Sympathetic Activation and Heart Failure

Danelle Badenhorst

A thesis submitted to the Faculty of Science, University of the Witwatersrand for the degree of Doctor of Philosophy

2007

ABSTRACT

Chronic activation of the sympathetic nervous system, via β -adrenoreceptor (AR) stimulation, contributes toward progressive heart failure. However, in this regard there are some outstanding issues which require clarity. First, in addition to contributing toward progressive heart failure, it is not clear whether chronic β -AR activation can also initiate cardiac decompensation. If so, the mechanisms of this effect also need to be determined. Second, the role of functional variants of β -AR genes as determinants of either the development or progression of heart failure requires elucidation. Moreover, whether there is any practical value in genotyping of patients for these variants has yet to be determined. These questions were addressed in the present thesis.

With respect to the question of whether chronic β -AR activation initiates cardiac decompensation, the mechanisms responsible for the transition from compensated cardiac hypertrophy to heart failure in pressure overload states, such as hypertension, are uncertain. In this thesis I explored whether chronic sympathetic nervous system activation, produced by daily administration of a β -AR agonist, could promote the transition to cardiac pump failure in spontaneously hypertensive rats (SHR) with compensated cardiac hypertrophy. After 5 months of daily administration of a β -AR agonist, SHR developed marked left ventricular pump dysfunction, whereas normotensive control rats maintained pump function. The pump dysfunction noted in SHR was attributed to marked chamber dilatation with wall thinning, whilst myocardial contractile function appeared to be intact. The changes in cardiac structure and function noted after chronic β-AR activation in SHR were similar to those noted in SHR with advanced heart failure. These data provided the first evidence to indicate that chronic β-AR activation can promote the transition to decompensated cardiac hypertrophy in pressure overload states, and that this effect is principally mediated by adverse structural remodeling of the cardiac chamber.

The mechanisms responsible for the effect of chronic β-AR activation on cardiac chamber dilatation were subsequently studied. The identified mechanisms included activation of an enzyme that degrades myocardial collagen (matrix metalloproteinase 2) and an increase of myocardial collagen of the type that is susceptible to collagen degradation (non-cross-linked collagen). I also excluded alternative potential mechanisms such as necrosis, apoptosis and an accumulation of type III collagen. However, previous studies have indicated that increases in myocardial collagen concentrations determine myocardial stiffness and not cardiac chamber dilatation. Hence, I performed a study to examine whether the impact of increases in myocardial collagen concentrations on cardiac structure and function depends on the qualitative changes in myocardial collagen. Indeed, using a variety of models of pressure overload hypertrophy associated with increases in myocardial collagen concentrations, I was able to provide evidence to support the theory that increases in myocardial collagen of the cross-linked phenotype will promote myocardial stiffness, whereas increase in myocardial collagen of the myocardial stiffness, may be not the myocardial collagen of the myocardial collagen of the myocardial stiffness, whereas increase in myocardial collagen of the myocardial collagen of the myocardial stiffness.

With respect to the question of whether functional variants of β -AR genes contribute toward either the development or progression of heart failure, I studied the role of both functional β_1 -AR and β_2 -AR (together with a α_{2C} -AR) gene variants in black South Africans with idiopathic dilated cardiomyopathy (IDC). In a prospective study I obtained data to indicate that the relationship between functional β_2 -AR genotypes and the progression to hospitalization, death or transplantation; a reduced exercise capacity, and left ventricular functional responses to β -blocker therapy, as described by other groups, is unlikely to be attributed to an independent effect of genotype on cardiac chamber dimensions and pump function. Moreover, I was able to show that contrary to what had previously been suggested, genotyping black subjects for functional α_{2C} -AR and β_1 -AR gene variants is of little use when predicting the development or severity of IDC in this population group.

DECLARATION

I declare that this thesis is my own unaided work. It is being submitted for the degree of Doctor of Philosophy in the Faculty of Science, University of Witwatersrand, Johannesburg. The work contained in this thesis has not been submitted for any degree or examination in this University, or any other University.

I certify that the studies contained in this thesis have the approval of the Committee for Research in Human Subjects and the Animal Ethics Screening Committee of the University of the Witwatersrand, Johannesburg. The ethics approval numbers are 97/44/5, 98/28/4, 99/01/2b, 2000/40/5, 2002/37/5, 2002/39/5, 2006/37/04 and M951122.

Angela J. Woodiwiss (supervisor)	Gavin R. Norton (supervisor)
Date	Date

TABLE OF CONTENTS

Acknowledgements	vii
List of abbreviations	viii
List of tables	xii
List of figures	xiv
Preface	xix

Chapter 1:	Introduction: Sympathetic activation and heart failure1
Chapter 2:	β -adrenergic activation initiates chamber dilatation and pump dysfunction
	in concentric hypertrophy35
Chapter 3:	Mechanisms of β -adrenergic-induced chamber dilatation and pump
	dysfunction in concentric hypertrophy79
Chapter 4:	Cross-linking influences the impact of quantitative changes in myocardial
	collagen on cardiac stiffness and remodeling in hypertension in rats103
Chapter 5:	Impact of β_2 -adrenoreceptor gene variants on cardiac cavity size and
	systolic function in idiopathic dilated cardiomyopathy123
Chapter 6:	Gly389Arg β_1 -adrenoreceptor and Del322-325 α_2 -adrenoreceptor gene
	variants as predictors of idiopathic dilated cardiomyopathy and its
	progression in subjects of African descent143
Chapter 7:	Summary and conclusions160

ACKNOWLEDGEMENTS

My deepest gratitude goes to my family for all their love, encouragement and patience. I would like to express my heartfelt thanks to my supervisors, Professor's Angela Woodiwiss and Gavin Norton for all their guidance and helpful criticisms and for securing funding for this work. I would also like to thank Ms Dawn Deftereos for her invaluable technical support and the clinical personnel of Chris Hani-Baragwanath hospital who obtained the clinical data utilized in this thesis. My sincere thanks go to the staff of the Central Animal Unit of the University of the Witwatersrand for their services.

STATEMENT OF MY CONTRIBUTION TO DATA COLLECTION AND ANALYSIS

The studies described in this thesis were designed by myself in consultation with my supervisors. I collected all animal haemodynamic and cellular/molecular data under the supervision of and with the assistance of my supervisors. I established the genotyping techniques and genotyped all subjects. Clinical data were collected by clinical personnel registered to practice in South Africa. I performed all of the data analysis for this thesis and interpreted these data.

LIST OF ABBREVIATIONS

AC	adenylate cyclase
ACE	angiotensin-converting enzyme
ACEI	ACE inhibitor
AESC	Animal Ethics Screening Committee
α _{2c} AR Del322-325	deletion of four amino acids at amino acid positions 322-
	325 of the $\alpha_{2c}AR$ gene
ANCOVA	analysis of covariance
ANOVA	analysis of variance
Arg16Gly	substitution of arginine for glycine at amino acid position
	16 of the β_2 -AR gene
β-AR	β-adrenoreceptor
β-ARK	β-adrenoreceptor kinase
BMI	body mass index
b.min ⁻¹	beats per minute
bp	base pair
BP	blood pressure
BW	body weight
cAMP	cyclic adenosine monophosphate
cDNA	copy deoxyribonucleic acid
CI	confidence interval
CNBr	cyanogen bromide
DAG	diacylglycerol
DBP	diastolic blood pressure
DNA	deoxyribonucleic acid

E	slope of the linear portion of the LV peak systolic P-V
	relation
E/A	early-to-atrial transmiatral velocity ratio
En	slope of the systolic stress (σ)-strain relation
G protein	guanosine trisphospate protein
GDP	guanosine diphosphate
Gi	inhibitory G protein
Gln27Glu	substitution of glutamine for glutamic acid at amino acid
	postion 27 of the β_2 -AR gene
Gly389Arg	substitution of glycine for arginine at amino acid position
	389 of the β_1 -AR gene
Gs	stimulatory G protein
GTP	guanosine trisphosphate
h	wall thickness
HPRO	hydroxyproline
h/r	wall thickness-to-radius ratio
IDC	idiopathic dilated cardiomyopathy
IP ₃	inositol trisphosphate
ISO	isoproterenol
kg.m ⁻²	kilogram per metres squared
LV FS _{end}	LV endocardial fractional shortening
LV FS _{mid}	LV midwall fractional shortening
LV V ₀	left ventricular volume intercepts of the LV diastolic P-V
	relation at 0 mm Hg
LVEDD	left ventricular end diastolic diameter
LVED _{h/r}	left ventricular end diastolic relative wall thickness

LVED _{h/ro}	intercept of LVEDP-LVED _{h/r} relation
LVEDP	left ventricular end diastolic pressure
LVED _r	left ventricular end diastolic radius
LVED _{r0}	LVED _r intercept of the LVEDP-LVED _r relation
LVEF	left ventricular ejection fraction
LVESD	left ventricular end systolic diameter
LVH	left ventricular hypertrophy
MANCOVA	multivariate analysis of covariance
µg.mg⁻¹ dry LV	microgram per milligram dry left ventricle
mg.kg ⁻¹	milligram per kilogram
ml.m ⁻²	millilitres per meter squared
ml.min ⁻¹ .g wet heart weight	millilitres per minute per gram wet heart weight
mm Hg	millimeters of mercury
MMP	matrix metalloproteinase
mRNA	messenger ribonucleic acid
myocardial k	myocardial stiffness
NE	norepinephrine
NYHA	New York Heart Association
OR	odds ratio
Ρ	pressure
p value	probability value
PCR	polymerase chain reaction
PDE	phosphodiesterase
PIP ₂	phospho-inositol-bisphopshate
PLC	phopholipase C
РОН	pressure overload hypertrophy

P-V	pressure-volume
PWT _{diastole}	LV end diastolic posterior wall thickness
PWT _{systole}	LV end systolic posterior wall thickness
r	correlation coefficient
RFLP	restriction fragment length polymorphism
RT-PCR	reverse transcription polymerase chain reaction
SBP	systolic blood pressure
SEM	standard error of the mean
SHAM	sham-operated controls
SHR	spontaneously hypertensive rats
TdT	terminal deoxynucleotidyl transferase
TIMP	tissue inhibitor of matrix metalloproteinase
V	volume
V ₀	unstressed left ventricular volume
V _m	left ventricular muscle volume
WKY	Wistar Kyoto

LIST OF TABLES

page

1.	Evidence	that	implicates	excessive	sympathetic	nervous	system	activation	in
	progressiv	ve cai	rdiac failure						4

- Effect of aortic-banding and spontaneous hypertension on left ventricular (LV) and body weight.

- β₂-adrenoreceptor genotype and allele frequencies of patients with idiopathic dilated cardiomyopathy and controls.

xii

xiii

11.	Left ventricular chamber dimensions and function in patients with idiopathic dilated
	cardiomyopathy prospectively studied, grouped according to β_2 -adrenoreceptor
	genotype137

- Left ventricular chamber dimensions and function in patients with idiopathic dilated cardiomyopathy prospectively studied, grouped according to β₂-adrenoreceptor gene haplotypes.
- Demographic and clinical characteristics of patients with idiopathic dilated cardiomyopathy prospectively studied, grouped according to β₁-adrenoreceptor genotype.

LIST OF FIGURES

	page
1.	A proposed theoretical model of the known role and potential role of
	neurohumoral activation in the natural history of heart failure6
2.	Cellular signaling systems mediated by sympathetic activation in cardiac
	myocytes
3.	The normal left ventricular end diastolic pressure-volume relationship and
	alterations that may occur with exercise or changes in blood volume16
4.	Potential alterations in left ventricular end diastolic pressure-volume relations in
	cardiac hypertrophy and the cellular changes that could produce the right shift in
	the relationship
5.	Cellular and molecular changes that may promote cardiac dilatation22
6.	Adrenoreceptor structure and maps of genes depicting the variants that modify
	the structure of the adrenoreceptor
7.	Photograph of the experimental setup used to measure tail artery systolic blood
	pressure and heart rates in rats and an example of a blood pressure recording.
	40
8a.	Schematic to illustrate the experimental setup used to determine short axis
	dimension measurements over a range of preloads in rats
8b.	Representative data obtained from the experimental setup shown in Figure 8a.
9.	Echocardiograph used to assess cardiac structure and function in rats and
	representative recording showing the measurements made
10.	Experimental setup for the isolated, perfused heart apparatus and typical
	recordings obtained

11.	High performance liquid chromatograph used to determine coronary effluent
	norepinephrine concentrations and typical example of data obtained when
	determining monoamine concentrations in coronary effluent samples50
12.	Histological images obtained using light microscopy from cross-sections of
	myocardial tissue stained with either Masson's trichrome from which
	haematoxylin was omitted or van Gieson's stain
13.	Effect of chronic isoproterenol administration on left ventricular end diastolic
	pressure-internal radius relations in 7 month old spontaneously hypertensive and
	Wistar Kyoto control rats57
14.	Effect of chronic isoproterenol administration on left ventricular end diastolic
	pressure-internal radius relations in 14 month old spontaneously hypertensive
	and Wistar Kyoto control rats
15.	Effect of chronic isoproterenol administration on left ventricular diastolic
	pressure-volume relations in 7 month old spontaneously hypertensive and Wistar
	Kyoto rats
16.	Effect of chronic isproterenol administration on left ventricular diastolic pressure-
	volume relations in 14 month old spontaneously hypertensive and Wistar Kyoto
	control rats
17.	Impact of chronic isoproterenol administration on left ventricular end diastolic
	diameter in spontaneously hypertensive rats61
18.	Effect of chronic isoproterenol administration on left ventricular end diastolic
	relative wall thickness in 7 month old spontaneously hypertensive and Wistar
	Kyoto control rats63

page

19.	Effect of chronic isoproterenol administration on left ventricular end diastolic
	relative wall thickness in 14 month old spontaneously hypertensive and Wistar
	Kyoto control rats
20.	Effect of chronic isoproterenol administration on left ventricular systolic pressure-
	volume relations and the slopes of these relations in 7 month old spontaneously
	hypertensive and Wistar Kyoto control rats66
21.	Effect of chronic isoproterenol administration on left ventricular systolic stress-
	strain relation and the slopes of these relations in 7 month old spontaneously
	hypertensive and Wistar Kyoto control rats67
22.	Effect of chronic isoproterenol administration on left ventricular systolic pressure-
	volume relations and the slopes of these relations in 14 month old spontaneously
	hypertensive and Wistar Kyoto control rats68
23.	Effect of chronic isoproterenol administration on left ventricular stress-strain
	relations and the slopes of these relations in 14 month old spontaneously
	hypertensive and Wistar Kyoto control rats69
24.	Effect of chronic isoproterenol administration on left ventricular systolic chamber
	and myocardial function in 14 month old spontaneously hypertensive and Wistar
	Kyoto control rats
25.	Myocardial norepinephrine release in spontaneously hypertensive and Wistar
	Kyoto control rats73
26.	Polyacrylamide electrophoretic gel showing typical banding patterns for
	myocardial collagen and densitometry patterns determined from the gel85
27.	Histological sections of the myocardium stained for apoptotic nuclei
28.	A representative example of a normal and inverted image of a zymogram89

xvi

29. Typical amplification curves obtained from real time RT-PCR cardiac cDN/
samples and an agarose gel showing real time RT-PCR products for MMP-2
TIMP-2 and GAPDH91
30. Impact of chronic isoproterenol administration on myocardial collage
characteristics in 7 month old spontaneously hypertensive and Wistar Kyot
control rats
31. Impact of chronic isoproterenol administration on myocardial collage
characteristics in 14 month old spontaneously hypertensive and Wistar Kyot
control rats
32. Effect of aortic-banding with pressure overload hypertrophy on left ventricula
end diastolic diameters, LV diastolic pressure-volume (LVDP-LVV) relations, an
the volume intercept of the LVDP-LVV relation
33. Left ventricular end diastolic pressure (LVEDP)-LVED relative wall thicknes
(wall thickness-to-radius ratio) (LVEDh/r) relations, LVEDh/r intercept of th
LVEDP-LVEDh/r relation, and LVED internal radius (r) intercept of the LVEDF
LVEDr relation in spontaneously hypertensive and Wistar Kyoto control rate
34. Left ventricular diastolic pressure-volume (LVDP-LVV) relations and the volum
intercepts of the LVDP-LVV relations in spontaneously hypertensive and Wista
Kyoto control rats
35. Left ventricular diastolic stress-strain relations and myocardial diastolic stiffnes
constants in aortic-banded rats with pressure overload hypertrophy and the
sham-operated controls and in spontaneously hypertensive and Wistar Kyot

xvii

paye

36. N	Myocardial collagen characteristics in aortic-banded rats with pressure overload
ł	hypertrophy and their sham-operated controls and in spontaneously hypertensive
a	and Wistar Kyoto control rats116
37. (Correlations between myocardial stiffness and myocardial collagen
С	characteristics in spontaneously hypertensive and Wistar Kyoto control rats.
38. F	Representative samples of agarose gel electrophoresis showing the banding
þ	patterns obtained for β_2 -adrenoreceptor genotyping
39. A	A representative sample of agarose gel electrophoresis showing the banding
p	patterns obtained for β_1 -adrenoreceptor genotyping
40. T	Typical example of a sequencing electrophoresis pattern of the $lpha_{2c}$ -
a	adrenoreceptor gene
41. 5	Summary of critical cellular pathways activated with chronic sympathetic nervous
S	system stimulation in cardiac pathology and the hypotheses tested in the present
ť	hesis

PREFACE

Chronic sympathetic activation is now well recognized as mediating progressive cardiac dysfunction. As such the use of β -adrenoreceptor (AR) blockers has become standard care in the management of heart failure. However, the role of sympathetic activation as a stimulus for the development of heart failure has never been given due consideration. Moreover, factors that may influence the impact of sympathetic activation on the progression of chronic heart failure have not been clarified. In the present thesis I have assessed whether chronic sympathetic activation contributes toward the development of heart failure in pressure overload states (hypertension). The structural, functional, cellular and molecular mechanisms by which this effect may be mediated were explored. Identifying these mechanisms is of importance as there is substantial controversy as to whether β -AR blockers should be used in hypertension and hence drugs targeting downstream mechanisms may be required. In the present thesis, I also studied the role of gene variants that modify sympathetic actions via β_1 - and β_2 -ARs as potential determinants of progressive heart failure or the development of heart failure.

Data from the present thesis lend support for the notion that chronic β -AR activation promotes the transition to heart failure in pressure overload states. Moreover, I provide evidence to indicate that in pressure overload states adverse cardiac chamber remodeling (cardiac dilatation) is more important as a cause of the transition to cardiac failure associated with pump dysfunction than are intrinsic myocardial contractile abnormalities. The potential mechanisms responsible for β -AR-induced left ventricular dilatation appeared to include interstitial modifications. The interstitial changes of importance were noted to be an accumulation of myocardial collagen susceptible to matrix metalloproteinase (MMP) digestion (non-cross-linked collagen) and activation of MMPs.

In the present thesis, I also provide evidence to indicate that functional variants of the β_2 -AR gene have no independent effect on adverse structural remodeling and pump function in idiopathic dilated cardiomyopathy. These data therefore suggest that relationships between these genetic variants and heart failure as previously shown are unlikely to be through effects on chamber remodeling or pump function *per se*. Moreover, data from the present thesis do not support a role for α_{2C} -AR Del322-325 and β_1 -AR Gly389Arg genotyping in predicting the development or severity of heart failure in black South Africans as has previously been suggested.

As a consequence of the work presented in this thesis I have therefore a) provided the first evidence to suggest that chronic β -AR activation promotes the transition to heart failure in pressure overload states b) provided cellular and molecular evidence to suggest a therapeutic target other than β -ARs themselves (which if blocked therapeutically could produce a multitude of side effects) and c) further clarified the potential role of β -AR gene variants in human heart failure.

In support of this thesis, the work presented in this thesis has been published in the journals *Hypertension* (Badenhorst et al 2003; 41: 499-504) and *Cardiovascular Research* (Badenhorst et al 2003; 57: 632-641) and is also presently *in press* in the journal *Pharmacogenomics* (Badenhorst et al *in press*). Two further manuscripts are under review or in-preparation.

Importantly, the work outlined in this thesis is presented in a series of semiindependent chapters to ensure that each chapter deals with a separate hypothesis. Chapter 1 places the work in the context of the present scientific literature. Each subsequent chapter, with the exception of the conclusions chapter, consists of an abstract, introduction, methods, results, and discussion section. Finally, a conclusions chapter is provided to integrate the main findings of the thesis.