

Declaration

DECLARATION

I, Trinesh Chanka, declare that the content of this report is my own unaided work, unless otherwise stated, and that I own copyright in this. This research report is being submitted for the Degree of Master of Science in Engineering in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

Signed:_____

Trinesh Chanka

Date: _____ day of _____ 200_____

Abstract

Page ii

ABSTRACT

This report entails the research undertaken into the use of hydrogen, as generated by an on-demand production system, as an alternate fuel to the conventional spark ignition engine. The objectives were to develop a hydrogen generator capable of supplementing the petrol intake to the engine and to determine the engine performance and emissions for both conventional fuelling and hydrogen-enhanced fuelling. Comparisons of engine torque, BMEP and NO_x, CO and CO₂ concentrations were drawn. The use of hydrogen within the automotive industry, as well as current hydrogen-powered vehicles, was researched and described. A study into the effects of hydrogen fuelling was carried out and methods of hydrogen production were discussed. The detailed design of the hydrogen generator and its controlling electronic circuitry was undertaken and the generator was built and commissioned. The tests were performed on a 338 cm³ Acme Motori engine coupled to a water-cooled dynamometer, complete with automatic control equipment. A detailed discussion of the preliminary testing was then presented whereafter, the final experimental procedure was described. Tests were performed at one-half throttle and at two-thirds throttle respectively for each fuelling scenario. Engine performance parameters and emissions concentrations were plotted for each fuel and direct comparisons between the two fuelling scenarios were drawn. Average BMEP output for hydrogen-enhanced fuelling was 15% higher. Average torque for hydrogenenhanced fuelling was 9% higher. Average NO_x concentrations for hydrogen were 19% lower, while average CO emissions were 22% lower. Average CO₂ concentrations were 6% higher for hydrogen-enhanced fuelling.

Acknowledgements

ACKNOWLEDGEMENTS

The author wishes to acknowledge Dr. D. Cipolat for his guidance, assistance and mentorship throughout the duration of this project. The skills and knowledge that he has imparted, technical and otherwise, are, and will continue to be, of great benefit. Thanks and gratitude are also extended to Prof. Sheer for the financial assistance received from his department. To Mr. and Mrs. Eder, a debt of gratitude is owed for their assistance in the construction of the electronic circuitry. Acknowledgements must also be expressed to the staff of the mechanical workshops for their patience and practical advice. Lastly, to my parents, for affording me this opportunity and so many others, I am eternally grateful.

Table of Contents

TABLE OF CONTENTS

	Page	
DECLARATION	i	
ABSTRACT	ii	
ACKNOWLEDGEMENTS	iii	
TABLE OF CONTENTS	iv	
LIST OF FIGURES	xi	
LIST OF TABLES	xiii	
NOMENCLATURE	xv	
1. INTRODUCTION	1	
1.1 Overview	1	
1.2 Alternate Fuels	2	
1.3 Hydrogen	4	
2. OBJECTIVES	6	
3. LITERATURE SURVEY	7	
3.1 Overview	7	
3.2 Industry Developments	9	
3.2.1 BMW Hydrogen	9	
3.2.2 Ford Hydrogen	15	
3.2.3 Hydrogen Rotary Engines	16	
3.3 Hydrogen Generation		

	Page
3.3.1 Steam Reformation	19
3.3.2 Electrolysis	20
3.4 Paper 1: Performance Characteristics of Hydrogen Fuelled Engine with	22
the Direct Injection and Spark Ignition System	
3.4.1 Introduction	22
3.4.2 Results and Discussion	22
3.4.3 Conclusions	25
3.5 Paper 2: Hydrogen Internal Combustion Engine Boosting Performance	26
and NO _x Study	
3.5.1 Introduction	26
3.5.2 Results and Discussion	26
3.5.3 Conclusions	27
3.6 Paper 3: Performance of a Spark-Ignition Engine Fuelled with	28
Hydrogen using a High-Pressure Injector	
3.6.1 Introduction	28
3.6.2 Results and Discussion	28
3.6.3 Conclusions	29
3.7 Nitrogen Oxide (NO _x) Formation	30
	30
4. III DROGEN GENERATOR DEVELOPMENT	52
4.1 Overview	32
4.2 Product Requirement Specification	32
4.2.1 Requirements	32
4.2.2 Constraints	33
4.2.3 Wishes	33
4.3 Design Development	34
4.3.1 Generating Chamber Design	34
4.3.2 Electronic Circuit Design	45

	Page
4.4 Design Specification	54
4.4.1 Generator Design	54
4.4.2 Electronic Circuit Design	55
4.4.3 Engineering Drawings	56
4.4.4 Design Drawings	57
5. EXPERIMENTAL FACILITIES	59
5.1 Spark Ignition Engine	60
5.2 Dynamometer	61
5.3 Fuel System	62
5.3.1 Fuel Supply System	62
5.3.2 Air Supply System	63
5.4 Cooling Fans	63
5.5 Gas Analyser	64
5.6 Instrumentation	64
5.6.1 Ambient Pressure	65
5.6.2 Air Flow Rate	65
5.6.3 Fuel Flow Rate	65
5.6.4 Engine Speed	65
5.6.5 Engine Torque	66
6. PRELIMINARY TESTING	67

6.1 Overview	67
6.2 Test 1: Concept Demonstrator	67
6.2.1 Objective	67
6.2.2 Apparatus	67

Page

6.2.3 Set-up and Test Procedure	68
6.2.4 Results and Discussion	69
6.2.5 Conclusions and Future Work	70
6.3 Test 2: Hydrogen Collection	71
6.3.1 Objective	71
6.3.2 Apparatus	71
6.3.3 Set-up and Test Procedure	72
6.3.4 Results and Discussion	73
6.3.5 Conclusions and Future Work	74
6.4 Test 3: Temperature Effects	74
6.4.1 Objective	74
6.4.2 Apparatus	75
6.4.3 Set-up and Test Procedure	76
6.4.4 Results and Discussion	77
6.4.5 Conclusions and Future Work	79
6.5 Test 4: Preliminary Engine Test	79
6.5.1 Objective	79
6.5.2 Apparatus	80
6.5.3 Set-up and Test Procedure	81
6.5.4 Results and Discussion	82
6.5.5 Conclusions and Future Work	85
6.6 Test 5: Circuit Optimisation	86
6.6.1 Objective	86
6.6.2 Apparatus	86
6.6.3 Set-up and Test Procedure	87
6.6.4 Results and Discussion	87
6.6.5 Conclusions	89

Table of Contents

7. EXPERIMENTATION	Page 90
7.1 Overview	90
7.2 Procedure	90
7.3 Precautions	92
7.3.1 Equipment Precautions	92
7.3.2 Testing Procedure Precautions	92
8. RESULTS AND DISCUSSIONS	93
8.1 Overview	93
8.2 Results	94
8.3 Torque	97
8.3.1 ½ Throttle Results	97
8.3.2 ¾ Throttle Results	98
8.3.3 Combined ½ and ¾ Throttle Results	100
8.4 Brake Mean Effective Pressure	102
8.4.1 ¹ / ₂ Throttle Results	102
8.4.2 ³ / ₃ Throttle Results	103
8.4.3 Combined 1/2 and 3/3 Throttle Results	105
8.5 Nitrogen Oxide Emissions	107
8.5.1 ¹ / ₂ Throttle NO _x Emissions	107
8.5.2 3/3 Throttle NO _x Emissions	108
8.5.3 Combined $\frac{1}{2}$ and $\frac{2}{3}$ Throttle NO _x Emissions	109
8.6 Carbon Monoxide Emissions	113
8.6.1 ½ Throttle CO Emissions	113
8.6.2 ¾ Throttle CO Emissions	115
8.6.3 Combined ½ and ¾ Throttle CO Emissions	116
8.7 Carbon Dioxide Emissions	119

	Page
8.7.1 ½ Throttle CO ₂ Emissions	119
8.7.2 3/3 Throttle CO ₂ Emissions	120
8.7.3 Combined ¹ / ₂ and ² / ₃ Throttle CO ₂ Emissions	122
9. CONCLUSIONS AND RECOMMENDATIONS	126
9.1 Conclusions	126
9.2 Recommendations	127
10. REFERENCES	128
11. APPENDICES	132
11.1 Appendix A: Generator Design	132
11.1.1 Appendix A1: Generator PVC Properties	132
11.1.2 Appendix A2: Thread Specifications	133
11.2 Appendix B: Design Drawings	134
11.3 Appendix C: Preliminary Experimental Data	135
11.3.1 Appendix C1: Temperature Test Results	135
11.3.2 Appendix C2: Sample Calculation	136
11.3.3 Appendix C3: Frequency Test Results	138
11.4 Appendix D: Dynamometer Calibration	139
11.5 Appendix E: Gas Analyser Procedure	140
11.5.1 Appendix E1: Start up Procedure	140
11.5.2 Appendix E2: Analyser Requirements and Gas Cylinder Contents	141
11.5.3 Appendix E3: Calibration Procedure	141
11.5.4 Appendix E4: Variable Ranges For Each Analyser	143

Table of Contents

	Page
11.5.5 Appendix E5: Notes	144
11.5.6 Appendix E6: Problems With Calibration	145
11.5.7 Appendix E7: Shut Down	146
11.6 Appendix F: Enissions Data Acquisition Procedure	146
11.7 Appendix G: Raw Data	148
11.8 Appendix H: EES Source Code	152
11.9 Appendix I: Curve Fit Equations	153
11.9.1 Appendix I1: Torque	153
11.9.2 Appendix I2: BMEP	153
11.9.3 Appendix I3: NO _x	154
11.9.4 Appendix I4: CO	154
11.9.5 Appendix I5: CO ₂	154
11.9.6 Appendix I6: Specific NO _x	155
11.9.7 Appendix I7: Specific CO	155
11.9.8 Appendix I8: Specific CO ₂	155
11.9.9 Appendix I9: Equivalence Ratio	156
11.10 Appendix J: Final Test Results – Sample Calculation	156
11.10.1 Appendix J1: Torque	156
11.10.2 Appendix J2: Power	157
11.10.3 Appendix J3: BMEP	157
11.10.4 Appendix J4: Specific NO _x	157
11.10.5 Appendix J5: Specific CO	158
11.10.6 Appendix J6: Specific CO ₂	158

List of Figures

LIST OF FIGURES

Figure		Page
1.1	Comparison of Emissions	3
1.2	Energy field of the Hydrogen molecule	4
3.1	BMW's Hydrogen Fleet	9
3.2	BMW 745hl	10
3.3	CleanEnergy MINI Cooper	11
3.4	BMW CleanEnergy H2R	12
3.5	Mazda's Hydrogen-powered RX-8	17
3.6	Electrolysis of Water	20
3.7	Maximum Brake Torque vs. Spark Timing	23
3.8	Torque vs. Engine Speed	24
3.9	NO_x emissions from Hydrogen testing vs. Relative Equivalence Ratio λ	29
3.10	NO _x Concentration as a function of Equivalence Ratio	31
4.1	Square wave pulse form terminology	45
4.2	Electrode circuit schematic	46
4.3	Schematic of the Astable NE555 chip	47
4.4	Schematic of the Monostable NE555 chip	50
4.5	Water Level Sensor Control Circuit	52
4.6	Isometric View of Hydrogen Generator	57
4.7	Exploded View of Hydrogen Generator	58
5.1	Test Cell Layout indicating the portable test rig	59
52	Hydrogen Generator and Control Circuitry	60
J. L		00
6.1	Graph of Hydrogen Generation vs. Water Temperature	78
6.2	Graph of Hydrogen Generation vs. Frequency	89

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG

Figure		Page
8.1	Graph of Torque vs. Engine Speed at ½ Throttle	97
8.2	Graph of Torque vs. Engine Speed at 3/3 Throttle	99
8.3	Graph of Combined 1/2 and 2/3 Throttle Torque Curves	100
8.4	Graph of BMEP vs. Engine Speed at ½ Throttle	102
8.5	Graph of BMEP vs. Engine Speed at 3/3 Throttle	104
8.6	Graph of Combined 1/2 and 2/3 Throttle BMEP Curves	105
8.7	Graph of NO _x Concentration vs. Engine Speed at $\frac{1}{2}$ Throttle	107
8.8	Graph of NO _x Concentration vs. Engine Speed at $\frac{2}{3}$ Throttle	108
8.9	Graph of Combined $\frac{1}{2}$ and $\frac{2}{3}$ Throttle NO _x Concentrations	109
8.10	Graph of Combined $1\!\!\!/_2$ and $2\!\!\!/_3$ Throttle Specific NO_x Concentrations	110
8.11	Graph of Combined 1/2 and 2/3 Throttle Equivalence Ratios	112
8.12	Graph of CO Concentration vs. Engine Speed at ½ Throttle	114
8.13	Graph of CO Concentration vs. Engine Speed at ² / ₃ Throttle	115
8.14	Graph of Combined 1/2 and 2/3 Throttle CO Concentrations	116
8.15	Graph of Combined 1/2 and 2/3 Throttle Specific CO Concentrations	117
8.16	Graph of CO ₂ Concentration vs. Engine Speed at ½ Throttle	119
8.17	Graph of CO ₂ Concentration vs. Engine Speed at ² / ₃ Throttle	121
8.18	Graph of Combined $\frac{1}{2}$ and $\frac{2}{3}$ Throttle CO ₂ Concentrations	122
8.19	Graph of Combined $\frac{1}{2}$ and $\frac{2}{3}$ Throttle Specific CO ₂ Concentrations	123
8.20	Graph of NO _x , CO and CO ₂ Specific Emissions at $\frac{1}{2}$ Throttle	124
8.21	Graph of NO _x , CO and CO ₂ Specific Emissions at $\frac{2}{3}$ Throttle	125

D1 Dynamometer Calibration Curve

139

List of Tables

LIST OF TABLES

Table		Page
1.1	Properties of Hydrogen	5
4.1	Generator Casing Properties	34
4.2	Generator Specification	54
4.3	Electronic Circuit Specification	55
4.4	List of Engineering Drawings	56
5.1	Engine Specifications	61
6.1	Oxygen Analyser Specifications	72
6.2	Experimental Results for Temperature Tests	77
6.3	Engine Specifications	80
6.4	Experimental Results for Frequency Tests	88
8.1	Averaged Results for Petrol fuelling at one-half throttle	95
8.2	Averaged Results for Hydrogen-enhanced fuelling at one-half throttle	95
8.3	Averaged Results for Petrol fuelling at two-thirds throttle	96
8.4	Averaged Results for Hydrogen-enhanced fuelling at two-thirds throttle	96
9.1	Maximum Performance and Emissions Results	127
A1	uPVC Properties	132
C1	Temperature Test Results	135
C2	Frequency Test Results	138
D1	Dynamometer Calibration Data	139
E1	Gas Cylinder Contents	141
E2	Variable Ranges for CO ₂ Analyser	143

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG Research Report Page xiv List of Tables Page Table Variable Ranges for CO Analyser E3 143 E4 Variable Ranges for NO_X Analyser 144 Petrol Data at 1/2 Throttle G1 148 G2 Hydrogen Data at 1/2 Throttle 149 Petrol Data at ²/₃ Throttle 150 G3 G4 Hydrogen Data at ²/₃ Throttle 151

Nomenclature

NOMENCLATURE

Symbol	Description	Unit
Acan	End cap area	[m ²]
Abole	Hole surface area	[m ²]
ATDC	After top dead centre	[°crank angle]
b	Breadth of cross section	[m]
BMEP	Brake mean effective pressure	[kPa]
BTDC	Before top dead centre	[°crank angle]
С	Capacitance	[F]
C _d	Coefficient of discharge	
CO	Carbon monoxide	[ppm]
CO ₂	Carbon dioxide	[ppm]
D _{major}	Major diameter	[m]
D _{thread}	Thread depth	[m]
EGR	Exhaust gas recirculation	
e	electron	
F	Force	[N]
f	Frequency	[Hz]
F _{end cap}	Force on end cap	[N]
F _{thread}	Thread force	[N]
f.o.s	Factor of safety	
g	Gravitational constant	[m.s ⁻²]
h	Height of cross section	[m]
H⁺	Hydrogen ion	
I	Second moment of inertia	[m ⁴]
imep	Indicated mean effective pressure	[kPa]
m	Mass	[kg]
Μ	Bending moment	[Nm]

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG

Nomenclature

Page xvi

Symbol	Description	Unit
m	Carbon atom index	
m	Maga of water	[ka]
n	Hydrogen atom index	
N	Engine speed	[rps]
NO _X	Nitrogen Oxides	[ppm]
Р	Power	[kW]
<i>p</i> _a	Ambient pressure	[Pa]
Pint	Internal pressure	[Pa]
R	Universal gas constant	[J.kg ⁻¹ .K ⁻¹]
R _{1,2}	Resistance	[Ω]
Ratio _{thread}	Thread depth / diameter ratio	
r _i	Inner radius	[m]
SA	Spark angle	[°crank angle]
sCO	Specific carbon monoxide	[ppm.W⁻¹]
sCO ₂	Specific carbon dioxide	[ppm.W ⁻¹]
sNO _x	Specific Nitrogen oxides	[ppm.W⁻¹]
S _{y, PVC}	Yield Strength of PVC	[MPa]
т	Temperature	[K]
Т	Torque	[Nm]
t	Thickness	[m]
t	Time	[s]
T _a	Ambient temperature	[K]
T _{off}	Space time period	[s]
T _{on}	Mark time period	[s]
V	Voltage	[V]
Wgenerator	Weight of generator	[N]
wwmp	World wide mapping point	
у	Distance from neutral axis, bending	[m]

Nomenclature

Page xvii

Symbol	Description	Unit
	_	
(aq)	Aqueous	
(g)	Gaseous	
(/)	Liquid	
\dot{m}_h	Mass rate of hydrogen	[kg.s ⁻¹]
$\dot{m}_{_{W}}$	Mass rate of water	[kg.s⁻¹]
$V_{_W}$	Volume rate of water	[m ³ .s ⁻¹]
Obending	Bending stress	[MPa]
σ_{hoop}	Hoop stress	[MPa]
$\sigma_{hoop,max}$	Maximum hoop stress	[MPa]
λ	Relative equivalence ratio	
Δр	Differential pressure	[Pa]