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Abstract 

This dissertation presents an improved continuous time, unit-specific event-based 

Mixed-Integer Linear Programming formulation for the optimal scheduling of general 

network-represented batch plants, based on the State-Task Network representation. The 

formulation draws on and combines the strengths of previous works in order to 

incorporate rigorous conditional sequencing, pre- and post-processing unit wait and 

task splitting while ensuring the integrity of the Finite Intermediate Storage policy. Task 

splitting is simulated without requiring potential problem truncation and nested 

iteration which may result from the utilization of a splitting parameter ∆𝑛 and three-

index binary and continuous variables to represent the start and end events of tasks. 

Additionally, the proposed formulation allows for the fractional extraction of produced 

states from their producing unit at multiple events, thereby increasing the flexibility of 

resulting schedules. Computational performance is compared against 

reimplementations of four recent task splitting formulations through solution of 22 

example problems using the GAMS CPLEX solver in order to demonstrate the 

effectiveness of the proposed approach and highlight its advantages. It is shown how 

the proposed formulation is the most reliable due to its ability to converge in all of the 

considered problem instances and not get trapped at suboptimal solutions due to 

iterative procedures relating to task splitting. The proposed model performed the fastest 

during solution in 16 of these examples, while in the other six (Examples 4.1 and 10.4 

to 10.8.), the solution time was very comparable to the other formulations investigated. 

The proposed model demonstrated a best-case CPU time reduction of more than 90%. 
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must be consumed 
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storage facilities 
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processing in task 𝑠𝑖𝑛,𝑗  at event 𝑝 

𝑆𝑈𝑊 

Intermediate states which are 

stable and need not be 
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 𝑢(𝑠, 𝑠𝑖𝑛 ,𝑗 , 𝑝) 

Quantity of material 𝑠 ∈ 𝑆𝐼 produced by task 𝑠𝑖𝑛,𝑗 ∈

𝑆
𝑖𝑛,𝐽′
𝑝

 at event 𝑝 − 1 or earlier which is temporarily 

stored in its producing unit at event 𝑝 

𝑃𝑖𝑛,𝐽  

Set of all possible tasks 𝑠𝑖𝑛,𝑗 

in all possible units 𝑗 which 

produce specified state 𝑠 

 Binary Variables 

𝑃𝑖𝑛,𝐽
𝑍𝑊 

Set of all possible tasks 𝑠𝑖𝑛,𝑗 

in all possible units 𝑗 which 

produce at least one ZW state 

 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) 
Indicates whether or not task 𝑠𝑖𝑛 ,𝑗 begins production at 

event 𝑝 

𝐶𝑖𝑛,𝐽
𝑉  

Set of all tasks 𝑠𝑖𝑛,𝑗  which 

consume states in a variable 

ratios 

 𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛 ,𝑗
′ , 𝑠𝐼 , 𝑝) 

Indicates whether or not state 𝑠 ∈ 𝑆𝐼 is transferred to 

consuming task 𝑠𝑖𝑛,𝑗
′ ∈ 𝑆𝑖𝑛,𝐽′

𝑐  at event 𝑝 from 

producing task 𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝

 at event 𝑝 − 1 due to lack 

of available material in storage for consumption task 

𝑠𝑖𝑛,𝑗
′  

𝑃𝑖𝑛,𝐽
𝑉  

Set of all tasks 𝑠𝑖𝑛,𝑗  which 

produce states in a variable 

ratios 

 𝑣(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝) 

Indicates whether or not state 𝑠 ∈ 𝑆𝐹𝐼𝑆  is directly 

transferred to unit 𝑗′ for consumption by task 𝑠𝑖𝑛,𝑗
′ ∈

𝑆𝑖𝑛,𝐽′
𝑐 ∩ 𝑆𝑖𝑛,𝐽′

′  at event 𝑝 after being produced by task 

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝

∩ 𝑆𝑖𝑛,𝐽
′  in unit 𝑗 ≠ 𝑗′  at event 𝑝 − 1, in 

order to prevent FIS violations 

   𝑥(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝) 

Indicates whether or not state 𝑠 ∈ 𝑆𝐹𝐼𝑆  is consumed by 

task 𝑠𝑖𝑛 ,𝑗
′ ∈ 𝑆𝑖𝑛,𝐽′

𝑐 ∩ 𝑆𝑖𝑛,𝐽′
′  in unit 𝑗′ at event 𝑝 at a time 

prior to production of the same state in task 𝑠𝑖𝑛 𝑗 ∈
𝑆

𝑖𝑛,𝐽′
𝑝

∩ 𝑆𝑖𝑛,𝐽
′  in unit 𝑗 ≠ 𝑗′  at event 𝑝 − 1 in order to 

prevent FIS violations 

   𝑤(𝑠𝑖𝑛,𝑗 , 𝑝) 

Indicates whether or not states 𝑠 ∈ 𝑆 𝑍𝑊 produced by 

task 𝑠𝑖𝑛 𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝,𝑍𝑊

 continue to be stored at event 𝑝 in 

the unit that produced them at event 𝑝 − 1 or earlier 

 

  



x 

 

Term Abbreviation 

Common intermediate storage CIS 

Cost units c.u. 

Finite intermediate storage FIS 

Finite wait FW 

Hours h 

Infeasible sets IS 

Integer program IP 

Linear programming LP 

Mass unit m.u. 

Mixed-integer linear program MILP 

Mixed-integer nonlinear program MINLP 

Mixed-integer program MIP 

No intermediate storage NIS 

No storage NS 

Nonlinear program NLP 

Process intermediate storage PIS 

Rakovitis et al. (2019) R 2019 

Resource-task network RTN 

Seconds s 

Shaik and Vooradi (2017) S&V 2017 

State-equipment network SEN 

State-sequence network SSN 

State-task network STN 

Unlimited intermediate storage UIS 

Unlimited wait UW 

Vooradi and Shaik (2012) V&S 2012 

Vooradi and Shaik (2013) V&S 2013 

Zero wait ZW 
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Introduction 

1.1. Background 

The chemical industry is dedicated to the production of a wide array of solid, liquid and 

gaseous materials and products, such as metals, ceramics, plastics, petroleum and other 

oil products, solvents, agrochemicals, pharmaceuticals, specialty chemicals and food 

products. Such products are used on a day-to-day basis by a large portion of the global 

population as well as downstream manufacturing sectors, making the industry largely 

impactful in terms of its economic, environmental and social impact. 

In a recent report, it was estimated that the chemical industry directly contributed $1.1 

trillion to the global GDP in 2017, making it the fifth largest manufacturing sector, with 

8.3% of the global manufacturing sector’s economic value (Oxford Economics, 2019). 

The chemical sector in the report was limited to the basic chemicals, fertilizer, plastics 

and synthetic rubbers; pesticides and agrochemicals; paints, varnishes, inks and 

mastics; soaps, detergents, cleaning, polishing, perfume and toilet preparations; 

explosives and pyrotechnic, glue, essential oil; and man-made fibre sub-sectors. 

The manufacture of such chemical products is broadly conducted in two major 

categories: continuous processes and batch processes, although hybrid classifications 

exist. In the former, products, which are often of lower relative value, are produced in 

great scale due to a very large and stable demand. Perhaps the best example of this is 

the petroleum industry, where crude oil is consumed continuously to produce a variety 

of fuel products. Continuous processes require transient start-up and shut-down 
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procedures, however they are mainly designed for steady state operation, which occurs 

for the vast majority of the active time of the processing plant. 

Batch processes, on the other hand, produce relatively smaller quantities of high-value 

products. These products are often characterised as having a lower demand, however 

they may have more stringent restrictions such as consistency in product quality. 

Alternatively, they may be produced in smaller quantities due to fluctuating demands 

in unstable markets. 

Due to the current competitive state of global economies, as well as the scale of the 

chemical industry, the latter has been identified as a prime target for study, analysis and 

improvement in terms of productivity and intensification as well as time and waste 

reduction. In this regard, the optimization of chemical production plants has become 

the focus of much research. 

Historically, optimization studies have targeted continuous plants (Majozi, 2010). This 

is largely because of an understanding that the scale of raw material and utility 

consumption as well as the generation of waste is somewhat larger in such plants. 

However, this understanding has been changing as the demand for flexible processing 

has increased. It is now understood that optimization studies of batch plants can also 

offer significant savings through careful planning, scheduling and utilization of 

resources. However, methodologies for batch process synthesis, design, scheduling and 

resource integration are far less mature than their continuous counterparts, due to a 

pertinent feature of batch plants: discrete tasks distributed in time. 

Unlike in continuous processes, the production of wasteful by-products and the 

consumption of raw material or utilities occurs discretely in time and therefore any 

analysis must consider such discrete consumption and production. Therefore, studies of 
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batch production often include, in some form or another, the idea of scheduling, in 

addition to dynamic considerations of batch reaction and separation unit operations. 

Another important consideration, is that of intermediate storage, which, while also 

present in continuous production plants, is perhaps more important in batch plants in 

order to debottleneck processes. 

The added dimension of time renders most optimization studies of batch processes 

impossible via graphical and insight-based methods. Simplifying assumptions can be 

made by approximating continuous circumstances, or sequential procedures can be 

implemented whereby the time dimension is fixed beforehand, removing it from 

consideration in the optimization studies. However, this approach may result in the 

exclusion of the globally optimal solution (Papageorgiou et al., 1994). Instead, 

mathematical optimization and the use of high-performance computation is required for 

a complete study. Superstructure representation is often employed, in which all 

possibilities and combinations of the problem to be solved are contained. The optimal 

solution is then a subset of this superstructure and many techniques exist for isolating 

the optimal configuration. 

In many cases, resulting optimization studies may be too complex to solve practically, 

due to large computational time requirements for problem solution, and further 

assumptions are made to simplify the problem. Alternatively, near-optimal solutions 

may be satisfactory. As the state of batch optimization is still in its infancy, it is still 

quite academic and many improvements are required in formulation, both in terms of 

computational efficiency and practicality. However, the application to real industrial 

problems is still possible in a number of cases. 
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1.2. Motivation 

The complexity arising in batch scheduling models has been a major limitation in its 

development and application. This is a limitation which the current work aims to 

diminish. 

Furthermore, a model is only as good as the simplifying assumptions it makes. Models 

which represent physical phenomena seldom characterize their full extent. They include 

simplifications which reduce the search space as a trade-off for facilitating the 

acquisition of usable results. The same is true for batch scheduling. Due to the decisions 

which are required in batch scheduling, such as assignment and distribution of 

resources, a highly combinatorial problem often results, for which the solution 

algorithm has been shown to be exponential. Due to this, a model seldom represents all 

possibilities which may be achievable in practice and focuses instead on excluding all 

infeasible solutions. Therefore, the current work also aims at improving the scope of 

batch scheduling in order to include more possible interactions in an attempt to obtain 

better solutions. 

Figure 1-1. Importance of Improvement in the Modelling of Task Splitting 
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The current work is aimed at overcoming the limitations in previous techniques for 

implementing task splitting, while accurately handling the Finite Intermediate Storage 

(FIS) policy, rigorous conditional sequencing and pre- and post-processing unit wait. 

The importance of this is highlighted in Figure 1-1, which demonstrates the excessive 

compounded computational time which may be required in certain examples in order 

to obtain the globally optimal solution. The figure contains the solution time results for 

the solution of Example 9 (presented in Section 4.2.8), solved with the formulation by 

Vooradi and Shaik (2013), with varying values of ∆P along with the cumulative solution 

time after each iteration. For comparison, it is possible to achieve the same solution 

quality with the proposed model, without uncertainty regarding ∆P and in significantly 

lower computational time. 

Furthermore, it was observed that the proposed method of handling task splitting 

facilitates fractional extraction without the requirement of a binary variable for non-

ZW intermediates. Fractional extraction is the ability to fractionally discharge produced 

intermediates from the unit that produced them at a number of event points and times. 

This was first published by Rakovitis et al. (2019). The concept is demonstrated in 

Figure 1-2, where the obviously maximal production of 10 units of product is not 

identifiable in most unit-specific event-based formulations due to insufficient dedicated 

storage availability for the intermediate. The example is that of Example 1 (presented 

in Section 4.2.1). 

Batch Size 

(m.u.) 

Beginning 

Event Point 
j2 

j1  

j1 storage 

Figure 1-2. Optimal Schedule for Example 1 (Proposed Model) 
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1.3. Scope 

Scheduling may refer to short or long-term scheduling and may be cyclic. Cyclic 

scheduling occurs when a number of tasks are repeated continuously and in the exact 

same manner (Draper et al., 1999). The type of scheduling considered in the current 

work is short-term scheduling, where a single cycle is considered over a relatively short 

horizon spanning a number of hours or days. This may reflect dynamic production 

demands occurring on a daily basis, or where a particular schedule is to be used 

frequently among other schedules for separate production demands. 

Furthermore, batch scheduling is a highly problem-specific study. Many unique 

characteristics may exist in any given batch plant. Production demands may include 

numerous, temporally-distributed deadlines or the consideration of utility integration 

during production may be desired. Additionally, the changeover and setup time 

requirement, as well as the cleaning requirement, between consecutive tasks occurring 

in a batch processing unit may depend on the order of these consecutive tasks. This is 

known as sequence-dependent changeover. These extended features are not considered 

in the current work. Therefore, the proposed work aims at addressing the form of 

scheduling which involves meeting a demand for a number of products by a single given 

due date, minimizing the makespan required for such a given demand or maximizing 

production throughput in a given time horizon. 

1.4. Objectives 

The objective of the current work is to investigate a method for scheduling a generic 

batch production plant while improving on the scope of what is realistically possible to 

achieve while simultaneously improving the problem formulation for faster 

computational performance. The idea is to provide an improved scheduling basis which 
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can be used independently or which provides a better foundation for the inclusion of 

synthesis, design, resource integration and other problem-specific features than those 

currently available. The expected results are therefore improved solutions for the same 

underlying problems obtained in faster time, as compared with published literature. 

1.5. Problem Statement 

This works aims to provide an improved method for determining an optimal operating 

schedule for batch production processes in the chemical industry, via mathematical 

optimization techniques, in order to address better resource utilisation and waste 

minimization in such processes. The scheduling problem addressed by this work can be 

described as follows: 

Given: 

i The process recipe, detailing the required path from raw materials to products 

via any necessary intermediates, 

ii the available units, their associated task suitability and maximum and minimum 

capacities, 

iii the processing time requirements for each task, as a linear function of the batch 

size processed, 

iv the initial inventory levels and maximum storage capacity for each state, 

v the economic data of the states involved, such as raw material costs and value 

of the final products and  

vi the time horizon of interest or the required demand profile 

Determine: 

i the optimal assignment of tasks to units and their sequences 

ii the batch sizes of each task, 
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iii their start and end times as well as their durations 

which maximize the economic criteria of the process or minimize the time required to 

meet the given demand. 

1.6. Structure of the Dissertation 

The dissertation is organised as follows: 

Chapter 1 provides the background and motivation of the investigation into batch 

schedule optimization. Chapter 2 contains an overview of concepts and terminology 

used in the field of batch process scheduling, followed by a survey of historical model 

development. In this chapter, opportunity for model improvement is identified. Chapter 

3 introduces an improved mathematical model which includes an improved approach 

to batch scheduling through removing a dimension of iteration during the solution of a 

given problem. A detailed model is presented and explained. Chapter 4 introduces a 

number of challenging or benchmark case studies commonly studied in the literature 

and contains comparative results from the proposed model. This section serves as 

validation for the proposed model and provides a demonstration of its advantages as 

well as a summary of the results obtained during the study in graphical format. Chapter 

5 draws conclusions from the outcomes of the model analysis and discussion. 



2-1 

 

 

Literature Review 

The following chapter presents some background into the field of batch scheduling 

optimization. Section 2.1 begins with an overview of optimization and the most 

common and well understood principles and methods used to perform optimization, 

which are not necessarily specific to batch process scheduling. Important characteristics 

and the development of historical models, as well as discussion of mathematical 

programming techniques specifically designed for the field of short-term batch 

scheduling, are then presented in Section 2.2. 

2.1. Optimization Principles for Batch Scheduling 

Optimization is a study performed on a system in order to improve its performance. The 

system is usually described by a number of variables which represent the various 

physical characteristics of the system. These variables are related by a number of 

equations and inequalities. When the number of independent equations match the 

number of variables, the system is well defined and the values of all the variables are 

set. A study carried out in this fashion is called simulation, whereby it is of interest to 

view how the system behaves under set conditions. Otherwise there is room for variance 

in one or more variables, resulting in a number of degrees of freedom in the system. 

Changing these variables will affect the output of the system. At least one degree of 

freedom is required for optimization. Additionally, the system should have some 

performance criteria by which it can be measured, such as throughput, profit or time 

required. This serves as an objective function for optimization. 
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2.1.1 Mathematical Programming 

A very well-structured approach to optimization is that of mathematical programming. 

This involves describing a physical system with purely mathematical constraints, often 

algebraic. The simplest form of mathematical programming is linear programming 

(LP), in which all the equations and inequalities as well as the objective function are 

linear and the variables are defined over continuous ranges. A simple two-dimensional 

example is shown in Figure 2-1. The system consists of two variables and one constant: 

x, y and c respectively. The red, green and blue lines represent the problem constraints 

which communicate the relationship between the system variables as well as their 

bounds. The constraints indicate the feasible region (shaded triangle) wherein all 

feasible solutions lie. The black dot is the objective function, which is a function of a 

number of the system variables. The objective is to either maximize or minimize Z. In 

LP, the best objective value always lies at a vertex of the feasible region. 

In reality, problems are often far more complex and can be defined over thousands of 

variables. This means the problem is defined over thousands of dimensions and is not 

Figure 2-1. Linear Programming 



2-3 

 

possible to represent graphically. However, the principles of the LP remain the same 

and the problem can be solved mathematically, with the help of powerful computing. 

The standard form of the LP is given by: 

𝑀𝑖𝑛 𝑐𝑇𝑥 𝑠. 𝑡. {
𝐴𝑥 = 𝑏
𝐶𝑥 ≤ 𝑑

 

Where x is a vector of the problem variables, c, b and d are vectors of known coefficients 

and A and C are matrices of known coefficients. 

2.1.2 Simplex Method 

The simplex method is the most commonly used method to solve LP problems. In this 

method, the problem constraints and objective function are organised into a matrix 

representing the search space or feasible region. The objective function is then 

evaluated at the vertices of the resulting polytope sequentially, by moving from vertex 

to vertex according to the greatest rate of improvement in the objective function value. 

This is done via matrix row operations until convergence criteria for optimality and 

feasibility are met. Two simplex algorithms exist, namely: the primal simplex and dual 

simplex algorithms. In the former, successive iterations are all feasible and successively 

less suboptimal, whereas in the latter, successive iterations are successively less 

infeasible and less superoptimal. 

Other algorithms exist for solving LPs. The documentation for the CPLEX solver in the 

GAMS user manual (28.2.0 - August 19, 2019) mentions the network optimizer, the 

barrier algorithm and the sifting algorithm, however they rarely outperform the simplex 

method. 
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Often, in engineering and other optimization problems, discrete decisions need to be 

made as part of a system, such as the assignment of resources to processing tasks or the 

number of stages to include in a membrane water purification system. These discrete 

variables are integers and therefore are not defined continuously in the search space for 

the solution. They can, however, be included in mathematical programming studies, 

although special solution techniques will be required. If all the variables of a problem 

must assume integer values, the mathematical program is classified as an Integer 

Program (IP). If only some of the variables are integers, while others are real or 

continuous, the classification is a Mixed-Integer Program (MIP). Figure 2-2 provides a 

visual representation of LP, IP and MIP as well as how such restrictions can affect the 

optimal solution of a problem. When the problem is linear, integer variables result in a 

Mixed-Integer Linear Program (MILP). In order to solve mathematical programs 

involving discrete variables, the branch and bound technique is used. 

 

Figure 2-2. LP, IP and MIP 
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2.1.3 Branch and Bound Technique 

The branch and bound technique maps out all combinations of integer variables as 

nodes in a search tree and systematically searches through the tree for the optimal 

solution. The algorithm generally exhibits an exponential relationship between the 

computational time required to find the optimal solution and the number of integer 

variables. In the worst case scenario, all combinations of the integer variables will need 

to be considered, however, as the search progresses, more and more information is 

obtained about the upper and lower bounds of the objective and this information is used 

to cut unnecessary branches from the tree, significantly reducing computational time 

requirements. The algorithm is displayed graphically in Figure 2-3. 

Initially, the problem is relaxed and solved without any integer restrictions on the 

variables. In the case of a MILP, the solution at the first node is that of a LP. In the case 

of a minimization problem, this solution provides a hard lower bound on the optimal 

solution. 

Figure 2-3. Branch and Bound Algorithm 
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If the solution obtained at the first node is such that all integer variables assume integer 

values, then the problem is solved and is said to have a zero integrality gap. The 

integrality gap is the absolute difference between the value of the objective for the 

relaxed problem, containing only continuous or real-valued variables, and for the actual 

problem, containing integer variables. Usually, integer variables will take fractional 

values at the first node and therefore branching occurs for each of these variables. For 

each non-integral variable, a subproblem is generated with an additional constraint 

stating that the variable of interest must be less than or equal to its previous value 

rounded down and another subproblem is generated where the variable must be greater 

than or equal to its previous value rounded up. This way, child nodes are generated, at 

which the current problem is again relaxed and solved without integer variables as a 

LP.  

The process continues until a feasible (integral) solution is first obtained, in which all 

the constraints of the original problem are satisfied. This solution provides an upper 

bound on the optimal solution to the problem. From this point, when the relaxed 

solution at any node is inferior to (greater than) the current best solution, it and all its 

descendant nodes can be removed from the search tree. This is because the relaxed 

solution at a node is always better than or equal to any solutions occurring in its 

descendant nodes. Additionally, whenever imposing the additional bounds on the 

integer variables results in an infeasible LP, the current node can progress no further 

and is removed from the search space. The upper bound or best current feasible integer 

solution is updated whenever a better one is found. 

Once the entire tree has been pruned and searched, the upper bound and lower bound 

will have converged and the globally optimal solution will have been found, assuming 

that the problem has at least one feasible solution. Note that in the case of 
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nonconvexities appearing in nonlinear mathematical programs, global optimality 

cannot be guaranteed. 

While the branch and bound algorithm generally processes nodes based on integer 

variables, some novel techniques were employed in batch schedule optimisation, such 

as in a solution procedure developed by Schilling and Pantelides (1996), where the 

algorithm branches on both binary and continuous variables. 

The branch and bound algorithm can occur with a breadth-first search or a depth-first 

search. In the former, each level is explored before descendent nodes, whereas in the 

latter, all descendent nodes are exhausted before moving across to the next node on a 

particular level. However, the extent to which backtracking occurs can also vary 

between these two extremes in certain optimization suites, such as with the GAMS 

CPLEX solver. 

When the system constraints involve nonlinear relationships, a Nonlinear Program 

(NLP) results. If integer variables are also present, a Mixed-Integer Nonlinear Program 

(MINLP) results. Some batch scheduling formulations, especially the earlier ones, 

resulted in MINLPs (Zhang & Sargent, 1996; Mockus & Reklaitis, 1997). These are 

discussed in more detail in Section 2.2. These problems are generally more difficult to 

solve, especially if nonconvexities exist in the nonlinear constraints, however, the 

current state of batch scheduling formulations includes mainly MILP problems 

(Ierapetritou & Floudas, 1998; Seid & Majozi, 2012; Lee & Maravelias, 2017). 

The size of a LP is defined by the number of variables and constraints that comprise it 

i.e. the number of rows and columns respectively in its matrix. The current practical 

limit on the size of a LP is considered to be of the order 106 rows and columns. In order 

to reduce the dimensionality of both integer and continuous variables as well as 
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constraints, pre-processing can be performed whereby the problem structure and 

inherent relationships can be exploited. This technique can also have the effect of 

improving the problem’s bounds (Biegler & Grossmann, 2004). 

Despite this, however, sometimes a problem may be too large to practically solve via 

mathematical modelling. In these cases, approximations may be made to reduce the 

problem size and speed up computation at the expense of accuracy or the exclusion of 

a set of solutions, some of which may potentially be optimal. An alternative is to use 

stochastic modelling. This involves the generation of random solutions and 

implementing an algorithm which randomly iterates upon the variables in an attempt to 

improve the solution. This continues until a stopping criterion, such as a maximum 

number of iterations or some objective improvement criterion in consecutive iterations, 

is met. In stochastic optimization, there is no guarantee that the returned solution will 

be optimal for the problem and performing the procedure twice will likely yield 

different results for many problems. 

2.1.4 Genetic Algorithm 

A popular stochastic optimization method is that of genetic algorithms. This algorithm 

simulates biological evolution as it iterates. A set of initial solutions is randomly 

generated and the fitness of each is measured using a fitness function. This determines 

the quality of the solutions and is to be minimized or maximized like an objective 

function. The population of solutions then undergoes changes in their variables in order 

to obtain a new set of solutions. This can occur via selection, mutation and crossover. 

Selection involves retaining the best solutions from one generation or iteration to the 

next. Mutation involves making random changes to the underlying problem variable 

values in order to produce different results. Crossover involves producing solutions for 

the next iteration by combining characteristics i.e. values of certain variables from two 
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parent solutions. Crossover attempts to retain strong genes from a population while 

varying the other variables and mutation allows for random variance which can help 

prevent solutions from becoming trapped in local optima. The algorithm proceeds over 

a number of generations until an upper limit on the number of generations is reached or 

until a set number of consecutive iterations produces too small an improvement. The 

algorithm has been used successfully in batch scheduling applications, among others, 

such as in Woolway and Majozi (2018). 

2.2. Batch Scheduling 

Batch scheduling involves the planning and assignment of limited shared resources to 

processing tasks such that a set of products can be generated from a set of raw materials. 

Tasks require a number of items in order for processing to occur. These include, among 

others, a unit, the input materials and resources, such as utilities or manpower. Such 

items are often limited in availability and must be shared amongst a number of 

competing tasks, without the consumption levels violating the upper and lower 

availability bounds. Furthermore, each task is associated with a specific processing 

time, which separates the consumption and generation of items along the time 

dimension. Some important considerations in performing a batch scheduling 

optimization study are the time representation, the storage policy for any intermediates 

required in the process and the layout of the batch plant and interconnectivity of its 

tasks. These are discussed in more detail below. 

Batch processes differ from continuous processes in that tasks occur in discrete intervals 

and the profiles of material quantity, temperatures, flowrates and other process 

variables fluctuate along a time horizon of interest. The fundamental difference between 

batch and continuous processes is summarized in Figure 2-4, which has been adapted 

from Majozi (2010). Figure 2-4a depicts a continuous process, in which all the units are 
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active constantly along the time axis. This is representative of the steady state condition 

applicable to continuous processes which allows the suppression of the time dimension. 

However, Figure 2-4b represents a batch process in which no steady state condition is 

possible due to the discrete nature of the processing tasks. In a scheduling study, careful 

placement of tasks in time must occur in order to ensure that intermediates are not 

consumed or produced in infeasible quantities with respect to their relative producing 

and consuming tasks. 

Typically, batch processes involve a number of processing units which are each suited 

to one or more specific tasks responsible for the transformation of materials. Raw 

materials are the starting materials. These are processed to produce products or 

intermediates. Intermediates may be stored in dedicated storage vessels in order to 

debottleneck the process by allowing units to be emptied in a timely fashion and to 

begin processing subsequent tasks. Intermediates are then further processed in other 

tasks in a series of steps until final products are produced. Sometimes, for a particular 

Figure 2-4. Continuous and Batch Processes 
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batch scheduling problem, some intermediates exist at the start of the time horizon of 

interest, such as when there are residual intermediates from a previous cycle. 

Storage policies refer to how excess material states should be managed within the batch 

processing plant. These almost invariably concern how much storage is available for 

the materials, although this can also be affected by unique qualities of the materials 

themselves. A number of storage policies exist. 

When unlimited intermediate storage (UIS) is considered for a particular state, it means 

that the processing facility, or the study thereof, is not concerned with limiting the 

excess available quantity of the state i.e. infinite storage availability is assumed. This 

may occur when a storage vessel for a state is to be designed after information regarding 

the maximum requirement for storage is determined. Therefore, the UIS policy is more 

of a theoretical policy. 

FIS for a state implies that a restriction is placed on the maximum excess availability 

of the state at any given instant in time in order to prevent a given upper bound from 

being exceeded. This occurs when a dedicated storage vessel for the state already exists 

or when the maximum capacity thereof is known prior to scheduling. The FIS policy is 

desirable in practice since the availability of dedicated intermediate storage often 

facilitates significant debottlenecking of a process. 

The no intermediate storage (NIS) policy is applied when any produced intermediates 

must be consumed immediately or be temporarily stored in a processing unit prior to 

consumption, since no dedicated storage vessel exists for the state. NIS is essentially a 

special case of the FIS policy, where the upper bound on the quantity of stored material 

is zero. The NIS and FIS policies represent the more practical storage policies in 

chemical batch plants and, according to Sanmarti, Friedler and Puigjaner (1998), the 



2-12 

 

NIS policy is very common. The NIS policy is often implemented under duress due to 

a lack of physical space in a batch plant to facilitate storage vessels. 

The zero wait (ZW) policy applies to unstable intermediates which must be consumed 

immediately upon production, without delay, in order to prevent degradation of the 

material which may render it unusable. This implies that no storage is possible for these 

materials. 

Other classifications exist which are used less commonly. The common intermediate 

storage (CIS) policy refers to the sharing of a storage vessel among a number of 

different states. This is uncommon and is more appropriately considered an academic 

policy due to the strict regulations on product contamination and integrity existing in 

many batch production industries, such as those of food and pharmaceuticals. Process 

intermediate storage (PIS) refers to the utilization of processing units as temporary 

storage for a set of states (Pattinson & Majozi, 2010). Finite wait (FW) refers to an 

unstable intermediate which can be stored for some maximum amount of time before it 

must be consumed. Unlimited wait (UW) refers to materials which may be stored 

indefinitely without degrading. States adhering to either the FIS or NIS policies also 

adhere to the UW policy. The no storage (NS) policy applies to all states for which no 

storage exists, however the description does not differentiate states following the NIS 

and ZW policies. 

Where FIS, NIS, ZW etc. states are mentioned in the remainder of this work, this refers 

to the states adhering to the mentioned storage policy for a given problem. 

As mentioned above, batch processes involve the transformation of raw materials 

through any necessary intermediates to produce final products. This network of 

predetermined processing steps is known as a batch recipe. Batch recipes can be 



2-13 

 

classified according to their characteristics which ultimately determine the structure of 

the plant. The type of recipe also informs the method used to (optimally) schedule 

production. In this regard, a batch plant may be described as sequential or network-

represented. 

Sequential batch plants retain the unique identity of each intermediate produced as a 

batch progresses along the ordered set of processing stages. This often occurs in the 

automotive industry where intermediates are physical artefacts for which the 

subsequent processing stage is easily identifiable. However, it can also occur in 

manufacturing or chemical processes which handle fluids and in which the integrity of 

produced intermediates must be ensured due to strict quality control requirements. 

Network-represented processes allow batch mixing and splitting and therefore careful 

consideration of intermediate quantities must be observed. Storage vessels may be used 

to aggregate intermediates of the same type and therefore the unique identity and 

quantity of the intermediates produced by specific instances of specific stages is not 

recognisable. This often occurs when intermediates may be processed by a number of 

different subsequent stages to ultimately produce different products. 
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A batch process recipe may also be described as single-stage, multistage or 

multiproduct. Single-stage processes do not include any intermediates and simply 

convert raw materials into final products via a single operation which may occur in a 

single processing unit or multiple processing units of a similar type. A single-stage 

process is neither sequential nor network-represented. This type of recipe is represented 

in Figure 2-6a (Lee & Maravelias, 2017). 

A multistage process requires a number of sequential operations which are performed 

in the same processing unit or a number of different ones. There may be one or more 

units per stage, allowing parallel processing. However, each product follows the same 

route through the process, i.e. the same order of stages and the same set of machines 

which are assigned to each stage. Multistage processes are sequential processes and are 

also referred to as flow shop processes or multiproduct processes. Each stage produces 

the exact quantity of intermediate needed to perform the next stage and therefore no 

mixing from different batches is required. This type of recipe is represented in Figure 

2-6b (Lee & Maravelias, 2017) and Figure 2-5a (Majozi, 2010). 

Figure 2-5. Multiproduct and Multipurpose Batch Recipes 
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Multipurpose processes require a number of product-specific stages to be conducted in 

a specified sequence in order to produce products i.e. each product may have a unique 

number of stages which may occur in the same units but in a different order and the 

same processing unit may be used more than once for the same batch. Sequential 

multipurpose processes are referred to as job shop processes, however multipurpose 

processes may also be network-represented processes. This type of recipe is represented 

in Figure 2-6c (Lee & Maravelias, 2017) and Figure 2-5b (Majozi, 2010). 

Network-represented processes are the most complex out of these classifications due to 

the flexibility of merging and splitting batches through the use of inter-batch transfer 

and storage vessels. A large number of processes in the batch chemical industry fall 

into this category. In order to model these types of processes, a representation of the 

product recipes aids in providing a basis for mathematical formulations. 

In order to model the assignment and activation of tasks for a multipurpose batch plant, 

with batch mixing and splitting and variable assignment of tasks to units, a framework 

of event points is required. Event points mark points along a time grid where one or 

more events, such as the beginning or ending of processing tasks, occur. Binary 

variables are used to model the decision regarding the activation of a task at a particular 

event point. As shown in Figure 2-7, a bar or rectangle represents an active task 𝑠𝑖𝑛,𝑗, 

the unit in which the active task is being processed is represented by 𝑗 and 𝑝 represents 

the ordered event at or in which the processing is occurring. Events written along the 

abscissa indicate the individual beginning and ending events of the task, while events 

Figure 2-6. Batch Recipe Classification 
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written inside bars indicate that the task both begins and ends at the mentioned event. 

These distinct structures are sometimes termed event point or slot based structures, 

however, the terms are often used somewhat freely. The difference lies in which 

numbered event relates an end time variable to the start time variable for a given task, 

however both structures require a variable for or to determine each time. Specifically, 

the event point structure may require an additional numbered event over the slot 

structure for the same problem and therefore most contemporary formulations actually 

use the slot structure. However, these formulations often refer to event points or are 

referred to as event-based formulations. Event points have been used in three major 

classes of time representation: discrete time representation, global, continuous time 

event-based representation and unit-specific, continuous time event-based 

representation. These are discussed in more detail below. 

Various Gantt charts, similar to Figure 2-7, are provided in the remainder of this chapter 

to demonstrate concepts used in batch schedule optimization. The letters A, B and C 

occurring in some of them represent a task producing one or more intermediates, a task 

consuming one or more of these intermediates and unrelated tasks respectively. 

In the optimization of a batch schedule, the aim is to determine the best possible 

configuration of tasks in time in order to maximize product throughput in a given 

Figure 2-7. Generic Schedule Gantt Chart 
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horizon, or minimize the time required to meet a given production demand. This has to 

be achieved while considering a number of physical constraints such that the resulting 

solution may actually be implemented. Some of the primary physical constraints 

include that a material state cannot be consumed in a quantity greater than that which 

is available at that time; that the excess available material state cannot exceed the 

capacity assigned for it and that a processing unit cannot perform more than one task at 

any given time. However, secondary constraints exist, such as those used to represent 

possible transfers of materials between units and storage vessels. This can be a difficult 

objective to achieve when just a few different products, units and resources exist for a 

given batch plant. The problem requires decisions to be made regarding the assignment 

of materials, units and resources to tasks, resulting in a highly combinatorial search. 

This is why the scheduling of batch plants is often considered in the short term.  

The question then concerns the most accurate method of modelling physically feasible 

interactions while obeying the primary constraints and yet having a model which can 

actually return a useable solution in feasible time. As such, models have developed by 

including features to better represent reality, by facilitating interactions which were 

previously ignored or by solving flaws in representations of such features. Simplifying 

assumptions are, of course, also required. For instance, while batch reaction material 

balances and kinetics are often modelled with differential and nonlinear equations, such 

detail is often omitted in batch scheduling due to the hardships they impose on the 

solution procedure. Instead, many combinatorial batch scheduling problems assume 

that every processing task has a duration which is constant or at most a linear function 

of the batch size which it processes. This maintains the linearity of the scheduling 

problem. In practicality, it is desirable to design a tool that will provide accurate results 

using rigorous methods of solution, that requires the shortest time possible. Speed is of 
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the essence, for example, in reactive decision making during unexpected occurrences 

in plant operation. 

The first attempts at improving the operating capacity or efficiency of batch chemical 

production plants were concerned with multiproduct plants. The earliest efforts at 

process scheduling optimization occurred in the late 1950s, however the concept only 

began to gain traction in the chemical industry with the advent of the STN and 

scheduling formulation by Kondili et al. (1993). 

The state-task network (STN) is a bipartite graph used for the ambiguity free 

representation of processes (Kondili et al., 1993). There are two types of nodes present 

in the STN. Circular nodes represent different states, which are unique or distinct 

materials present in the process. Rectangular nodes represent tasks which act to convert 

a set of states into another set of states. Arcs display the precedence relationship 

between tasks, or the order which must be followed in order to produce products from 

raw materials, via any necessary intermediates. The STN includes data concerning the 

ratios of the different states required to begin a task as well as those produced from a 

task. It does not, however, include data concerning the capacity of units in the process 

or processing time data. A commonly studied, network-represented batch process is 

depicted in Figure 2-8. 

Figure 2-8. STN for a Network-Represented Batch Process 
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Based on the STN, Kondili et al. (1993) developed a MILP for the determination of an 

optimal production schedule. The MILP was distinguished from its predecessors in its 

ability to address concepts present in multipurpose batch plants, including batch mixing 

and splitting, the assignment of units to tasks, variable batch sizes, using a unit for 

different tasks at different times and combinations of various storage policies. The 

model employs discrete-time representation. 

In discrete, or even time representation, the time horizon is divided into even intervals 

of pre-specified duration. The ordinalities of the events are then exactly related to the 

times at which the events occur. A binary variable is defined for each task (in each 

applicable unit) at each potential event and activation of the task is represented by 

setting the binary variable to a value of 1. This class of time representation is displayed 

graphically in Figure 2-9. 

The drawback of this approach is that a large number of binary variables are required 

in many cases. This impacts heavily on the duration of the solution procedure. 

Additionally, this technique does not allow for continuously variable processing time 

due to the predetermined event points at which events can start or finish. Therefore, a 

degree of inaccuracy may be present in the timing of tasks. However, a major advantage 

is the ease with which time-varying aspects can be accounted for, such as intermediate 

due dates, that is, product demands occurring before the end of the time horizon of 

interest, and changes in raw material or utility availability. 

Figure 2-9. Discrete/Even Time Representation 
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Pantelides (1994) introduced the resource-task network (RTN) framework for 

mathematical formulations and demonstrated how all process resources, such as 

material states, utilities, equipment and manpower can be addressed uniformly. The 

RTN expands on the STN by including a wider range of states, known as resources 

(Pantelides, 1994). These include material states of the STN as well as equipment units, 

utilities, availability of manpower etc. This is demonstrated in Figure 2-10 where 

equipment units are included as resources. The tasks are shown to consume the unit 

resource and regenerate it (upon completion of the task). 

The author also demonstrated how a wider array of process scheduling problems can 

be modelled by a single common formulation based on the RTN framework than is 

possible with one based on the STN framework. The latter often requires specialized 

constraints in order to address resource utilization and the many novel types of process 

scheduling problems. Finally, the RTN formulation proposed was shown to be 

computationally superior to equivalent STN formulations. This is due to its ability to 

Figure 2-10. RTN for a Network-Represented Batch Process 
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express tasks occurring in multiple units of the same type with a single binary variable. 

The result is both “smaller linear programming relaxations” and “reduced integer 

degeneracy in the solution of the MILP” (Pantelides, 1994). The formulation was still 

based on a discrete representation of time, however, resulting in the same issues of 

approximating the time dimension and the large problem size. The RTN is still used in 

more recent formulations, however it is not as popular as the STN. 

An alternative framework was postulated by Smith and Pantelides (1995) which 

became known as the state-equipment network (SEN). The SEN is an approach to 

flowsheet and recipe representation (Smith & Pantelides, 1995). It assumes the material 

states and choice equipment units are known and these are represented as nodes on a 

diagram. Full connectivity between the equipment nodes exists. When used in batch 

scheduling, a sequence of tasks, or operating modes, are assigned to the units during 

optimization. Due to the use of detailed unit operation modelling associated with the 

SEN, no fixed mixing or splitting ratios of input and output states are pre-specified on 

the SEN. A simple representative example is given in Figure 2-11 (Nie et al., 2012). 

As before, a superstructure is generated with state nodes and, this time, equipment 

nodes. Full connectivity between equipment units is assumed. The authors discussed 

how the SEN facilitates the inclusion of detailed unit operation modelling, which is 

advisable in order to obtain more accurate results which are more readily implemented 

and realised in practice. Originally, the SEN was intended for design and synthesis 

Figure 2-11. State-Equipment Network 
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optimization of continuous processes, however it was adapted to batch plant scheduling, 

such as in the formulation by Nie et al. (2012). This formulation implements rigorous 

detailed modelling of batch processes through dynamic optimization simultaneously 

with the scheduling aspect. The main difference in the scheduling module is that many 

variables, such as batch size and timing variables, are defined over units instead of tasks 

(like in the STN) which reduces the problem size when a unit may perform multiple 

tasks. Nonetheless, the popularity of the STN remained in future formulations due to 

the prioritization of tactical scheduling decisions over more accurate unit operation 

modelling as well as the lack of any significant advantage of the SEN in terms of 

generality and computational performance. 

To overcome the limitations of the discrete-time representation, continuous or uneven 

time representations were developed. In continuous time representation, the exact 

positions of the events in time are not known beforehand, except that they are 

chronological, and the intervals are not necessarily equal. The spacing and positioning 

of the events are subject to optimization. Therefore, in this type of time representation, 

one or more continuous variables are declared for each event and used to describe the 

exact time at which the event occurs. 

These techniques significantly reduce the number of binary variables required for 

scheduling and facilitate improved accuracy in the representation of time (Majozi, 

2010). Redundant events are eliminated by allowing the assignment of events only to 

the start and end times of tasks as required. Continuous time variables match the ordered 

events to their placement in actual time, allowing the timings of tasks to vary 

continuously without being forced into predefined slots with predefined durations. 

However, these formulations require numerous big M constraints which increase the 

integrality gap of the model, thereby exacerbating the search for global optimality. 
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Continuous time formulations can be further categorised into global event point and 

unit-specific event point formulations. The latter is discussed in detail later, however, 

the former uses a common time grid for all units, thereby facilitating simple tracking of 

excess quantities of materials, units and resources. In global event-based time 

representation, sequencing constraints exist in order to ensure the chronological 

progression of each event and to allow tasks to continue over a number of adjacent 

events. Global continuous time event-based time representation is displayed in Figure 

2-12. 

Zhang and Sargent (1996) developed the first continuous time formulation for general 

network-represented processes based on the RTN. The formulation addressed batch as 

well as continuous processing and used monotonically increasing event points over a 

global time horizon. In order to address sequencing and timing of tasks, the formulation 

incorporated multi-dimensional binary variables as well as nonlinear, nonconvex 

products of variables. The authors also discussed solution techniques for the resulting 

large MINLPs. 

Similarly, Mockus and Reklaitis (1997) developed a continuous time based formulation 

for general network-represented processes, however it was based on the STN. The 

authors included constraints to address limited renewable and non-renewable resources 

such as utilities and manpower. The resulting formulation contains bilinear terms, 

resulting again in large scale, nonconvex MINLP problems which can be linearized in 

Figure 2-12. Global Event Continuous/Uneven Time Representation 
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the case of simple objective functions. Otherwise, for problems involving the 

minimization of storage or utility costs, a modified outer approximation algorithm was 

proposed for the solution. The authors noted how the computational effort required for 

the solution of a particular problem is not always correlated to the problem size i.e. the 

number of binary and continuous variables and constraints, but that the problem 

structure and the values of the parameters also play an important role. 

Schilling and Pantelides (1996) developed an RTN-based, continuous time, global 

event formulation for the scheduling of general network-represented batch plants. 

Instead of representing time using events spaced non-uniformly along the time horizon, 

the boundaries of which represent the start and end times of tasks, the formulation 

utilizes time slots of unknown duration. Additionally, the formulation requires that, in 

cases where multiple instances of a task begin at the same time, all of the instances must 

process the same quantity of material and therefore must be processed for the same 

duration. The formulation results in a MINLP with bilinear terms including products of  

binary and continuous variables, which can be readily linearized using the 

transformations in Glover (1975). The authors also proposed a novel solution procedure 

whereby branching occurs on the continuous variables for slot durations as well as 

binary ones in order to tighten the bounds on these variables. 

An alternative to event or slot based formulations is that of precedence-based 

scheduling techniques. Perhaps the most noteable of these is the schedule-graph, or S-

graph, developed by Sanmarti et al. (1998). The S-graph is a very computationally 

efficient method of representing and scheduling a class of multipurpose batch 

processes. 

The framework is used in depicting network-represented processes and consists of 

nodes for process tasks and arcs indicating precedence relationships between the tasks. 
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There is one node for each stage of a product batch plus one additional node to indicate 

the completion of the batch. Each node contains information regarding the node identity 

and the unit in which the task occurs. The arcs may occur for two reasons: a recipe 

precedence relationship, existing due to the required order of processing a batch to 

correctly produce a product and/or equipment scheduling, which specifies the sequence 

of tasks occurring in a given unit. The arcs also contain information relating to the 

duration of tasks or required delay before units can be used. An example S-graph is 

displayed in Figure 2-13. 

Using the S-graph, Sanmarti et al. (1998) developed an algorithm which determines the 

minimum makespan required for a given product demand. A branch and bound 

technique is used where a lower bound for the makespan is computed using only recipe 

precedence relationships and a longest path algorithm. Tasks are then arbitrarily added 

to a given unit’s sequence, thereby generating a branch. The longest path algorithm is 

implemented to determine the makespan at each node and an infeasibility detection 

algorithm is applied. Once an entire schedule is obtained, an upper bound is computed 

and suitable branches can be pruned. If unlimited waiting time for intermediates 

produced in tasks is impossible, a LP is solved to determine the makespan instead of 

the longest path algorithm. Once the entire tree has been explored, the optimal solution 

is determined. Due to the relative simplicity of the algorithms involved, compared to, 

Figure 2-13. Schedule-Graph 
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say those of solving MILPs, the algorithm is computationally efficient, especially when 

unlimited waiting times are assumed. However, in this approach, the applicability of 

the S-graph is limited to scheduling of processes with a prespecified number of batches 

for each product. It follows that profit maximization cannot be applied. Additionally, 

while the UIS and NIS policies are readily handled, the S-graph cannot be applied to 

processes requiring the FIS policy. Finally, constant processing times of each task must 

be specified a priori. Due to these limitations, event or slot based formulations are 

preferable over precedence based scheduling techniques for more general batch process 

scheduling. 

Majozi and Friedler (2006) developed an algorithm based on the S-graph to facilitate 

varying numbers of product batches to be used in profit maximization studies. This was 

achieved by fixing the time horizon and searching combinations of the number of 

batches of each product against time-horizon feasibility criteria. A number of insights 

derived from the representation of the number of batches in a multidimentional plane 

facilitated extensive exclusion of suboptimal and infeasible possibilities from the 

subsequent schedule generation algorithm, thereby greatly improving computational 

performance over competing techniques. The methodology still requires fixed batch 

sizes and cannot be used for problems involving the FIS policy, however, approaches 

based on the S-graph constitute the only truly continuous time techniques due to their 

not requiring prespecification of the number of time or event points. 

A further improvement to the representation of time in event-based, batch scheduling 

formulations was heralded by Ierapetritou and Floudas (1998), who proposed a STN-

based, continuous time formulation for general network-represented processes. This 

formulation introduced the novel concept of a unique time grid for each unit in a given 

problem, allowing different tasks in different units which start at the same event to start 
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at different actual times. This means that the chronological ordering of two events 

occurring in different units does not imply anything about the relative timing of the two 

tasks. The authors also proposed the novel concept of decoupling task events from unit 

events. Additionally, the authors postulated the elimination of unnecessary binary and 

continuous variables by examining and pre-processing the STN for tasks which cannot 

take place at, or which do not provide value at certain events. The formulation 

drastically reduced the number of binary and continuous variables by eliminating 

unnecessary events at which certain tasks do not occur in certain units. This in turn 

reduced the computational time required to solve a given problem and afforded 

increased schedule flexibility. However, this asynchronicity requires complicated and 

stringent sequencing constraints in order to accurately monitor material and resource 

inventories. Unit-specific event-based time representation is displayed in Figure 2-14.  

The additional sequencing considerations, which are required in unit-specific event-

based formulations to manage production – consumption task couples, can result in 

difficulties regarding the FIS policy. In order to address this, the authors considered the 

addition of storage tasks and storage units to rigorously monitor the excess quantities 

of intermediate states. 

Lin and Floudas (2001) proposed a continuous time, unit-specific event-based 

formulation, based on the STN which addressed the simultaneous synthesis, design and 

scheduling of multipurpose batch plants. The objective, among other possibilities, is an 

Figure 2-14. Unit-Specific Continuous/Uneven Time Representation 
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economic minimization involving capital costs of dynamically chosen operating units 

offset by profits obtained via the production scheduling. The scheduling aspects of 

many of the constraints are based on those by Ierapetritou  and Floudas (1998) and 

storage tasks are used to accurately model FIS considerations. However, the duration 

constraints for processing times and the cost functions for units include nonlinear terms 

in the form of powers of variables. The authors discuss how the resulting nonconvex 

MINLPs can be transformed into convex lower-bounding problems, thereby facilitating 

the ability of the model to determine globally optimal solutions in many cases. 

Majozi and Zhu (2001) proposed an adapted STN, namely the SSN, in which only state 

nodes are required. This is due to the insight that the transformation of one state to 

another implicitly indicates the presence of a task and corresponding unit. 

The state-sequence network (SSN) is also a method of recipe representation wherein 

only one type of node is required: the state node (Majozi & Zhu, 2001). This is due to 

the fact that two connected state nodes indicate a transition and imply the presence of a 

task and unit. The same batch process represented above using the STN and RTN are 

shown in Figure 2-15 with the SSN. 

Figure 2-15. SSN for a Network-Represented Batch Process 
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The resulting continuous time, unit-specific event-based MILP formulation proposed 

requires only the definition of assignment binary variables based on an effective input 

state to a task and the event at which the task occurs – 𝑦(𝑠, 𝑝). An effective state is 

defined as one of the states required by the task and represents the subset of such states. 

However, this definition is effectively the same as a task, even for cases where a task 

can be performed in multiple units. This is because such tasks can be treated as separate 

tasks, resulting in a one to one task-unit ratio (Ierapetritou & Floudas, 1998). The result 

is that SSN-based formulations require the same number of binary variables as STN-

based formulations and therefore the latter have remained more prevalent in recent 

batch scheduling models. The authors also discussed an alternative representation of 

task duration based on various influencing factors such as catalyst health, raw material 

purity and operator response time. Finally, the authors demonstrated how the use of 

aggregate modelling for multiple units of similar performance can be used to reduce the 

problem size without compromising accuracy in a number of examples. 

Maravelias and Grossmann (2003) developed a continuous time, global event point 

formulation for the optimal scheduling of multipurpose batch plants based on the STN 

representation. This formulation, due to the use of the global event point approach,  can 

easily facilitate consideration of resources. The authors discuss how global event point 

formulations are more general than unit-specific ones and can therefore find better 

solutions in certain examples, however they acknowledge the advantages that the latter 

afford in terms of model size and computational performance. Nevertheless, the 

solution times in the examples studied were of comparible values. The authors also 

introduce tightening constraints aimed at reducing the integrality gap associated with 

big M constraints and discuss their mechanisms in leading to improved solution 



2-30 

 

performance. The formulation addresses post-processing unit wait for tasks as well as 

sequence dependant changeover times and costs. 

Post-processing unit wait, shown in Figure 2-16, is simply the ability of a unit, having 

performed a task, to continue to hold any produced intermediates subsequent to the 

completion of the task i.e. the unit is active for a duration exceeding the task’s 

processing time. This introduces additional flexibility into resulting schedules by 

providing temporary storage for the produced intermediates and facilitating discharge 

at more convenient times. Note that this concept is not applicable to ZW intermediates. 

Storage vessels that can store one of a set of states are also addressed. Finally the authors 

discuss how makespan minimization problems are more computationally complex than 

profit maximization problems. 

Floudas and Lin (2004) provide a review of developments in scheduling frameworks 

and formulations, which includes the major shift from discrete to continuous 

representations of the time horizon. Formulations by various authors are discussed 

while distinguishing and explaining key batch scheduling considerations such as 

sequential and general network-represented processes as well as global and unit-

specific event-based formulations. The authors discuss how continuous time 

representations provide better computational performance by overcoming the 

challenges of explosive binary dimensions and approximations of the time horizon 

inherent in discrete-time representations. Furthermore, they note that while unit-

specific event-based formulations tend to perform best in terms of computational time, 

Figure 2-16. Post-processing Unit Wait 
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they require more complex sequencing constraints. However, continuous time 

formulations suffer from uncertainty regarding the globally optimal solution and a 

sufficient stopping criterion for the iterations through the number of event points 

considered. This is because better solutions may exist when more event points are 

considered. 

Janak et al. (2004) developed a unit-specific event-based continuous time formulation 

based on the STN process representation. The authors introduced the concept of task 

splitting for unit-specific event-based formulations. 

Task splitting, as demonstrated in Figure 2-17, refers to the assignment of an active task 

over a number of consecutive event points. In Janak et al. (2004), this increased the 

flexibility of resulting schedules by allowing tasks of different duration to begin at the 

same event. The concept is important in discrete time as well as global continuous time 

event-based formulations, due to the fact that all tasks beginning at a given event also 

begin at the same time. However, Janak et al. (2004) show how this is also important 

in unit-specific event-based formulations in order to accommodate accurate modelling 

of limited resource utilization. 

The formulation is an extension of that in Ierapetritou and Floudas (1998) in that it 

addresses limited resources other than material and equipment, however in order to 

accomplish this, all tasks that consume a resource and that begin at a given event are 

forced to begin at the same time. The formulation uses two binary variables to indicate 

the start and end events of tasks, however it also utilises a continuous variable which 

determines whether or not a task is active at each event. This facilitates the splitting of 

Figure 2-17. Task Splitting 
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tasks over a number of event points while monitoring batch sizes and related variables. 

Additionally, storage tasks are used to accurately monitor the quantity of excess FIS 

states stored in dedicated storage units at a given point in time as they are produced and 

consumed by tasks at asynchronous events. As per resource consumption, all tasks 

beginning to consume a state at a given event must begin at the end time of the storage 

task for that state. The formulation is capable of effectively handling intermediate due 

dates by allowing the solver to select which tasks and which events are relevant for the 

production of a given order by a given time. Finally, the formulation contains many big 

M constraints as well as constraints written for every pair of events (𝑝, 𝑝′), 𝑝′ ≥ 𝑝 

which can be explosive in larger, more complex problems. 

Janak and Floudas (2008) discuss how task splitting is required to address FIS 

scheduling, especially in certain examples containing recycle streams, in addition to 

addressing resource considerations. Partial task splitting, defined as only allowing 

tasks which produce or consume FIS states or recycled states, is implemented. The 

authors present a hybrid unit-specific event-based, continuous time formulation which 

combines the formulations of Ierapetritou and Floudas (1998) and Janak et al. (2004) 

in order to incorporate partial task splitting. The authors also introduce a number of 

techniques in the effort to reduce the large integrality gap inherent in unit-specific 

continuous time formulations. These include the pre-processing of a given STN in order 

to remove as many unnecessary binary and continuous variables as possible; the 

addition of tightening constraints and valid inequalities to bound the sums of key 

variables, the bounds of which are determined from the overall problem’s relaxed 

solution as well as through the solution of supporting subproblems; and the 

implementation of a reformulation linearization technique which allows for tighter 

relaxations. 
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Shaik and Floudas (2008) presented the first unit-specific event-based continuous time 

formulation based on the RTN which supports the FIS policy without the need for 

considering storage as a separate task. This facilitated the elimination of binary and 

continuous variables as well as constraints which were previously necessary in order to 

address the FIS policy. This is accomplished by enforcing a zero-wait policy between 

production – consumption task pairs occurring at adjacent events for the same FIS state. 

The authors also propose a constraint to ensure that the starting time of consuming tasks 

is equal to the finishing time of producing tasks at the same event, in order to avoid 

real-time storage violations. 

Shaik and Floudas (2009) proposed a novel formulation based on the STN for 

addressing both problems with and without resources in a unified way using three index 

binary and continuous variables to represent the start and end times of tasks. Again this 

is accomplished by enforcing that all tasks beginning or ending at a given event which 

produce or consume the same non-material resource must begin or end at the same time. 

The authors demonstrate the importance of allowing tasks to split over multiple events, 

even in unit-specific continuous time formulations without resource considerations, in 

order not to exclude globally optimal solutions in certain examples. A splitting 

parameter, ∆𝑃 in this work, is used to limit the maximum number of events over which 

a task is allowed to continue in order to control the problem size. However, this 

approach has a number of limitations. The splitting parameter has the ability to truncate 

the problem to the extent where potential globally optimal solutions may be excluded. 

Additionally, it requires that a nested iteration procedure be conducted through both ∆𝑃 

and the maximum number of events considered for a given problem. This compounds 

the computational time and complexity of the solution procedure.  
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Pattinson and Majozi (2010) proposed some modifications to the formulation by Majozi 

and Zhu (2001) whereby the latent storage available in idle processing units could be 

utilized i.e. the PIS policy. Through application to a case study, the authors 

demonstrated that throughput could be improved by 50% when no dedicated storage 

vessels were present and that a 20% reduction in dedicated storage capacity could be 

achieved for a given throughput. Additionally, the concept was extended to the design 

of a multipurpose batch plant in a second case study. The concept clearly facilitates 

improvements in the scope of what is practically achievable in a batch production plant, 

however it has not featured in subsequent formulations. This is presumably due to the 

large increase in model size which results from the implementation of the PIS, with 

solution times increasing by a factor of 30 and 2 in the first case study compared to 

when PIS is not implemented. Furthermore, the design case study was reported to 

require a solution time of over three hours. 

Vooradi and Shaik (2012) improved the formulation of Shaik and Floudas (2009) by 

introducing the concept of active task, thereby reducing the number of constraints and 

big M terms required. A number of improvements in the allocation, duration and 

sequencing constraints were also incorporated. 

Seid and Majozi (2012) proposed a robust continuous time scheduling formulation 

based on the SSN. The formulation facilitated non-simultaneous material transfers or 

pre-processing unit wait, which is another important concept requiring explicit 

consideration and deliberate implementation in batch scheduling models. 
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Pre-processing unit wait is the ability to allow a task producing an intermediate 

(producing task) to transfer the intermediate to another unit in which it will 

subsequently be consumed, prior to the commencement of the consuming task. This 

allows debottlenecking of the producing unit and is especially effective when multiple 

intermediates, produced in different multipurpose units are required for a consuming 

task. This is demonstrated in Figure 2-18. 

Additionally, the formulation relaxed sequencing of production – consumption task 

pairs at adjacent events where the produced material is not directly required for the 

consuming task i.e. partial conditional sequencing was introduced. 

Up to this point, batch scheduling formulations were predicated on unconditional 

sequencing, where all tasks which consume an intermediate must be sequenced in time 

to follow any tasks producing the intermediate (e.g. Ierapetritou & Floudas, 1998; 

Vooradi & Shaik, 2012). This is done in order to facilitate the FIS policy, however it 

excludes potential sequencing opportunities. Thus conditional sequencing, which 

sequences producing – consuming task pairs only when transfer occurs between them, 

was developed in order to obtain higher quality solutions. However, further 

complications in model formulation are required in order to achieve this. Figure 2-19 

demonstrates a producing task and a consuming task (of the same intermediate) at 

adjacent events which do not respectively supply and consume the same specific batch 

of any intermediates and are therefore not sequenced accordingly. The figure also 

Figure 2-18. Pre-processing Unit Wait 



2-36 

 

demonstrates a pair which is sequenced due to the existence of such transfer. The former 

may occur if the feed material to the consuming task is available from other sources. 

However, for the model in Seid and Majozi (2012), in cases where produced material 

is required in an adjacent consuming task, all consumption tasks at the following event 

are aligned with the producing task, hence the term partial conditional sequencing. 

Sequencing was also relaxed where sufficient storage space is available for produced 

states, thereby not requiring the consuming task to begin immediately after production. 

These conditional sequencing aspects overcome drawbacks in previous methods of 

modelling the FIS policy, thereby facilitating more accurate solution of certain 

problems with fewer events, resulting in better objective values in shorter CPU times. 

The model also simulated task-splitting by allowing units to continue to hold the 

materials they produced for subsequent events before eventual discharge at a later and 

more convenient event. However, the formulation lacked rigorous sequencing 

constraints to prevent real-time storage violations through the overlapping of pre- or 

post-processing unit wait with actual processing in a unit. 

Vooradi and Shaik (2013) improved conditional sequencing by introducing rigorous 

conditional sequencing in which material flows between individual production – 

consumption task pairs are accurately monitored. This allowed only specific 

consumption tasks to be conditionally sequenced while others could be sequenced more 

flexibly. The model is structurally based on that of Vooradi and Shaik (2012) and Shaik 

Figure 2-19. Conditional Sequencing 



2-37 

 

and Floudas (2009) before it. The formulation also addressed FIS violations that were 

present in the formulation by Seid and Majozi (2012). This formulation uses three-index 

variables and a splitting parameter similar to the formulation by Vooradi and Shaik 

(2012). 

Shaik and Vooradi (2017) reformulated constraints in order to facilitate material 

transfer at the same event, unlike previous formulations which were predicated on 

material transfer at adjacent events. The model is also structurally based on the three-

index formulation of Shaik and Floudas (2009) and uses a parameter to indicate the 

maximum number of events over which a task can split. The model is not capable of 

handling problems involving recycle streams however a hybrid approach was 

implemented in order to deal with states involved in recycle loops. The model provides 

substantial decreases in the required number of events to solve many multiproduct 

problems, however it is not capable of solving certain multipurpose problems involving 

the production and consumption of a state in the same unit to global optimality, due to 

the modelling of material transfer at the same event. 

Similarly, Rakovitis et al. (2018) proposed a formulation where production-

consumption task pairs are allowed to occur at the same event for tasks not involved in 

recycle loops. The constraints are much the same as those in Shaik and Vooradi (2017) 

except that the FIS policy is not adequately dealt with due to the lack of constraints 

regarding the maximum stored capacity of FIS intermediates. Additionally, a more 

comprehensive definition of recycling tasks is used. 

The model was expanded by Rakovitis et al. (2019) to address conditional sequencing. 

Noteably, this formulation allows for intermediates to continue to wait in the units 

which produced them for a number of events while providing the necessary sequencing 

restrictions to allow the material to be extracted in fractions from the units. 
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Fractional extraction, demonstrated in Figure 2-20, refers to the ability of a unit to 

discharge one or multiple of its produced intermediates in fractions at different events 

and times. This can occur in multiple stages. The processing unit continues to hold the 

remaining portions of these intermediates until it is more convenient to discharge them 

to storage or to consuming tasks and therefore no subsequent tasks should occur in this 

unit until it has been completely emptied. Fractional extraction improves the flexibility 

of resulting schedules and addresses major drawbacks of previous formulations. 

However, in the model by Rakovitis et al. (2019), a binary variable is used for every 

unit at every event where intermediates may be temporarily stored. The formulation 

also uses the three index technique to address task splitting and does not include pre-

processing unit wait or address ZW states. 

The foundations for fractional extraction were present in the formulation by Seid and 

Majozi (2012), however it only become completely functional in the model by 

Rakovitis et al. (2019). It is developed further in this work.  

Lee and Maravelias (2017) developed two MILPs for the scheduling of multipurpose 

batch processes belonging to the sequential environment. This is a class of problems in 

which batches are processed by one or multiple units in parallel through one or multiple 

product-specific stages and where batch mixing and splitting is not allowed. The 

authors addressed two drawbacks of previous formulations for this class of problems 

i.e. the simultaneous consideration of batching decisions and scheduling as well as the 

consideration of limited intermediate storage. The formulation is based on a discrete 

Figure 2-20. Fractional Extraction 
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representation of time which facilitates the ability of the model to address time-

dependent availability of renewable resources. The formulation also allows the 

modelling of stage-dependent batch sizes however it assumes constant batch processing 

times for all tasks. A detailed comparison is performed comparing two types of models. 

In the first, all sub-batches for a given order are labelled explicitly and scheduled 

independently. In the second, feasible batch size intervals are identified to form bounds 

on the sizes of each sub-batch for a given order. This provides guidelines which should 

be used to model a given problem. It was shown how large scale problems, for which 

the time horizon is defined over hundreds of hours and for which hundreds of thousands 

of discrete variables are involved, can be solved for the minimization of cost, earliness 

or makespan in reasonable time.  

Woolway and Majozi (2018) developed a novel scheduling framework by 

implementing a stochastic metaheuristic approach involving a coupled-chromosome 

genetic algorithm. The technique is aimed at addressing the scheduling of multipurpose 

batch facilities including tasks with variable processing times. It was shown to be very 

effective in drastically reducing the computational time requirements for large instances 

of two commonly studied examples to mere seconds. This is due to the fact that the 

algorithm does not scale exponentially with increased problem size. However, its 

stochastic nature did result in slightly inferior solutions compared to the MILP 

formulation it was tested against (Seid & Majozi, 2012). 

Lee and Maravelias (2018) developed a scheduling algorithm for multipurpose batch 

processes belonging to the network environment which combines the relative strengths 

of continuous- and discrete-time formulations while overcoming their drawbacks. The 

algorithm consists of three stages: in the first stage, a discrete-time formulation is solved 

without too small a discretization interval in order to obtain an approximate solution. 
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In the second stage, a mapping algorithm is used to identify the activity of units and 

states present in the solution from the first stage for use in the third stage. This allows 

binary variables to be eliminated. In the third stage, resolution of timing variables is 

performed via the solving of a LP in order to improve the accuracy and quality of the 

original solution. The authors consider objective functions of profit maximization, cost 

minimization and makespan minimization. Discrete-time formulations allow for the 

straight forward modeling of time-varying resource availability and intermediate 

delivery and demand scenarios. This advantage is retained in the proposed 

methodology, while speedy solution times for large scale problems is facilitated. The 

algorithm assumes the UIS policy for intermediate states. 

Puranik et al. (2018) present a systematic approach for the determination of infeasibility 

sources in the modelling of multipurpose batch processes. The aim is to identify 

constraints or groups of constraints which cause infeasibility in a model status. 

Specifically, constraints related to insufficient raw material, insufficient time horizon 

for processing or insufficient available capacity for processing intermediates, especially 

ZW intermediates form part of the investigation. An algorithm, referred to as the s-

filter, which is an extension of the deletion filter for infeasibility analysis, is presented 

in order to isolate infeasible sets (IS) of constraints. Guidelines are given for pre-

processing of the constraints performed for determining inviolable constraints, 

constraint weighting/ordering and constraint grouping, in order to facilitate the s-filter 

algorithm and improve the computational performance of the infeasibility analysis. The 

algorithm operates by successively eliminating groups of constraints and determining 

if the model is still infeasible. Unnecessary constraints (which do not render the 

infeasible model feasible) are eliminated until a small subset of constraints remains (the 

IS). The algorithm can be applied successively to determine multiple independent 
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infeasibilities. The authors discuss how the results can be meaningfully presented to 

plant operators with little to no optimization experience so that decisions can readily be 

made on how to correct the infeasibility. 

2.3. Conclusions 

The capability of a model to allow tasks to split, or to consume input states at a given 

event and produce output states at some later event, even for unit-specific event-based 

formulations, is very important as evidenced by a number of examples which cannot be 

solved to global optimality otherwise. The technique has been successfully achieved in 

a number of unit-specific event-based formulations using three-index binary variables, 

containing two indices for event points. For larger problems, defining binary variables 

for combinations of two event points (𝑝, 𝑝′), 𝑝′ ≥ 𝑝 can lead to extremely large and 

often intractable problems. Therefore, in order to render more complex problems 

tractable, a limit on the maximum number of events over which a task can split is 

imposed. This is done through the use of a splitting parameter, referred to as ∆𝑃 in this 

work, which reflects this maximum number of events over which a task can split. It is 

not possible to know the optimum value of ∆𝑃  a priori, therefore it is determined 

iteratively. This iterative procedure is terminated, similar to the determination of the 

number of event points, by increasing its value until no change in the objective value is 

obtained for a given number of consecutive iterations. 

While the issue of uncertainty regarding the globally optimal solution is ever present in 

event-based formulations, due to the potential of hidden superior solutions at a higher 

number of events, this problem is worsened through imposing the additional limit on 

the maximum number of events over which a task can split. Moreover, computational 

time requirements are also aggravated through the nested iteration present in these 

formulations. This effect has not been well investigated or discussed in the literature. 
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The present work is aimed at overcoming this limitation by simulating the concept of 

task splitting over any number of events without requiring increasing numbers of binary 

and continuous variables and iteration through ∆𝑃. This is done while incorporating the 

concepts of rigorous conditional sequencing, pre- and post-processing unit wait and 

fractional extraction. 
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Mathematical Model and Constraints  

3.1. Introduction 

The proposed model is capable of multipurpose batch scheduling for profit 

maximization or makespan minimization in general problems involving stream splitting 

and mixing, multiple units suitable for a given task, single units suitable for multiple 

different tasks, different storage policies such as FIS, ZW and NIS and any number of 

tasks with variable consumption and production ratios for any number of input and 

output streams. The model is capable of allowing pre- and post-processing unit wait 

and rigorous conditional sequencing. Task splitting is facilitated by allowing units to 

continue to hold material over multiple events, even for ZW states, without the need for 

separate indices to describe the start and end events of the task and without prefixing 

the maximum or iterating through the number of split events. Furthermore, the proposed 

formulation allows states to be fractionally extracted from a unit, thereby allowing a 

portion of produced states to wait for storage or transfer, or in the case of multiple 

products produced in a task, for some states to be removed while others continue to 

wait. The objective is for the proposed batch scheduling model to obtain better and 

more consistent solutions in faster time by allowing more flexibility and being more 

computationally efficient than existing models. 

3.2. Assumptions 

In the proposed formulation, tasks begin and end at the same event. Intermediates enter 

storage at the event after which they are produced, however products enter storage at 

the same event. This handling of intermediates is crucial for obtaining the globally 
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optimal solution in some multipurpose batch production setups where a state can be 

produced and consumed in the same unit, such as Example 5 appearing in Section 4.2.5. 

Additionally, it is assumed in this model and examples under study that raw materials 

are available as and when required and that there is unlimited storage available for 

product states. Simple constraints can readily be incorporated to restrict the raw 

material consumption or product storage if necessary. It is further assumed that profit 

maximization or makespan minimization occurs over a single cycle. Therefore, NS 

states, which are ZW and NIS states, cannot be consumed at the first event and ZW 

states cannot be produced at the last event. All variables and constraints relating to such 

tasks are eliminated in pre-processing before solving the model via rigorous exclusion. 

This means that, wherever possible, certain constraints are not written for certain states, 

units, tasks or events and other constraints are reduced to exclude unnecessary terms. If 

the model is to be applied to cyclic systems, these constraints can be relaxed. As such, 

generalised pre-processing is performed for every example under study. The 

elimination of STN-specific tasks relating to tasks which cannot be performed or which 

do not add value at certain events, as proposed by Janak and Floudas (2008), is not 

performed. Finally, the proposed model does not include specific consideration for UIS 

states as this storage policy is the simplest and easiest to handle. It has been addressed 

at length in the literature. If the proposed model is to be applied to case studies involving 

UIS states, simple amendments can be made to the constraints or UIS states can be 

treated as FIS states having a very large dedicated storage capacity. 

3.3. Model Constraints 

The proposed model is comprised of the following constraints, which are expressed 

below in written equations. The constraint and equation number are the same. 
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3.3.1 Allocation Constraints 

Constraint 1 states that a maximum of one task can begin in a unit 𝑗 at any given event 

𝑝. This allows for situations in which no task begins in unit 𝑗 at event 𝑝. The constraint 

is written for every unit 𝑗 at every event 𝑝 where more than one task is possible. 

 ∑ 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽
𝐽

≤ 1,   ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃 
(1) 

3.3.2 Capacity Constraints 

Constraints 2 and 3 respectively limit batch sizes for every task to be between their 

maximum and minimum capacities if the task is active and equal to zero otherwise. 

 𝑚𝑢 (𝑠𝑖𝑛,𝑗 , 𝑝) ≤ 𝑉𝑈(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝),   ∀ 𝑠𝑖𝑛,𝑗 ∈ 𝑆𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃 (2) 
 

 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) ≥ 𝑉𝐿(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝),   ∀ 𝑠𝑖𝑛,𝑗 ∈ 𝑆𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃 (3) 

3.3.3 Material Balance Constraints 

Constraints 4 and 5 are only written for tasks which consume states in variable ratios. 

The variable 𝑚𝑐
𝑉(𝑠, 𝑠𝑖𝑛,𝑗, 𝑝) is defined for each state consumed in these tasks and must 

lie between the minimum and maximum allowed ratio for the state if the task is active 

i.e. if 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) is positive. Otherwise it is equal to zero. 

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≤ 𝜌𝑐

𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝),   ∀ 𝑠 ∈ (𝑆𝑅 ∪ 𝑆𝐼), 𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃 (4) 

 

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ 𝜌𝑐

𝐿 (𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝),   ∀𝑠 ∈ (𝑆𝑅 ∪ 𝑆𝐼), 𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃 (5) 

Constraints 6 and 7 are similar to 4 and 5 but apply to tasks which produce states in 

variable ratios. This occurs, for example, in the Westenberger-Kallrath problem 

(Kallrath, 2002). 

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≤ 𝜌𝑝

𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝),   ∀ 𝑠 ∈ (𝑆𝐼 ∪ 𝑆𝑃), 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃 (6) 

 

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ 𝜌𝑝

𝐿 (𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝),   ∀ 𝑠 ∈ (𝑆𝐼 ∪ 𝑆𝑃), 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃 (7) 
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Constraint 8 ensures that the total batch size for tasks which consume states in variable 

ratios is equal to the sum of its parts. Constraint 9 does the same for tasks which produce 

states in variable ratios. 

 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) = ∑ 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠 ∈ 𝑆𝐽
𝑐

,   ∀ 𝑠𝑖𝑛,𝑗 ∈ 𝐶𝑖𝑛,𝐽
𝑉 , 𝑝 ∈ 𝑃 

(8) 

 

 𝑚𝑢 (𝑠𝑖𝑛,𝑗 , 𝑝) = ∑ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠 ∈ 𝑆𝐽
𝑝

,   ∀ 𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽
𝑉 , 𝑝 ∈ 𝑃 

(9) 

Constraint 10 is written for all raw material states and calculates the total required 

quantity of each over the time horizon of interest. This quantity is contributed to by 

tasks which consume it in both variable and constant ratios. In the case of constant 

ratios, the upper bound for the ratio of the state consumed in the task is used. 

 

𝑞𝑇(𝑠) = ∑ [ ∑ 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽
𝑉 )𝑝 ∈ 𝑃

+ ∑ 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉 )

],   ∀ 𝑠 ∈ 𝑆𝑅 

(10) 

Constraint 11 is similar to Constraint 10, however it refers to the total quantity of 

product states produced over the time horizon of interest. The constraint assumes that 

there is no initial inventory of any product states, however this can be modified as 

necessary. 

 

𝑞𝑇(𝑠) = ∑ [ ∑ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉 )𝑝 ∈ 𝑃

+ ∑ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉 )

],   ∀ 𝑠 ∈ 𝑆𝑃 

(11) 

Constraints 12 and 13 track the excess available quantity of FIS states at each event 

over the time horizon of interest. Constraint 12 is written at the first event and 

Constraint 13 is for subsequent events. The difference is that Constraint 12 considers 
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the initial inventory of the state and does not include terms for the production of the 

state, since produced FIS states only reflect in storage at the event after which they are 

produced. 

 𝑞(𝑠, 𝑝) = 𝑞0(𝑠) − ∑ 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉 )

− ∑ 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉 )

, 

(12) 

 ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑝 ∈ 𝑃, 𝑝 = 1  

 

 𝑞(𝑠, 𝑝) = 𝑞(𝑠, 𝑝 − 1) + ∑ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 − 1)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉 )

+ ∑ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝 − 1)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉 )

− ∑ 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽
𝑉 )

− ∑ 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉 )

, 

(13) 

 ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑝 ∈ 𝑃, 𝑝 > 1  

Constraint 14 states that if a FIS state-consuming task, which requires more of a 

particular FIS state than is available in storage (excess state which was produced at 𝑝 −

2 or earlier), should begin at event 𝑝, then it must receive material produced at 𝑝 − 1 

by another task or instance of a task i.e. transfer mechanism 𝑏1. A positive value for 𝑏1 

activates the binary variable 𝑧, which is used in Constraint 40 to enforce the condition 

that the consuming task must begin after the producing task finishes, since the produced 

material is being used in the consuming task. This way, conditional sequencing is 

facilitated, allowing certain consuming tasks to be placed more flexibly when they are 

not consuming material produced by tasks at 𝑝 − 1. If exclusion of tasks which produce 

ZW states at the last event or tasks which consume NS states at the first event result in 

a zero-valued left-hand side or zero valued summation on the right-hand side, the 
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constraint can be excluded altogether for that FIS state at that event, since this reduces 

the constraint to a simple storage and material balance. 

Note that 𝑏1 exists for all production – consumption task pairs for UW states (FIS and 

NIS states). Its corresponding binary variable, 𝑧 , only exists for production – 

consumption task pairs that occur in different units, since the sequencing, for which 𝑧 

exists, is taken care of in Constraint 39 for production – consumption tasks in the same 

unit. This is different for ZW states. 

 ∑ 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽
𝑉 )

+ ∑ 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉 )

≤ 𝑞(𝑠, 𝑝 − 1) + ∑ ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑝

∈ 𝑃, 𝑝 > 1 

(14) 

Constraints 15a and 15b ensure that the tasks responsible for production of FIS states 

are active and that batch sizes are sufficient for transfer to consuming tasks via the 

mechanism 𝑏1, if the transfer is indeed occurring.  Otherwise the constraints are trivially 

satisfied. Constraint 15a is for tasks which produce states in variable ratios and 

Constraint 15b is for those producing states in constant ratios. 

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽  ∩  𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝

∈ 𝑃, 𝑝 < 𝑃 

(15a) 

 

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗

∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 < 𝑃 

(15b) 

Constraints 16 – 19 carefully monitor the production, temporary in-unit storage, transfer 

and consumption of NS states. Constraints 16a and 16b deal with the production of NS 

states at the first event for variable production ratios and constant production ratios 

respectively. 

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) = 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, 
(16a) 
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 ∀ 𝑠 ∈ 𝑆𝑁𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽  ∩  𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 = 1  

 

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) = 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, 
(16b) 

 ∀ 𝑠 ∈ 𝑆𝑁𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽  \ 𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 = 1  

Constraints 17a and 17b deal with the production and temporary in-unit storage of NS 

states at intermediate events. 

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) = 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, 
(17a) 

 ∀ 𝑠 ∈ 𝑆𝑁𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽  ∩  𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃 − 1  

 

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

= 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, (17b) 

 ∀ 𝑠 ∈ 𝑆𝑁𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃 − 1  

At the last event, NIS states are allowed to wait in the unit at the end of production 

whereas for ZW states, there is no production or storage allowed. Constraints 18a and 

18b deal with production and temporary in-unit storage of NIS states at the penultimate 

event, whereas Constraints 19a and 19b address ZW states at the penultimate event. 

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) = 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, 
(18a) 

 ∀ 𝑠 ∈ 𝑆𝑁𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽  ∩  𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 = 𝑃 − 1  

 

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

= 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, (18b) 

 ∀ 𝑠 ∈ 𝑆𝑁𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 = 𝑃 − 1  

 

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) = ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, 
(19a) 

 ∀ 𝑠 ∈ 𝑆 𝑍𝑊, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽  ∩  𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 = 𝑃 − 1  

 

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) = ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, 
(19b) 

 ∀ 𝑠 ∈ 𝑆 𝑍𝑊, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 = 𝑃 − 1  
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Note that temporary in-unit storage of ZW states occurs over event points only and is 

not allowed to extend in actual time, which would be akin to allowing post-processing 

unit wait for tasks which produce ZW states. This is enforced in Constraint 48. 

Constraints 20a and 20b ensure that the tasks consuming FIS states are active and that 

batch sizes are large enough to accommodate what is transferred from producing tasks 

via the mechanism 𝑏1, if the transfer is indeed occurring. Otherwise the constraints are 

trivially satisfied. Constraint 20a is for tasks which consume states in variable ratios 

and Constraint 20b is for those consuming states in constant ratios. 

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗

′ , 𝑝) ≥ ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽  ∩  𝐶𝑖𝑛,𝐽

𝑉 ), 𝑝

∈ 𝑃, 𝑝 > 1 

(20a) 

 

 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗

′ ) 𝑚𝑢(𝑠𝑖𝑛,𝑗
′ , 𝑝) ≥ ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗
′

∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 > 1 

(20b) 

Constraints 21a and 21b carefully monitor the consumption of NS states regarding the 

transfer from producing tasks and in-unit temporary storage. 

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗

′ , 𝑝) = ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝑁𝑆, 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽  ∩  𝐶𝑖𝑛,𝐽

𝑉 ), 𝑝

∈ 𝑃, 𝑝 > 1 

(21a) 

 

 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗

′ ) 𝑚𝑢(𝑠𝑖𝑛,𝑗
′ , 𝑝) = ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝑁𝑆, 𝑠𝑖𝑛,𝑗
′

∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 > 1 

(21b) 

Constraint 22 deals with the FIS policy and prevents violations by controlling the upper 

limit on storage. Material continuing to wait, in a unit which produced it, at subsequent 

events is considered in this constraint. This effectively increases the maximum storage 

capacity. The term 𝑏2  reflects the freeing up of storage space via one of two 

mechanisms. One mechanism is the transfer of produced material into a consuming unit 

directly, for pre-processing unit wait or immediate consumption, which is controlled 

via the binary variable 𝑣. This requires that the producing task at event 𝑝 − 1 ends after 
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any other possible task in the consuming unit at event 𝑝 − 1 so that the unit is free to 

receive material for consumption at event 𝑝. The other mechanism is that some of the 

FIS state is consumed at event 𝑝 at a time prior to the end of production at event 𝑝 − 1, 

thereby ensuring that there is enough storage space for the produced material. This is 

controlled via the binary variable 𝑥. These two mechanisms work together to ensure 

that there are sufficient options available for flexible production and consumption 

interaction without any FIS violations. 

If, at event 2, the summations on the left-hand side have a zero value due to exclusion 

of tasks which consume NS states at the first event, the constraint need not be written 

for the particular FIS state at event 2. However, if the double summation on the right-

hand side has a zero value due to exclusion of tasks which produce ZW states at the last 

event, the constraint still needs to be written in order to prevent storage violations. 

 𝑞(𝑠, 𝑝 − 1) + ∑ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 − 1)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉 )

+ ∑ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝 − 1)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉 )

≤ 𝑄𝑈(𝑠) + ∑ 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

+ ∑ [ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

]

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

, 

(22) 

 
∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑝 ∈ 𝑃, 𝑝 > 1 

 

Constraints 23 – 24 are similar to 15a and 15b except that they apply to mechanism 𝑏2. 

Note that in the case of 𝑏2 transfer, some of the transferred material can come from 

temporary in-unit storage. Constraints 23a and 24a are for tasks which produce states 

in variable ratios and Constraints 23b and 24b are for those producing states in constant 

ratios. Constraints 23a and 23b are for the first event and Constraints 24a and 24b are 

for all intermediate events. 



3-10 

 

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽  ∩  𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝

∈ 𝑃, 𝑝 = 1 

(23a) 

 

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗

∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 = 1 

(23b) 

 

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, (24a) 

 
∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽  ∩  𝑃𝑖𝑛,𝐽

𝑉 ), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃 
 

 

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, (24b) 

 
∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽

𝑉 ), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃 
 

Constraints 25a and 25b are similar to Constraints 20a and 20b except that they apply 

to mechanism 𝑏2. Constraint 25a is for tasks which consume states in variable ratios 

and Constraint 25b is for those consuming states in constant ratios. 

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗

′ , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽  ∩  𝐶𝑖𝑛,𝐽

𝑉 ), 𝑝

∈ 𝑃, 𝑝 > 1 

(25a) 

 

 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗

′ ) 𝑚𝑢(𝑠𝑖𝑛,𝑗
′ , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

,   ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗
′

∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 𝑝 > 1 

(25b) 

3.3.4 Storage Constraints 

The variable 𝑢 was introduced by Seid and Majozi (2012) in order to allow produced 

states to wait in the unit that produced them at subsequent events, thereby effectively 

increasing the maximum storage capacity. However necessary constraints which 

carefully control the quantity of stored material and sequencing of its discharge in order 

to prevent FIS violations and simultaneous processing and post-processing unit wait 

were lacking. The concept was also used by Rakovitis et al. (2019). This is updated and 

carefully managed in the current work whereby material in temporary in-unit storage is 
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only reduced via the 𝑏2  mechanism. 𝑢  can be used to allow production of a state 

exceeding maximum storage capacity for consumption at the subsequent event, 

however it can also be used to hold material over a number of events. In the latter case, 

production at event 𝑝  results in temporary in-unit storage at event 𝑝 + 1  and 

consumption at some event 𝑝′ ≥ 𝑝 + 2. The actual quantity stored is precisely tracked 

until the unit is emptied. This ensures that if material is temporarily stored in a unit for 

a number of events, the start time of the following task in the unit is always 

appropriately late enough such that all of the stored material can be discharged to a 

consuming task. Constraints 26 – 31 and Constraint 48 enforce the necessary 

restrictions on the variable 𝑢. 

Constraints 26 and 27 ensure that, at any given event, a unit is either providing 

temporary storage to produced states or processing states as part of a task and never 

both. Since 𝑢 can only be reduced via transfer mechanism 𝑏2, as per Constraints 28 – 

30, Constraints 26 and 27 state that when any task begins in unit 𝑗, full transfer of any 

stored states to consuming tasks must have been completed. The constraints have been 

adapted from Seid and Majozi (2012) in that they include summations of all possible 

tasks producing states for temporary in-unit storage and are as such written for each 

unit as opposed to being written for each producing task individually. This reduces the 

number of constraints in the model. Constraint 26 is not written at the last event, since 

ZW materials cannot continue to wait in a unit at the last event. Constraint 27 is 

therefore written only for UW states at the last event. 

 

∑ [ ∑ 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽∩ 𝑆𝑖𝑛,𝐽
𝐽

)

]

𝑠 ∈ 𝑆𝐼

≤ max
𝑠𝑖𝑛,𝑗 ∈ 𝑆

𝑖𝑛,𝐽
𝐽

[𝑉𝑈(𝑠𝑖𝑛,𝑗)] [1 − ∑ 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽
𝐽

], 
(26) 

 
∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃 
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∑ [ ∑ 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽∩ 𝑆𝑖𝑛,𝐽
𝐽

)

]

𝑠 ∈ 𝑆𝑈𝑊

≤ max
𝑠𝑖𝑛,𝑗 ∈ 𝑆

𝑖𝑛,𝐽
𝐽

[𝑉𝑈(𝑠𝑖𝑛,𝑗)] [1 − ∑ 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽
𝐽

], 
(27) 

 
∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃, 𝑝 = 𝑃 

 

Constraint 28 states that variable 𝑢 must maintain its value from previous events unless 

discharge occurs via the 𝑏2 mechanism. 

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) ≥ 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) − ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, (28) 

 
∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈  𝑃𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃  

Constraints 29 and 30 ensure that material in temporary in-unit storage can only occur 

at the event after production or if it was already stored in the unit at the previous event. 

Together, Constraints 28 – 30 ensure rigorous upper and lower bounds for the variable 

𝑢 to exactly monitor its value over production and consumption via transfer. 

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) ≤ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) − ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, (29a) 

 
∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽

𝑉 ), 𝑝 ∈ 𝑃, 𝑝 = 1 
 

 

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) ≤ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) − ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, (29b) 

 
∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽  \ 𝑃𝑖𝑛,𝐽

𝑉 ), 𝑝 ∈ 𝑃, 𝑝 = 1 
 

 

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) ≤ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) − ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, (30a) 

 
∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽

𝑉 ), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃 
 

 

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) ≤ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

− ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′  ∈ 𝐶𝑖𝑛,𝐽

, (30b) 

 ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉 ), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃  
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3.3.5 Linking Constraints 

Constraints 28 – 30 are written for FIS states only because strict control for the variable 

𝑢 for NS states is worked into the material balances in Constraints 16 – 19. However, 

for ZW states, additional control is required to ensure that temporary in-unit storage 

does not result in post-processing unit wait. This is done using the variable 𝑤  in 

Constraints 31 and 48. 

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≤ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑉𝑈(𝑠𝑖𝑛,𝑗) 𝑤(𝑠𝑖𝑛,𝑗 , 𝑝),   ∀ 𝑠 ∈ 𝑆 𝑍𝑊, 𝑠𝑖𝑛,𝑗 ∈  𝑃𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃, 1 < 𝑝

< 𝑃 
(31) 

It is noted here that the variables 𝑏1, 𝑏2, 𝑧, 𝑣, 𝑥, 𝑢 and 𝑤 do not exist at the first event 

for any tasks and states, since they represent production at the previous event to which 

they are written. 

Constraint 32 links the continuous variable 𝑏1 to its corresponding binary variable 𝑧. 

This is necessary in order to provide rigorous conditional sequencing based on whether 

𝑏1 takes a zero or positive value. The coefficient for binary variable 𝑧 is the minimum 

of the maximum quantity of produced state in the producing task and the maximum 

quantity of consumed state in the consuming task, since the quantity transferred is 

limited by the smaller of these values. In Vooradi and Shaik (2013), binary variables 𝑧 

and 𝑣, for transfer of NIS states, both enforce that consumption of NIS states occurs at 

a later time relative to its production at the previous event, as per their Constraints 20 

and 39 respectively. Additionally, the condition that the start time of consumption must 

be less than or equal to the finish time of production, thereby ensuring equality of these 

times, is only enforced for variable 𝑧, as per their Constraint 35. For variable 𝑣, it is 

enforced that the finish time of production at event 𝑝 − 1 must lie between the finish 

time of all tasks occuring in the consuming unit at 𝑝 − 1 and the start time of the 

consuming task in the consuming unit at event 𝑝, as per their Constraint 28. This case 
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is a general case of the condition for variable 𝑧 and to distinguish them for NIS states 

is not necessary. Therefore in this formulation, only one binary variable 𝑧 is used to 

describe the sequencing for production – consumption of NIS states, and it takes on the 

more general role of that for binary variable 𝑣 for NIS states in Vooradi and Shaik 

(2013). 

 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

≤ min[𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑉𝑈(𝑠𝑖𝑛,𝑗), 𝜌𝑐

𝑈(𝑠, 𝑠𝑖𝑛,𝑗
′ ) 𝑉𝑈(𝑠𝑖𝑛,𝑗

′ )]

×  𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝), 

(32) 

 
∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝑈𝑊, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆

𝑖𝑛,𝐽′
𝐽 ) , 𝑝 ∈ 𝑃, 𝑝 > 1  

 

Constraint 33 is written for ZW states and is similar to Constraint 32 except that it must 

be written even for production – consumption task pairs occurring in the same unit since 

this unique sequencing is not applied elsewhere. 

 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

≤ min[𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑉𝑈(𝑠𝑖𝑛,𝑗), 𝜌𝑐

𝑈(𝑠, 𝑠𝑖𝑛,𝑗
′ ) 𝑉𝑈(𝑠𝑖𝑛,𝑗

′ )]

×  𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝), 

(33) 

 
∀ 𝑠 ∈ 𝑆𝑍𝑊, 𝑠𝑖𝑛,𝑗 ∈  𝑃𝑖𝑛,𝐽 , 𝑠𝑖𝑛,𝑗

′ ∈  𝐶𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃, 𝑝 > 1  

Constraint 34 is similar to Constraints 32 and 33 except that it is written for transfer 

mechanism 𝑏2. 

 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝) ≤ min[𝜌𝑝

𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑉𝑈(𝑠𝑖𝑛,𝑗), 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗

′ ) 𝑉𝑈(𝑠𝑖𝑛,𝑗
′ )]

× [𝑥(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝) + 𝑣(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝)], 
(34) 

 
∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′ , 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆

𝑖𝑛,𝐽′
𝐽 ) , 𝑝 ∈ 𝑃, 𝑝 > 1 

 

3.3.6 Duration Constraints 

For tasks which produce only UW states, there is no need to include variable 𝑡𝑖𝑛 at the 

first event, since the tasks can always begin at the start of the time horizon of interest. 

The material can then simply wait in the unit (post-processing unit wait at the same 

event) until whenever it should be discharged to storage or transferred to a consuming 

task. Similarly, there is no need to include variable 𝑡𝑜𝑢𝑡 for such tasks at the last event, 
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as long as there is sufficient time between the start of the task and the end of the time 

horizon of interest. This way it is possible to exclude unnecessary continuous variables 

and reduce the model size. It is necessary to include 𝑡𝑖𝑛 for tasks which produce at least 

one ZW state at the first event because such tasks cannot accommodate post-processing 

unit wait. 

 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝) ≥ 𝑎(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑏(𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝),   ∀ 𝑠𝑖𝑛,𝑗 ∈ (𝑆𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑍𝑊), 𝑝

∈ 𝑃, 𝑝 = 1 

(35) 

 

 
𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝) ≥ 𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑎(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑏(𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝), 

(36) 

 
∀ 𝑠𝑖𝑛𝑗 ∈ (𝑆𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽

𝑍𝑊), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃 
 

Constraint 37 doubles as an upper-bounding constraint for variables 𝑡𝑜𝑢𝑡 , and by 

extension, 𝑡𝑖𝑛. 

 𝐻 ≥ 𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑎(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑏(𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝),   ∀ 𝑠𝑖𝑛𝑗 ∈ (𝑆𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑍𝑊), 𝑝

∈ 𝑃, 𝑝 = 𝑃 
(37) 

Constraint 38 is excluded at the last event, since no tasks which produce ZW states are 

permitted at the last event. Note that no upper-bounding for start and end times are 

explicitly required for ZW-producing tasks, since all produced ZW material must be 

directly transferred and consumed by the last event, as per Constraints 19a and 19b 

(𝑢(𝑠, 𝑠𝑖𝑛,𝑗, 𝑝) does not exist at the last event for ZW states). Therefore, the upper-

bounding applied to the consuming tasks will take care of this. 

 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝) = 𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑎(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑏(𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝),   ∀ 𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽
𝑍𝑊, 𝑝

∈ 𝑃, 𝑝 < 𝑃 

(38) 

3.3.7 Sequence Constraints 

Constraint 39 is written for all tasks occurring in a given unit. It combines the 

traditionally separated approaches for same task in same unit and different task in same 

unit sequencing constraints. 
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𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝 + 1) ≥ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝),   ∀ 𝑗 ∈ 𝐽, 𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ ∈ 𝑆𝑖𝑛,𝐽

𝐽 , 𝑝 ∈ 𝑃, 𝑝 < 𝑃 
(39) 

Constraint 40 is written for intermediate state production – consumption task pairs, that 

is, it represents the different task in a different unit constraints. It is only written for 

tasks which occur in different units because sequencing at adjacent events in the same 

unit is taken care of by Constraint 39. In Constraint 40, sequencing is only enforced if 

transfer actually occurs between tasks 𝑠𝑖𝑛,𝑗  and 𝑠𝑖𝑛,𝑗
′ . In other words, binary variable 𝑧 

must be activated by a positive valued 𝑏1, which is done in Constraints 32 and 33. 

 
𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝) ≥ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝 − 1) − 𝑀[1 − 𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)], 

(40) 

 
∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝐼, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆

𝑖𝑛,𝐽′
𝐽 ) , 𝑝 ∈ 𝑃, 𝑝 > 1 

 

Constraint 41 is similar to Constraint 40 except that it is only written for production – 

consumption pairs involving ZW states and that the inequality is reversed. This is to 

ensure that ZW states are consumed immediately upon production in terms of time 

(even though it may be a few events later). A third difference is that it is written even 

when the production and consumption tasks occur in the same unit. 

 
𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝) ≤ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝 − 1) + 𝑀[1 − 𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)], 

(41) 

 
∀ 𝑠 ∈ 𝑆 𝑍𝑊, 𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽 , 𝑠𝑖𝑛,𝑗

′ ∈ 𝐶𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃, 𝑝 > 1 
 

Constraint 42 addresses sequencing of production – consumption pairs transferring 

material via the mechanism 𝑏2, whereby produced material is directly transferred to the 

consuming unit. The constraint deals with three separate tasks. 𝑠𝑖𝑛,𝑗 is the producing 

task, occurring in unit 𝑗 at event 𝑝 − 1. 𝑠𝑖𝑛,𝑗
′  is the consuming task, occurring in unit 𝑗′ 

at event 𝑝 and 𝑠𝑖𝑛,𝑗
′′  is any other auxiliary task which may be occurring in the consuming 

unit 𝑗′ at event 𝑝 − 1. The constraint states that the producing task must finish after the 

end of the auxiliary task, such that material can be transferred to the receiving unit 
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without any pre-processing unit wait overlapping in time with the processing of the 

auxiliary task. Units 𝑗 and 𝑗′ must be different. 

 
𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗

′′ , 𝑝 − 1) ≤ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝 − 1) + 𝑀[1 − 𝑣(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)], 

(42) 

 
∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆

𝑖𝑛,𝐽′
𝐽 ) , 𝑠𝑖𝑛,𝑗

′′ ∈ 𝑆
𝑖𝑛,𝐽′
𝐽 , 𝑝 ∈ 𝑃, 𝑝 > 1 

 

Constraint 43 is similar to Constraint 42 except that it is applied to NIS states for which  

the binary variables 𝑧 and 𝑣 are combined. It is emphasized here that production of NIS 

states may begin at event 𝑝′ ≤ 𝑝 − 1, however when they are transferred from the 

producing unit to the consuming unit for consumption at event 𝑝, the time will be that 

of the finishing time of the producing task at event 𝑝 − 1. 

 
𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗

′′ , 𝑝 − 1) ≤ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝 − 1) + 𝑀[1 − 𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)], 

(43) 

 ∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝑁𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽
𝐽 ), 𝑠𝑖𝑛,𝑗

′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽
𝐽 ), 𝑠𝑖𝑛,𝑗

′′ ∈ 𝑆𝑖𝑛,𝐽
𝐽 , 𝑝

∈ 𝑃, 𝑝 > 1 

 

Constraint 44 addresses sequencing of production – consumption pairs via the 

mechanism 𝑏2, whereby a state is consumed at event 𝑝 prior to production at event 𝑝 −

1 in order to ensure that sufficient storage space is available for the produced state. 

 
𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝) ≤ 𝑡𝑜𝑢𝑡(𝑠𝑖𝑛,𝑗 , 𝑝 − 1) + 𝑀[1 − 𝑥(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)], 

(44) 

 
∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑝 ∈ 𝑃, 𝑝 > 1 
 

Constraint 45 states that if production – consumption tasks are coupled via mechanism 

𝑏2, only one form is allowed i.e. direct transfer or prior consumption. However, this 

mechanism need not occur between the producing and consuming tasks at all.  

 
𝑥(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝) + 𝑣(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝) ≤ 1, 

(45) 

 
∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑝 ∈ 𝑃, 𝑝 > 1 
 

The proposed model operates, as is the case in Seid and Majozi (2012) and Vooradi and 

Shaik (2013), by allowing produced FIS states to freely enter and leave storage as is 
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deemed optimal without the rigorous tracking of flows, except at adjacent events. 

Therefore, in order to prevent FIS violations, it is enforced, perhaps in a limiting way, 

that any consuming task beginning at event 𝑝 must begin at a time greater than or equal 

to any possible producing tasks at event 𝑝 − 2 (or earlier), as long as the producing task 

did indeed begin at event 𝑝 − 2. Constraint 46 enforces this. 

 
𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝) ≥ 𝑡𝑜𝑢𝑡(𝑠𝑖𝑛,𝑗 , 𝑝 − 2) − 𝑀[1 − 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝 − 2)], 
(46) 

 
∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑝 ∈ 𝑃, 𝑝 > 2 
 

Constraint 47, originally proposed by Shaik and Floudas (2008) and used by Shaik and 

Floudas (2009), Vooradi and Shaik (2012), Vooradi and Shaik (2013) and Shaik and 

Vooradi (2017), is incorporated in the proposed model to prevent FIS violations arising 

as a result of production – consumption task couples occurring at the same event. The 

constraint is not written at the first event if either 𝑠𝑖𝑛,𝑗 or 𝑠𝑖𝑛,𝑗
′  consume NS states. The 

constraint is amended here in that it is additionally not written at the first event for tasks 

𝑠𝑖𝑛,𝑗
′  which do not produce ZW states, since there is no need for the variable 𝑡𝑖𝑛 at the 

first event for such tasks. 

 
𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝) ≤ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑀[1 − 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝)], 
(47) 

 
∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽 ), 𝑝 ∈ 𝑃, 𝑝 < 𝑃 
 

Constraint 48 states that if temporary in-unit storage for ZW states occurs at event 𝑝 +

1, there must be no delay between the start time of the task at event 𝑝 + 1 and the end 

time at event 𝑝. This prevents post-processing unit wait for units holding ZW states. 

However, if ZW and UW states are produced simultaneously, then once the ZW states 

have been discharged, there is no need for binary variable 𝑤 to be active and the UW 

states may participate in post-processing unit wait at subsequent events. 
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 𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗 , 𝑝 + 1) − 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝) ≤ 𝑀[1 − 𝑤(𝑠𝑖𝑛,𝑗 , 𝑝 + 1)],   ∀ 𝑠𝑖𝑛𝑗 ∈ 𝑃𝑖𝑛,𝐽
𝑍𝑊, 𝑝 ∈ 𝑃, 𝑝

< 𝑃 − 1 
(48) 

3.3.8 Tightening Constraint 

Constraint 49 was introduced by Maravelias and Grossmann (2003) in order to tighten 

the bounds on the allowed number and duration of tasks in each unit over the time 

horizon of interest. The constraint contributes towards reducing the computational time 

required to solve a given problem, however it is not strictly necessary for finding 

feasible solutions. 

 ∑ ∑ [𝑎(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑏(𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)]

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽
𝐽𝑝 ∈ 𝑃

≤ 𝐻,   ∀ 𝑗 ∈ 𝐽 (49) 

3.3.9 Objective Function 

In the case of profit maximization, the parameter 𝑀 appearing throughout the model 

should be set to the value of the time horizon of interest, or simply replaced with the 

parameter 𝐻. The objective function is expressed in Constraint 50, which is the sum of 

the selling price of each product multiplied by its final stored quantity, for all product 

states. Other financial aspects can readily be included in Constraint 50. For example, 

the cost price of raw materials used can be subtracted. Operating costs for certain tasks 

can be included by multiplying them by the binary variable 𝑦 for task activation. 

 maximize ∑ 𝑆𝑃𝑟(𝑠) 𝑞𝑇(𝑠)

𝑠 ∈ 𝑆𝑃

 (50) 

In the case of makespan minimization, the parameter 𝑀  appearing throughout the 

model should be set to the maximum expected value of the time horizon, 𝐻 (which 

becomes a variable). The smaller the value of 𝑀, the tighter the formulation and hence 

the easier the problem is to solve, however it must be made large enough so that no 

potential solutions are excluded from the solve procedure. Additionally, with makespan 

minimization, a demand profile needs to be included which is to be met in the minimum 
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time. This is expressed in Constraint 51. The objective function is expressed in 

Constraint 52. 

 
𝑞𝑇(𝑠) ≥ 𝑑(𝑠),   ∀ 𝑠 ∈ 𝑆𝑃 

(51) 

 
minimize 𝐻 

(52) 
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Model Validation and Analysis 

4.1. Data Details and Sources 

The proposed model was applied to 22 instances between 10 examples in order to 

compare computational performance and determine whether the proposed model is 

indeed capable of increasing scope and reducing computational time requirements in 

batch optimization studies. The examples were taken from Vooradi and Shaik (2012), 

Vooradi and Shaik (2013) and Rakovitis et al. (2019). The models by Vooradi and Shaik 

(2012), Vooradi and Shaik (2013), Shaik and Vooradi (2017) and Rakovitis et al. 

(2019), hereafter referred to as V&S 2012, V&S 2013, S&V 2017 and R 2019 

respectively, were reproduced in order to accurately measure computational 

performance using the same hardware and software against the proposed model. The 

main motivating examples are Example 1, in which fractional extraction is 

demonstrated and Examples 7, 8 and 9, in which the limitations of the three-index 

variable technique for task splitting are demonstrated. 

Each example is introduced along with its STN in Sections 4.2.1 to 4.3.2. Data for the 

examples can be found in Table 4-1 for state information and Table 4-2 for task 

information. Note that a task is represented as an effective state and a unit i.e. 𝑠𝑖𝑛,𝑗 

symbolises a group of states, represented by s, entering a suitable unit, represented by 

j, for processing as per the recipe depicted in the relevant STN. Example 10 is 

subdivided into 10.1 – 10.8, 10.10 and 10.12 – 10.14 to reflect different demand 

scenarios which were taken from Vooradi and Shaik (2012). Example 4 is subdivided 

into Example 4.1 and 4.2 due to the different objective functions considered for them. 

Examples 1 – 4.1 and 5 – 9 are solved for maximum profit, while Example 4.2 and all 
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of Example 10 are solved for the minimum makespan. All examples include 

intermediate states which are subjected to the FIS, NIS and/or ZW policies. 

Each example was solved three times for each of the four models and each variation of 

∆𝑝  and number of event points considered, except for solutions which had not 

converged after the given maximum resource limit of 10 000 seconds. This was done 

in order to obtain an average CPU time and rule out the possibility of freezing, crashing 

or other random behaviour of the solver, even though the models are all deterministic.  

For V&S 2012, post-processing unit wait is allowed and their Constraints 12b and 23a 

were used for each example for the tighter bounds. In order to address task splitting, 

each V&S model was solved at one iteration beyond what was required to obtain what 

is known to be the globally optimal solution in order to verify it and provide a concrete 

stopping criterion for iteration. The solution times for each iteration were then summed 

to yield the total solution time required at a given number of event points. For the three-

index models, the number of event points were determined by their authors through 

nested iteration, successively increasing the number of splitting events and task events, 

until the solution no longer improved. The values published by the authors were used 

as a guideline in this work, however, one or two task events on either side of the optimal 

number were investigated. The number of splitting events was investigated from zero 

until one greater than their proposed optimal number. This investigation is not portrayed 

in the original works. 

The system used to solve the examples included an Intel® Core™ i7-8700 CPU at 3.20 

GHz and 16 GB RAM. The operating system was 64 bit Windows 10 and the solution 

software was GAMS v24.8.5. The default CPLEX solver was used with default settings 

except that the relative gap for termination was set to zero and node files were allowed 

to be stored on disk. 
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Results for the examples considered are given in Table 4-3 to Table 4-18. The best 

bound for unconverged solutions is included as an end note where applicable. Note that 

the numbers of binary and continuous variables as well as constraints differ slightly 

from those originally reported in the respective papers by Vooradi and Shaik. This is 

due to the omission of necessary details by the authors regarding the exact exclusion 

criteria. A perfect recreation was attempted; however, it was unsuccessful. Furthermore, 

the general exclusion criteria used in this work differs from their works in that STN-

specific pre-processing was not included. 
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Table 4-1. State Information for All Examples 

State Type Q0 

(m.u. 1) 

QU 

(m.u. 1) 

Cost/m.u.1  State Type Q0 

(m.u. 1) 

QU 

(m.u. 1) 

Cost/m.u.1 

Example 1  Example 6 

s1 SR ∞ ∞   s1 SR ∞ ∞  

s2 SNIS 0 0   s2 SFIS 0 6  

s3 SP 0 ∞ 10  s3 SFIS 0 4  

Example 2  s4 SP 0 ∞ 1 

s1 SR ∞ ∞   Example 7 

s2 SR ∞ ∞   s1 SR ∞ ∞  

s3 SR ∞ ∞   s2 SR ∞ ∞  

s4 SR ∞ ∞   s3 SR ∞ ∞  

s5 SR ∞ ∞   s4 SFIS 0 60  

s6 SFIS 0 10   s5 SFIS 0 60  

s7 SP 0 ∞ 1  s6 SP 0 ∞ 1 

s8 SP 0 ∞ 1  s7 SP 0 ∞ 1 

s9 SP 0 ∞ 1  Example 8 

s10 SP 0 ∞ 1  s1 SR ∞ ∞  

s11 SP 0 ∞ 1  s2 SFIS 0 10  

Example 3  s3 SFIS 0 15  

s1 SR ∞ ∞   s4 SFIS 0 10  

s2 SFIS 0 200   s5 SFIS 0 15  

s3 SFIS 0 250   s6 SP 0 ∞ 10 

s4 SP 0 ∞ 5  Example 9 

Example 4  s1 SR ∞ ∞  

s1 SR ∞ ∞   s2 SFIS 0 10  

s2 SR ∞ ∞   s3 SFIS 0 17.5  

s3 SR ∞ ∞   s4 SFIS 0 10  

s4 SR ∞ ∞   s5 SFIS 0 18  

s5 SFIS 0 100   s6 SP 0 ∞ 10 

s6 SFIS 0 150   Example 10 

s7 SP 0 ∞ 10  s0 SR ∞ ∞  

s8 SFIS 0 200   s1 SFIS 20 30  

s9 SFIS 0 200   s2 SFIS 20 30  

s10 SP 0 ∞ 10  s3 SFIS 0 15  

Example 5  s4 SFIS 20 30  

s1 SR ∞ ∞   s5 SZW 0 0  

s2 SR ∞ ∞   s6 SFIS 0 10  

s3 SFIS 0 100   s7 SFIS 0 10  

s4 SFIS 0 100   s8 SFIS 0 10  

s5 SFIS 0 300   s9 SZW 0 0  

s6 SFIS 50 150   s10 SZW 0 0  

s7 SFIS 50 150   s11 SFIS 0 10  

s8 SR ∞ ∞   s12 SZW 0 0  

s9 SFIS 0 150   s13 SFIS 0 10  

s10 SFIS 0 150   s14 SP 0 ∞ / 

s11 SR ∞ ∞   s15 SP 0 ∞ / 

s12 SP 0 ∞ 5  s16 SP 0 ∞ / 

s13 SP 0 ∞ 5  s17 SP 0 ∞ / 
1 m.u.: mass unit  s18 SP 0 ∞ / 

 

  



4-5 

 

Table 4-2. Task Information for All Examples 

Task Formula Unit a (h) b (h/m.u. 1) VL (m.u. 1) VU (m.u. 1) 

Example 1 

s1in1 𝑠1 → 𝑠2 1 4 0 0 10 

s2in2 𝑠2 → 𝑠3
 2 2 0 0 5 

Example 2 

s1in1 𝑠1 → 𝑠6 1 2 0 0 3 

s1in2 𝑠1 → 𝑠6 2 2 0 0 9 

s2in3 𝑠2 → 𝑠7 3 3 0 0 1 

s3in4 𝑠3 → 𝑠8 4 3 0 0 1 

s4in1 𝑠4 → 𝑠9 1 3 0 0 1 

s5in2 𝑠5 → 𝑠10 2 3 0 0 1 

s6in3 𝑠6 → 𝑠11 3 2 0 0 3 

s6in4 𝑠6 → 𝑠11 4 2 0 0 9 

Example 3 

s1in1 𝑠1 → 𝑠2 1 1.333 0.01333 0 100 

s1in2 𝑠1 → 𝑠2 2 1.333 0.01333 0 150 

s2in3 𝑠2 → 𝑠3 3 1 0.005 0 200 

s3in4 𝑠3 → 𝑠4 4 0.667 0.00445 0 150 

s3in5 𝑠3 → 𝑠4 5 0.667 0.00445 0 150 

Example 4 

s1in1 𝑠1 → 𝑠2 1 0.667 0.00667 0 100 

s2in2 𝑠2 + 𝑠3 → 𝑠6 2 1.334 0.02664 0 50 

s2in3 𝑠2 + 𝑠3 → 𝑠6 3 1.334 0.01665 0 80 

s5in2 𝑠5 + 𝑠6 → 𝑠7 + 𝑠8 2 1.334 0.02664 0 50 

s5in3 𝑠5 + 𝑠6 → 𝑠7 + 𝑠8 3 1.334 0.01665 0 80 

s4in2 𝑠4 + 𝑠8 → 𝑠9 2 0.667 0.01332 0 50 

s4in3 𝑠4 + 𝑠8 → 𝑠9 3 0.667 0.008325 0 80 

s9in4 𝑠9 → 𝑠8 + 𝑠10  4 1.3342 0.00666 0 200 

Example 5 

s1in1 𝑠1 → 𝑠3 1 0.667 0.00667 0 100 

s2in2 𝑠2 → 𝑠4 2 1.333 0.01333 0 100 

s2in3 𝑠2 → 𝑠4 3 1.333 0.00889 0 150 

s3in2 𝑠3 + 𝑠4 → 𝑠5 2 0.667 0.00667 0 100 

s3in3 𝑠3 + 𝑠4 → 𝑠5 3 0.667 0.00445 0 150 

s5in4 𝑠5 → 𝑠4 + 𝑠6 + 𝑠7 4 2 0.00667 0 300 

s6in1 𝑠6 + 𝑠8 → 𝑠9 1 1 0.01 0 100 

s7in5 𝑠7 + 𝑠10 + 𝑠11 → 𝑠12 5 1.333 0.00667 20 200 

s7in6 𝑠7 + 𝑠10 + 𝑠11 → 𝑠12 6 1.333 0.00667 20 200 

s9in2 𝑠9 → 𝑠10 + 𝑠13 2 1.333 0.0133 0 100 

s9in3 𝑠9 → 𝑠10 + 𝑠13 3 1.333 0.00889 0 150 

Example 6 

s1in1 𝑠1 → 𝑠2 1 1 0 0 10 

s2in2 𝑠2 → 𝑠3 2 3 0 0 4 

s2in3 𝑠2 → 𝑠3 3 1 0 0 2 

s3in4 𝑠3 → 𝑠4 4 2 0 0 10 
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Task Formula Unit a (h) b (h/m.u. 1) VL (m.u. 1) VU (m.u. 1) 

Example 7 

s1in1 𝑠1 + 𝑠2 + 𝑠3 → 𝑠4 1 1.5 0 0 150 

s4in2 𝑠4 → 𝑠5 2 4.5 0 0 60 

s4in3 𝑠4 → 𝑠5 3 1.5 0 0 30 

s4in4 𝑠4 → 𝑠5 4 1.5 0 0 30 

s5in5 𝑠5 → 𝑠6 5 3 0 0 150 

Example 8 

s1in1 𝑠1 → 𝑠2 + 𝑠3 1 1.666 0.03335 0 40 

s2in2 𝑠2 → 𝑠4 2 2.333 0.08335 0 20 

s3in3 𝑠3 → 𝑠5 3 0.667 0.0666 0 5 

s4in4 𝑠4 + 𝑠5 → 𝑠6 4 2.667 0.008325 0 40 

Example 9 

s1in1 𝑠1 → 𝑠2 + 𝑠3 1 1.666 0.03335 0 40 

s2in2 𝑠2 → 𝑠4 2 2.333 0.08335 0 20 

s3in3 𝑠3 → 𝑠5 3 0.333 0.0668 0 2.5 

s4in4 𝑠4 + 𝑠5 → 𝑠6 4 2.667 0.008325 0 40 

Example 10 

s0in1 𝑠0 → 𝑠1 1 2 0 3 10 

s1in2 𝑠1 → 𝑠2 + 𝑠3 2 4 0 5 20 

s2ain4 𝑠2 → 𝑠5 4 4 0 4 10 

s2bin4 𝑠2 → 𝑠6 4 4 0 4 10 

s2in5 𝑠2 → 𝑠9 5 6 0 4 10 

s3in3 𝑠3 → 𝑠1 + 𝑠4 3 2 0 4 10 

s4ain4 𝑠4 → 𝑠7 4 4 0 4 10 

s4bin4 𝑠4 → 𝑠8 4 4 0 4 10 

s4in5 𝑠4 → 𝑠10 5 6 0 4 10 

s5in8 𝑠5 + 𝑠11 → 𝑠16  8 4 0 4 12 

s6in6 𝑠6 → 𝑠11 6 4 0 3 7 

s6in7 𝑠6 → 𝑠11 7 5 0 3 7 

s7in6 𝑠7 → 𝑠12 6 5 0 3 7 

s7in7 𝑠7 → 𝑠12 7 6 0 3 7 

s8in6 𝑠8 → 𝑠13 6 6 0 3 7 

s8in7 𝑠8 → 𝑠13 7 6 0 3 7 

s9in8 𝑠9 → 𝑠14 8 4 0 4 12 

s9in9 𝑠9 → 𝑠14 9 6 0 4 12 

s10in8 𝑠10 → 𝑠15 8 4 0 4 12 

s10in9 𝑠10 → 𝑠15 9 6 0 4 12 

s12in8 𝑠12 → 𝑠17 8 6 0 4 12 

s12in9 𝑠12 → 𝑠17 9 6 0 4 12 

s13in8 𝑠13 → 𝑠18 8 6 0 4 12 

s13in9 𝑠13 → 𝑠18 9 6 0 4 12 
1 m.u.: mass unit 

4.2. Maximization of Profit 

Examples 1, 2, 3, 4.1, 5, 6, 7, 8 and 9 are all solved for maximum profit. Computation 

results for these examples may be found in Table 4-3 to Table 4-11 respectively. 
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4.2.1 Example 1 

Example 1 is adapted from Rakovitis et al. (2019) in order to demonstrate fractional 

extraction, which allows produced intermediates to be fractionally extracted from a 

processing unit at various event points. In this sequential batch process, the STN of 

which is presented in Figure 4-1, there are three states: one raw material, one 

intermediate and one product. Additionally, there are two tasks occurring in their own 

dedicated units. State 2 is subject to the NIS policy and therefore any state 2 produced 

by task 𝑠1𝑖𝑛1 must be directly transferred to and consumed by task 𝑠2𝑖𝑛2. Task 𝑠1𝑖𝑛1 can 

produce enough state 2 to supply two consecutive batches of task 𝑠2𝑖𝑛2 of maximum 

volume, however since there is no dedicated storage vessel for state 2, material must 

continue to be stored in the producing vessel in order to achieve this. As such, a partial 

amount of the state 2 produced at event 1 must be transferred to task 𝑠2𝑖𝑛2  for 

consumption at event 2 and the remaining quantity must be directly transferred for 

consumption at event 3. The proposed model as well as R 2019 allow this interaction 

whereas the other three models do not. This feature introduces flexibility into the model 

and can allow for better objective values to be obtained. 

Table 4-3 contains the results of Example 1. Using 2, 2 and 1 event(s) for V&S 2012, 

V&S 2013 and S&V 2017 respectively all three models achieved the suboptimal 

solution of 50 cost units (c.u.). Increasing the number of events did not improve the 

objective value, whereas the proposed model and R 2019 found the globally optimal 

solution of 100 c.u with three and two events respectively. The results, however, for 3, 

3 and 2 events are also displayed as these represent the minimum number of events 

which would be necessary for the models to find the globally optimal solution for the 

Figure 4-1. STN for Example 1 
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other models. This is because three consecutive tasks occur, and by modelling 

production – consumption tasks to occur at adjacent events, the number of events 

required would be three for V&S 2012 and V&S 2013. By modelling production – 

consumption tasks to occur at the same event, as per S&V 2017, two events would be 

required. The above results are obtained with the splitting parameter of ∆𝑃 = 0. The 

solution times for all four models are comparable at about 0.1 s. The proposed model 

requires fewer binary variables (7) than V&S 2013 (9), the fewest number of continuous 

variables (19 vs 26, 28, 20 and 33) and more constraints (34) than only S&V 2017 (30). 

R 2019 had the highest number of continuous variables and constraints (33 and 64 

respectively). The V&S, S&V and R models are also solved with the splitting parameter 

of ∆𝑃 = 1 in order to provide a stopping criterion and verify that the solution found is 

the best possible. In this case, the total combined solution times for the other models 

are effectively doubled, requiring a total of ~0.2 s each. The Gantt chart for the optimal 

solution of Example 1 is presented in Figure 1-2. 

Table 4-3. Computational Results for Example 1 

Model H Profit Avg. CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

V&S 2012 8.0 50.0 0.1 0.1 2 0 3 17 35 0 50.0 

V&S 2012 8.0 50.0 0.1 

0.2 

3 0 5 26 57 0 100.0 

V&S 2012 8.0 50.0 0.1 3 1 8 29 72 0 100.0 

V&S 2013 8.0 50.0 0.1 0.1 2 0 5 18 36 0 50.0 

V&S 2013 8.0 50.0 0.1 

0.2 

3 0 9 28 60 0 100.0 

V&S 2013 8.0 50.0 0.1 3 1 12 31 75 7 100.0 

S&V 2017 8.0 50.0 0.1 0.1 1 0 2 11 16 0 50.0 

S&V 2017 8.0 50.0 0.1 

0.2 

2 0 4 20 30 0 100.0 

S&V 2017 8.0 50.0 0.1 2 1 6 22 48 5 100.0 

R 2019 8.0 100.0 0.1 

0.2 

2 0 6 33 64 0 100.0 

R 2019 8.0 100.0 0.1 2 1 8 35 70 0 100.0 

This Work 8.0 100.0 0.1 0.1 3 / 7 19 34 0 100.0 
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4.2.2 Example 2 

Example 2 is Case Study 2 in Vooradi and Shaik (2013). Its STN is presented in Figure 

4-2. The case study is used in this work to benchmark the proposed model on its ability 

to correctly handle the FIS policy and to test that it does not allow overlapping of pre-

processing unit wait with actual task processing. The process involves five sequential 

sub-processes, each producing their own single product from their own raw material. 

However, the six different tasks that can occur share four units, resulting in limitations 

on equipment resources. The objective is to maximize profit over a 5 hour time horizon. 

The results in Table 4-4 demonstrate how all five models were able to correctly obtain 

the optimal solution of 15 c.u without the need for task splitting. The proposed model, 

V&S 2013, S&V 2017 and R 2019 require only two event points whereas V&S 2012 

requires three. All four models had comparable solution times (~0.1 s). The number of 

binary variables for the rigorous-conditional sequencing formulations of R 2019 were 

the highest (44), followed by the proposed work and V&S 2013 (28), however the 

proposed model required the fewest continuous variables (55) and the second fewest 

constraints (131) after S&V 2017 (128). R 2019 is again the largest model in these 

metrics. Again the other models were solved with ∆𝑃 = 1 in order to verify the optimal 

Figure 4-2. STN for Example 2 
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solution. As per Example 1, the total combined solution times are doubled, making the 

proposed formulation solve in the fastest total time. 

Table 4-4. Computational Results for Example 2 

Model H Profit Avg. CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

V&S 2012 5.0 15.0 0.1 

0.2 

3 0 24 111 253 48 22.2 

V&S 2012 5.0 15.0 0.1 3 1 40 127 333 136 23.0 

V&S 2013 5.0 15.0 0.1 

0.2 

2 0 28 84 167 0 16.0 

V&S 2013 5.0 15.0 0.1 2 1 36 92 207 0 16.0 

S&V 2017 5.0 15.0 0.1 

0.2 

2 0 16 76 128 15 22.6 

S&V 2017 5.0 15.0 0.1 2 1 24 84 184 22 22.7 

R 2019 5.0 15.0 0.1 

0.2 

2 0 44 163 308 29 24.0 

R 2019 5.0 15.0 0.1 2 1 52 171 332 103 24.0 

This Work 5.0 15.0 0.1 0.1 2 / 28 55 131 0 16.0 

 

4.2.3 Example 3 

Example 3 is taken from Vooradi and Shaik (2012). The STN for the example is shown 

in Figure 4-3. The process is sequential with three different tasks occurring in five units 

to produce a single product from a single raw material. The objective is to maximize 

profit over a 16 hour time horizon. 

 

 

In Table 4-5, it is shown that all five models obtain the optimal objective of 5038.1 c.u. 

without any need for task splitting. The proposed model is the second slowest with a 

CPU time of 41.6 s at nine events, being ~12 seconds faster than the slowest model of 

S&V 2017, which also required nine events. The proposed model solved ~25 seconds 

slower than the fastest model, V&S 2012, which required 11 events. Compared to its 

rigorous conditional sequencing counterparts, the proposed model required the same 

number of binary variables (141) as V&S 2013, one more than R 2019, but fewer 

continuous variables (234 vs 237 and 351) and constraints (646 vs 710 and 1012). V&S 

2012 required 55 binary variables, 211 continuous variables and 627 constraints, 

Figure 4-3. STN for Example 3 
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whereas for S&V 2017 these values were 45, 173 and 342 respectively. In verifying the 

optimality of the results with a splitting parameter of ∆𝑃 = 1, a drastic increase in 

solution time was observed. V&S 2012 required a total time of over 20 minutes, V&S 

2013 required over six minutes, S&V 2017 required almost two hours and R 2019 

required eight and a half minutes in order to solve. After this verification, the proposed 

model performed considerably faster than any of the V&S models while obtaining the 

globally optimal solution without the need for any iteration beyond the number of event 

points.  

Table 4-5. Computational Results for Example 3 

Model H Profit Avg. CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

V&S 2012 16.0 5038.1 16.3 

1324.9 

11 0 55 211 627 80172 6236.0 

V&S 2012 16.0 5038.1 1308.6 11 1 105 261 877 5293975 6601.7 

V&S 2013 16.0 5038.1 33.1 

376.3 

9 0 141 237 710 134361 6601.7 

V&S 2013 16.0 5038.1 343.2 9 1 181 277 910 1122780 6601.7 

S&V 2017 16.0 5038.1 53.8 

6989.4 

9 0 45 173 342 233343 6601.7 

S&V 2017 16.0 5038.1 6935.5 9 1 85 213 632 11693039 6601.7 

R 2019 16.0 5038.1 30.6 

516.8 

7 0 140 351 1012 138405 6601.7 

R 2019 16.0 5038.1 486.2 7 1 170 551 1102 2061760 6601.7 

This Work 16.0 5038.1 41.6 41.6 9 / 141 234 646 175992 6601.7 

 

4.2.4 Example 4.1 

Example 4 has been extensively researched in literature by multiple authors. It features 

a complex multipurpose batch process with batch splitting and mixing as well as 

multiple tasks which can occur in a single processing unit and tasks which can be 

performed in multiple processing units. The STN is shown in Figure 4-4. The process 

involves nine different states, five different tasks and four units. In this particular 

representation, states 3 and 4, which are the same state, are differentiated in order to 

facilitate task differentiation. Three reaction tasks compete for two reactors, resulting 

in the requirement to efficiently manage limited equipment resources. The problem also 

includes a recycle loop involving states 8 and 9. Example 4.1 is solved for maximum 
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profit over a 16 hour time horizon. Example 4.2 is solved for the minimum makespan 

in Section 4.3.1. 

For Example 4.1, as shown in Table 4-6, all the models found the optimal objective of 

3738.4 c.u. All the models except S&V 2017 required eight event points and no task 

splitting. S&V 2017 required one more event than the other models as well as a splitting 

parameter of ∆𝑃 = 1 in order to obtain the optimal objective value, with a total solution 

time of over 25 minutes. This difficulty in the solution is attributed to the modelling of 

production – consumption tasks at the same in combination with unconditional 

sequencing. Since many production – consumption tasks can occur in the same unit, 

produced material must enter storage at the event it is produced before it can be 

consumed at the next event in the unit that produced it. This can cause conflict with the 

capacity of the storage unit and can impede the solution procedure or even exclude 

(potentially optimal) solutions in certain problems, such as in Example 5 in Section 

4.2.5. The proposed model, requiring 21.5 s to solve, outperformed V&S 2013 by ~5 s 

but was slower than V&S 2012 and R 2019 by ~17 s and ~2 s respectively. The 

proposed model required the same number of binary variables as V&S 2013 (274) 

whereas V&S 2012 required only 64. S&V 2017 and R 2019 required 136 and 392 at 

Figure 4-4. STN for Example 4 
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the minimum requirements for the optimal solution. The proposed model required more 

continuous variables (466) and fewer constraints (1440) than V&S 2013 (464 and 1473) 

whereas V&S 2012 required about half of these numbers. The size of the R 2019 model 

was around double the proposed model. After verifying the optimality with ∆𝑃 = 1, 

V&S 2012 still outperformed the proposed model by ~5 seconds whereas V&S 2013 

took three times as long as the proposed model. S&V 2017 was not verified at ∆𝑃 = 2 

due to the lengthy solution time at ∆𝑃 = 1. R 2019 required just over a minute in total. 

Table 4-6. Computational Results for Example 4.1 

Model H Profit Avg. CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

V&S 2012 16.0 3738.4 4.7 

16.9 

8 0 64 268 875 12354 4291.7 

V&S 2012 16.0 3738.4 12.1 8 1 120 324 1155 29675 4291.7 

V&S 2013 16.0 3738.4 26.3 

64.4 

8 0 274 464 1473 50103 4291.7 

V&S 2013 16.0 3738.4 38.1 8 1 330 520 1753 60677 4291.7 

S&V 2017 16.0 3724.4 11.2 

53.5 

8 0 64 268 687 19207 4316.9 

S&V 2017 16.0 3724.4 42.3 8 1 120 324 1047 70500 4316.9 

S&V 2017 16.0 3724.4 77.6 

1538.9 

9 0 72 301 776 160515 4450.7 

S&V 2017 16.0 3738.4 1461.3 9 1 136 365 1186 1818306 4450.7 

R 2019 16.0 3738.4 19.4 

67.8 

8 0 392 942 2563 29421 4291.7 

R 2019 16.0 3738.4 48.4 8 1 448 998 2731 51650 4291.7 

This Work 16.0 3738.4 21.5 21.5 8 / 274 466 1440 40988 4291.7 

 

4.2.5 Example 5 

Example 5 is a larger version of Example 4 with much of the same features. The STN 

is displayed in Figure 4-5. It involves 13 states, four of which are raw materials, seven 

are intermediates and two are products. States 4 and 5 are involved in a recycle loop. 

There are seven different tasks competing for six units. This example is solved for 

maximum profit over a 16 hour time horizon. 
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Examples 5 – 9 display some of the benefits of the proposed model, due to the 

requirement of task splitting. Table 4-7 contains the results for Example 5 in which 

V&S 2012 required a splitting parameter of ∆𝑃 = 1  in order to obtain the optimal 

solution of 4262.8 c.u. For this example, S&V 2017 and R 2019 were unable to find the 

optimal solution for up to 11 and 9 events respectively in a resource limit of 10 000 s. 

This is due to a major drawback in modelling production – consumption tasks to occur 

at the same event as discussed in Section 3.2. With 10 events and ∆𝑃 = 1 as well as 

with 11 events and ∆𝑃 = 0, the solver was unable to converge for S&V 2017. As 

discussed in R 2019, the R 2019 model is able to obtain the optimal solution when 

considering all tasks as recycling tasks, however, this is not concomitant with the 

authors’ definition of the term and it is therefore not possible to know where this can 

be applied on an ad hoc basis. For the minimum requirements to determine the optimal 

solution, as per Example 4.1, the proposed model required the same number of binary 

variables as V&S 2013 (569), but more continuous variables (826 vs 807) and fewer 

constraints (2774 vs 2843). The model size was significantly smaller for V&S 2012 

(231, 621 and 2329), however this did not help in speedy convergence. The proposed 

Figure 4-5. STN for Example 5 
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model performed the fastest for any single run by a minimum of ~11 s, however when 

compounded times for iterations of ∆𝑃 were accounted for in providing a stopping 

criterion for iteration and verifying optimal solutions, the proposed model was 

significantly faster than the V&S models by a minimum of ~223 s, despite being a larger 

model in many respects. 

Table 4-7. Computational Results for Example 5 

Model H Profit Avg. CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

V&S 2012 16.0 4245.8 113.8 

 

3793.0 

11 0 121 511 1779 112929 5644.6 

V&S 2012 16.0 4262.8 689.8 11 1 231 621 2329 457946 5644.6 

V&S 2012 16.0 4262.8 2989.5 11 2 330 720 2725 1596394 5644.6 

V&S 2013 16.0 4262.8 120.4 

325.7 

10 0 569 807 2843 134965 5225.9 

V&S 2013 16.0 4262.8 205.3 10 1 668 906 3338 193584 5225.9 

S&V 2017 16.0 4026.3 1258.5 

4949.1 

9 0 99 419 1153 1248956 5640.6 

S&V 2017 16.0 4193.6 3690.6 9 1 187 507 1719 1639888 5640.6 

S&V 2017 16.0 4205.0 2224.5 

/ 

10 0 110 465 1285 1230625 5654.1 

S&V 2017 16.0 4225.7 10000.01 10 1 209 564 1920 3844937 5654.1 

S&V 2017 16.0 4227.3 10000.02 / 11 0 121 511 1417 4557616 5654.1 

R 2019 16.0 4241.4 10000.03  9 0 626 1429 4335 1523114 5640.6 

R 2019 16.0 4241.4 10000.04 / 9 1 714 1517 4599 1098569 5640.6 

This Work 16.0 4262.8 102.5 102.5 10 / 569 826 2774 106616 5225.9 

Best bound: 14242.8, 24561.8, 34249.0, 44278.8 

4.2.6 Example 6 

Example 6 is a simple sequential process involving four states: one raw material, two 

intermediates and one product as shown in the STN in Figure 4-6. There are three 

different tasks occurring in four units. The objective is to maximize profit over a 6 hour 

time horizon. 

In Table 4-8, it is shown that all five models obtained the optimal solution of 10 c.u. 

with V&S 2012 and S&V 2017 both requiring ∆𝑃 = 1. The proposed model performed 

the fastest over any single run with five events, tied with S&V 2017 with 3 events and 

∆𝑃 = 0, however the latter resulted in a suboptimal solution of 8 c.u. At the minimum 

Figure 4-6. STN for Example 6 
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requirements to obtain the optimal solution, the proposed model had the same number 

of binary variables as V&S 2013 (68) and more than R 2019 (57), however both 

continuous variables (109 vs 114 and 130) and constraints (310 vs 343 and 377) were 

fewer. V&S 2012 required fewer binary (36) and continuous (98) variables, however it 

required more constraints (319) than the proposed model. S&V 2017 was the smallest 

model at 20 binary and 58 continuous variables and 165 constraints. When comparing 

the total CPU time including all necessary iterations, the proposed model required less 

than half the time of the other models. Nonetheless, all five models performed 

comparably with solution times under a third of a second. 

Table 4-8. Computational Results for Example 6 

Model H Profit Avg. CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

V&S 2012 6.0 8.0 0.1 

 

0.3 

5 0 20 82 239 13 12.6 

V&S 2012 6.0 10.0 0.1 5 1 36 98 319 5 14.0 

V&S 2012 6.0 10.0 0.1 5 2 48 110 367 14 14.0 

V&S 2013 6.0 10.0 0.1 

0.2 

5 0 68 114 343 17 14.0 

V&S 2013 6.0 10.0 0.1 5 1 84 130 423 45 14.0 

S&V 2017 6.0 8.0 0.1 

0.3 

3 0 12 50 101 39 14.0 

S&V 2017 6.0 10.0 0.1 3 1 20 58 165 43 14.0 

S&V 2017 6.0 10.0 0.1 3 2 24 62 181 5 14.0 

R 2019 6.0 10.0 0.1  3 0 57 130 377 18 14.0 

R 2019 6.0 10.0 0.1 0.3 3 1 65 138 401 80 14.0 

This Work 6.0 10.0 0.1 0.1 5 / 68 109 310 9 14.0 

 

4.2.7 Example 7 

Example 7 is also a simple sequential process involving three raw materials, two 

intermediates and two products as shown in the STN in Figure 4-7. There are three 

different tasks occurring in five units. The objective is to maximize profit over a 9 hour 

time horizon. 
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Table 4-9 shows that again all five models obtained the optimal objective value of 210 

c.u. V&S 2013 required ∆𝑃 = 1 with five events while V&S 2012 and S&V 2017 both 

required ∆𝑃 = 2 with five and three events respectively. Note that for both V&S 2012 

and S&V 2017, the same suboptimal objective value of 180 c.u. is obtained for two 

consecutive iterations i.e. for ∆𝑃 = 0  and ∆𝑃 = 1 . This demonstrates a major 

drawback of formulations relying on the parameter ∆𝑃 since there is always uncertainty 

regarding the globally optimal solution and the sufficiency of a stopping criterion for 

the iterations on the parameter. If the stopping criterion for this example had been 

obtaining the same objective value for two consecutive iterations, solution would have 

terminated with the suboptimal objective of 180 c.u for these two models. All the 

models had comparable solution times of ~0.1 s except R 2019 which required double 

this. At the minimum requirements for the optimal solution, the proposed model 

required fewer binary variables (97), continuous variables (145), constraints (420) and 

nodes (50) than V&S 2013, which required 117, 182, 567 and 91 respectively. S&V 

2017 required far fewer binary variables (30), continuous variables (85) and constraints 

(239), however it required more nodes (64). V&S 2012 required fewer binary variables 

(60) but more continuous variables (149) and constraints (478). The number of required 

nodes (31) was also lower. R 2019 required fewer binary variables (81) but was larger 

in the other metrics, as has been the trend in the other examples. V&S 2012 was solved 

at ∆𝑃 = 3, V&S 2013 at ∆𝑃 = 2 and R 2019 at ∆𝑃 = 1 in order to verify the optimal 

Figure 4-7. STN for Example 7 
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solution and provide a stopping criterion for iteration. S&V 2017 was not verified at 

∆𝑃 = 3 since it required a total of three events. When the total time for the iterations 

was considered, the proposed model required less than a third of the time of the other 

models which came to 0.4, 0.5, 0.3 and 0.5 s for V&S 2012, V&S 2013, S&V 2017 and 

R 2019 respectively, although the difference is negligible due to the order of magnitude 

of the solution times. 

Table 4-9. Computational Results for Example 7 

Model H Profit Avg. CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

V&S 2012 9.0 180.0 0.1 

 

 

0.4 

5 0 25 114 318 10 266.7 

V&S 2012 9.0 180.0 0.1 5 1 45 134 418 27 300.0 

V&S 2012 9.0 210.0 0.1 5 2 60 149 478 31 300.0 

V&S 2012 9.0 210.0 0.1 5 3 70 159 518 23 300.0 

V&S 2013 9.0 180.0 0.1 

 

0.5 

5 0 97 162 467 75 300.0 

V&S 2013 9.0 210.0 0.1 5 1 117 182 567 91 300.0 

V&S 2013 9.0 210.0 0.2 5 2 132 197 627 74 300.0 

S&V 2017 9.0 180.0 0.1 

0.3 

3 0 15 70 139 15 300.0 

S&V 2017 9.0 180.0 0.1 3 1 25 80 219 71 300.0 

S&V 2017 9.0 210.0 0.1 3 2 30 85 239 64 300.0 

R 2019 9.0 210.0 0.2  3 0 81 220 550 115 300.0 

R 2019 9.0 210.0 0.2 0.5 3 1 91 230 580 112 300.0 

This Work 9.0 210.0 0.1 0.1 5 / 97 145 420 50 300.0 

 

4.2.8 Examples 8 and 9 

Examples 8 and 9 are respectively Examples 7 and 8 in Vooradi and Shaik (2012). 

These examples assertively demonstrate the necessity of allowing tasks to split over 

multiple events. They also reiterate the drawbacks of facilitating task splitting via three-

index variables using the ∆𝑃  parameter i.e. the iteration stopping criterion and 

compounded solution time. The STN for Examples 8 and 9 is presented in Figure 4-8. 

The process involves one raw material, four intermediates and one product. Four 

different tasks occur in dedicated units. The objective is maximization of profit over a 

10 hour time horizon. Note that the data given in Table 4-1 and Table 4-2 differ for the 

two examples. 
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Table 4-10 contains the computational results for Example 8. In this example, V&S 

2012, V&S 2013 and S&V 2017 require a task to split over three events in order to 

obtain the optimal solution of 400 c.u, while the requirement for R 2019 is four. Note 

that, similarly to Example 7, all four models obtain the same suboptimal solution, of 

200.1 c.u. in this case, for two consecutive iterations i.e. ∆𝑃 = 0 and ∆𝑃 = 1. If the 

stopping criterion for iteration had been two consecutive solutions of the same value, 

the solution procedure would have terminated at ∆𝑃 = 1 , thereby excluding the 

globally optimal solution. At the minimum requirements for the optimal solution, the 

proposed model had fewer binary variables (84), continuous variables (151) and 

constraints (446) than V&S 2013 and R 2019, which had 132, 198 and 697, and 135, 

306 and 931 respectively. This is due to the large value of ∆𝑃 required by those models. 

The proposed model and S&V 2013 required six events, while R 2019 required five. 

S&V 2017 is altogether a smaller model, requiring only four events. V&S 2012, while 

requiring fewer binary variables (72), required more continuous variables (158) and 

constraints (525) at six events. Nonetheless, the proposed model required up to ~1 s less 

than the other models. Furthermore, when the compounded solution times were taken 

into account, the other models’ CPU time requirements ranged from eight to 478 times 

that of the proposed model. 

 

Figure 4-8. STN for Examples 8 and 9 
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Table 4-10. Computational Results for Example 8 

Model H Profit Avg. CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

V&S 2012 10.0 200.1 0.2 

  

  

  

0.8 

6 0 24 110 313 141 400.0 

V&S 2012 10.0 200.1 0.3 6 1 44 130 413 1453 400.0 

V&S 2012 10.0 300.0 0.2 6 2 60 146 477 386 400.0 

V&S 2012 10.0 400.0 0.1 6 3 72 158 525 0 400.0 

V&S 2012 10.0 400.0 0.1 6 4 80 166 557 34 400.0 

V&S 2013 10.0 200.1 0.4 

  

  

  

2.4 

6 0 84 150 485 1207 400.0 

V&S 2013 10.0 200.1 1.1 6 1 104 170 585 3962 400.0 

V&S 2013 10.0 300.0 0.6 6 2 120 186 649 1341 400.0 

V&S 2013 10.0 400.0 0.1 6 3 132 198 697 0 400.0 

V&S 2013 10.0 400.0 0.2 6 4 140 206 729 52 400.0 

S&V 2017 10.0 200.1 0.2 

  

  

  

1.0 

4 0 16 74 149 295 400.0 

S&V 2017 10.0 200.1 0.3 4 1 28 86 241 1598 400.0 

S&V 2017 10.0 300.0 0.2 4 2 36 94 273 315 400.0 

S&V 2017 10.0 400.0 0.1 4 3 40 98 289 72 400.0 

S&V 2017 10.0 400.0 0.1 4 4 40 98 289 72 400.0 

R 2019 10.0 200.1 3.0 

47.8 

5 0 95 266 811 6010 400.0 

R 2019 10.0 200.1 27.2 5 1 111 282 859 69732 400.0 

R 2019 10.0 300.0 13.3 5 2 123 294 895 21188 400.0 

R 2019 10.0 350.0 3.3 5 3 131 302 919 4977 400.0 

R 2019 10.0 400.0 1.0 5 4 135 306 931 1492 400.0 

This Work 10.0 400.0 0.1 0.1 6 / 84 151 446 0 400.0 

 

For Example 9, the results are shown in Table 4-11. All of the above observations are 

present on a larger scale as the optimal solution requires a task to split over seven events 

to obtain the optimal solution of 400 c.u. R 2019 required eight splitting events. Note 

that V&S 2012 obtains the same suboptimal solution of 200.133 c.u. for two 

consecutive iterations, at ∆𝑃 = 2 and ∆𝑃 = 3. V&S 2013 obtains this solution for four 

consecutive iterations, from ∆𝑃 = 0 to ∆𝑃 = 3 and S&V 2017 returns this solution for 

three consecutive iterations, from ∆𝑃 = 1  to ∆𝑃 = 3 . R 2019 also obtained this 

solution for four consecutive iterations, from ∆𝑃 = 0 to ∆𝑃 = 3. This would surely 

meet any reasonable stopping criterion and prevent the determination of the optimal 

solution. V&S 2012, V&S 2013 and the proposed model required 10 events, while S&V 

2017 and R 2019 required eight and nine events respectively to find the optimal 

solution. At the minimum requirements for this solution, due to the large number of 

splitting events, S&V 2017 is only marginally smaller than the proposed model with 

144 binary variables and 258 continuous variables, compared to 148 and 263 



4-21 

 

respectively. The proposed model required fewer constraints (794 vs 841) and nodes 

(62 vs 333). V&S 2012, V&S 2013 and R 2019 were all larger models on all accounts. 

The proposed model had the shortest single run solution time of ~0.2 s along with V&S 

2012 at ∆𝑃 = 7. The other solution times range from 0.3 to 6852.7 s. R 2019 was unable 

to converge within 10 000 s for ∆𝑃 = 2 and ∆𝑃 = 3. When compounded iteration times 

are accounted for, V&S 2012, V&S 2013 and S&V 2017 required totals of 264.0, 

2663.6 and 432.7 seconds to solve, respectively. These solution times are three to four 

orders of magnitude higher than that of the proposed model. Note that S&V 2017 was 

not solved at ∆P = 8 since it required a total of eight events. Similarly, R 2019 was not 

solved at ∆P = 9 since it required a total of nine events. The Gantt Chart displaying the 

optimal schedule for Example 9 can be found in Figure 4-9. The chart displays the batch 

sizes of each task as well as the event at which the task occurs. It can be seen that Task 

𝑠1𝑖𝑛1 produces 20 units of state 2 at event 1 which is more than the allowed storage. 

Therefore, unit j1 continues to hold the material until event 9 where it can be discharged 

to unit j2 for consumption, imitating task splitting. However, unit j1 also discharges 

produced state 3 to unit j3 at event 2. 

  

Figure 4-9. Optimal Schedule for Example 9 (Proposed Model) 

j4 

j3 

j2 

j1 
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Table 4-11. Computational Results for Example 9 

Model H Profit Avg. 

CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

V&S 2012 10.0 200.1 1.5 

264.0 

10 0 40 182 529 5881 400.0 

V&S 2012 10.0 200.1 43.4 10 1 76 218 709 183662 400.0 

V&S 2012 10.0 200.1 99.0 10 2 108 250 837 278379 400.0 

V&S 2012 10.0 200.1 72.7 10 3 136 278 949 149327 400.0 

V&S 2012 10.0 250.0 22.5 10 4 160 302 1045 39344 400.0 

V&S 2012 10.0 300.0 21.4 10 5 180 322 1125 31683 400.0 

V&S 2012 10.0 350.0 2.9 10 6 196 338 1189 2198 400.0 

V&S 2012 10.0 400.0 0.2 10 7 208 350 1237 91 400.0 

V&S 2012 10.0 400.0 0.3 10 8 216 358 1269 274 400.0 

V&S 2013 10.0 200.1 9.8 

2663.6 

10 0 148 254 845 24191 400.0 

V&S 2013 10.0 200.1 166.2 10 1 184 290 1025 345637 400.0 

V&S 2013 10.0 200.1 417.1 10 2 216 322 1153 964619 400.0 

V&S 2013 10.0 200.1 1495.1 10 3 244 350 1265 2572875 400.0 

V&S 2013 10.0 250.0 449.1 10 4 268 374 1361 524677 400.0 

V&S 2013 10.0 300.0 111.1 10 5 288 394 1441 101603 400.0 

V&S 2013 10.0 350.0 12.0 10 6 304 410 1505 14036 400.0 

V&S 2013 10.0 400.0 1.6 10 7 316 422 1553 1563 400.0 

V&S 2013 10.0 400.0 1.7 10 8 324 430 1585 1533 400.0 

S&V 2017 10.0 200.1 2.6 

432.7 

8 0 32 146 301 10972 400.0 

S&V 2017 10.0 200.1 65.4 8 1 60 174 505 137305 400.0 

S&V 2017 10.0 200.1 125.9 8 2 84 198 601 206271 400.0 

S&V 2017 10.0 200.1 153.9 8 3 104 218 681 276276 400.0 

S&V 2017 10.0 250.0 45.8 8 4 120 234 745 75469 400.0 

S&V 2017 10.0 300.0 35.8 8 5 132 246 793 35826 400.0 

S&V 2017 10.0 350.0 3.0 8 6 140 254 825 2911 400.0 

S&V 2017 10.0 400.0 0.3 8 7 144 258 841 333 400.0 

R 2019 10.0 200.1 120.0 

/ 

9 0 171 478 1491 241563 450.0 

R 2019 10.0 200.1 4558.1 9 1 203 510 1587 5815447 450.0 

R 2019 10.0 200.1 10000.01 9 2 231 538 1671 8524578 450.0 

R 2019 10.0 200.1 10000.02 9 3 255 562 1743 4335637 450.0 

R 2019 10.0 250.0 6852.7 9 4 275 582 1803 2847939 450.0 

R 2019 10.0 300.0 6369.3 9 5 291 598 1851 2450455 450.0 

R 2019 10.0 350.0 2774.0 9 6 303 610 1887 999775 450.0 

R 2019 10.0 380.0 60.6 9 7 311 618 1911 41426 450.0 

R 2019 10.0 400.0 4.1 9 8 315 622 1923 2572 450.0 

This Work 10.0 400.0 0.2 0.2 10 / 148 263 794 62 400.0 

Best bound: 1200.1, 2300.0 

4.3. Minimization of Makespan 

Table 4-12 to Table 4-18 contain the computational results for Examples 4.2, 10.1 – 

10.8, 10.10 and 10.12 – 10.14, which are solved for minimum makespan. 

4.3.1 Example 4.2 

Example 4.2 uses the same data as Example 4.1 except that it is not concerned with the 

selling price of products. The big M value used in all necessary constraints is 100. The 

demand profile is 500 units for state 7 and 400 units for state 10. 
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Table 4-12 contains the results for Example 4.2. Note that none of the V&S models or 

R 2019 were able to converge by the resource limit of 10 000 s on the globally optimal 

solution for any value of ∆𝑃 considered. This brings into question which value of ∆𝑃 

should be considered, since in practice the models would not be run two or three times 

for the duration of the given resource limit. The proposed model was able to converge 

on the globally optimal solution of 47.683 hours after just 425.1 seconds (~7 minutes), 

despite being the largest model for most of the runs, after R 2019, which is generally 

the largest model. The optimal schedule as determined by the proposed model is shown 

in Figure 4-10. The proposed model has the same number of binary variables (768) as 

V&S 2013 at ∆𝑃 = 0, more continuous variables (1298 vs 1257) and fewer constraints 

(4093 vs 4113) however all of these values were lower than V&S 2013 at ∆𝑃 = 1. On 

the other hand, they were all higher than those of V&S 2012 and S&V 2017 for any 

value of ∆𝑃. The proposed model also had the worst relaxed solution at 46.5. S&V 2017 

had the worst solutions of 48.8 at ∆𝑃 = 0 and 48.9 at ∆𝑃 = 1. In fact, the solution 

deteriorated when increasing the number of splitting events to one. These higher values 

are attributed to the sequencing of production – consumption tasks at the same event 

without the use of conditional sequencing as compensation. V&S 2012 and V&S 2013 

both displayed improving objective values at increasing values of ∆𝑃 and V&S 2012 

actually found the optimal solution at ∆𝑃 = 2, although it did not converge on it. 

Nevertheless, it is not clear whether this solution would be obtained in practice due to 

the length of time required and the uncertainty regarding the optimal number of splitting 

events. Note that for S&V 2017 and R 2019, no solution was possible at fewer events, 

as the solver reported the demand profile to be infeasible at 20 events with ∆𝑃 = 0 

through ∆𝑃 = 2. 
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Table 4-12. Computational Results for Example 4.2 

Model H Average CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

V&S 2012 47.7 10000.01 

 / 

21 0 168 697 2371 1419197 47.5 

V&S 2012 47.7 10000.02 21 1 328 857 3171 1120017 47.4 

V&S 2012 47.7 10000.03 21 2 480 1009 3779 2118671 47.4 

V&S 2013 47.7 10000.04 

 / 

21 0 768 1257 4113 572195 47.5 

V&S 2013 47.7 10000.05 21 1 928 1417 4913 1723942 47.4 

S&V 2017 48.8 10000.06 

 / 

21 0 168 697 1845 1351464 47.5 

S&V 2017 48.9 10000.07 21 1 328 857 2855 1285509 47.4 

R 2019 47.7 10000.08 

/ 

21 0 1042 2476 6945 922920 47.3 

R 2019 47.7 10000.09 21 1 1202 2636 7425 673494 47.3 

This Work 47.7 425.1 425.1 21 /  768 1298 4093 101150 46.5 

Best bound: 147.5, 247.6, 347.4, 447.7, 547.4, 647.5, 747.4, 847.5, 947.4 

Relative Gap: 10.45%, 20.19%, 30.64%, 40.01%, 50.65%, 62.68%, 73.20%, 80.45%, 90.63% 
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4.3.2 Example 10 - Westenberger-Kallrath Problem 

This example is a popular benchmark problem for scheduling formulations which was 

publicized by Kallrath (2002). The data for the problem is largely the same as that 

initially published, except that the task duration data is scaled for each task while 

maintaining the original ratios. Therefore, the data is more accurately as per that in 

Vooradi and Shaik (2012). The large process, for which the STN is depicted in Figure 

4-11, involves 19 states: one raw material, 13 intermediates and five products. States 1 

and 3 are involved in a recycle loop. There are 17 different tasks occurring in nine 

processing units with multiple tasks competing for some of the equipment resources. 

Notably, the problem involves four states which must adhere to the ZW policy: states 

5, 9, 10 and 12. Note that results for R 2019 are not included for this examples as the 

model does not include handling of states which must adhere to the ZW policy. The 

problem is solved for the minimum makespan required to satisfy 12 different demand 

scenarios appearing in Vooradi and Shaik (2012). The demand patterns are given in 

Table 4-13 below, where patterns 9, 11 and 0 are excluded due to their excessive 

computational complexity. Tasks which were not required for a given demand profile 

were rigorously excluded along with their associated binary and continuous variables 

as well as any appropriate constraints. The big M value was taken as 100 for all 

scenarios. Note that for V&S 2013, modifications are required in many constraints 

relating to rigorous conditional sequencing in order to allow for variable production 

ratios in task 𝑠1𝑖𝑛2. The same substitutions are made for each of these cases as in V&S 

2012, whereby the quantity of produced states 2 and 3 are expressed through a material 

balance around storage and excess quantities of these states. 
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Table 4-13. Demand Scenarios for Example 10 

Demand Scenario Product 14 Product 15 Product 16 Product 17 Product 18 

1 20 20 20 0 0 

2 20 20 0 20 0 

3 20 20 0 0 20 

4 20 0 20 20 0 

5 20 0 20 0 20 

6 20 0 0 20 20 

7 0 20 20 20 0 

8 0 20 20 0 20 

10 0 0 20 20 20 

12 30 20 20 10 10 

13 10 20 30 20 10 

14 18 18 18 18 18 

 

 

Figure 4-11. STN for Example 10 
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Table 4-14 and Table 4-15 contain the results for Examples 10.1 – 10.3 and 10.4 to 10.5 

respectively, all of which are smaller problems requiring no task splitting. For Example 

10.1, the proposed model is the largest in all aspects except for having fewer binary 

variables (214) than V&S 2013 at ∆𝑃 = 1 (253) and fewer constraints (1061) than V&S 

2013 at both ∆𝑃 = 0 (1108) and ∆𝑃 = 1 (1360). The proposed model solves in 0.2 s, 

which is slower than only V&S 2012 at ∆𝑃 = 0 (0.1 s). However, when compounded 

time is considered for V&S models, the proposed model required about half the time of 

the other models. For Example 10.2, the proposed model is again the largest except for 

having fewer binary variables (238) than V&S 2013 at ∆𝑃 = 1  (282) and fewer 

constraints (1171) than V&S 2012 at ∆𝑃 = 1 (1238) and V&S 2013 at ∆𝑃 = 0 (1216) 

and ∆𝑃 = 1 (1536). The proposed model is slower (0.4 s) than only V&S 2012 at ∆𝑃 =

0 (0.3 s). When total solution times are considered, the proposed model solved in half, 

a third and a tenth of the time required by V&S 2012, V&S 2013 and S&V 2017 

respectively. For Example 10.3, the proposed model was the largest except for having 

fewer binary (280) and continuous (451) variables than V&S 2013 at ∆𝑃 = 1 (336 and 

508) and fewer constraints (1374) than V&S 2013 at ∆𝑃 = 0  (1435) and ∆𝑃 = 1 

(1765). On any single run, the proposed model solved slower than V&S 2013 and S&V 

2017 at ∆𝑃 = 0 (0.2 s), however against the total compounded solution times, the 

proposed model required half the time of V&S 2012 and V&S 2013 and an ninth of the 

time for S&V 2017. 
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Table 4-14. Computational Results for Examples 10.1 to 10.3 

Model H Average CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

Example 10.1 

V&S 2012 28.0 0.1 

0.4 

5 0 62 253 777 17 24.0 

V&S 2012 28.0 0.3 5 1 110 301 1029 25 24.0 

V&S 2013 28.0 0.2 

0.4 

5 0 205 355 1108 31 24.0 

V&S 2013 28.0 0.2 5 1 253 403 1360 74 24.0 

S&V 2017 28.0 0.2 

0.6 

4 0 56 222 534 123 24.0 

S&V 2017 28.0 0.3 4 1 98 264 820 222 24.0 

This Work 28.0 0.2 0.2 5 /  214 490 1061 56 24.0 

Example 10.2 

V&S 2012 28.0 0.3 

0.8 

6 0 74 296 918 122 24.0 

V&S 2012 28.0 0.6 6 1 134 356 1238 880 24.0 

V&S 2013 28.0 0.5 

1.2 

6 0 222 408 1216 575 24.0 

V&S 2013 28.0 0.7 6 1 282 468 1536 560 24.0 

S&V 2017 28.0 0.4 

4.1 

5 0 70 272 654 992 24.0 

S&V 2017 28.0 3.6 5 1 126 328 1034 3485 24.0 

This Work 28.0 0.4 0.4 6 / 238 520 1171 79 24.0 

Example 10.3 

V&S 2012 28.0 0.3 

0.6 

6 0 78 308 988 17 24.0 

V&S 2012 28.0 0.4 6 1 142 372 1318 154 24.0 

V&S 2013 28.0 0.2 

0.7 

6 0 272 444 1435 54 24.0 

V&S 2013 28.0 0.5 6 1 336 508 1765 129 24.0 

S&V 2017 28.0 0.2 

2.8 

5 0 70 272 669 112 24.0 

S&V 2017 28.0 2.6 5 1 126 328 1049 2639 24.0 

This Work 28.0 0.3 0.3 6  / 280 451 1374 119 24.0 

 

For Example 10.4, the globally optimal solution of 27 hours was obtained by all four 

models. S&V 2017 required five events and the other models required six. The 

proposed model required the most binary (321) and continuous (519) variables after 

V&S 2013 at ∆𝑃 = 1 (376 and 575) as well as the most constraints (1610) after V&S 

2013 at both ∆𝑃 = 0 (1647) and ∆𝑃 = 1 (2022). In this example, the proposed model 

required the third highest solution time for any single run (4.0 s), whereas the quickest 

model was V&S 2012 at ∆𝑃 = 0 (0.5 s). It was faster than V&S 2013 at ∆𝑃 = 1 (5.1 

s) and S&V 2017 at ∆𝑃 = 1 (5.7 s). When comparing the total solution times, the 

proposed model was slower than V&S 2012 by ~2.6 s but faster than the others by at 

least 2.4 s. Example 10.5 was solved with five event points by S&V 2017 and with six 

event points by the other models. The proposed model was the largest except for having 

fewer binary (363) and continuous (557) variables than V&S 2013 at ∆𝑃 = 1 (430 and 
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615). As expected the proposed model also had fewer constraints (1810) than V&S 

2013 at both ∆𝑃 = 0 (1861) and ∆𝑃 = 1 (2246). On a single run basis, the proposed 

model required more time (1.8 s) than V&S 2012 at ∆𝑃 = 0 (0.6 s) and ∆𝑃 = 1 (0.9 s) 

and S&V 2017 at ∆𝑃 = 0 (0.5 s), however when an extra iteration is considered in order 

to verify the optimal solution, the proposed model was slower than V&S 2012 by only 

~0.3 s while it was faster than the others by a minimum of ~3 s. 

Table 4-15. Computational Results for Examples 10.4 and 10.5 

Model H Average CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

Example 10.4 

V&S 2012 27.0 0.5 

1.4 

6 0 87 347 1118 323 16.0 

V&S 2012 27.0 0.9 6 1 158 418 1493 864 16.0 

V&S 2013 27.0 3.0 

 8.1 

6 0 305 504 1647 3198 16.0 

V&S 2013 27.0 5.1 6 1 376 575 2022 5774 16.0 

S&V 2017 27.0 0.7 

6.4 

5 0 80 312 798 935 16.0 

S&V 2017 27.0 5.7 5 1 144 376 1218 4532 16.0 

This Work 27.0 4.0 4.0 6 /  321 519 1610 3594 16.0 

Example 10.5 

V&S 2012 26.0 0.6 

1.5 

6 0 91 359 1187 608 16.0 

V&S 2012 26.0 0.9 6 1 166 434 1572 683 16.0 

V&S 2013 26.0 3.1 

6.7 

6 0 355 540 1861 3563 16.0 

V&S 2013 26.0 3.6 6 1 430 615 2246 3083 16.0 

S&V 2017 26.0 0.5 

4.8 

5 0 80 312 813 885 16.0 

S&V 2017 26.0 4.2 5 1 144 376 1233 3845 16.0 

This Work 26.0 1.8 1.8 6 /  363 557 1810 3417 16.0 

 

As shown in Table 4-16, Example 10.6 required that tasks in both V&S 2012 and S&V 

2017 split over one event in order to obtain the optimal solution of 30 hours. S&V 2017 

required six events and the other models required eight. The proposed model required 

fewer binary (466) and continuous (731) variables than V&S 2013 at ∆𝑃 = 1 (553 and 

806) as well as fewer constraints (2300) than V&S 2012 at ∆𝑃 = 2 (2466) and V&S 

2013 at both ∆𝑃 = 0 (2341) and ∆𝑃 = 1 (2887). It solved slower than V&S 2012 by 

~223 s under the minimum requirements for the optimal solution however it was slower 

only by ~121 s when total solution time was accounted for. Under these conditions, it 

was faster than V&S 2013 and S&V 2017 by at least ~214 s. Note that V&S 2013 does 
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not scale well for this example when increasing the number of splitting events, as at 

∆𝑃 = 1, the solver required 1391.8 s to converge. Also shown in Table 4-16, Example 

10.7 required no task splitting and was solved by S&V 2017 with six events and with 

seven events by the other models. The proposed model followed a familiar trend in 

terms of size being the largest except for having fewer binary (387) and continuous 

(622) variables than V&S 2013 (454 and 686) as well as fewer constraints (1944) than 

V&S 2013 at both ∆𝑃 = 0 (1977) and ∆𝑃 = 1 (2436). The proposed model was slower 

(14.1 s) than V&S 2012 at ∆𝑃 = 0 (1.0 s), however the cumulative solution time for 

V&S 2012 was 6.2 s. Also in the case of compounded solution time it was twice as fast 

as V&S 2013 (28.7 s) and more than three times as fast as S&V 2017 (49.6 s). Again 

in Table 4-16, Example 10.8 displayed the poorest results for the proposed model in 

which the compounded solution times for the V&S models were better in the case of 

V&S 2012 (7.0 s) as well as S&V 2017 (1.5 s) against 14.9 s. V&S 2013 required 30.4 

s. Again this example required no task splitting and the trends on binary and continuous 

variables as well as constraints were consistent with Example 10.7. 
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Table 4-16. Computational Results for Example 10.6 to 10.8 

Model H Average CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

Example 10.6 

V&S 2012 31.0 21.3 

  

170.3 

8 0 121 469 1564 9593 16.0 

V&S 2012 30.0 68.7 8 1 226 574 2110 26263 16.0 

V&S 2012 30.0 80.3 8 2 315 663 2466 26065 16.0 

V&S 2013 30.0 241.3 

1633.0 

8 0 448 701 2341 114177 16.0 

V&S 2013 30.0 1391.8 8 1 553 806 2887 267711 16.0 

S&V 2017 31.0 43.1 

  

505.7 

6 0 96 368 956 25021 16.0 

S&V 2017 30.0 119.7 6 1 176 448 1476 43286 16.0 

S&V 2017 30.0 343.0 6 2 240 512 1732 95805 16.0 

This Work 30.0 291.6 291.6 8 / 466 731 2300 103036 16.0 

Example 10.7 

V&S 2012 28.0 1.0 

6.2 

7 0 103 409 1331 762 16.0 

V&S 2012 28.0 5.1 7 1 190 496 1790 2254 16.0 

V&S 2013 28.0 7.0 

28.7 

7 0 367 599 1977 5604 16.0 

V&S 2013 28.0 21.7 7 1 454 686 2436 12068 16.0 

S&V 2017 28.0 2.6 

49.6 

6 0 96 374 963 3124 16.0 

S&V 2017 28.0 47.0 6 1 176 454 1483 21463 16.0 

This Work 28.0 14.1 14.1 7 /  387 622 1944 10531 16.0 

Example 10.8 

V&S 2012 28.0 1.6 

7.0 

7 0 107 421 1406 1135 16.0 

V&S 2012 28.0 5.4 7 1 198 512 1873 2826 16.0 

V&S 2013 28.0 8.2 

30.4 

7 0 425 639 2225 6559 16.0 

V&S 2013 28.0 22.2 7 1 516 730 2692 15261 16.0 

S&V 2017 28.0 0.4 

1.5 

5 0 80 312 813 507 16.0 

S&V 2017 28.0 1.1 5 1 144 376 1233 886 16.0 

This Work 28.0 14.9 14.9 7 /  435 665 2177 14265 16.0 

 

The results for Examples 10.10 and 10.12 are displayed in Table 4-17. No task splitting 

was required and S&V 2017 obtained the globally optimal solution of 35 hours with 

seven events where as the other models required eight. The trends for model size are 

again consistent with Example 10.8 and 10.7. The proposed model solved slower (17.1 

s) than the single runs for V&S 2012 at ∆𝑃 = 0 and ∆𝑃 = 1, V&S 2013 at ∆𝑃 = 0 and 

S&V 2017 at ∆𝑃 = 0  by a maximum of ~11 s, however against the compounded 

solution times the proposed model solved the fastest by up to ~135 s. Example 10.12 

requires no task splitting and was solved with eight events by V&S 2012 and with seven 

events by the other three formulations. Again the proposed formulation followed a 

similar trend in terms of model size as above, except that it also required fewer 

constraints (3164) than V&S 2012 at ∆𝑃 = 1 (3291). The proposed model also had the 
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shortest single run time (1.4 s), however it was significantly faster than V&S 2012 and 

S&V 2017, especially when compounded solution times for iterations necessary to 

verify the optimal objective value were considered. V&S 2013 performed well at 6.8 s, 

however V&S 2012 and S&V 2017 required a total of ~109 and ~2690 s respectively. 

Table 4-17. Computational Results for Example 10.10 and 10.12 

Model H Average CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

Example 10.10 

V&S 2012 35.0 6.3 

18.5 

8 0 138 536 1890 3024 24.0 

V&S 2012 35.0 12.3 8 1 258 656 2511 4286 24.0 

V&S 2013 35.0 11.0 

48.7 

8 0 563 831 3053 7463 24.0 

V&S 2013 35.0 37.7 8 1 683 951 3674 19674 24.0 

S&V 2017 35.0 16.3 

152.4 

7 0 126 485 1371 10845 24.0 

S&V 2017 35.0 136.1 7 1 234 593 2058 39301 24.0 

This Work 35.0 17.1 17.1 8 /  581 877 3016 14441 24.0 

Example 10.12 

V&S 2012 34.0 19.9 

109.0 

8 0 180 694 2476 4900 30.0 

V&S 2012 34.0 89.1 8 1 336 850 3291 12146 30.0 

V&S 2013 34.0 2.4 

6.8 

7 0 573 899 3249 287 30.0 

V&S 2013 34.0 4.4 7 1 705 1031 3939 386 30.0 

S&V 2017 34.0 41.6 

2690.1 

7 0 168 639 1843 14242 30.0 

S&V 2017 34.0 2648.5 7 1 312 783 2752 392539 30.0 

This Work 34.0 1.4 1.4 7 /  598 914 3164 519 30.0 

 

Table 4-18 contains the results for Example 10.13 which required no task splitting and 

was solved by S&V 2017 with eight events and by the other models with nine events. 

The proposed model was the largest on any single run except for having fewer binary 

(800) and continuous (1216) variables than V&S 2013 at ∆𝑃 = 1 (945 and 1363) as 

well as fewer constraints (4256) than V&S 2013 at both ∆𝑃 = 0 (4341) and ∆𝑃 = 1 

(5281). The proposed model was also the third fastest (30.7 s), after V&S 2013 at ∆𝑃 =

0  (26.6 s) and V&S 2012 at ∆𝑃 = 0  (30.6 s), however, after accounting for 

compounded solution times, required to verify the global optimal solution, the proposed 

model significantly outperformed the other models by up to ~255 s. Example 10.14 also 

required no task splitting although S&V 2017 was unable to converge or obtain the 

optimal solution of 36 hours with nine events, as shown in Table 4-18. In terms of 
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model size, the proposed formulation followed the common trend of being the largest 

with the exception of having fewer binary (800) and continuous (1216) variables than 

V&S 2013 at ∆𝑃 = 1 (945 and 1363) as well as fewer constraints (4256) than V&S 

2013 at both ∆𝑃 = 0 (4341) and ∆𝑃 = 1 (5281). These values are identical to those in 

Example 10.13. For a given single run, only V&S 2013 at ∆𝑃 = 0 solved faster (547.9 

s) than the proposed model (925.5 s), however when compounded solution time for 

iterations was accounted for, the proposed model was the fastest by a significant 

margin, as the other models did not scale well. V&S 2012 at ∆𝑃 = 1 was unable to 

converge on the optimal solution after 10 000 s, having a best bound by this stage of 

~30 hours. The total solution time for V&S 2013 was just under 5594 s (~1.5 hours) 

and, as mentioned above, S&V 2017 was unable to converge at either ∆P = 0 or at 

∆P = 1. The optimal schedule for Example 10.14 as determined by the proposed model 

is shown in Figure 4-12. 

Table 4-18. Computational Results for Examples 10.13 and 10.14 

Model H Average CPU 

Time (s) 

Total CPU 

Time (s) 

Event 

Points 

∆p Binary 

Variables 

Continuous 

Variables 

Constraints Nodes RMIP 

Example 10.13 

V&S 2012 36.0 30.6 

83.9 

9 0 204 785 2820 4857 24.0 

V&S 2012 36.0 53.3 9 1 384 965 3760 7036 24.0 

V&S 2013 36.0 26.6 

106.1 

9 0 765 1183 4341 3294 24.0 

V&S 2013 36.0 79.5 9 1 945 1363 5281 7402 24.0 

S&V 2017 36.0 155.0 

285.5 

8 0 192 730 2117 18921 24.0 

S&V 2017 36.0 130.5 8 1 360 898 3173 17606 24.0 

This Work 36.0 30.7 30.7 9 /  800 1216 4256 11886 24.0 

Example 10.14 
V&S 2012 36.0 2305.6 

/ 

10 0 228 876 3164 282640 21.6 

V&S 2012 36.0 10000.01 10 1 432 1080 4229 383929 21.6 

V&S 2013 36.0 547.9 

5593.8 

9 0 765 1183 4341 110734 21.6 

V&S 2013 36.0 5045.9 9 1 945 1363 5281 1267050 21.6 

S&V 2017 37.0 10000.02 

 / 

9 0 216 821 2391 505518 21.6 

S&V 2017 38.0 10000.03 9 1 408 1013 3594 517330 21.6 

This Work 36.0 925.5 925.5 9 /  800 1216 4256 74371 21.6 

Best bound: 130.0, 228.6, 327.6 
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4.4. Summary of Findings 

Figure 4-14 and Figure 4-13 summarize the overall performance of the proposed model 

against the other four models considered through a number of metrics. Figure 4-14 

displays the number of instances of a model performing the fastest with the optimal 

parameters and with total, cumulative time as well as the number of considered 

examples converging on the globally optimal solution. 

Figure 4-12. Optimal Schedule for Example 10.14 (Proposed Model) 
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Figure 4-13 displays the maximum solution time for any one problem instance as well 

as the total solution time for all 22 instances. The figure also displays the greatest lead 

each model had over the next fastest model when it was fastest, and the greatest lag it 

had behind the fastest model, across all 22 problem instances. Note that the results for 

R 2019 are for the first 10 example instances only, which do not include ZW states. 

This heavily impacts the maximum and total solution time. 

The examples in which the proposed model was outperformed are Examples 4.1 and 

10.4 to 10.8. These six examples were solved faster by V&S 2012 and only Example 

Figure 4-13. Model Computational Performance by CPU Time 

Figure 4-14. Model Computational Performance by Number of Instances 
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10.8 was solved faster than the proposed model by S&V 2017. V&S 2013 and R 2019 

did not outperform the proposed model in any of the examples considered. In all of 

these inconsistent examples, except Example 10.6, task splitting was not required by 

the other models in order to find the globally optimal solution. This infers a smaller 

number of binary variables for these problems when solved by V&S 2012 and S&V 

2017, as the requirement of a nonzero splitting parameter expands the number of binary 

variables required by a model significantly. In these cases, the number of binary 

variables required by V&S 2012, at the maximum value of ∆p investigated, was still 

less than half of that of the proposed model. This difference is perhaps the reason why 

the proposed model was outperformed in some cases. 
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Conclusions and Recommendations 

A new MILP formulation for the scheduling of multipurpose batch plants is presented 

which incorporates the techniques of rigorous conditional sequencing, pre- and post-

processing unit wait and fractional extraction as well as facilitates task splitting without 

the need for iterative procedures on a task splitting parameter. Additionally, guidelines 

for rigorous exclusion of unnecessary constraints and variables are given in an attempt 

to diminish the model size. 

It was shown how the proposed formulation overcomes the drawbacks of three-index 

based formulations by allowing tasks to effectively split over any number of events with 

a fixed model size for a given problem. This is done without the need for iteration or 

guesswork on the model parameters which compounds the problem size and complexity 

as well as the required computational time and may exclude potentially optimal 

solutions. The proposed formulation was able to determine the known best solutions for 

all the problem instances considered in as far as the optimal number of events over 

which a task should split is concerned. 

It is acknowledged that the combined solution time of iteration for the determination of 

the optimal number of events is not shown in this work. Nonetheless a nested iterative 

procedure over both the number of events and the maximum number of events over 

which tasks can split is bound to exacerbate the problem and lead to higher solution 

times than if only a one-dimensional iterative procedure is required. 

Furthermore, the proposed formulation was shown to be the most reliable in its ability 

to converge for all of the problems considered. The inability to converge in reasonable 

time (10 000 s) was demonstrated to occur in a number of examples solved by other 
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models. The proposed model converged on the optimal solution in no more than 925.5 

seconds for any of the examples considered. 

Of the 22 examples discussed, when comparing the solution time for fastest 

convergence to global optimality for a single run at the lowest number of total and 

splitting events, V&S 2012 performs the fastest or ties with the others in 13 examples, 

V&S 2013 in seven, S&V 2017 in seven, R 2019 in three and nine are solved in the 

fastest time or tied by the proposed model. However, for V&S 2012, five of these 

solutions were only obtainable at a number of splitting events greater than zero. Unless 

an algorithm is developed to determine a priori the optimal number of splitting events 

or it is guessed for a single run, iterations would result in a longer total solution time. 

Additionally, when one further iteration above those necessary to first obtain the 

optimal solution was performed on ∆𝑃, in order to verify its optimality and provide a 

concrete stopping criterion for iteration, the proposed model solved the fastest in 16 of 

the examples, while V&S 2012 and S&V 2017 respectively solved five and one of the 

examples the fastest. V&S 2013 and R 2019 did not solve any examples the fastest in 

these circumstances. Of the six in which the proposed model was outperformed, it had 

the second fastest solution time in five. Furthermore, the proposed model and R 2019 

are the only models which obtain the globally optimal solution in Example 1m while 

the proposed model is the only one which converges on the globally optimal solution 

within 10 000 seconds for Example 4.2. 

The proposed model was outperformed in terms of CPU time by a maximum of ~378 

seconds across all examples for any given single run. This occurred in Example 10.14. 

However, when one additional iteration on the number of splitting events was 

performed and the solution time summed for all necessary iterations, the proposed 

model outperformed the other models by a maximum of ~6948 seconds, just under two 
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hours, excluding the examples in which the V&S models did not converge. This 

corresponds to a CPU time reduction of 99.4% and occurred in Example 3. 

It was shown that three-index formulations do not always scale well with increasing 

values of ∆𝑃  and the solution time can either increase exponentially or behave 

inconsistently with longer solution times at intermediate values of ∆𝑃  and smaller 

solution times at extreme values. It was also demonstrated how the size of a model is 

not always a direct indicator of performance, since for many of the examples 

considered, the proposed model was larger and yet it resulted in superior reliability, 

accuracy and speed. The proposed model solved every example in reasonable time (no 

more than 15.5 minutes), outperforming the other models in every example where task 

splitting was required, except in Example 10.6. In cases where the proposed model did 

not outperform the other models, it performed very comparably. 

Finally, the proposed model allows for fractional extraction of states from a producing 

unit, further improving the flexibility and allowing, in some cases, better schedules to 

be determined. Together with the computational efficiency and steady convergence for 

all problems considered, the objectives of the work outlined in Section 1.4 have been 

satisfied. 

The proposed model does not address resource considerations at the current time. It is 

possible to incorporate resource considerations by defining monotonically increasing 

continuous variables for the timing of resource utilization and enforcing that all tasks 

consuming a resource at a particular event begin and end at the same time as the 

resource times, as discussed in the literature. Alternatively, this can be incorporated 

efficiently by treating resources as states and modelling their regeneration at the event 

subsequent to the completion of the tasks which consumes them. A binary variable can 

be used to track when direct transfer to a consuming task at the subsequent event occurs 
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for the purposes of enforcing sequencing. This is as per the work by Vooradi and Shaik 

(2013).
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