
A Software Reuse Paradigm for the

Next Generation Network (NGN)

Bilal Abdull Rahim Jagot

A project report submitted to the Faculty of Engineering, University of the Witwatersrand,

Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science

in Engineering.

Johannesburg, August 2003

Declaration

I declare that this project report is my own, unaided work, except where otherwise ac-

knowledged. It is being submitted for the degree of Master of Science in Engineering at the

University of the Witwatersrand, Johannesburg. It has not been submitted before for any

degree or examination at any other university.

Signed this day of 20

Bilal Abdull Rahim Jagot.

i

Abstract

Service creation in the Next Generation Network (NGN) is focused around software cre-

ation and borrows heavily from the Software Engineering community. In the NGN, telecom-

munication companies demand simple, rapid and economical service creation. The key to

this type of service creation is software re-use. Software re-use is a conundrum where lim-

ited, dedicated solutions exists. These solutions include amongst others Enterprise JavaBeansTM

(EJBs), design patterns and object-oriented programming.

The Telecommunications Information Networking Architecture- Conformance And Testing

(TINA-CAT) workgroup has done work on a functionality centric concept called RP-facets.

This report proposes a redefinition of RP-facets, asFacets, for software re-use across the

design and code level. We redefineFacetsas functionality centricreusable components.

A Facetis independent of the implementation language and the execution platform.Facets

allow containment in a structured manner via a user defined Facet Hierarchy.Facetsare

resource, context and data agnostic. They also introduce a structured way to allow source

code to be changed based on design level decisions. Also, possessing the ability to allow

the simultaneous use of other reuse solutions and programming paradigms. Abstraction of

detail from developers and platform migration can be achieved by usingFacets.

Facetsare composed of a Generic definition and any number of Implementation definitions.

The definitions are supported by an underlying informational model called meta-π. Meta-

π is a model at the M3 meta-level that focuses on describing entities. Most of theFacet’s

capabilities are enabled by the meta-π model.

An environment for developingFacetsis created, called the Facet Development Environ-

ment (FDE). The Facet Developer (FD) role is introduced to develop and maintainFacets.

The FD verifies programmes from programmers to be included into the catalogue of Facets

via the FDE. The FD interacts with service creation teams to determine whichFacetscan

be used in the service they wish to develop.

Facetsprove their capability in targeted areas, yet lack in other categories. It is recom-

mended that the underlying informational model should be revised to form a more robust

and flexible entity describing model. In addition, a cataloging capability to easily find

ii

Facetswith particular functionality should be appended to the capabilities of the facet. It is

proposed, for future work, that a development environment be created that encompasses a

process for usingFacetsto create services.

iii

Acknowledgements

This work was performed at the Centre for Telecommunications Access and Services (CeTAS)

at the University of the Witwatersrand, Johannesburg. The centre is funded by Telkom SA

Limited, Siemens Telecommunications and the Department of Trade and Industry’s THRIP

programme. The financial support was much appreciated.

I would like to extend my thanks to my supervisors, Prof. Hu Hanrahan and Dr. Setumo

Mohapi for their guidance and assistance throughout the duration of the research project.

In addition I would like to thank my colleagues at CeTAS for their criticism and valuable

inputs during the research project particularly Aydin Alaylioglu. But most importantly I

would like to thank my parents for their love, support and patience. It is because of them

that I am who and where I am today. This work is dedicated to my mother, Farida A. Esak

and my late Father Abdull R. Esak.

iv

Contents

Declaration i

Abstract ii

Acknowledgements iv

Contents v

List of Figures x

List of Tables xiii

Acronyms xiv

Definition of Terms xvi

Set Notation Symbols xvii

1 Introduction 1

1.1 Service Creation in the NGN. 2

1.2 Attempts at Software Reuse. 3

1.3 Classification and Analysis of Reuse Solutions. 5

1.4 Problem Objectives. 6

1.5 Outline of Report. 7

2 Contemporary Reuse Practices 8

v

2.1 Reuse in Telecommunications. 9

2.1.1 Intelligent Networks. 10

2.1.2 Telecommunications Information Networking Architecture (TINA)11

2.1.3 Reference Model of Open Distributed Processing (RM-ODP). . . 12

2.1.4 OSA/Parlay. 12

2.1.5 XML Web Services. 13

2.2 Reuse in the Computing Arena. 13

2.2.1 Model Driven Architecture (MDA) 13

2.2.2 Enterprise Java BeansTM . 15

2.2.3 Design Patterns. 16

2.3 Chapter Summary. 17

3 Introduction to Facets 19

3.1 TINA Reference Point-Facet. 19

3.1.1 Reference Point Facet Definition. 20

3.2 Facets Redefined. 21

3.2.1 Mathematical Definition of Facets. 22

3.3 Business Viewpoint. 23

3.4 Informational Viewpoint . 24

3.5 Chapter Summary. 26

4 Key Enabling Concepts 27

4.1 Generic and Implementation Definitions. 27

4.2 Meta-π .29

4.2.1 Definition. 31

4.2.2 Context. 33

4.2.3 Resource. 33

vi

4.2.4 Data. 33

4.3 Placeholders. 34

4.4 Variable Blocks. 34

4.5 Facet Hierarchy. 35

4.6 Chapter Summary. 36

5 Facet Development Environment 37

5.1 Design Considerations. 37

5.1.1 Informational Modelling Languages. 37

5.1.2 Parsers. 38

5.1.3 Implementation Language. 38

5.1.4 Information Storage. 39

5.2 Introduction to the FDE. 40

5.3 Elaboration on the FDE GUI. 42

5.3.1 Menu Bar. 42

5.3.2 Tree. 44

5.3.3 ToolBar. 45

5.3.4 Editable Windows . 46

5.4 Design Patterns Used. 47

5.4.1 Façade . 47

5.4.2 Mediator . 48

5.5 Use Case Diagrams. 49

5.6 Class Diagrams. 50

5.6.1 FacetMediator class. 51

5.6.2 FacetFrame class. 51

5.6.3 FacetStatusTextCtrl class. 53

vii

5.6.4 FacetToolBarManager class. 53

5.6.5 FacetTree class. 53

5.6.6 FacetNotebook class. 55

5.6.7 Facade class. 55

5.7 Message Sequence Charts. 59

5.7.1 FDE Initialisation. 59

5.7.2 Creating a Facet. 60

5.7.3 Opening a Facet. 61

5.7.4 Saving a Facet. 62

5.8 Chapter Summary. 62

6 Facet Examples 64

6.1 Simple CORBA Service Facet. 64

6.2 Mediator Facet . 67

6.3 Web Server Tutorial Facet. 68

6.4 Chapter Summary. 70

7 Conclusion 72

7.1 Discussion. 72

7.2 Conclusion . 74

7.3 Recommendations for future work. 75

References 76

A Meta-π DTD 79

A.1 meta-π.dtd . 79

B Facet DTD 82

viii

B.1 Facet.dtd. .82

B.2 FacetSource.dtd. 88

C Facet Hierarchy and Implementation Language 90

C.1 Sample Facet Hierarchy XML file. 90

C.2 DTD for Implementation Language Comments. 91

C.3 Sample Implementation Language Comments XML file. 91

D Additional UML Diagrams 92

E Simple CORBA Service Facet 101

F Sample meta-π xml file 106

G CD Guide 117

ix

List of Figures

2.1 NGN business model. 9

2.2 Meta-hierarchy used in MDA. 15

3.1 Facet Developer with Stakeholders. 24

3.2 Informational Context of the Facet Developer. 25

4.1 Facet decomposed into Generic and Implementation. 29

4.2 Meta-π compared to MOF . 30

4.3 Facet Hierarchy. 35

5.1 Facet Development Environment. 41

5.2 Facet Explorer. 43

5.3 Facet Hierarchy. 43

5.4 Implementation Language Comment Editor. 44

5.5 Façade Design Pattern [1] . 48

5.6 Mediator Design Pattern [1] . 48

5.7 FDE Use Case. 49

5.8 Facet IDE . 50

5.9 New Facet Wizard. 52

5.10 Facet Chooser. 53

5.11 Facet Explorer. 54

5.12 Facet Hierarchy and Implementation Language Comment Editors. 55

5.13 FacetNotebook. 56

x

5.14 Facade. .58

5.15 FDE Initialisation. 59

5.16 Creating a Facet. 60

5.17 Opening a Facet. 61

5.18 Saving a Facet. 62

6.1 Simple CORBA Service Facet: FDE Tree Structure. 66

6.2 SimpleCORBAService Facet Structure. 67

6.3 Mediator Facet: FDE Tree Structure. 69

6.4 Mediator Facet Structure. 70

6.5 Web Server Tutorial Facet: FDE Tree Structure. 71

D.1 XML Explorer . 92

D.2 Common Windows. 93

D.3 Editor .93

D.4 Facet Data Models. 94

D.5 Sub-Facet Data Models. 95

D.6 Sub-File Data Models. 96

D.7 Facet Editor. 97

D.8 Facet Window. 98

D.9 File Window. 99

D.10 File Window Component Wizard. .100

E.1 ORB Creation Facet: IDE structure. .101

E.2 Read IOR From File Facet: IDE Structure.102

E.3 Write IOR from File Facet: IDE Structure.102

E.4 CORBA Server Facet: IDE Structure. .103

E.5 CORBA Server Side Object. .104

xi

E.6 CORBA Client Facet: IDE Structure. .105

G.1 Directory structure of accompanying CD.118

xii

List of Tables

5.1 Tree Icons. 45

xiii

Acronyms

API Application Programming Interface

CORBA Common Object Request Broker Architecture

DPE Distributed Processing Environment

FDE Facet Development Environment

GII Global Information Infrastructure

GUI Graphical User Interface

ICA Information Communications Architecture

IDE Integrated Development Environment

IDL Interface Definition Language

IN Intelligent Networks

IOR Interoperable Object Reference

JAIN Java API’s for Integrated Network

MDA Model Driven Architecture

MOF Meta Object Facility

NGN Next-Generation Networks

OMG Object Management Group

OO Object Oriented

ORB Object Request Broker

OSA Open Software Architecture

QoS Quality of Service

RAD Rapid Application Development

RM-ODP Reference Model for Open Distributed Processing

RUP Rational Unified Process

SATINA South African TINA Trial

SATINA-NGN South African TINA NGN Trial

SCE Service Creation Environment

TINA Telecommunications Information Networking Architecture

xiv

UML Unified Modeling Language

XMI XML Model Interchange

XML eXtended Markup Language

xv

Definition of Terms

Meta Model

A Meta Model is defined as a model that describes another. Meta Models can be arranged

hierarchically to describe lower level models.

Next Generation Network

The Next Generation network is a telecommunications grade network that is built on a

packet-based network. The NGN is able to support a multitude of multi-media and multi-

party services.

Model Driven Architecture

The Model Driven Architecture specifies that development of any software will proceed as

an evolution from a platform independent model (PIM) to a platform specific model (PSM).

It is envisaged that the MDA will facilitate maintenance and portability of software.

Platform

A Platform is an architecture, framework or environment which is the context of operation

for the target functionality.

Best of Breed Characteristics

Reuse solutions can be categorised into several groups or “breeds”. Within a particular

“breed”, a reuse solution exists which qualifies to be the best because the reuse solution

has the best characteristics for that “breed” of reuse solutions. Therefore, the “best of breed

characteristics” are those characteristics that define the best reuse solution within a category

or group of reuse solutions.

Implementation Language

The Programming Language used to implement a specific piece of functionality. Including

Programming Languages such as C++, Java, Python, SmallTalk, etc.

xvi

Set Notation Symbols

Sxx : The convention to represent sets is aS followed by the description of the set. An

example is: a set of Apples is SApples or SAPPLES.

{} : Defines the contents of a set.SApples = {a, b, c} tells us that the set SApples has

elements a,b and c.

∈: Element of.The symbols is used to show that a value or variable is an element of a set.

x ∈ SApples shows us that x is an element of the set of Apples,SApples.

U : Universal Set. The set of all elements that exist.Uapples will refer to the universal set

of all the Apples in the world.

∅ : Null Set.A null set is an empty set and is equivalent to a zero in traditional mathematics.

∀: For All. A symbol that refers to all the elements of a set.

∪: Union of two sets.∪ is equivalent to addition. Here we are adding two sets. There-

fore, if we define a set of ApplesSAApples andSBApples. ThenSAApples ∩
SBApples is equal to the set of all Apples inSAApples andSBApples.

∩: Intersectionof two sets.∩ represents the overlapping of two sets. If we define a set of

ApplesSAApples andSBApples. ThenSAApples∪ SBApples is equal to the set

of Apples that are elements of bothSAApples andSBApples.

⊂: Subsetdefines the contents of a set being elements to another set.SAApples ⊂
SBApples shows us that all the elements ofSAApples are also elements ofSBApples.

⊆: Subset and Equals.This symbol is an extension of⊂. SAApples ⊆ SBApples means

thatSAApples can also have exactly the same set of elements asSBApples.

⊃ : Super set.Similar to⊂ except thatSAApples ⊃ SBApples means thatSBApples is

a subset ofSAApples.

⊇ Super set and equals.Similar to⊆ with the characteristics of⊃.

∨ : a binary or.

xvii

Chapter 1

Introduction

Telecommunication companies (telcos) have traditionally played the role of connectivity

provider. Deregulation of the telecommunications marketplace forced the telco to differ-

entiate itself from its competitors. Intelligent Networks (IN) and the proposed B-ISDN

declared that provisioning of services was the key to differentiation and gaining market

share in a deregulated telecommunications marketplace. Telcos were convinced and thus

also took on the role of service provider. Within their new service provider role, the telco

envisaged creating and deploying a multitude of services rapidly and economically. Ven-

dors could not satisfy the telco’svisionwithin the framework of legacy technologies. Yet,

telcos still cling onto thisvision.

Presently we are in the midst of an evolution of the telecommunications network. This

evolution marries the computing(Internet) world to the telecommunications world resulting

in a packet-based QoS-enabled network that is being globally termed the Next Generation

Network (NGN). The NGN draws inspiration from the computing world to flexibly deliver

services to end-users thus building on the telco’s service provider role. Various initiatives

proposed solutions for the NGN, or parts of it, resulting in a plethora of platforms. Web

Services, Global Information Infrastructure (GII), Telecommunications Information Net-

working Architecture (TINA), Parlay and Java API’s for Integrated Network (JAIN) are just

a few examples of such initiatives. With so many initiatives, the path toward the NGN is

chaotic and uncertain. Nonetheless, some Telcos are taking bold steps by employing solu-

tions such as Parlay and Web Services. These bold steps are prompted by increasing com-

petition the world over. Global competition is a direct result, in most cases, of deregulation

of the telecommunications market [2].

Within this landscape of varying telco decisions and an uncertain path toward the NGN, how

will the telecommunications world realise itsvision? By marrying the Internet world, the

telecommunications world is allowed to take advantage of its methodologies, concepts, pro-

cesses and structure. Rapid Application Development (RAD) environments can help realise

1

thevisionand are called Service Creation Environment (SCEs) in the telecommunications

domain. RAD environments take advantage of modeling languages such as Unified Model-

ing Language (UML), software reusable components such as Enterprise JavaBeansTM(EJBs),

software lifecycle processes such as Waterfall Model and software development methodolo-

gies such as Extreme Programming in an attempt to consistently deliver software on time

and within budget. Already, certain Intelligent Networks (IN) platforms have SCEs that

enablerapid service creation. We explore a few SCEs in more detail in section1.1.

1.1 Service Creation in the NGN

Service creation is abstract and general since there are not many detailed guidelines avail-

able on how to structure each of its phases [2]. Nonetheless, there have been many attempts

to create SCEs. Many of the SCEs have a restricted scope in terms of services created and

the target deployment platform, and are hence termed dedicated SCEs [3].

IN SCEs were the very first environments for creating telecommunication services. These

SCEs introduced relevant concepts such as ‘drag and drop’ of reusable components and

development based on functionality. IN SCEs used the Capability Set Specification which

provided the service creation paradigm, reusable components and deployment process. The

IN SCE did not incorporate modelling and reuse concepts that were being born in the Soft-

ware Engineering world. Instead the IN SCEs used the IN CSS as a guide for modelling

and reuse.

The TINA Consortium was the pioneer in the effort to marry the computing and telecom-

munications worlds. TINA is an architecture based on distributed object computing. It

aims to improve interoperability, re-use of software and specifications, and flexible place-

ment of software on computing platforms/nodes [4]. SCEs that were built around the TINA

concept are worthy of investigation. These SCEs include SCREEN [5], FRIENDS [6] and

TOSCA [7].

The SCREEN project stipulates five phases that complete the service creation process. In

addition, cross phase activities such as quality assurance, project management and traceabil-

ity are assumed. SCREEN attempts to structure the service creation process and abstract

detail from the service developer.

The FRIENDS project is a model-based approach that realises an enterprise model for ser-

vice creation. This enterprise model specifies a component developer and service developer.

The component developer is responsible for the creation of reusable EJB-like components.

The service developer creates services using the resulting components.

2

TOSCA successfully attempted to abstract detail from the developer. Its use of paradigms

allowed less technically oriented individuals to develop services. Services were devel-

oped with the assumption that a flexible software framework exists upon which the service

may execute. The reusable component existed at a high granularity introducing flexibility

through properties.

We find a few points across the TINA SCEs that are worth pointing out. Firstly, all SCEs

specified a reusable component at some level of granularity. The use of a reusable com-

ponent signals that reuse is a driver for rapid development. This sentiment is echoed by

Software communities in general. Secondly, most SCEs borrowed Software Engineering

concepts such as UML modeling even though UML fails to completely describe telecom-

munications grade services. Thirdly, abstraction of detail from the developer is a by-product

of reusable components. Abstraction is viewed as a further driver for rapid development.

Lastly, all the SCEs were dedicated SCEs. Dedicated SCEs bind the environment to a plat-

form or architecture. In all cases, services could not readily be migrated to other platforms

or architectures.

We focus on the reusability aspect of service creation. We believe that reusability is a

driving force for rapid economical service creation. In dedicated SCEs, the structure of

reusable components are static. This does not hold true in the constantly evolving NGN

environment that results in a plethora of architectures. Hence we need a reusable solution

that can be applied uniformally across multiple architectures. To understand reusability,

section1.2examines software reuse attempts.

1.2 Attempts at Software Reuse

Software methodologies such as Software Product Lines, Agile Programming, Dynamic

Systems Development Method (DSDM) and Rational Unified Process (RUP) promote reuse.

Implementors of software methodologies have limited options for an effective reusable soft-

ware component. Their options include Microsoft Component Object Model (COM)TM [8],

Design Patterns [9], Sun Microsystem’s Enterprise Java BeansTM(EJBs) [10] and Object-

Oriented Programming (OOP) [11] principles.

Microsoft’s COM is a solution to implementation language dependencies. Microsoft COM

allows reusability at the implementation-level. Microsoft COM is implemented as dynam-

ically linked libraries (DLLs). DLLs can be seen as black boxes which expose their func-

tionality as a set of interfaces. And, DLLs may use other DLLs. This makes for a single

level of granularity for reuse that is very rigid and hard to change. A common problem

with Microsoft COM is that experienced programmers experience difficulties when DLLs

3

do not provide them with the necessary functionality. Programmers using Microsoft COM

objects are forced to import the entire object resulting in memory intensive applications.

Memory usage can be minimised if the imported Microsoft COM objects fit the function-

ality requirements exactly instead of forcing the programmer to import functionality that

will not be used in the programme. Hence the Microsoft COM objects can be improved by

introducing a finer granularity of functionality to allow the programmer to more precisely

choose the functionality that is required.

Design patterns are an attempt to describe successful solutions to common software prob-

lems. A design pattern is a proven solution to a recurring problem [9]. When related

design patterns are woven together they form a “language” that provides a process for the

orderly resolution of software development problems. Design pattern languages are not for-

mal languages, rather a collection of interrelated design patterns, though they do provide

a vocabulary for talking about a software problem. Both design patterns and design pat-

tern languages help developers communicate architectural knowledge, learn a new design

paradigm or architectural style, and help new developers ignore traps and pitfalls that have

traditionally been learned by costly experience.

EJBs are defined by Sun Microsystems as part of the Java suite of solutions [10]. EJBs

address business and enterprise aspects of software design in a distributed processing envi-

ronment. A set of interfaces expose the EJB’s functionality. The process of creating EJBs

is supported by a number of business roles which effectively distinguish the aspect of cre-

ating the EJB from the aspect of deploying the solution. The EJB concept is developed to

leverage the use of the Java platform. Although EJBs expose the business issues related to

reusability, their implementation cannot be universally applied due to strong coupling to the

Java platform.

As software programmes became more complex, programmers found that functional pro-

gramming languages were inadequate in describing the complexities. OOP was seen as a

step to move away from the chaos of functional programming [11] towards a better struc-

tured programming paradigm. OOP introduced concepts such as inheritance, containment

and aggregation. Together these concepts helped in separating functionality such that they

can be reused in other scenarios [12]. Although OOP helped to manage complexity, func-

tional programming has its place within small mission-critical applications due to reduced

computing overhead in functional programming languages.

Although not a reuse solution offered to the computing world, IN Service Independent

Building blocks (SIBs) [13] were a major move forward in achieving rapid service de-

velopment in the telecommunications domain. SIBs are script-like components that have

black box characteristics and represent functionality. Service development is achieved by

4

stringing compatible SIBs together, effectively creating longer scripts, and thereby achiev-

ing complex functionality. The main contribution of the SIB methodology is its focus on

and encapsulation of functionality.

Many reuse attempts have been successful in their own software paradigm but none can

claim universal success, begging the question:why has a reusable component not been

successful in all domains?

1.3 Classification and Analysis of Reuse Solutions

The basic premise of reusable components is:

First, do not reinvent that which has already been invented; second, construct new systems

and enhance existing systems using building blocks already tested and proven[14].

Simply creating and announcing a reusable library does not work. Without a “reuse mind-

set”, organisational support and methodical processes directed at the design and construc-

tion of appropriate reusable assets, reusable components become expensive pieces of ar-

chaic software [15]. Thus the proper state of mind must be achieved before reuse solutions

can be employed.

Present reuse solutions can be classified into four categories [12] viz.:

1. design level: a high level description without attention to implementation;

2. inheritance level: propogation of behavioural characteristics from one reusable com-

ponent to the next;

3. component level: self-sufficient component encompassing a concept such as func-

tionality; and

4. code level: reuse of source code.

TOSCA Paradigms [7], Design Patterns [9] and Meta Object Facility (MOF) [16] can be

classified as design level reuse solutions. Object-Oriented Programming (OOP) falls in line

with the inheritance level, whereas, Microsoft COMTM , Sun Microsystems EJBsTMand IN

SIBs are classified as component level reuse. Code reuse is the “cut and paste” standard

that is familiar to many developers.

The high level specification in the design level reusable component decouples the solution

from the implementation language. The decoupling introduces a top-down approach to

reuse allowing the solution to be implemented in a number of implementation languages.

5

The top-down approach does not promise that an implementation of the high level descrip-

tion will exist in the implementation language of choice.

By contrast, code level reuse provides the implementation but creates an explosion of detail

for the developer. An influx of detail can overwhelm the developer and prevent meaningful

work from being done. The only advantage is the reuse of actual lines of source code.

Reusability at the component level is useful as it encompasses a concept such as function-

ality or business process. Complex concepts are created by stringing components together,

just as IN SIBs are strung together to form more complex functionality. The distinct disad-

vantage of component level reusable components, as well as inheritance and implementation

level components, is their tight coupling to an implementation language.

An inability to allow multiple reuse solutions to co-exist is a general shortcoming across

reuse solutions. In addition, many reuse solutions tend to present unstable source code. The

exception is design patterns where only proven solutions to existing problems qualify to

become design patterns.

In summary, a reuse solution is required that embodies a top-down approach to reuse to-

gether with reuse at lower levels. The reuse solution should hide detail from the developer

without hindering the developer’s need to access and modify source code. The simultane-

ous co-existence of multiple reuse solutions should be possible. And, there must be loose

coupling to the implementation language. The reuse solution should only present stable,

tested source code.

1.4 Problem Objectives

The objective of the project is to design and implement a reuse solution that meets the

requirements for a reuse solution targeted at the telecommunications domain. The reusable

solution will strive to achieve the follow characteristics:

1. functionality centric: the reusable software is described by the functionality it offers;

2. multi-granular: achieved by structured containment of one reusable component by

another;

3. platform-independent: independent of the deployment and/or execution environment;

4. implementation language-independent: independent of the language that the func-

tionality is implemented in;

5. simultaneous co-existence of other reuse solutions (where possible);

6

6. abstraction of detail from the developer; and

7. agnostic of resources, data and context.

The reusable component is validated in a development environment. Later, we term this

particular reuse solution aFacet.

1.5 Outline of Report

Chapter 2 examines proposed NGN solutions with respect to reusability. Architectures

and platforms such as TINA, Parlay, JAIN and Web Services are investigated. Reuse in the

computing arena is also examined. Chapter3 introduces the proposed reuse solution as a

redefinition of the concept developed by the TINA-CAT workgroup. The key aspects are

introduced in this chapter but are elaborated in later chapters. Chapter4 details the reuse

solution in terms of its composition and structure. Chapter5 introduces the development

environment, called the Facet Development Environment (FDE), that enables creation and

modification of the reusable components. This chapter also explains the design considera-

tions in developing the FDE. The FDE is introduced functionally and technically with UML

diagrams and User Interface snapshots. Chapter6 solidifies the facet concept with a few

examples that are played out using the development environment from chapter5. The ex-

amples illustrate the facet concept, a facet’s ability to allow the simultaneous co-existence

of other reuse solutions and a facet’s software paradigm independence. The conclusions

drawn from this work together with discussions and proposals for further work is presented

in chapter7

7

Chapter 2

Contemporary Reuse Practices

Reuse is seen as a means to increase overall productivity of software and improve time to

market resulting in increased revenue. Hence the driver for reuse is increased revenue or

return on investment. To increase return on investment a company will embark on a reuse

initiative from different organisational levels which, needs staff and processes for creating

and encouraging the use of reuse solutions.

At the corporate level, corporate management allocates resources to the reuse initiative

expecting to reap benefits in terms of improved product quality, increased productivity and

shorter time to market. At the reuse department level, the reuse department will invest man

hours into developing reusable components expecting to reap benefits by selling the reusable

components to development teams. The development teams can be internal or external to

the company. At the development team level, the risk of using reuse components is taken

expecting benefits of increased productivity, quality and timeliness of projects [17].

Once all levels in a company are committed to reuse, decisions about reuse solutions to

use must be made. Reuse solutions can be software design methodologies, programming

paradigms, software lifecycles or source code sharing mechanisms. In addition, the reuse

solutions can be categorised into one of the four categories listed in section1.3. This chapter

reviews reuse from the telecommunications and computing viewpoints. Section2.1explores

telecommunications architectures such as Intelligent Networks (IN), Telecommunications

Information Networking Architecture (TINA), Parlay and Web Services for reuse solutions

that are offered. Section2.2discusses the more widely accepted reuse solutions of the com-

puting domain such as Model Driven Architecture (MDA), Enterprise JavaBeansTM(EJBs)

and Design Patterns.

8

2.1 Reuse in Telecommunications

Traditionally, the telecommunications company (Telco) and the Vendor were the only stake-

holders in the telecommunications domain. IN exists in the Telco-Vendor business model.

The Vendor sells the IN platform to the Telco. The Telco offers value added services to the

Consumer thus generating revenue.

Figure 2.1: NGN business model

Introduction of the NGN ushers in a dynamic business model that expands on the Telco-

Vendor business model. Figure2.1 illustrates a general NGN business model. Separation

of services from connectivity results in the Service Provider and the Connectivity Provider

roles. Services can be offered by the Service Provider or the3rd Party Service Provider.

The3rd Party Service Provider is subscribed to the Service Provider to provide applications

and services to the Service Provider’s consumers. The Application Provider develops and

provides the3rd Party Service Provider or Service Provider with the applications or services

they require. The Application Provider is effectively a sub-contractor employed by the3rd

Party Service Provider or Service Provider to develop a particular service for deployment

on a particular target platform. The Vendor keeps the traditional role of providing hardware

and software that the parties want. The Application Provider and Vendor overlap such that

the Application Provider can be considered as a Vendor that specialises in software.

Reuse in the pre-NGN business domain required innovative mechanisms. IN implements

SIBs as a solution towards reuse in sub-section2.1.1. TINA proposes a component level

reuse in subsection2.1.2. Reference Model of Open Distributed Processing (RM-ODP) is

used by TINA. RM-ODP is discussed in subsection2.1.3. Parlay provides an interface that

is supported by underlying generic functionality. The generic functionality is used to build

the complex logic of multiple services. Parlay is discussed in sub-section2.1.4. Sub-section

2.1.5discusses XML Web Services approach to reuse.

9

2.1.1 Intelligent Networks

IN was the pioneer in separating call control from service control. IN moved service control

out of the switches and into an intelligent service provisioning platform. IN is described in

the Capability Set specifications i.e. CS-1, CS-2 and CS-3. The Capability Set specification

defines the IN Conceptual Model (INCM) to deal with the complexities of service creation.

The INCM is a framework that consists of four planes. The four planes separate the concerns

of roleplayers and creates a transition from abstract definition to detailed definition and

deployment [13]. The four planes are:

1. Service Plane (SP): the SP depicts the services. Multiple services may exist on this

plane. Multiple services may use the same functionality. Resulting in an intersec-

tion of functionality that is called a service feature. Service features can be used in

multiple services and are a form of high-level reuse.

2. Global Functional Plane (GFP): the GFP consists of a Basic Call Process (BCP) and a

number of Service Independent Building Blocks (SIBs). The BCP represents the call

process that executes in the switch. The BCP has a number of trigger points or points

of initiation (POI). A POI is the point when the switch hands over service control

to the IN platform. The IN platform returns service control to the switch by BCP

points of return (POR). SIBs are the core reusable components that IN developers use

to implement a service. The SIB is described in terms of functionality offered with

a well-defined stable interface. A SIB is tailored to a particular service by service

specific data. SIBs are strung together to form service logic. Services and Service

Features consist of SIBs.

3. Distributed Functional Plane (DFP): the DFP is a distributed definition of the func-

tional entities and the actions performed at functional entities that underly SIB func-

tionality.

4. Physical Plane (PP): the PP represents the physical entities and the protocols that

make up the IN platform.

SIBs are described from an external view. A SIB’s external view consists of a logical start,

multiple logical ends, service specific data, input call instance data and output call instance

data. The external viewpoint of a SIB abstracts detail from the developer when creating

services. IN Services are constructed by associating a SIB’s logical end with another SIB’s

logical start.

The SIB methodology works well for IN to introduce reuse and improve the efficiency of

service development. The SIB is an example of component-level reuse that is confined to a

vendor specific IN platform.

10

2.1.2 Telecommunications Information Networking Architecture (TINA)

TINA is an open telecommunications and information architecture that hides the hetero-

geneity of the underlying network from the service developer. A Distributed Processing

Environment (DPE) is used to hide the heterogeneity and to create perceived co-location of

physically separated computational objects. A DPE also achieves implementation language

independence by focusing on informational flows.

TINA has been instrumental in introducing concepts such as sessions and separation of con-

cerns. Separation of concerns include the separation of applications from the environment

upon which they run and separation of an application into service specific part and a generic

management and control part.

The complexity of the domain that TINA addresses, is broken down into four main sub-

architectures [4]:

1. Service Architecture: defines a set of concepts and principles that apply to telecom-

munication services.

2. Network Architecture: defines a set of concepts and principles that apply to transport

networks.

3. Management Architecture: defines a set of concepts and principles that apply to soft-

ware systems that are used to manage services, resources, software, and underlying

technology.

4. Computing Architecture: defines a set of concepts and principles for designing and

building distributed software and the software support environment.

The Computing Architecture addresses reuse and is used by the other three sub-architectures.

The Computing Architecture achieve reuse by using the RM-ODP and specifying the com-

putational modelling concepts (TINA-CMC) [18]. RM-ODP is discussed in sub-section

2.1.3. TINA-CMC gives rise to reusability by defining distributed software consisting of a

group of computational objects. Each computational object offers one or more interfaces for

interaction and to allow other computational objects to access its capabilities. In addition,

the computational objects are implementation language independent and loosely coupled to

each other. TINA’s approach to reuse is classified as a combination of component reuse and

high-level reuse (RM-ODP).

11

2.1.3 Reference Model of Open Distributed Processing (RM-ODP)

RM-ODP is a framework that assists in developing open distributed architectures. RM-ODP

aims to enable the building of distributed architectures or systems that are open, flexible,

and modular amongst other characteristics [19].

Information regarding a non-trivial system can grow exponentially. Trying to use the infor-

mation becomes difficult if there is a lack of structure and organisation to the information.

RM-ODP attempts to organise the information by abstracting the information to five view-

points. The five viewpoints are [20]:

Enterprise viewpoint: is concerned with the business environment of the system and its

role in the business environment.

Information viewpoint: is concerned with the flow of information within the system in

terms of interfaces. The necessary processing of the information is part of this view-

point.

Computational viewpoint: is concerned with the description of the system as interwork-

ing distributed objects. Objects interact with interfaces and can be sources or sinks of

information.

Engineering viewpoint: is concerned with the mechanisms supporting system distribu-

tion.

Technology viewpoint: is concerned with the hardware and software details that make up

the system.

RM-ODP introduces reuse at the Information viewpoint with later viewpoints focusing on

the specifics of the solution. The five viewpoints can be used to describe the reusable com-

ponent exhaustively and are a useful ingredient in the makeup of a reuse solution. RM-ODP

is classified as a software design methodology at high-level reuse.

2.1.4 OSA/Parlay

The Parlay architecture defines an open yet secure framework for multi-media multi-party

services. The key aspect of this framework is the API that enables a3rd Party Service

Provider access to network capabilities in the Service Provider domain. The network capa-

bilities of the Service Provider are bundled into Service Capability Features (SCFs). The

SCF is an object that implements interfaces which is used in creating a service. Many

services can use a particular SCF, thus promoting reuse. The use of SCFs is yet another

12

component level reuse solution in the telecommunications domain. The problem with Par-

lay is that the SCFs are just objects that implement interfaces. The glue for creating services

is the Application domain where services are created and where reuse is most needed.

2.1.5 XML Web Services

XML Web Services allow programmes to exchange information using an XML-based in-

terface. Each programme is registered with and located via a Web Service registry. Web

Services expose an interface for data exchange and publish information on services offered.

XML Web services do not tightly couple interacting programmes together [21].

XML Web Services use Simple Object Access Protocol (SOAP) [22] over Hypertext Trans-

fer Protocol (HTTP) as the one-way communication mechanism. The SOAP message is

placed within a HTTP Post or Get request. The SOAP message consists of a SOAP Header

and Body. The SOAP Header can possess multiple headers that target intermediaries. Each

intermediary is a Web Service programme. Thus multiple programmes can be targeted with

a single invocation, that is SOAP has decentralized extensibility.

XML Web Services are implemented on Web Servers using server-side web application

languages such as ASP, JSP, Perl and Python. Web Services do not present any reusability.

Instead, Web Services rely on the reusability capabilities present in the underlying imple-

mentation language such as ASP, JSP, Perl or Python. In most cases, the only reusability

that exists is code-level reuse.

2.2 Reuse in the Computing Arena

Reuse initiatives in the computing arena are active. This section focuses on some of the

more prominent reuse initiatives with a view to exposing the advantages of each. We in-

vestigate Model Driven Architecture (MDA), Enterprise JavaBeansTM(EJBs) and Design

Patterns.

2.2.1 Model Driven Architecture (MDA)

The Model Driven Architecture (MDA) [23] is an evolutionary progression of the set of

modelling standards developed and maintained by the Object Management Group (OMG).

The MDA seeks to allow an implementation independent specification of system function-

ality to be implemented on different platforms through defined mappings. The MDA defines

its standard modelling and interchange constructs in the Meta Object Facility (MOF) [16],

13

uses a standard data warehousing model (CWM) [24] and provides for standard exchange

between various tools, repositories and middleware through XML Meta-data Interchange(XMI)

specifications [25]. Together these specifications facilitate the realisation of the MDA ob-

jectives, listed below:

1. Definition of a solution in a manner that is detached from the desired target platform,

that is, a Platform Independent Model (PIM);

2. Migrating the solution, at an appropriate stage, from the PIM to a Platform Specific

Model (PSM) tailored for the desired target platform;

3. Existence of a shared meta-data infrastructure. The infrastructure allows interchange

of models. The shared meta-data infrastructure is also called a meta-hierarchy; and

4. Adherence to an Object-Oriented Paradigm.

The types of target platform envisaged in the MDA documents include databases, network-

ing nodes, programming languages and telecommunications platforms. Telecommunica-

tions platforms are often more complex and heterogeneous, requiring greater flexibility in

service creation support.

The OMG has remained faithful to its initial specification, Unified Modelling Language

(UML), by defining MOF using UML [26]. Consequently, Object Oriented Programming

(OOP) is the only paradigm for system specification and design.

Recent telecommunications software architectures are object oriented and, provided that

their specification is expressed in or translated into UML, appear amenable to the MDA

approach [27]. However, functional and scripting paradigms remain effective for particular

applications. An important legacy script-like methodology is IN SIB-based service creation.

The inability of MDA to easily accommodate other programming paradigms is seen as a

problem in telecommunications service creation. Specifically, the MDA lacks the ability to

effectively and explicitly define interactions between heterogeneous entities in telecommu-

nications, such as interactions between a back-end object-oriented system and a script-based

front-end web server application. A further shortcoming of UML-based system definition

is the incomplete specification of object behaviour. Telecommunications standards, by con-

trast, make extensive use of SDL for detailed specification of behaviour.

MDA utilizes a meta-hierarchy to catalogue the parts of the MDA structure based on what

each part describes. Figure2.2shows the conventional meta-hierarchy layers, described as

follows [16]:

M0: The user object layer is comprised of the information that the user wishes to describe.

14

<<meta-meta-model>>

MOF

<<meta-model>>

UML

<<model>>

Class

<<instance>>

Class

M0

M1

M2

M3

OMG

Object-Oriented Paradigm Only

Figure 2.2: Meta-hierarchy used in MDA

This information takes the form of concrete instances of data;

M1: The model layer is comprised of meta-data that describes information the user wishes

to represent. The aggregation of meta-data is a model;

M2: The meta-model layer defines the structure and semantics of meta-data used in the

M1 layer: a language for describing different kinds of data; and

M3: The meta-meta-model layer contains the description of the structure and semantics

of meta-meta-data used in layer M2.

The UML/MOF approach to reusability focuses on a generic object-oriented design. Reusabil-

ity comes into effect once the structural description of the solution is general enough. At

that point the solution can be moulded into a specific implementation. Although skeleton

code (for a specific implementation) can be generated from UML models, the UML solution

does not alleviate the problem that detailed source code will have to be written. In summary,

the OMG approach via UML and MOF to reusability is a top-down approach where the de-

veloper is at a loss to incorporate already defined parts of the source code. UML and MOF

are adequate for high level software design but fail to capture detail.

2.2.2 Enterprise Java BeansTM

EJBs are the standard component architecture for building distributed object-oriented busi-

ness applications in the Java programming language [10]. EJBs are created to abstract the

15

underlying complexity from that developer and allow EJBs to contain each other in an un-

structured manner.

The EJB Specification applies a mindset which realises that software exists within a business

domain. Six roles are defined as part of the EJB’s business domain. The six roles are:

1. Bean Provider: creates EJBs from the client’s perspective;

2. Application Assembler: assembles many beans into an application for use in a con-

tainer;

3. EJB Container Provider: creates a container for the EJBs that provides non-system

level tasks such as security;

4. EJB Server Provider: provides low-level requirements required by the container such

as thread management and distributed object management;

5. Deployer: deploys the EJB, Application, Container and Server within an operational

context; and

6. System Administrator: carries out post-deployment maintenance.

EJBs are an example of component level reuse with a containment capability. EJBs are

tightly coupled to their implementation language but provide an interface for other non-

Java objects to interact with it. This interface is defined using CORBA IDL.

2.2.3 Design Patterns

Design patterns capture and describe successful solutions to recurring software problems.

Pattern languages provide a well-defined way to describe and catalogue design patterns.

Most pattern languages have the following broad descriptive headings:

• Problem: describes the recurring software problem with as much detail as possible;

• Context: describes the pre and post context of the pattern;

• Solution: describes the logical steps required to implement the solution albeit from a

high-level perspective;

• Intent: describes the intention of the proposed solution;

• Forces: describes the reasons for the approach used;

• Applicability: describes the areas or domains where the solution is applicable;

16

• Participants: describes the entities that participate in this solution; and

• Known Uses: describes the situations where the solution has been successfully ap-

plied.

Design patterns, most often, do not provide implementations of the solutions they present.

The onus is on the developer to understand the solution and implement it. Nonetheless,

design patterns are successful because of its strong binding to relevant software problems.

Whereas with MDA the solutions are sometimes too abstract to grasp. Extensive informa-

tion describing the design pattern helps the developer in using the design pattern correctly.

Design patterns are an example of high-level reuse.

2.3 Chapter Summary

This chapter has examined contemporary software reuse solutions within the telecommuni-

cations and computing environment. There seems to be a general consensus that component

reuse is an adequate solution to reuse issues.

IN SIBs emphasized a function-centric reusable component that possesses a black box de-

scription. The IN SIB black box description facilitates rapid development by aligning logi-

cal ends of SIBs.

TINA-CMC introduces a reusable component that is loosely coupled to other reusable com-

ponents. Also, TINA-CMC emphasizes implementation language independence.

RM-ODP is a software design methodology that assists in structuring the influx of infor-

mation about a reusable in such a manner that assists the development of a reusable com-

ponent. RM-ODP creates awareness of five important aspects through which all reusable

components should be described.

MDA introduces a high-level specification characterised with meta-levels. The MDA illus-

trates its capability to describe a number of implementations using one model. Meta-levels

enable this capability. A disadvantage of the MDA approach is an inability to furnish suffi-

cient detail.

EJBs focus on the business aspect of a reusable component. EJBs can contain other EJBs

and interface with other implementations by means of an interface defined with CORBA

IDL. A disadvantage is EJB’s close coupling to its implementation language.

Design patterns address relevant software problems with a proven solution. Other reuse

solutions do not force reusable components to be well tested or a recurring solution. Design

17

pattern languages describe reusable components extensively. Extensive descriptions prevent

a misinterpretation of the design pattern.

The reuse solutions described here have diverse strengths and weakness. No single method

provides the multi-granularity, platform-independence and implementation language-independence

that is called for in section1.4.

We assume that by amalgamating the strengths of the discussed reuse solutions we can ap-

proach a universally applicable reuse solution. Chapter3 introduces a proposed universally

applicable solution calledFacets.

18

Chapter 3

Introduction to Facets

This chapter introduces a universally applicable reuse solution called a Facet. The Facet

concept has, as its foundation, the redefinition of the TINA Reference Point-facet (RP-

facet). The Facet concept expands on this foundation by borrowing“best of breed”charac-

teristics from the reuse solutions mentioned in chapter2. Section3.1begins to explain the

TINA RP-facet as a basis for understanding the Facet, which we define in section3.2. The

definition of Facets is done mathematically using set notation. Section3.3 illustrates how

the Facet concept exists within a business context. The Facet is viewed from an Informa-

tional viewpoint in section3.4.

3.1 TINA Reference Point-Facet

TINA is a complex architecture that is simplified by Reference Points (RPs). TINA defines

RPs as a mechanism to separate concerns and to express the TINA architecture in terms of

objective requirements. TINA RPs tend to be large, non-incremental and unstructured with-

out measures to ensure interoperability. In a multi-vendor telecommunications environment

interoperability between various TINA products is key. In an effort to add structure and

reduce interoperability problems the TINA Conformance And Testing (CAT) workgroup

was formed. The TINA CAT workgroup was tasked with proposing a framework for the

conformance and testing of TINA RPs. The resultant framework is structured around a key

concept called Reference Point facets (RP-facets). The framework gives a mathematical

definition of RP-facets; defines a specification template for the definition of RP-facets and

derives a conformance test method for TINA RP validation [28].

19

3.1.1 Reference Point Facet Definition

RP-facets are the functional building blocks of the TINA Reference Points. Each RP-facet

can be defined as a meaningful self standing portion of functionality [29]. There can be

a number of RP-facets in a TINA Reference Point, which are self-contained in terms of

functionality and support the incremental specification of a TINA Reference Point.

A TINA Reference Point is made up of many interfaces each containing its own set of

operations. Each interface or operation can be classified as either mandatory or optional.

A mandatory interface or operation is one that is essential for the operation of the TINA

Reference Point. The set of mandatory interfaces and operations, together with their depen-

dencies, make up a core-based RP-facet. A RP-facet, created by a vendor, must contain the

core-based RP-facet to pass conformance. The vendor RP-facet can implement any other

functionality over and above the core-based RP-facet [30]. The core-based RP-facet pro-

vides a way for TINA Reference Points to be implemented partially thus greatly improving

the extendability and ease of use of the TINA Reference Point.

Practical use of RP-facets for testing and validation is enabled by formal definitions of the

RP-facets. Static and dynamic models together with behavioural characteristics of the RP-

facets are captured using Formal Definition Languages(FDLs). At the technical level, a

RP-facet is defined in terms of [29, p.5]:

• its interface specification;

• the roles between which there is interaction;

• a protocol (or object interactions and state changes) that the interface is intended to

support;

• the other facets this RP-facet depends on; and

• typical usage of the RP-facet.

We mould the RP-facet to focus on its characteristics that assist reuse. The key RP-facet

characteristics that assist reuse are, firstly, a meaningful self-standing portion of functional-

ity, secondly, self-containment in terms of functionality, thirdly, incremental specifications,

and lastly, the use of Formal Definition Languages (FDLs) to capture exact descriptions.

The resulting moulded RP-facet is termed a Facet and is detailed in section3.2.

20

3.2 Facets Redefined

The RP-facet was defined specifically for conformance testing of TINA Reference Points.

The focus of our work is software reuse applicable to the NGN. Therefore, RP-Facets are

extended and redefined as reusable components called Facets. The Facet’s effectiveness is

achieved (in the general Software Engineering domain and NGN Service Creation domain)

by a number of“best of breed”characteristics borrowed from other reuse solutions such as

MDA, EJBs, Design Patterns and IN SIBs.

Migration from a Platform-Independent Model (PIM) to Platform-Dependent Model (PDM)

is a key concept embodied in Facets borrowed from the MDA. Each Facet must realise a

functional description that is independent of a particular platform, in the MDA sense. Al-

though the MDA focuses on top-down reuse, effective reuse is only possible when accom-

panied by a bottom-up approach. EJBs address this bottom-up approach.

EJBs are closely coupled to their implementation language, Java. Close coupling implies a

bottom-up approach to reuse. The bottom-up approach works in conjunction with the top-

down approach to achieve effective reuse. EJBs possess other desirable properties. EJBs

address the need of commercial software projects by considering the business viewpoint

of the reusable component [10]. Also, EJBs are accompanied by deployment descriptions

that facilitate easier and faster deployment of EJBs. The deployment descriptor provides

both structural and application assembly information. A business viewpoint, deployment

descriptions and a bottom-up approach is borrowed from the EJBs.

Design Patterns present structural information as well as the purpose of the design pat-

tern/reusable component [31]. Being aware of the reusable component’s purpose helps the

developer decide which is the best reusable component for the job. A pivotal concept of

design patterns is the acceptance of proven solutions which reduces the existence of poor

reusable components. Also, design patterns are independent of the software engineering

methodology, software paradigm, implementation language and platform. Facets borrow

the description capabilities of design patterns and the concept of only using proven solu-

tions to recurring problems.

IN SIBs propose reuse as functional components-echoing a key concept of the RP-facets.

IN SIBs are specified as black-boxes to help service developers create services without

worrying about the underlying detail. Hence, service creation is reduced to matching out-

puts to inputs of various succeeding SIBs. SIBs are dedicated reusable components in a

single technology environment. The black-box approach encounters difficulties in a multi-

technology environment. Difficulties encountered are due to interoperability issues. Know-

ing detailed information about the reusable component assists developers in choosing ap-

propriate reusable components in a multi-technology environment. A detailed description

21

is termed a white-box definition. We draw the idea of a functional component, black-box

definitions and white-box definitions from the IN SIB.

Processing these“best of breed”characteristics results in a description of the Facet concept

as defined mathematically in sub-section3.2.1. Pagexvii provides brief explanations of the

set notation used.

3.2.1 Mathematical Definition of Facets

Definition 1: FacetF has a functionality descriptionFF such that

FF ∈ Ufunctionality (3.1)

In addition FacetF has a set of Technology descriptorsFT ; has a set of Implementation

LanguagesFImpl and has a set of PlatformsFPlatforms, for which implementations exist.

Definition 2: USI is the universal set of Implementation Languages. A Facet is Implemen-

tation Language independent iff

FImpl ⊆ USI andFImpl 6= ∅ (3.2)

Definition 3: USP is the universal set of telecommunications platforms. A Facet is Plat-

form independent iff

FPlatform ⊆ USP andFPlatform 6= ∅ (3.3)

Definition 4: Facet Hierarchy (FH)1 can be described as a set of discrete categories de-

scribing functionality calledSFH. The elements ofSFH, calledsfhi are ordered

such that:

sfhi > sfhi+1 for i = 1 . . . n (3.4)

Definition 5: FF has a FH corresponding to an element ofSFH atFH . FH is also called

the Facet Hierarchy of the Facet.

FH ∈ SFH (3.5)

Definition 6: FacetF has a set of facetsSFacets which obey the same rules asF . In

essenceSFacets = ℘(F). The Facet Hierarchy ofSFacetsi is SFacetsH
i which is

an element ofSFH. The functionality ofSFacetsi is denoted bySFacetsF
i .

SFacetsH
i ∈ SFH (3.6)

1The Facet Hierarchy is a user-defined hierarchy of discrete levels that Facets are associated with. Refer to

section4.5for more information

22

SFacetsF
i = SFacetsF

i mandatory ∪ SFacetsF
i optional (3.7)

SFacetsF
i mandatory 6= ∅ (3.8)

Rules of Containment: This rule explains how Facets may contain other Facets.
⋃

i=1..n

SFacetsF
i ⊆ FF (3.9)

SFacetsF
i ∩ SFacetsF

j = ∅, i 6= j (3.10)

SFacetsT
i ⊆ FT andSFacetsT

i ⊇ FT (3.11)

SFacetsH
i ≤ FH (3.12)

Cumulativeness Functionality If a set of FacetsSFacets are to be added together, the

Facet Hierarchy of the cumulative functionality in relation to the Facet Hierarchy of

individual functionalities is:

FacetHCumulative ≤ max(∪i=1...nSFacetsH
i) (3.13)

Lemma 1 Equation3.4 introduces a structure for categorisation of Facet Functionality.

Definition 5 and 6 link Facets to this structure such that a Facet may be categorised

into onecategory of the Facet Hierarchy. By definition of3.4 the structure for cate-

gorisation is multi-level. Therefore the Facet concept is multi-granular.

Lemma 2 Equations3.7and3.8show that FacetF is implemented with a mandatory and

optional set of component Facets. This implies that optional component Facets may

be excluded from the set of component Facets without violating the functionality

requirements of FacetF . Therefore, FacetF can be implemented partially with the

mandatory set of component Facets, where necessary.

Lemma 3 Definition 6 definesSFacets as a℘(F). This definition can be recursively

applied toSFacets leading to a realisation that the functionality ofF is expanded

by SFacets. Reversing this process we find that functionality is being continuously

abstracted until the the functionality ofF which is presented to the developer.

With a clear understanding of Facets and their characteristics, we describe Facets from

different viewpoints in sections3.3and3.4to complete the facet picture.

3.3 Business Viewpoint

The stakeholders that have a vested interest in the utilisation of reusable components for

service creation are the Application Provider, Service Provider,3rd Party Provider and ven-

dor. These stakeholders have a relationship as discussed in section2.1 which is consistent

with the Facet concept.

23

Figure 3.1: Facet Developer with Stakeholders

We introduce the Facet Developer (FD) role which is responsible for creating, maintaining

and advising on the use of facets. Figure3.1shows a FD as a job description of an individual

who can be a member of any of the stakeholders. The FD has a responsibility to the stake-

holder to maintain a database of Facets such that the majority of Facets are actively utilised

in service creation projects. The FD must also ensure that every Facet in the database abides

by the rules of a Facet defined in sub-section3.2.1.

The FD interacts with Programmer(s) and Service Creation Teams. The reader should be

aware that the Programmer and FD could be the same individual although each job descrip-

tion has its own peculiarities. The FD is not responsible for the way that service creation

teams use Facets.

In a Vendor environment that provides a single platform, the FD can only emphasize the im-

plementation language independence (see Equation3.2) of a Facet. FDs in the other stake-

holder environments, in addition, emphasize platform independence (see Equation3.3).

3.4 Informational Viewpoint

In creating Facets, the FD must exercise discretion to ensure that only reusable components

with a proven track record are admitted into the database of reusable components. Also,

each Facet must possess sufficient information to ensure effective utilisation. The FD is

encouraged to formulate Facets from reusable components provided by multiple vendors

for various service execution platforms. If a Facet is composed of multiple implementation

from differing vendors, the platform independence characteristic of Facets is solidified.

If a service is composed of a number of platform independent Facets (see Equation3.3) then

platform migration is implied. Platform migration means moving a service from platform

x to platformy which is only possible ifall constituent Facets have the capability to mi-

grate to platformy. Platform migration greatly improves service development time for the

stakeholder who envisages the use of multiple service execution environments and where

24

required services already exist for non-target platforms.

FDE

Programmer

Facet

Developer

Programmer

Service Creation

Team

1 2

3

Figure 3.2: Informational Context of the Facet Developer

Figure3.2shows the informational relationship the FD has with other teams. The program-

mers include the high level system designers and code developers that create implemented

functionality. The service creation teams are responsible for getting services to market in a

cost effective manner. A set of programmers will create an incarnation of functionality in a

programme. These programmes are submitted to the FD for verification through interaction

1 in figure3.2. The FD determines if the proposed programme meets the requirements of

a Facet. If the programme is adequate, it is added to the catalogue of Facets else the pro-

gramme is returned to the programmers with reasons that explain the invalid aspects of the

submission.

Interaction 2 shows the FD appending the Facet to the Facet catalogue via a Facet De-

velopment Environment (FDE). The FDE is used to manage the Facet catalogue and the

individual Facets.

Interaction 3 shows the FD interacting with the service creation team. The service creation

team has a mandate to create a service that encompasses a set of functionality. The FD

helps the service creation team to decompose the service into fundamental functionality.

Once the fundamental functionality is realised, the FD can propose possible Facets that

encompass the required functionality. Upon requests from the service creation team, the

FD will facilitate the creation of new Facets to meet functionality requirements. The task

of creating new Facets can be forwarded to the Programmers or carried out by the FD as a

composition of existing Facets.

25

3.5 Chapter Summary

This chapter explains the origin of Facets and defines Facets mathematically. A Facet is

an implementation-language independent, platform-independent, multi-granular reusable

component that is defined in terms of its functionality. A Facet’s functionality is categorised

into a level in the Facet Hierarchy. Facets may contain other facets.

This chapter also presents Facets from a business and informational viewpoint. The busi-

ness viewpoint focuses on the stakeholders and their contractual interactions. The Facet

Developer (FD) role is introduced as a job description that may exist in the Application

Provider, Service Provider,3rd Party Service Provider or Vendor stakeholder domains. The

FD interacts with programmers and service creation teams. The FD could also be a pro-

grammer.

The informational viewpoint describes the informational interactions between the FD and

the programmer(s) or service creation team(s). The Facet Development Environment (FDE)

is the application that the FD uses to manage the Facet catalogue. The concept of platform

migration is stated as an advantage of using Facets.

The concepts, definitions and viewpoints discussed in this chapter paint the landscape for

describing the key enablers that support the concepts of the Facet. Chapter4 discusses the

key enablers of Facets in more detail.

26

Chapter 4

Key Enabling Concepts

Chapter3 introduces the Facet in terms of its goals and characteristics. This chapter explains

the implementable concepts that realise the goals and characteristics of Facets.

Section4.1 discusses the Generic and Implementation definitions which help to create a

MDA approach to the solution. Generic and Implementation definitions are supported by

the underlying informational model called meta-π (section4.2). Meta-π satisfies most of

the goals of the Facet, such as:

1. Five Viewpoints of RM-ODP;

2. Deployment descriptions;

3. Design pattern-like detailed descriptors;

4. Black-box and white-box approaches; and

5. Encapsulation of functionality.

Meta-π also contains two concepts which are vital for achieving a code-level reuse, Place-

holders(section4.3) and Variable Blocks (section4.4). They are used for user-defined

variances in the source code. Section4.5 describes the Facet Hierarchy which is used by

meta-π, and hence the Facet, to illustrate the level of functionality that is being encapsu-

lated. The Facet Hierarchy introduces structure to Facets thereby easing the management of

contained Facets and allowing partial implementations.

4.1 Generic and Implementation Definitions

Equation3.2and3.3specify implementation-language and platform independence, respec-

tively. If solutions are independent of the implementation-language and platform then we

27

reason that the solution can be re-aligned to a platform other than its present one. This pro-

cess is called platform migration. Platform migration is a complex concept to implement

due to the difficulties involved in “translating” code from one language or platform to the

next. Platform migration issues are eased by decoupling of a reusability description from

its implementation and making decoupled implementations aware of their data, context and

resources. Facets accomplish decoupling byGenericandImplementationDefinitions. Data,

context and resource awareness is achieved by the underlying model, meta-π, discussed in

section4.2.

The relationship of Generic and Implementation definitions to each other and a particular

Facet is demonstrated mathematically in Equations4.1, 4.2 and4.3. Figure4.1 illustrates

this relationship graphically.

Definition 7: If there exists a FacetF ; a Generic Definitiongeneric and a set of Imple-

mentation DefinitionsSImpl then

F → {generic} andgeneric /∈ SImpl

F = {generic} ∪ SImpl (4.1)

GI Rule: If generic has a set of arbitrary descriptionsSDGeneric and an arbitrary ele-

ment inSImpl atk has a set of arbitrary descriptionsSDImplk then

SDGeneric ⊂ SDImplk (4.2)

Definition 8: If there exists a set of source code SC then

srcfilej =
∑

i=1...n

(iff SCi ∈ SImplj → SCi) j = 1 . . . m

SImplj → {srcfilej} (4.3)

Figure4.1shows that a Facet is made up of a single Generic Definition from which multiple

Implementation definitions inherit information. The Implementation definitions build on

the body of information in the Generic definition. All source code that is necessary for a

particular Implementation definition is placed in a corresponding.srcfile.

Facets use other facets in the Implementation Definition. Therefore, containing and con-

tained Facets must have common technology descriptions, which echoes theRule of Con-

tainment[Equation3.12]. Both the definitions and.src files use XML syntax to represent

information and their tag structure is described by a document type definition (DTD). Ap-

pendixB contains the DTD for a definition (i.e Facet.dtd) and.src file (i.e. FacetSource.dtd).

28

Generic

Definition

Implementation

Definition 1

Implementation

Definition ...

Implementation

Definition n

Facet F

SRC File SRC File SRC File

Figure 4.1: Facet decomposed into Generic and Implementation

4.2 Meta-π

Meta-π is the underlying informational model supporting the Generic and Implementation

definitions that introduces data, resource and context agnostic features into the reusable

component.

Each implementation language and platform has a structured way of describing implemen-

tations. Structured descriptions ensure that relevant information exists for the reusable

component to be understood and used effectively. By detaching the Facet concept from

implementation languages and platforms, the structured descriptions is lost. Also the do-

main to be described is broadened. Hence an open-minded highly descriptive and structured

approach is required. A starting point is the following statement:

Everything is Information!

Not concerned with atomic pieces of information, the statement’s applicability is limited

to entities. An entity can be defined as a structured self-standing piece of information,

within a context, which processes input data into output data using resources. The meta-

level concept, developed by OMG and discussed in section2.2.1, is employed to describe

entities. Meta-π is the meta-meta-model (M3) used to describe entities. Equation4.4shows

the relationship between the meta-π model and the Generic or Implementation definitions

(section4.1) as a one-to-one relationship.

29

Definition 9: If there exists a set of Meta-π M3 models calledSMeta then

{generic} ∨ SImplj → SMetai; j = 1 . . . n andi = 1 . . . n + 1 (4.4)

To aid an understanding of meta-π, a comparison to the MOF structure is made. Figure4.2

shows the meta-π model on the same level as the MOF model. Although meta-π contains

UML/MOF defined structural definitions, meta-π is unable to precisely describe UML or

MOF. Hence, meta-π is placed at the same meta-level as MOF. A distinction between the

two approaches is MOF’s dedicated Object-Oriented Paradigm whereas meta-π allows the

description of any programming paradigm.

<<meta-meta-model>>

MOF

<<meta-model>>

UML

<<model>>

Class

<<instance>>

Class

<<meta-meta-model>>

meta-pi

<<meta-model>>

Facet

<<model>>

Generic

Definition

<<instance>>

Entity Information

M0

M1

M2

M3

<<model>>

Implementation

Definition

<<instance>>

Entity Information

Object-Oriented Paradigm Only Object-Oriented, Functional, Scripting, etc Paradigms

OMG Facets

Figure 4.2: Meta-π compared to MOF

Meta-π describes the Facet conceptually. The M2 level is transparent in the implementation

of Facets. Using Equation4.1 level M1 is derived from level M2. The definitions of M1

describe the underlying Entity information at the M0 level.

An entity and Facet require an underlying model to be data, context and resource agnostic.

Meta-π meets the requirements by creating six broad informational parts:

1. Definition: describes the entity in terms of its appearance, structure, behaviour, rela-

tionships, constraints, rules and objectives. Subsection4.2.1elaborates on this infor-

mational part further.

2. Context: describes an entity’s environment from various viewpoints. A context-aware

entity is able to “understand” the constraints placed on it by its environment. Sub-

section4.2.2elaborates on this informational part further.

30

3. Resource: describes the resources the entity relies upon for its correct functioning. A

resource can be any other entity. Sub-section4.2.3elaborates on this informational

part further.

4. Data: describes the informational characteristics of an entity in terms of the entity’s

input, output and internal workings. Sub-section4.2.4elaborates on this informa-

tional part further.

5. Documentation: describes unstructured information to ensure that other human be-

ings will correctly interpret the model.

6. Extensions: describes information that should be structured but cannot be readily

bundled under any of the other informational parts. Extensions also serve as a mech-

anism to extend the meta-π model. Examples of how to use a Facet is placed in this

informational part.

Meta-π is implemented as an XML file, whose DTD can be studied in appendixA. The

DTD distinctly illustrates the six informational parts.

4.2.1 Definition

The Definition of an entity or Facet is sub-divided into four categories:

1. Description;

2. Behaviour;

3. Interactions and

4. Logic.

The Descriptiondescribes the appearance, structure and objectives of the entity or Facet.

This category borrows the description field used for design patterns. Allowing for a high-

level yet useful description of the Facet, from a functional perspective. Sub-section2.2.3

introduces the Design Pattern description fields, which keep their original meaning within

meta-π and are re-iterated for clarity:

• Problem: the problem that is being solved;

• Intent: the intention of the proposed solution;

• Forces: the reasons for the approach used;

31

• Applicability: the areas or domains where the solution is applicable;

• Participants: the entities that participate in this solution; and

• Known Uses: the situations where the solution has been successfully applied.

The Descriptionalso furnishes the information described in Equation3.1, namely the set

of Technologies and the Facet Hierarchy associated with a Facet. The Facet Hierarchy

is responsible for the logical structuring of functionality that enables Facet containment.

The Facet Hierarchy is discussed in section4.5. Unambiguous structural descriptions are

contained under aDescriptionsub-field calledStructure. The structure of the solution is in

terms of its classes or modules, methods or functions, attributes, and internal interactions or

associations. To this list of structural elements we append placeholders, global placeholders,

variable blocks and global variable blocks as facet-specific structural descriptors.

The entity description mechanism allows the use of any reuse solution above the code-level.

By disregarding atomic information, code-level reuse is excluded from entity descriptions

and thus excluded from a complete meta-π model. Code-level reuse is important and is en-

abled by the facet-specific structural components that are bound to the source code. Place-

holders, global placeholder, variable blocks and global variable blocks are the structural

components that implement code-level reuse. Section4.3explains placeholders and section

4.4explains variable blocks.

TheBehaviourpart is concerned primarily with the Facet’s interaction with its surroundings.

Behaviour of a Facet, at the technical level, is determined by the Logic which is embodied

in the source code. TheBehaviourwe refer to extends beyond the technical issues and

encompasses behavioural characteristics such as regulatory limitations. The behaviour of a

Facet can be described byRulesthat the Facet must abide by; thePoliciesthe Facet must

enforce and theLimitationsthat have been placed on the Facet.

The Interactionsdescribes the external interactions that the Facet has with other entities.

External interactions can be categorised asRelationsor Collaborations. Relations describe

a usage scenario whereas Collaborations describe a scenario wheren number of Facets

operate in conjunction to achieve a particular functionality.

TheLogichas a primary focus on describing the internal workings of a Facet in terms of the

logical steps necessary for implementing the Facet’s functionality. Logic is usually used by

the Generic Definition to specify the broad logical structure of the implementations. The

logical structure of the Implementation definition is preferred within the Data informational

part, discussed in sub-section4.2.4.

32

4.2.2 Context

An entity requires a context to function or else its definition is meaningless. By employing

the entity and separation of implementation from functionality concepts, the key environ-

ment distinguisher of any source code is removed. Thus, there is a need to explicitly define

the context of the Facet and its corresponding implementations to realise a meaningful Facet

and implementation. Not only does theContextinformational part provide base source code

contexts but can be extended to specify other context information. All the context informa-

tion is categorised as being part of one of the following context categories:

1. Business Context: defines the business environment in terms of the stakeholders and

their relationships;

2. Design Context: defines the context of the Facet during the design of the functional-

ity;

3. Deployment Context: defines the required context to deploy the Facet; and

4. Operational Context: defines the required context for the Facet to be operational.

The context categories attempt to educate the user of the Facet’s context at most points

during its software lifecycle. Knowing the context of the Facet will further strengthen the

case for the correct and effective use of the Facet. By realising that all software is part of a

business process, the Business context has been included in-line with the EJB and RM-ODP

concepts

4.2.3 Resource

At some point, a Facet’s functionality will draw on resources that are either internal, on

the boundary or external to the system boundary (the system boundary is described by

the Context). Particular resources have higher priority than others thus resources can be

prioritised in order of which is the most prefered resource. Resources can be physical,

software, logical or informational.

4.2.4 Data

The Facet is characterised from an informational viewpoint using the Data informational

part. The Data informational part is split up into Input, Algorithm and Output.

The Input part allows the user to define the information that flows into the Facet. Similarly,

the Output part defines the information that flows out of the Facet. By viewing the Facet

33

with only an Output and an Input, the Facet’s characteristics is simplified. This view of the

Facet is called a black-box. The Input and Output parts also allow the user to specify pre-

and post conditions, respectively, necessary for the operation of a Facet.

The Algorithm part expands the black-box view by exposing the internal logical processes

of the Facet. Viewing the expanded internals of the Facet is termed a white-box view.

4.3 Placeholders

Theplaceholderconcept is part of the suite of concepts that enable code-level reuse. Essen-

tially a placeholder is any text in any file that can be replaced by any other text. Placeholders

manage points in the source code that can vary. As an ancillary, this characteristic of place-

holders allow templates to be created for creating classes, functions and attributes.

In larger Facets with multiple files per implementation, a situation may arise where anobject

typeneeds to be synchronised across multiple files. A placeholder is created within each

file to allow theobject typeto be changed. These placeholders are linked using a global

placeholder. Specifying a text value for the global placeholder is the same as specifying a

text value for each placeholder thus synchronising the spatially differentiatedobject types.

4.4 Variable Blocks

The variable blockis the second concept that is part of the suite of concepts that enable

code-level reuse. The variable block represents any text within a source file that is optional

to the functionality of the Facet. Variable blocks are either included into the source code

or excluded by being commented out. Commenting the variable blocks leaves the user to

modify the source code at some future date outside the boundaries of the Facet environment.

Variable blocks can contain placeholders but placeholders cannot contain variable blocks.

Variable blocks are useful for creating software with additional “optimisation” code which

would afford the user theoption of using the “optimisation” code.

Global variable blocks are used in a similar manner as with global placeholders. The differ-

ence is synchronisation of multiple variable blocks across multiple source code files.

34

4.5 Facet Hierarchy

Facet Hierarchy (FH) introduces structure to Facets by producing rules for the containment

of Facets. Since Facets can use other Facets, allowing partial implementations, the FH is

developed to manage this usage or containment.

The FH is a user-defined multi-level hierarchical structure. Each level of the Facet Hierarchy

represents an encapsulation of functionality. Facets are associated with the FH by defining

a path to the FH level that is representative of the overall type of functionality the Facet

encompasses. Any level can be configured to be an optional level, meaning that the optional

level can be omitted when describing the path to a level specific to a Facet. The primary

rule of the FH applicable to Facets is: A level in the FH can contain and use the same or

lower levels of the FH but not higher ones.

Figure4.3shows “user-defined” example of a Facet Hierarchy, which is used in later chap-

ters. The blocks with dashed outlines represent the optional levels in the FH.

Platform

ServiceExecution Environment

Architectural Component Service Creation Markup Language

Component

FDL

File

module

function

algorithm

class

method

Figure 4.3: Facet Hierarchy

A path to a FH level is defined by starting at the top of the FH and moving down toward

the desired FH level. If necessary, an optional level can be omitted from the path. An

example of a path is:Platform.Service.Component.FDL. With the example path we see that

the definition starts at the top (i.e. Platform), traverses down the right while skipping the

optional levelService Creation Markup Languageand then proceeding to the target level

(i.e. FDL). The path definition separates the levels from each other using a full stop (‘.’).

35

If the example path (Platform.Service.Component.FDL) is associated with a Facet then the

Facet can use or contain any Facet at theFDL level or lower FH levels. Higher FH levels

cannot be used by the Facet.

The Facet Hierarchy is represented as an XML file. A sample Facet Hierarchy XML file is

found in appendixC.1.

4.6 Chapter Summary

This chapter appends the implementable concepts to the description of Facets given in Chap-

ter 3. The Facet consists of a Generic and multiple Implementation definitions. The Imple-

mentation definition extends the descriptions of the Generic Definition. Each Implementa-

tion definition has a.SRC file associated with it.

The definitions are described by an underlying model called meta-π. Meta-π is described

by six informational parts that encompass the design pattern and RM-ODP philosophies.

Placeholders and Variable blocks are introduced as facet-specific structural descriptors.

They create a pivotal point where changes to the reusable component can occur.

The FH introduces structure to Facet containment. Each FH level represents a functionality

encapsulation. FH levels can be optional or mandatory. The FH specifies what encapsula-

tions of functionality a Facet can use or contain.

The GI-Rule allows high-level reuse to be implemented, at the same time binding it to an

implementation, where available. The entity mechanism allows inheritance and component

level reuse to be effectively described. While placeholders and variable blocks enable code-

level reuse.

With an understanding of meta-π and the mechanics of Facets, the application for creating

and manipulating facets is presented at in Chapter5. The application for Facet creation and

manipulation is called the Facet Development Environment (FDE).

36

Chapter 5

Facet Development Environment

Chapter3 introduced Facets conceptually. Chapter4 defined the implementable aspects

of the Facet concept. This chapter presents the realisation of the Facet concept as an ap-

plication that is used by Facet Developers and is called the Facet Development Environ-

ment (FDE). Section5.1 investigates the technological considerations and trade-offs that

are made in developing the FDE resulting in a set of supporting technologies. Thereafter

the FDE is discussed in terms of its Graphical User Interface (GUI) and internal source code

structure.

5.1 Design Considerations

Considerations when implementing the solution include the modelling languages, the parsers,

the programming language, information storage solutions and Graphical User Interface

(GUI) used.

5.1.1 Informational Modelling Languages

The underlying meta-π model requires a meta-descriptive modelling language to allow

the meta-π model to be described at the M3 level. Standard Generalized Markup Lan-

guage (SGML) [32] and eXstensible Markup Language (XML) [33] are the candidate meta-

descriptive languages. SGML is regarded as the parent of XML. XML is chosen as the

modelling language to be used.

XML is a restricted subset of SGML which is widely accepted by industry for its simplicity

and ease of use. OMG uses XML as part of a standard to facilitate model interchange,

called XML Model Interchange (XMI). By using XML it is easier to render meta-π models

as UML classes for use in UML applications.

37

5.1.2 Parsers

Manipulation of XML is done via aparser. Two standards for XML parsers exists i.e.

Document Object Model (DOM) [34] and Simple API for XML (SAX) [35]. The DOM

standard represents the XML file as a hierarchy of parent and child nodes. Each node

can be interrogated for data. Due to the hierarchical structure, moving between nodes is

very easy. Also, the DOM model supports XPath and XQuery which are standards that

allow searches to be performed on the XML document. DOM requires the entire XML

file to be read into memory. Within the FDE, there will typically be thousands of models,

each represented by a DOM residing in memory leading to a memory intensive solution.

The memory intensive solution minimizes the computers capability to process information.

Depending on the magnitude of a Facet, memory utilisation becomes critical.

SAX, on the other hand is not memory intensive. The SAX parser is a stream-based event-

driven XML parser. SAX reads each character, one after the other, and generates events

to signify the beginning and end of tags and data. By using SAX, the performance of

an application can only be improved if the structure of the XML document is known. A

disadvantage of SAX is its inability to search within the XML document effectively.

The FDE requires the XML structure to be easily manipulated and searched. Therefore the

DOM is chosen as the parser.

5.1.3 Implementation Language

To implement the FDE timeously, a rapid prototyping interpreted language with an efficient

Graphical User Interface (GUI) class set is required. The implementation must be able to

execute on any platform with a minimum of modifications between platforms. Java, Perl

and Python are the options.

The Java programming language is memory and processor intensive due to poor garbage

collection. Thus, with larger applications the Java Runtime Environment tends to dominate

CPU processing time and, in extreme cases, crash the Java application. From past expe-

rience, it was found that the Swing GUI classes are not easy to manipulate. Java is well

accepted by industry with developers around the world creating many reusable source code

components. Java is not aglue language, meaning that Java cannot easily incorporate func-

tionality that has been written in an implementation language other than Java. By using a

glue language, the programmer is able to pick the best tool for particular parts of the ap-

plication to optimise the application’s overall performance. Java is not chosen because it is

not considered a rapid prototyping language, the GUI class is not efficient and Java is not a

glue language.

38

Perl is referred to as aglue language. Perl is used in Web Server Applications, mission

critical application and to interface applications written with different languages. Perl is

implemented on most operating systems including Windows, Linux, Unix and HP-UX. Perl

is a free-form language whose syntax is very similar to C++. Perl code tends to be written

in a very unstructured non-user friendly manner. Perl uses the Tk\Tcl as its default GUI

class set. Perl is considered to be a rapid prototyping language. Although the GUI class is

efficient, it is felt that the GUI class is lacking in terms of ease of use and key functionality

requirements.

Python falls into the family ofglue languages. Python is similar to Perl in performance. Perl

tends to be more powerful at regular expressions. Python is an interpreted language that is

usually used by programmers for rapid prototype development. Python supports both OOP

and functional programming. Python uses runtime type casting thus variables do not have

to be explicitly created and managed. Python tends to out-perform Java at most operations

except Object creation. One of the best GUIs that Python has to offer is the wxPython

class set that is based on the wxWindows GUI class set. wxWindows is truly uniform in

its presentation across operating systems. Python is chosen as the implementation language

for its ease of use, portability, GUI class set and supporting packages such as pyXML for

XML handling.

5.1.4 Information Storage

Most information, relating to the FDE, is stored in XML format. The options available for

storage of XML information are:

• File System;

• Relational Database; and

• XQuery Database.

The File System is the simplest storage mechanism that can be used. Each XML document

is stored as a flat file. XML is a bloated language with a lot of whitespace. The XML File

footprint can be reduced by compression algorithms. The disadvantage of storing XML

Files on the File System is the slow read and write processes combined with little or no

efficient search capabilities. The advantage of using flat files is that no special software

needs to be installed to store the information.

Relational databases such as MySQL and PostgreSQL are open source databases used in

mission critical applications. When storing XML documents within relational databases,

the database can be designed to be data-centric or document-centric [36]. Data-centric

39

means that the data contained within the XML document is saved and the structure of the

XML document is lost. A data-centric database design allows for complex searches to

execute efficiently. A document-centric database design maintains the structure of the XML

document for quick reproduction of the XML file. The disadvantage of the document-

centric approach is that data searching becomes complex and inefficient.

XQuery databases are designed for the storage of XML content in a manner that allows for

efficient data searching with easy reproduction of the original XML document. XQuery

databases are specifically designed to meet the requirements for storing XML files. At the

time of developing the FDE, the XQuery specification was just released and no appropriate

implementations were available.

For the purposes of rapid development the File System was chosen to store the information

in XML format.

5.2 Introduction to the FDE

The purpose of the Facet Development Environment (FDE) is to help Facet Developers(FD)

create and manipulate Facets; edit the Facet Hierarchy and edit the Implementation Lan-

guage comments. The Facet Hierarchy is explained in section4.5. The Implementation

Language comments define the in-line text character(s) used in an implementation language

for comments. The FDE uses these comments for variable block manipulation.

The FDE allows the FD to describe the Generic and Implementation parts of a Facet. Files,

Sub-Facets, Placeholders, Variable blocks and other structural components can be added

to Facets using the FDE. Generally, we refer to all the contained items of a Facet as an

object. An object includes the Generic Definition, Implementation Definition, Files, Facets,

Placeholders, Variable blocks, Global Placeholders, Global Variable blocks, Sub-Facets and

other structural components.

Figure5.1shows an FDE as having six GUI components:

1. Menu Bar: The Menu bar has limited functionality that allows Facets to be opened,

saved and closed. The Menu Bar also launches editors for the Facet Hierarchy and

Implementation Language Hierarchy. Finally, the Menu Bar has the capability to

launch a Facet Explorer.

2. Toolbar: A set of dynamically loaded object-specific tools. The tools are loaded when

a particular object is selected in the Tree.

3. Tree: Facet structure is shown in the Tree as a set of hierarchically linked objects.

40

Menu Bar

Toolbar

Editing Windows

Documentation

Tree

Status

Figure 5.1: Facet Development Environment

The Tree allows easy navigation of a Facet and its components. Selection of objects

in the Tree triggers specific tools to be loaded in the ToolBar.

4. Documentation tab: Documentation regarding a particular Facet can be added, re-

trieved, and manipulated. Miscellaneous information is documented.

5. Editing Windows tab: Object characteristics are edited from a particular viewpoint

using an Editing window.

6. Status: Status is a non-interactive mechanism used to inform the FD about back-

ground operations.

Section5.3 explains the FDE User Interface further. Section5.4 describes the usage of

design patterns in implementing the FDE. Section5.5, 5.6 and5.7 describe the use cases,

class structure and message sequences of the FDE, respectively.

41

5.3 Elaboration on the FDE GUI

This section examines the FDE in greater depth. Use of the FDE requires an initial instal-

lation. Installation of the FDE prompts the FD for his/her name, email address, organisa-

tion and adata directory. Thedata directory is used to store Facets, templates for creat-

ing Facets, Facet Hierarchy definitions and Implementation Language comment definitions.

The sub-directory,Facets, within thedatadirectory, is used to storeall Facets. Each Facet

is described within its own directory. The Facet is described by a Generic.xml file and a

multitude of implementation xml files with corresponding implementation src files. The

name of the implementation xml file is derived from the implementation name with a .xml

suffix. The name of the src file is similarly derived with a .src suffix.

The Menu Bar is discussed in sub-section5.3.1 followed by a discussion of the Tree in

sub-section5.3.2. Sub-section5.3.3discusses the Toolbar followed by a discussion of the

Editable windows in sub-section5.3.4.

5.3.1 Menu Bar

The FDE Menu Bar consists of a File, Tools and Help menu.

The File menu is concerned with creating, loading, saving and closing of Facets. Creation

of Facets launches a wizard that captures the basic description of the new Facet. The File

menu also keeps a list of the last five Facets that were loaded. The FDE can be closed by

selecting the Exit menu item under the File menu.

Facet querying and viewing, Facet Hierarchy manipulation and Implementation Language

comment manipulation are done via menu items under the Tools Menu. Facet Viewing is

done using the Facet Explorer shown in figure5.2. The Facet Explorer allows the FD

to explore the Facets within thedata directory. The Facet Explorer consists ofSelector,

ViewerandCXML tabs. TheSelectordisplays the Facets for the FD to choose from. The

Viewerallows the FD to browse the generic and implementation definition of Facets. When

an Implementation is selected, the FD can also display the source code associated with

the Implementation. The viewer only displays the key descriptions of the Generic and

Implementation Definitions. Viewing further information can be done by browsing the

XML file of the definition using the CXML tab. Querying of Facets is supported by Facet

name only.

Figure 5.3shows the editor for the Facet Hierarchy (FH). FH is expressed in XML. The FH

editor allows the FD to manipulate the levels of the FH. A FH level can be set to “optional”

by specifying a “Yes” value for the optional attribute of the FH level. Specifying “No” for

42

Figure 5.2: Facet Explorer

Figure 5.3: Facet Hierarchy

43

the optional attribute makes the FH level mandatory. AppendixC contains the DTD that

describes the structure of the FH XML file.

Figure 5.4: Implementation Language Comment Editor

Figure 5.4shows the editor for the Implementation Language Comments. Implementation

Languages with corresponding comments can be added, deleted and edited. The Editor

translates graphical operations to changes in the underlying XML file. The list of Imple-

mentation Languages that a File can be characterised as is derived from the Implementation

Language Comments. Hence if there is no definition for the C++ comment character, the

FDE will not allow any C++ file to be added. AppendixC.2contains the DTD that describes

the structure of the Implementation Language Comment XML file with a sample XML file

in appendixC.3.

The Help menu provides HTML format help for the FD and further information about the

FDE.

5.3.2 Tree

Quick access to objects is enabled by the Tree. The Tree causes the Editing Window to load

the default view of the object. The Tree also causes the ToolBar to load the tools related

44

to the selected object. Each object within the tree has an associated icon which helps to

distinguish between objects. Table5.1 lists the Icons and the objects that they belong to.

Similar objects that are part of a Sub-Facet have a small Facet symbol in its top left hand

corner. Table5.1will be referenced when examples are presented in Chapter6.1and6.2

Opened Facet

Generic Definition

Implementation Definition

Contained Facet or SubFacet

Package

File

Association

Global Placeholder

Global Variable Block

Classes or Modules

Methods or Functions

Attributes

Placeholders

Variable blocks

Table 5.1: Tree Icons

5.3.3 ToolBar

Object manipulation is regulated by offering a limited set of tools in the ToolBar. The tools

are grouped and associated with objects listed in table5.1. TheOpened Facet Objectis only

allowed to create anImplementation Definitionof the Facet. TheOpened Facetcannot be

deleted or modified. TheGeneric Definitionobject is restricted to viewing its description,

resources, context, data and underlying XML file. TheImplementation Definitionobject

expands on theGeneric Definitionobject operations with its Technology view, deletion and

creation ofFacets, Files, Packages, Associations, Global PlaceholdersandGlobal Variable

Blocks.

Facets created within anOpened Facetas part of a specificImplementation Definitionare

calledContained Facetsor SubFacets. User interaction with theContained Facetsis re-

stricted to viewing the Facet’s description, resources, data, context, technology, underlying

45

xml file; deleting theContained Facetand editing theContained Facet’s Placeholdersand

Variable Blocks. Objects under theContained Facetcan only be edited.

TheFile object allowsPlaceholders, Variable Blocks, attributes, methodsandclassesto be

created. We refer to objects that are contained in aFile object as sub-file components. Text

within theFile can be added and removed. TheFile object can also be deleted.

Global PlaceholdersandGlobal Variable Blockscan be edited to contain childPlaceholders

andVariable Blocks, respectively.

Variable Blockscan containPlaceholders. HencePlaceholderscan be created underVari-

able Blocks. Classes, methods and attributesabide by their structural relationship i.e.

classescontainmethodsandattributesandmethodscan containattributes.

5.3.4 Editable Windows

Editable windows are viewpoints that expose editable aspects of an editable object. Ed-

itable objects include Generic Definitions, Implementation Definitions, Global Placehold-

ers, Placeholders, Global Variable Blocks, Variable Blocks, Files, Structural Components,

Associations and SubFacets.

Generic Definition manipulation occurs from 5 viewpoints:

• Normal: presents the description field of the definition as described in subsection

4.2.1;

• XML: presents the XML file of the definition for the purposes of completeness;

• Resource: presents the set of resources used by the Facet particular to a definition;

• Data: presents the data description used by the Face particular to a definition; and

• Context: presents the context of the Facet particular to a definition.

In addition, a Technology window exists for editing the Technology profile of the Imple-

mentation definition.

Editable windows for the Global Placeholder and Global Variable allow the FD to choose

Placeholders and Variable Blocks within the scope of the opened Facet. Files are edited

using aFileWindow. TheFileWindowprovides management and position tracking of facet-

specific and structural objects associated with a file.

46

Sub-Facets are edited using a dialog box consisting of a list of all facet-specific objects

(contained objects under a Global are not duplicated in the list of editable facet-specific

objects).

Structural components, Placeholder, Variable Blocks and Associations each have a specific

window for editing their characteristics.

5.4 Design Patterns Used

Two major problems are encountered in the creation of the FDE. First, objects within the

FDE need to access similar functionality. Secondly, GUI objects need simplified fully-

meshed interactions. The Façade and Mediator design patterns are employed to solve these

problems.

5.4.1 Façade

A recurring problem is a number ofclient classes needing to access a multitude oftask

methods across a number of classes. If the relationship between theclient classes andtask

methods is hardwired, a labyrinth of interactions is created which results in poor flexibility

and strong coupling of classes.

Figure 5.5shows the Façade design pattern which is a high-level interface that hides struc-

tural detail of thetaskmethods from theclient classes [9]. taskMethods are encapsulated

within the Façade class. Theclienthas a reference to an instance of a Façade class via which

theclient can use the functionality offered by thetaskmethods.

The Façade allows aclient to interact with ataskmethod without having a reference to the

task method’s class object. Thus promoting weak coupling; overall flexibility; preventing a

labyrinth of interactions and minimizing the number of class objects theclientmust interact

with.

A Façade is usually implemented as a Singleton. The Singleton is a class which only has

one instance within the application. The Façade is used by FDE classes for functionality

such as the XMLExplorer, XML File Manipulation, Help File Launching and XML Node

creation. Section5.6discusses the implementation of the Façade object within the FDE.

47

Client Facade_

Operation A()

Operation B()

TaskA TaskB TaskC TaskD

Figure 5.5: Façade Design Pattern [1]

5.4.2 Mediator

A recurring problem is a number ofcolleagueclasses needing to interact with each other

in a fully meshed way. Keeping references of eachcolleagueclass becomes problematic to

manage and creates strong coupling.

The Mediator design pattern encapsulates thecolleagueclasses allowing them access to

each other [9]. Figure 5.6shows twoRealColleaguesthat have access to each other via the

RealMediator. TheRealMediatorkeeps references to theRealColleagueobjects and allows

theRealColleaguesaccess to the referenced objects. In addition, theRealMediatormust be

designed such that the references toRealColleaguescan be changed dynamically.

Mediator Colleague
mediator

RealColleagueA RealColleagueBRealMediator

Figure 5.6: Mediator Design Pattern [1]

The Mediator is used to represent complex many-to-many class relationships as simple uni-

directional associations. The centralised control of the mediator weakens coupling between

classes, simplifies system design and introduces flexibility. Danger exists in allocating man-

agement of too many class relationships to a Mediator thereby increasing the complexity

and rigidity of the Mediator and resulting in a break down of its flexibility and effective-

ness.

48

Façade and Mediator design patterns are similar, although, the Mediator is considered more

complex. The Mediator class is used to allow the key GUI components to interact in a

fully meshed manner with each other and the FDE Façade. Section5.6 discusses the

implementation of the Mediator and Façade design patterns within the FDE.

5.5 Use Case Diagrams

The FDE is used by the Facet Developer (FD) hence, only one actor exists. Figure5.7

defines what the FD uses the FDE for.

Edit Fact Hierarchy

Edit Implementation Language

Comments

Create Facet

Edit Facet

Explore Facets

Facet Developer

Figure 5.7: FDE Use Case

Prior to manipulating Facets, the FD will ensure that the FDE is configured correctly. Con-

figuration of the FDE requires that the FD configure the Facet Hierarchy and Implemen-

tation Language Comments as he/she desires. Figures5.4 and 5.3 show the editors for

Implementation Language Comments and the Facet Hierarchy, respectively.

Once the FD has configured the FDE, Facets can be created and later edited. Creation of

Facets entails a number of use cases such as creating a Sub-Facet, deleting a placeholder or

editing a File. For brevity, the exhaustive list of use cases is omitted. Reaching a critical

mass of Facets, the FD will want to browse the catalogue of Facets. The FD will be able to

browse the Facet catalogue using the editor that is show in figure5.2.

Section 5.6solidifies the abstract use cases by introducing the FDE classes and their inter-

actions.

49

5.6 Class Diagrams

The class diagrams in this section paint the structural detail of the FDE’s design. The FDE

has many classes, the most important of which are shown in figure5.8. Figure 5.8shows

the core components of the GUI.

GenericFrame

statusBar
AboutText
Facade
Help_filepath

(from Generic)

wxTextCtrl

(from wx)

wxNotebook

(from wx)

wxTreeCtrl

(from wx)

wxFrame

(from wx)

wxToolBar

(from wx)

FacetFrame

CurrentProject
CurrentProjectPath
PrevProjectPathList
isModified
mediator
ImplLangDict

FacetStatusTextCtrl

mediator

FacetNotebook

CurrentWindow
CurrentModel
ModelDict
WindowDict
ModelWinDict
mediator
CurrentSRCFile
loading

FacetTree

mediator
NodeNameVetoList
NodeNameVetoDelList
rootName

FacetToolBarManager

parent
SEMTAToolsDict
wxToolDict
CurrentSEMTATool
CurrentTool
mediator
toolbar

Facade

config : ConfigHandler

(from Generic)

FacetMediator

Frame
Notebook
Tree
StatusCtrl
ToolsManager
Facade : Facade

Figure 5.8: Facet IDE

Starting with theFacetFrame, we find that it inherits from theGenericFramewhich in

turn inherits from the wxPython classwxFrame. The GenericFrameintroduces common

functionality such as Help file launching andFacadeinitialisation. TheFacadeimplements

the Façade design pattern(sub-section5.4.1) and is explained in sub-section5.6.7.

50

FacetFrameis the Graphical parent of all the graphical classes as they all run as children

of the FacetFrame. Implying that theFacetFrameinitialises the other major GUI classes

which includes theFacetStatusTextCtrl, FacetTree, FacetToolBarManagerandFacetNote-

book. FacetFramealso initialises theFacetMediatorwhich implements the Mediator design

pattern(sub-section5.4.2). The major GUI classes,FacetMediatorand Facadeare dis-

cussed in their respective sub-sections. AppendixD illustrates many of the miscellaneous

class diagrams that can be referred to grasp a better understanding of the class relationships.

5.6.1 FacetMediator class

All the graphical components and theFacadecan be registered or deregistered with the

FacetMediator. Allowing each class access to another class via theFacetMediator. In par-

ticular, all classes need access to functionality residing in theFacade. TheFacetMediator

results in a flexible meshing of the major components in the FDE.

5.6.2 FacetFrame class

TheFacetFramefulfills the following use cases, listed in section5.5:

1. Create Facet: Facets are created in conjunction with theNewFacetWizardclass,

2. Explore Facets: Facets are explored in conjunction with theFacetExplorerclass,

3. Edit Facet Hierarchy: the FH is edited in conjunction with functionality that exists in

theFacadeclass.

4. Edit Implementation Language Comments: also carried out in conjunction with func-

tionality in theFacadeclass.

Figure 5.9 illustrates the class structure of the wizard used for creating new Facets.New-

FacetWizardis derived from a wxPythonwxDialogclass. Creation of a new Facet involves

four steps:

1. specifying the name of the Facet carried out by theNameFacetclass,

2. choosing the Facet Hierarchy for the Facet carried out by theChooseFacetHierarchy

class,

3. specifying the information for the Generic definition carried out by theGenericInfor-

mationclass and

51

NewFacetW izard

nb

cancel

next

back

__init__()

OnCancel()

OnNext()

OnBack()

OnCloseWindow()

_createVars()

_update_static()

__del__()

(f rom ut i ls)

NameFacet

input

__init__()

check_input()

save()

update()

__del__()

ChooseFacetHierarchy

__init__()

OnRightDown()

OnRightClick()

check_input()

save()

update()

_load()

_loadXMLNodesintoTree()

__del__()

GenericInformation

controlList

__init__()

check_input()

save()

update()

DeleteAllControls()

_createControls()

_createStaticText()

__del__()

Confirmation

__init__()

check_input()

save()

update()

_extract_info()

_display_info()

_createStaticText()

__del__()

wxDialog

(from wx)

Figure 5.9: New Facet Wizard

4. confirmation of supplied information carried out by theConfirmationclass.

The NewFacetWizardwill verify all information including the absence of the Facet name

in thedatadirectory before creating the Facet. TheNewFacetWizardcreates the Facet as a

directory containing a Generic definition. Hence fulfilling the use case of Facet Creation.

Facets are described within directories and not as individual files. Therefore, thedatadirec-

tory cannot be listed for files using the defaultFileDialog. The set of classes in figure5.10

are developed to allow the FD to view and select Facets in thedatadirectory. FacetOpen-

Dialog lists all the Facets that a FD can open, using theFacetOpenListPanel. FacetOpen-

ListPaneldisplays the Facet directories as a list of Facets. Similarly, theFacetSaveDialog

produces a view of all Facets saving a Facet to the filesystem.

The FD can launch theFacetExplorerfrom theFacetFrame. The GUI of theFacetExplorer

is shown in figure5.2. TheFacetExplorerinherits from the wxPython classwxPanel. Face-

tExplorerNotebookis initialised by theFacetExplorerand in turn initialises the necessary

sub-windows to allow browsing of Facets.

Editing of the FH and Implementation Language Comment editors are essentially XML

editors. Figure 5.12 shows both the editors inheriting from theXMLEditorPanel. The

XMLEditorPanelhas generic functionality to enable editing of XML files. TheFacetHier-

archyEditor implementsXMLEditorPanelmethods in a way that is specific for editing the

FH. Similarly, theImplEditorPanelis a specialisation of theXMLEditorPanelfor the editing

of implementation language comments.

52

FacetOpenDialog

mediator

path

__init__()

OnOk()

OnCancel()

OnCloseWindow()

_loadcomponents()

__del__()

wxDialog

(f ro m wx)

FacetOpenListPanel

currentItem

__init__()

OnItemSelected()

OnItemDeselected()

OnItemActivated()

_insertitems()

__del__()

wxListCtrl

(from wx)

FacetSaveDialog

mediator

path

__init__()

OnSave()

OnCancel()

OnCloseWindow()

_loadcomponents()

__del__()

FacetSaveListPanel

currentItem

__init__()

OnItemSelected()

OnItemDeselected()

OnItemAct ivated()

_insert items()

__del__()

Figure 5.10: Facet Chooser

5.6.3 FacetStatusTextCtrl class

FacetStatusTextCtrlimplements the Status GUI component. FacetStatusTextCtrl inherits

from the wxPython class wxTextCtrl and is not directly linked to any of the use cases.

Although, it is part of all use cases as far as producing feedback to the FD is concerned.

5.6.4 FacetToolBarManager class

The FacetFrameinitializes the toolbar and is responsible for the low-level toolbar man-

agement. Higher-level management is done by theFacetToolBarManager. TheFacetTool-

BarManagerimplements the ToolBar GUI component. TheFacetNotebookaccesses the

FacetToolBarManagervia theFacetMediatorto load tools specific to the object that is se-

lected in theFacetTree. FacetToolbarManageris part of fulfillment of the editing Facet use

case.

5.6.5 FacetTree class

TheFacetTreeassists in Editing of Facets use case. A hierarchical structure of the objects

within a Facet is displayed by theFacetTree. wxTreeis the parent class forFacetTree.

53

XMLEditorPanel

parent : wxWindow

_dom : xml.dom.mindom

_isReadOnly : Boolean

xmlTree : wxTreeCtrl

xmlText : wxTextCtrl

imagepath

NodeNameVetoList

__init__()

OnSashChanged()

__del__()

LoadModel()

UnLoadCurrentModel()

Ref resh()

FacetListPanel

imagepath

currentdir

f ilter : list = [names]

__init__()

GetSelected()

OnLef tDClick()

__del__()

wxListCtrl

(from wx)

FacetViewer

_dom : xml.dom.minidom

isReadOnly

__init__()

GetDom()

Reload()

__del__()

wxPanel

(from wx)

FacetExplorer

currentDir

f ilter

__init__()

OnCloseWindow()

OnOk()

OnCancel()

__del__()

wxNotebook

(from wx)

FacetExplorerNotebook

currentFacet : xml.dom.mindom

Viewer

List

XMLEditor

__init__()

LoadFacet()

isFacet()

OnPageChanging()

OnPageChanged()

GetDom()

wxPanel

(from wx)

wxBoxSizer

(from wx)

wxButton

(from wx)

lay out

lay out

is parent of

is parent of

SRCD ialog

f ileholder : wxNotebook

__init__()

_createnotebook()

OnCloseWindow()

__del__()

Figure 5.11: Facet Explorer

54

XMLEditorPanel

ImplEditorPanel

NewLanguage()

ImplEditor

implEditorPanel

OnOk()

OnApply()

OnCancel()

OnCloseWindow()

FacetHierarchyEditor

NewChildLayer()

NewSiblingLayer()

FacetHierarchy

xmlPanel

OnOk()

OnCancel()

OnApply()

OnCloseWindow()

Figure 5.12: Facet Hierarchy and Implementation Language Comment Editors

5.6.6 FacetNotebook class

FacetNotebookis the key class for editing of Facets. TheFacetNotebooktakes advantage

of functionality in theFacadeclass via theFacetMediator. Figure 5.13 illustrates the

FacetNotebookclass.

Many windows are initialised by theFacetNotebookand are used recursively to edit object

such as Files and Facets. Recursive use is achieved by loading appropriate data models into

specific windows. Hence, reducing processor overhead. Depending on the object, a specific

data model is initialised and a unique reference assigned to the model for referencing within

the FDE. All the windows inherit from aWindowModelclass and all the data models inherit

from aDataModelclass. The class structure of child Windows and Datamodels are shown

in Appendix D.

5.6.7 Facade class

TheFacadeclass is used to manage dispersed functional interactions. Figure5.14shows

the class structure of theFacade. TheFacadeoffers the following functionality:

• About window: AboutDlgmethods display an “about” message. The “about” mes-

sage describes the applications, its purpose and those involved in its development.

• Extracting information from.src files: SRCFile2Textmethods are used for this pur-

pose.

55

FacetNotebook

CurrentWindow
CurrentModel
ModelDict
WindowDict
ModelWinDict
mediator
CurrentSRCFile
loading

__init__()
AddWindow()
SetBeginLoad()
SetEndLoad()
NameChange()
CloseCurrentFacet()
SelectionMadeOnTree()
ActivateWindow()
GetWindow()
GetCurrentWindow()
GetCurrentProjectInfo()
Save()
Load()
CreatePackage()
CreateGlobalPlaceholder()
CreateGlobalVariableBlock()
CreateAssociation()
CreateFileEntry()
CreateClassMod()
CreateAttr()
CreateMethodFunc()
CreatePlaceholder()
CreateVB()
CreateImplementation()
RequestDeletion()
InsertFacetUnderFile()
InsertFacet()
_addFacet()
cmpfunc()
_checkBestPossibleMatches()
_askForPreference()
_checkFH()
_checkTechnologies()
_getPathForList()
_getXMLReversePath()
getElementsByTagName()
_clearDicts()
_changedocumentation()
_defaultwindows()
_createsemtatools()
_getuniquename()
_addWindow()
_activateWindow()
_createimplxml()
_removeItem()
_commonRemoveFunctions()
_editingList()
_findidforxmlnode()
_getListofFileDataModels()
OnPageChanged()
OnPageChanging()
ToolBarEvent()
CreateNew()
CLR()
Delete()
DeleteText()
NewLine()
TabIndent()
SubFacetElementReason()
IntFacetAction()
Edit()
ComplieToPath()
__del__()

F ileWindow

(from utils)

ResourceWindow

(from CommonWindows)

DocEntryWindow

(from CommonWindows)

DataWindow

(from CommonWindows)

ContextWindow

(from CommonWindows)

TechnologyWindow

(f rom CommonW indows)

GlobalPlaceholderWindow

(from CommonWindows)

GlobalVariableBlockWindow

(from CommonWindows)

FacetTree

FacetToolBarManager

FacetStatusTextCtrl

FacetMediator

FacetFrame

AssociationDataModel

(from DataModels)

AttributesDataModel

(from DataModels)

ClassDataModel

(from DataModels)

PackageDataModel

(from DataModels)

PlaceholderDataModel

(from DataModels)

VariableBlockDataModel

(from DataModels)

GlobalPlaceholderDataModel

(from DataModels)

GlobalVariableBlockDataModel

(from DataModels)

GenericDataModel

(from DataModels)

ImplementationDataModel

(from Dat aModels)

MethodFuncDataModel

(from DataModels)

InternalFacetDataModel

(from DataModels)

ExternalFacetDataModel

(from DataModels)

FileDataModel

(from DataModels)

Figure 5.13: FacetNotebook

56

• Displaying HTML help information:HTMLBrowseris a wxFramewith a modified

wxHtmlWindowthat is used to display html files.

• Handling implementation language comments:CommentHandlermethods are used

by theImplLangEditorto carry out changes to the XML file that holds the comments

for the implementation languages.

• Managing a list of XPath strings:TheXPathmethods allow XPath strings to be spec-

ified and executed on specified DOM objects.

• XML file input and output:XMLHandlermethods are used specifically for input and

output of XML files.

• Creating XML nodes:CreateSEMTAmethods are used to create XML Nodes for

XML files.

57

C
o
n
fi
g
H

a
n
d
le

r

_
c
o
n
fi
g
 :
 C

o
n
fi
g
P

a
rs

e
r

=
 N

o
n
e

_
_
s
e
ti
te

m
_
_
()

_
_
g
e
ti
te

m
_
_
()

S
e
tP

re
v
io

u
s
F

ile
s
()

G
e
tP

re
v
io

u
s
F

ile
s
()

E
ra

s
e
P

re
v
io

u
s
F

ile
s
()

_
_
d
e
l_

_
()

A
b
o
u
tD

lg

A
b
o
u
tT

e
x
t

T
it
le

_
_
in

it
_
_
()

X
M

L
H

a
n
d
le

r

re
a
d
X

M
L
()

w
ri
te

X
M

L
()

g
e
tT

e
x
t(

)
_
_
d
e
l_

_
()

w
x
F

ra
m

e

(f
ro

m
 w

x
)

w
x
H

tm
lW

in
d
o
w

(f
ro

m
 w

x
)

C
re

a
te

S
E

M
T

A

w
x
D

ia
lo

g

(f
ro

m
 w

x
)

w
x
H

tm
lW

in
d
o
w

(f
ro

m
 w

x
)

H
T

M
L
B

ro
w

s
e
r

_
_
in

it
_
_
()

O
n
B

a
c
k
()

O
n
F

o
rw

a
rd

()
O

n
C

lo
s
e
W

in
d
o
w

()

M
is

c

In
it
C

o
n
fi
g
()

In
it
M

e
ta

P
i(
)

(f
ro

m
 m

is
c
)

F
a
c
a
d
e

w
x
M

e
s
s
a
g
e
D

ia
lo

g

(f
ro

m
 w

x
)

w
x
M

e
s
s
a
g
e
s

M
e
s
s
a
g
e
O

K
()

M
e
s
s
a
g
e
W

a
rn

in
g
()

M
e
s
s
a
g
e
In

fo
rm

a
ti
o
n
()

T
h
e
X

P
a
th

X
p
a
th

E
x
p
 :
 D

ic
ti
o
n
a
ry

 =
 {

x
p
a
th

N
a
m

e
,
c
o
m

p
ile

d
X

p
a
th

}

_
_
in

it
_
_
()

G
e
tE

x
p
()

S
e
tE

x
p
()

D
e
lE

x
p
()

M
o
d
if
y
E

x
p
()

R
u
n
E

x
p
()

_
_
d
e
l_

_
()

C
o
m

m
e
n
tH

a
n
d
le

r

C
o
m

m
e
n
tD

ic
t

im
p
lL

a
n
g
D

o
m

 :
 x

m
l.
d
o
m

.m
in

d
o
m

_
_
in

it
_
_
()

G
e
tC

o
m

m
e
n
t(

)
S

e
tC

o
m

m
e
n
t(

)
M

o
d
if
y
C

o
m

m
e
n
t(

)
F

lu
s
h
()

R
e
m

o
v
e
C

o
m

m
e
n
t(

)
R

e
lo

a
d
fr

o
m

X
M

L
()

_
_
d
e
l_

_
()

Im
p
o
rt

L
o
a
d
e
r

_
_
in

it
_
_
()

G
e
tM

o
d
u
le

()
_
_
d
e
l_

_
()

(f
ro

m
 m

is
c
)

L
o
a
d
Im

p
o
rt

s

it
e
m

P
a
th

s
 :
 D

ic
ti
o
n
a
ry

m
o
d
ty

p
e
P

a
th

s
 :
 D

ic
ti
o
n
a
ry

L
o
a
d
e
r

_
_
in

it
_
_
()

A
d
d
It
e
m

()
M

o
d
It
e
m

()
R

e
m

o
v
e
It
e
m

()
A

d
d
M

o
d
T

y
p
e
()

R
e
m

o
v
e
M

o
d
T

y
p
e
()

C
h
a
n
g
e
M

o
d
T

y
p
e
()

G
e
tM

o
d
u
le

()
_
_
d
e
l_

_
()

X
M

L
E

d
it
o
rP

a
n
e
l

p
a
re

n
t
:
w

x
W

in
d
o
w

_
d
o
m

 :
 x

m
l.
d
o
m

.m
in

d
o
m

_
is

R
e
a
d
O

n
ly

 :
 B

o
o
le

a
n

x
m

lT
re

e
 :
 w

x
T

re
e
C

tr
l

x
m

lT
e
x
t
:
w

x
T

e
x
tC

tr
l

im
a
g
e
p
a
th

N
o
d
e
N

a
m

e
V

e
to

L
is

t

_
_
in

it
_
_
()

O
n
S

a
s
h
C

h
a
n
g
e
d
()

_
_
d
e
l_

_
()

L
o
a
d
M

o
d
e
l(
)

U
n
L
o
a
d
C

u
rr

e
n
tM

o
d
e
l(
)

R
e
fr

e
s
h
()

S
R

C
F

ile
2
T

e
x
t

fi
le

_
_
in

it
_
_
()

G
e
tS

R
C

()
O

p
e
n
F

ile
()

C
lo

s
e
F

ile
()

_
_
d
e
l_

_
()

_
g
e
tf
a
c
e
tn

a
m

e
()

_
g
e
tg

lo
b
a
lv

a
ri
a
b
le

b
lo

c
k
()

_
g
e
tf
ile

s
()

_
g
e
tg

lo
b
a
lp

la
c
e
h
o
ld

e
r(

)
_
g
e
tf
a
c
e
ts

()

(f
ro

m
 m

is
c
)

u
s
e
s

im
p
o
rt

 M
o
d
u
le

s
 w

it
h

Figure 5.14: Facade

58

 : FacetFrame : Facade : Facet
Notebook

 : FacetTool
BarManager

 : FacetTree

Facade Creation

Facade Object Creation

Facet IDE objects created

initialize (via FacetMediator) intialize windows

init toolbars and tools

init tree

IDE up and running

Figure 5.15: FDE Initialisation

5.7 Message Sequence Charts

The FDE has many dynamic processes which are not focused upon here. Rather, the fol-

lowing static processes are explained:

• FDE initialisation;

• Creating a Facet;

• Opening a Facet; and

• Saving a Facet.

5.7.1 FDE Initialisation

FDE initialization refers to starting the FDE once the FDE has been configured correctly.

Figure 5.15illustrates how the FDE is initialised. TheFacetFrameinitialises the Facade,

which in turn, initializes its constituent classes. TheFacetFrameregisters the Facade with

theFacetMediatorand then moves on to create the GUI components.

59

FacetFrame NewFacet
Wizard

FacetNotebook

init

Information returned

Create Directory

Create Generic.xml

Load

success

set Facet Information

Figure 5.16: Creating a Facet

Each GUI component is registered with theFacetMediator. After the GUI components

are created and registered, theFacetFrameinvokes theFacetNotebookto initialise itself.

Initialization of theFacetNotebookconsists of initializing theFacetToolBarManagerand

theFacetTree.

TheFacetNotebookinitializes theFacetToolBarManagerby creating multiple tools which

are then grouped. The groups of tools are mapped to types of objects in theFacetTree. The

FacetTreeis initialised by loading a default tree structure, if no Facet is being loaded. Else,

the Facet structure is loaded into theFacetTree. The FDE is now initialised and ready for

use.

5.7.2 Creating a Facet

Figure 5.16shows the process of creating a Facet once information has been gathered by

the NewFacetWizard. The NewFacetWizardhas a callback to theFacetFrameto create a

Facet.

TheFacetFramecreates the Facet directory based on the name of the Facet and then creates

the Facet’s Generic.xml file. All the information collected by the user is placed in the

Generic.xml file.

60

FacetFrame

_loadFetch Facet
and the
necessary
SRC files.

FacetNotebook FacetTree FacetToolBar
Manager

Load by path

Close opened Facet

Load (recursive function)Load recursively
goes through each
xml file and src file,
loading the required
elements and
populating the
FacetTree

Remove Tree Nodes

AddTreeNode

Activate Tree Node

Load Toolbar

Facet Loaded

set Current Facet Information

Figure 5.17: Opening a Facet

Once the Facet is created, theFacetNotebook::Loadis called to load the created Facet into

the GUI. If the Facet is successfully loaded, theFacetFramesets the current Facet informa-

tion such as Facet path and Facet name.

5.7.3 Opening a Facet

Figure 5.17shows how a Facet is loaded into the FDE. Assuming that a Facet is already

opened in the FDE, the opened Facet is first closed. If the opened Facet is not saved, it

will be saved. The state of the GUI components are reset. Specifically, the list of objects

and instantiated datamodels in theFacetNotebookare cleared followed by the removal of

all nodes in the tree of theFacetTree.

TheFacetFrameopens the Facet files for reading. The Facet Files include the Generic.xml,

Implementation xml files and Implementation src files.XMLHandler is used via theFa-

cadeto read xml files. The SRC file is read using theSRCFile2Textvia theFacade. The

FacetFrameparses the loaded files to theFacetNotebookfor loading of the Facet into the

GUI.

The FacetNotebookapplies a recursive functionLoad on the Facet file parsed to it.Load

61

FacetFrame FacetNotebook

SaveFacet

Create DOMs

Create SRC files

DOM and SRC Files

Save to Facet Directory

Figure 5.18: Saving a Facet

uses theAddTreeNodeto add initialised objects into theFacetTreetree hierarchy. The

FacetTreein turn activates the object forcing theFacetToolBarManagerto associate an

object type group with the object. Load completes by replying a successful or unsuccessful

Facet loading to theFacetFrame.

If the Facet is successfully loaded, theFacetFramesets the current Facet information such

as Facet path and Facet name.

5.7.4 Saving a Facet

Figure 5.18 illustrates the process of saving a Facet. Saving of a Facet requires reaping

information and packaging the information into XML format for storage onto the filesystem.

FacetFramecalls theSaveFacetfunction in theFacetNotebook. Using the active list of

objects within theFacetNotebook, the XML and SRC DOM objects are created.

FacetFramereceives the DOM objects which are then written to the filesystem using the

XMLHandlervia theFacade.

5.8 Chapter Summary

This chapter discusses the design considerations in creating the Facet Development En-

vironment (FDE) thereafter describing the FDE and its make up.XML is chosen as the

modelling language because of its ease of use; industry support by way of user groups and

62

programmes and the opportunity to integrate with UML via the XMI standard.

The DOM parser is chosen for its easy manipulation of XML documents. DOM also allows

the XML document to be searched using XPath or XQuery.

Python is chosen as the implementation language for its ease of use, rapid prototyping fea-

tures, portable GUI (wxPython),glue languagecapability and readily available supporting

packages.

The filesystem is chosen because no additional software is required and rapid prototyping

is encouraged.

The FDE description is made up of the user interface, use cases, class structure and message

sequences of the FDE. The user interfaces is composed of six GUI components viz. Menu

Bar, Toolbar, Tree, Documentation tab, Editing Windows tab and Status.

The FDE makes use of the Façade and Mediator design patterns. The Façade exposes

distributed functional methods to clients. The Mediator simplifies many-to-many unidirec-

tional associations. Both design patterns promote weak coupling and improved flexibility.

The use cases, class diagrams and message sequence charts detail the mechanics of the FDE.

Chapter 6 attempts to solidify the concept of Facets through three examples. Collectively,

the examples demonstrate the concepts embodied in Facets.

63

Chapter 6

Facet Examples

This chapter presents three examples which illustrate the Facet’s objectives and concepts.

The first example demonstrates a Facet whose functionality centres around providing a sim-

ple CORBA service. TheSimpleCORBAService(section 6.1) illustrates the functioning

of Facets, multi-granularity of Facets and their implementation-language or platform inde-

pendence. Once the Facet concept has been solidified with the first example, the following

examples focus on two key aspects: simultaneous co-existence of other reuse solutions with

the Facet reuse solution(section6.2) andcontainment of multiple programming paradigms

within a single Facet(section6.3).

6.1 Simple CORBA Service Facet

This section illustrates a simple CORBA Service as a Facet. The example steps through

the Facet illustrating the multi-granularity and implementation language independence of

Facets. TheSimpleCORBAServiceFacet has definitions as follows:

• Problem: How to demonstrate a Simple CORBA Service with a single Object that

possesses a minimal set of operations?;

• Intent: Demonstrate Client to Server operations;

• Forces: Requirement of a Simple CORBA server with a Single Object whose refer-

ence is written to File;

• Applicability: CORBA environments;

• Participants: CORBA Server, CORBA client, IDL Definition for client-server inter-

action; and

• Known Uses: Used to create CORBA services.

64

SimpleCORBAServiceuses the filesystem as a resource to read from and write to files. The

design and business contexts are not well defined since the Facet is not specific to any

business model or architecture. The deployment context points out the environment for a

successful deployment of the CORBA Service.SimpleCORBAServiceis successfully de-

ployed if the environment is set up correctly and a file exists which holds the servant’s IOR.

The operational context focuses on the requirements for the ongoing operation of the Facet.

The data characteristics is defined by the definition in the IDL file.

Figure 6.1shows a screen dump of theSimpleCORBAServiceFacet FDE Tree. We notice

the Facet consisting of a Generic definition and two Implementation definitions, namely

JavaandC++ . The presence of multiple implementations means that the facet can be ap-

plied where Java or C++ is the chosen implementation language. Therefore, the Facet is

independent of the implementation language as long as Implementation definitions exist

for the required implementation language. Similarly, the Facet can be argued to be platform

independent. In this example, both Implementation definitions are structurally similar there-

fore we discuss only one, namelyJava. Within theJavaimplementation there are a number

of global Placeholders and global Variable Blocks. A File definition and three sub-Facets

are also constituents of this implementation.

Figure 6.2 shows the structure of theSimpleCORBAServiceFacet in terms of contained

Facets and highlights the associated Facet Hierarchy (FH) paths.SimpleCORBAServiceis

made up of three Sub-Facets i.e.CORBAServer, CORBAServerSideObjectandCORBA-

Client.

TheCORBAServerfacet is used to create a CORBA server that instantiates and manages a

servant.CORBAServerSideObjectcreates the servant and allows the servant’s logic/func-

tionality to be defined.CORBAClientoffers the functionality of a basic CORBA client that

invokes operations on the CORBA servant. As an example of reuse,CORBAServerand

CORBAClientutilise the same functionality offered by theORBCreationFacet in different

contexts.

Although not visible from figure6.1, the global Placeholders and global Variable Blocks

synchronise and aggregate sub-Facet Placeholders and Variable Blocks with the Facet’s

own. For instance (with reference to figure6.1and appendixE), theSimpleCORBAService

global Placeholder calledCORBA Object Typelinks with the following placeholders:

1. Return Typeunder theHello.idl File within theSimpleCORBAServiceFacet (figure

6.1);

2. Object Across Facetsglobal placeholder within theCORBAServerFacet (figureE.4).

The global placeholder, in turn, links a number of placeholders within theCOR-

BAServerFacet;

65

Figure 6.1: Simple CORBA Service Facet: FDE Tree Structure

66

SimpleCORBAService

CORBAServerSideObject CORBAServer CORBAClient

ORBCreation WriteIORToFile ORBCreation WriteIORToFile

FH=A

FH=B

FH=C

A = Platform.Service.Component.FDL

FH Key:

B = Platform.Service.Component.FDL.File.class

C = Platform.Service.Component.FDL.File.class.method.algorithm

Figure 6.2: SimpleCORBAService Facet Structure

3. CORBA Object Nameplaceholder in theCORBAServerSideObjectFacet (figureE.5);

and

4. CORBA Object Typeplaceholder in theCORBAClientFacet (figureE.6).

Instead of the many Placeholders needing to be specified individually by the user, a single

global Placeholders is specified without the user necessarily needing to know what under-

lying effects occur. Thus, the detail of the underlying Facets is abstracted from the user.

The meta-π model that supports the implementation is essential as it makes the Facet data,

resource and context agnostic. AppendixF contains the xml file that represents the meta-π

model of theSimpleCORBAService, Java Implementation. AppendixE contains screen

dumps for the Sub-Facet’s FDE Tree.

We draw the readers attention to the Facet Hierarchy (FH) paths to the right of each level in

figure 6.2. The FH paths should be correlated with the Facet Hierarchy structure shown in

figure 4.3. The correlation will show that only Facets at a lower FH level are contained by

Facets at a higher FH level. Thus, illustrating theRule of Containment (Equation 3.12).

The presence of multiple, ordered levels of containment is proof that the Facet concept is

multi-granular.

6.2 Mediator Facet

This section presents a Facet which overlays another reuse solution. TheMediator Facet

describes theMediatordesign pattern with implementations. TheMediatorFacet has defi-

nitions as follows:

67

• Problem: How to create a fully meshed association of classes?;

• Intent: Separate and encapsulate the interactions between a set of objects and allow-

ing greater flexibility, control;

• Forces: An influx of hard-wired associations is undesirable. A dynamic approach is

required;

• Applicability: Where a complex relationship exists between objects;

• Participants: Retrieve Object and Register Object; and

• Known Uses: Used to allow fully meshed interactions between GUI components in

the FDE.

TheMediatorFacet does not require any resources, instead, it is a resource to other Facets.

The business, deployment and operational context of the Facet is undefined since it is not

applied in an application. Applying a Mediator to link various objects, is the design context.

The data flow that characterises theMediatorFacet, is the registering and retrieval of objects

with theMediatorFacet.

Figure6.3 shows the screen dump of the FDE Tree for theMediator facet. The FDE Tree

shows that theMediator facet consists of a Generic definition and two Implementation

definitions: PythonandJava. Each implementation has a structural description, in terms

of classes, methods and attributes, and is also described using Placeholders and Variable

Blocks. Each implementation also makes use of the two Sub-Facets shown in figure6.4.

The Mediator is adesign pattern that is presented in section5.4.2. We have defined

the Mediatordesign pattern as aMediator Facet by providing implementations for the

Mediatordesign pattern. Hence, we have proven that other reuse solutions can exist si-

multaneously with the Facet reuse solution. This method can be applied using Enterprise

Java Beans (EJBs) or MDA.

6.3 Web Server Tutorial Facet

This section presents a Facet that implements functionality using multiple programming

paradigms such as Object-Oriented Programming, Functional Programming and Scripting.

TheWebServerTutorialFacet has definitions as follows:

• Problem: How to generate a dynamic server-side HTML page?;

• Intent: Demonstrate dynamic html generation;

68

Figure 6.3: Mediator Facet: FDE Tree Structure

69

Mediator

Object Registering Retrieve Object

FH=A

FH=B

FH Key:

A = Platform.Service.Component.FDL.File.class

B = Platform.Service.Component.FDL.File.class.method

Figure 6.4: Mediator Facet Structure

• Forces: Users want to interact with a web site and cannot do so with static pages;

• Applicability: Where a web site’s user interactiveness is to be improved;

• Participants: No other Facets; and

• Known Uses: Most web solutions.

Figure 6.5 shows that theWebServerTutorialFacet consists of a Generic Definition and

three Implementation definitions, namelyJavaServlets, PHP andPerl. The Implementa-

tions are significantly different from each other in that theJavaServletsimplementation

is object oriented programming, thePerl implementation is functional programming and

the PHP implementation is script programming. TheWebServerTutorialFacet caters for

multiple programming paradigms therefore the Facet reuse solution can cater for multiple

programming paradigms.

Since the implementations are quite different from each other, the necessary resources, con-

text and data descriptions differ to a high degree. This example stresses the importance of

having the reuse solution being agnostic of the resources, context and data. Without such

information, the user will not be able to use the Facet effectively.WebServerTutorialdoes

not contain any other Facets and its FH path isPlatform.Service.Component.File

6.4 Chapter Summary

This chapter presents three examples to solidify the concept of Facets. The first example,

SimpleCORBAService, demonstrates the functionality centric approach of Facets, multi-

granularity of Facets and implementation-language or platform independence of Facets.

SimpleCORBAServicealso showed how the facet-specific structural components were used

and how the Facet Hierarchy enforces the Rule of Containment.

70

Figure 6.5: Web Server Tutorial Facet: FDE Tree Structure

The second example,Mediator Facet illustrated the Facet’s capability to simultaneously

accomodate other reuse solutions such as Design Patterns, EJBs and MDA.

The third example,WebServerTutorial, shows that Facets allow reuse to be enabled irre-

spective of the programming paradigm that is being used.WebServerTutorialfacet contains

three different programming paradigms.

Chapter 7 concludes the report and analyses the outcome of the work done with reference

to the stated objectives. Recommendations for further work are also proposed.

71

Chapter 7

Conclusion

7.1 Discussion

Rapid Development Environments (RADs) are drivers for rapid service creation in the Next

Generation Network. RADs are empowered by reuse solutions. Within the evolutionary

Next Generation Network (NGN), multiple platforms or architectures that use multiple im-

plementation languages exist. Reuse solutions that can be universally applied to the NGN

are sought. The requirements for a NGN reuse solution are listed in Chapter1.

By focusing the description mechanism of the reuse solution around functionality, the reuse

solution is decoupled from the underlying implementation which results in a platform and

implementation language independent reuse solution. By approaching the reuse problem

from a functionality perspective development by functional composition, to achieve an ap-

plication’s global functional requirements, is promoted. Also, encouraging the effective use

of the reuse solution since human beings are more comfortable with real functionality than

with abstract objects.

Chapter 2 discusses contemporary reuse solutions with a view toward identifying worth-

while “best of breed” characteristics. Most reuse solutions punt reusability as components.

Intelligent Network (IN) SIBs and Telecommunication Information Networking Architec-

ture (TINA) RP-facets are functionality centric. IN SIBs promote rapid development by us-

ing a logical black-box approach i.e. the reusable component’s external characteristics, such

as inputs and outputs, are emphasized. TINA computational objects also use a black-box

approach where the external input and output characteristics are defined by IDL definitions.

Model Drive Architecture (MDA) and Reference Model for Open Distributed Processing

(RM-ODP) introduce high-level reuse. MDA emphasizes the concept of developing Plat-

form Independent Models (PIMs) which are later migrated to Platform Specific Models

72

(PSMs). MDA, however, is bound to the object-oriented paradigm. RM-ODP, as with En-

terprise Java Beans (EJBs), emphasizes the business aspect of a reusable component. Design

patterns possess a novel approach to explicitly deny solutions that have not been “tried and

tested”. In general, component reuse solutions are dedicated to particular implementation

languages or platforms while higher level reuse solutions lack implementations of proposed

solutions. The reuse solutions described here have diverse strengths and weakness. No

single method provides the multi-granularity, platform-independence and implementation

language-independence that is called for in section1.4.

Chapter3 introduces the Facet concept as a redefinition of the TINA RP-facet concept tak-

ing advantage of “best of breed” characteristics from chapter2. Facets are defined math-

ematically to be platform and implementation language independent. The Facet Hierarchy

categorizes the Facet’s functionality and manages Facet containment. Facets are developed

within a Facet Development Environment (FDE) by a Facet Developer (FD). The Facet De-

veloper (FD) role is a job description that may exist in the Application Provider, Service

Provider,3rd Party Service Provider or Vendor stakeholder domains. The FD verifies pro-

grammes from programmers, which are included into the catalogue of Facets by using the

FDE. The FD interacts with the service creation teams to determine necessary Facets that

can be used to develop the service.

Chapter 4 explains the key concepts that enable the Facet as a comprehensive approach to

software reuse. Generic and Implementation definitions enable the decoupling of a reusable

component specification from the implementation. The implementation can be specified for

a specific implementation language or platform. The Generic and Implementation defini-

tions are described by the meta-π model. Meta-π is a model at the M3 meta level consisting

of six aspects. By utilising the six aspect of the meta-π model, resource, context and data ag-

nostic features are imported into the reusable component. Placeholders and Variable Blocks

are facet-specific structural components that facilitate code-level reuse by modifying source

code directly.

Chapter5 discusses the FDE. The necessary decisions for the development of the FDE are

first discussed followed by user interface, use cases, class structure and static message se-

quences. XML is the chosen meta-language due to its favourable industry acceptance. The

Document Object Model (DOM) parser is used for eXtensible Markup Language (XML)

file processing. Although DOM is memory intensive (in comparison to the SAX parser),

searching and easier XML manipulation make DOM the acceptable choice. The FDE is im-

plemented using Python. Python facilitates rapid development together with a flexible plat-

form independent GUI package. Facets are stored using the Filesystem due to unacceptable

trade-offs with relational databases and a lack of freeware XQuery compliant databases.

The FDE uses two important design patterns i.e. the Façade and Mediator design patterns.

73

The Façade wraps methods belonging to distributed classes in its own methods and of-

fers them to clients. Advantages to the Façade are: client classes only need to know of the

Façade class; weak coupling between classes is promoted and overall flexibility is improved.

The Mediator class dynamically registers classes such that existing registered classes have

access to each other. Thus providing a central point for managing complex interactions be-

tween classes. Advantages of the Mediator include weak coupling of classes; simplification

of system design and improved overall flexibility.

Chapter6 presents three examples that attempt to solidify the Facet concepts. Section6.1

describes theSimpleCORBAServiceFacet, illustrating the basic Facet concepts of FH, con-

tainment, resources, data, context, placeholders and variable blocks. Section6.2 illustrates

the ability of Facets to accommodate other reuse solutions in its specification by using the

Mediator Facet. And, section6.3 illustrates the Facet’s capability to address reuse across

multiple programming paradigms using theWebServerTutorialfacet.

7.2 Conclusion

We evaluate the Facet software reuse solution against the objectives laid out in section1.4.

Facets are functionality centric. The Facet is described in the Generic definition as solving

a particular problem. A solution to any problem realizes functionality. Hence the Facet is

focused on functionality.

Facets are multi-granular. Each Facet can be categorised into a level of the Facet Hier-

archy (FH). FH is a hierarchy of discrete levels that describe groups of functionality. The

groups of functionality are arranged in such a manner that higher levels contain the lower

levels. Hence the FH becomes a multi-level set of pigeon holes for functionality. Since

Facets can be categorised intoone of the multiple pigeon holes in the FH, the Facet is

multi-granular.

Facets are platform-independent and implementation language-independent. By de-

scribing a Facet in terms of functionality, the Facet is detached from a particular implemen-

tation except, where the functionality is peculiar to a platform or implementation language.

Also, the decomposition of a Facet into a Generic definition and any number of Implemen-

tation definitions implies that the FD can freely edit the Facet’s Implementation definitions

without changing its functional description. Hence the Facet can accommodate multiple

platforms and/or implementation languages without changing its functional description.

Facets are resource, data and context agnostic. Meta-π has six aspects that address

different issues. Resources, data and context of a Facet make up three of the six aspects.

74

The FD can input resource, data and context information into the FDE, which is formatted

into the underlying meta-π model.

Facets enable platform migration. Platform migration is desirable when a service provider

wishes to offer existing services on a different execution platform. If each Facet, contained

by the service, has the capability to migrate to the new execution platform then platform

migration is possible. The ability to migrate to a particular platform means that the Facet

contains an Implementation definition for the target platform.

Facets abstract detail from the developer. The detail of a Facet is exposed via facet-

specific structural components i.e. placeholders, variable blocks, global placeholders and

global variable blocks. Facet-specific structural components are suppressed by the specify-

ing values for each. Within a Facet, the FD specifies values for the Sub-Facet’s facet-specific

structural components. Hence the user of the Facet does not have to provide values for the

Sub-Facet’s facet-specific structural components. Thus abstracting the level of detail at the

Sub-Facet level.

7.3 Recommendations for future work

This section discusses a few recommendations for future work. Meta-π begins with a novel

approach to characterizing entities. The meta-π model should be expanded to become more

robust and flexible in its ability to describe entities. Candidate expansion points are the

resources, contexts and data aspects of the meta-π model.

Meta-π should also accommodate a mechanism to achieve cataloging of Facets. A cat-

alogued list of facets will improve the probability of reuse from the perspective that the

required Facets will be easier to find.

Accommodating various implementation languages forces various programming paradigms

to be accommodated. Each programming paradigm has its own structural and interaction

modelling languages. Together with the FDE, meta-π must be able to adequately describe

an Implementation definition’s structure and interactions using appropriate modelling lan-

guages.

For future work, it is proposed that a development environment be created that encompasses

a process for using Facets to create services.

75

References

[1] D. V. Camp, “The object-oriented pattern digest.” Internet Web Site, 2002.

http://patterndigest.com.

[2] D. X. Adamopoulos, G. Pavlou, and C. Papandreou, “Advanced service creation

using distributed object technology,”IEEE Communications Magazine, vol. Vol 40,

pp. 146–154, March 2002.

[3] I. Lovrek, ed.,Requirements for Service Creation Environments, (Zagreb), 2nd

International Workshop on Applied Formal Methods in System Design, June 1997.

[4] M. Chapman, S. Montessi, “Overall concepts and principle of TINA,” Tech. Rep.

Version. 1.0, TINA Consortium,

http://www.tinac.com/specifications/documents/overall.pdf, Feb 1995.

[5] R. Logewaran and C. L. Choo, “Issues on service creation in TINA,” inProceedings

for TINA Workshop 2002, pp. 9–12, Multimedia University, Cyberjaya, Malaysia,

October 2002.

[6] J. Verhoosel, M. Wibbels, H. Betteram, and J.-L. Bakker, “Rapid service

development on a TINA-based service deployment platform,” inProceedings of TINA

’99, Telecommunications Information Networking Architecture Conference, (Turtle

Bay Resort, Oahu, Hawaii, USA), 12-15 April 1999.

[7] TOSCA Group, “D11: User trial report on embedded methods and tools,” Tech. Rep.

AC237/TTL/ALL/DS/R/0059/b1, TOSCA, Feb 1997.

http://www.teltec.dcu.ie/tosca/publicdocs.html.

[8] Microsoft, “The component object model specification,” tech. rep., Microsoft, 1995.

http://www.microsoft.com/com/resources/comdocs.asp.

[9] E. Gamma, R. Helm, J. Vlissides, and R. Johnson,Design Patterns: Elements of

Reusable Object Oriented Software. Addison Wesley Longman Inc., October 1994.

76

[10] L. G. DeMichiel, L. U. Yalcinalp, and et al, “Enterprise JavaBeans specification,

version 2.0,” tech. rep., Sun Microsystems, August 2001.

http://java.sun.com/products/ejb/docs.html.

[11] B. Hayes, “The post-OOP paradigm,”American Scientist, vol. Vol. 91, pp. 106–110,

March-April 2003.

[12] S. Ambler, “A realistic look at object-oriented reuse,”Software Development

Magazine, pp. 12–20, January 1998.

[13] H. Hanrahan, “Intelligent networks.” Course Notes for ELEN509, University of the

Witwatersrand, Johannesburg, May 2001.

[14] S. Trace, “Effective reuse,” tech. rep., Steel Trace, 2000.

http://www.steeltrace.com/download/Whitepaper

[15] I. Jacobson, M. Gariss, and P. Jonsson,Software Reuse: Architecture, Process and

Organization for Business Success. Addison Wesley Professional, 1997.

[16] Object Management Group (OMG), “Meta object facility,” tech. rep., Object

Management Group, March 2000. http://www.omg.org/mof/.

[17] A. Mili, S. F. O. Chmiel, R. Gottumkkala, and L. Zhang, “An integrated cost model

for software reuse,” inInternational Conference on Software Engineering (ICSE),

(Limerick, Ireland), pp. 157–166, 2000.

[18] TINA Consortium,Computational Modelling Concepts, 17th May 1996. TINA

Version 3.2.

[19] K.Raymond, “Reference Model of Open Distributed Processing

(RM-ODP):Introduction,” tech. rep., CRC for Distributed Systems Technology,

Centre for Information Technology Research, University of Queensland, 1995.

http://gullfisk.agderikt. hia.no/kurs/ODS/litt/icodp95.pdf.

[20] ISO/IEC, “Reference model of open distributed processing,” Tech. Rep. JTC1.21.43,

ISO, 1995.

[21] N. Mitra, “Introduction to XML web services,” inInternational Conference on

Intelligent Networks, (Bordeaux, France), March 31-April 4 2003.

[22] D. Box, D. Ehnebuske, G. Kakivaya, and et al, “Simple object access protocol

(SOAP) 1.1,” May 2000. http://www.w3.org/TR/SOAP/.

[23] Architecture Board MDA Drafting Team, “Model driven architecture: A technical

perspective,” Tech. Rep. ab/2001-02-04, Object Management Group (OMG), Feb

2001.

77

[24] Object Management Group, “Common warehouse model (CWM),” tech. rep., OMG,

2002. http://www.omg.org/cwm.

[25] Object Management Group (OMG), “XML model interchange,” tech. rep., OMG,

2001. http://www.omg.org/xmi.

[26] OMG, “OMG unified modelling language specification,” Tech. Rep. Version 1.4,

OMG, September 2001.

[27] O. Kath and et al, “Impacts of changes in enterprise software construction for

telecommunications: Model driven architecture: Assessment of relevant

technologies.,” tech. rep., Eurescom Project P1149, 2002.

[28] I. Schieferdecker, “TINA CTF - TINA conformance testing,” June 2000.

http://www.iskp.uni-bonn.de/bibliothek/reports/GMD/2000/e-probl/TINACTF.pdf.

[29] TINA Consortium: TINA-CAT Workgroup, “Request for proposal: TINA

conformance and testing framework,” Tech. Rep. Version 1.0: Approved and

Released, TINA Consortium,

http://www.tinac.com/compliance/TINAConfTestFrameworkRFP.pdf, July 1999.

[30] D. I. Schieferdecker and L. Mang, “TINA conformance testing framework,” tech.

rep., GMD Fokus, May 2000.

[31] J. Soukup, J. O. Coplien, and D. C. Schmidt,Pattern Languages of Program Design,

ch. 20: Implementing Patterns. Addison-Wesley, 1995.

[32] Technical Committee: JTC 1/SC 34, “Information processing – text and office

systems – standard generalized markup language,” Tech. Rep. ICS 35.240.30,

International Organization for Standardisation, 2001-08-13.

[33] World Wide Web Consortium (W3C), “Extensible markup language,” October 2000.

http://www.w3.org/XML/.

[34] World Wide Web Consortium (W3C), “Document object model,” 2002.

http://www.w3.org/DOM/.

[35] D. Brownell, “Simple API for XML project,” 2003. http://www.saxproject.org/.

[36] R. Bourret, “XML and databases,” January 2003.

http://www.rpbourret.com/xml/XMLAndDatabases.htm.

78

Appendix A

Meta-π DTD

A.1 meta-π.dtd

<!ELEMENT SEMTA (metapi,Component)>

<!ELEMENT metapi (Creator, Definition, Data , Context,

Resources , Documentation, Extensions)>

<!ATTLIST metapi

name #PCDATA #required

type #PCDATA #required

>

<!ELEMENT Creator>

<!ATTLIST Creator

name #PCDATA #required

institute #PCDATA #required

date #PCDATA #required

>

<!ELEMENT Definition (Description, Behaviour , Interactions , Logic)>

<!ELEMENT Description (Objectives)>

<!ELEMENT Objectives (#PCDATA)>

<!ELEMENT Behaviour (Rules, Policies, Limitations)>

<!ELEMENT Rules (#PCDATA)>

<!ELEMENT Policies (#PCDATA)>

<!ELEMENT Limitations (#PCDATA)>

<!ELEMENT Interactions (#PCDATA)>

79

<!ELEMENT Logic (#PCDATA)>

<!ELEMENT Data (Input, Algorithm, Output)>

<!ELEMENT Input (Items∗)>
<!ELEMENT Algorithm (Items∗)>
<!ELEMENT Output (Items∗)>
<!ELEMENT Items (ValueDescription)>

<!ATTLIST Items

source #PCDATA #required

target #PCDATA #required

type #PCDATA #required

>

<!ELEMENT ValueDescription (#PCDATA)>

<!ELEMENT Context (Business, Design, Operational, Deployment)>

<!ELEMENT Business (Environment∗)>
<!ELEMENT Design (Environment∗)>
<!ELEMENT Operational (Environment∗)>
<!ELEMENT Deployment (Environment∗)>
<!ELEMENT Environment (ValueDescription)>

<!ATTLIST Environment

name #PCDATA #required

type #PCDATA #required

priority (Default|Recommended|Minimum|Required) Default

>

<!ELEMENT Resources (Internal, Boundary, External)>

<!ELEMENT Internal (Resource∗)>
<!ELEMENT Boundary (Resource∗)>
<!ELEMENT External (Resource∗)>
<!ELEMENT Resource (ValueDescription)>

<!ATTLIST Resource

name #PCDATA #required

type #PCDATA #required

priority (Default|Recommended|Minimum|Required) Default

>

<!ELEMENT Documentation (Entry∗)>
<!ELEMENT Entry (DocEntry, AdditionalInfo)>

<!ATTLIST Entry

time #PCDATA #required

date #PCDATA #required

>

80

<!ELEMENT DocEntry (#PCDATA)>

<!ELEMENT AdditionalInfo (#PCDATA)>

<!ELEMENT Extensions (Children, Contains, Other)>

<!ELEMENT Children (Models)>

<!ELEMENT Models>

<!ATTLIST Models

name #PCDATA #required

path #PCDATA #required

type #PCDATA #required

>

<!ELEMENT Files>

<!ATTLIST Files

name #PCDATA #required

path #PCDATA #required

>

<!ELEMENT Contains (Models∗,Files∗)>
<!ELEMENT Other (#PCDATA)>

<!ELEMENT Component (ComponentFiles, Create)>

<!ELEMENT ComponentFiles>

<!ATTLIST ComponentFiles

formatter #PCDATA #implied

transformer #PCDATA #implied

evthandler #PCDATA #implied

>

<!ELEMENT Create (#PCDATA)>

81

Appendix B

Facet DTD

B.1 Facet.dtd

<!ELEMENT SEMTA (metapi)>

<!ELEMENT metapi (Creator, Definition, Data , Context,

Resources , Documentation, Extensions)>

<!ATTLIST metapi

name #PCDATA #required

implname #PCDATA #implied

type (Generic|Impl) #required

>

<!ELEMENT Creator>

<!ATTLIST Creator

name #PCDATA #required

institute #PCDATA #required

date #PCDATA #required

>

<!ELEMENT Definition (Description, Behaviour,

Interactions , Logic)>

<!ELEMENT Description (Problem, Intent, Forces ,

Applicability , Participants , KnownUses, Structure,

FacetHierarchy , Technology?)>

<!ELEMENT Problem (#PCDATA)>

<!ELEMENT Intent (#PCDATA)>

<!ELEMENT Forces (#PCDATA)>

<!ELEMENT Applicability (#PCDATA)>

82

<!ELEMENT Participants (#PCDATA)>

<!ELEMENT KnownUses (#PCDATA)>

<!ELEMENT Structure (gp, gvb, File∗, Package∗, Facet∗,
Association∗)>

<!ELEMENT gp (gpinstance∗)>
<!ATTLIST gp

name #PCDATA #required

value #PCDATA #implied

>

<!ELEMENT gpinstance>

<!ATTLIST gpinstance

name #PCDATA #required

>

<!ELEMENT gvb (gvbinstance∗)>
<!ATTLIST gvb

name #PCDATA #required

value (Y|N) #implied

>

<!ELEMENT gvbinstance>

<!ATTLIST gvbinstance

name #PCDATA #required

>

<!ELEMENT File (variableblock∗, placeholder∗,
Facet∗, classmod∗, methodfunc∗, attributes∗)>
<!ATTLIST File

name #PCDATA #required

implementationLanguage #PCDATA #required

>

<!ELEMENT variableblock (vbinstance∗)>
<!ATTLIST variableblock

name #PCDATA #required

description #PCDATA #required

value #PCDATA #required

>

<!ELEMENT vbinstance>

<!ATTLIST vbinstance

value (Y|N) #implied

from #PCDATA #required

to #PCDATA #required

83

>

<!ELEMENT placeholder (pinstance∗)>
<!ATTLIST placeholder

name #PCDATA #required

description #PCDATA #required

value #PCDATA #required

>

<!ELEMENT pinstance>

<!ATTLIST pinstance

value #PCDATA #implied

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT Facet (FacetHierarchy, settings∗)
<!ATTLIST Facet

name #PCDATA #required

type (ext| int) #required

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT settings>

<!ATTLIST settings

name #PCDATA #required

value #PCDATA #implied

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT classmod (name, type, expcontrol,

stereotype , attribute∗, methodfunc∗)
<!ATTLIST classmod

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT name>

<!ATTLIST name

value #PCDATA #required

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT type>

84

<!ATTLIST type

value #PCDATA #required

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT expcontrol>

<!ATTLIST expcontrol

value #PCDATA #required

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT stereotype>

<!ATTLIST stereotype

value #PCDATA #required

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT attribute (name, type, stereotype ,

initvalue , expcontrol)>

<!ATTLIST attribute

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT methodfunc (name, return, stereotype,

expcontrol , args∗)>
<!ATTLIST methodfunc

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT return>

<!ATTLIST return

value #PCDATA #required

from #PCDATA #required

to #PCDATA #required

>

<!ELEMENT args (name, type)>

<!ELEMENT Package (File∗, Package∗)>

85

<!ATTLIST

name #PCDATA #required

>

<!ELEMENT Association>

<!ATTLIST Association

name #PCDATA #required

sourcename #PCDATA #required

destname #PCDATA #required

sourcemult #PCDATA #implied

destmult #PCDATA #implied

type #PCDATA #required

>

<!ELEMENT FacetHierarchy (#PCDATA)>

<!ELEMENT Technology (titem∗)>

<!ELEMENT t item>

<!ATTLIST t item

name #PCDATA #required

>

<!ELEMENT Behaviour (Rules, Policies, Limitations)>

<!ELEMENT Rules (#PCDATA)>

<!ELEMENT Policies (#PCDATA)>

<!ELEMENT Limitations (#PCDATA)>

<!ELEMENT Interactions (Relations, Collaborations)>

<!ELEMENT Relations (#PCDATA)>

<!ELEMENT Collaborations (#PCDATA)>

<!ELEMENT Logic (#PCDATA)>

<!ELEMENT Data (Input, Algorithm, Output)>

<!ELEMENT Input (Items∗)>
<!ELEMENT Algorithm (Items∗)>
<!ELEMENT Output (Items∗)>
<!ELEMENT Items (ValueDescription)>

<!ATTLIST Items

source #PCDATA #required

target #PCDATA #required

type #PCDATA #required

>

<!ELEMENT ValueDescription (#PCDATA)>

86

<!ELEMENT Context (Business, Design, Operational, Deployment)>

<!ELEMENT Business (Environment∗)>
<!ELEMENT Design (Environment∗)>
<!ELEMENT Operational (Environment∗)>
<!ELEMENT Deployment (Environment∗)>
<!ELEMENT Environment (ValueDescription)>

<!ATTLIST Environment

name #PCDATA #required

type #PCDATA #required

priority (Default|Recommended|Minimum|Required) Default

>

<!ELEMENT Resources (Internal, Boundary, External)>

<!ELEMENT Internal (Resource∗)>
<!ELEMENT Boundary (Resource∗)>
<!ELEMENT External (Resource∗)>
<!ELEMENT Resource (ValueDescription)>

<!ATTLIST Resource

name #PCDATA #required

type #PCDATA #required

priority (Default|Recommended|Minimum|Required) Default

>

<!ELEMENT Documentation (Entry∗)>
<!ELEMENT Entry (DocEntry, AdditionalInfo)>

<!ATTLIST Entry

time #PCDATA #required

date #PCDATA #required

>

<!ELEMENT DocEntry (#PCDATA)>

<!ELEMENT AdditionalInfo (#PCDATA)>

<!ELEMENT Extensions (Children, Contains, Other)>

<!ELEMENT Children (Models)>

<!ELEMENT Models>

<!ATTLIST Models

name #PCDATA #required

path #PCDATA #required

type #PCDATA #required

>

<!ELEMENT Files>

<!ATTLIST Files

name #PCDATA #required

87

path #PCDATA #required

>

<!ELEMENT Contains (Models∗,Files∗)>
<!ELEMENT Other (ExamplesOfUse∗)>
<!ELEMENT ExamplesOfUSe (#PCDATA)>

B.2 FacetSource.dtd

<!ELEMENT FacetSource (Technology+, globalvariableblock∗,
globalplaceholder∗, facets∗, files ?)>

<!ELEMENT Technology (CDATA)>

<!ATTLIST FacetSource

name #PCDATA #REQUIRED

impl #PCDATA #REQUIRED

fh #PCDATA #REQUIRED

>

<!ELEMENT link>

<!ATTLIST link

name #PCDATA #REQUIRED

path #PCDATA #REQUIRED

>

<!ELEMENT globalvariableblock (link+)>

<!ATTLIST globalvariableblock

name #PCDATA #REQUIRED

value (Y|N) #REQUIRED

>

<!ELEMENT globalplaceholder (link+)>

<!ATTLIST globalplaceholder

name #PCDATA #REQUIRED

value #PCDATA #REQUIRED

>

<!ELEMENT facets (description, settings∗)>
<!ELEMENT description>

<!ATTLIST description

name #PCDATA #REQUIRED

fh #PCDATA #REQUIRED

>

<!ELEMENT settings>

<!ATTLIST settings

name #PCDATA #REQUIRED

value #PCDATA #REQUIRED

88

>

<!ELEMENT files (CDATA)>

<!ATTLIST files

filename #PCDATA #REQUIRED

>

89

Appendix C

Facet Hierarchy and Implementation

Language

C.1 Sample Facet Hierarchy XML file

<?xml version=”1.0” encoding=”ISO−8859−1”?>

<!−−This xml file will maintain the state of the hierarchical

structure which describes facet containment . xml is ideal for

this due to its naturally hierarchical description . The

optional attr serves to provide a mechanism to allow certain

levels of the hierarchy to be skipped . One such situation is

the FDL level . Not all software created will have an FDL

definition . where FDL refers to XML, IDL, etc.−−>

<SEMTA>

<Platform optional =”No”>

<Architecture optional =”No”>

<Component optional=”No”>

<FDL optional=”Yes”>

<OO optional=”No”>

<Classes optional =”No”>

<Methods optional=”No”>

<Algorithms optional=”

No”/>

</Methods>

</Classes>

</OO>

<FunctionalProgramming optional=”No”>

<DataStructures optional =”No”>

<Functions optional =”No”>

<Algorithms optional=”

No”/>

90

</Functions>

</DataStructures>

</FunctionalProgramming>

<Scripting optional =”No”>

<Files optional =”No”>

<Algorithms optional=”No”/>

</Files>

</Scripting>

</FDL>

</Component>

</Architecture>

</Platform>

</SEMTA>

C.2 DTD for Implementation Language Comments

<!ELEMENT ImplOptions (∗Impl)>

<!ELEMENT Impl>

<ATTLIST Impl

CommentChar #PCDATA #required

>

C.3 Sample Implementation Language Comments XML file

<?xml version=”1.0” encoding=”iso−8859−1”?>

<ImplOptions>

<Impl CommentChar=”##” Lang=”Python”/>

<Impl CommentChar=”//” Lang=”IDL”/>

<Impl CommentChar=”//” Lang=”Java”/>

<Impl CommentChar=”//” Lang=”C++”/>

<Impl CommentChar=”#” Lang=”PHP”/>

<Impl CommentChar=”#” Lang=”Perl”/>

<Impl CommentChar=”” Lang=”None”/>

<Impl CommentChar=”<!−−” Lang=”HTML”/ >

</ImplOptions>

91

Appendix D

Additional UML Diagrams

This Appendix adds to the UML diagrams from section5.6.

Figure D.1: XML Explorer

92

Figure D.2: Common Windows

Figure D.3: Editor

93

Figure D.4: Facet Data Models

94

Figure D.5: Sub-Facet Data Models

95

Figure D.6: Sub-File Data Models

96

Figure D.7: Facet Editor

97

Figure D.8: Facet Window

98

Figure D.9: File Window

99

Figure D.10: File Window Component Wizard

100

Appendix E

Simple CORBA Service Facet

This Appendix contains screen dumps of three when the SimpleCORBAService Sub-Facet

were being edited.

Figure E.1: ORB Creation Facet: IDE structure

101

Figure E.2: Read IOR From File Facet: IDE Structure

Figure E.3: Write IOR from File Facet: IDE Structure

102

Figure E.4: CORBA Server Facet: IDE Structure

103

Figure E.5: CORBA Server Side Object

104

Figure E.6: CORBA Client Facet: IDE Structure

105

Appendix F

Sample meta-π xml file

Below is a meta-π file that represents theJavaImplementation in theSimpleCORBAService

Facet.

<?xml version =’1.0’ encoding=’UTF−8’?>

<SEMTA>

<metapi type=’Implementation ’ name=’SimpleCORBAService’ implname=’Java’>

<Creator date=’Fri Jun 06 10:33:31 2003’ institute =’ University of the Witwatersrand

’ name=’Bilal A.R. Jagot’/>

<Definition>

<Description>

<Problem>How to demonstrate a Simple CORBA Service with a single Object that

possesses a minimal set of operations ?</Problem>

<Intent>Client to Server operations . To say ” hello ” on the Server side.</ Intent

>

<Forces>Simple CORBA server. Single Object. IOR in File .</Forces>

<Applicability>Simple CORBA services</Applicability>

< Participants>CORBA Server, CORBA client, IDL Definition for client−server

interaction .</ Participants>

<KnownUses>None</KnownUses>

<Structure>

Place the tree that describes the . src file here .

<Facet to =” from =” name=’CORBAServer:Java.xml’ type=’external’><settings>

Place the tree that describes the . src file here .

<File name=’Server.java ’ implementationLanguage=’Java’>

106

<Facet to=’929’ from=’88’ name=’ORBCreation:JavaORBACUS.xml’ value=’ java

.util. Properties props = System. getProperties () ; props.put(”org .omg.CORBA

.ORBClass”, ”com.ooc.CORBA.ORB”); props.put(”org.omg.CORBA.ORBSingletonClass

”, ”com.ooc.CORBA.ORBSingleton”); props.put(”ooc.config”,”C:\\where\\config

.txt”); // props.put(”ooc.orb.servername ”, ” TheNameOfTheServerIfIMRisBeingUsed

”); // props.put(”ooc.orb.oa.concmodel”, ” threaded , threadper client , threadper request

, threadpool ”) ; // props.put(”ooc.orb.oa. threadpool ”,” n>0”); int

status = 0; org .omg.CORBA.ORB orb = null; try { orb = org.omg

.CORBA.ORB.init(args, props); status = Server . run(orb) ;} catch (

Exception ex) { ex. printStackTrace () ; status = 1; } if (orb

!= null) { try { orb. destroy () ; } catch (Exception ex

) { ex. printStackTrace () ; status = 1; } } System.exit

(status) ;’ type=’ internal ’><settings>Place the tree that describes the

. src file here.<File name=’ORBCreate’ implementationLanguage=’Java’><

variableblock description=’If a new path to a configuration file needs to

be specified , use this property . Be sure not to use the succeeding props

.put statements else the config file values will be overriden ’ value=’yes

’ name=’Config File Path’><vbinstance to=’331’ from=’283’ value=’props.

put(”ooc. config ”,” C:\\where\\config. txt ”) ;’/>

<placeholder description =’The absolute path to the config file

using ”\\” instead of ”\”. Include the config file name.’

value=’C:\\where\\config. txt ’ name=’path’>

<pinstance to =’328’ from=’307’ value=’C:\\where\\config. txt ’/>

</placeholder>

</ variableblock>

<variableblock description =’Use this variable block of you need to

specify a name for the server because you are using IMR. If you

are not using IMR, this property should not be set .’ value=’no’

name=’Server Name’>

<vbinstance to =’407’ from=’336’ value=’no’/>

<placeholder description =’Place the name of the server here is

you are going to be using this variable block .’ value=’no’

name=’name’>

<pinstance to =’404’ from=’370’ value=’

TheNameOfTheServerIfIMRisBeingUsed’/>

</placeholder>

</ variableblock>

<variableblock description =’The concurrency model that defined

how the ORB will handle requests .’ value=’no’ name=’Concurrency

Model’>

<vbinstance to =’508’ from=’412’ value=’no’/>

107

<placeholder description =’The options are threaded ,

threadedper client , threadper request or threadpool . If it

is threadpool then the next property must be set also .’ value

=’no’ name=’model value’>

<pinstance to =’505’ from=’448’ value=’threaded ,

threadper client , threadper request , threadpool ’/>

</placeholder>

</ variableblock>

<variableblock description =’ If the concurrency model is

threadpool then this property MUST be set.’ value=’no’ name=’

Thread Pool’>

<vbinstance to =’555’ from=’513’ value=’no’/>

<placeholder description =’ Specifies the number of threads in the

pool that the ORB will manage. This value must be greater

than zero . If it is not , a runtime error will be generated .’

value=’no’ name=’pool size’>

<pinstance to =’552’ from=’549’ value=’n>0’/>

</placeholder>

</ variableblock>

</File>

</ settings>

</Facet>

<Facet to=’1603’ from=’1304’ name=’WriteIORToFile:Java.xml’ value=’ try

{ String ref = orb. objectto string (obj) ; String refFile = ”

ior . ref ”; java . io . PrintWriter out = new java . io . PrintWriter (new

java . io .FileOutputStream(refFile)) ; out . println (ref) ; out . close

() ; } catch (java . io . IOException ex) { ex. printStackTrace () ;

return 1; }’ type=’ internal ’>

<settings>Place the tree that describes the . src file here.<File name

=’writing ’ implementationLanguage=’Java’><placeholder description=’

The name of the object whose IOR needs to be stringified and saved

to file ’ value=’obj ’ name=’Object Name’><pinstance to=’1354’ from

=’1351’ value=’obj’/>

</placeholder>

<placeholder description =’The name of the file to which the IOR

must be saved . The file need not exist ’ value=’ ior . ref ’ name=’

Filename’>

<pinstance to=’1385’ from=’1378’ value=’ ior . ref ’/>

</placeholder>

<placeholder description =’The variable that holds the ORB instance

’ value=’orb ’ name=’ORB name’>

<pinstance to=’1333’ from=’1330’ value=’orb’/>

</placeholder>

</File>

108

</ settings>

</Facet>

<variableblock description =’Is this Server part of a package?’ value=’

yes ’ name=’Package’>

<vbinstance to =’22’ from=’8’ value=’package hello ;’/>

<placeholder description =’The name of the package if the server is

part of one .’ value =” name=’Package Name’>

<pinstance to =’21’ from=’16’ value=’hello ’/>

</placeholder>

</ variableblock>

<placeholder description =’The name of the Class which must match the

name of the file . java ’ value=’Server ’ name=’Class Name’>

<pinstance to =’42’ from=’36’ value=’Server’/>

</placeholder>

<placeholder description =’The name of the class that has been created to

implement the logic of the defined CORBA Object/Interface’ value=’

Hello Impl ’ name=’CORBA Object Implementation Class Name’>

<pinstance to=’1234’ from=’1224’ value=’HelloImpl’/>

<pinstance to=’1261’ from=’1251’ value=’HelloImpl’/>

</placeholder>

<placeholder description =’The variable name for the implementation

object ’ value =” name=’Implementation Variable Name’>

<pinstance to=’1244’ from=’1235’ value=’helloImpl’/>

<pinstance to=’1290’ from=’1281’ value=’helloImpl’/>

</placeholder>

<placeholder description =’The type of the CORBA Objects’ value=” name

=’CORBA Object Type’>

<pinstance to=’1272’ from=’1267’ value=’Hello’/>

</placeholder>

<placeholder description =’The name of the variable that holds the

CORBA Object that will be stringified .’ value =” name=’CORBA Object

Variable Name’>

<pinstance to=’1278’ from=’1273’ value=’hello ’/>

</placeholder>

</File>

<gp name=’Object Across Facets ’ value=’hello ’>

<gpinstance name=’Server.java\CORBA Object Variable Name’/>

<gpinstance name=’Server.java\WriteIORToFile:Java.xml\writing\Object

Name’/>

</gp>

</ settings>

</Facet>

<Facet to =” from =” name=’CORBAClient:Java.xml’ type=’external’>

109

<settings>Place the tree that describes the . src file here.<File name=’Client

. java ’ implementationLanguage=’Java’><Facet to=’865’ from=’84’ name=’ORBCreation

:JavaORBACUS.xml’ value=’java.util.Properties props = System. getProperties () ;

props.put(”org .omg.CORBA.ORBClass”, ”com.ooc.CORBA.ORB”); props.put

(”org.omg.CORBA.ORBSingletonClass”, ”com.ooc.CORBA.ORBSingleton”); props

.put(”ooc.config”,”C:\\config.txt”) ; // props.put(”ooc.orb.servername ”, ” TheNameOfTheServerIfIMRisBeingUsed

”); props.put(”ooc.orb.oa.concmodel”, ” threaded ”) ; // props.put(”ooc.orb.oa

. threadpool ”,” n>0”); int status = 0; org .omg.CORBA.ORB orb = null;

try { orb = org .omg.CORBA.ORB.init(args, props); status = Client . run

(orb) ; } catch (Exception ex) { ex. printStackTrace () ; status = 1;

} if (orb != null) { try { orb. destroy () ; } catch (Exception

ex) { ex. printStackTrace () ; status = 1; } } System.exit

(status) ; } static int run(org .omg.CORBA.ORB orb){ ’ type=’ internal

’><settings>Place the tree that describes the . src file here.<File name=’

ORBCreate’ implementationLanguage=’Java’><variableblock description=’If a new

path to a configuration file needs to be specified , use this property . Be

sure not to use the succeeding props.put statements else the config file values

will be overriden ’ value=’yes ’ name=’Config File Path’><vbinstance to=’318’

from=’277’ value=’props.put(”ooc. config ”,” C:\\config . txt ”) ;’/>

<placeholder description =’The absolute path to the config file

using ”\\” instead of ”\”. Include the config file name.’

value=’C:\\config . txt ’ name=’path’>

<pinstance to =’315’ from=’301’ value=’C:\\config . txt ’/>

</placeholder>

</ variableblock>

<variableblock description =’Use this variable block of you need to

specify a name for the server because you are using IMR. If you

are not using IMR, this property should not be set .’ value=’no’

name=’Server Name’>

<vbinstance to =’394’ from=’323’ value=’no’/>

<placeholder description =’Place the name of the server here is

you are going to be using this variable block .’ value=’no’

name=’name’>

<pinstance to =’391’ from=’357’ value=’

TheNameOfTheServerIfIMRisBeingUsed’/>

</placeholder>

</ variableblock>

<variableblock description =’The concurrency model that defined

how the ORB will handle requests .’ value=’yes ’ name=’

Concurrency Model’>

<vbinstance to =’444’ from=’397’ value=’props.put(”ooc.orb.oa.

concmodel”, ” threaded ”) ;’/>

110

<placeholder description =’The options are threaded ,

threadedper client , threadper request or threadpool . If it

is threadpool then the next property must be set also .’ value

=’threaded ’ name=’model value’>

<pinstance to =’441’ from=’433’ value=’threaded’/>

</placeholder>

</ variableblock>

<variableblock description =’ If the concurrency model is

threadpool then this property MUST be set.’ value=’no’ name=’

Thread Pool’>

<vbinstance to =’491’ from=’449’ value=’no’/>

<placeholder description =’ Specifies the number of threads in the

pool that the ORB will manage. This value must be greater

than zero . If it is not , a runtime error will be generated .’

value=’no’ name=’pool size’>

<pinstance to =’488’ from=’485’ value=’n>0’/>

</placeholder>

</ variableblock>

</File>

</ settings>

</Facet>

<variableblock description =’ If the client belongs under a package then

this line should be used , specifying what the package name is .’ value

=’yes ’ name=’Package’>

<vbinstance to =’14’ from=’0’ value=’package hello ;’/>

<placeholder description =’The name of the package that this class is

in .’ value =” name=’Package Name’>

<pinstance to =’13’ from=’8’ value=’hello ’/>

</placeholder>

</ variableblock>

<placeholder description =’The name of the class . If the class name

changes, the filename must change also ’ value =” name=’Class Name’>

<pinstance to =’35’ from=’29’ value=’Client ’/>

</placeholder>

<Facet to=’1237’ from=’916’ name=’ReadIORFromFile:Java.xml’ value=’org.

omg.CORBA.Object obj = null; try { String refFile = ” ior . ref

”; java . io .BufferedReader in = new java . io .BufferedReader (new

java . io . FileReader(refFile)) ; String ref = in . readLine () ; obj =

orb. stringto object (ref) ; } catch (java . io . IOException ex) {
ex. printStackTrace () ; return 1; } Hello hello = HelloHelper.

narrow(obj) ; return ’ type=’ internal ’>

111

<settings>Place the tree that describes the . src file here.<File name

=’reading’ implementationLanguage=’Java’><placeholder description=’

The name of the file where the IOR resides ’ value=’ ior . ref ’ name=’

Filename’><pinstance to=’989’ from=’982’ value=’ior . ref ’/>

</placeholder>

<placeholder description =’The name of the variable that holds the

ORB instance’ value=’orb ’ name=’Orb’>

<pinstance to=’1132’ from=’1129’ value=’orb’/>

</placeholder>

</File>

</ settings>

</Facet>

<placeholder description =’The Type of CORBA Object you want to narrow’

value =” name=’CORBA Object Type’>

<pinstance to=’1246’ from=’1241’ value=’Hello’/>

<pinstance to=’1260’ from=’1255’ value=’Hello’/>

</placeholder>

<placeholder description =’The name of the narrowed CORBA Object, on

which operations can be carried out .’ value =” name=’CORBA Object

Variable Name’>

<pinstance to=’1252’ from=’1247’ value=’hello ’/>

</placeholder>

</File>

</ settings>

</Facet>

<Facet to =” from =” name=’CORBAServerSideObject:Java.xml’ type=’external’>

<settings>Place the tree that describes the . src file here.<File name=’

ObjectName.java’ implementationLanguage=’Java’><variableblock description=’

If this class should belong in a package then a package name should be

used .’ value=’yes ’ name=’Package’><vbinstance to=’14’ from=’0’ value=’

package hello ;’/>

<placeholder description =’The name of the package that this class

belongs to ’ value =” name=’Package Name’>

<pinstance to =’13’ from=’8’ value=’hello ’/>

</placeholder>

</ variableblock>

<placeholder description =’The Implementation class name that must be the

same as the . java filename ’ value=’HelloImpl ’ name=’Implementation

Class Name’>

<pinstance to =’39’ from=’29’ value=’HelloImpl’/>

</placeholder>

<placeholder description =’The name of the CORBA Object that we want to

extend .’ value =” name=’CORBA Object Name’>

<pinstance to =’53’ from=’48’ value=’Hello’/>

112

</placeholder>

</File>

</ settings>

</Facet>

<File name=’Hello.idl ’ implementationLanguage=’IDL’>

<placeholder description =’The CORBA Object from the IDL.’ value =” name=’

CORBA Object’>

<pinstance to =’17’ from=’17’ value =”/>

<pinstance to =’22’ from=’17’ value=’Hello’/>

</placeholder>

<placeholder description =’The name of the Operation in the IDL file ’ value

=” name=’Operation Name’>

<pinstance to =’40’ from=’31’ value=’ sayhello ’/>

</placeholder>

<placeholder description =’The return type of the IDL operation ’ value =”

name=’Return Type’>

<pinstance to =’30’ from=’26’ value=’void’/>

</placeholder>

<classmod to=’46’ from=’7’>

<name to=’22’ from=’17’ value=’Hello’/>

<type to =’16’ from=’7’ value=’ interface ’/>

<expcontrol to =’0’ from=’0’ value =”/>

<stereotype to =’0’ from=’0’ value =”/>

<methodfunc to=’43’ from=’26’>

<name to=’40’ from=’31’ value=’ sayhello ’/>

<return to =’30’ from=’26’ value=’void’/>

<expcontrol to =’0’ from=’0’ value =”/>

<stereotype to =’0’ from=’0’ value =”/>

</methodfunc>

</classmod>

</File>

<gp name=’CORBA Object Type’ value=’Hello’>

<gpinstance name=’CORBAServer:Java.xml\Server.java\CORBA Object Type’/>

<gpinstance name=’IDL\CORBA Object’/>

<gpinstance name=’CORBAClient:Java.xml\Client.java\CORBA Object Type’/>

</gp>

<gp name=’CORBA Interface Operation’ value=’sayhello’>

<gpinstance name=’IDL\Operation Name’/>

</gp>

<gp name=’CORBA Interface Operation Return Type’ value=”/>

<gvb name=’Package’ value=’yes’>

<gvbinstance name=’CORBAClient:Java.xml\Client.java\Package’/>

<gvbinstance name=’CORBAServer:Java.xml\Server.java\Package’/>

113

<gvbinstance name=’CORBAServerSideObject:Java.xml\ObjectName.java\Package

’/>

</gvb>

<gp name=’Package Name’ value=’hello’>

<gpinstance name=’CORBAServerSideObject:Java.xml\ObjectName.java\Package

\Package Name’/>

<gpinstance name=’CORBAClient:Java.xml\Client.java\Package\Package Name

’/>

<gpinstance name=’CORBAServer:Java.xml\Server.java\Package\Package Name

’/>

</gp>

</Structure>

<FacetHierarchy>Platform.ExecutionEnvironment.ArchitecturalComponent.Component.

FDL.</FacetHierarchy>

<Technology>

<t item name=’Java’/>

<t item name=’CORBA’/>

</Technology>

</Description>

<Behaviour>

<Rules>a course of action the model follows</Rules>

<Policies>detailed version of the rules</Policies>

<Limitations>At what point does the solution breakdown!</Limitations>

</Behaviour>

< Interactions>

<Relations>Specify the inheritance , containment , etc .</ Relations>

<Collaborations>Specify the calls from one component to the next . MSCs are built

from this element . If special requirements are necessary create a new element

such as SDL here.</Collaborations>

</ Interactions>

<Logic/>

</ Definition>

<Data>

<Input>

<Item source =” type =” target =”>

<ValueDescription>This is a description of the input item.</ ValueDescription>

</Item>

</Input>

<Algorithm>

<Item source =” type =” target =”>

<ValueDescription>This is a description of the item.</ ValueDescription>

</Item>

</Algorithm>

<Output>

114

<Item source =” type =” target =”>

<ValueDescription>This is a description of the output item.</ ValueDescription

>

</Item>

</Output>

</Data>

<!−−The Context and Resources Section will fully qualify what is required for a

successful implementation of the Facet.−−>

<Context>

<Business>

<Environment priority=’Minimum’ type=” name=”>

<ValueDescription>Describing the environmental context .</ ValueDescription>

</Environment>

</Business>

<Design>

<Environment priority=’Minimum’ type=” name=”>

<ValueDescription>Describing the environmental context .</ ValueDescription>

</Environment>

</Design>

<Operational>

<Environment priority=’Minimum’ type=” name=”>

<ValueDescription>Describing the environmental context .</ ValueDescription>

</Environment>

</Operational>

<Deployment>

<Environment priority=’Minimum’ type=” name=”>

<ValueDescription>Describing the environmental context .</ ValueDescription>

</Environment>

</Deployment>

</Context>

<Resources>

<Internal>

<Resource priority =’Minimum’ type=’type of Resource’ name=’name’>

<ValueDescription>Describing the resource .</ ValueDescription>

</Resource>

</ Internal>

<Boundary>

<Resource priority =’Minimum’ type=’type of Resource’ name=’name’>

<ValueDescription>Describing the resource .</ ValueDescription>

</Resource>

</Boundary>

<External>

<Resource priority =’Minimum’ type=’type of Resource’ name=’name’>

<ValueDescription>Describing the resource .</ ValueDescription>

115

</Resource>

</External>

</Resources>

<Documentation>

<Entry date =’12/12/2002’ time=’00:00’>

<DocEntry>What the author wants to say!!</DocEntry>

<AdditionalInfo>What additional info that may support that above docentry or the

user must just refer to.</ AdditionalInfo>

</Entry>

</Documentation>

<Extensions>

<Children/>

<Contains/>

<Other>

<ExamplesOfUse>See Orbacus Manual</ExamplesOfUse>

</Other>

</Extensions>

</metapi>

</SEMTA>

116

Appendix G

CD Guide

Figure G.1shows the directory structure of the accompanying CD. It is suggested that the

reader explore theindex.html file to navigate through the contents of the CD.

The CD includes:

• A softcopy of this thesis;

• A UML Design of the FDE;

• Source code for the FDE;

• Instructions for the installation of the FDE; and

• Useful software.

117

CD Drive

ProjectReport

UMLDesign

Install

SEMTA

Software

Bonfire

FDE

bin

lib

images

help

DATA

index.html

InstallationInstructions.html

SEMTA.cfg

SEMTA.log

Software.html

Python Setup

wxPython Setup

PyXML Setup

Acrobat Adobe

Figure G.1: Directory structure of accompanying CD

118

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Definition of Terms
	Set Notation Symbols
	 Introduction
	Service Creation in the NGN
	Attempts at Software Reuse
	Classification and Analysis of Reuse Solutions
	Problem Objectives
	Outline of Report

	 Contemporary Reuse Practices
	Reuse in Telecommunications
	Intelligent Networks
	Telecommunications Information Networking Architecture (TINA)
	Reference Model of Open Distributed Processing (RM-ODP)
	OSA/Parlay
	XML Web Services

	Reuse in the Computing Arena
	Model Driven Architecture (MDA)
	Enterprise Java Beans™
	Design Patterns

	Chapter Summary

	 Introduction to Facets
	TINA Reference Point-Facet
	Reference Point Facet Definition

	Facets Redefined
	Mathematical Definition of Facets

	Business Viewpoint
	Informational Viewpoint
	Chapter Summary

	 Key Enabling Concepts
	Generic and Implementation Definitions
	Meta-
	Definition
	Context
	Resource
	Data

	Placeholders
	Variable Blocks
	Facet Hierarchy
	Chapter Summary

	 Facet Development Environment
	Design Considerations
	Informational Modelling Languages
	Parsers
	Implementation Language
	Information Storage

	Introduction to the FDE
	Elaboration on the FDE GUI
	Menu Bar
	Tree
	ToolBar
	Editable Windows

	Design Patterns Used
	Façade
	Mediator

	Use Case Diagrams
	Class Diagrams
	FacetMediator class
	FacetFrame class
	FacetStatusTextCtrl class
	FacetToolBarManager class
	FacetTree class
	FacetNotebook class
	Facade class

	Message Sequence Charts
	FDE Initialisation
	Creating a Facet
	Opening a Facet
	Saving a Facet

	Chapter Summary

	 Facet Examples
	Simple CORBA Service Facet
	Mediator Facet
	Web Server Tutorial Facet
	Chapter Summary

	 Conclusion
	Discussion
	Conclusion
	Recommendations for future work

	References
	 Meta- DTD
	meta-.dtd

	 Facet DTD
	Facet.dtd
	FacetSource.dtd

	 Facet Hierarchy and Implementation Language
	Sample Facet Hierarchy XML file
	DTD for Implementation Language Comments
	Sample Implementation Language Comments XML file

	 Additional UML Diagrams
	 Simple CORBA Service Facet
	 Sample meta- xml file
	 CD Guide

