A Software Reuse Paradigm for the
Next Generation Network (NGN)

Bilal Abdull Rahim Jagot

A project report submitted to the Faculty of Engineering, University of the Witwatersrand,
Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science
in Engineering.

Johannesburg, August 2003

Declaration

| declare that this project report is my own, unaided work, except where otherwise ac-
knowledged. It is being submitted for the degree of Master of Science in Engineering at the
University of the Witwatersrand, Johannesburg. It has not been submitted before for any

degree or examination at any other university.

Signedthis_dayof 20

Bilal Abdull Rahim Jagot.

Abstract

Service creation in the Next Generation Network (NGN) is focused around software cre-
ation and borrows heavily from the Software Engineering community. In the NGN, telecom-
munication companies demand simple, rapid and economical service creation. The key to
this type of service creation is software re-use. Software re-use is a conundrum where lim-
ited, dedicated solutions exists. These solutions include amongst others Enterprise JdVaBeans
(EJBs), design patterns and object-oriented programming.

The Telecommunications Information Networking Architecture- Conformance And Testing
(TINA-CAT) workgroup has done work on a functionality centric concept called RP-facets.
This report proposes a redefinition of RP-facetsFasets for software re-use across the
design and code level. We redefifacetsas functionality centriceusable components

A Facetis independent of the implementation language and the execution plafag®ets

allow containment in a structured manner via a user defined Facet Hierdfabgtsare
resource, context and data agnostic. They also introduce a structured way to allow source
code to be changed based on design level decisions. Also, possessing the ability to allow
the simultaneous use of other reuse solutions and programming paradigms. Abstraction of
detail from developers and platform migration can be achieved by Esiogts

Facetsare composed of a Generic definition and any number of Implementation definitions.
The definitions are supported by an underlying informational model called mebdeta-

7 is a model at the M3 meta-level that focuses on describing entities. Most &atet’s
capabilities are enabled by the metanodel.

An environment for developingacetsis created, called the Facet Development Environ-
ment (FDE). The Facet Developer (FD) role is introduced to develop and maktatedts

The FD verifies programmes from programmers to be included into the catalogue of Facets
via the FDE. The FD interacts with service creation teams to determine Wwhigtscan

be used in the service they wish to develop.

Facetsprove their capability in targeted areas, yet lack in other categories. It is recom-
mended that the underlying informational model should be revised to form a more robust
and flexible entity describing model. In addition, a cataloging capability to easily find

Facetswith particular functionality should be appended to the capabilities of the facet. It is
proposed, for future work, that a development environment be created that encompasses a
process for usingacetsto create services.

Acknowledgements

This work was performed at the Centre for Telecommunications Access and Services (CeTAS)
at the University of the Witwatersrand, Johannesburg. The centre is funded by Telkom SA
Limited, Siemens Telecommunications and the Department of Trade and Industry’s THRIP
programme. The financial support was much appreciated.

I would like to extend my thanks to my supervisors, Prof. Hu Hanrahan and Dr. Setumo
Mohapi for their guidance and assistance throughout the duration of the research project.
In addition | would like to thank my colleagues at CeTAS for their criticism and valuable
inputs during the research project particularly Aydin Alaylioglu. But most importantly |
would like to thank my parents for their love, support and patience. It is because of them
that | am who and where | am today. This work is dedicated to my mother, Farida A. Esak
and my late Father Abdull R. Esak.

Contents

Declaration i
Abstract ii
Acknowledgements iv
Contents v
List of Figures X
List of Tables Xiii
Acronyms Xiv
Definition of Terms Xvi
Set Notation Symbols Xvi
1 Introduction 1
1.1 Service Creationinthe NGN 2
1.2 Attempts at SoftwareReuse oL 3
1.3 Classification and Analysis of Reuse Solutions. 5
1.4 ProblemObjectives 6
1.5 Outlineof Report. 7
2 Contemporary Reuse Practices 8

2.1

Reuse in Telecommunications 9
2.1.1 IntelligentNetworks. 10
2.1.2 Telecommunications Information Networking Architecture (TINAYL1

2.1.3 Reference Model of Open Distributed Processing (RM-ODP) . 12

214 OSA/Parlay. 12
215 XMLWebServices 13

2.2 Reuseinthe Computing Arena. 13
2.2.1 Model Driven Architecture (MDA) 13
2.22 EnterpriseJavaBedis. 15
223 DesignPatterns. e 16

2.3 ChapterSummary 17
Introduction to Facets 19
3.1 TINAReference Point-Facet 19
3.1.1 Reference Point Facet Definiton 20

3.2 FacetsRedefined 21
3.2.1 Mathematical Definitionof Facets. 22

3.3 BusinessViewpoint 23
3.4 Informational Viewpoint. 24
3.5 ChapterSummary. 26
Key Enabling Concepts 27
4.1 Generic and Implementation Definitions. 27
4.2 Metam e 29
4.2.1 Definition. 31
422 Context. 33
423 RESOUICE. i i 33

Vi

424 Data e e e 33

4.3 Placeholders 34
4.4 VariableBlocks. 34
45 FacetHierarchy 35
4.6 ChapterSummary. o 0t 36
Facet Development Environment 37
5.1 DesignConsiderations e 37
5.1.1 Informational Modelling Languages. 37
5.1.2 Parsers. 38
5.1.3 ImplementationLanguage 38
5.1.4 Information Storage. 39
5.2 Introductiontothe FDE oL 40
5.3 Elaboratononthe FDEGUI 42
531 MenuBar. 42
532 Tree. 44
533 ToolBar. 45
5.3.4 Editable Windows. 46
5.4 DesignPatternsUsed. 47
541 Facade. 47
542 Mediator 48
5,5 UseCaseDiagrams. i i 49
5.6 ClassDiagrams e e 50
5.6.1 FacetMediatorclass., 51
5.6.2 FacetFrameclass. 51
5.6.3 FacetStatusTextCtriclass 53

Vii

5.6.4 FacetToolBarManagerclass. 53

5.6.5 FacetTreeclass., 53

5.6.6 FacetNotebookclass. 55

5.6.7 Facadeclass. 55

5.7 Message SequenceCharts. 59
5.7.1 FDE Initialisation 59

5.7.2 CreatingaFacet. 60

573 OpeningaFacet. 61

574 SavingaFacet 62

5.8 ChapterSummary e 62
6 Facet Examples 64
6.1 Simple CORBAServiceFacet 64
6.2 MediatorFacet. 67
6.3 Web Server Tutorial Facet 68
6.4 ChapterSummary 70
7 Conclusion 72
7.1 DISCUSSION e 72
7.2 Conclusion 74
7.3 Recommendations for futurework. oL 75
References 76
A Meta-7 DTD 79
Al metas.dtd. 79
B FacetDTD 82

viii

B.1 Facetdtd 82

B.2 FacetSource.dtd. 88
Facet Hierarchy and Implementation Language 90
C.1 Sample Facet Hierarchy XML file 90
C.2 DTD for Implementation Language Comments. 91
C.3 Sample Implementation Language Comments XML.file. 91
Additional UML Diagrams 92
Simple CORBA Service Facet 101
Sample metas xml file 106
CD Guide 117

List of Figures

2.1

2.2

3.1

3.2

4.1

4.2

4.3

5.1

5.2

53

54

5.5

5.6

5.7

5.8

59

5.10

5.11

512

5.13

NGN businessmodel 9
Meta-hierarchy used inMDA 15
Facet Developer with Stakeholders 24
Informational Context of the Facet Developer. 25
Facet decomposed into Generic and Implementation 29
Metasr comparedtoMOF., 30
FacetHierarchy. e 35
Facet Development Environment. 41
FacetExplorer 43
FacetHierarchy. 43
Implementation Language Comment Editor. 44
Facade DesignPatterq, 48
Mediator Design Patteri]] 48
FDEUse Case. i it e e e e 49
FacetIDE. e 50
New FacetWizard 52
FacetChooser. 53
FacetExplorer e 54

Facet Hierarchy and Implementation Language Comment Editors. . . 55

FacetNotebook. 56

514 Facade 58
5.15 FDE Initialisation. 59
5.16 CreatingaFacet. 60
5.17 OpeningaFacet. e 61
518 SavingaFacet. 62
6.1 Simple CORBA Service Facet: FDE Tree Structure 66
6.2 SimpleCORBAService Facet Structure 67
6.3 Mediator Facet: FDE Tree Structure. 69
6.4 Mediator Facet Structure 70
6.5 Web Server Tutorial Facet: FDE Tree Structure 71
D.1 XMLExplorer e 92
D.2 CommonWindows. 93
D.3 Editor e 93
D.4 FacetDataModels. 94
D.5 Sub-FacetDataModels. 95
D.6 Sub-FileDataModels 96
D.7 FacetEditor. e 97
D.8 FacetWindow. 98
D.9 FileWindow. 99
D.10 File Window ComponentWizard 100
E.1 ORB Creation Facet: IDE structure 101
E.2 ReadIOR From File Facet: IDE Structure. 102
E.3 Write IOR from File Facet: IDE Structure 102
E.4 CORBA Server Facet: IDE Structure. 103
E.5 CORBAServerSideObject. 104

Xi

E.6 CORBA Client Facet: IDE Structure

G.1 Directory structure of accompanyingCD

Xii

List of Tables

51 Treelcons. e

Xiii

Acronyms

API Application Programming Interface

CORBA Common Object Request Broker Architecture
DPE Distributed Processing Environment

FDE Facet Development Environment

Gll Global Information Infrastructure

GUI Graphical User Interface

ICA Information Communications Architecture
IDE Integrated Development Environment

IDL Interface Definition Language

IN Intelligent Networks

IOR Interoperable Object Reference

JAIN Java API’s for Integrated Network

MDA Model Driven Architecture

MOF Meta Object Facility

NGN Next-Generation Networks

OMG Object Management Group

00 Object Oriented

ORB Object Request Broker

OSA Open Software Architecture

QoS Quiality of Service

RAD Rapid Application Development

RM-ODP Reference Model for Open Distributed Processing
RUP Rational Unified Process

SATINA South African TINA Trial

SATINA-NGN South African TINA NGN Trial

SCE Service Creation Environment

TINA Telecommunications Information Networking Architecture

Xiv

UML Unified Modeling Language
XMI XML Model Interchange
XML eXtended Markup Language

XV

Definition of Terms

Meta Model

A Meta Model is defined as a model that describes another. Meta Models can be arranged
hierarchically to describe lower level models.

Next Generation Network

The Next Generation network is a telecommunications grade network that is built on a
packet-based network. The NGN is able to support a multitude of multi-media and multi-
party services.

Model Driven Architecture

The Model Driven Architecture specifies that development of any software will proceed as
an evolution from a platform independent model (PIM) to a platform specific model (PSM).
It is envisaged that the MDA will facilitate maintenance and portability of software.

Platform

A Platform is an architecture, framework or environment which is the context of operation
for the target functionality.

Best of Breed Characteristics

Reuse solutions can be categorised into several groups or “breeds”. Within a particular
“breed”, a reuse solution exists which qualifies to be the best because the reuse solution
has the best characteristics for that “breed” of reuse solutions. Therefore, the “best of breed
characteristics” are those characteristics that define the best reuse solution within a category
or group of reuse solutions.

Implementation Language

The Programming Language used to implement a specific piece of functionality. Including
Programming Languages such as C++, Java, Python, SmallTalk, etc.

XVi

Set Notation Symbols

Sxx: The convention to represent sets i$ &llowed by the description of the set. An
example is: a set of Apples is SApples or SAPPLES.

{} : Defines the contents of a sefApples = {a, b, c} tells us that the set SApples has
elements a,b and c.

€: Element of The symbols is used to show that a value or variable is an element of a set.
x € SApples shows us that x is an element of the set of Appledpples.

U: Universal SetThe set of all elements that exigt, pples will refer to the universal set
of all the Apples in the world.

(0 : Null Set.A null setis an empty set and is equivalent to a zero in traditional mathematics.
V: For All. A symbol that refers to all the elements of a set.

U: Union of two sets.U is equivalent to addition. Here we are adding two sets. There-
fore, if we define a set of AppleSAApples and SBApples. ThenSAApples N
S BApples is equal to the set of all Apples A Apples and.S B Apples.

N: Intersectionof two sets.N represents the overlapping of two sets. If we define a set of
ApplesS AApples andS BApples. ThenS AApples U S BApples is equal to the set
of Apples that are elements of ba$td Apples and.S B Apples.

C: Subsetdefines the contents of a set being elements to another&étdpples C
S B Apples shows us that all the elements$fl Apples are also elements &fB Apples.

C: Subset and Equal§.his symbol is an extension af. SAApples C SBApples means
that S A Apples can also have exactly the same set of elementsadpples.

D . Super setSimilar toC except thatS AApples D S B Apples means thab B Apples is
a subset o6 A Apples.

D Super set and equalSimilar to C with the characteristics ab.

V : abinary or.

XVii

Chapter 1

Introduction

Telecommunication companies (telcos) have traditionally played the role of connectivity
provider. Deregulation of the telecommunications marketplace forced the telco to differ-
entiate itself from its competitors. Intelligent Networks (IN) and the proposed B-ISDN
declared that provisioning of services was the key to differentiation and gaining market
share in a deregulated telecommunications marketplace. Telcos were convinced and thus
also took on the role of service provider. Within their new service provider role, the telco
envisaged creating and deploying a multitude of services rapidly and economically. Ven-
dors could not satisfy the telcoigsionwithin the framework of legacy technologies. Yet,
telcos still cling onto thiwvision

Presently we are in the midst of an evolution of the telecommunications network. This
evolution marries the computing(Internet) world to the telecommunications world resulting
in a packet-based QoS-enabled network that is being globally termed the Next Generation
Network (NGN). The NGN draws inspiration from the computing world to flexibly deliver
services to end-users thus building on the telco’s service provider role. Various initiatives
proposed solutions for the NGN, or parts of it, resulting in a plethora of platforms. Web
Services, Global Information Infrastructure (Gll), Telecommunications Information Net-
working Architecture (TINA), Parlay and Java API’s for Integrated Network (JAIN) are just

a few examples of such initiatives. With so many initiatives, the path toward the NGN is
chaotic and uncertain. Nonetheless, some Telcos are taking bold steps by employing solu-
tions such as Parlay and Web Services. These bold steps are prompted by increasing com-
petition the world over. Global competition is a direct result, in most cases, of deregulation
of the telecommunications markef [

Within this landscape of varying telco decisions and an uncertain path toward the NGN, how
will the telecommunications world realise Wssion? By marrying the Internet world, the

telecommunications world is allowed to take advantage of its methodologies, concepts, pro-
cesses and structure. Rapid Application Development (RAD) environments can help realise

thevisionand are called Service Creation Environment (SCES) in the telecommunications
domain. RAD environments take advantage of modeling languages such as Unified Model-
ing Language (UML), software reusable components such as Enterprise JaVaREdBs),
software lifecycle processes such as Waterfall Model and software development methodolo-
gies such as Extreme Programming in an attempt to consistently deliver software on time
and within budget. Already, certain Intelligent Networks (IN) platforms have SCEs that
enablerapid service creation. We explore a few SCEs in more detail in sectidn

1.1 Service Creation in the NGN

Service creation is abstract and general since there are not many detailed guidelines avail-
able on how to structure each of its phasgsiNonetheless, there have been many attempts

to create SCEs. Many of the SCEs have a restricted scope in terms of services created and
the target deployment platform, and are hence termed dedicated S|ICEs [

IN SCEs were the very first environments for creating telecommunication services. These
SCEs introduced relevant concepts such as ‘drag and drop’ of reusable components and
development based on functionality. IN SCEs used the Capability Set Specification which
provided the service creation paradigm, reusable components and deployment process. The
IN SCE did not incorporate modelling and reuse concepts that were being born in the Soft-
ware Engineering world. Instead the IN SCEs used the IN CSS as a guide for modelling
and reuse.

The TINA Consortium was the pioneer in the effort to marry the computing and telecom-
munications worlds. TINA is an architecture based on distributed object computing. It
aims to improve interoperability, re-use of software and specifications, and flexible place-
ment of software on computing platforms/nodéks ECEs that were built around the TINA
concept are worthy of investigation. These SCEs include SCREENRIENDS [5] and
TOSCA[7].

The SCREEN project stipulates five phases that complete the service creation process. In
addition, cross phase activities such as quality assurance, project management and traceabil-
ity are assumed. SCREEN attempts to structure the service creation process and abstract
detail from the service developer.

The FRIENDS project is a model-based approach that realises an enterprise model for ser-
vice creation. This enterprise model specifies a component developer and service developer.
The component developer is responsible for the creation of reusable EJB-like components.
The service developer creates services using the resulting components.

TOSCA successfully attempted to abstract detail from the developer. Its use of paradigms
allowed less technically oriented individuals to develop services. Services were devel-

oped with the assumption that a flexible software framework exists upon which the service
may execute. The reusable component existed at a high granularity introducing flexibility

through properties.

We find a few points across the TINA SCEs that are worth pointing out. Firstly, all SCEs
specified a reusable component at some level of granularity. The use of a reusable com-
ponent signals that reuse is a driver for rapid development. This sentiment is echoed by
Software communities in general. Secondly, most SCEs borrowed Software Engineering
concepts such as UML modeling even though UML fails to completely describe telecom-
munications grade services. Thirdly, abstraction of detail from the developer is a by-product
of reusable components. Abstraction is viewed as a further driver for rapid development.
Lastly, all the SCEs were dedicated SCEs. Dedicated SCEs bind the environment to a plat-
form or architecture. In all cases, services could not readily be migrated to other platforms
or architectures.

We focus on the reusability aspect of service creation. We believe that reusability is a

driving force for rapid economical service creation. In dedicated SCEs, the structure of

reusable components are static. This does not hold true in the constantly evolving NGN

environment that results in a plethora of architectures. Hence we need a reusable solution
that can be applied uniformally across multiple architectures. To understand reusability,

sectionl.2 examines software reuse attempts.

1.2 Attempts at Software Reuse

Software methodologies such as Software Product Lines, Agile Programming, Dynamic
Systems Development Method (DSDM) and Rational Unified Process (RUP) promote reuse.
Implementors of software methodologies have limited options for an effective reusable soft-
ware component. Their options include Microsoft Component Object Model (CH 4},

Design Patterns 9], Sun Microsystem’s Enterprise Java BeBfh&EJIBs) [L.0] and Object-
Oriented Programming (OOP)L]] principles.

Microsoft's COM is a solution to implementation language dependencies. Microsoft COM
allows reusability at the implementation-level. Microsoft COM is implemented as dynam-
ically linked libraries (DLLs). DLLs can be seen as black boxes which expose their func-
tionality as a set of interfaces. And, DLLs may use other DLLs. This makes for a single
level of granularity for reuse that is very rigid and hard to change. A common problem
with Microsoft COM is that experienced programmers experience difficulties when DLLs

do not provide them with the necessary functionality. Programmers using Microsoft COM
objects are forced to import the entire object resulting in memory intensive applications.
Memory usage can be minimised if the imported Microsoft COM obijects fit the function-

ality requirements exactly instead of forcing the programmer to import functionality that

will not be used in the programme. Hence the Microsoft COM objects can be improved by
introducing a finer granularity of functionality to allow the programmer to more precisely

choose the functionality that is required.

Design patterns are an attempt to describe successful solutions to common software prob-
lems. A design pattern is a proven solution to a recurring probléin \When related
design patterns are woven together they form a “language” that provides a process for the
orderly resolution of software development problems. Design pattern languages are not for-
mal languages, rather a collection of interrelated design patterns, though they do provide
a vocabulary for talking about a software problem. Both design patterns and design pat-
tern languages help developers communicate architectural knowledge, learn a new design
paradigm or architectural style, and help new developers ignore traps and pitfalls that have
traditionally been learned by costly experience.

EJBs are defined by Sun Microsystems as part of the Java suite of solufiohsEPBs

address business and enterprise aspects of software design in a distributed processing envi-
ronment. A set of interfaces expose the EJB’s functionality. The process of creating EJBs
is supported by a number of business roles which effectively distinguish the aspect of cre-
ating the EJB from the aspect of deploying the solution. The EJB concept is developed to
leverage the use of the Java platform. Although EJBs expose the business issues related to
reusability, their implementation cannot be universally applied due to strong coupling to the
Java platform.

As software programmes became more complex, programmers found that functional pro-
gramming languages were inadequate in describing the complexities. OOP was seen as a
step to move away from the chaos of functional programming towards a better struc-

tured programming paradigm. OOP introduced concepts such as inheritance, containment
and aggregation. Together these concepts helped in separating functionality such that they
can be reused in other scenariag][Although OOP helped to manage complexity, func-
tional programming has its place within small mission-critical applications due to reduced
computing overhead in functional programming languages.

Although not a reuse solution offered to the computing world, IN Service Independent
Building blocks (SIBs) 13 were a major move forward in achieving rapid service de-
velopment in the telecommunications domain. SIBs are script-like components that have
black box characteristics and represent functionality. Service development is achieved by

stringing compatible SIBs together, effectively creating longer scripts, and thereby achiev-
ing complex functionality. The main contribution of the SIB methodology is its focus on
and encapsulation of functionality.

Many reuse attempts have been successful in their own software paradigm but none can
claim universal success, begging the questiiy has a reusable component not been
successful in all domains?

1.3 Classification and Analysis of Reuse Solutions

The basic premise of reusable components is:

First, do not reinvent that which has already been invented; second, construct new systems
and enhance existing systems using building blocks already tested and préjen

Simply creating and announcing a reusable library does not work. Without a “reuse mind-
set”, organisational support and methodical processes directed at the design and construc-
tion of appropriate reusable assets, reusable components become expensive pieces of ar-
chaic software15]. Thus the proper state of mind must be achieved before reuse solutions
can be employed.

Present reuse solutions can be classified into four categaripgiz.:

1. design level: a high level description without attention to implementation;

2. inheritance level: propogation of behavioural characteristics from one reusable com-
ponent to the next;

3. component level: self-sufficient component encompassing a concept such as func-
tionality; and

4. code level: reuse of source code.

TOSCA Paradigms 7], Design Patterns 9] and Meta Object Facility (MOF) 16] can be
classified as design level reuse solutions. Object-Oriented Programming (OOP) falls in line
with the inheritance level, whereas, Microsoft COW) Sun Microsystems EJB¥and IN

SIBs are classified as component level reuse. Code reuse is the “cut and paste” standard
that is familiar to many developers.

The high level specification in the design level reusable component decouples the solution
from the implementation language. The decoupling introduces a top-down approach to
reuse allowing the solution to be implemented in a number of implementation languages.

The top-down approach does not promise that an implementation of the high level descrip-
tion will exist in the implementation language of choice.

By contrast, code level reuse provides the implementation but creates an explosion of detalil
for the developer. An influx of detail can overwhelm the developer and prevent meaningful
work from being done. The only advantage is the reuse of actual lines of source code.

Reusability at the component level is useful as it encompasses a concept such as function-
ality or business process. Complex concepts are created by stringing components together,
just as IN SIBs are strung together to form more complex functionality. The distinct disad-
vantage of component level reusable components, as well as inheritance and implementation
level components, is their tight coupling to an implementation language.

An inability to allow multiple reuse solutions to co-exist is a general shortcoming across
reuse solutions. In addition, many reuse solutions tend to present unstable source code. The
exception is design patterns where only proven solutions to existing problems qualify to
become design patterns.

In summary, a reuse solution is required that embodies a top-down approach to reuse to-
gether with reuse at lower levels. The reuse solution should hide detail from the developer
without hindering the developer’s need to access and modify source code. The simultane-
ous co-existence of multiple reuse solutions should be possible. And, there must be loose
coupling to the implementation language. The reuse solution should only present stable,
tested source code.

1.4 Problem Objectives

The objective of the project is to design and implement a reuse solution that meets the
requirements for a reuse solution targeted at the telecommunications domain. The reusable
solution will strive to achieve the follow characteristics:

1. functionality centric: the reusable software is described by the functionality it offers;

2. multi-granular: achieved by structured containment of one reusable component by
another;

3. platform-independent: independent of the deployment and/or execution environment;

4. implementation language-independent: independent of the language that the func-
tionality is implemented in;

5. simultaneous co-existence of other reuse solutions (where possible);

6. abstraction of detail from the developer; and

7. agnostic of resources, data and context.

The reusable component is validated in a development environment. Later, we term this
particular reuse solutionfacet

1.5 Outline of Report

Chapter 2 examines proposed NGN solutions with respect to reusability. Architectures
and platforms such as TINA, Parlay, JAIN and Web Services are investigated. Reuse in the
computing arena is also examined. Chap8antroduces the proposed reuse solution as a
redefinition of the concept developed by the TINA-CAT workgroup. The key aspects are
introduced in this chapter but are elaborated in later chapters. Chapmtetails the reuse
solution in terms of its composition and structure. Chaptertroduces the development
environment, called the Facet Development Environment (FDE), that enables creation and
modification of the reusable components. This chapter also explains the design considera-
tions in developing the FDE. The FDE is introduced functionally and technically with UML
diagrams and User Interface snapshots. Chapsaiidifies the facet concept with a few
examples that are played out using the development environment from cbaftee ex-
amples illustrate the facet concept, a facet’s ability to allow the simultaneous co-existence
of other reuse solutions and a facet’s software paradigm independence. The conclusions
drawn from this work together with discussions and proposals for further work is presented
in chapter7

Chapter 2

Contemporary Reuse Practices

Reuse is seen as a means to increase overall productivity of software and improve time to
market resulting in increased revenue. Hence the driver for reuse is increased revenue or
return on investment. To increase return on investment a company will embark on a reuse
initiative from different organisational levels which, needs staff and processes for creating
and encouraging the use of reuse solutions.

At the corporate level, corporate management allocates resources to the reuse initiative
expecting to reap benefits in terms of improved product quality, increased productivity and
shorter time to market. At the reuse department level, the reuse department will invest man
hours into developing reusable components expecting to reap benefits by selling the reusable
components to development teams. The development teams can be internal or external to
the company. At the development team level, the risk of using reuse components is taken
expecting benefits of increased productivity, quality and timeliness of projedts [

Once all levels in a company are committed to reuse, decisions about reuse solutions to
use must be made. Reuse solutions can be software design methodologies, programming
paradigms, software lifecycles or source code sharing mechanisms. In addition, the reuse
solutions can be categorised into one of the four categories listed in s&Qidrhis chapter
reviews reuse from the telecommunications and computing viewpoints. S2ctiexplores
telecommunications architectures such as Intelligent Networks (IN), Telecommunications
Information Networking Architecture (TINA), Parlay and Web Services for reuse solutions
that are offered. Sectidh2discusses the more widely accepted reuse solutions of the com-
puting domain such as Model Driven Architecture (MDA), Enterprise JavaB¥4BE3Bs)

and Design Patterns.

2.1 Reuse in Telecommunications

Traditionally, the telecommunications company (Telco) and the Vendor were the only stake-
holders in the telecommunications domain. IN exists in the Telco-Vendor business model.
The Vendor sells the IN platform to the Telco. The Telco offers value added services to the
Consumer thus generating revenue.

3 Party Service Provider

Appli‘cation
Provider

Service Provider

Vendor

Customer

Connectivity Provider

Figure 2.1: NGN business model

Introduction of the NGN ushers in a dynamic business model that expands on the Telco-
Vendor business model. Figugel illustrates a general NGN business model. Separation
of services from connectivity results in the Service Provider and the Connectivity Provider
roles. Services can be offered by the Service Provider oB'th@arty Service Provider.
The3"? Party Service Provider is subscribed to the Service Provider to provide applications
and services to the Service Provider's consumers. The Application Provider develops and
provides the3"@ Party Service Provider or Service Provider with the applications or services
they require. The Application Provider is effectively a sub-contractor employed [Bfthe
Party Service Provider or Service Provider to develop a particular service for deployment
on a particular target platform. The Vendor keeps the traditional role of providing hardware
and software that the parties want. The Application Provider and Vendor overlap such that
the Application Provider can be considered as a Vendor that specialises in software.

Reuse in the pre-NGN business domain required innovative mechanisms. IN implements
SIBs as a solution towards reuse in sub-secfidnl TINA proposes a component level
reuse in subsectio?.1.2 Reference Model of Open Distributed Processing (RM-ODP) is
used by TINA. RM-ODP is discussed in subsectioh.3 Parlay provides an interface that

is supported by underlying generic functionality. The generic functionality is used to build
the complex logic of multiple services. Parlay is discussed in sub-settiofh Sub-section
2.1.5discusses XML Web Services approach to reuse.

2.1.1 Intelligent Networks

IN was the pioneer in separating call control from service control. IN moved service control
out of the switches and into an intelligent service provisioning platform. IN is described in
the Capability Set specifications i.e. CS-1, CS-2 and CS-3. The Capability Set specification
defines the IN Conceptual Model (INCM) to deal with the complexities of service creation.
The INCM is a framework that consists of four planes. The four planes separate the concerns
of roleplayers and creates a transition from abstract definition to detailed definition and
deployment 13]. The four planes are:

1. Service Plane (SP): the SP depicts the services. Multiple services may exist on this
plane. Multiple services may use the same functionality. Resulting in an intersec-
tion of functionality that is called a service feature. Service features can be used in
multiple services and are a form of high-level reuse.

2. Global Functional Plane (GFP): the GFP consists of a Basic Call Process (BCP) and a
number of Service Independent Building Blocks (SIBs). The BCP represents the call
process that executes in the switch. The BCP has a number of trigger points or points
of initiation (POI). A POI is the point when the switch hands over service control
to the IN platform. The IN platform returns service control to the switch by BCP
points of return (POR). SIBs are the core reusable components that IN developers use
to implement a service. The SIB is described in terms of functionality offered with
a well-defined stable interface. A SIB is tailored to a particular service by service
specific data. SIBs are strung together to form service logic. Services and Service
Features consist of SIBs.

3. Distributed Functional Plane (DFP): the DFP is a distributed definition of the func-
tional entities and the actions performed at functional entities that underly SIB func-
tionality.

4. Physical Plane (PP): the PP represents the physical entities and the protocols that
make up the IN platform.

SIBs are described from an external view. A SIB’s external view consists of a logical start,
multiple logical ends, service specific data, input call instance data and output call instance
data. The external viewpoint of a SIB abstracts detail from the developer when creating
services. IN Services are constructed by associating a SIB’s logical end with another SIB’s
logical start.

The SIB methodology works well for IN to introduce reuse and improve the efficiency of
service development. The SIB is an example of component-level reuse that is confined to a
vendor specific IN platform.

10

2.1.2 Telecommunications Information Networking Architecture (TINA)

TINA is an open telecommunications and information architecture that hides the hetero-
geneity of the underlying network from the service developer. A Distributed Processing
Environment (DPE) is used to hide the heterogeneity and to create perceived co-location of
physically separated computational objects. A DPE also achieves implementation language
independence by focusing on informational flows.

TINA has been instrumental in introducing concepts such as sessions and separation of con-
cerns. Separation of concerns include the separation of applications from the environment

upon which they run and separation of an application into service specific part and a generic

management and control part.

The complexity of the domain that TINA addresses, is broken down into four main sub-
architectures]:

1. Service Architecture: defines a set of concepts and principles that apply to telecom-
munication services.

2. Network Architecture: defines a set of concepts and principles that apply to transport
networks.

3. Management Architecture: defines a set of concepts and principles that apply to soft-
ware systems that are used to manage services, resources, software, and underlying
technology.

4. Computing Architecture: defines a set of concepts and principles for designing and
building distributed software and the software support environment.

The Computing Architecture addresses reuse and is used by the other three sub-architectures.
The Computing Architecture achieve reuse by using the RM-ODP and specifying the com-
putational modelling concepts (TINA-CMC).§]. RM-ODP is discussed in sub-section

2.1.3 TINA-CMC gives rise to reusability by defining distributed software consisting of a
group of computational objects. Each computational object offers one or more interfaces for
interaction and to allow other computational objects to access its capabilities. In addition,
the computational objects are implementation language independent and loosely coupled to
each other. TINA's approach to reuse is classified as a combination of component reuse and
high-level reuse (RM-ODP).

11

2.1.3 Reference Model of Open Distributed Processing (RM-ODP)

RM-ODP is a framework that assists in developing open distributed architectures. RM-ODP
aims to enable the building of distributed architectures or systems that are open, flexible,
and modular amongst other characteristicg.[

Information regarding a non-trivial system can grow exponentially. Trying to use the infor-
mation becomes difficult if there is a lack of structure and organisation to the information.
RM-ODP attempts to organise the information by abstracting the information to five view-
points. The five viewpoints are(]:

Enterprise viewpoint: is concerned with the business environment of the system and its
role in the business environment.

Information viewpoint: is concerned with the flow of information within the system in
terms of interfaces. The necessary processing of the information is part of this view-
point.

Computational viewpoint: is concerned with the description of the system as interwork-
ing distributed objects. Objects interact with interfaces and can be sources or sinks of
information.

Engineering viewpoint: is concerned with the mechanisms supporting system distribu-
tion.

Technology viewpoint: is concerned with the hardware and software details that make up
the system.

RM-ODP introduces reuse at the Information viewpoint with later viewpoints focusing on
the specifics of the solution. The five viewpoints can be used to describe the reusable com-
ponent exhaustively and are a useful ingredient in the makeup of a reuse solution. RM-ODP
is classified as a software design methodology at high-level reuse.

2.1.4 OSA/Parlay

The Parlay architecture defines an open yet secure framework for multi-media multi-party
services. The key aspect of this framework is the API that enabBs¢ Rarty Service
Provider access to network capabilities in the Service Provider domain. The network capa-
bilities of the Service Provider are bundled into Service Capability Features (SCFs). The
SCF is an object that implements interfaces which is used in creating a service. Many
services can use a particular SCF, thus promoting reuse. The use of SCFs is yet another

12

component level reuse solution in the telecommunications domain. The problem with Par-
lay is that the SCFs are just objects that implement interfaces. The glue for creating services
is the Application domain where services are created and where reuse is most needed.

2.1.5 XML Web Services

XML Web Services allow programmes to exchange information using an XML-based in-
terface. Each programme is registered with and located via a Web Service registry. Web
Services expose an interface for data exchange and publish information on services offered.
XML Web services do not tightly couple interacting programmes togeth&}. |

XML Web Services use Simple Object Access Protocol (SOAH)¢ver Hypertext Trans-

fer Protocol (HTTP) as the one-way communication mechanism. The SOAP message is
placed within a HTTP Post or Get request. The SOAP message consists of a SOAP Header
and Body. The SOAP Header can possess multiple headers that target intermediaries. Each
intermediary is a Web Service programme. Thus multiple programmes can be targeted with
a single invocation, that is SOAP has decentralized extensibility.

XML Web Services are implemented on Web Servers using server-side web application
languages such as ASP, JSP, Perl and Python. Web Services do not present any reusability.
Instead, Web Services rely on the reusability capabilities present in the underlying imple-
mentation language such as ASP, JSP, Perl or Python. In most cases, the only reusability
that exists is code-level reuse.

2.2 Reuse in the Computing Arena

Reuse initiatives in the computing arena are active. This section focuses on some of the
more prominent reuse initiatives with a view to exposing the advantages of each. We in-
vestigate Model Driven Architecture (MDA), Enterprise JavaBé¥(BJBs) and Design
Patterns.

2.2.1 Model Driven Architecture (MDA)

The Model Driven Architecture (MDA)43] is an evolutionary progression of the set of
modelling standards developed and maintained by the Object Management Group (OMG).
The MDA seeks to allow an implementation independent specification of system function-
ality to be implemented on different platforms through defined mappings. The MDA defines
its standard modelling and interchange constructs in the Meta Object Facility (MOF) [

13

uses a standard data warehousing model (CWAV) gnd provides for standard exchange
between various tools, repositories and middleware through XML Meta-data Interchange(XMI)
specifications{5]. Together these specifications facilitate the realisation of the MDA ob-
jectives, listed below:

1. Definition of a solution in a manner that is detached from the desired target platform,
that is, a Platform Independent Model (PIM);

2. Migrating the solution, at an appropriate stage, from the PIM to a Platform Specific
Model (PSM) tailored for the desired target platform;

3. Existence of a shared meta-data infrastructure. The infrastructure allows interchange
of models. The shared meta-data infrastructure is also called a meta-hierarchy; and

4. Adherence to an Object-Oriented Paradigm.

The types of target platform envisaged in the MDA documents include databases, network-
ing nodes, programming languages and telecommunications platforms. Telecommunica-
tions platforms are often more complex and heterogeneous, requiring greater flexibility in
service creation support.

The OMG has remained faithful to its initial specification, Unified Modelling Language
(UML), by defining MOF using UML P6]. Consequently, Object Oriented Programming
(OOP) is the only paradigm for system specification and design.

Recent telecommunications software architectures are object oriented and, provided that
their specification is expressed in or translated into UML, appear amenable to the MDA
approach 27]. However, functional and scripting paradigms remain effective for particular
applications. Animportant legacy script-like methodology is IN SIB-based service creation.

The inability of MDA to easily accommodate other programming paradigms is seen as a
problem in telecommunications service creation. Specifically, the MDA lacks the ability to
effectively and explicitly define interactions between heterogeneous entities in telecommu-
nications, such as interactions between a back-end object-oriented system and a script-based
front-end web server application. A further shortcoming of UML-based system definition

is the incomplete specification of object behaviour. Telecommunications standards, by con-
trast, make extensive use of SDL for detailed specification of behaviour.

MDA utilizes a meta-hierarchy to catalogue the parts of the MDA structure based on what
each part describes. Figuee2 shows the conventional meta-hierarchy layers, described as
follows [16]:

MO: The user object layer is comprised of the information that the user wishes to describe.

14

OMG

<<meta-meta-model>>
MOF

M3

<<meta-model>>
UML

M2

<<model>>

Class
M1

<<instance>>
Class

Mo

Object-Oriented Paradigm Only

Figure 2.2: Meta-hierarchy used in MDA

This information takes the form of concrete instances of data;

M1: The modellayeris comprised of meta-data that describes information the user wishes
to represent. The aggregation of meta-data is a model;

M2: The meta-model layer defines the structure and semantics of meta-data used in the
M1 layer: a language for describing different kinds of data; and

M3: The meta-meta-model layer contains the description of the structure and semantics
of meta-meta-data used in layer M2.

The UML/MOF approach to reusability focuses on a generic object-oriented design. Reusabil-
ity comes into effect once the structural description of the solution is general enough. At
that point the solution can be moulded into a specific implementation. Although skeleton
code (for a specific implementation) can be generated from UML models, the UML solution
does not alleviate the problem that detailed source code will have to be written. In summary,
the OMG approach via UML and MOF to reusability is a top-down approach where the de-
veloper is at a loss to incorporate already defined parts of the source code. UML and MOF
are adequate for high level software design but fail to capture detail.

2.2.2 Enterprise Java Bean8'

EJBs are the standard component architecture for building distributed object-oriented busi-
ness applications in the Java programming languagle EJBs are created to abstract the

15

underlying complexity from that developer and allow EJBs to contain each other in an un-
structured manner.

The EJB Specification applies a mindset which realises that software exists within a business
domain. Six roles are defined as part of the EJB’s business domain. The six roles are:
1. Bean Provider: creates EJBs from the client’s perspective;

2. Application Assembler: assembles many beans into an application for use in a con-
tainer;

3. EJB Container Provider: creates a container for the EJBs that provides non-system
level tasks such as security;

4. EJB Server Provider: provides low-level requirements required by the container such
as thread management and distributed object management;

5. Deployer: deploys the EJB, Application, Container and Server within an operational
context; and

6. System Administrator: carries out post-deployment maintenance.

EJBs are an example of component level reuse with a containment capability. EJBs are
tightly coupled to their implementation language but provide an interface for other non-
Java objects to interact with it. This interface is defined using CORBA IDL.

2.2.3 Design Patterns
Design patterns capture and describe successful solutions to recurring software problems.

Pattern languages provide a well-defined way to describe and catalogue design patterns.
Most pattern languages have the following broad descriptive headings:

e Problem: describes the recurring software problem with as much detail as possible;

Context: describes the pre and post context of the pattern;

Solution: describes the logical steps required to implement the solution albeit from a

high-level perspective;

Intent: describes the intention of the proposed solution;

Forces: describes the reasons for the approach used;

Applicability: describes the areas or domains where the solution is applicable;

16

¢ Participants: describes the entities that participate in this solution; and

e Known Uses: describes the situations where the solution has been successfully ap-
plied.

Design patterns, most often, do not provide implementations of the solutions they present.
The onus is on the developer to understand the solution and implement it. Nonetheless,
design patterns are successful because of its strong binding to relevant software problems.
Whereas with MDA the solutions are sometimes too abstract to grasp. Extensive informa-
tion describing the design pattern helps the developer in using the design pattern correctly.
Design patterns are an example of high-level reuse.

2.3 Chapter Summary

This chapter has examined contemporary software reuse solutions within the telecommuni-
cations and computing environment. There seems to be a general consensus that component
reuse is an adequate solution to reuse issues.

IN SIBs emphasized a function-centric reusable component that possesses a black box de-
scription. The IN SIB black box description facilitates rapid development by aligning logi-
cal ends of SIBs.

TINA-CMC introduces a reusable component that is loosely coupled to other reusable com-
ponents. Also, TINA-CMC emphasizes implementation language independence.

RM-ODRP is a software design methodology that assists in structuring the influx of infor-
mation about a reusable in such a manner that assists the development of a reusable com-
ponent. RM-ODP creates awareness of five important aspects through which all reusable
components should be described.

MDA introduces a high-level specification characterised with meta-levels. The MDA illus-
trates its capability to describe a number of implementations using one model. Meta-levels
enable this capability. A disadvantage of the MDA approach is an inability to furnish suffi-
cient detail.

EJBs focus on the business aspect of a reusable component. EJBs can contain other EJBs
and interface with other implementations by means of an interface defined with CORBA
IDL. A disadvantage is EJB’s close coupling to its implementation language.

Design patterns address relevant software problems with a proven solution. Other reuse
solutions do not force reusable components to be well tested or a recurring solution. Design

17

pattern languages describe reusable components extensively. Extensive descriptions prevent
a misinterpretation of the design pattern.

The reuse solutions described here have diverse strengths and weakness. No single method
provides the multi-granularity, platform-independence and implementation language-independence
that is called for in sectioft.4.

We assume that by amalgamating the strengths of the discussed reuse solutions we can ap-
proach a universally applicable reuse solution. Chaptetroduces a proposed universally
applicable solution calleBacets

18

Chapter 3

Introduction to Facets

This chapter introduces a universally applicable reuse solution called a Facet. The Facet
concept has, as its foundation, the redefinition of the TINA Reference Point-facet (RP-
facet). The Facet concept expands on this foundation by borrd\wesj of breed”charac-
teristics from the reuse solutions mentioned in chaf@eBection3.1 begins to explain the

TINA RP-facet as a basis for understanding the Facet, which we define in se@idrhe
definition of Facets is done mathematically using set notation. Segt®iHustrates how

the Facet concept exists within a business context. The Facet is viewed from an Informa-
tional viewpoint in sectior3.4.

3.1 TINA Reference Point-Facet

TINA is a complex architecture that is simplified by Reference Points (RPs). TINA defines
RPs as a mechanism to separate concerns and to express the TINA architecture in terms of
objective requirements. TINA RPs tend to be large, non-incremental and unstructured with-
out measures to ensure interoperability. In a multi-vendor telecommunications environment
interoperability between various TINA products is key. In an effort to add structure and
reduce interoperability problems the TINA Conformance And Testing (CAT) workgroup
was formed. The TINA CAT workgroup was tasked with proposing a framework for the
conformance and testing of TINA RPs. The resultant framework is structured around a key
concept called Reference Point facets (RP-facets). The framework gives a mathematical
definition of RP-facets; defines a specification template for the definition of RP-facets and
derives a conformance test method for TINA RP validatiof.[

19

3.1.1 Reference Point Facet Definition

RP-facets are the functional building blocks of the TINA Reference Points. Each RP-facet
can be defined as a meaningful self standing portion of functionaiiily [There can be

a number of RP-facets in a TINA Reference Point, which are self-contained in terms of
functionality and support the incremental specification of a TINA Reference Point.

A TINA Reference Point is made up of many interfaces each containing its own set of
operations. Each interface or operation can be classified as either mandatory or optional.
A mandatory interface or operation is one that is essential for the operation of the TINA
Reference Point. The set of mandatory interfaces and operations, together with their depen-
dencies, make up a core-based RP-facet. A RP-facet, created by a vendor, must contain the
core-based RP-facet to pass conformance. The vendor RP-facet can implement any other
functionality over and above the core-based RP-fagdt [The core-based RP-facet pro-
vides a way for TINA Reference Points to be implemented partially thus greatly improving
the extendability and ease of use of the TINA Reference Point.

Practical use of RP-facets for testing and validation is enabled by formal definitions of the

RP-facets. Static and dynamic models together with behavioural characteristics of the RP-
facets are captured using Formal Definition Languages(FDLs). At the technical level, a

RP-facet is defined in terms o229, p.5]:

its interface specification;

the roles between which there is interaction;

a protocol (or object interactions and state changes) that the interface is intended to
support;

the other facets this RP-facet depends on; and

typical usage of the RP-facet.

We mould the RP-facet to focus on its characteristics that assist reuse. The key RP-facet
characteristics that assist reuse are, firstly, a meaningful self-standing portion of functional-
ity, secondly, self-containment in terms of functionality, thirdly, incremental specifications,
and lastly, the use of Formal Definition Languages (FDLs) to capture exact descriptions.
The resulting moulded RP-facet is termed a Facet and is detailed in s8@ion

20

3.2 Facets Redefined

The RP-facet was defined specifically for conformance testing of TINA Reference Points.
The focus of our work is software reuse applicable to the NGN. Therefore, RP-Facets are
extended and redefined as reusable components called Facets. The Facet'’s effectiveness is
achieved (in the general Software Engineering domain and NGN Service Creation domain)
by a number ofbest of breed”characteristics borrowed from other reuse solutions such as
MDA, EJBs, Design Patterns and IN SIBs.

Migration from a Platform-Independent Model (PIM) to Platform-Dependent Model (PDM)

is a key concept embodied in Facets borrowed from the MDA. Each Facet must realise a
functional description that is independent of a particular platform, in the MDA sense. Al-
though the MDA focuses on top-down reuse, effective reuse is only possible when accom-
panied by a bottom-up approach. EJBs address this bottom-up approach.

EJBs are closely coupled to their implementation language, Java. Close coupling implies a
bottom-up approach to reuse. The bottom-up approach works in conjunction with the top-
down approach to achieve effective reuse. EJBs possess other desirable properties. EJBs
address the need of commercial software projects by considering the business viewpoint
of the reusable component(. Also, EJBs are accompanied by deployment descriptions
that facilitate easier and faster deployment of EJBs. The deployment descriptor provides
both structural and application assembly information. A business viewpoint, deployment
descriptions and a bottom-up approach is borrowed from the EJBs.

Design Patterns present structural information as well as the purpose of the design pat-
tern/reusable componeritl]. Being aware of the reusable component’s purpose helps the
developer decide which is the best reusable component for the job. A pivotal concept of
design patterns is the acceptance of proven solutions which reduces the existence of poor
reusable components. Also, design patterns are independent of the software engineering
methodology, software paradigm, implementation language and platform. Facets borrow
the description capabilities of design patterns and the concept of only using proven solu-
tions to recurring problems.

IN SIBs propose reuse as functional components-echoing a key concept of the RP-facets.
IN SIBs are specified as black-boxes to help service developers create services without
worrying about the underlying detail. Hence, service creation is reduced to matching out-
puts to inputs of various succeeding SIBs. SIBs are dedicated reusable components in a
single technology environment. The black-box approach encounters difficulties in a multi-
technology environment. Difficulties encountered are due to interoperability issues. Know-
ing detailed information about the reusable component assists developers in choosing ap-
propriate reusable components in a multi-technology environment. A detailed description

21

is termed a white-box definition. We draw the idea of a functional component, black-box
definitions and white-box definitions from the IN SIB.

Processing thesbest of breed”characteristics results in a description of the Facet concept
as defined mathematically in sub-sect®f.1 Pagexvii provides brief explanations of the
set notation used.

3.2.1 Mathematical Definition of Facets

Definition 1. FacetF' has a functionality descriptioRr such that

FF € Ufunctionality (31)

In addition FacetF’ has a set of Technology descriptdrs; has a set of Implementation
Languaged,,,; and has a set of Platforn#;,; rorms, for which implementations exist.

Definition 2: Ugjy is the universal set of Implementation Languages. A Facet is Implemen-
tation Language independent iff

Flmpl c USI andFImpl 7& @ (32)

Definition 3: Ugp is the universal set of telecommunications platforms. A Facet is Plat-
form independent iff

FPlatform - USP andFPlat.form 7& @ (33)

Definition 4: Facet Hierarchy (FH)can be described as a set of discrete categories de-
scribing functionality calledb FF'H. The elements of F'H, calledsfh; are ordered
such that:

sfh; > sfhiy1 for i=1...n (3.4)

Definition 5: Fr has a FH corresponding to an elemenSétH at F;. Fyy is also called
the Facet Hierarchy of the Facet.

Fy € SFH (3.5)

Definition 6: FacetF' has a set of facet§ Facets which obey the same rules & In
essence Facets = p(F). The Facet Hierarchy o Facets; is SFacets! which is
an element o6 F'H. The functionality ofS Facets; is denoted b)SFacetsf.

SFacets? ¢ SFH (3.6)

1The Facet Hierarchy is a user-defined hierarchy of discrete levels that Facets are associated with. Refer to
sectiond.5for more information

22

SFacets! = SFacets! U SFacets! (3.7)

i mandatory i optional

SFacetsiFmandatory 7& 0 (38)

Rules of Containment: This rule explains how Facets may contain other Facets.

U SFacets! C Fr (3.9)

i=1..n
SFacetst N S’Facets;J =0, i#j (3.10)
SFacets! C FrandSFacets! D Fr (3.11)
SFacets? < Fy (3.12)

Cumulativeness Functionality If a set of FacetsSFacets are to be added together, the
Facet Hierarchy of the cumulative functionality in relation to the Facet Hierarchy of
individual functionalities is:

FacetB, .. < max(Ui—1. nSFacets) (3.13)

Lemma 1 Equation3.4 introduces a structure for categorisation of Facet Functionality.
Definition 5 and 6 link Facets to this structure such that a Facet may be categorised
into onecategory of the Facet Hierarchy. By definition&# the structure for cate-
gorisation is multi-level. Therefore the Facet concept is multi-granular.

Lemma 2 Equations3.7 and3.8 show that Facef’ is implemented with a mandatory and
optional set of component Facets. This implies that optional component Facets may
be excluded from the set of component Facets without violating the functionality
requirements of Facdf. Therefore, Facek’ can be implemented partially with the
mandatory set of component Facets, where necessary.

Lemma 3 Definition 6 definesSFacets as ap(F'). This definition can be recursively
applied toS Facets leading to a realisation that the functionality Bfis expanded
by S Facets. Reversing this process we find that functionality is being continuously
abstracted until the the functionality 6f which is presented to the developer.

With a clear understanding of Facets and their characteristics, we describe Facets from
different viewpoints in section3.3and3.4to complete the facet picture.

3.3 Business Viewpoint

The stakeholders that have a vested interest in the utilisation of reusable components for
service creation are the Application Provider, Service ProvifiéRarty Provider and ven-

dor. These stakeholders have a relationship as discussed in sedtishich is consistent

with the Facet concept.

23

3" Party Service Provider @ E
5 Facet <]
£ Developer | —— _g "
=5 @ |5 @
5 N b | S z I
- . H@ 8 Facet Z Eacel
Service Provider = & Developer Developer
Facet [=3
Developer <

Figure 3.1: Facet Developer with Stakeholders

We introduce the Facet Developer (FD) role which is responsible for creating, maintaining
and advising on the use of facets. Fig@réshows a FD as a job description of an individual

who can be a member of any of the stakeholders. The FD has a responsibility to the stake-
holder to maintain a database of Facets such that the majority of Facets are actively utilised
in service creation projects. The FD must also ensure that every Facet in the database abides
by the rules of a Facet defined in sub-secBo 1

The FD interacts with Programmer(s) and Service Creation Teams. The reader should be
aware that the Programmer and FD could be the same individual although each job descrip-
tion has its own peculiarities. The FD is not responsible for the way that service creation
teams use Facets.

In a Vendor environment that provides a single platform, the FD can only emphasize the im-
plementation language independence (see Equat®mf a Facet. FDs in the other stake-
holder environments, in addition, emphasize platform independence (see E@ugtion

3.4 Informational Viewpoint

In creating Facets, the FD must exercise discretion to ensure that only reusable components
with a proven track record are admitted into the database of reusable components. Also,
each Facet must possess sufficient information to ensure effective utilisation. The FD is
encouraged to formulate Facets from reusable components provided by multiple vendors
for various service execution platforms. If a Facet is composed of multiple implementation
from differing vendors, the platform independence characteristic of Facets is solidified.

If a service is composed of a number of platform independent Facets (see EQu3tiben
platform migration is implied. Platform migration means moving a service from platform

x to platformy which is only possible ifall constituent Facets have the capability to mi-
grate to platformy. Platform migration greatly improves service development time for the
stakeholder who envisages the use of multiple service execution environments and where

24

required services already exist for non-target platforms.

c

Service Creation
Team

LR
@
@ S S —

Programmer

Figure 3.2: Informational Context of the Facet Developer

Figure3.2shows the informational relationship the FD has with other teams. The program-
mers include the high level system designers and code developers that create implemented
functionality. The service creation teams are responsible for getting services to market in a
cost effective manner. A set of programmers will create an incarnation of functionality in a
programme. These programmes are submitted to the FD for verification through interaction
1 in figure3.2 The FD determines if the proposed programme meets the requirements of
a Facet. If the programme is adequate, it is added to the catalogue of Facets else the pro-
gramme is returned to the programmers with reasons that explain the invalid aspects of the
submission.

Interaction 2 shows the FD appending the Facet to the Facet catalogue via a Facet De-
velopment Environment (FDE). The FDE is used to manage the Facet catalogue and the
individual Facets.

Interaction 3 shows the FD interacting with the service creation team. The service creation
team has a mandate to create a service that encompasses a set of functionality. The FD
helps the service creation team to decompose the service into fundamental functionality.
Once the fundamental functionality is realised, the FD can propose possible Facets that
encompass the required functionality. Upon requests from the service creation team, the
FD will facilitate the creation of new Facets to meet functionality requirements. The task
of creating new Facets can be forwarded to the Programmers or carried out by the FD as a
composition of existing Facets.

25

3.5 Chapter Summary

This chapter explains the origin of Facets and defines Facets mathematically. A Facet is
an implementation-language independent, platform-independent, multi-granular reusable
component that is defined in terms of its functionality. A Facet’s functionality is categorised
into a level in the Facet Hierarchy. Facets may contain other facets.

This chapter also presents Facets from a business and informational viewpoint. The busi-
ness viewpoint focuses on the stakeholders and their contractual interactions. The Facet
Developer (FD) role is introduced as a job description that may exist in the Application
Provider, Service Provides!® Party Service Provider or Vendor stakeholder domains. The
FD interacts with programmers and service creation teams. The FD could also be a pro-
grammer.

The informational viewpoint describes the informational interactions between the FD and
the programmer(s) or service creation team(s). The Facet Development Environment (FDE)
is the application that the FD uses to manage the Facet catalogue. The concept of platform
migration is stated as an advantage of using Facets.

The concepts, definitions and viewpoints discussed in this chapter paint the landscape for
describing the key enablers that support the concepts of the Facet. Chdjgeusses the
key enablers of Facets in more detail.

26

Chapter 4

Key Enabling Concepts

Chapteintroduces the Facet in terms of its goals and characteristics. This chapter explains
the implementable concepts that realise the goals and characteristics of Facets.

Section4.1 discusses the Generic and Implementation definitions which help to create a
MDA approach to the solution. Generic and Implementation definitions are supported by
the underlying informational model called metgsection4.2). Meta-«r satisfies most of
the goals of the Facet, such as:

1. Five Viewpoints of RM-ODP;

2. Deployment descriptions;

3. Design pattern-like detailed descriptors;

4. Black-box and white-box approaches; and

5. Encapsulation of functionality.
Meta-r also contains two concepts which are vital for achieving a code-level reuse, Place-
holders(sectiont.3) and Variable Blocks (sectioA.4). They are used for user-defined
variances in the source code. Sectibh describes the Facet Hierarchy which is used by
metasr, and hence the Facet, to illustrate the level of functionality that is being encapsu-

lated. The Facet Hierarchy introduces structure to Facets thereby easing the management of
contained Facets and allowing partial implementations.

4.1 Generic and Implementation Definitions

Equation3.2 and3.3 specify implementation-language and platform independence, respec-
tively. If solutions are independent of the implementation-language and platform then we

27

reason that the solution can be re-aligned to a platform other than its present one. This pro-
cess is called platform migration. Platform migration is a complex concept to implement
due to the difficulties involved in “translating” code from one language or platform to the
next. Platform migration issues are eased by decoupling of a reusability description from
its implementation and making decoupled implementations aware of their data, context and
resources. Facets accomplish decouplin@benericandimplementatioefinitions. Data,
context and resource awareness is achieved by the underlying model; haitaussed in
sectiord.2

The relationship of Generic and Implementation definitions to each other and a particular
Facet is demonstrated mathematically in Equatibis4.2 and4.3. Figure4.1lillustrates
this relationship graphically.

Definition 7: If there exists a Facdl’; a Generic Definitioryeneric and a set of Imple-
mentation DefinitionsS Impl then

F — {generic} andgeneric ¢ SImpl
F = {generic} U SImpl (4.2)

Gl Rule: If generic has a set of arbitrary descriptio§9 Generic and an arbitrary ele-
ment inSImpl atk has a set of arbitrary descriptiof9 I'mpl; then

SDGeneric C SDImply (4.2)

Definition 8: If there exists a set of source code SC then

srcfilej = Z (iff SCy e SImpl; — SC;)j=1...m
i=1...n

SImpl; — {srcfile;} (4.3)

Figure4.1shows that a Facet is made up of a single Generic Definition from which multiple
Implementation definitions inherit information. The Implementation definitions build on
the body of information in the Generic definition. All source code that is necessary for a
particular Implementation definition is placed in a correspondinzfile.

Facets use other facets in the Implementation Definition. Therefore, containing and con-
tained Facets must have common technology descriptions, which echdesl¢éhef Con-
tainment[Equation3.17. Both the definitions andsrc files use XML syntax to represent
information and their tag structure is described by a document type definition (DTD). Ap-
pendixB contains the DTD for a definition (i.e Facet.dtd) arck file (i.e. FacetSource.dtd).

28

Facet F
Generic
Definition
Y
Implementation Implementation Implementation
Definition 1 Definition ... Definition n
SRC File SRC File SRC File

Figure 4.1: Facet decomposed into Generic and Implementation

4.2 Meta-r

Meta-r is the underlying informational model supporting the Generic and Implementation
definitions that introduces data, resource and context agnostic features into the reusable
component.

Each implementation language and platform has a structured way of describing implemen-

tations. Structured descriptions ensure that relevant information exists for the reusable

component to be understood and used effectively. By detaching the Facet concept from
implementation languages and platforms, the structured descriptions is lost. Also the do-

main to be described is broadened. Hence an open-minded highly descriptive and structured
approach is required. A starting point is the following statement:

Everything is Information!

Not concerned with atomic pieces of information, the statement’s applicability is limited
to entities. An entity can be defined as a structured self-standing piece of information,
within a context, which processes input data into output data using resources. The meta-
level concept, developed by OMG and discussed in seidrd, is employed to describe
entities. Metar is the meta-meta-model (M3) used to describe entities. Equéaishows

the relationship between the metanodel and the Generic or Implementation definitions
(sectiond.1) as a one-to-one relationship.

29

Definition 9: If there exists a set of Meta-M3 models calledS M eta then

{generic} v SImpl; — SMeta;; j=1...nandi=1...n+1 (4.4)

To aid an understanding of meta-a comparison to the MOF structure is made. Figuge
shows the meta-model on the same level as the MOF model. Although metantains
UML/MOF defined structural definitions, metais unable to precisely describe UML or
MOF. Hence, metar is placed at the same meta-level as MOF. A distinction between the
two approaches is MOF’s dedicated Object-Oriented Paradigm whereasrrakbavs the
description of any programming paradigm.

OMG Facets
<<meta-meta-model>> <<meta-meta-model>>
MOF meta-pi
M3
<<meta-model>> <<meta-model>>
UML Facet
M2
<<model>> <<model>>
<<model>> Generic Implementation
Class Definition Definition
M1
<<instance>> <<instance>> <<instance>>
Class Entity Information Entity Information
Mo
Object-Oriented Paradigm Only | Object-Oriented, Functional, Scripting, etc Paradigms

Figure 4.2: Meta-r compared to MOF

Meta-r describes the Facet conceptually. The M2 level is transparent in the implementation
of Facets. Using Equatiof.1 level M1 is derived from level M2. The definitions of M1
describe the underlying Entity information at the MO level.

An entity and Facet require an underlying model to be data, context and resource agnostic.
Meta-t meets the requirements by creating six broad informational parts:

1. Definition: describes the entity in terms of its appearance, structure, behaviour, rela-
tionships, constraints, rules and objectives. Subsedtidri elaborates on this infor-

mational part further.

2. Context: describes an entity’s environment from various viewpoints. A context-aware
entity is able to “understand” the constraints placed on it by its environment. Sub-
sectiond.2.2elaborates on this informational part further.

30

3. Resource: describes the resources the entity relies upon for its correct functioning. A
resource can be any other entity. Sub-sectich3elaborates on this informational
part further.

4. Data: describes the informational characteristics of an entity in terms of the entity’s
input, output and internal workings. Sub-sect#R2.4 elaborates on this informa-
tional part further.

5. Documentation: describes unstructured information to ensure that other human be-
ings will correctly interpret the model.

6. Extensions: describes information that should be structured but cannot be readily
bundled under any of the other informational parts. Extensions also serve as a mech-
anism to extend the metamodel. Examples of how to use a Facet is placed in this
informational part.

Meta-r is implemented as an XML file, whose DTD can be studied in appeAdiXhe
DTD distinctly illustrates the six informational parts.

4.2.1 Definition

The Definition of an entity or Facet is sub-divided into four categories:

1. Description;

2. Behaviour;

3. Interactions and

4. Logic.
The Descriptiondescribes the appearance, structure and objectives of the entity or Facet.
This category borrows the description field used for design patterns. Allowing for a high-
level yet useful description of the Facet, from a functional perspective. Sub-s@c2i@n
introduces the Design Pattern description fields, which keep their original meaning within
metasr and are re-iterated for clarity:

e Problem: the problem that is being solved;

¢ Intent: the intention of the proposed solution;

e Forces: the reasons for the approach used;

31

e Applicability: the areas or domains where the solution is applicable;
e Participants: the entities that participate in this solution; and

e Known Uses: the situations where the solution has been successfully applied.

The Descriptionalso furnishes the information described in Equatioh namely the set

of Technologies and the Facet Hierarchy associated with a Facet. The Facet Hierarchy
is responsible for the logical structuring of functionality that enables Facet containment.
The Facet Hierarchy is discussed in secdioh Unambiguous structural descriptions are
contained under Bescriptionsub-field calledstructure The structure of the solution is in
terms of its classes or modules, methods or functions, attributes, and internal interactions or
associations. To this list of structural elements we append placeholders, global placeholders,
variable blocks and global variable blocks as facet-specific structural descriptors.

The entity description mechanism allows the use of any reuse solution above the code-level.
By disregarding atomic information, code-level reuse is excluded from entity descriptions
and thus excluded from a complete metaaodel. Code-level reuse is important and is en-
abled by the facet-specific structural components that are bound to the source code. Place-
holders, global placeholder, variable blocks and global variable blocks are the structural
components that implement code-level reuse. Sedti®axplains placeholders and section

4.4 explains variable blocks.

TheBehaviourmart is concerned primarily with the Facet’s interaction with its surroundings.
Behaviour of a Facet, at the technical level, is determined by the Logic which is embodied
in the source code. ThBehaviourwe refer to extends beyond the technical issues and
encompasses behavioural characteristics such as regulatory limitations. The behaviour of a
Facet can be described Rulesthat the Facet must abide by; tReliciesthe Facet must
enforce and th&imitationsthat have been placed on the Facet.

The Interactionsdescribes the external interactions that the Facet has with other entities.
External interactions can be categorisedRatationsor Collaborations Relations describe

a usage scenario whereas Collaborations describe a scenario wheraber of Facets
operate in conjunction to achieve a particular functionality.

TheLogichas a primary focus on describing the internal workings of a Facet in terms of the
logical steps necessary for implementing the Facet'’s functionality. Logic is usually used by
the Generic Definition to specify the broad logical structure of the implementations. The
logical structure of the Implementation definition is preferred within the Data informational
part, discussed in sub-sectidr.4

32

4.2.2 Context

An entity requires a context to function or else its definition is meaningless. By employing
the entity and separation of implementation from functionality concepts, the key environ-
ment distinguisher of any source code is removed. Thus, there is a need to explicitly define
the context of the Facet and its corresponding implementations to realise a meaningful Facet
and implementation. Not only does t@entextinformational part provide base source code
contexts but can be extended to specify other context information. All the context informa-
tion is categorised as being part of one of the following context categories:

1. Business Context: defines the business environment in terms of the stakeholders and
their relationships;

2. Design Context: defines the context of the Facet during the design of the functional-
ity;
3. Deployment Context: defines the required context to deploy the Facet; and

4. Operational Context: defines the required context for the Facet to be operational.

The context categories attempt to educate the user of the Facet's context at most points
during its software lifecycle. Knowing the context of the Facet will further strengthen the
case for the correct and effective use of the Facet. By realising that all software is part of a
business process, the Business context has been included in-line with the EJB and RM-ODP
concepts

4.2.3 Resource

At some point, a Facet’s functionality will draw on resources that are either internal, on
the boundary or external to the system boundary (the system boundary is described by
the Context). Particular resources have higher priority than others thus resources can be
prioritised in order of which is the most prefered resource. Resources can be physical,
software, logical or informational.

4.2.4 Data

The Facet is characterised from an informational viewpoint using the Data informational
part. The Data informational part is split up into Input, Algorithm and Output.

The Input part allows the user to define the information that flows into the Facet. Similarly,
the Output part defines the information that flows out of the Facet. By viewing the Facet

33

with only an Output and an Input, the Facet’s characteristics is simplified. This view of the
Facet is called a black-box. The Input and Output parts also allow the user to specify pre-
and post conditions, respectively, necessary for the operation of a Facet.

The Algorithm part expands the black-box view by exposing the internal logical processes
of the Facet. Viewing the expanded internals of the Facet is termed a white-box view.

4.3 Placeholders

Theplaceholderconcept is part of the suite of concepts that enable code-level reuse. Essen-
tially a placeholder is any text in any file that can be replaced by any other text. Placeholders
manage points in the source code that can vary. As an ancillary, this characteristic of place-
holders allow templates to be created for creating classes, functions and attributes.

In larger Facets with multiple files per implementation, a situation may arise whetgeut
typeneeds to be synchronised across multiple files. A placeholder is created within each
file to allow theobject typeto be changed. These placeholders are linked using a global
placeholder. Specifying a text value for the global placeholder is the same as specifying a
text value for each placeholder thus synchronising the spatially differentibjedt types

4.4 Variable Blocks

The variable blockis the second concept that is part of the suite of concepts that enable
code-level reuse. The variable block represents any text within a source file that is optional
to the functionality of the Facet. Variable blocks are either included into the source code
or excluded by being commented out. Commenting the variable blocks leaves the user to
modify the source code at some future date outside the boundaries of the Facet environment.

Variable blocks can contain placeholders but placeholders cannot contain variable blocks.
Variable blocks are useful for creating software with additional “optimisation” code which
would afford the user theption of using the “optimisation” code.

Global variable blocks are used in a similar manner as with global placeholders. The differ-
ence is synchronisation of multiple variable blocks across multiple source code files.

34

4.5 Facet Hierarchy

Facet Hierarchy (FH) introduces structure to Facets by producing rules for the containment
of Facets. Since Facets can use other Facets, allowing partial implementations, the FH is
developed to manage this usage or containment.

The FH is a user-defined multi-level hierarchical structure. Each level of the Facet Hierarchy
represents an encapsulation of functionality. Facets are associated with the FH by defining
a path to the FH level that is representative of the overall type of functionality the Facet
encompasses. Any level can be configured to be an optional level, meaning that the optional
level can be omitted when describing the path to a level specific to a Facet. The primary
rule of the FH applicable to Facets is: A level in the FH can contain and use the same or
lower levels of the FH but not higher ones.

Figure4.3shows “user-defined” example of a Facet Hierarchy, which is used in later chap-
ters. The blocks with dashed outlines represent the optional levels in the FH.

| Platform |
Execution Environment | | Service
____________ e ___
| Architectural Component | | Service Creation Markup Language I
________________________ |
| Component |
|___J___ﬂ
L FDL |
_———————
| File |
| module | | class |
I I
| function | | method |
| algorithm |

Figure 4.3: Facet Hierarchy

A path to a FH level is defined by starting at the top of the FH and moving down toward
the desired FH level. If necessary, an optional level can be omitted from the path. An
example of a path iPlatform.Service.Component.FDWith the example path we see that
the definition starts at the top (i.e. Platform), traverses down the right while skipping the
optional levelService Creation Markup Languagad then proceeding to the target level
(i.e. FDL). The path definition separates the levels from each other using a full stop (*.").

35

If the example pathRlatform.Service.Component.FPis associated with a Facet then the
Facet can use or contain any Facet atRBd. level or lower FH levels. Higher FH levels
cannot be used by the Facet.

The Facet Hierarchy is represented as an XML file. A sample Facet Hierarchy XML file is
found in appendixXC.L

4.6 Chapter Summary

This chapter appends the implementable concepts to the description of Facets given in Chap-
ter 3. The Facet consists of a Generic and multiple Implementation definitions. The Imple-
mentation definition extends the descriptions of the Generic Definition. Each Implementa-
tion definition has aSRC file associated with it.

The definitions are described by an underlying model called metdeta-r is described
by six informational parts that encompass the design pattern and RM-ODP philosophies.

Placeholders and Variable blocks are introduced as facet-specific structural descriptors.
They create a pivotal point where changes to the reusable component can occur.

The FH introduces structure to Facet containment. Each FH level represents a functionality
encapsulation. FH levels can be optional or mandatory. The FH specifies what encapsula-
tions of functionality a Facet can use or contain.

The GI-Rule allows high-level reuse to be implemented, at the same time binding it to an
implementation, where available. The entity mechanism allows inheritance and component
level reuse to be effectively described. While placeholders and variable blocks enable code-
level reuse.

With an understanding of metaand the mechanics of Facets, the application for creating
and manipulating facets is presented at in Chapterhe application for Facet creation and
manipulation is called the Facet Development Environment (FDE).

36

Chapter 5

Facet Development Environment

Chapter3 introduced Facets conceptually. Chaptedefined the implementable aspects

of the Facet concept. This chapter presents the realisation of the Facet concept as an ap-
plication that is used by Facet Developers and is called the Facet Development Environ-
ment (FDE). Sectiorb.1 investigates the technological considerations and trade-offs that
are made in developing the FDE resulting in a set of supporting technologies. Thereafter
the FDE is discussed in terms of its Graphical User Interface (GUI) and internal source code
structure.

5.1 Design Considerations

Considerations when implementing the solution include the modelling languages, the parsers,
the programming language, information storage solutions and Graphical User Interface
(GUI) used.

5.1.1 Informational Modelling Languages

The underlying meta model requires a meta-descriptive modelling language to allow
the metar model to be described at the M3 level. Standard Generalized Markup Lan-
guage (SGML) $7] and eXstensible Markup Language (XMLJ)J] are the candidate meta-
descriptive languages. SGML is regarded as the parent of XML. XML is chosen as the
modelling language to be used.

XML is a restricted subset of SGML which is widely accepted by industry for its simplicity
and ease of use. OMG uses XML as part of a standard to facilitate model interchange,
called XML Model Interchange (XMI). By using XML it is easier to render metarodels

as UML classes for use in UML applications.

37

5.1.2 Parsers

Manipulation of XML is done via garser Two standards for XML parsers exists i.e.
Document Object Model (DOM)3] and Simple API for XML (SAX) B5]. The DOM
standard represents the XML file as a hierarchy of parent and child nodes. Each node
can be interrogated for data. Due to the hierarchical structure, moving between nodes is
very easy. Also, the DOM model supports XPath and XQuery which are standards that
allow searches to be performed on the XML document. DOM requires the entire XML
file to be read into memory. Within the FDE, there will typically be thousands of models,
each represented by a DOM residing in memory leading to a memory intensive solution.
The memory intensive solution minimizes the computers capability to process information.
Depending on the magnitude of a Facet, memory utilisation becomes critical.

SAX, on the other hand is not memory intensive. The SAX parser is a stream-based event-
driven XML parser. SAX reads each character, one after the other, and generates events
to signify the beginning and end of tags and data. By using SAX, the performance of
an application can only be improved if the structure of the XML document is known. A
disadvantage of SAX is its inability to search within the XML document effectively.

The FDE requires the XML structure to be easily manipulated and searched. Therefore the
DOM is chosen as the parser.

5.1.3 Implementation Language

To implement the FDE timeously, a rapid prototyping interpreted language with an efficient

Graphical User Interface (GUI) class set is required. The implementation must be able to
execute on any platform with a minimum of modifications between platforms. Java, Perl

and Python are the options.

The Java programming language is memory and processor intensive due to poor garbage
collection. Thus, with larger applications the Java Runtime Environment tends to dominate
CPU processing time and, in extreme cases, crash the Java application. From past expe-
rience, it was found that the Swing GUI classes are not easy to manipulate. Java is well
accepted by industry with developers around the world creating many reusable source code
components. Java is hogiue languagemeaning that Java cannot easily incorporate func-
tionality that has been written in an implementation language other than Java. By using a
glue languagethe programmer is able to pick the best tool for particular parts of the ap-
plication to optimise the application’s overall performance. Java is not chosen because it is
not considered a rapid prototyping language, the GUI class is not efficient and Java is not a
glue language

38

Perl is referred to as glue language Perl is used in Web Server Applications, mission
critical application and to interface applications written with different languages. Perl is
implemented on most operating systems including Windows, Linux, Unix and HP-UX. Perl
is a free-form language whose syntax is very similar to C++. Perl code tends to be written
in a very unstructured non-user friendly manner. Perl uses th@cTlas its default GUI

class set. Perl is considered to be a rapid prototyping language. Although the GUI class is
efficient, it is felt that the GUI class is lacking in terms of ease of use and key functionality
requirements.

Python falls into the family ofjlue languagesPython is similar to Perl in performance. Perl

tends to be more powerful at regular expressions. Python is an interpreted language that is
usually used by programmers for rapid prototype development. Python supports both OOP
and functional programming. Python uses runtime type casting thus variables do not have
to be explicitly created and managed. Python tends to out-perform Java at most operations
except Object creation. One of the best GUIs that Python has to offer is the wxPython
class set that is based on the wxWindows GUI class set. wxWindows is truly uniform in

its presentation across operating systems. Python is chosen as the implementation language
for its ease of use, portability, GUI class set and supporting packages such as pyXML for
XML handling.

5.1.4 Information Storage

Most information, relating to the FDE, is stored in XML format. The options available for
storage of XML information are:

e File System;
e Relational Database; and

e XQuery Database.

The File System is the simplest storage mechanism that can be used. Each XML document
is stored as a flat file. XML is a bloated language with a lot of whitespace. The XML File
footprint can be reduced by compression algorithms. The disadvantage of storing XML
Files on the File System is the slow read and write processes combined with little or no
efficient search capabilities. The advantage of using flat files is that no special software
needs to be installed to store the information.

Relational databases such as MySQL and PostgreSQL are open source databases used in
mission critical applications. When storing XML documents within relational databases,
the database can be designed to be data-centric or document-ceiiific Data-centric

39

means that the data contained within the XML document is saved and the structure of the
XML document is lost. A data-centric database design allows for complex searches to
execute efficiently. A document-centric database design maintains the structure of the XML
document for quick reproduction of the XML file. The disadvantage of the document-
centric approach is that data searching becomes complex and inefficient.

XQuery databases are designed for the storage of XML content in a manner that allows for
efficient data searching with easy reproduction of the original XML document. XQuery
databases are specifically designed to meet the requirements for storing XML files. At the
time of developing the FDE, the XQuery specification was just released and no appropriate
implementations were available.

For the purposes of rapid development the File System was chosen to store the information
in XML format.

5.2 Introduction to the FDE

The purpose of the Facet Development Environment (FDE) is to help Facet Developers(FD)
create and manipulate Facets; edit the Facet Hierarchy and edit the Implementation Lan-
guage comments. The Facet Hierarchy is explained in sedtbnThe Implementation
Language comments define the in-line text character(s) used in an implementation language
for comments. The FDE uses these comments for variable block manipulation.

The FDE allows the FD to describe the Generic and Implementation parts of a Facet. Files,
Sub-Facets, Placeholders, Variable blocks and other structural components can be added
to Facets using the FDE. Generally, we refer to all the contained items of a Facet as an
object. An object includes the Generic Definition, Implementation Definition, Files, Facets,
Placeholders, Variable blocks, Global Placeholders, Global Variable blocks, Sub-Facets and
other structural components.

Figure5.1shows an FDE as having six GUI components:
1. Menu Bar: The Menu bar has limited functionality that allows Facets to be opened,
saved and closed. The Menu Bar also launches editors for the Facet Hierarchy and

Implementation Language Hierarchy. Finally, the Menu Bar has the capability to
launch a Facet Explorer.

2. Toolbar: A set of dynamically loaded object-specific tools. The tools are loaded when
a particular object is selected in the Tree.

3. Tree: Facet structure is shown in the Tree as a set of hierarchically linked objects.

40

=181

[Facet Workspace: CORBAClient

Menu Bar t
NE RN EEEEEE e |
Toolbar o Documergaten |
Dntumeimr\ entry index wg =]
Date : Fri, P& Jun 2003 Time. 11:30 PM
o
P Class Name License fof the Orbacus orb ca be obtained from the orbacus web page after downloading the orbacus files, @ http:/ Awsaorbacus. com
P CORBA Object Type [Additional |nformatior:
P CORBA Object Vanable Name
v Package
ODRBCreationavaORBACUS. xmi
F Readl0RFromFile:)ava.sml
Tree —m8 ™ @ Clent
W main
W run
T G+
=~ [Clientcpp
P CORBA Dbject Type
P CORBA Object Variable name
DRBCreation: C++0rbacus.xml
F Readl0RFromFile:C++.xml
W main
.) " =
Editing Windows 5 Adlirlirio
Documentation
[- Clear Modiy Delete: e
— ——
WUL Implementation =i
ing SEMTAT ool Implementation
/ Loading SEMTAT ool Implementation
Loading SEMTAT ool Implementation
Status - Loading SEMTAT ook Implementation
Loading SEMTAT ool: Implementation
L oading SEMTAT ook Implementation
SEMTAT ool: Implementation oo

[Click here to view the data characteristics assaciated with this model — Teonm s

Figure 5.1: Facet Development Environment

The Tree allows easy navigation of a Facet and its components. Selection of objects
in the Tree triggers specific tools to be loaded in the ToolBar.

4. Documentation tab: Documentation regarding a particular Facet can be added, re-
trieved, and manipulated. Miscellaneous information is documented.

5. Editing Windows tab: Object characteristics are edited from a particular viewpoint
using an Editing window.

6. Status: Status is a non-interactive mechanism used to inform the FD about back-

ground operations.

Section5.3 explains the FDE User Interface further. Sectmnd describes the usage of
design patterns in implementing the FDE. Sectiof 5.6 and5.7 describe the use cases,
class structure and message sequences of the FDE, respectively.

41

5.3 Elaboration on the FDE GUI

This section examines the FDE in greater depth. Use of the FDE requires an initial instal-
lation. Installation of the FDE prompts the FD for his/her name, email address, organisa-
tion and adatadirectory. Thedatadirectory is used to store Facets, templates for creat-
ing Facets, Facet Hierarchy definitions and Implementation Language comment definitions.
The sub-directoryi-acets within thedatadirectory, is used to stor@l Facets. Each Facet

is described within its own directory. The Facet is described by a Generic.xml file and a
multitude of implementation xml files with corresponding implementation src files. The
name of the implementation xml file is derived from the implementation name with a .xml
suffix. The name of the src file is similarly derived with a .src suffix.

The Menu Bar is discussed in sub-sectiéii3.1followed by a discussion of the Tree in
sub-section5.3.2 Sub-section5.3.3discusses the Toolbar followed by a discussion of the
Editable windows in sub-sectioh.3.4

5.3.1 Menu Bar

The FDE Menu Bar consists of a File, Tools and Help menu.

The File menu is concerned with creating, loading, saving and closing of Facets. Creation
of Facets launches a wizard that captures the basic description of the new Facet. The File
menu also keeps a list of the last five Facets that were loaded. The FDE can be closed by
selecting the Exit menu item under the File menu.

Facet querying and viewing, Facet Hierarchy manipulation and Implementation Language
comment manipulation are done via menu items under the Tools Menu. Facet Viewing is
done using the Facet Explorer shown in figuse2 The Facet Explorer allows the FD

to explore the Facets within thaata directory. The Facet Explorer consists ®€lector
Viewerand CXML tabs. TheSelectordisplays the Facets for the FD to choose from. The
Viewerallows the FD to browse the generic and implementation definition of Facets. When
an Implementation is selected, the FD can also display the source code associated with
the Implementation. The viewer only displays the key descriptions of the Generic and
Implementation Definitions. Viewing further information can be done by browsing the
XML file of the definition using the CXML tab. Querying of Facets is supported by Facet
name only.

Figure 5.3shows the editor for the Facet Hierarchy (FH). FH is expressed in XML. The FH
editor allows the FD to manipulate the levels of the FH. A FH level can be set to “optional”
by specifying a “Yes” value for the optional attribute of the FH level. Specifying “No” for

42

Facet Explorer i - [

‘Selector - I

ewer |

cadl |

Authenticati. .

ReadIORF...

& &

BigBoy

Retrieve
Obiject

FF F

IDLTemplate Int

g F F

Fa

Battle

Mediator

SimpleCORE. ..

F

CORBAClent CORBAServer CORBASer...

F‘

TINAIDL

ORBCreation

WHERTORT. ..

FF

Helloworld

FoF

Cbject
Registering

F‘

databased, ..

QukputTos,..

Figure 5.2: Facet Explorer

Editing the Facet Hierarchy

Click on the attibute or Edit the ree text

FH
E-H Platform
EIH E =ecutionE nvimnment
@ optional
H ArchitecturalComponent
: optional
Carmpanent
4 optional
H FOL
=-H Scripting
- @ optional
E-H files
#-H class
E-H Service
optional
Ok

Apply

Cancel

G

Figure 5.3: Facet Hierarchy

43

the optional attribute makes the FH level mandatory. Appefdeontains the DTD that
describes the structure of the FH XML file.

Editing the Implementation Language Comments

FE Impl Lang Comments =
=- I Impl0ptiors
- Impl

‘ot CommentChar
=T lmpl

..... 4 Lang

‘o CommentChar
[—]I Impl

L@ Lang

‘ot CommentChar
=T lmpl

..... a Lang

e @ CommentChar
I lmpl

g Lang

‘o CommentChar
Impl

i Lang

L@ CommentChar
Impl .

0k, Apply Cancel

Figure 5.4: Implementation Language Comment Editor

Figure 5.4 shows the editor for the Implementation Language Comments. Implementation
Languages with corresponding comments can be added, deleted and edited. The Editor
translates graphical operations to changes in the underlying XML file. The list of Imple-
mentation Languages that a File can be characterised as is derived from the Implementation
Language Comments. Hence if there is no definition for the C++ comment character, the
FDE will not allow any C++ file to be added. Appendix2 contains the DTD that describes

the structure of the Implementation Language Comment XML file with a sample XML file

in appendixC.3.

The Help menu provides HTML format help for the FD and further information about the
FDE.

5.3.2 Tree

Quick access to objects is enabled by the Tree. The Tree causes the Editing Window to load
the default view of the object. The Tree also causes the ToolBar to load the tools related

44

to the selected object. Each object within the tree has an associated icon which helps to
distinguish between objects. Tal#el lists the Icons and the objects that they belong to.
Similar objects that are part of a Sub-Facet have a small Facet symbol in its top left hand
corner. Tablé.1will be referenced when examples are presented in Chédtand6.2

a Opened Facet
5 | Generic Definition
I Implementation Definition
F | Contained Facet or SubFacet
= Package
E | File
= | Association
F:' | Global Placeholder
"t | Global Variable Block
| Classes or Modules
B | Methods or Functions
| Attributes
F' | Placeholders
¥ | Variable blocks

Table 5.1: Tree Icons

5.3.3 ToolBar

Object manipulation is regulated by offering a limited set of tools in the ToolBar. The tools
are grouped and associated with objects listed in talileTheOpened Facet Objeds only
allowed to create atmplementation Definitionf the Facet. Th®©pened Facetannot be
deleted or modified. Th&eneric Definitionobject is restricted to viewing its description,
resources, context, data and underlying XML file. Theplementation Definitiombject
expands on th&eneric Definitiorobject operations with its Technology view, deletion and
creation ofFacets Files, PackagesAssociationsGlobal PlaceholderandGlobal Variable
Blocks

Facets created within @dpened Faceas part of a specifiimplementation Definitiomare
called Contained Facet®r SubFacets User interaction with th€ontained Facetss re-
stricted to viewing the Facet’s description, resources, data, context, technology, underlying

45

xml file; deleting theContained Faceand editing theContained Facet’s Placeholdeesd
Variable Blocls. Objects under th€ontained Facetan only be edited.

TheFile object allowsPlaceholdersVariable Blocksattributes methodsandclassedo be
created. We refer to objects that are containedHileaobject as sub-file components. Text
within theFile can be added and removed. TFike object can also be deleted.

Global PlaceholderandGlobal Variable Blocksan be edited to contain chiRlaceholders
andVariable Blocksrespectively.

Variable Blockscan contairPlaceholders HencePlaceholdersan be created und®fri-
able Blocks Classes, methods and attributabide by their structural relationship i.e.
classesxontainmethodsandattributesandmethodsan contairattributes

5.3.4 Editable Windows

Editable windows are viewpoints that expose editable aspects of an editable object. Ed-
itable objects include Generic Definitions, Implementation Definitions, Global Placehold-
ers, Placeholders, Global Variable Blocks, Variable Blocks, Files, Structural Components,
Associations and SubFacets.

Generic Definition manipulation occurs from 5 viewpoints:

e Normal: presents the description field of the definition as described in subsection
4.2.%

XML: presents the XML file of the definition for the purposes of completeness;

Resource: presents the set of resources used by the Facet particular to a definition;

Data: presents the data description used by the Face particular to a definition; and

Context: presents the context of the Facet particular to a definition.

In addition, a Technology window exists for editing the Technology profile of the Imple-
mentation definition.

Editable windows for the Global Placeholder and Global Variable allow the FD to choose
Placeholders and Variable Blocks within the scope of the opened Facet. Files are edited
using aFileWindow TheFileWindowprovides management and position tracking of facet-
specific and structural objects associated with a file.

46

Sub-Facets are edited using a dialog box consisting of a list of all facet-specific objects
(contained objects under a Global are not duplicated in the list of editable facet-specific
objects).

Structural components, Placeholder, Variable Blocks and Associations each have a specific
window for editing their characteristics.

5.4 Design Patterns Used

Two major problems are encountered in the creation of the FDE. First, objects within the
FDE need to access similar functionality. Secondly, GUI objects need simplified fully-
meshed interactions. The Fagcade and Mediator design patterns are employed to solve these
problems.

5.4.1 Facade

A recurring problem is a number alient classes needing to access a multitudeask
methods across a number of classes. If the relationship betweehethiclasses anthsk
methods is hardwired, a labyrinth of interactions is created which results in poor flexibility
and strong coupling of classes.

Figure 5.5shows the Facade design pattern which is a high-level interface that hides struc-
tural detail of theaskmethods from thelient classes §]. taskMethods are encapsulated
within the Fagade class. Tleéenthas a reference to an instance of a Fagade class via which
theclient can use the functionality offered by theskmethods.

The Facgade allows @ient to interact with aaskmethod without having a reference to the
task method'’s class object. Thus promoting weak coupling; overall flexibility; preventing a
labyrinth of interactions and minimizing the number of class objectslibet must interact
with.

A Facade is usually implemented as a Singleton. The Singleton is a class which only has
one instance within the application. The Facade is used by FDE classes for functionality
such as the XMLExplorer, XML File Manipulation, Help File Launching and XML Node
creation. Sectiorb.6discusses the implementation of the Fagade object within the FDE.

47

Client | _ > Facade
®Operation A()
®Operation B()
/ \
/ / \ S
// / \ ~
/% \ e
TaskA TaskB TaskC TaskD

Figure 5.5: Facade Design Patterf][

5.4.2 Mediator

A recurring problem is a number ablleagueclasses needing to interact with each other
in a fully meshed way. Keeping references of eaclieagueclass becomes problematic to
manage and creates strong coupling.

The Mediator design pattern encapsulatesdbéeagueclasses allowing them access to
each other{]. Figure 5.6 shows twoRealColleaguethat have access to each other via the
RealMediator TheRealMediatokeeps references to tiealColleagu®bjects and allows
theRealColleagueaccess to the referenced objects. In additionRbalMediatomust be
designed such that the reference®R&mlColleaguesan be changed dynamically.

- mediator
Mediator Colleague

|
/
/

/

RealMediator RealColleagueA RealColleagueB

Figure 5.6: Mediator Design Pattern]

The Mediator is used to represent complex many-to-many class relationships as simple uni-
directional associations. The centralised control of the mediator weakens coupling between
classes, simplifies system design and introduces flexibility. Danger exists in allocating man-
agement of too many class relationships to a Mediator thereby increasing the complexity
and rigidity of the Mediator and resulting in a break down of its flexibility and effective-
ness.

48

Facade and Mediator design patterns are similar, although, the Mediator is considered more
complex. The Mediator class is used to allow the key GUI components to interact in a
fully meshed manner with each other and the FDE Facade. Sedi6rdiscusses the
implementation of the Mediator and Facade design patterns within the FDE.

5.5 Use Case Diagrams

The FDE is used by the Facet Developer (FD) hence, only one actor exists. Figure
defines what the FD uses the FDE for.

Explore Facets Edit Fact Hierarchy

* /%*\(:>

Ve
C j Facet Developer

— \‘ Edit Implementation Language
Edit Facet | Comments

v
-

Create Facet

Figure 5.7: FDE Use Case

Prior to manipulating Facets, the FD will ensure that the FDE is configured correctly. Con-
figuration of the FDE requires that the FD configure the Facet Hierarchy and Implemen-
tation Language Comments as he/she desires. Fighréand 5.3 show the editors for
Implementation Language Comments and the Facet Hierarchy, respectively.

Once the FD has configured the FDE, Facets can be created and later edited. Creation of
Facets entails a number of use cases such as creating a Sub-Facet, deleting a placeholder or
editing a File. For brevity, the exhaustive list of use cases is omitted. Reaching a critical
mass of Facets, the FD will want to browse the catalogue of Facets. The FD will be able to
browse the Facet catalogue using the editor that is show in figLite

Section 5.6 solidifies the abstract use cases by introducing the FDE classes and their inter-

actions.

49

5.6 Class Diagrams

The class diagrams in this section paint the structural detail of the FDE’s design. The FDE
has many classes, the most important of which are shown in figu8eFigure 5.8 shows
the core components of the GUI.

wxFrame Facade
(from wx) (from Generic)
| —&config : ConfigHandler
T ‘ wxTextCtrl
. (from wx)
GenericFrame
(from Generic) x
E&statusBar [\
E&AboutText T wxNotebook
Facade (from wx)
& Help_ filepath N FacetS.tatusTextCtrI
= [~ B mediator
FacetFrame J\ FacetMediator FacetNotebook
& CurrentProject — &5Frame & CurrentWindow
&:CurrentProjectPath &%Notebook &5 CurrentModel
&:PrevProjectPathList— —— —>>&5Tree &5ModelDict
BisModified &5 StatusCtrl &5WindowDict
B:mediator — &5 ToolsManager &:ModelWinDict
&ImplLangDict — T &5 Facade : Facade &mediator
| %CurrentSRCFile
| S loading
T v i
wxToolBar ‘
(from wx) ‘ FacetTree wxTreeCtrl
‘ — =B mediator "= (from wx)
E:NodeNameVetoList
? ‘ E:NodeNameVetoDelLis
\V2 &rootName
FacetToolBarManager
Bparent
&,SEMTAToolsDict
&swxToolDict
B&:CurrentSEMTATool
&&:CurrentTool
Emediator
E&toolbar

Figure 5.8: Facet IDE

Starting with theFacetFrame we find that it inherits from th&enericFramewhich in
turn inherits from the wxPython clasgxFrame The GenericFramentroduces common
functionality such as Help file launching aRdcadeinitialisation. TheFacadeimplements
the Facade design pattern(sub-secttod.l) and is explained in sub-sectidn6.7.

50

FacetFrameis the Graphical parent of all the graphical classes as they all run as children

of the FacetFrame Implying that theFacetFrameinitialises the other major GUI classes
which includes thd-acetStatusTextCirFacetTree FacetToolBarManageand FacetNote-

book FacetFramealso initialises th&acetMediatomwhich implements the Mediator design
pattern(sub-sections.4.2. The major GUI classes;acetMediatorand Facadeare dis-

cussed in their respective sub-sections. Apperdiilustrates many of the miscellaneous

class diagrams that can be referred to grasp a better understanding of the class relationships.

5.6.1 FacetMediator class

All the graphical components and tit@acadecan be registered or deregistered with the
FacetMediator Allowing each class access to another class vidtoetMediator In par-
ticular, all classes need access to functionality residing irFftade The FacetMediator
results in a flexible meshing of the major components in the FDE.

5.6.2 FacetFrame class

The FacetFraméulfills the following use cases, listed in sectidn5:

1. Create Facet: Facets are created in conjunction withléveFacetWizardlass,
2. Explore Facets: Facets are explored in conjunction withFaeetExplorerclass,

3. Edit Facet Hierarchy: the FH is edited in conjunction with functionality that exists in
theFacadeclass.

4. Edit Implementation Language Comments: also carried out in conjunction with func-

tionality in theFacadeclass.

Figure 5.9illustrates the class structure of the wizard used for creating new Fadets.
FacetWizards derived from a wxPythowxDialogclass. Creation of a new Facet involves

four steps:

1. specifying the name of the Facet carried out byNaeneFacetlass,

2. choosing the Facet Hierarchy for the Facet carried out byCtieoseFacetHierarchy
class,

3. specifying the information for the Generic definition carried out byG@emericinfor-

mationclass and

51

wxDialog NewFacetW izard
e 4 (from utils)
&nb
&scancel
&next
&back
® init_ ()
®0nCancel()
LOnNext()
®0OnBack()
$0OnCloseWindow()
$ createVars()
¥ _update_static()
$ del_()
o o [
r + |
Vv Vv Vv
NameFacet ChooseFacetHierarchy GenericInformation
&input &controlList
$ init_ ()
$__init__($0nRightDown() $ init_()
Scheck_input() ®OnRightClick() Scheck_input()
Ssaw() Scheck_input() Ssave()
Supdate() Ssave() Supdate()
S del_(Supdate() SDeleteAllControls()
< load() € _createControls()

4. confirmation of supplied information carried out by @Benfirmationclass.

The NewFacetWizarawill verify all information including the absence of the Facet name
in thedatadirectory before creating the Facet. TRewFacetWizarareates the Facet as a
directory containing a Generic definition. Hence fulfilling the use case of Facet Creation.

Facets are described within directories and not as individual files. Therefoostddirec-
tory cannot be listed for files using the defakileDialog. The set of classes in figurg.10
are developed to allow the FD to view and select Facets inlgtedirectory. FacetOpen-
Dialog lists all the Facets that a FD can open, usingRaeetOpenListPanelFacetOpen-
ListPaneldisplays the Facet directories as a list of Facets. SimilarlyfF#vetSaveDialog

®_loadXMLNodesintoTree()
®_del_()

Confirmation

9 _createStaticText()
$_del_()

$ init_(
Scheck_input()
Ysawe()

Supdate()

$ _extract_info()

$ _display_info()

% _createStaticText()
S del ()

Figure 5.9: New Facet Wizard

produces a view of all Facets saving a Facet to the filesystem.

The FD can launch thEeacetExplorerfrom theFacetFrame The GUI of theFacetExplorer
is shown in figure5.2 TheFacetExploreiinherits from the wxPython clasexPanel Face-
tExplorerNotebooks initialised by theFacetExplorerand in turn initialises the necessary

sub-windows to allow browsing of Facets.

Editing of the FH and Implementation Language Comment editors are essentially XML
editors. Figure 5.12 shows both the editors inheriting from t@LEditorPanel The
XMLEditorPanelhas generic functionality to enable editing of XML files. TiracetHier-
archyEditorimplementsXMLEditorPanelmethods in a way that is specific for editing the
FH. Similarly, thelmplEditorPaneis a specialisation of theMLEditorPanefor the editing

of implementation language comments.

52

wxDialog

from wx)

|

FacetOpenDialog

& mediator ¤titem
&path
$ init_()
$ init_ () | <[®OnitemSelected()
SO0k () $OnitemDeselected()

®0nCancel()
®0nClose Window()
% _loadcomponents()
® del_ ()

FacetSaveDialog

wxListCtrl

(from wx)

T

FacetOpenListPanel

$OnltemActivated()
@ insertitems()
$ del_ ()

:’7

FacetSaweListPanel

& mediator &curenttem
ath

»: ® int_ ()
$ init_ () N $OnltemSelected()
S0nSave() $OnltemDeselected()
®0nCancel() ®OnltemActivated ()
$0nCloseWindow() % _insertitems ()
% _loadcomponents() $ del_(

$ del_ ()

Figure 5.10: Facet Chooser

5.6.3 FacetStatusTextCtrl class

FacetStatusTextCtilmplements the Status GUI component. FacetStatusTextCtrl inherits
from the wxPython class wxTextCtrl and is not directly linked to any of the use cases.
Although, it is part of all use cases as far as producing feedback to the FD is concerned.

5.6.4 FacetToolBarManager class

The FacetFrameinitializes the toolbar and is responsible for the low-level toolbar man-
agement. Higher-level management is done byRdeetToolBarManagerThe FacetTool-
BarManagerimplements the ToolBar GUI component. ThacetNoteboolaccesses the
FacetToolBarManagevia the FacetMediatorto load tools specific to the object that is se-
lected in theFacetTree FacetToolbarManageis part of fulfillment of the editing Facet use
case.

5.6.5 FacetTree class

The FacetTreeassists in Editing of Facets use case. A hierarchical structure of the objects
within a Facet is displayed by tifacetTree wxTreeis the parent class fdfacetTree

53

is paregt of

FacetExplorer
wxPanel & currentDir
&filter
(from wx)
% init_ ()
$OnCloseWindow()
$On0k()
$OnCancel()
$ del ()
is parent of \
b/
FacetExplorerNotebook
& currentFacet : xml.dom.mindom
& Viewer -
%List <= layout wxBoxSizer
EXMLEditor (fomwy)
wxNotebook
$ init_ ()
(oM $LoadFacet()
FisFacet() —_
$0OnPageChanging() W
wxPanel $OnPageChanged()
(fromwx) _ __ __ |[%Getbom() \L
F XMLEditorPanel
Zﬁ \L V & parent : wxWindow
; FacetListPanel & dom : xml.dom.mindom
FacetViewer &jimagepath &% isReadOnly : Boolean
& dom : xml.dom.minidom &jcurrentdir E5xmiTree : wxTreeCtrl
EisReadOnly filter : list = [names] EsxmiText : wxTextCtrl
E&imagepath
€ init_ () $ init_() &:NodeNameVetoList
$GetDom() SGetSelected()
PReload() $0nLeftDClick() $ _init_()
% del () $ del() ®0nSashChanged()
— $ del ()
¥lLoadModel()
‘ ®UnLoadCurrentModel()
v v PRefresh()
SRCDalog wxListCtrl
Ebfileholder : wxNotebook
(from wx)
® init_ ()
% createnotebook()
%0OnCloseWindow()
$ del ()

Figure 5.11: Facet Explorer

54

N

——lay out— >

N

wxButton

(from wx)

XMLEditorPanel

/\ /\

ImplEditorPanel FacetHierarchyEditor
®NewLanguage() ©NewChildLayer()
$NewSiblingLayer()

|

ImplEditor FacetHierarchy
ESimplEditorPanel ExmlIPanel
$0nOKk() $0nOk()
$0onApply() $0OnCancel()
$0nCancel() SOnApply()
£OnCloseWindow() £0OnCloseWindow()

Figure 5.12: Facet Hierarchy and Implementation Language Comment Editors

5.6.6 FacetNotebook class

FacetNotebooks the key class for editing of Facets. ThacetNotebookakes advantage
of functionality in theFacadeclass via theFacetMediator Figure 5.13illustrates the
FacetNotebooklass.

Many windows are initialised by thiEacetNotebookand are used recursively to edit object

such as Files and Facets. Recursive use is achieved by loading appropriate data models into
specific windows. Hence, reducing processor overhead. Depending on the object, a specific
data model is initialised and a unique reference assigned to the model for referencing within
the FDE. All the windows inherit from WindowModetlass and all the data models inherit

from aDataModelclass. The class structure of child Windows and Datamodels are shown

in Appendix D.

5.6.7 Facade class

The Facadeclass is used to manage dispersed functional interactions. Figdreshows
the class structure of tHeacade TheFacadeoffers the following functionality:

e About window: AboutDIgmethods display an “about” message. The “about” mes-
sage describes the applications, its purpose and those involved in its development.

e Extracting information fromsrc files: SRCFile2Textnethods are used for this pur-
pose.

55

F leWhd ow

(from utils)

FacetNotebook

ResourceWindow
(from CommonWindows)

DocEntryWindow

(from CommonW indows)

DataWindow
(from CommonW indows)

ContextWindow
(from CommonW indows)

TechnologyWindow

(f om CommonW hdows)

GlobalPlaceholderWindow

(from CommonWindows)

GlobalVariableBlock\Window

(from CommonW indows)

FacetMediator
FacetTree FacetStatusTextCtrl
FacetT oolBarManager FacetFrame

S init_ ()

AddVWindow()

% SetBeginLoad()

% SetEndLoad()
NameChange()
CloseCurrentF acet()

%SelectionMadeOnTree()

SActivateWindow()
GetWindow()
GetCurrentWindow()

S GetCurrentProjectInfo()
Save()

Load

S CreatePackage()

%3 CreateGlobalPlaceholder()

%3 CreateGlobalVariableBlock()

%3 CreateAssociation()

%3CreateFileEntry()

% CreateClassMod()

S CreateAttr()

% CreateMethodF unc()

%CreatePlaceholder()

CreateVB()

% Createl mplementation()

SRequestDeletion()

S| nsertF acetUnderFile()
InsertFacet()

% _addFacet()
cmpfunc()
_checkBestPossibleMatches()
_askF orPreference()

% checkFH()

% _checkTechnologies()

% getPathForList()

% getXMLReversePath()

S¥getElementsByTagName()
_clearDicts()
+_changedocumentation()

% defaultwindows()
+_createsemtatools()

% getuniquename()

% _addWindow()
_activateWindow()
_createimplxml()

& removeltem()

% _commonRemoveF unctions()

& editingList()
+_findidforxminode()

% getListofFileDataModels()

$$0OnPageChanged()

$0nPageChanging()

ST oolBarEvent()

:CreateNew()

GLR()
Delete()
DDeleteT ext()

NewLine()

%3 Tablndent()

SubF acetElementReason()

%I ntF acetAction()

it

Edit()
S ComplieToPath()
S _del ()

Figure 5.13: FacetNotebook

56

v

(from DataModels)

AssociationDataModel

v

(from DataModels)

AttributesDataModel

v

(from DataModels)

ClassDataModel

v

(fom D ataModds)

PackageDataModel

(from DataModels)

PlaceholderDataModel

(from DataModels)

VariableBlockDataModel

v

GlobalPlaceholderDataModel

(from DataModels)

GlobalVariableBlockDataModel

(from DataModels)

(from DataModels)

GenericDataModel

V. Vv

ImplementationDataModel

(fom D a aVodel s)

(from DataModels)

MethodF uncDataModel

(from DataModels)

InternalF acetDataModel

ExternalF acetDataModel

(from-DataModels)

V. v v v

FileDataModel

from-DataMedels)

Displaying HTML help information:HTMLBrowseris a wxFramewith a modified
wxHtmIWindowthat is used to display html files.

Handling implementation language commer@ammentHandlemethods are used
by thelmplLangEditorto carry out changes to the XML file that holds the comments
for the implementation languages.

Managing a list of XPath string§:heXPatthmethods allow XPath strings to be spec-
ified and executed on specified DOM objects.

XML file input and output:XMLHandlermethods are used specifically for input and
output of XML files.

Creating XML nodes:CreateSEMTAmethods are used to create XML Nodes for
XML files.

57

(O
(Jdxgunye,
()dx3Ajponay
()dx31eas,
()dx3jes8,
()dx3004,
07w g

{uredxpajidwos ‘sweNyiedx} = Ateuonoiq : axmcymnx@

yredxauL

R

(Jyseuore
()JlepopIuaINOPEOTUNS,
(18popeoa, /
[VREI S

O

/

MOPUIMIWIHXM

(Xm woy)

(xm wouy)

Bojeigxm

N

0" 1ep” &
[ECTRELSS
(XM
()INXPealsy

(JpebueyDyseSUOS,
; \

15019 \SWENSPONEE
yredabewitE /
HIOIXBLXM : X8] |WXEE
HIO®BILXM : B8l | JWXEE
uesjoog : Aluopeays! 4a
WOPUILWOP'|WX : WOP™ & /
MOPUIMXM : Jusledis N8

0w g

am1GE \

X0 1In0qvag
Biainoqy \

[suedIoNPTTNX

~N—
—
—

I3IpUBHTINX

(1delennule,
()ByuodNulgy

(os1w wouy)

osIN

0P &
()ainpopIeoe,

(VRIS
()eInpoNIeO e

()odA L popebueyOs,
()odA | popyarowa gy
()odA L PONPPY
(Jwayarowsys,
(Jwieypog,
(Jwayppva,

0 s

O e

(osiw wouy)

1apeotiy
Areuonoi(: syrededhipowtes
AeuonolQ : syledwalis

Jopeouodw K SOSH—

spodw|peo]

opeoe

e

V1N3Sereaid

Uam S9INPOJ Hoduiy

B

()sjeoepeb o
()1epjoysoe(dieqo|61eb e
()soipeb g
()so0|g8]geLEeAleqo|flob &
(Joweuyeoepab &

07 1P &

()ol14250104,
(Janguadogy
()0YsIeD8

07y

L]

(os1w wouy)

RCIRA B

() wees™ &,

(Xm woy)
C>>on:_>>mmo_o:00 QWeIJXM
()psemio4uOs,
(oe8uOR
0w g ——
—7 MOPUIAN[WIHXM
JosmoigTNLH
—_—— — — —> 0P &
() TNXWoLpEOOY g
(uswwopenrowsye,
(usnide
(huswwoApoNe,
(uswwonese,
o (hswwoniena,
07 1P & 0w s
()seli4snoinaideselda,
()sal14snoinaldien s, WOPUIWWOp' WX : WogBuedwiE
()senJsnoinaidiose RigusWWogiE
() wemeb o
Jo|pueHjUBWWOD

(Juonewnojujebessang,
()Buiwiepebessog,
(MOebessana

QUON = Jasiedbyuo) : mz:oo\@

Js|pueHbyuo)

sobessaj\xm

(Xm wouy)

Bojeigabessapyxm

Figure 5.14: Facade

58

: FacetFrame : Facade : Facet : FacetTool . FacetTree
Notebook BarManager

| Facade Creation |

P

Facade Object Creation

Facet IDE objects created ‘

|
initialize (via FacetMediator) intialize windows
| |
‘ B
init toolbars and tools

| 11

init tree

‘

IDE up aqd running

|

\
| | |
|) | |

Figure 5.15: FDE Initialisation

5.7 Message Sequence Charts

The FDE has many dynamic processes which are not focused upon here. Rather, the fol-
lowing static processes are explained:

FDE initialisation;

Creating a Facet;

Opening a Facet; and

Saving a Facet.

5.7.1 FDE Initialisation

FDE initialization refers to starting the FDE once the FDE has been configured correctly.
Figure 5.15illustrates how the FDE is initialised. THeacetFramenitialises the Facade,
which in turn, initializes its constituent classes. THazetFrameregisters the Facade with

the FacetMediatorand then moves on to create the GUI components.

59

FacetFrame NewFacet FacetNotebook
Wizard

init

Information returned J

Create Directory

P

Create Generic.xml

|
|
LPad

success
|
set Facet Information ‘
| |

L

P

Figure 5.16: Creating a Facet

Each GUI component is registered with tRacetMediator After the GUI components
are created and registered, tRecetFrameinvokes theFacetNotebooko initialise itself.
Initialization of theFacetNoteboolconsists of initializing thd=acetToolBarManageand

the FacetTree

The FacetNoteboolknitializes theFacetToolBarManageby creating multiple tools which

are then grouped. The groups of tools are mapped to types of objectsHadiidree The
FacetTreds initialised by loading a default tree structure, if no Facet is being loaded. Else,
the Facet structure is loaded into thacetTree The FDE is now initialised and ready for

use.

5.7.2 Creating a Facet

Figure 5.16shows the process of creating a Facet once information has been gathered by
the NewFacetWizard The NewFacetWizardas a callback to thEacetFrameto create a

Facet.

TheFacetFramecreates the Facet directory based on the name of the Facet and then creates
the Facet's Generic.xml file. All the information collected by the user is placed in the
Generic.xml file.

60

FacetFrame

FacetNotebook FacetTree FacetToolBar

Manager

Fetch Facet
and the
necessary
SRC files.

Load recursively
goes through each
xml file and src file,
loading the required
elements and
populating the
FacetTree

‘ Close opened Facet

‘ Remove Tree Nodes ‘

_load
g P

Load by path

g

T

Facet Loaded

Load (recurswe function

AddTreeNode

P

Figure 5.17:

set Current Facet Information

|
|
)
|
‘ ctivate Tree Node
L
<—Load Toolbar
|
|
|
|
|

|
|
|
|
|
|

Opening a Facet

Once the Facet is created, thacetNotebook::Loads called to load the created Facet into

the GUI. If the Facet is successfully loaded, BaeetFramesets the current Facet informa-

tion such as Facet path and Facet name.

5.7.3 Opening a Facet

Figure 5.17shows how a Facet is loaded into the FDE. Assuming that a Facet is already

opened in the FDE, the opened Facet is first closed. If the opened Facet is not saved, it

will be saved. The state of the GUI components are reset. Specifically, the list of objects

and instantiated datamodels in thacetNoteboolare cleared followed by the removal of

all nodes in the tree of thieacetTree

The FacetFrameopens the Facet files for reading. The Facet Files include the Generic.xml,

Implementation xml files and Implementation src file8MLHandleris used via thd=a-
cadeto read xml files. The SRC file is read using tBRCFile2Texvia the Facade The
FacetFrameparses the loaded files to tRacetNotebookor loading of the Facet into the

GUL.

The FacetNoteboolapplies a recursive functioboad on the Facet file parsed to it.oad

61

FacetFrame FacetNotebook

‘ SaveFacet

Create DOMs

Create SRC files

DOM and SRC Files :'

Save to Facet Directory

P

Figure 5.18: Saving a Facet

uses theAddTreeNoddao add initialised objects into thEacetTreetree hierarchy. The
FacetTreein turn activates the object forcing tHeacetToolBarManageto associate an
object type group with the object. Load completes by replying a successful or unsuccessful
Facet loading to thEacetFrame

If the Facet is successfully loaded, thacetFramesets the current Facet information such
as Facet path and Facet name.

5.7.4 Saving a Facet

Figure 5.18illustrates the process of saving a Facet. Saving of a Facet requires reaping
information and packaging the information into XML format for storage onto the filesystem.
FacetFramecalls theSaveFacefunction in theFacetNotebook Using the active list of
objects within thé=acetNotebookthe XML and SRC DOM objects are created.

FacetFramereceives the DOM objects which are then written to the filesystem using the
XMLHandlervia theFacade

5.8 Chapter Summary

This chapter discusses the design considerations in creating the Facet Development En-
vironment (FDE) thereafter describing the FDE and its make up.XML is chosen as the
modelling language because of its ease of use; industry support by way of user groups and

62

programmes and the opportunity to integrate with UML via the XMI standard.

The DOM parser is chosen for its easy manipulation of XML documents. DOM also allows
the XML document to be searched using XPath or XQuery.

Python is chosen as the implementation language for its ease of use, rapid prototyping fea-
tures, portable GUI (wxPythonglue languagecapability and readily available supporting
packages.

The filesystem is chosen because no additional software is required and rapid prototyping
is encouraged.

The FDE description is made up of the user interface, use cases, class structure and message
sequences of the FDE. The user interfaces is composed of six GUI components viz. Menu
Bar, Toolbar, Tree, Documentation tab, Editing Windows tab and Status.

The FDE makes use of the Facade and Mediator design patterns. The Facade exposes
distributed functional methods to clients. The Mediator simplifies many-to-many unidirec-
tional associations. Both design patterns promote weak coupling and improved flexibility.

The use cases, class diagrams and message sequence charts detail the mechanics of the FDE.
Chapter 6 attempts to solidify the concept of Facets through three examples. Collectively,
the examples demonstrate the concepts embodied in Facets.

63

Chapter 6

Facet Examples

This chapter presents three examples which illustrate the Facet's objectives and concepts.
The first example demonstrates a Facet whose functionality centres around providing a sim-
ple CORBA service. Th&impleCORBAServigsection 6.1) illustrates the functioning

of Facets, multi-granularity of Facets and their implementation-language or platform inde-
pendence. Once the Facet concept has been solidified with the first example, the following
examples focus on two key aspects: simultaneous co-existence of other reuse solutions with
the Facet reuse solution(secti@n?) and containment of multiple programming paradigms
within a single Facet(sectiof.3).

6.1 Simple CORBA Service Facet

This section illustrates a simple CORBA Service as a Facet. The example steps through
the Facet illustrating the multi-granularity and implementation language independence of
Facets. Th&impleCORBAServideacet has definitions as follows:

Problem: How to demonstrate a Simple CORBA Service with a single Object that

possesses a minimal set of operations?;
¢ Intent: Demonstrate Client to Server operations;

e Forces: Requirement of a Simple CORBA server with a Single Object whose refer-
ence is written to File;

e Applicability;: CORBA environments;

e Participants: CORBA Server, CORBA client, IDL Definition for client-server inter-
action; and

e Known Uses: Used to create CORBA services.

64

SimpleCORBAServiasses the filesystem as a resource to read from and write to files. The
design and business contexts are not well defined since the Facet is not specific to any
business model or architecture. The deployment context points out the environment for a
successful deployment of the CORBA Servi@mpleCORBAServids successfully de-
ployed if the environment is set up correctly and a file exists which holds the servant’s IOR.
The operational context focuses on the requirements for the ongoing operation of the Facet.
The data characteristics is defined by the definition in the IDL file.

Figure 6.1shows a screen dump of tis#mple CORBAServideacet FDE Tree. We notice

the Facet consisting of a Generic definition and two Implementation definitions, namely
JavaandC++. The presence of multiple implementations means that the facet can be ap-
plied where Java or C++ is the chosen implementation language. Therefore, the Facet is
independent of the implementation language as long as Implementation definitions exist
for the required implementation language. Similarly, the Facet can be argued to be platform
independent. In this example, both Implementation definitions are structurally similar there-
fore we discuss only one, namelgva Within theJavaimplementation there are a number

of global Placeholders and global Variable Blocks. A File definition and three sub-Facets
are also constituents of this implementation.

Figure 6.2 shows the structure of th®impleCORBAServideacet in terms of contained
Facets and highlights the associated Facet Hierarchy (FH) paitmple CORBAServids
made up of three Sub-Facets i.€EORBAServerCORBAServerSideObjeahd CORBA-
Client

The CORBAServefacet is used to create a CORBA server that instantiates and manages a
servant. CORBAServerSideObjecteates the servant and allows the servant’s logic/func-
tionality to be definedCORBACIienbffers the functionality of a basic CORBA client that
invokes operations on the CORBA servant. As an example of rel@&BAServeand
CORBACIienutilise the same functionality offered by tRBCreatiorFacet in different
contexts.

Although not visible from figure6.1, the global Placeholders and global Variable Blocks
synchronise and aggregate sub-Facet Placeholders and Variable Blocks with the Facet's
own. For instance (with reference to figuéel and appendixE), the Simple CORBAService
global Placeholder calledORBA Object Typknks with the following placeholders:

1. Return Typaunder theHello.idl File within the SimpleCORBAServideacet (figure
6.1);

2. Object Across Facetglobal placeholder within th€ORBAServeFacet (figurek.4).
The global placeholder, in turn, links a number of placeholders withinGiod&R-
BAServerFacet;

65

El Facet Workspace; SimpleCORBASeryice

File i Tools Help

Dl(E A K] xR R R RE

SimpleCORBAS ervice
G Generc
-1 Java
----- B CORBA Object Type
----- E. CORBA Interface Operation
----- E CORBA Interface Operation Return Type
----- E Package Mame
oo W Package
= F Helloidl
. - P CORBA Object
P Operation Mame
----- F Retun Type
=@ Hello
ol zay_hella
CORBAServer)ava. =ml
CORBAChent:) awva. «ml
CORBAServerSidelbject.)ava. =ml

mmMmmMm

F CORBAServerC++ mml
- & CORBAClent:C++.xml

F CORBAServerSidelbject: C++ xmi

=78 Objecth

. Irmplernentation Clazs Mame
*r CORBA Object Mame
P oretum ype
"F method name
Ohject.cpp
" Implementation Clasz Mame
" oretum ype
2P method name
- Implementation Clazs Mame
----- . Feturn Type
----- " Method Name
=~ E Helloidl
----- F CORBA Object
----- F Operation Mame
----- F Return Type

= # Helo
o @ zay_hella

----- B CORBA Object Type
- B CORBA Interface Operation
B CORBA Interface Operation Return Type

Click here to create a Mew,

Figure 6.1: Simple CORBA Service Facet: FDE Tree Structure

66

‘ SimpleCORBAService ‘

FH=A
CORBAServerSideObject ‘ ‘ CORBAServer ‘ ‘ CORBACIient ‘ FH=B
‘ ORBCreation ‘ ‘ Writel ORToFile ‘ ‘ ORBCreation ‘ ‘ Writel ORToFile ‘ FH=C

FH Key:

A = Platform.Service.Component.FDL

B = Platform.Service.Component.FDL.File.class

C = Platform.Service.Component.FDL.File.class.method.algorithm

Figure 6.2: SimpleCORBAService Facet Structure

3. CORBA Object Namglaceholder in th€ ORBAServerSideObjdeacet (figureE.5);
and

4. CORBA Object Typplaceholder in th€ ORBACIienfracet (figureE.6).

Instead of the many Placeholders needing to be specified individually by the user, a single
global Placeholders is specified without the user necessarily needing to know what under-
lying effects occur. Thus, the detail of the underlying Facets is abstracted from the user.
The metar model that supports the implementation is essential as it makes the Facet data,
resource and context agnostic. Appendixontains the xml file that represents the meta-
model of theSimpleCORBAServicdavalmplementation. AppendixE contains screen
dumps for the Sub-Facet's FDE Tree.

We draw the readers attention to the Facet Hierarchy (FH) paths to the right of each level in
figure 6.2 The FH paths should be correlated with the Facet Hierarchy structure shown in
figure 4.3 The correlation will show that only Facets at a lower FH level are contained by
Facets at a higher FH level. Thus, illustrating fle of Containment (Equation 3.12.

The presence of multiple, ordered levels of containment is proof that the Facet concept is
multi-granular.

6.2 Mediator Facet

This section presents a Facet which overlays another reuse solutiorMélthator Facet
describes thdlediator design pattern with implementations. Tiediator Facet has defi-
nitions as follows:

67

e Problem: How to create a fully meshed association of classes?;

e Intent: Separate and encapsulate the interactions between a set of objects and allow-
ing greater flexibility, control;

e Forces: An influx of hard-wired associations is undesirable. A dynamic approach is
required,;

e Applicability: Where a complex relationship exists between objects;
e Participants: Retrieve Object and Register Object; and

e Known Uses: Used to allow fully meshed interactions between GUI components in
the FDE.

TheMediator Facet does not require any resources, instead, it is a resource to other Facets.
The business, deployment and operational context of the Facet is undefined since it is not
applied in an application. Applying a Mediator to link various objects, is the design context.
The data flow that characterises WMediator Facet, is the registering and retrieval of objects
with the Mediator Facet.

Figure6.3 shows the screen dump of the FDE Tree for Mhediator facet. The FDE Tree

shows that theMediator facet consists of a Generic definition and two Implementation
definitions: PythonandJava Each implementation has a structural description, in terms

of classes, methods and attributes, and is also described using Placeholders and Variable
Blocks. Each implementation also makes use of the two Sub-Facets shown inGigure

The Mediator is adesign pattern that is presented in sectio®.4.2 We have defined

the Mediatordesign pattern as aMediator Facet by providing implementations for the
Mediatordesign pattern Hence, we have proven that other reuse solutions can exist si-
multaneously with the Facet reuse solution. This method can be applied using Enterprise
Java Beans (EJBs) or MDA.

6.3 Web Server Tutorial Facet

This section presents a Facet that implements functionality using multiple programming
paradigms such as Object-Oriented Programming, Functional Programming and Scripting.
TheWebServerTutoridFacet has definitions as follows:

e Problem: How to generate a dynamic server-side HTML page?;

¢ Intent: Demonstrate dynamic html generation;

68

Facet Workspace: Mediator
File Tools Help

DA kR R R R

& Medator

o

- X Python

- F Mediatorpy
..... F Claszz Mame
E|- Mediatar

B _ int__
B FRegsterObject
B GetObject
El & [Object Reaiztering: Python, =ml
- =-T8 Register

- p Method Name
: . Fp Class Variable
- F Retieve Object:Puthon. «mil

= Retrieve

- Fp Method Mame
“Fp Dbject name

- I Java
B Object Type
B Object Name
- Mediator java
----- F Clasz Mame
..... F Object Type
----- P Object Mame
= @ Mediator
e name
B Mediator
B FRegizterMame
: B Gethame
= F Object Registering:)ava.«ml
=78 Register
5P Method Mame
~-"p Dbject Type
L. ®p Class Varable
= #& Retrieve Object.)ava wmi
=78 Retrieve
~"r RetunType
- Fp Method Name
LR Object name

Figure 6.3: Mediator Facet: FDE Tree Structure

69

‘ Mediator ‘

FH Key:
A = Platform.Service.Component.FDL.File.class

B = Platform.Service.Component.FDL.File.class.method

Figure 6.4: Mediator Facet Structure

Forces: Users want to interact with a web site and cannot do so with static pages;

Applicability: Where a web site’s user interactiveness is to be improved;

Participants: No other Facets; and

Known Uses: Most web solutions.

Figure 6.5 shows that thaVebServerTutoriaFacet consists of a Generic Definition and
three Implementation definitions, namelgvaServletsPHP and Perl. The Implementa-
tions are significantly different from each other in that tfevaServletsmplementation

is object oriented programming, therl implementation is functional programming and
the PHP implementation is script programming. ThéebServerTutoriaFacet caters for
multiple programming paradigms therefore the Facet reuse solution can cater for multiple
programming paradigms.

Since the implementations are quite different from each other, the necessary resources, con-
text and data descriptions differ to a high degree. This example stresses the importance of
having the reuse solution being agnostic of the resources, context and data. Without such
information, the user will not be able to use the Facet effectivalgbServerTutoriatloes

not contain any other Facets and its FH patRlatform.Service.Component.File

6.4 Chapter Summary

This chapter presents three examples to solidify the concept of Facets. The first example,
SimpleCORBAServicelemonstrates the functionality centric approach of Facets, multi-
granularity of Facets and implementation-language or platform independence of Facets.
SimpleCORBAServiadso showed how the facet-specific structural components were used
and how the Facet Hierarchy enforces the Rule of Containment.

70

Bl Facet Workspace: WebServerTutorial

File Tools Help

Di(@A] &< |E el |F@]

I=4-“-" W'ebServerT utonial File
G Generc —
Perl
9 F postpl
L P Qutput Text
FHF
-~ helowarldphp. php
L P Qutput Test
I JavaServlets
=-F Helldwaorld java
L P Qutput Tewxt
- W Package
‘o P Package Mame
- @ Hellowiorld
Leom FEEE

[

Figure 6.5: Web Server Tutorial Facet: FDE Tree Structure

The second examplé/ediator Facet illustrated the Facet’s capability to simultaneously
accomodate other reuse solutions such as Design Patterns, EJBs and MDA.

The third exampleWebServerTutorialshows that Facets allow reuse to be enabled irre-
spective of the programming paradigm that is being ug¢ebServerTutoridacet contains
three different programming paradigms.

Chapter 7 concludes the report and analyses the outcome of the work done with reference
to the stated objectives. Recommendations for further work are also proposed.

71

Chapter 7

Conclusion

7.1 Discussion

Rapid Development Environments (RADSs) are drivers for rapid service creation in the Next
Generation Network. RADs are empowered by reuse solutions. Within the evolutionary
Next Generation Network (NGN), multiple platforms or architectures that use multiple im-
plementation languages exist. Reuse solutions that can be universally applied to the NGN
are sought. The requirements for a NGN reuse solution are listed in Chhpter

By focusing the description mechanism of the reuse solution around functionality, the reuse
solution is decoupled from the underlying implementation which results in a platform and
implementation language independent reuse solution. By approaching the reuse problem
from a functionality perspective development by functional composition, to achieve an ap-
plication’s global functional requirements, is promoted. Also, encouraging the effective use
of the reuse solution since human beings are more comfortable with real functionality than
with abstract objects.

Chapter 2 discusses contemporary reuse solutions with a view toward identifying worth-
while “best of breed” characteristics. Most reuse solutions punt reusability as components.
Intelligent Network (IN) SIBs and Telecommunication Information Networking Architec-
ture (TINA) RP-facets are functionality centric. IN SIBs promote rapid development by us-
ing a logical black-box approach i.e. the reusable component’s external characteristics, such
as inputs and outputs, are emphasized. TINA computational objects also use a black-box
approach where the external input and output characteristics are defined by IDL definitions.
Model Drive Architecture (MDA) and Reference Model for Open Distributed Processing
(RM-ODP) introduce high-level reuse. MDA emphasizes the concept of developing Plat-
form Independent Models (PIMs) which are later migrated to Platform Specific Models

72

(PSMs). MDA, however, is bound to the object-oriented paradigm. RM-ODP, as with En-
terprise Java Beans (EJBs), emphasizes the business aspect of a reusable component. Design
patterns possess a novel approach to explicitly deny solutions that have not been “tried and
tested”. In general, component reuse solutions are dedicated to particular implementation
languages or platforms while higher level reuse solutions lack implementations of proposed
solutions. The reuse solutions described here have diverse strengths and weakness. No
single method provides the multi-granularity, platform-independence and implementation
language-independence that is called for in sectidn

Chapter3 introduces the Facet concept as a redefinition of the TINA RP-facet concept tak-
ing advantage of “best of breed” characteristics from chag@teFacets are defined math-
ematically to be platform and implementation language independent. The Facet Hierarchy
categorizes the Facet's functionality and manages Facet containment. Facets are developed
within a Facet Development Environment (FDE) by a Facet Developer (FD). The Facet De-
veloper (FD) role is a job description that may exist in the Application Provider, Service
Provider,3"¢ Party Service Provider or Vendor stakeholder domains. The FD verifies pro-
grammes from programmers, which are included into the catalogue of Facets by using the
FDE. The FD interacts with the service creation teams to determine necessary Facets that
can be used to develop the service.

Chapter 4 explains the key concepts that enable the Facet as a comprehensive approach to
software reuse. Generic and Implementation definitions enable the decoupling of a reusable
component specification from the implementation. The implementation can be specified for
a specific implementation language or platform. The Generic and Implementation defini-
tions are described by the metanodel. Metax is a model at the M3 meta level consisting

of six aspects. By utilising the six aspect of the metaodel, resource, context and data ag-
nostic features are imported into the reusable component. Placeholders and Variable Blocks
are facet-specific structural components that facilitate code-level reuse by modifying source
code directly.

Chapter5 discusses the FDE. The necessary decisions for the development of the FDE are
first discussed followed by user interface, use cases, class structure and static message se-
guences. XML is the chosen meta-language due to its favourable industry acceptance. The
Document Object Model (DOM) parser is used for eXtensible Markup Language (XML)

file processing. Although DOM is memory intensive (in comparison to the SAX parser),
searching and easier XML manipulation make DOM the acceptable choice. The FDE is im-
plemented using Python. Python facilitates rapid development together with a flexible plat-
form independent GUI package. Facets are stored using the Filesystem due to unacceptable
trade-offs with relational databases and a lack of freeware XQuery compliant databases.
The FDE uses two important design patterns i.e. the Facade and Mediator design patterns.

73

The Fagade wraps methods belonging to distributed classes in its own methods and of-
fers them to clients. Advantages to the Facade are: client classes only need to know of the
Facade class; weak coupling between classes is promoted and overall flexibility is improved.
The Mediator class dynamically registers classes such that existing registered classes have
access to each other. Thus providing a central point for managing complex interactions be-
tween classes. Advantages of the Mediator include weak coupling of classes; simplification
of system design and improved overall flexibility.

Chapter 6 presents three examples that attempt to solidify the Facet concepts. Sédtion
describes th&impleCORBAServideacet, illustrating the basic Facet concepts of FH, con-
tainment, resources, data, context, placeholders and variable blocks. Sg&&ithmstrates

the ability of Facets to accommodate other reuse solutions in its specification by using the
Mediator Facet. And, sectiort.3illustrates the Facet’'s capability to address reuse across
multiple programming paradigms using thé&ebServerTutoridiacet.

7.2 Conclusion

We evaluate the Facet software reuse solution against the objectives laid out in dedtion

Facets are functionality centric The Facet is described in the Generic definition as solving
a particular problem. A solution to any problem realizes functionality. Hence the Facet is
focused on functionality.

Facets are multi-granular. Each Facet can be categorised into a level of the Facet Hier-
archy (FH). FH is a hierarchy of discrete levels that describe groups of functionality. The
groups of functionality are arranged in such a manner that higher levels contain the lower
levels. Hence the FH becomes a multi-level set of pigeon holes for functionality. Since
Facets can be categorised imine of the multiple pigeon holes in the FH, the Facet is
multi-granular.

Facets are platform-independent and implementation language-independenBy de-
scribing a Facet in terms of functionality, the Facet is detached from a particular implemen-
tation except, where the functionality is peculiar to a platform or implementation language.
Also, the decomposition of a Facet into a Generic definition and any number of Implemen-
tation definitions implies that the FD can freely edit the Facet's Implementation definitions
without changing its functional description. Hence the Facet can accommodate multiple
platforms and/or implementation languages without changing its functional description.

Facets are resource, data and context agnosticMeta«r has six aspects that address
different issues. Resources, data and context of a Facet make up three of the six aspects.

74

The FD can input resource, data and context information into the FDE, which is formatted
into the underlying meta-model.

Facets enable platform migration Platform migration is desirable when a service provider
wishes to offer existing services on a different execution platform. If each Facet, contained
by the service, has the capability to migrate to the new execution platform then platform
migration is possible. The ability to migrate to a particular platform means that the Facet
contains an Implementation definition for the target platform.

Facets abstract detail from the developer The detail of a Facet is exposed via facet-
specific structural components i.e. placeholders, variable blocks, global placeholders and
global variable blocks. Facet-specific structural components are suppressed by the specify-
ing values for each. Within a Facet, the FD specifies values for the Sub-Facet's facet-specific
structural components. Hence the user of the Facet does not have to provide values for the
Sub-Facet’s facet-specific structural components. Thus abstracting the level of detail at the
Sub-Facet level.

7.3 Recommendations for future work

This section discusses a few recommendations for future work. Mbg&gins with a novel
approach to characterizing entities. The metaodel should be expanded to become more
robust and flexible in its ability to describe entities. Candidate expansion points are the
resources, contexts and data aspects of the matadel.

Meta-r should also accommodate a mechanism to achieve cataloging of Facets. A cat-
alogued list of facets will improve the probability of reuse from the perspective that the
required Facets will be easier to find.

Accommodating various implementation languages forces various programming paradigms
to be accommodated. Each programming paradigm has its own structural and interaction
modelling languages. Together with the FDE, metarust be able to adequately describe

an Implementation definition’s structure and interactions using appropriate modelling lan-
guages.

For future work, it is proposed that a development environment be created that encompasses
a process for using Facets to create services.

75

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

D. V. Camp, “The object-oriented pattern digest.” Internet Web Site, 2002.
http://patterndigest.com.

D. X. Adamopoulos, G. Pavlou, and C. Papandreou, “Advanced service creation
using distributed object technologyEEE Communications Magazineol. Vol 40,
pp. 146—-154, March 2002.

I. Lovrek, ed. Requirements for Service Creation Environme(dagreb), 2nd
International Workshop on Applied Formal Methods in System Design, June 1997.

M. Chapman, S. Montessi, “Overall concepts and principle of TINA,” Tech. Rep.
Version. 1.0, TINA Consortium,
http://www.tinac.com/specifications/documents/overall.pdf, Feb 1995.

R. Logewaran and C. L. Choo, “Issues on service creation in TINAProteedings
for TINA Workshop 20Q02p. 9-12, Multimedia University, Cyberjaya, Malaysia,
October 2002.

J. Verhoosel, M. Wibbels, H. Betteram, and J.-L. Bakker, “Rapid service
development on a TINA-based service deployment platformProteedings of TINA
‘99, Telecommunications Information Networking Architecture Confergficetle
Bay Resort, Oahu, Hawaii, USA), 12-15 April 1999.

TOSCA Group, “D11: User trial report on embedded methods and tools,” Tech. Rep.
AC237/TTL/ALL/DS/R/0059/b1, TOSCA, Feb 1997.
http://www.teltec.dcu.ie/tosca/publicdocs.html.

Microsoft, “The component object model specification,” tech. rep., Microsoft, 1995.
http://www.microsoft.com/com/resources/comdocs.asp.

E. Gamma, R. Helm, J. Vlissides, and R. John$xsign Patterns: Elements of
Reusable Object Oriented Softwarsddison Wesley Longman Inc., October 1994.

76

[10] L. G. DeMichiel, L. U. Yalcinalp, and et al, “Enterprise JavaBeans specification,
version 2.0,” tech. rep., Sun Microsystems, August 2001.
http://java.sun.com/products/ejb/docs.html.

[11] B. Hayes, “The post-OOP paradigm\inerican Scientisvol. Vol. 91, pp. 106-110,
March-April 2003.

[12] S. Ambler, “A realistic look at object-oriented reus8gftware Development
Magazine pp. 12-20, January 1998.

[13] H. Hanrahan, “Intelligent networks.” Course Notes for ELEN509, University of the
Witwatersrand, Johannesburg, May 2001.

[14] S. Trace, “Effective reuse,” tech. rep., Steel Trace, 2000.
http://www.steeltrace.com/download/Whitepaper

[15] I. Jacobson, M. Gariss, and P. Jonsstoftware Reuse: Architecture, Process and
Organization for Business Succeggldison Wesley Professional, 1997.

[16] Object Management Group (OMG), “Meta object facility,” tech. rep., Object
Management Group, March 2000. http://www.omg.org/mof/.

[17] A. Mili, S. F. O. Chmiel, R. Gottumkkala, and L. Zhang, “An integrated cost model
for software reuse,” itnternational Conference on Software Engineering (IGSE)
(Limerick, Ireland), pp. 157-166, 2000.

[18] TINA Consortium,Computational Modelling Concepts7th May 1996. TINA
Version 3.2.

[19] K.Raymond, “Reference Model of Open Distributed Processing
(RM-ODP):Introduction,” tech. rep., CRC for Distributed Systems Technology,
Centre for Information Technology Research, University of Queensland, 1995.
http://gullfisk.agderikt. hia.no/kurs/ODS/litt/icodp95.pdf.

[20] ISO/IEC, “Reference model of open distributed processing,” Tech. Rep. JTC1.21.43,
ISO, 1995.

[21] N. Mitra, “Introduction to XML web services,” ilnternational Conference on
Intelligent Networks(Bordeaux, France), March 31-April 4 2003.

[22] D. Box, D. Ehnebuske, G. Kakivaya, and et al, “Simple object access protocol
(SOAP) 1.1,” May 2000. http://www.w3.0rg/TR/SOAP/.

[23] Architecture Board MDA Drafting Team, “Model driven architecture: A technical
perspective,” Tech. Rep. ab/2001-02-04, Object Management Group (OMG), Feb
2001.

77

[24] Object Management Group, “Common warehouse model (CWM),” tech. rep., OMG,
2002. http://www.omg.org/cwm.

[25] Object Management Group (OMG), “XML model interchange,” tech. rep., OMG,
2001. http://www.omg.org/xmi.

[26] OMG, “OMG unified modelling language specification,” Tech. Rep. Version 1.4,
OMG, September 2001.

[27] O. Kath and et al, “Impacts of changes in enterprise software construction for
telecommunications: Model driven architecture: Assessment of relevant
technologies.,” tech. rep., Eurescom Project P1149, 2002.

[28] I. Schieferdecker, “TINA CTF - TINA conformance testing,” June 2000.
http://lwww.iskp.uni-bonn.de/bibliothek/reports/GMD/2000/e-probl/TINACTF.pdf.

[29] TINA Consortium: TINA-CAT Workgroup, “Request for proposal: TINA
conformance and testing framework,” Tech. Rep. Version 1.0: Approved and
Released, TINA Consortium,
http://www.tinac.com/compliance/TINAConfTestFrameworkRFP.pdf, July 1999.

[30] D. I. Schieferdecker and L. Mang, “TINA conformance testing framework,” tech.
rep., GMD Fokus, May 2000.

[31] J. Soukup, J. O. Coplien, and D. C. SchmR#jtern Languages of Program Desjgn
ch. 20: Implementing Patterns. Addison-Wesley, 1995.

[32] Technical Committee: JTC 1/SC 34, “Information processing — text and office
systems — standard generalized markup language,” Tech. Rep. ICS 35.240.30,
International Organization for Standardisation, 2001-08-13.

[33] World Wide Web Consortium (W3C), “Extensible markup language,” October 2000.
http://www.w3.0org/XML/.

[34] World Wide Web Consortium (W3C), “Document object model,” 2002.
http://www.w3.0rg/DOM/.

[35] D. Brownell, “Simple API for XML project,” 2003. http://www.saxproject.org/.

[36] R. Bourret, “XML and databases,” January 2003.
http://lwww.rpbourret.com/xml/XMLAndDatabases.htm.

78

Appendix A

Meta-m DTD

A.1 meta«.dtd

<IELEMENT SEMTA (metapi,Component)

<IELEMENT metapi (Creator, Definition, Data, Context,
Resources, Documentation, Extensians)
<IATTLIST metapi

name #PCDATA #required

type #PCDATA #required

<IELEMENT Creator>
<IATTLIST Creator

name #PCDATA #required
institute #PCDATA #required
date #PCDATA #required

<IELEMENT Definition (Description, Behaviour, Interactions , Logic)

<IELEMENT Description (Objectives)
<IELEMENT Objectives (#PCDATA)

<IELEMENT Behaviour (Rules, Policies, Limitations-)
<IELEMENT Rules (#PCDATA)>

<IELEMENT Policies (#PCDATA}>

<IELEMENT Limitations (#PCDATA)>

<IELEMENT Interactions (#PCDATA)

79

<IELEMENT Logic (#PCDATA)>

<IELEMENT Data (Input, Algorithm, Output}
<IELEMENT Input (Items)>

<IELEMENT Algorithm (ltems<)>
<IELEMENT Output (Items)>

<!ELEMENT Items (ValueDescription)
<IATTLIST Items

source #PCDATA #required
target #PCDATA #required
type #PCDATA #required

>
<IELEMENT ValueDescription (#PCDATA}

<IELEMENT Context (Business, Design, Operational, Deployment)
<IELEMENT Business (Environmeg)>

<IELEMENT Design (Environmenrd >

<IELEMENT Operational (Environmer}>

<IELEMENT Deployment (Environmen}>

<IELEMENT Environment (ValueDescription)

<IATTLIST Environment

name #PCDATA #required
type #PCDATA #required
priority (Default|Recommenddinimum|Required) Default

<IELEMENT Resources (Internal, Boundary, External)
<IELEMENT Internal (Resource>

<IELEMENT Boundary (Resoureg>

<IELEMENT External (Resource>

<IELEMENT Resource (ValueDescription)

<IATTLIST Resource

name #PCDATA #required
type #PCDATA #required
priority (Defaultf RecommendgMinimum|Required) Default

<IELEMENT Documentation (Entry)>
<IELEMENT Entry (DocEntry, Additionallnfa)-
<IATTLIST Entry
time #PCDATA #required
date #PCDATA #required

80

<IELEMENT DocEntry (#PCDATA)>
<IELEMENT Additionallnfo (#PCDATA)>

<IELEMENT Extensions (Children, Contains, Other)
<!ELEMENT Children (Models}

<IELEMENT Models>

<IATTLIST Models

name #PCDATA #required
path #PCDATA #required
type #PCDATA #required

>
<!ELEMENT Files>
<IATTLIST Files
name #PCDATA #required
path #PCDATA #required
>
<IELEMENT Contains (Models,Filest)>
<IELEMENT Other (#PCDATA)}>

<IELEMENT Component (ComponentFiles, Create)
<!ELEMENT ComponentFiles
<IATTLIST ComponentFiles

formatter #PCDATA #implied
transformer #PCDATA #implied
evthandler #PCDATA #implied

>
<IELEMENT Create (#PCDATA)

81

Appendix B

Facet DTD

B.1 Facet.dtd
<!ELEMENT SEMTA (metapi)>
<IELEMENT metapi (Creator, Definition, Data, Context,

Resources, Documentation, Extensions)
<IATTLIST metapi

name #PCDATA #required
implname #PCDATA #implied
type (Generi¢timpl) #required

<IELEMENT Creator>
<IATTLIST Creator

name #PCDATA #required
institute #PCDATA #required
date #PCDATA #required

<IELEMENT Definition (Description, Behaviour,
Interactions , Logic)y

<!ELEMENT Description (Problem, Intent, Forces,
Applicability , Participants , KnownUses, Structure,
FacetHierarchy , Technology?)

<!ELEMENT Problem (#PCDATA)-
<!ELEMENT Intent (#PCDATA)>
<IELEMENT Forces (#PCDATA)
<IELEMENT Applicability (#PCDATA)>

82

<IELEMENT Participants (#PCDATA}

<!ELEMENT KnownUses (#PCDATA)

<IELEMENT Structure (gp, gvb, File, Package, Facet,
Association) >

<IELEMENT gp (gpinstance)>

<IATTLIST gp
name #PCDATA #required
value #PCDATA #implied
>

<IELEMENT gpinstance
<IATTLIST gpinstance
name #PCDATA #required

<IELEMENT gvb (gvbinstance)>
<IATTLIST gvb
name #PCDATA #required
value (Y|N) #implied
>
<IELEMENT gvbinstance
<IATTLIST gvbinstance
name #PCDATA #required

<IELEMENT File (variableblock, placeholdex,
Facetx, classmod, methodfune, attributess)>
<IATTLIST File
name #PCDATA #required
implementationLanguage #PCDATA #required

<IELEMENT variableblock (vbinstaneg>
<IATTLIST variableblock

name #PCDATA #required
description #PCDATA #required
value #PCDATA #required

<IELEMENT vbinstance-
<IATTLIST vbinstance

value (Y|N) #implied
from #PCDATA #required
to #PCDATA #required

83

<IELEMENT placeholder (pinstaneg>
<IATTLIST placeholder

name #PCDATA #required
description #PCDATA #required
value #PCDATA #required

<IELEMENT pinstance-

<IATTLIST pinstance

value #PCDATA #implied

from #PCDATA #required

to #PCDATA #required
>

<!ELEMENT Facet (FacetHierarchy, settings
<IATTLIST Facet

name #PCDATA #required

type (ext int) #required

from #PCDATA #required

to #PCDATA #required

<IELEMENT settings>
<IATTLIST settings

name #PCDATA #required

value #PCDATA #implied

from #PCDATA #required

to #PCDATA #required

>
<IELEMENT classmod (name, type, expcontrol,
stereotype , attribute:, methodfune)
<IATTLIST classmod
from #PCDATA #required
to #PCDATA #required
>
<!ELEMENT name>
<IATTLIST name

value #PCDATA #required
from #PCDATA #required
to #PCDATA #required

>
<IELEMENT type>

84

<IATTLIST type

value #PCDATA #required
from #PCDATA #required
to #PCDATA #required

<IELEMENT expcontro
<IATTLIST expcontrol

value #PCDATA #required
from #PCDATA #required
to #PCDATA #required

<IELEMENT stereotype-
<IATTLIST stereotype

value #PCDATA #required
from #PCDATA #required
to #PCDATA #required

<IELEMENT attribute (name, type, stereotype ,
initvalue , expcontrol}
<IATTLIST attribute

from #PCDATA #required

to #PCDATA #required

<IELEMENT methodfunc (name, return, stereotype,
expcontrol , args)>
<IATTLIST methodfunc

from #PCDATA #required

to #PCDATA #required

<IELEMENT return>
<IATTLIST return

value #PCDATA #required
from #PCDATA #required
to #PCDATA #required

<IELEMENT args (name, type)

<IELEMENT Package (File, Package)>

85

<IATTLIST
name #PCDATA #required

<IELEMENT Association>
<IATTLIST Association

name #PCDATA #required
sourcename #PCDATA #required
destname #PCDATA #required
sourcemult #PCDATA #implied
destmult #PCDATA #implied
type #PCDATA #required

<IELEMENT FacetHierarchy (#PCDATA)
<!ELEMENT Technology (titem«)>

<!ELEMENT t_item>
<IATTLIST t_item
name #PCDATA #required

<IELEMENT Behaviour (Rules, Policies, Limitations)
<IELEMENT Rules (#PCDATA)>

<!ELEMENT Policies (#PCDATA)>

<!ELEMENT Limitations (#PCDATA)>

<IELEMENT Interactions (Relations, Collaborations)
<IELEMENT Relations (#PCDATA)
<IELEMENT Collaborations (#PCDATA}

<IELEMENT Logic (#PCDATA)>

<IELEMENT Data (Input, Algorithm, Output}
<IELEMENT Input (Items:)>

<IELEMENT Algorithm (ltems<)>
<!ELEMENT Output (Items)>

<!ELEMENT Items (ValueDescription)
<IATTLIST Items

source #PCDATA #required
target #PCDATA #required
type #PCDATA #required

>
<IELEMENT ValueDescription (#PCDATA}

86

<IELEMENT Context (Business, Design, Operational, Deployment)
<IELEMENT Business (Environmeg)>

<!ELEMENT Design (Environmen)>

<IELEMENT Operational (Environmer}>

<IELEMENT Deployment (Environmenr}>

<IELEMENT Environment (ValueDescriptior)

<IATTLIST Environment

name #PCDATA #required
type #PCDATA #required
priority (Defaultf RecommendgtMinimum|Required) Default

<IELEMENT Resources (Internal, Boundary, External)
<IELEMENT Internal (Resource >

<IELEMENT Boundary (Resoureg>

<!ELEMENT External (Resource>

<IELEMENT Resource (ValueDescription)

<IATTLIST Resource

name #PCDATA #required
type #PCDATA #required
priority (Default| RecommendgMinimum|Required) Default

<IELEMENT Documentation (Entry)>
<IELEMENT Entry (DocEntry, Additionallnfo)
<IATTLIST Entry
time #PCDATA #required
date #PCDATA #required
>
<!ELEMENT DocEntry (#PCDATA)>
<!ELEMENT Additionalinfo (#PCDATA)>

<IELEMENT Extensions (Children, Contains, Other)
<IELEMENT Children (Models)

<IELEMENT Models>

<IATTLIST Models

name #PCDATA #required
path #PCDATA #required
type #PCDATA #required

>
<!ELEMENT Files>
<IATTLIST Files

name #PCDATA #required

87

path #PCDATA #required
>
<IELEMENT Contains (Models,Filest)>
<IELEMENT Other (ExamplesOfUsg>
<!ELEMENT ExamplesOfUSe (#PCDATA)

B.2 FacetSource.dtd

<IELEMENT FacetSource (Technology+, globalvariableblack
globalplaceholdek, facetsx, files ?)>

<IELEMENT Technology (CDATA)>

<IATTLIST FacetSource

name #PCDATA #REQUIRED
impl #PCDATA #REQUIRED
fh #PCDATA #REQUIRED
>
<IELEMENT link>
<IATTLIST link
name #PCDATA #REQUIRED
path #PCDATA #REQUIRED
>

<IELEMENT globalvariableblock (link+)-
<IATTLIST globalvariableblock
name #PCDATA #REQUIRED
value (Y|N) #REQUIRED

<IELEMENT globalplaceholder (link+}
<IATTLIST globalplaceholder
name #PCDATA #REQUIRED
value #PCDATA #REQUIRED

<IELEMENT facets (description, settingg>
<IELEMENT description>
<IATTLIST description

name #PCDATA #REQUIRED

fh #PCDATA #REQUIRED
>
<!ELEMENT settings>
<IATTLIST settings

name #PCDATA #REQUIRED

value #PCDATA #REQUIRED

88

<!ELEMENT files (CDATA)>
<IATTLIST files
filename #PCDATA

#REQUIRED

89

Appendix C

Facet Hierarchy and Implementation
Language

C.1 Sample Facet Hierarchy XML file

<?xml version="1.0" encoding="IS©8859-1"?>
<!——This xml file will maintain the state of the hierarchical
structure which describes facet containment. xml is ideal for
this due to its naturally hierarchical description . The
optional attr serves to provide a mechanism to allow certain
levels of the hierarchy to be skipped. One such situation is
the FDL level. Not all software created will have an FDL
definition . where FDL refers to XML, IDL, ete.—>
<SEMTA>
<Platform optional ="No*>
<Architecture optional ="No*
<Component optional="Na*
<FDL optional="Yes"™>
<00 optional="No"™>
<Classes optional ="Na®
<Methods optional="No*
<Algorithms optional="
No"/>
</Methods>
</Classes
</00>
<FunctionalProgramming optional="Np”
<DataStructures optional ="No*
<Functions optional="No*
<Algorithms optional="
No"/>

90

</Functions>
</DataStructures
</FunctionalProgramming
<Scripting optional ="No*>
<Files optional ="No™>
<Algorithms optional="No"t
</Files>
</ Scripting>
</FDL>
</Component
</ Architecture>
</Platfornt>
</SEMTA>

C.2 DTD for Implementation Language Comments

<IELEMENT ImplOptions &Impl)>
<IELEMENT Impl>
<ATTLIST Impl
CommentChar #PCDATA #required

C.3 Sample Implementation Language Comments XML file

<?xml version="1.0" encoding="ise8859-1"?>

<ImplOptions>
<Impl CommentChar="##" Lang="Python¥
<Impl CommentChar="//" Lang="IDL"t~
<Impl CommentChar="//" Lang="Java¥
<Impl CommentChar="//" Lang="C++"
<Impl CommentChar="#" Lang="PHP%
<Impl CommentChar="#" Lang="Perl*%
<Impl CommentChar=""Lang="None%
<Impl CommentChar="&It;—" Lang="HTML"/ >

</ImplOptions>

91

Appendix D

Additional UML Diagrams

This Appendix adds to the UML diagrams from sectibré.

w3 ol e rind o

]

from wa)

Figure D.1: XML Explorer

92

HMLEditorF anel
_%parent:wa{‘u“ﬂndow
&;_dom : xmldom.mindom
& _isReadarly : Boolean
ErxmniTree : vwaTreeCir
B Test : weTextCirl
Birmanepath
&hodeNameyvetoList
S init__0
®0onSashChanged
wiTree Ctrl % _del_ 0 T et
from wx) SLoadModeld TS
SUnLoadCurenthodel
$Refreshi
(/ 1
1
HMLTree
%parem s verindowe HMLTesxt
dom i
R SisReadanly
&hodeNamevetoList: List= initial — == =] & _jnit_g
&NodeNameDelvetoList ; List % del_op
Bhitern : wiTreeltem i
& cookie : Lang
BhisCopied : Node

G labalVfariableB lo cdifin down
F e our cellf ind o Q)\.bList
Q)rsourcs_choice
res_choice G lab ahifind o ‘_G|Eal|::l
name Q}culren{lmpl ‘_ﬁnchrb()
Q"primih,r =
type OnCheck)
Q}descripﬁon Bonvaluel hange) G labal Pl acehalde rilfind o
QOnHameChang &) :] Q}plist
%_init_()
%Loadodel) %7 % findp()
U nLoadC urrenthlodel)
BOnR esoureesC hange) Wi ndantd odel
®OnR esinde:C hange)
%anc lear(l%c um ertmode |
#_clear() @c um erbcorte 4
ﬁ_chang e ez choic) 4‘} P
:_chang e esindesd) :[E:dr:ld_o(jetj
=phedname S nLoadC urr erthdode i)
S0 nAdd)
0 nhdad)
SO0 date()
Do cEndriindou ‘_createstructureso
Spadditimal [:—d:eﬁig
doc umentation e ‘:::] Technol ogwifin do
Epentry Somodtet
ﬁ_i Y @selech or
%Loa ddodel) % 0nT echindex hange)
%UnlLoalCurrenthiodel) WOnT e hang e’
S0onClarg % clear)
%0nC omboSelect) - ¥ chedd)
& dizplayd o cumentation) D ataindauy Co ntedifindow B makeonetedioda)
& removeallchil derd) @ndata_choice contexd choice =
l&)ﬂem_choice emr_chEice
@source name
'%targ et Q}pliorih,r
@hrpe @)t;rpe
@dﬁclip{ion @pdsctip’(ion
S_init_0) % _int_0
DLoadhiodel() %LoadModel])
U nLoad Currentt odel() %1 nLoadC urrenthdadel)
QOn0 staChang &) %0nC ontedC hang)
SOrnkems hang &) $0nEmt hang &)
@0n lzar) &0nc lear)
% _clear() & clear)
’_changedata-:hoi -] Q_chang econtexdchoice)
’_changeitemin desd) ﬁ'_chang e ndex)
"_ched(name()

Figure D.2: Common Windows

wiDialog
(from e

i

Editor

NS

ClasshodEditor

MethodFuncEditor

AttrEditor | | AssocEditor | | PlaceholderEditor |7 VEEditar

Figure D.3: Editor

93

|

1

Dataiodel FacetDatahdodel
&uminode &name
hame &pzettings
&id 8pfh
&dom
= ® it e —

$GetLModel) @ init_0
$GetMarme) Gethodell)
SGeatl() SGetDomi)
“Delete) M | ® a0
® dd_ —=

GenericDataiodel ImplementationDatahodel ExternalF acetDatatodel InternalFacetDataodel
Btype Stype Sotype &type
Swetolist EvetoList Bpextdamn &extdorn
&path &path &path &path
&readonly &readonly &isReadOnly &isReadOnly
ESRCFile Econtents
SSetPath(®SetPath))
VGetPath() %Get Path() $GetPath() SSetPathi)
SetvetaList() *Get Path() SSetExtDom() SGatPath)
SGetvetalist]) SSetvetalist]) $GetExtDom() $SeiExtDom)
$isReadOnly() SGetVetolist() YisReadOnly() SGatExtDom()
®isReadOnly) %isReadOnly)
S5 et Text2 SRCFileObject() $CetContents()
PGet Text2SRCFileObject() $SetContents()

Figure D.4: Facet Data Models

94

Databdodel

'%}{mlnu:u:le
&sname

&id

AssociationDataModel

% init_ ()
SGet¥MLMode)
SGethamel)
SGetld()

PackageDataModel

$Delet el =
* del

A

GlobalPlaceholderDataModel

GlobalvariahleBlockDataModel

FileDatahodel

&pvalue Bovalue
links links
% init_ % init_ 0
SGetdMLMode() $GetdMLMode()
® del ® del_ 0

Etype
Etent
&posxmidict

95

SaddPosXMLEntry()
SGetimplementationLanguage()
SRemoveTextXMLEntry()
SFindPosEntry()
SUpdatevaluss()
STextAddad])
STextDeletel)

% updatexminode()

% getAllwithld])
SGetText()

PSetTeut()

Figure D.5: Sub-Facet Data Models

Databdodel

'%}{mlnu:u:le
&sname

&id

AssociationDataModel

% init_ ()
SGet¥MLMode)
SGethamel)
SGetld()

PackageDataModel

$Delet el =
* del

A

GlobalPlaceholderDataModel

GlobalvariahleBlockDataModel

FileDatahodel

&pvalue Bovalue
links links
% init_ % init_ 0
SGetdMLMode() $GetdMLMode()
® del ® del_ 0

Etype
Etent
&posxmidict

96

SaddPosXMLEntry()
SGetimplementationLanguage()
SRemoveTextXMLEntry()
SFindPosEntry()
SUpdatevaluss()
STextAddad])
STextDeletel)

% updatexminode()

% getAllwithld])
SGetText()

PSetTeut()

Figure D.6: Sub-File Data Models

wiDialog
(from)

FacetEditor

wer TreeCtrl
[from we)

&yirmagepath
facetnarme
Efdrndict
Epvbm atrix
il n dov
Eirmpldict
Epvttres
Einstnctions
&deschption
&editable

PYBTrae

&yirmagepath

& init_§
SgetCurrentltemi)
L oad))
$0nSizel)
$0nSelChanged)
S0ninclude)
S0nRightDown()

* it
$OnCancel])
SOn0 k()
SOnApply)
$election Changed()
$ChangeGve()
SChangeWB()
$0nClosevi ndow()
& del_
& changefdm()
& applyPChanges(
& changeP()
& changevE(
& getlistOfLines(
& comment Pt
& createlayout(

' clear()
& display()

— —

wex T extCtrl

From)

Figure D.7: Facet Editor

97

wrscroledyYWindow

ffrom e

Facet\Window
_@currentmudel
l%currentcomext

Eytype
&scontralDict

® init_ ()

* adModel()
SUnLoadCurrenthodel()
SClearall]
SOnTextinput()

® cnableAll]

% createComponents()
® createStaticText()

% displayinformation()
®GetTextMode()

Figure D.8: Facet Window

98

wir TextCtel

ffrom e

Ingertionindow

sl

l%u:nntents
Escallback
l%message

Estitle

wextDialog
(from we

FileYvindo

Escurrentfilemodel
Escurrentmodel
&EditorDict : Dictionary

® init_
$LoadModel()
SUnLoadCurrenttaodel()
$hiodelSelectad])
Saddiadal])
SaddEntry()
*remuveMndelO
SremmoveEntryl)
®createlnternalFacet()
®createlntemal FacetCB)
ScreateClasshod])
ScreateAtr()
ScreateMethodFunc()
~|:reateF'Ieu:el‘u:ulu:ierﬁl
ScreateVariableBlock()
S addText))
SDeleteText])
®hewline()
$Tablndent()

SEdit()
®GetPositionyalues()

$ del

& cditAIFT)

% highlight()
*_recalculateF'nsitiunsCl
 getcl

& setftvaluesimi()

% init_editors()

% int_Q
‘OnCanceIﬂl
S0nok(
®0nCloseyindowl)
% createdisp()

— —— —— —==(from Editors)

ClasshodE ditor

i

MethodFuncEditor
tfrom Editors)

Figure D.9

— — — —{(from Editars)

— — — —T={ifrom Editors)

AttrEditor

PlaceholderEditar

— — — — = frnmEditors)

“BEditor

: File Window

99

wixDialog
[m e

FileWindowComponentWizard

T%datamudel
@)callhack
Esfilowindow
l%}curremindex

FilelternCreationDataModel

Esdatadict

¥ init_ ()
¥GetDataModel])
%0nErase ()
®0nFetchi)
®0ncancel])
S0nkext])
®0nBack)
B0OnCloseindow()
® del

% create’ars()

* display(

% dizp_art)

® init_ ()
®addRepeatvalue)
¥oraze FTValue()
YizRepeat()
®addEntry)
BcetFT Value()
BetFT Value()
SgetFT ValueByMame)
Bpethlext()
SqetPrevious)
®getFirst ()
Sgotlast])
Sgetlastind ex()

* index()

* addentry()

* del

Figure D.10: File Window Component Wizard

100

Appendix E

Simple CORBA Service Facet

This Appendix contains screen dumps of three when the SimpleCORBAService Sub-Facet
were being edited.

i Facet Workspace: ORBCreation

File Tools Help
D|(@|A| k]|

& ORBCreation
G Gereric —
B~ X JavaORBACUS
=~ ORBCreate
=~ W Canfig File Path
Polp path

i b P model value
- W Thread Paal
b P pool zize
- T C++Oribacuz
= ORBCreate
=T AddFroperties
- U Server Mame

Ilt

B v Concurmency b
- e B model value
= ¥ Thread Poal
b B pool zize
- W NoProperties

Figure E.1: ORB Creation Facet: IDE structure

101

] Facet Workspace: ReadIORFron

File Tools Help

D|c|W|A] k] |E =]l

£ ReadlORFromFile
ﬁ Generic
Ell Java

i ElEl reading

E|I C++
= reading
P Filename

Figure E.2: Read IOR From File Facet: IDE Structure

Bl Facet Workspace: WriteIOR ToFile

File Tools Help

DA]

£ wiitel DR T oFile
G [Generc
O X Java
B[witing
----- F Object Mame
----- F Filename

----- F ORE name

- [writing

----- F Object Mame
----- F Filename

----- F ORE name

|'|'II

Figure E.3: Write IOR from File Facet: IDE Structure

102

] Facet Workspace: CORBAServer

File Tools Help

D& AR | x |E 7| E @ =]

ElI Java
..... B Obj
ElEl Ser

o
H-F
=X C++

i

H ™™=

8

!1_" CORBASerer
Lo 3 Generic

ect Across Facets
WEL |33

Clazs Mame

CORBA Object Implementation Clazs Mame
Implementation ¥ ariable M ame

CORBA Object Tepe

COREA Object VW ariable Mame

Package

F Package Mame

Server

- Ml main

----- # ootPOA

----- F manager

----- # hellolmpl

----- # hello

..... F Dut

OREBCreation:.) avalRBACIS. =l
Wwéritel DR T oFile:] ava. xml

----- FE. CORBA Object Vanable acrozs Facets
=B Server.cpp

CORBA Object Impl Clazs
CORBA Object YV ariable name
CORBA Object Tepe

COREBA Object Going to I0R

poallb

rootPoa

manager

hellolrmpl

zervant

ORECreation: C++0rbacuz. <mil
Writel DR T oFile: C++. =l

Filet

S CH
#incl
#incl

#incl

int r

Facet P
Irmpleme
Loading
Loading
Loading

Figure E.4: CORBA Server Facet: IDE Structure

103

[l Facet Workspace: CORBASeryerSideObject

File Toaols Help

DS A k] < |E 2= |6 & =

.F_-" CORBAS erverSidelbject

“ G Genernc f
BT Java F
=B ObjectName.java
El "B Fackage

. e P Package Mame

P Implementation Class Mame
P CORB& Object Mame
@ Hello_impl
C++
[Objecth

-~ P Implementation Clazs Mame

F CORBA Object Mame
Freturn bype
« F method name

Hello_impl
. zay_hellaf]
E--[F Object.cpp
-~ B Implementation Clazs Mame
- B return type
- F method name
-~ M Hello_impl
----- E Implementation Clazz Mame
----- E FRetumn Type
----- E Method Mame

G

Figure E.5: CORBA Server Side Object

104

[l Facet Workspace: CORBAClient

Help

File Tools

G Generic
BT Java
- Clentjava
P Class Mame
- P CORB& Object Type
P CORBA Object Variable Mame
--U Package
- # ORBCreation:) awa0RBACUS =ml
~F ReadORFrormFile:. ava.sml
=@ Cliert
e El main
...... H run
EI |:++
= Clent.cpp
P CORB& Object Type
P CORB& Object Variable name
- ORBCreation: C++0rbacusz. =ml
& F Read ORFromFile:C++.xml
Ll main
- M un

Dl A | x| R |

£ CORBAChent

Do
Drat
Doc
Lize
Adc

Doz

Figure E.6: CORBA Client Facet: IDE Structure

105

Appendix F

Sample metas xml file

Below is a metar file that represents thiavalmplementation in th&imple CORBAService
Facet.

<?xml version="1.0" encoding="UTF8'?>
<SEMTA>
<metapi type="Implementation’ nhame='Simple CORBAService’ implname='Java’
<Creator date="Fri Jun 06 10:33:31 2003’ institute =" University of the Witwatersrand
' name="Bilal A.R. Jagot'
< Definition>
<Description>

<Problem>-How to demonstrate a Simple CORBA Service with a single Object that
possesses a minimal set of operation#”roblem-

<Intent>Client to Server operations . To say "hello” on the Server sidéntent
>

<Forces-Simple CORBA server. Single Object. IOR in Fite/Forces>

< Applicability >Simple CORBA services/Applicability>

< Participants>CORBA Server, CORBA client, IDL Definition for clientserver
interaction </ Participants>

<KnownUses-None</KnownUses-

< Structure>

Place the tree that describes the .src file here.

<Facet to =" from =" name="CORBAServer:Java.xml' type="externat settings-
Place the tree that describes the .src file here.

<File name="Server.java’ implementationLanguage="Java’

106

<Facet t0="929’ from="88" name="ORBCreation:JavaORBACUS.xml’ value=" java
.util. Properties props = System. getProperties () ; props. put(”org.omg.CORBA
.ORBClass”, "com.ooc.CORBA.ORB"); props.put("org.omg.CORBA.ORBSingletonClass

", "com.ooc.CORBA.ORBSingleton”); props.put("ooc.config”,"Gwhereé \ config
xt"); /I props. put("ooc.orb.servarame ”, " TheNameOfTheServerlfIMRisBeingUsed

"); Il props. put("ooc.orb.oa.conmodel”, "threaded , threager.client , threadperrequest
, threadpool ™) ;// props.put("ooc.orb.oa. thregmbol ”,"n>0"); int

status =0; org.omg.CORBA.ORBorb=null; try { orb = org.omg
.CORBA.ORB.init(args, props); status = Server.run(orb);} catch(

Exception ex) { ex. printStackTrace () ; status =1, } if (orb
I= null) { try { orb.destroy(); } catch(Exception ex
) { ex. printStackTrace () ; status =1; } } System.exit

(status) ;' type='internal><settings-Place the tree that describes the
.src file here<File name="ORBCreate’ implementationLanguage='Jaxa’
variableblock description="If a new path to a configuration file needs to
be specified , use this property . Be sure not to use the succeeding props
.put statements else the config file values will be overriden’ value='yes
" name="Config File Path><vbinstance to="331’ from="283’ value="props.
put(’ooc. config ”,” C\ \wheré \ config. txt ") ;'/>
<placeholder description ='The absolute path to the config file
using "\\" instead of "\". Include the config file name.
value="C) \wheré \config.txt ' name="path>
<pinstance to="328' from="307" value="G\whereé \config. txt’/>
</placeholder

</variableblock>
<variableblock description =’'Use this variable block of you need to

specify a name for the server because you are using IMR. If you

are not using IMR, this property should not be set . value=no’

name='Server Name’

<vbinstance to="407’ from="336’ value="no¥%

<placeholder description ='"Place the name of the server here is
you are going to be using this variable block .| value="no’
name='name>
<pinstance to='404" from="370’ value=’

TheNameOfTheServerlfIMRisBeingUsexd'/
</placeholder

</variableblock>
<variableblock description ="The concurrency model that defined

how the ORB will handle requests . value='no’ name="Concurrency

Model'>
<vbinstance to="508" from="412" value="no¥

107

<placeholder description ='The options are threaded ,
threadedperclient , threadperrequest or threagool . If it
is threadpool then the next property must be set also .
='no’ name="model value>
<pinstance to="505" from="448" value="threaded,
threadperclient , threadperrequest , threagool'/>
</placeholder
</variableblock>
<variableblock description ='If the concurrency model is
threadpool then this property MUST be set.” value='no’ name="’
Thread Pool>
<vbinstance to="555" from="513’ value="no¥%
<placeholder description =" Specifies the number of threads in the
pool that the ORB will manage. This value must be greater
than zero. If it is not, a runtime error will be generated .

value

value="no’ name="pool size>
<pinstance to='552" from="549’ value="n0’/>
</placeholder-
</variableblock>
</File>
</ settings>
</Facet>
<Facet to="1603" from="1304’ name="WritelORToFile:Java.xml’ value="try
{ String ref = orb. objecto_string (obj); String refFile ="~
ior . ref ”; java.io. PrintWriter out = new java.io. PrintWriter (new
java.io . FileOutputStream(refFile)) ; out. printin (ref); out. close
(); } catch(java.io.lOExceptionex) { ex. printStackTrace () ;
return 1; }' type='internal >
< settings>Place the tree that describes the .src file heFde name
='writing’ implementationLanguage="Java'<placeholder description='
The name of the object whose IOR needs to be stringified and saved
to file ' value='obj’ name="Object Name?<pinstance to="1354" from
='1351" value="obj'/>
</placeholder
<placeholder description ='The name of the file to which the IOR
must be saved. The file need not exist’ value='ior.ref’ name='
Filename>
<pinstance to="1385" from="1378’ value="ior . ref¥
</placeholder-
<placeholder description ="The variable that holds the ORB instance
" value="orb’ name="ORB name?
<pinstance to="1333" from="1330" value="orb¥
</placeholder-
</File>

108

</ settings>
</Facet>
<variableblock description ='Is this Server part of a package?’ value='
yes’ name='Packagg’
<vbinstance to="22' from="8" value="package helloz/
<placeholder description ='The name of the package if the server is
" name='Package Name’
<pinstance to="21" from="16" value="hello %
</placeholder
</variableblock>
<placeholder description ="The name of the Class which must match the
name of the file .java’ value="Server’ name='Class Name’

part of one. value =

<pinstance to='42' from='36" value='Server¥

</placeholder

<placeholder description ="The name of the class that has been created to
implement the logic of the defined CORBA Object/Interface’ value=’
Hello_Impl’ name="CORBA Object Implementation Class Name’
<pinstance t0="1234" from="1224" value="Hellémpl’/ >
<pinstance to="1261" from="1251" value="Helltmpl’/ >

</placeholder

<placeholder description ='The variable name for the implementation

object’ value =" name='Implementation Variable Nane’
<pinstance to="1244' from="1235’ value="hellolmpt¥
<pinstance t0="1290" from="1281" value="hellolmpt¥/
</placeholder
<placeholder description ='The type of the CORBA Objects’ value=" name
=’CORBA Object Type>
<pinstance to="1272' from="1267' value="Hello¥
</placeholder
<placeholder description ='The name of the variable that holds the
CORBA Object that will be stringified . value =" name="CORBA Object
Variable Name>
<pinstance to="1278' from="1273 value="hello¥
</placeholder
</File>
<gp name="0Object Across Facets’ value="hello’
<gpinstance name='Server.jd\@ORBA Object Variable Name¥
<gpinstance name="Server.jay&/ritelORToFile:Java.xmjwriting\ Object
Name’f>
<lgp>
</ settings>
</Facet>
<Facet to =" from =

name="CORBACIient:Java.xml’ type="external’

109

< settings>Place the tree that describes the . src file heFde name='Client
.java’ implementationLanguage="Javak Facet to="865" from="84" name="ORBCreation
:JavaORBACUS.xml’ value="java.util.Properties props = System. getProperties () ;
props. put(’org.omg.CORBA.ORBClass”, "com.ooc. CORBA.ORB"); props.put

("org.omg.CORBA.ORBSingletonClass”, "com.ooc. CORBA.ORBSingleton”); props
.put("ooc.config”,"C\ \config.txt”); // props.put(’ooc.orb.serverame ”, ” TheNameOfTheServerlfIMRisl
"); props.put(’ooc.orb.oa.conmodel”, "threaded”) ;// props.put("ooc.orb.oa
.threadpool ",’n>0"); int status =0; org.omg.CORBA.ORB orb = null;

status = Client.run

try { orb = org.omg.CORBA.ORB.init(args, props);
(orb); } ex. printStackTrace () ; status =1;

} if(orb = null) { try { orb.destroy(); } catch(Exception

ex. printStackTrace () ; status =1; } } System.exit
static int run(org.omg.CORBA.ORB orlf) ' type="internal

catch (Exception ex) {

ex)

(status); }
'><settings-Place the tree that describes the . src file heFde name=’

ORBCreate’ implementationLanguage="Jav& variableblock description="If a new
path to a configuration file needs to be specified , use this property . Be
sure not to use the succeeding props.put statements else the config file values
will be overriden’ value="yes’ name='Config File Pathkvbinstance to="318’
from="277" value="props. put(”ooc. config ”,” G\ config . txt ") ;'/>
<placeholder description ='The absolute path to the config file
using "\\" instead of "\". Include the config file name.

value="C}\config. txt ' name="path>
<pinstance to="315’' from="301" value="G\ config. txt'/>

</placeholder

</variableblock>
<variableblock description =’'Use this variable block of you need to

specify a name for the server because you are using IMR. If you
are not using IMR, this property should not be set . value=no’
name='Server Name’

<vbinstance t0="394" from="323’ value="no%
<placeholder description ='"Place the name of the server here is

you are going to be using this variable block .| value="no’

name='name>
<pinstance to="391’ from="357" value=’

TheNameOfTheServerlfIMRisBeingUsexd'/

</placeholder

</variableblock>
<variableblock description ="The concurrency model that defined

how the ORB will handle requests . value='yes’ hame='

Concurrency Model>
<vbinstance to="444" from="397’ value="props. put(’ooc.orb.oa.

concmaodel”, "threaded”) ;>

110

<placeholder description ='The options are threaded ,
threadedperclient , threadperrequest or threagool . If it
is threadpool then the next property must be set also . value
='threaded ' name="model valug’
<pinstance to='441" from='433" value="threaded-/
</placeholder-
</variableblock>
<variableblock description ='If the concurrency model is
threadpool then this property MUST be set.’ value='no’ nhame="’
Thread Poot>
<vbinstance to="491’ from="449’ value="no¥%
<placeholder description =" Specifies the number of threads in the
pool that the ORB will manage. This value must be greater
than zero. If it is not, a runtime error will be generated .
value="no’ name="pool size>
<pinstance to='488" from="485" value="n0"/>
</placeholder
</variableblock>
</File>
</ settings>
</Facet>
<variableblock description =’If the client belongs under a package then
this line should be used, specifying what the package nameis . value
='yes’ name='Package’
<vbinstance to="14" from='0" value="package hellox/
<placeholder description ='The name of the package that this class is
in ./ value =" name="Package Name’
<pinstance to="13" from="8" value="hello %
</placeholder
</variableblock>
<placeholder description ='The name of the class . If the class name
changes, the filename must change also’ value =" name='Class Name’
<pinstance to='35" from="29’ value='Client%
</placeholder
<Facet to="1237’ from="916' name='"ReadlORFromFile:Java.xml’ value="org.

omg.CORBA.Object obj = null; try { String refFile ="ior. ref

" java.io.BufferedReader in = new java.io.BufferedReader(new
java.io.FileReader(refFile)); String ref = in.readLine() ; obj =
orb. stringto_object (ref); 1} catch(java.io.lOException ex) {

ex. printStackTrace () ; return 1; } Hello hello = HelloHelper.
narrow(obj) ; return ' type=internal®

111

< settings>Place the tree that describes the .src file heFde name
='reading’ implementationLanguage="Java& placeholder description='
The name of the file where the IOR resides’ value='ior.ref’ name=’
Filename> <pinstance t0o="989’ from="982’ value='"ior . ref%#
</placeholder
<placeholder description ='The name of the variable that holds the
ORB instance’ value='orb’ name="Or’
<pinstance t0="1132' from="1129’ value="orb/
</placeholder
</File>
</ settings>
</Facet>
<placeholder description ="The Type of CORBA Object you want to narrow’
value =" name="CORBA Object Type’
<pinstance to="1246" from="1241" value="Hella¥
<pinstance to="1260" from="1255" value="Hello¥
</placeholder
<placeholder description ='The name of the narrowed CORBA Object, on
which operations can be carried out. value =" name="CORBA Object
Variable Name>
<pinstance t0="1252' from="1247’ value="hellg¥
</placeholder-
</File>
</ settings>
</Facet>
<Facet to =" from =
< settings>Place the tree that describes the .src file heFde name=’
ObjectName.java’ implementationLanguage='JavaVariableblock description=’
If this class should belong in a package then a package name should be

name="CORBAServerSideObject:Java.xml’ type="external’

used .’ value=yes’' name='Packagexvbinstance to="14’ from="0" value=’
package hello ;%
<placeholder description ='The name of the package that this class

belongs to’ value =" name='Package Name’
<pinstance to =13’ from="8' value="hello

</placeholder-

</ variableblock>

<placeholder description ='The Implementation class name that must be the
same as the.java filename’ value="Hellopl’ name="Implementation
Class Name>
<pinstance to="39" from="29’ value="Helldmpl’/ >

</placeholder

<placeholder description ='The name of the CORBA Object that we want to
extend .’ value =" name="CORBA Object Name’

<pinstance to="'53" from="48" value="Hello*

112

</placeholder
</File>
</ settings>
</Facet>
<File name="Hello.idl’ implementationLanguage="IDt’
<placeholder description ='The CORBA Object from the IDL." value =" name=’
CORBA Object>>
<pinstance to="17" from="17" value =%
<pinstance to="22’ from="17" value="Hello%*
</placeholder-
<placeholder description ="The name of the Operation in the IDL file ’ value
=" name='Operation Name?
<pinstance to="40" from="31" value="sayello’/>
</placeholder-
<placeholder description ="The return type of the IDL operation’ value ="
name='Return Type>
<pinstance to="30" from="26" value="void’#
</placeholder-
<classmod to="46" from="7>
<name to="22’ from="17’ value="Hello’~
<type to="16’ from="7" value="interface %
<expcontrol to="0" from="'0" value ="t~
<stereotype to="0' from="0" value ="
<methodfunc to="43’ from="26>
<name to="40" from="31’ value="sayello />
<return to="30" from="26" value="void't>
<expcontrol to="0" from='0" value ="~
<stereotype to="0" from="0" value ="
</methodfunc-
</classmod
</File>
<gp name="CORBA Object Type’ value="Hellx’
<gpinstance name="CORBAServer:Java.x8erver.javgCORBA Object Type’t-
<gpinstance name="IDICORBA Object’/>
<gpinstance name="CORBACIient:Java.x@lient.java CORBA Object Type't
<lgp>
<gp name="CORBA Interface Operation’ value="shgllo’>
<gpinstance name="ID\Operation Name
<lgp>
<gp name="CORBA Interface Operation Return Type’ value="/
<gvb name='Package’ value="yes’
<gvbinstance name="CORBACIient:Java.x@lient.java Package’*
<gvbinstance name="CORBAServer:Java.x8grver.javqPackage’

113

<gvbinstance name="CORBAServerSideObject:Java\QhjectName.javePackage
1>
</gvb>
<gp name="Package Name’ value="hello’
<gpinstance name="CORBAServerSideObject:Java\QhjectName.javePackage
\Package Name¥#
<gpinstance name="CORBACIient:Java.x@lient.java PackaggPackage Name
1>
<gpinstance name="CORBAServer:Java.x8erver.javqPackaggPackage Name
>
<Ilgp>
</Structure>
<FacetHierarchy Platform.ExecutionEnvironment.ArchitecturalComponent.Component.
FDL.</FacetHierarchy
<Technology-
<titem name='Java
<t_item name="CORBA'%>
</Technology-
</Description>
<Behaviour-
<Rules>a course of action the model followgRules>
<Policies>detailed version of the rules/Policies>
<Limitations>At what point does the solution breakdowrLimitations>
</Behaviour-
< Interactions>
<Relations-Specify the inheritance , containment, et¢Relations>
< Collaborations-Specify the calls from one componentto the next. MSCs are built
from this element. If special requirements are necessary create a new element
such as SDL here/Collaborations-
</ Interactions>
<Logic/>
</ Definition>
<Data>
<Input>
<ltem source =" type =" target=>
<ValueDescription-This is a description of the input iter/ValueDescription-
</ltem>
</Input>
<Algorithm>

<Item source =" type =" target =2
<ValueDescription-This is a description of the item/ValueDescription>
</ltem>
</Algorithm>

<Output>

114

<Item source =" type =" target=>
<ValueDescription-This is a description of the output iteryv.ValueDescription
>
</ltem>
</Output>
</Data>
<!——The Context and Resources Section will fully qualify what is required for a
successful implementation of the Faeet>
<Context>
<Business-
<Environment priority ="Minimum’ type=" name=%
<ValueDescription-Describing the environmental context.ValueDescription>
</Environment-
</Business
<Design>
<Environment priority ="Minimum’ type=" name=%
<ValueDescription-Describing the environmental context ValueDescription>
</Environment-
</Design>
<Operational
<Environment priority ="Minimum’ type=" name=%
<ValueDescription-Describing the environmental contextValueDescription-
</Environment-
</Operationat
<Deployment-
<Environment priority ="Minimum’ type="name=>%
<ValueDescription-Describing the environmental context ValueDescription-
</Environment-
</Deployment-
</Context>
<Resources
<Internat>
<Resource priority ='"Minimum’ type="type of Resource’ name="name’
<ValueDescription-Describing the resource/ValueDescription-
</Resource
</Internal>
<Boundary>
<Resource priority ='"Minimum’ type="type of Resource’ name="name’
<ValueDescription-Describing the resource/ValueDescription-
</Resource
</Boundary>
<Externat>
<Resource priority ="Minimum’ type="type of Resource’ name="name’
<ValueDescription-Describing the resource/ValueDescription-

115

</Resource-
</External>
</Resources
<Documentatiorr
<Entry date ="12/12/2002’ time="00:0&*
<DocEntry>What the author wants to sayl/DocEntry>
<Additionallnfo>>What additional info that may support that above docentry or the
user must just refer tew/ Additionallnfo>
</Entry>
</Documentation
<Extensions-
<Childrent>
<Containst
<Other>
<ExamplesOfUse See Orbacus ManualExamplesOfUse
</Other>
</Extensions-
</metapi>
<ISEMTA>

116

Appendix G

CD Guide

Figure G.1shows the directory structure of the accompanying CD. It is suggested that the
reader explore thimdex.html file to navigate through the contents of the CD.

The CD includes:

e A softcopy of this thesis;

e A UML Design of the FDE;

Source code for the FDE;

Instructions for the installation of the FDE; and

Useful software.

117

=) CD Drive

I B index.html

ProjectReport

UMLDesign

Install

3 Installationlnstructions.html

i SEMTA
|: = SEMTA.cfg
£ SEMTA.log

Software

— = Software.html

— E Python Setup
—[E wxPython Setup
—[=] PyXML Setup
L = Acrobat Adobe

Figure G.1: Directory structure of accompanying CD

118

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Definition of Terms
	Set Notation Symbols
	 Introduction
	Service Creation in the NGN
	Attempts at Software Reuse
	Classification and Analysis of Reuse Solutions
	Problem Objectives
	Outline of Report

	 Contemporary Reuse Practices
	Reuse in Telecommunications
	Intelligent Networks
	Telecommunications Information Networking Architecture (TINA)
	Reference Model of Open Distributed Processing (RM-ODP)
	OSA/Parlay
	XML Web Services

	Reuse in the Computing Arena
	Model Driven Architecture (MDA)
	Enterprise Java Beans™
	Design Patterns

	Chapter Summary

	 Introduction to Facets
	TINA Reference Point-Facet
	Reference Point Facet Definition

	Facets Redefined
	Mathematical Definition of Facets

	Business Viewpoint
	Informational Viewpoint
	Chapter Summary

	 Key Enabling Concepts
	Generic and Implementation Definitions
	Meta-
	Definition
	Context
	Resource
	Data

	Placeholders
	Variable Blocks
	Facet Hierarchy
	Chapter Summary

	 Facet Development Environment
	Design Considerations
	Informational Modelling Languages
	Parsers
	Implementation Language
	Information Storage

	Introduction to the FDE
	Elaboration on the FDE GUI
	Menu Bar
	Tree
	ToolBar
	Editable Windows

	Design Patterns Used
	Façade
	Mediator

	Use Case Diagrams
	Class Diagrams
	FacetMediator class
	FacetFrame class
	FacetStatusTextCtrl class
	FacetToolBarManager class
	FacetTree class
	FacetNotebook class
	Facade class

	Message Sequence Charts
	FDE Initialisation
	Creating a Facet
	Opening a Facet
	Saving a Facet

	Chapter Summary

	 Facet Examples
	Simple CORBA Service Facet
	Mediator Facet
	Web Server Tutorial Facet
	Chapter Summary

	 Conclusion
	Discussion
	Conclusion
	Recommendations for future work

	References
	 Meta- DTD
	meta-.dtd

	 Facet DTD
	Facet.dtd
	FacetSource.dtd

	 Facet Hierarchy and Implementation Language
	Sample Facet Hierarchy XML file
	DTD for Implementation Language Comments
	Sample Implementation Language Comments XML file

	 Additional UML Diagrams
	 Simple CORBA Service Facet
	 Sample meta- xml file
	 CD Guide

