogorov turbulence than
LG beams with the same beam propagation factor (M2). Lower crosstalk results in higher
capacity mode division multiplexed systems, but more importantly, the lower MDL ex-
perienced by HG modes over LG modes means that they should theoretically be able to
propagate significantly further. At a MDL of 50%, we show a 167% increase in theoretical
range of non-symmetric HG modes over similar order LG modes. [35]

While both scalar and vector vortex modes have been used as transmission bases for
FSO systems, it had been suggested that the latter is more robust in turbulence. In Chapter 4,
using orbital angular momentum modes as an example, we demonstrate theoretically and
experimentally that the crosstalk due to turbulence is in fact the same in the scalar and
vector basis sets of such modes. This result brings new insights about the behaviour of
vector and scalar modes in turbulence, but more importantly it demonstrates that when
considering optimal modes for MDM, the choice should not necessarily be based on their
vectorial nature. [40]

One of the most common solutions to overcome channel fading is to exploit diversity.
Diversity (or more commonly MIMO) is common in radio-based systems such as WiFi but it
is less common in FSO systems. In this approach, information is sent in parallel over different
paths using two or more transmitters or receivers that are spatially separated. Provided
the separation is sufficient (greater than r0 meters), each beam experiences independent
atmospheric turbulence which lowers the probability of a receive error. In Chapter 5
we propose and experimentally demonstrate a new method of diversity based on spatial
modes of light, which we call modal diversity. The need for a physical separation of the
transmitters is removed by exploiting the fact that spatial modes of light experience different
perturbations, even when travelling along the same path, as evidenced by Chapter 3.
For this proof-of-principle, identical radius modes from the HG and LG basis sets were
chosen. A relative improvement in Bit Error Rate (BER) of up to 54% was measured without
increasing the total transmit power or the receive aperture radius. This finding can be used
to significantly improve future FSO communication links in terms of range and reliability,
without adding additional (expensive) apertures. [47]

A further implication of the use of different modal bases in a single system is that
the co-propagating modes may experience a lower degree of crosstalk than neighbouring
adjacent modes within a single basis. This hypothesis should be tested in future, but this
may indeed have interesting consequences and provide significant benefits to Mode Division
Multiplexing (MDM) or when MIMO signal processing is used. We speculate that it should
be possible to formalise the concept of “separate” in terms of a newly defined but as-yet
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hypothetical modal distance, akin to the previous definition in terms of a physical separation,
r0.

In both the HG versus LG, as well as the modal diversity contributions above, the most
likely underlying physical mechanism that best describes the observed differences is beam
wander. Existing models for beam wander make use of memoryless probability distributions
and long term averages. These models are not able to accurately model time-dependent
intensity fluctuations which sometimes result in deep fading, where the received intensity is
too low to maintain reliable communication for an extended period of time. In Chapter 6, an
elegant new memory model is presented which models the behaviour of beam wander and
therefore also beam wander induced intensity fluctuations with the unique capability to
accurately simulate deep fading in a bursty manner. This is invaluable for the development
of optimised burst error correction coding and digital signal processing in order to improve
the throughput and reliability of FSO systems. In addition, since the positions of the beam
are modelled, it is possible to calculate the expected crosstalk due to misalignment in MDM
systems for any modal basis including LG and HG beams.

The work presented provides answers to some pertinent questions in line with increasing
the range of FSO communication systems. While no actual communication system was
built and tested, the contributions within this thesis will enable better design decisions
by providing a guideline to the choice of modes and the use of diversity, both modal and
conventional. A 300 m physical link is in the process of being built and is the subject of
future work. More accurate simulations of a system are now possible through the use of the
proposed memory model approach for turbulence induced beam wander. This enables the
design of crosstalk mitigation schemes if MDM is required (in high capacity systems), or
potentially lower computational complexity decoders for diversity. Lower computational
complexity is critical in high capacity systems but also in cost effective systems where more
processing power is usually associated with higher cost. The use of modal diversity allows
for a more compact system with a single transmit or receive aperture, also reducing cost.
The ability to keep costs to a minimum is crucial in a technology that is to be deployed on a
massive scale, for example in bridging the digital divide in Africa.

Future avenues for research in the digital domain would be the development of opti-
mised burst error correction codes and signal processing techniques. The new knowledge
that the FSO channel is in fact a memory channel opens many exciting opportunities in this
domain. In terms of atmospheric optics, more work must be done to precisely characterise
the extent and possibilities of modal diversity. An analytical model that allows for the
calculation of a so-called modal distance, akin to the atmospheric coherence length, would
be a high impact contribution to the field both for diversity but also for MDM in general.
Finally, there are some information theoretical papers that suggest that high order modes
cannot be used to increase the capacity of a system [6]. In opposition to existing experimen-
tal demonstrations, these papers degrade confidence in this exciting, emerging field. The
common assumption that LG modes, which have been well studied, are identical to HG
modes, is incorrect as we have shown in Chapter 3 and as such, it will be interesting to see if
the aforementioned information theoretical papers can be refined. The consequences of this
is as yet unknown, but would be an excellent avenue for further research.
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