
$ is the regression vector.

This estimator has the problem that once it has converged to the set of 

model parameters it "falls asleep" and will not converge if the plant 

parameters change again. This loss of sensitivity is due to M being 

non-increasing.

The RI.S estimator can be modified to avoid the above problem. Various 

modifications exist (Seborg et al. 19?^) and the choice i usually ,1 

trade-off between accurate estimates and fast convergcnc*' t changin.. 

parameters. The convergence theory for the standard RLS can e applie 

to any modified RLS provided:

1. The covariance matrix P (one of the terms in M) is onl\ increasing 

in magnitude.

2. There is an upper bound on P.

We look at some of the better known modified KLS estimator al. hms .

RLS with exponential  data weight ing: (Goodwin and Sin, ' - -'or

the forgetting factor X^l the estimator gives recent plan da h ..her 

weighting so that old data, that may nc’ be accurate if 1 1;• i> i; has 

changed, is forgotten. Th.ib is a popular method because a’ • s- - cted 

according to how fas. the plant is changing or wh <t frequam plant 

changes the estimator must track. It nevertheless ha- >■ fallow ^ pit­

fall it X is not chosen carefully: Consider a pla. undei ri .atorv 

control and in a steady state. If the physical plant does not cl .’i^e ino 

significant unmeasurable disturbances) and old plant data is h. ng for­

gotten then there might not be sufficient information ontent in the plant 

input to estimate the parameters. This condition ol the plant input not 

being persistently exciting (Gooduiu and Sin, : 7 2 > leads to deter i-
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oration of the estimates and in adaptive control is referred to as "es­

timator w'ndup".

RLS will) { -ovariance Resett ing: (.Goodwin and Sin, l‘)64 :65 ) . The esti­

mator gain is kept high by periodically resetting the covariance matrix 

P to some large value. The estimator must bo given enough timr to converge 

before P is reset again. Estimates are at their worst just after P is 

reset and the model should only bo used just before P is rosot. This 

method is also susceptible to "estimator windup" (discussed in the pre­

vious section") bur the problem can bo overcome by, instead of resetting 

P periodically, P is only reset when a change in the plant is detected.

Regularised Constant T race  Algori thm: (Goodwin et al, 198b).The 

covariance matrix is updated ising:

PCt) = P(t-l).(k,/trace(P(t*l))) + k ,I

where k# , k! are positive constants that are chosen to set the minimum 

size of the P matrix diagonal elements. The t race (P(. t -1)) is the product 

of the P matrix diagonal elements and I is an n * n identity matrix.

By updating the P matrix in this way it ensures that the diagonal elements 

of P never fall below a value determined by k 0 and k, This guarantees a 

minimum sensitivity for the estimator.

Choosing botwoon the abovo methods uill depend on the plant, a specific 

plant might even require a combination of the above methods.
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3 .3  MAKING THE O N - L I N E  O B J E C T IV E  F U N C T IO N  MODEL  

I D E N T I F I C A T I O N  R O B U S T

A key feature that will contribute to the practical success of the opti­

mizer is the reliability of the on-line model. Small model inaccuracies 

may result in a degree of sub-optimality or slower convergence, hut an 

estimator that diverges will result in controller failure. This section 

looks at how the model identification can be made robust in the light of 

recent developments in adaptive control.

On a real plant >t is not always guaranteed that the estimator will con­

verge. We can identify two a^eas that need to be looked at before applying 

the model identification (discusscd in previous section) to a real plant.

They are:

1. F.nsuri..g the estimator gets only the plant data necessary to model

the frequencies of interest. This is to circumvent the following:

o Bandwidth of model: the assumed model is only valid for a certain 

frequency range. Care must be taken so the estimator sees only 

those frequencies that need to be modelled.

o Deterministic disturbances: Care must be taken to ensure that the

estimator models the input-output relationship a.id not divert all 

it's energy into modelling uncontrollable and possibly unobserv­

able modes.

o Measurement noise: It must be assumed that white Gaussian 

baud 1imi ted nois< is present on the plant variables The noise 

seen by the estimator must be carefully processed to ensui*' re­

liable estimatc-r operation.
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2. Modelling errors witF in the bandwidth of interest: the assumed model 

structure may not be an accurate enough representation of the plant. 

The model order may be too low and there are unmoi'e 1 led dynamics, or 

the steady state of the model may not lit the plant accurately. The 

latter is usually due to trying to fit a linear model to a highly 

non-linear plant. If the modelling error that drives the estimator 

is comparatively large then the estimator may diverge.

In the past dynamic model identification for practical adaptive control­

lers (eg. ASLA Novatune) lias been fraught uith the above problems. To 

overcome these problems ad-hoc methods or "safety-nets" have been used 

to constrain the NUlg< of operation of : he cstimatoi . This ensures stable 

operation of the estimator but lias undesirable and unpredictable effects 

on the quality of the estimation. This detracts from the advani ,nes 

gained by adaptive control over conventional control.

Recent developments in adaptive contrr' '\ave lod to theoretical and more 

systematic ways of overcoming the above problems. Some of these devel­

opments are as yet unknown and are presented here in some detail. The 

material for the next two sections comes tiainly from ideas put forward 

by Prof. I.M. MacLeod and partly from very recently published papers.

3 .3 .1  COPING WITH D E T E R M IN IS T IC  D IS T U R B A N C E S  AND PLANT  

NOISE

Elimination oi do. term in i si i < disturbances and plant noise outside the 

bandwidth of interest can br dom by carelu! digital filtering. The theorv 

is presented below and an example implementation is given in appendix A.
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For simplicity with notation a SISO linear model is assumed. This analysis 

is easily extended for a single output multi-input Unv'ir or non-linear 

model (as described in a previous section on model .election), but the 

notation is very cumbersome.

Assume the plant objective function can be modelled approximately by:

y = -fu +-^2 + S + r ..........  (5)

where the discrete variables are:

y H predicted value of the plant objective function 

u = plant inputs and/or regulator setpoints 

z = measurable disturbance input 

r = unmeasurable deterministic disturbance 

£ = represents the modelling error and noise

Note that y is not the plant output and u includes the lower level reg­

ulator setpoints.

The q* 1 operator polynomials are:

A(q‘‘) = a 0 + «iq"' + ....  + a^q n

Bfq*1) = q d (b, + b,q‘‘ + ....  + b^q m )

C(q*‘) = q d (c0 + c ,q"1 + ....  + crq ”r)

and art assumed to have the following properties:

i) A is monic

ii) A and B art' co"prime

i i i) S . = n 

A
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This is a DARMA model but has an extra term for bounded noise.

A deterministic disturbance r can be modelled by:

0(q-‘)r = 0 (6 )

(Goodwin and Sin, 1984 : 156)

Now multiply (1) by the polynomial < oerator A(q‘‘) 0(q"‘):

AOy = BOu + FOz +A0£ (7)

The above inclusion of r in the model, equation (3) is known as the 

internal model principle.

Since £ is a random signal, the polynomial AO before it would imply near 

differentiation of this noise term. This is not acceptable and the model 

has to be processed further.

Both A(q'1) and 0(q*1) may involve differentiation or near differen­

tiation. To deal with the A polynomial ue proceed as follows:

Introduce a filter 1/E where F. is a stable, monic polynomial and 3j. =

3

E (q ' 1) = e D + e ,q * 1 +

-n

Also, write n = A£ + modi'1 ling errors.
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Rewrite (3) as

AOy' = BOu' + COz' + Onf' ..........  (8)

where

y '  = d / E ) y  

z'  = ( 1 /E ) z  

u ’ = ( 1 / E) u 

nf' = (A/E);

The 0(q*!) polynomial will have zeros on the stability boundary which 

implies near differentiation. 0(q‘‘) could become unstable due to near 

differentiation of the noise frequencies. In the same way that the E 

polynomial was introduced to overcome near differentiation due to A, we 

introduce a Q polynomial to prevent near differentiatior by 0 operating 

on ti i ' .

Choose Q, a stable polynomial operator "close to" 0. If the Q polynomial 

is not "close to" the 0 polynomial then one risks filtering out important 

plant frequencies. Appendix A gives an example of how Q is chosen.

Operating by 1/Q gives:

Ayf = Buf + Czf + nf ..........  (9)

where

yf - !  y

EQ

0

EQ

Uj. = _ u

0

EQ

*f *
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n f = i2. K (= 0)

EQ

The operator -jr̂  is a digital pre-filter that ensures the estimator will 

only try to model the frequency band of interest. The noise term n̂ - is 

now acceptable for estimation and should not affect tin: estimator.

Let the model predict y' = ~  y, whi'*h means that the estimated value 

appears after a high pass filter. The model can predict either y, y^ or 

y ' . From a mathematical point of view an elegant choice seems to be y * , 

but the exact implications of this choice over y^ and y are not clear.

Let y' = Eyf = y .

Also, add Ey^ to either side of equation (S)

Eyf = Eyf ’ Ayf + Buf + Czf + ^f ...........

This can now be arranged into standard regression form as required for 

parameter estimation:

y’ ■ (E-A)yf. + Buf + C z f + n f ..........  (11)

or in regression form

y ' (t ) = 4 ct-1)1 0 + iif

whero
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*(t-l)1 = (y £(t),... y {(t-n),

Uf (L~d). . . u(t-d-m), 

Zf(t-d)... zf(t-d-r)] (12)

ST | o 0-a o <
.b (13)

3 . 3 . 2  COPING WITH MODELLING ERROR W IT H IN  THE B A N D W ID T H  OF 

INTEREST

Estimator divergence can be? due to the best possible model fit only being 

an approximation to the plant. Tt is caused by the estimation error that 

drives the estimator always being large. Present methods simply use a 

basic deadzonc function where the mode I parameters arc not updated if the 

error is less than a set constant. A more attractive approach according 

to Goodu in cl al. (1086) is to vary the width of the deadzone dynamically 

according to the noise present and the magnitude of the signals being 

processed by the estimator.

The basic dead zone function is defined as follows:

e - g if e > g

f(g.e) = 0 if |p| S g

Le + g if e < -g

When the error e(t) that drives the estimator falls below |g| then e(t) 

is zero. If |e(t)| |g| then the error that drives the estimator is e(t). 

A relative <!< «dzone is now described w lie re t lie |g| is not constant hut

changes dynamically.
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Take the standard RLS estimator and add a Boolean variable a(t), if a(t) 

is 1 then the parameter estimates are updated, otherwise they are not 

updated. This can be written as.

0(t) = 0(t-l) + a(t; 1*u ~1 ]____________. eft)

*(t-i)Tm - 2 ) t ( t - i )  + i

P(t-l) = P(t«2) - a (t ) — 1 ~J '*1' ~nil 1 ~ n  IM 1 '

♦Ct-l)TP(t-l)^(t-l) + 1

Now choose

o 0' € (0,1) 

e0 2 0
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c,  J: 0 

m0 2: 0

so that

| n . (t) | < rr(t) fnr t

where m (^ ) is the solution of

m(t) *  o0m(t - l )  + c,  + c , | u ( t - l ) |  + e * | y ( t - l ) | +  E , | z ( t - l ) |

for any o, € (oa',l), and m(0) = mc .

Then choose tk > 0 and a £ (0,11 to implement the 

dead zone as follows:

e = /r, -» i/d-a)

and a ( t )  *  c^s(t)

where

s(k)
0 if | <>(t ) | S Bm( t )

f(6m(t), e(t))/e(t) otherwise

Some guide lines as to tin .election of the dead;:one constants and its 

behaviour are given in an M .Sc. (F.ng) thesis by van der Merwe U ‘>87').
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The function a(t) thus implements the dead zone to account for modelling 

errors. The key idea is that a('t) = 0 when the prediction error e(t) 

falls below the bound &m(t;.

3 .4  E X T R A C T IN G  THE S T E A D Y - S T A T E  MODEL FROM THE D Y N A M IC  

MODEL

The optimizer needs a steady-state model which is extracted from the u>- 

namic model. This is easily done by setting the backward shift operator 

q * 1 equal to unity. It means 'hit the variables are assumed not to change 

ith time and the plant is in steady-state. Important questions arise 

as to whether this is a good way of obtaining a steady-state model:

o How well does the dynamic model predict, during plant transients, the 

future steady-state values?

o How does the dynamic model order affect the steady-state prediction?

o Does over-estimation or under-estimation of the plant dead-time af­

fect the extracted steady-state model?

o Is a linear dynamic model good enough to give accurate steady-state 

in format ion?

o Is the extracted steady-state model m< ie, oi less sensitive to bad 

modelling errors than the dynamic model?

o Is the extracted steady-state m<>lel sensitive to poor model parameter 

est imat ion?
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It is beyond the scope of this research project to Answer the above 

questions in general. The validity of obtaining the steady-state model 

from the dynamic model will be looked at only in the context of two spe­

cific case studios.

3 .5  O N -L IN T  O P T IM IZ A T IO N

3 . 5 . 1 . 1  Introduction

The two step method described in the section entitled "Theoretical Foun­

dations for the Adaptive Optimizing Regulator" on page 1! has been crit­

icized (Nachane, 1978) on the grounds that the point parametric model used 

to calculate the plant trajectory is based on non-optimal conditions. An 

integrated approach to identification and optimization is required. Var­

ious integrated approaches have been proposed. Nachane (1978) gives tour 

alternative methods, Ellis and Roberts (1984) give the ISOPE algorithm 

(Integrated System Optimization and Parameter Estimation) and Brdys' and 

Xobeits (1984) give an integrated approach based on L.igrangian optimality 

conditions.

All these methods assume on-line identification of a static plant model 

so that the estimator must wait for the plant to settle betw* ’n estimator 

samples, This limits the plant input move update tune. The estimator 

sampling rate must be the same as the optimizer sampling rate and hence 

the plant input move upd.r .• rate. Only then is it possible to combine 

the minimisation of the model error (parameter estimation) and the min­

imization of the objective function into one optimization problem, lor
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two-step, static identificat jn and then optinization, nothing is lost 

in combining the optimization problems and an integrated approach is 

justified. Whereas for the two step, dynamic identification and ex­

traction of a static model and then optimization, the dynamic identifi­

cation can be done far more often than the static optimization and an 

integrated approach is not applicable.

Also, dvnamic model identification is much faster, and assuming a good 

steady state model can be extracted, it allows a higher plant input move 

bandwidth. This can bo used to in; re/ise the number oi input tnuv er. to read: 

the optimum, so the model will change less markedly between input moves, 

and the problem of the plant trajectory being based on non-optimal con­

ditions is net an issue. This motivates the two-step procedure provided 

that the static model is extracted from the identified dynamic model.

3 . 5 . 1 . 2  Optimization Algori thm

From the previous, discussion on robust model identification and steady 

state model extraction it can be assumed that a reliable and very accurate 

point parametric ..toady state model of the objective function is avail­

able. Although the model is simple it is accurate due to its parameters 

being continuously updated. The convergence to new parameters is robust 

to modelling errors and to signal noise.

*

The remainder of this section looks at how the pi.nit inputs y, and u,  

are calculated in order t( drive the plant to its optimum, as determined

by the objective function, and k e e p  it there in the face of persistent 

measurable and unmeasurable disturbances.
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The algorithm based on 3 gradient search is given below. Recall the 

static optimization problem:

min U  V j , u „  m, d $ ) ........  (14)

m

such that

H y l\  y a, ds ) = 0 ........  (is)

9<Yi*, \i. u, d s ) S O  ..........  (16)

whore the symbols have there usual meaning except for convenience of n o ­

tation m is introduced

k
Hi = [ y, , u : ] = optimizer outputs

and from now on t is asf.umed to be a function of the variables given above.

Unconstra ined Optimization: Dealing with the unconstrained case first, 

the gradient search algorithm at the operating point m (l )  is:

m(l) = m(l-l) - v S ,V m f | j

where

S| r positive d«!finite matrix 

p = input move stepsize

Vm   ̂i j * gradient of tiio objective function at mi. 1)
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Remembering that y is a function of m in the general case so the gradient 

is given b y :

v y i = — —   ̂i + ~ t y 1 m T | 1 i  m 1 3 y 1 ld {

where

|d y i = (A ' B), = Jacobian matrix 

a m  j

where A and B have there usual moaning as q " 1 polynomial operators.

S, can be chosen to give a Newtonian, Quasi-Newtonian or if S. = I 1 i n * II

then it is a steepest descent search. The stepsize p is chosen depending

on the choice of Sj to ensure convergence( Polak, 1971).

Appendix B gives a simple example of an implementation of the above gra­

dient search algorithm.

Constra ined  Optimization: A detailed account is given in Garcia and 

Morari (1984). Here it is sufficient to give an understanding of what is 

involved and how a constrained optimization algorithm can be implemented 

into the controller.

The optimizer must produce feasible plant moves that lie inside a region

of operation, bounded by the constraints g. If the constraints g are

non-linear it is not possible to always ensure a feasible direction. The

only way t*> get around this i', to introduce regulators so the constraints 

•k

are g , the se.tpoirits to the lower level regulators. In this way a 

non-linear operating region is transformed to a linear operating region. 

The following algorithm guarantees feasibility at each iteration 

(Zoutendijk, 1960; Mangsarian, 1 ‘ J n 9 1:
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Problem: min T( m, y 2, u,, d g )

m

subject to g(m )  < 0

where g^( m) i*l..dirn(m) are assumed to bo linear.

It is assumed the number of constraints is less than or equal to the 

number of inputs, dim(m). Otherwise the set of active constraints is 

found and the lower level regulators have their inputs controlling the 

active constraints, see Garcia and Morari (1984).

A further assumption is that the constraint functions g^ are known. If 

not they can be identified in the same way that the objective function 

is identified (see section "On-line Objective Function Identification" 

on page 16) .

At an operating point n.(l), a direction q, which points towards the in­

terior of the -sible region and decreases the objective , is given by 

the solution of the following linear program: 

min c 

e q

such that

q ‘ vmP ( m ( I ) )  < e 

q 1 Vm g j ( m( 1 ))  < t e

I q i I < 1 i=l. . .din ' m( 1))

e = (1 1 ... ! )T

where

V P r gmdient of objective function 

g = Jacobian matrix of constraints
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q = constrained to avoid uni mded solutions

-I = (jl (rnC1) ^ 0, o,>0} = si of o-active constraints

a; m(l)

The new operating point m(i+l) ii, found by selecting a t .ize along

q j, which is usually chosen as the maximum positi ve value u - • that

m(l+l) = m(l) + V ........ (17)

lies inside the allowed operating region. The existence of q, and y, 

is gua: inteed if gj satisfies certain qua 1 i f ica«- ion, which we assume here 

to be filled (Mangasarian, 1969).

Provided the underlying regulators are chosen well the constrained d 

unconstrained optimiza.ion algorithms are fairly straightforward numer­

ical techniques. Their performance depends on the quality of the extracted 

steady state information, namely the objective function gradients and the 

constraint gradients.

3.6 S U M M A R Y  OF DESIGN P R O C E D U R E  A N D  O U T L I N E  O F  A L G O R I T H M

The important design considerations are given. They are not hard and fast 

rules but rather pointers when doing a simulation study for a specific 

plar.t The optimizing regulator a’j;oriihm should not he highly sensitive 

to the choice ot design j m* ime„«• j & but the.o is always room for exper­

imentation m d  refinement.
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q = constrained to avoid unbounded solutions

J = {jI (ni(l) £ 0, a,>0} = set of o-active constraints

at m(l)

The new operating point ni(l + n  is. fonnd b> selecting a stepsize y, along

q j , which is usually chosen as the maximum positive value y such that

m(l+l) = m ( l ) + p q. ........... ( 17 )

lies inside the allowed operating region. The existence of q, and y^ 

is guaranteed if gj satisfies certain qualification, which we assume here 

to be filled (Mangasarian, l()e>9).

Provided the underlying regulators are chosen well the constrained and 

unconstrained optimization algorithms are fairly straightforward numer­

ical techniques. Their performance depends on the quality of the extracted 

steady state information, namely the objective function gradients and the 

constraint gradients.

3 .6  SUMMARY OF DESIGN PROCEDURE AND O U T L IN E  OF A L G O R IT H M

The important design considerations are given. They arc- not hard and fast 

rules but rather pointers when doing a simulation study .or a specific 

plant. The optimizing regulator algorithm should not be highly sensitive 

to the choice of design parameters but there is always room for exper­

imentation and refinement.
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1. Plant sampling interval T . This is usually chosen as fast as is 

necessary considering the dominant plant time constants.

2. Define a safe plant operating region and choose suitable constraints 

to describe the region.

3. Decide on an objective function or set of objective functions. The 

choice is limited by the following two requirements:

a. It must have a single extremum in the operating region.

b. It must be calculated on-line from plant measurements to give an 

instantaneous value.

4. Low level regulators: Choose betwann all existing approaches to reg­

ulatory process control. This includes analog or digital control, 

SISO and MIMO, classical and modern control theory as well as adaptive 

control. Where the purpose is to regulate the plant at set points in 

the face of fast disturbances as well as making the plant operating 

region linear and preventing constraint interaction.

5. Form of objective function model: Section "Choice of Model" on page 

16 discusses the choice between a linear or non-linear model, the 

mode.l degree and the inclusion of measurable disturbances in the 

mode 1,

6. Estimator: It is only under special circumstances that anything other 

than the RLS estlmatoi (section "Fsiimation of lode 1 Parameters" on 

page 20) should be cons id'! red. Select a modi * icat ion to the RLS es­

timator so it tan track plant changes.
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7. Bandwidth of objective function model: This will determine the dig­

ital filter design (section "Coping with Deterministic Disturbances 

and Plant Noise" on page 24) as well as the estimator sampling rate. 

This can be greater than or equal to T .

8. Deterministic disturbances: If there are deterministic disturbances 

in the estimator bandwidth then they must be included in the model 

(see section "Coping with Deterministic Disturbances and Plant Noise" 

on pagt 24).

9. Relative deadzone design: Appl> a deadzone to the estimator in case 

of Had model plant match and resulting estimator divergence (section 

"Coping with Modelling Error within the Bandwidth of Interest" on page 

29).

10. Optimization update time Tc,)t : Time period between setpoint changes 

and/or direct plant input changes. The factors considered are:

o Rate of convergence of the estimator

o Frequency of the significant persistent disturbances d g

11. The steps: ".e of tho plant moves (section "On-line Optimization" on 

page 33' is a convergence parameter and should no, as a starting 

point, chosen conservatively.

The difficult part is defining the pronle.Ti the optimizer has to solve and 

this includes the objetivi* fun tion formulation and rhoice of underlying 

regulators.

A breakdown of the llgorithm given in Figure ri on iage 4] shows the 

functional structure of the adaptive optimizing regulator.
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4 .0  CASE S T U D Y :  A P P L IC A T IO N  OF A D A P T IV E  O PT IM IZER  T H E O R Y  

TO A BALL MILL

4.1 IN T R O D U C T IO N

Plant Chosen: The plant chosen is a simplified ball mill circuit shown 

in Figure 6 on page 43 (Lynch, 1°77). It must be kept in mind that the 

controller is under test and not the realism of the problem. The fol­

lowing criteria were used to select this ci.se study:

o The control of the plant must be difficult using standard methods. 

It must have the following:

- Significant dead-time

- Non-linearities

- Significant disturbances and '. ence optimum changes

o The plant must be simp.e so that the behaviour is easily predicted 

and the essential features are not lost in detail.

The ball mill model used satisfies all of the above criteria. It also has 

the advantage that it is fairly realistic in that the. cost function is 

easily measured and the control objective is straightforward and intu­

itively Justified.

Another important r e a s o n  for choosing this plant to tost the controller 

is that it serves as a good introduction to the real world problem ot 

autogenous mill control, wh icli is l ickled later.
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Control  Objective:  The control objective is to maximise the mill mass 

throughput given the constraint on size of product.

Simulation Environment:  The simulations wore done on a HP 9000 series 

300 computer operating under U\’IX. Thu language used was PASCAL which 

provided a weli structured and hence versatile program. The program 

listing is given in appendix P.

4 .2  BALL MILL MODEL

A I).ill mill ,md < l.issifn'r c..m he modelled accurately using n mechanistic, 

r.pproat-h. This loads to ,i dist r ibu'.t’ti-parameter system tL.it has difficult
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eqUci';ions to handle and is cumbersome for control purposes. An approximate 

model with lumped parameters can be obtained on the basis of the steady 

state material balance equations for tin* mill. The basis for this ball 

mill model comes from .leviczky et al. (107t>).

Referring to the simulat{<-n block diagram in Figure 7 on page 45. Looking 

only at the ball mill model and not the t >ntrollers, the block structure 

of the mill simulation is seen to follow the mill geometry. This helps 

to visualise the interaction of the components and leads to an intuitive 

and easily understood model. The grinding circuit has two manipulable 

inputs, the mass flow of fresh solid material into the circuit and the 

required product size setpoint. The measurements that are available arc:

m(t) discharge or mass flow out of the mill

g(t) classifier underflow

l(t) mass flow into mill which includes g(t) and u(t)

p(t) masr. flow of final product or classifier over*

flow

The mill can be seen as an integrator, where 1(t) is integrated to give 

the mill fractional filling f(t). The only other significant dynamics are 

the mill and the classifier pure delays. If the material classifier is a 

hydrocyclone then its delay is negligible compared with the mill pure

delay.

The discharge of material out of the mill m(t) is modelled only as a 

function of the fractiona1 fMling fit). All other factors that affect 

discharge rate not as significantly, such as solids size distribution, 

pulp density, ball size etc, are lumped together and treated as a dis­

turbance. The discharge function d(f(l)) is simply modelled as the flow 

of a head of liquid over a semi-circular weir, and this gives a quadratic
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relat ionship. All that is important is that the mill discharge bears some 

non-linear relationship to the variably f(t). The dependence of the dis­

charge function on f(t) is chosen because f(t) can be co:'rolled indi­

rectly from available mill measurements. From the control point of view 

all other dependencies have no man<puldble inputs, to attempt control and 

are simply treated as disturbances.

The product function p(f(t)) gives the instantaneous relationship between

Vr

the amount of product (material less than the size setpoint s ) and the

mill fractional filling. Note that there are no dynamics bt •ween f(.t) aid 

p(t) and m(t) so the steady state relationships for p(f(t)) and d(f(c)) 

are simply:

P = p(F)

M = d(F)

Where the capitals P, N and F denote tho steady state values of p(t), m(t) 

and f(c.) respectively.

Because the wearing down of tho material inside the mill is a rate process 

ie. the amount of fine material produced is proportional to the quantity 

of material inside the m i 11, the amount of product (material less than a 

certain size) is primarily a function of the fractional filling. The 

function P(F) shown in Figure 8 on page 48 relates the amount of product 

produced to the mill fractional filling. As the fractional filling in­

creases so the product increases until the mill starts to choke and the 

whole mill contents rotate without any relative motion between the rock 

particlc. (epicyclic gear effert I.ynii, 1 7 7) . The product mass flow then 

decreases to /.err. when the. mill is completely clogged. P has a maximum 

and this is the desired mill operating point. The disturbances to th'.> 

product mass l’ ou rate .ire large and varied, the important disturbances
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are; size distribution of mill contents, physical characteristics and 

ball and line,r wear. These may change the position of the maximum of P(F) 

significantly and this is simulated by changing parameters in P(F). To 

include the whole family of relatioiships P(F) write P as P(F,d) where d 

represents the combined effect of all possible disturbances at that time. 

The product function P(F) is chosen as a fourth order polynomial. This 

is motivated on the grounds that a polynomial of this order models mill 

power draft as a function of F accurately (Hinde, 1977) and mill product 

mass flowrate is proportional to mill power draft for a certain product 

size and input feed sizn distribution.

The details of the non-linear functions d(F) and p(F) and exactly how the 

function parameters are changed to simulate the disturbances is given in 

appendix C.

It is assumed thar the classifier is ideal and the material less than a 

certain size p(t) is separated and the remainder or classifier underflow, 

g(t) recycles into the mill. More realistic modelling involves giving 

each size fraction of the mill discharge or pulp a probability of re­

porting to the overflow p(t) rather than the underflow g(t). This level 

of detail is not required b -ause a simple input output model is built 

and all the detailed factors that change the optimum are lumped together 

as a plant disturbance. The classifier cut size is controlled by, for 

example, changing the discharge density by water addition if a 

hydrocyclone classifier is used, or for a centrifugal cement mill 

classifier, by changing the speed of rotation. This simulation assumes 

the existence of a regulator to control the product separation to a 

setpoint.
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Figure  8. Relationship between P and F showing the desired o pe ra t ­

ing point and a shift in this point due to a disturbance

4.3 G R I N D I N G  C I R C U I T  C O N T R O L

It is known that the optimum operating point (Figure 8 on page 48) for 

maximum product has to be approached cautiously. A mill solids feedrate 

higher than that which gives the optimum will cause the mill to go into 

an unstable operating region and the mill will overload rapidly. An 

understanding as to why the region F>Fc^  unstable is clear 11 om

Figure 7 on page 43. An increase in F above Fopt causes a dec in F-

(relationship given in Figure 8) which will increase G more than M. Foi 

the increased u(t) (solids feedrate) to give F>F t a positive feedback 

condition exists and there is no steady state. This car. also bo under'..tood 

from a physical point ot view. If the fresh solids feednte is increased 

beyond that point that gives most efficient grinding then the increased
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material input, in addition to less product being produced and extracted 

causes the mill to fill up and overload ..apidly.

’ * ods in use to control ball mills are of the Williamson peak seeking 

illiamson, 1975) that try to keep the mill at its optimum by de­

termining which side of the peak the mill is operating and then providing 

an appropriate control action. Referring to Figure 9 on page 50, if after 

increasing the solids fsedratc u(t), J* also increases then the mill is 

in region A and u(t) can be increased further, on the other hand if P 

decreases (region B) then the controller must decrease u(t) to drive the 

mill back to PCpL* This type of controller is easily implemented by using 

the mill power draft (easily measured) as a measure of the energy per unit 

time going into the grinding process and hence a measure of the amount 

of product per unit time.

These controllers are satisfactory provided the P,F relationship is not 

influenced significantly by disturbances and the curve remains approxi­

mately stationary. Figure 9 on page 50 shows a large disturbance changing 

tlu curve. The controller will detect a decrease in P of magnitude x and 

will subsequently decrease f(t), which drives the plant away from PQpt • 

It will confuse the old region B with the new region A ’. For large fre­

quent disturbances and a shifting optimum the controller action may be 

inappropriate. Also, due to the operating point being close to an unstable 

region the controller m,iy overload the mill.

Now that the problem has Seen explained ue proceed with a solution in the 

form of the adaptivt optimizing regulator proposed in the previous two 

chapters. Knowing that the optimizer needs time and is designed lor low 

bandwidth operation a lou level regulator is introduced to cope witli high 

frequency disturbances.
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4 4 M IL L  S O L I D S  F E E D R A T E  R E G U L A T O R

Keviczky et al. (1976) propose and motivate a mill solids feedrate regu­

lator. They identify l(l) (material flowing into the mill ie.u(t)+g(t)) 

rather than u(t) (fresh solids feedrate) as the impoitant measured vari­

able to be controlled to a setpoint. Figure 7 on p'ige 45 shows a simple 

integral ac'. ion regulator that adju.t:- fresh solids feedrate u(t) to keep

V?
l(t) at 1 ft). Thcii motivation is based on l(t) being a more direct 

control of conditions iu the mi!, and tl is of t>(t). Also the regulator 

makes 1(t) immune to the disturbances associated with the classification 

process. These are fast disturbances when compared with the disturb­

ance.-, due to changing fresh solids feed characteristics (for example 

particle size distribution and physical properties of the r o d )  and hence
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conditions inside the mill. Even if, for example, there is a step change 

in the fresh solids feed size distribution the change in P will be slow 

because of the relatively large mill capacity. These are persistent dis­

turbances d s that change the steady state P,F relationship and movQ the 

desired operating point. It is the optimizers job to track the optimum 

but it relies on the mill solids foedrate regulator to reject the fast

Vr

disturbances while it finds the next 1 (t).

Looking at the simulation block diagram Figure 7 on page 45. A idst d i s ­

turbance is simulated by c h a n g i n g  the c o e ff i c i e n t s  uf Inc p(F) function.

Vr

If the size setpoint s is changed then this is also viewed as a fast 

disturbance associated witii the classifier. From the block diagram it is 

seen that any differential change between the two functions p(F) and d(F) 

is rapidly compensated for by the solids fcedrate regulator. The per­

sistent disturbances are simulated as n change in both the parameters of 

the functions p(F) and d(F). This makes sense, because changing conditions 

inside the mill (due to d & ) will change both the product function p(F) 

and the discharge function d(F). The. discharge rate and the amount of 

product produced are intrinsically linked. The next section deals with 

the problem the adaptive optimizer has to solve and the necessary algo­

rithms .
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4.5 BALL MILL A D A P T IV E  OPTIMIZER

4.5.1 P R O B L E M  F O R M U L A T I O N

The problem to bo solved by the adaptive optimizing regulator is:

max j n

p ( F U  ), d )

1 (t) S

where the product size regulator prevents violation of the s*7.e constraint 

and d^ represents the persistent disturbances.

The fresh solids feed rate regulator prevents the mill going into an un­

stable region due to fast disturbances

To solve this problem the function p(F(l )) needs to be known. It must 

be identified on-line because it is changing all the time due to d & .

4.5.2 O P T I M I Z E R

The simplest possible working solution is presented without complicating 

the algorithm with refinements.

Objective Function Model: Se.ond order linear DARMA model with deadtimt 

d and no r.ioasur.ible disturbance included.

(1 + a lq‘‘ + a2q-*jp(t) * q ^<b0 + b lq * ,)l,‘(t) + c 
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