¢ is the regression vector.

This estimator has the problem that once it has converged to the set of
model parameters it "falls asleep" and will not converge if the plant
parameters change again. This loss of sensitivity is due to M being

non-increasing.

The RLS estimator can be modified to avoid the above problem. Various
modifications exist (Seborg et al. 1985) and the choice is usually a
trade-off between accurate estimates and fast convergence to changing
parameters. The convergence theory for the standard RLS can be applied

to any modified RLS provided:

1. The covariance matrix P (one of the terms in M) is only increasing

in magnitude.

2. There is an upper bound on P.

We look at scme of the better known modified RLS estimator algerithms.

RLS with exponential data weighting: (Coodwin and Sin, 198« &) For
the forgetting factor A<l the estimator gives recent plant data a higher
weighting so that old daca, that may nc* be accurate if the plamt has
changed, is forgotten. This is a popular method because % can be selected
according to how fas. the plant is changing or what fregquency plant
changes the estimator must track. It nevertheless has the followimg pit=
fall if X\ is not chosen carcfully: Consider a plant under regulatory
control and in a steady state. If the physical plant does not change (no
significant unmeasurable disturbances) and old plant data is being for-
gotten then there might not be sufficient information content in the plant
input to estimate the parametervs. This condition of the plant input not

being persistently exciting (Goodwin and Sin, 1984 :72) leads to deteri-
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oration of the estimates and in adaptive control is referred to as "es-

timator windup".

RLS with Covariance Resetting: (Goodwin and Sin, 1984 :65). The esti-
mator gain is kept high by periodically resetting the covariance matrix
P to some large value. The estimator must be given enough time to converge
before P is reset again. Estimates are at their worst just after P is
reset and the model should only be used just before P is reset. This
method is also susceptible to "escimator windup" (discussed in the pre-
vious section) but the problem can be overcome by, instead of resetting

P periodically, P is only reset when a change in the plant is detected.

Regularised Constant Trace Algorithm: (Goodwin et al, 1986).The

covariance matrix is updated using:
P(t) = P(t-1).(ky/trace(P(t-1))) + k,I

where ky, k; are positive constants that are chosen to set the minimum
size of the P matrix diagonal elements. The trace(P(t-1)) is the product

of the P matrix diagonal clements and 1 is an n x n identity matrix.

By updating the P metrix in this way it ensures that the diagonal elements
of P never fall below a value determined by k, and k, This guarantees a

minimum sensitivity for the estimator.

Choosing between the above methods will depend on the plant, a specific

plant might even require a combination of the above methods.

o
|
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3.3 MAKING THE ON-LINE OBJECTIVE FUNCTION MODEL
IDENTIFICATION ROBUST

A key feature that will contribute to the practical success of the opti-=
mizer is the reliability of the on-line model. Small model inaccuracies
may result in a degree of sub-optimality or slower convergence, but an
estimator that diverges will result in controller failure. This section
looks at how the model identification can be made robust in the light of

recent developments in adaptive control.

On a real plant it is not always guaranteed that the estimator will con-
verge. We can identify two areas that need to he looked at before applying
the model identification (discussed in previous section) to a real plant.

They are:

1. Ensuri.g the estimator gets only the plant data necessary to model

the frequencies of interest. This is to circumvent the following:

o Bandw.dth of model: the assumed model is only valid for a certain
frequency range. Care must be taken so the estimator sces only

those frequencies that need to be modelled.

o Deterministic disturbances: Care must be taken to ensure that the
estimator models che input-output relationship aad not divert all
it's energy into modelling uncontrollable and possibly unobserv-

able modes.

o leasurement noise: It must be assuned that white Gaussian
bandlimited noise is present on the plant variables. The noise
seen by the estinator must be carefully processed to ensvia re-

liable estimator operation.
}
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2. Modelling errors within the bandwidth of interest: the assumed model
structure may not be an accurate enough representation of the plant.
The model order may be too low and there are unmodelled dynamics, or
the steady state of the model may not tit the plant accurately. The
latter is usually due to trying to fit a linear model to a highly
non-linear plant. If the modelling error that drives the estimator

is comparatively large then the estimator may diverge.

In the past dynamic mode! identification for practical adaptive control-
lers (eg. ASEA Novatune) has been fraught with the above problems. To
overcome these problems ad-hoc methods or "safety-nets" have been used
to constrain the range of operation of the estimator. This ensures stable
operation of the estimator but has undesirable and unpredictable eifects
on the quality of the estimaticn. This detiacts from the advani-ces

gained by adaptive control over conventional control.

Recent developments in adaptive contre' have led to theoretical and more
systematic ways of overcoming the above problems. Some of these devel-
opments are as yet unknown and are presented here in some detail. The
material for the next two sections comes iiainly from ideas put forward

by Prof. I.M. MacLeod and partly {rom very recently published papers.

3.3.1 COPING WITH DETERMINISTIC DISTURBANCES AND PLANT
NOISE

Elimination or deterministic disturbances and plant noise outside the
bandwidth of interest can be done by careful digital filteriug. The theory

is presented below and an example implementation is given in appendix A.

o
s
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For simplicity with notation a SISO linear model is assumed. This analysis
is easily extended for a single output multi-input 'iucar or non-linear
model (as described in a previous section on model celection), but the

notation is very cumbersome.

Assume the plant objective function can be modelled approximately by:

where the discrete variables are:

= predicted value of the plant objective function

-
"

=
"

plant inputs and/or regulator setpoints

N
"

£ measurable disturbance input

r £ unmeasurable deterministic disturbance

L2l
"

£ represents the modelling error and noise

Note that y is not the plant output and U includes the lower level reg-

ulator setpoints.

The q~' operator polynomials are:

Mg')s o + 0,97 + ..., + anq-n
Blig" ! )R gt (b B, g™ Ll + bmq'm )
€@ ") 2 q % +eq .. + e Qi )

and are assumed to have the following properties:

i) A is monic

ii) A and B are co-prime
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% 5.3, 1= nm

B A
aC < aA .

This is a DARMA model but has an extra term for bounded noise.

A deterministic disturbance r can be modelled by:

BV 8 - o (6)

(Goodwin and Sin, 1984 :156)

Now multiply (1) by the polynomial (verator A(g~') 0(q™'):

AOy = BOu + FOz #A0E  ..v..ovuwsee (7)

The above inclusion of r in the model, equation (3) is known as the

internal model principle.

Since § is a random signal, the polynomial AO before it would imply near
differentiation of this noise term. This is not acceptable and the model

has to be processed further.

Both A(q™') and 0{(q"') may involve differentiation or near differen-

tiation. To deal with the A polynomial we proceed as follows:

Introduce a filter 1/E where E is a stable, monic polynomial and aE
aA.

E(Q"') =gy + "' + ..... + o“q-

Also, write n = Af + modelling errvors.,
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Rewrite (3) as

AOy' = BOu' + COz' + Onf' .......... (8)
where

y' = (1/8)y

z' = (1/E)z

u' = (1/E)u

ne' = (A/E)E

The 0(q™') polynomial will have zeros on the stability boundary which
implies near differentiation. 0(q"') could become unstable due to near
differentiation of the noise frequencies. In the same way that the E
polynomial was introduced to overcome near differentiation due to A, we
introduce a Q polynomial to prevent near differentiatior by O operating

1
on ng'.
Choose Q, a stable polynomial operator "close to" 0. 1f the Q polynomial
is not "close to" the O polynomial then one risks filtering out important

plant frequencies. Appendix A gives an example of how Q is chosen.

Operating by 1/Q gives:

Ayf = Buf + sz + Me  evvvnnnnn, (9)
where
0
Yf =— y
EQ
e
uf e i
EQ

EQ
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AQ
Ne ® N

£Q

(= 0)

The operator'gb is a digital pre-filter that ensures the estimator will
only try to model the {requency band of interest. The noise term ¢ is

now acceptable for estimation and should not affeci the estimator.

Let the model predict y' = %% y, whirb means that the estimated value

appears after a high pass filter. The model can predict either y, yg or

y'. From a mathematical point of view an elegant choice seems to be y',

but the exact implications of this choice over Ve and y are not clear.

Let y' =Eyf--8y .

Also, add Eyf to either side of equation (§)
Eyf = Byf - Ayf + Buf + sz + LP IR ¥ b (10)

This can now be arranged into standard regression form as required for

parameter estimation:
' P
y = (E-A)yf + Bu{ + sz the o il
or in regression form
y'(t) = $(t-1)10 + ng

where
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$e-1) = [yp(0),... yp(een),

uf(t-d)... ur(t-d-m)‘

Sle-dl. (MBI g (12)
6T = lﬁ"ao.-.-e

-a D O G a0

n=1 "n=1’

3.3.2 COPING WITH MODELLING ERROR WITHIN THE BANDWIDTH OF
INTEREST

Estimator divergence can be due to the best possibtle mode:i fit only being
an approximation to the plant. Tt is caused by the estimation error that

drives the estimator always being large. Present methods simply use a

3

basic deadzone functicon where the model parameters are not updated if the

error is less than a set constant. A more attractive approach according
to Goodwin et al. (1986) is to vary the width of the deadzone dynamically
according to the noise present and the magnitude of the signals being

processed by the estimator.

The basic dead zone function is defined as follows:

e -~ 8 if & > 3
f(g,e) = 0 i 1 s
e + g 15 SO T R

When the error e(t) that drives the estimator falls below |g| then e(t)
is zero. It |e(t)| > |g| then the error that drives the estimator is e(t).
A relative diudzone is now described where the |g| is not constant but

\
changes dynamically,

Detailed Theoretical and Design Considerations 29



f(ge>

Figure 4. The Basic Deadzene Function

Take the standard RLS estimator and add a Boclean variable a(t), if a(t)
is 1 then the parameter estimates are updated, otherwise they are not

updated. This can be written as.

P(t-2)%(t-1)

8(t) = 8(t-1) + a(t, . e(t)

$(t-1) P(t-2)8(t-1) + 1

T 5
P(‘.‘l) - P(L':) = 8('.) / P(t'Z)’(t‘1)’(t'l) P(t's)

e(t-1)TP(t-1)0(t-1) + 1

Now choose

gy '® (U,1)

£°Z()
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t120

$3. 2 0

mg 2 0
so that

|“f(‘)| < mit) far allt
where m(*t) is the solution of

m(t) = ggm(t=1) + g4 + £, ju(t=1)] + e,|y(t=-1)|+ e,]z(t-1)]
for any 0, ¢ (0,',1), and m(0) = m,

Then choose €, > 0 and a € (0,1) to implement the

dead zone as follows:

B=ve, ¥ 1/(1-a)

and a(t) = as(t)

where
0 if |e(t)| € Bm(t)

s(k) =
f(Pm(t), e(t))/e(t) otherwise

Some guidelines as to the selection of the deadzone constants and its

behaviour are given in an M.Sc.(fng) thesis by van der Merwe (1987),
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The function a(i) thus implements the dead zone to account for modelling
errors. The key idea is that a(t) = 0 when the prediction error e(t)

falls below the bound fm(t).

3.4 EXTRACTING THE STEADY-STATE MODEL FROM THE DYNAMIC
MODEL

The optimizer needs a steady-state model which is extracted from the dy-
namic model. This is easily done by setting the tackward shift operator
q"' equal to unity. It means *hat the variables are assumed not to change

ith time and the plant is in steady-state. Important questions arise

as to whether this is a good way of obtaining a steady-state model:

o How well does the dynamic model predict, during plant transients, the

future steady-state values?

o How does the dynamic model order affect the steady-state prediction?

o Does over-estimation or under-estimation of the plant dead-time af-

fect the extracted steady-state model?

o Is a linear dynamic model good enough to give accurate steady-state

information?

© Is the extracted steady-state model more, or less sensitive to bad

modelling errors than the dynamic model?

o Is the extracted steady-state model sensitive to poor model parameter

estimation?
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It is beyond the scope of this research project to answer the agbove
questions in general. The validity of obtaining the steady-state model
from the dynamic model will be looked at only in the context of two spe-

cific case studies.

3.5 ON-LINE OPTIMIZATION

5.5.1.1 Introduction

The two step method described in the section entitled "Theoretical Four-
dations for the Adaptive Uptimizing Regulator" on page 11 has been erive
icized (Nachane, 1978) on the grounds that tue point parametric model used
to calzsulate the plant trajectory is based on non-optimal conditioas. An
integrated approach te identification and optimizatica is required. Var-
jous integrated approaches have been proposed. Nachane (1978) gives four
alternative methods, Ellis and Roberts (1984) give the ISOPE algorithm
(Integrated System Optimization and Parameter Estimation) and Brdys' and
Roberts (1984) give an integrated approach based on Lagrangian optimality

conditions.

All these methods assume on-line identification of a static plant model
so that the estimator must wait for the plant to settle betw."n estimator
samples. This limits the plant input move update time. The estimatcr

sampling rate must be the same as the optimizer sampling rate and hence

the plant 1nput move updace rate. Only then is it possible to combine
the minimization of the model error (parameter ostimation) and the min-
imization of the objective function into one optimization problem. For
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two-step, static identificat on and then optinization, nothing is lost
in combining the optimization problems and an integrated approach is
justified. Whereas for the two step, dynami. identification and ex-
traction of a static model and then optimizstion, the dynamic identifi-
cation can be done far more often than the static optimization and an

integrated approach is not applicable.

Also, dynamic model identification is much faster, and assuming a good
steady state model can be extracted, it allows a higher plant input move
bandwidth. This can be used to increase the number ot input moves to reach
the optimum, so the model will change less markedly between input moves,
and the problem of the plant trajectory being based on non-optimal con-
ditions is not an issue. This motivates the two-step procedure provided

thar the static model is extracted from the identified dynamic model.

3.5.1.2 Optimization Algorithm

From the previous discussion on robust model identification and steady
state model extraction it can be assumed that a reliable and very accurate
point parametric .teady state model of the objective function is avail-
able. Although the model is simple it is accurate due to its parameters
being continuously updated. The convergence to new parameters is robust

to modelling errors and to signal noise.

*
The remainder of this section looks at how the plant inputs Yy, and u,
are calculated in order to drive the plant to its optimum, as determined
by the objective function, and Keep it there in the face of persistent

measurable and unmeasurable disturbances.
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The algorithm based on a gradient search is given below. Recall the

static optimization problem:

min g YZ' ull mr ds ) ........ (1‘0)
m
such that
®
T d‘ ) IR " S ey 1 5 § (15)
*
gy, ,» Y, 4, d‘ ) D Vil s (18)

where the symbols have there usual meaning except for convenience of no-

tation m is introduced
* T M
nEf[y, , u | £ optimizer outputs

and from now on Y is assumed to be a function of the variables given above.

Unconstrained Optimization: Dealing with the unconstrained case first,

the gradient search algorithm at the operating point m(l) is:

m(l) = m(l-1) -y slv Y

m 'l

where
Sl # pos.icive definite matrix
¥ £ input move stepsize

Vm Yil f gradient ot tihe objective function at m(l)
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Remembering that y is a function of m in the general case so the gradient

is given by:

:
;
;’f;

m Y1 =% m dy

where

(A'l B), = Jacobian matrix

d
T®,

where A and B have there usual meaning as g~ ' pelvnomial ~perators,

wn

S1 can be chosen to give a Newtonian, Quasi-Newtonian or if Sl =1

then it is a steepest descent search. The stepsize u is chosen depending

on the choice of Sl to ensure convergencef( Polak, 1971).

Appendix B gives a simple example of an implementation of the above gra-

dient search algorithm.

Constrainad Optimization: A detailed account is given in Garcia and
Morari (1984). Here it is sufficient to give an understanding of what is
involved and how a constrained optimization algorithm can be implemented

into the controller.

The optimizer must produce feasible plant moves that lie inside a regiou
of operation, bounded by the constraints g. If the constraints g are
non-linear it is not possible to always ensure a feasible direction. The
only way t~ get around this is to introduce regulators so the constraints
are g* , the setpoints to the lower level regulators. In this way a
non-linear operating region is transformed to a linear operating region.
The following algorithm guarantees feasibility at each iteration

(Zoutendijk, 1960; Mangsarian, 1969):
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Problem: min Y( m, y,, u,, d‘ )
m

subject to g(m) £ 0

where gi( m) i=1l..dim(m) are assumed to be linear.

It is assumed the number of constraiits is less than or equal cto the
number of inputs, dim(m). Otherwise the set of active constraints 1is
found and the lower level regulators have their inputs controlling the

active constraints, see Garcia and Morari (1984).

A further assumption is that the constraint functions g; are known. If
not they can be identified in the same way that the objective function
is identified (see section "On-line Objective Function Identification"

on page 16).

At an operating point ni(l), a direction 9, which points towards the in-
terior of the .sible region and decrecases the objective ¢, is given by
the solution of the following linear program:

min ¢

£ q

such that

q' VP (m(1) < ¢

q' Vpy 85( M(1) < ¢ @
lqil %1 i=1..,din{ m(1))

e=(11... 1

vhere
v P # gradient of objective function

g Jacobian matrix of constraints

<3
=2
«Q
"

(]
~
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constrained to avoid unbounded solutions

o]
"

"

{jl -6,<gj (m(1) £ 0, 6,70} = set of o-active constraints

atv m(l)

The new operating point m(1+1) is found by selecting a stepsize Hy along

q;, which is usually chosen as the maximum positive value u such that
m(l+1) = m(l) + y . TSRS SR (17)

lies inside the allowed operating region. The existence of 9, and ¥y
is guaranteed if 8y satisfies certain qualificacion, which we assume here

to be filled (Mangasarian, 1969).

Provided the underlying regulators are chosen well the constrained and
unconstrained optimiza-ion algorithms are fairly straightforward numer-
ical techniques. Their performance depends on the quality of the extracted
steady state information, namely the objective function gradients and the

constraint gradients.

3.6 SUMMARY OF DESIGN PROCEDURE AND OUTLINE OF ALGORITHM

The important design .considerations are given. They are not hard and fast
rules but rather pcinters when doing a simulation study for a specific
plart. The optimizing regulater a'gorithm should not be highly sensitive
to the choice of design paramecers but theve is always room for exper-

imentation and refinement
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2 constrained to avoid unbounded solutions

o
"

J

(il -'J,<gj (m(1) £ 0, 0,0} = set of o-active constraints

at m(1l)

The new operating point m{l+1l) is found by selecting a stepsize ¥y along

9, which is usually chosen as the maximum positive value u such that
m(l+41) =m(l) +pq;  .......... (17)

lies inside the allowed operating region. The existence of 9, and ¥y
is guaranteed if 8 satisfies certain qualification, which we assume here

to be filled (Mangasarian, 1969).

Provided the underlying regulators are chosen well the constrained and
unconstrained optimization algorithms are fairly straightforward numer-
ical techniques. Their performance depends on the quality of the extracted
steady statc information, namely the objective function gradients and the

constraint gradients.

3.6 SUMMARY OF DESIGN PROCEDURE AND OUTLINE OF ALGORITHM

The important design considerations are given. They are not hard and fast
rules but rather pointers when doing a simulation study Jor a specific
plant. The optimizing cegulator algorithm should not be highly sensitive
to the choice of design parameters but there is always room for exper=

imentation and refinement.,
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Plant sampling interval TS. This is usually chosen as fast as is

necessary considering the dominant plant time constants.

Define a safe plant operating region and choose suitable constraints

to describe the region.

Decide on an objective function or set of objective functions. The

choice is limited by the following two requirements:

a. It must have a single extremum in the operating region.

b. It must be calculated on-line from plant measurements to give an

instantan~rous value.

Low level regulators: Choose betweon all existing approaches to reg-
ulatory process control. This includes analog or digital control,
SISO and MINO, classical and modern control theory as well as adaptive
control. Where the purpose is te regvlate the plant act set points in
the face of fast disturbances as well as making the plant operating

region linear and preventing coustraint interaction.

Form of objective function model: Section "Choice of Model" on page
16 discusses the choice between a linear or non=linear model, the
mode! degree and the inclusion of measurable disturbances in the

model,

Estimator: It is only under special circumstances that anything other
than the RLS estimator (section "Fstimation of .iodel Pavameters" on
page 20) should be considared, Select a modiiication to the RLS es-

timator so it can track plant changes.

Detailed Thecretical and Design Considerations 39



7. bandwidth of objective function model: This will determine the dig-
ital filter design (secticn "Coping with Deterministic Disturbances
and Plant Noise" on page 24) as well as the estimator sampling rate,

This can be greater than or equal to T_.

8. Deterministic disturbances: If there are deterministic disturbances
in the estimator bandwidth then they must be included in the model
(see section "Coping with Deterministic Disturbances and Plaut Noise'

on page 24).

9. Relative Jdeadzone design: Apply a deadzone to the estimator in case
of bad model plant match and resulting estimator divergence (section
"Coping with Modelling Error within the Bandwidth of Interest' on page
29).

10. Optimization update time T Time period between setpoint changes

opt’
and/or direct plant input changes. The factors considered are:

o Rate of convergence of the estimator
o Frequency of the signiticant persistent disturbances d’

11. The stepsise of the plant moves (section "On-line Optimization" on
page 33) is a convergence parameter and should be, as a starting

point, chosen conservavively.

The difficult part is defining the problen the optimizer has to solve and

this includes the objective function formulation and choice of underlying

regulators.
A breakdown of the algorithm given in Figure 5 on age 41 sliows the
futictional structure of the aduptive optimizing regulator,
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Figure 5.

Functional Structure of Optimizing Regulator
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4.0 CASE STUDY: APPLICATION OF ADAPTIVE OPTIMIZER THEGCRY
TO A BALL MILL

4.1 INTRODUCTION

Plant Chosen: The plant chesen is a simplified ball mill circuit shown
in Figure 6 on page 43 (Lynch, 1077). It must be kept in mind that the
controller is under test and not the realism of the problem. The fol-

lowing criteria were used to select this cuse study:

o The control of the plant must be difficult using standard methods,
It must have the following:
& Significant dead-time
- Non-linearities

- Significant disturbances and ' ence optimum changes

o The plant must be simple so that the behaviour is easily predicted

and the essential features are not lost in detail.

The ball mill model used satisfies all of the above criteria. It also has
the advantage that it is fairly realistic in that the cost function is
easily measured and the control objective is straightforward and intu-

itively justified.
Another important reason for choosing this plant to test the controller

is that it serves as a good introduction to the real world problem of

autogenous mill control, which is tnckled later,
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Figure 6. Simplified Ball Mill showing inputs and outputs
|

Control Objective: The control objective is to maximise the mill mass

throughput given the constraint on size of product.

Simulation Environment: The simulations were done on a HP 9000 series
300 computer operating under UNIX. The language used was PASCAL which
provided a well structured aund hence versatile program. The program

listing is given in appendix D.

4.2 BALL MILL MODEL

A ball mill and classifier can be mode |

lled accurately using a mechanist ic

rpproach, This leads to a distributed=parameter system that has difficult
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equa:ions to handle and is cumbersome for control purposes. An approximate
model with lumped parameters can be obtained on the basis of the steady
state material balance equations for the mill. The basis for this ball

mill model comes from ..eviczky et al. (1976).

Referring to the simulaticn block diagram in Figure 7 on page 45. Looking
only at the ball mill model and not the contrcllers, the block structure
of the mill simulaticn is seen to follow the mill geometry. This helps
to visualise the interaction of the components and leads to an intuitive
and easily understood model. The grinding circuit has two manipulable
inputs, the mass flow of fresh sclid material into the circuit and the

required product size setpoint. The measurements that are available are:

m(¢) discharge or mass flow out nf the mill

g(t) classifier underflow

1(t) mass flow into mill which includes g(t) and u(t)

plt) mass flow of final product or classifier over-
flow |

The miil can be seen as an integrator, where 1(t) is integrated to give
the mill fractional filling f(t). The only other significant dynamics are
the mill and the classifier pure delays, If the material classifier is a
hydrocyclone then its delay is negligible compared with the mill pure

delay.

The discharge of material out of the mill m(t) is modelled only as a
function of the fractiona! f/1ling f(t)., All othe: factors that affect
discharge rate not as significantly, such as solids size distribution,
pulp density, ball size ete. are lumped together and treated as a dis-
turbance. The discharge function d(f(t)) is simply modelled as the flow

of a head of liquid over a semi-circular weir, and this gives a quadratic
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relationship. All that is impcrtant is that the mill discharge bears some
non-linear relationship to the variable f(t). The dependence of the dis-
charge function on f(t) is chosen because f(t) can be centvolled indi-
rectly trom available mill measurements. From the control point of view
all other dependencies have no manipulable inputs to attempt control and

are simply treated as disturbances,

The product function p(f(t)) gives the instantaneous relationship between
the amount of product (material less than the size setpoint s*) and the
mill fractional filling. Noie that there are no avnamics be’ween f(t) und
p(t) and m(t) so the steady state relationships for p/f(t)) and d(f(¢))

are simply:
P = p(F)
M = d(F)

Where the capitals P, M and F denote tho steady state values of p(t), m(t)

and f(c¢) respectively.

Because the wearing down of the material inside the mill is a rate process
ie. the amount of fine material produced is proportional to the guanticy
of material inside the mi!l, the amount of product (material less than a
certain sizc) is primarily a function of the fractioral filling. The
function P(F) shown in Figure 8 on page 48 relates the amount of product
produced to the mill fractional filling. As the fractional filling in-
creases so the product increases until the mill starts to choke and the
whole mill contents rotate without any relative motion between the rock
particles (epicyclic gear effect Lyncn, 1977). The product mass flow then
decreases to zerc when the mill i{s cempletely clogged. P has a maximum
and this 1is the desired mill operating point. The disturbiances to the

product mass flow rate are large and varied, the important disturbances
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are; size distribution of mill contents, physical n.e characteristics and
ball and liner wear. These ma, change the position of the maximum of P(F)
significantly and this is simulated by changing parameters in P(F). To
include the whole family of relationships P(¥) write P as P(F,d) where d
represents the combined effect of all possible disturbances at that time.
The product function P(F) is chosen as a fourth order polynomial. This
is motivated on the grournds that a polynomial of this order models mill
power draft as a function of F accurately (Hinde, 1977) and mill product
mass flowrate is proportional to mill power draft for a certain product

size and input feed size distribution.

The details of the non-linear functions d(F) and p(F) and exactly how the
function parameters are changed to simulate the disturbances is given in

appendix C.

It is assumed that the classifier is ideal and the material less than a
certain size p(t) is separated and the remainder or classifier underflow,
g(t) recygles into the mill. More realistic modelling involves giving
each size fraction of the mill disclarge or pulp a probability of re-
porting to the overflow p(t) rather than the underflow g(t). This level
of detail is not required brcause a simple input output model 1s built
and all the detailed factors that change the optimum are lumped together
as a plant disturbance. The classifier cut size is controlled by, for
example, changing the discharge density by water addition if a
hydrocyclone classifier is used, or for a centrifugal cement mill
classifier, bv changing the speed of rotation. This simulation assumes
the existence of a regulator to control the product separation to a

setpoint.
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Figure 8. Relationship between P and F showing the desired operat-

ing point and a shitt in this point due to a disturbance

4.3 GRINDING CIRCUIT CONTROL

It is known that the optimum cperating point (Figure 8 on page 48) for
maximum product has to be approached cautiously. A mill solids feedrate
higher than that which gives the optimui will cause the mill to go into
an unstable operating region and the mill will overload rapidly. An
understanding as to why the region F)Fopt is unstable is clear f[rom
Figure 7 on page 453. An increase in F above Fopt causes a ded in P
(relationship given in Figure 8) which wil) increase G more than M. For

the increased u(t) (solids feedrate) to give F>I a positive feedback

opt
condition exists and there is no steady state. This can also be under. tood

from a physical point of view. 1f the fresh solids feedrete is increased

beyond that point that gives most efficient grinding then the increased
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material input, in addition to less product being rioduced and extracted

causes the mill to fill up and overioad .apidly.

“¥ads in use to control ball mills are of the Williamson peak seeking
illiamson, 1975) that try to keep the mill at its optimum by de-
termining which side of the peak the mill is operating and then providing
an appropriate control action. Referring to Figure 9 on page 50, if after
increasing the solids feedrate u{t), P alse increaces then the mill isg
in region A and u(t) can be increased further, on the other hand if P
decreases (region B) then the controller must decrease u(t) to drive the

¢ This type of controller is easily implemented by using

mill back to Pop
the mill power draft (easily measured) as a measure of the energy per unit
time going into the grinding process and hence & measure of the amount

of product per unit time.

These controllers are satisfactory provided the P,F relationship is not
influenced significantly by disturbances and the curve remains approxi-
mately stationary. Figure 9 on page 50 shows A large disturbance changing
the curve. The controller will detect a decrease in P of magnitude x and
will subsequently decrease f(t), which drives the plant away from Popt'
It will confuse the old region B with the new region A'. For large fre-
quent disturbances and a shifting optimum the controller action may be

inappropriate. Also, due to the operating point being close to an unstable

region the controller may overload the mill.

Now that the problem has “een explained we proceed with a solution in the
form of the adaptive optimizing regulator proposed in the previous two
chapters. Knowing that the optimizer needs time and is designed for low
bandwidth operation a low level regulator is introduccd to cope with high

frequency disturbances.
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Figure 9, Steady State relitionship between P and F showing regions

of operation

4.4 MILL SOLIDS FEEDRATE REGULATOR

Keviczky et al. (1976) propose and motivate a mill solids feedrate regu-
lator. They identify 1(t) (material flowing into the mill ie.u(t)+g(t))
rather than u(t) (fresh solids feedrate) as the impoitant measured vari-
able tc be controlled to a setpoint. Figure 7 on page 45 shows a simple
integral ac‘ion regulator that adjust: tresh solids feedrate L(t) to keep
:(t) At lﬁft). Their motivation is based on 1(t) being a more direct
control of conditions in the mill and thus of p(t). Also the regulator
makes 1(t) immune to the disturbances associated with the classification
process. These are fast disturbances df when compared with the disturb-
ances due to changing fresh solids feed characteristics (for example

particle size distribution and physical properties of the rock) and hence
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conditions inside the mill. Even if, for example, there is a step change
in the fresh solids feed size distribution the change in P will be slow
because of the relatively large mill capacity. These are persistent dis-
turbances d' that change the steady state P,F relationship and move the
Jdesired operating point. It is the optimizers job to track the optimum

but it relies on the mill solids feedrate regulator to reject the fast

disturbances df while it finds the next lﬁ(t).

Looking at the simulation block diagram Figure 7 on page 45. A fast dis-
turbance is simulated by changing the coefficients ol Lhe p(¥) function.
If the size setpoint " is changed then this is also viewed as a fast
disturbance associated withh the classifier. From the block diagram it is
seen that any differential change between the two functions p(F) and d(F)
is rapidly compensated for by the solids feedrate regulator. The per-
sistent disturbances are simulated as a change in both the parameters of
the functions p(F) and d(F). This makes sense, because changing conditions
inside the miil (due to ds ) will change both the product function p(F)
and the discharge function d(F). The discharge rate and the amount of
product produced are intrinsically linked. The next section deals with
the problem the adaptive optimizer has to solve and the necessary algo-

rithms.
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4.5 BALL MILL ADAPTIVE OPTIMIZER

4.5.1 PROBLEN FORMU'ATION

The problem to be solved by the adaptive coptimizing regulator is:

max

"
% P(F(I), d)
3 (%) '

where the product size regulator prevents violation of the s.ze constraint

and ds represents the persistent disturbances.

The fresh solids feed rate regulator prevents the mill going into an un-

stable region due to fast disturbances df

To solve this problem the function p(F(l*)) needs to be known. It must

be identified on-line because it is changing all the time due to ds .

4.5.2 OPTIMIZER

The simplest possible working solution is presented without complicating

the algorithm with refinements.

Objective Function Model: Second order linear DARMA model with deadtime

d and no neasurable disturbance included.

(1 + a,q"' + a,q"? )plt) = q-d(l»o + l»,q“')lyl!) B v Ld)
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