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Abstract 

 

 

 

The completion of the genome sequence of Mycobacterium tuberculosis strain H37Rv revealed that 

10% of the coding capacity is devoted to two, large multigene families that are characterised by 

repeat sequences. These are the PE and PPE families that code for acidic, glycine rich proteins. A 

subgroup of the PE family is the polymorphic GC rich sequence (PGRS) gene subfamily. Genome 

comparisons of clinical isolates of M. tuberculosis have confirmed the polymorphic character of some 

of these genes suggesting they may be analogous to the contingency loci found in other pathogenic 

bacteria. Certain PE-PGRS proteins play a direct role in virulence in M. marinum, other PE-PGRS genes 

are cell surface associated, and some PE-PGRS proteins are variable surface antigens, supporting a 

potential role in host pathogen interactions. A reporter assay designed to investigate mutations in a 

PE-PGRS repeat-containing sequence was used to assess mutation rates in various M. smegmatis host 

strains by fluctuation analysis. A wide spectrum of mutations was observed and the evidence suggests 

that slipped-strand mispairing between proximal and distal PGRS sequences located in cis is the 

predominant type of mutational event at such loci. Moreover, slipped-strand mispairing at such loci 

occurs at a moderately higher rate than base substitution mutagenesis and is mediated by the normal 

replicative polymerase.  
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aph  aminoglycoside phosphotransferase gene that encodes kanamycin resistance 

‘aph  cryptic aph cassette that does not encode its own ATG start codon 

ADC  albumin, dextrose, catalase supplement for MADC-Tw 

Amp  ampicillin antibiotic 

attB attachment site within the bacterial chromosome used during plasmid integration 

attP  phage attachment site within the plasmid that integrates at the bacterial attB site 

BCG  bacille Calmette-Guérin 

bla  gene encoding β-lactamase for ampicillin resistance 

bp  base pairs 

C  number of culture tubes per Fluctuation Test  

CD4+  subgroup of CTLs that form part of the human immune system  

CFU  colony forming unit 

CL  confidence limit 

CTL  cytotoxic T lymphocyte 

dinP  gene encoding DinP error prone polymerase 

dinX  gene encoding DinX error prone polymerase 

dNTP’s  deoxyribonucleotide triphosphates 

DOTS  directly observed treatment, short course 

EBV  Epstein-Barr Virus 

EBNA  Epstein-Barr virus nuclear antigen    

EMB  ethambutol antibiotic 

EP  error-prone 

G  guanine 

Gm  gentamicin antibiotic 

GTP  guanosine triphosphatase 

his D   gene encoding histidine 

His-  histidine auxotrophy 

His+  histidine prototrophy 

HIV  Human Immunodeficiency Virus 

hyg  gene encoding hygromycin B resistance 

Hyg   hygromycin B antibiotic 

IFN-γ  interferon γ 

INH  isoniazid antibiotic 

int  gene encoding phage integrase enzyme 
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IV  intervening sequence 

kDa  kilo Dalton 

Km  kanamycin antibiotic 

LA  Luria Bertani Agar 

LB  Luria Bertani Broth 

lacZ   gene encoding β-galactosidase 

µ  mutation rate = probability of mutation per cell per division or generation 

µg  microgram 

µL  microlitre 

m  number of mutational events per culture tube  

MADC-Tw Middlebrook 7H9 broth supplemented with ADC and 0.1% Tween 80 

MDR-TB multi-drug resistant Mycobacterium tuberculosis 

MHC  major histocompatibility complex  

MIC  minimal inhibitory concentration of drug used to prevent growth of a pathogen 

Morf2  reporter construct containing 3 repeat elements and engineered stop codon  

MMR  mismatch repair 

MPTR  major polymorphic tandem repeats 

MSP-1  major surface protein 1 antigen located on Aniplasma marginale 

MSS  Ma-Sandri-Sarkar Maximum Likelihood Method for calculating µ 

No  initial population numbers within a single fluctuation assay tubes 

Nt  final population numbers within a single fluctuation assay tubes 

NO   nitric oxide 

NOS2  nitric oxide synthase 

OADC  oxalic acid, albumin, dextrose, catalase supplement for Middlebrook 7H10 agar 

OD600  optical density at 600 nm 

Opa  opacity proteins expressed on the surface of Neisseria gonorrhoeae  

OriM  origin of replication used in Mycobacterium smegmatis plasmids 

PE  proline glutamate  

PGRS  polymorphic GC rich repetitive sequence 

PknG  protein kinase G 

Po   distribution of culture tubes yielding no mutants 

POA  pyrazinoic acid  

PPE  proline proline glutamate  

PZA  pyrazinamide antibiotic 

r  observed number of mutants scored per selective plate 

R  resistant 

RAK  Repeat Aminoglycoside phosphotransferase Kanamycin 

RBS  ribosome binding site 
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RecA  protein involved in DNA recombination events 

RFLP  restriction fragment length polymorphism 

Rif  rifampicin antibiotic 

RNI’s  reactive nitrogen intermediates 

ROI’s  reactive oxygen intermediates 

rpm  revolutions per minute 

S  sensitive 

Str  streptomycin antibiotic 

TB  tuberculosis 

Tw  Tween 80 

U  unit 

Vaa  variable adherence associated proteins found on Mycoplasma hominis 


