Mutation rates in mycobacterial hosts with altered DNA metabolic activity

Samantha Barichievy

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science

Johannesburg, February 2005

Do not meddle in the affairs of Dragons, because you are crunchy and taste good with ketchup

Table of Contents

Page

Declaration	i
Preface	ii
Abstract	iii
Acknowledgements	iv
List of Figures	v
List of Tables	xii
Glossary	xiii

Chapter 1: Introduction

1.1 The worldwide burden of tuberculosis	1
1.2 The BCG vaccine	3
1.3 Macrophages, granulomas and the host response	4
1.4 Chemotherapy	6
1.5 MDR-TB	9
1.6 Environment-dependent and heritable mutators	11
1.6.1 Environment-dependent mutators	11
1.6.2 Heritable global mutators	12
1.6.3 Heritable local mutators	13
1.7 Identification of the PE and PPE multigene families	13
1.8 Polymorphisms in the PE and PPE genes	16
1.9 Localisation of proteins encoded by PE and PPE genes	18
1.10 Potential biological functions of proteins encoded by PE and PPE genes	18
1.11 Genetic diversity of pathogens involving repeat sequences	20
1.11.1 Antigenic variation	20
1.11.2 Phase variation	21
1.12 Mutation rate analysis	26

1.12.1 The original mutation rate experiments of Luria and Delbrück	26
1.12.2 The Fluctuation Test	29
1.13 Aims of this study	31

Chapter 2: Materials and Methods

2.1 Media and general solutions	33
2.2 Storage of bacterial strains	33
2.3 Culture conditions	33
2.4 Medium supplements	34
2.5 Plasmid DNA	34
2.6 Transformation of cells	36
2.6.1 <i>E. coli</i> DH5α	36
2.6.2 Electroporation of <i>M. smegmatis</i>	36
2.7 DNA Extraction Protocols	37
2.7.1 Isolation of plasmid DNA	37
2.7.2 Cetyltrimethylammoniumbromide (CTAB) method for isolation of	
chromosomal DNA from <i>M. smegmatis</i>	37
2.7.3 Precipitation of DNA	38
2.8 Agarose gel electrophoresis	38
2.8.1 Preparation of gels	38
2.8.2 Electrophoresis	38
2.8.3 Purification of DNA from agarose gels	38
2.9 DNA manipulations	39
2.9.1 Restriction endonuclease digests	39
2.9.2 Blunt-ending of 3' or 5' overhangs	39
2.9.3 Removal of 5' phosphate from DNA	40
2.9.4 Ligations	40
2. 10 The Morf2 reporter assay	40
2.10.1 Design of the Morf2 substrate	40
2.10.2 Cloning of the pGRAK reporter	43
2.11 Fluctuation Tests	43
2.11.1 Experimental protocol for mutation rate assessment	43
2.11.2 Adaptation of experimental protocol for mutation rate	
assessment of mc ² 155 <i>his</i> G380E strain	45
2.11.3 Calculation of mutation rates	46

2.12 PCR and sequencing	50
2.12.1 PCR of pGRAK based strains	50
2.12.2 PCR of <i>M. smegmatis</i> mc ² 155 <i>his</i> G380E strain	52
2.12.3 PCR of <i>attL</i> and <i>attR</i> regions	52
2.12.4 DNA sequencing	53

Chapter 3: Results

3.1 Optimisation of experimental parameters	55
3.1.1 Growth curve of <i>M. smegmatis</i> mc ² 155	55
3.1.2 Confirmation of the integrity of the Morf2 region	56
3.1.3 Confirmation of site-specificity of pGRAK reporter	58
3.1.4 Gm concentration range	59
3.1.5 Antibiotic cross-resistance	61
3.1.6 Optimisation of methodology to minimise variability in N_t values	62
3.1.7 Dependence of the μ value on the growth phase of the culture	65
3.2 Mutation rate assessment: Fluctuation Test data	65
3.2.1 Overall m and N _t values at log and saturation phase	65
3.2.2 μ values in pGRAK reporter-based strains	68
3.2.3 Rate of mutation to Rif ^R	69
3.2.4 Rate of A \rightarrow G base substitution mutagenesis with the <i>his</i> G380E reporter	69
3.2.5 Statistical analysis of results	70
3.3 Mutation frequencies	70
3.4 Spectrum of mutations in pGRAK based strains	71
3.4.1 From Fluctuation Test to mutant genotyping	71
3.4.2 Multiple genotypes recovered from a single tube	73

Chapter 4: Discussion and Conclusions

4.1 Optimisation of experimental parameters	79
4.1.1 Confirmation of the integrity of the integrating and replicative vectors	79
4.1.2 Optimisation of Fluctuation Test methodology for use in mycobacteria	79
4.1.3 Deviations from Luria and Delbrück assumptions	80
4.2 Mutation rate assessment	
4.2.1 μ value in the <i>recA</i> -deficient pGRAK reporter-based strain	81
4.2.2 μ values in pGRAK reporter-based strains with altered levels of	

expression of Y-family and C-family polymerases	82
4.2.3 Rates of base substitution mutagenesis in <i>M. smegmatis</i>	83
4.2.4 Limitations to reporter-based assays	84
4.3 Spectrum of mutations associated with PE-PGRS genes	84
4.4 Conclusions	86

Appendices

Appendix A : Media and some general solutions	87
Appendix B : Plasmid maps	89
Appendix C: Specific experimental requirements for Fluctuation Tests	92
Appendix D : Techniques to limit clumping of mycobacterial cultures	94
Appendix E : Additional sequencing data from Morf2 region	96
References	98

Declaration

I declare that this dissertation is my own, unaided work. It is being submitted for the degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

Samantha Barichievy

Date

Some aspects of the work conducted for this dissertation have been presented as a poster elsewhere:

 Machowski, E.E., Barichievy, S., Brackin, R., Warner, D.F., Boshoff, H., Stoker, N. G., Mizrahi, V. (2004). "Application of fluctuation analysis to determine mycobacterial mutation rates". Molecular and Cell Biology Group (MCBG) Symposium. University of the Witwatersrand Medical School Campus.

Abstract

The completion of the genome sequence of *Mycobacterium tuberculosis* strain H37Rv revealed that 10% of the coding capacity is devoted to two, large multigene families that are characterised by repeat sequences. These are the PE and PPE families that code for acidic, glycine rich proteins. A subgroup of the PE family is the polymorphic GC rich sequence (PGRS) gene subfamily. Genome comparisons of clinical isolates of *M. tuberculosis* have confirmed the polymorphic character of some of these genes suggesting they may be analogous to the contingency loci found in other pathogenic bacteria. Certain PE-PGRS proteins play a direct role in virulence in *M. marinum*, other PE-PGRS genes are cell surface associated, and some PE-PGRS proteins are variable surface antigens, supporting a potential role in host pathogen interactions. A reporter assay designed to investigate mutations in a PE-PGRS repeat-containing sequence was used to assess mutation rates in various *M. smegmatis* host strains by fluctuation analysis. A wide spectrum of mutations was observed and the evidence suggests that slipped-strand mispairing between proximal and distal PGRS sequences located *in cis* is the predominant type of mutational event at such loci. Moreover, slipped-strand mispairing at such loci occurs at a moderately higher rate than base substitution mutagenesis and is mediated by the normal replicative polymerase.

Acknowledgements

There are many people who helped me during my MSc and I would like to acknowledge all of their individual contributions.

To my supervisor, Professor Valerie Mizrahi, thank you for all your input on my project, for your constructive criticism and for teaching me so much more than just science.

To my co-supervisor, Dr. Edith Machowski, thank you for all your guidance, for answering my endless questions, for your patience and kindness and for always being so bubbly and enthusiastic. I really appreciate all that you shared with me.

To my other office colleagues, Digby Warner and Limenako Matsoso, thank you for answering my unending questions, for explaining things more than once, for making me laugh and for putting up with the Lab Oinker.

To Dr. Bavesh Kana, Dr. Bhavna Gordhan and Dr. Stephanie Dawes, thank you for teaching me how to be competent in pouring gels (Bavesh), work in the TB lab (Bhav) and for all the Q and D's (Steph). Thanks too for the great chats, for making me laugh and for letting me act like a monkey.

To Sinah, Julia and Leah, thank you for making life easier. I was very spoilt to have the three of you and really appreciate all your hard work.

To my friend Robyn Brackin, thank you for the hours we spent chatting, for the tea and the moans and the support. You brought the fun.

To Dr. Marco Weinberg, thank you for all your constructive criticism regarding the first drafts of my write-up. You really gave of your time and I truly appreciate it.

To my mom and dad, thank you for all the support and the encouragement and for being interested when you had no clue what I was studying. Your guidance and support are priceless.

To my brother, C, thank you for helping with the stress, for making me laugh and for always reminding me of the big picture.

To my other folks, Bev and Graham, thank you for all the support, love and the endless chats. I really appreciate your time and for being there whenever I needed advice.

To my babe, Liam, thank you for the tickles, for the coffee and the hugs, thank you for the help whenever I was stuck or ready to leave, thank you for all that you are and remember that I appreciate you every day.

Thanks are also extended to Dr. Stephen Durbach for starting the ball rolling, for making plasmids 9/19 and pMorf2 and for the lab books – they were a challenge.

To anyone I have not mentioned, please just remember that you all helped in some way and I appreciate you.

Page

Figure 4: Sequence variation that exists between *M. tuberculosis* H37Rv and *M. bovis* BCG in the PE-PGRS gene Rv0746. (A) The BCG protein has a deletion of 29 amino acids (indicated by blue arrow) and an insertion of 46 amino acids (indicated by pink arrow) compared to the sequence in the *M. tuberculosis* H37Rv counterpart. (B) Specific amino acid sequence variation between H37Rv (upper line of sequence) and BCG (lower line of sequence) in gene Rv0746. The 29 amino acid deletion in BCG is indicated by blue

letters. The 46 amino acid insertion in BCG is indicated by pink letters. The Morf2 substrate used in this study was based on the 29 amino acid deletion between the 2 sequences (refer to Section 2.10.1)..... **17**

Figure 16: PCR products of *attL* and *attR* regions of selected pGRAK based strains used in this study. Only correct integration events would have yielded the expected PCR product. The left hand gel indicates *attL* PCR products (320 bp) and the right hand gel indicates *attR* PCR products (282 bp). Lanes 1: Molecular Weight Marker λ VI, Lanes 2: control PCR product of 282 bp in length, Lanes 3: control PCR product of 263 bp in length and Lanes 4: control PCR product of 245 bp in length. Lanes 5 to 10: *attL* and *attR* PCR products from separate colonies that were picked from Gm⁵ plates post electroporation....... **58**

Figure 18: Cross-resistance between two aminoglycoside antibiotics, Gm and Km. Cultures grown in liquid media containing Gm at a concentration of 2 μ g / mL developed cross resistance to low Km concentrations (indicated by 'background' growth on agar plate containing Km¹⁰ on left hand side of figure). When the same Gm^R cultures were plated on agar plates containing a higher Km concentration, the 'background' growth no longer appeared and only discrete Km^R CFUs grew (right hand side of figure). Sequence analysis of these Km^R CFUs revealed various mutations within the Morf2 region of the pGRAK reporter to by-pass the TAG stop codon and allow for expression of a functional Aph fusion protein...... **62**

Figure 20: N_t values assessed at different time points during growth of mc² 155 (pGRAK) in MADC-Tw. Early log cultures were assessed after 24 hours, mid log cultures after 48 hours and saturation cultures

Figure E1: Sequence data of Morf2 region indicating a spectrum of mutations resulting in Km^R. G \downarrow GATCC at the 5' end of the sequences indicates the *Bam*HI site at the start of the Morf2 region. G \downarrow CTAGC at the 3' end of the sequence indicates the *Nhe*I site at the start of the 'aph cassette. R1 is highlighted by green blocks. The TAG stop codon is highlighted by red blocks. R2 and R3 are highlighted by blue and yellow blocks respectively. The point mutation within TAG to form a codon encoding Leucine is highlighted by the

Page

Table 1: Luria and Delbrück's Fluctuation Test confirming the Mutation Theory of spontaneous mutation.
The mean is the average number of phage resistant bacteria within a set of parallel cultures. The variance
is a measure of the fluctuating spread of variables about the mean
Table 2: M. smegmatis strains used in this study
Table 3: Plasmids used in this study (refer to Appendix B for plasmid maps)
Table 4: Oligonucleotide sequences used for PCR and sequencing
Table 5: <i>m</i> values, average N _t values and μ values assessed at different time points in various
mycobacterial strains
Table 6: Comparison of mutation frequencies and mutation rates for Km ^R in mc ² 155 (pGRAK)
Table 7: Spectrum of mutational events in the Morf2 region of the pGRAK reporter as well as mutations
within the 'aph cassette that resulted in Km ^k 75
Table 8: Relative percentages of three different groups of mutations per pGRAK-based host strain used
in this study 77
Table B1: Symbol definitions of the plasmid maps in Appendix B 91
Table C1: Specific experimental parameters used for each Fluctuation Test in this study

Glossary

aph	aminoglycoside phosphotransferase gene that encodes kanamycin resistance
`aph	cryptic aph cassette that does not encode its own ATG start codon
ADC	albumin, dextrose, catalase supplement for MADC-Tw
Amp	ampicillin antibiotic
attB	attachment site within the bacterial chromosome used during plasmid integration
attP	phage attachment site within the plasmid that integrates at the bacterial $\ensuremath{\textit{attB}}$ site
BCG	bacille Calmette-Guérin
bla	gene encoding β -lactamase for ampicillin resistance
bp	base pairs
С	number of culture tubes per Fluctuation Test
CD4+	subgroup of CTLs that form part of the human immune system
CFU	colony forming unit
CL	confidence limit
CTL	cytotoxic T lymphocyte
dinP	gene encoding DinP error prone polymerase
dinX	gene encoding DinX error prone polymerase
dNTP's	deoxyribonucleotide triphosphates
DOTS	directly observed treatment, short course
EBV	Epstein-Barr Virus
EBNA	Epstein-Barr virus nuclear antigen
EMB	ethambutol antibiotic
EP	error-prone
G	guanine
Gm	gentamicin antibiotic
GTP	guanosine triphosphatase
his D	gene encoding histidine
His-	histidine auxotrophy
His+	histidine prototrophy
HIV	Human Immunodeficiency Virus
hyg	gene encoding hygromycin B resistance
Нуд	hygromycin B antibiotic
IFN-γ	interferon γ
INH	isoniazid antibiotic
int	gene encoding phage integrase enzyme

IV	intervening sequence
kDa	kilo Dalton
Km	kanamycin antibiotic
LA	Luria Bertani Agar
LB	Luria Bertani Broth
lacZ	gene encoding β-galactosidase
μ	mutation rate = probability of mutation per cell per division or generation
μg	microgram
μL	microlitre
т	number of mutational events per culture tube
MADC-Tw	Middlebrook 7H9 broth supplemented with ADC and 0.1% Tween 80
MDR-TB	multi-drug resistant Mycobacterium tuberculosis
MHC	major histocompatibility complex
MIC	minimal inhibitory concentration of drug used to prevent growth of a pathogen
Morf2	reporter construct containing 3 repeat elements and engineered stop codon
MMR	mismatch repair
MPTR	major polymorphic tandem repeats
MSP-1	major surface protein 1 antigen located on Aniplasma marginale
MSS	Ma-Sandri-Sarkar Maximum Likelihood Method for calculating μ
No	initial population numbers within a single fluctuation assay tubes
N _t	final population numbers within a single fluctuation assay tubes
NO	nitric oxide
NOS2	nitric oxide synthase
OADC	oxalic acid, albumin, dextrose, catalase supplement for Middlebrook 7H10 agar
OD ₆₀₀	optical density at 600 nm
Ора	opacity proteins expressed on the surface of Neisseria gonorrhoeae
OriM	origin of replication used in Mycobacterium smegmatis plasmids
PE	proline glutamate
PGRS	polymorphic GC rich repetitive sequence
PknG	protein kinase G
Po	distribution of culture tubes yielding no mutants
POA	pyrazinoic acid
PPE	proline proline glutamate
PZA	pyrazinamide antibiotic
r	observed number of mutants scored per selective plate
R	resistant
RAK	Repeat Aminoglycoside phosphotransferase Kanamycin
RBS	ribosome binding site

RecA	protein involved in DNA recombination events
RFLP	restriction fragment length polymorphism
Rif	rifampicin antibiotic
RNI's	reactive nitrogen intermediates
ROI's	reactive oxygen intermediates
rpm	revolutions per minute
S	sensitive
Str	streptomycin antibiotic
ТВ	tuberculosis
Tw	Tween 80
U	unit
Vaa	variable adherence associated proteins found on Mycoplasma hominis