

A Computationally Efficient Method for the

Scheduling of Complex Batch Processes

Joel Croft

Master of Science in Engineering by research:

“A dissertation submitted to the Faculty of Engineering and the Built Environment,

University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for

the degree of Master of Science in Engineering.”

Johannesburg, 2022

i

Declaration

I declare that this dissertation is my original and unaided work. It is being submitted

for the degree of Master of Science in Chemical Engineering to the University of the

Witwatersrand, Johannesburg. This is the first submission of the dissertation to any

university.

Signature of Candidate

__10_ day of __August__ year ___2022_____

ii

Acknowledgements

This research project would not have been possible without the support and assistance

I received from the following parties.

First, I would like to thank my parents who encouraged, supported and advised me

during this period. Your input aided me in overcoming many obstacles as well as getting

unstuck from many a rut.

Second, I would like to thank my supervisor, Professor Thokozani Majozi, for your

unparalleled guidance, experience and wisdom. You steered me in the exploration and

establishment of a direction, challenging my conclusions and refining the quality of this

work.

Third, I would like to express sincere gratitude to the National Research Foundation for

its financial support and to the University of the Witwatersrand for technical assistance

and provision of software facilities, all of which enabled this research.

iii

Abstract

This dissertation presents an improved continuous time, unit-specific event-based

Mixed-Integer Linear Programming formulation for the optimal scheduling of general

network-represented batch plants, based on the State-Task Network representation. The

formulation draws on and combines the strengths of previous works in order to

incorporate rigorous conditional sequencing, pre- and post-processing unit wait and

task splitting while ensuring the integrity of the Finite Intermediate Storage policy. Task

splitting is simulated without requiring potential problem truncation and nested

iteration which may result from the utilization of a splitting parameter ∆𝑛 and three-

index binary and continuous variables to represent the start and end events of tasks.

Additionally, the proposed formulation allows for the fractional extraction of produced

states from their producing unit at multiple events, thereby increasing the flexibility of

resulting schedules. Computational performance is compared against

reimplementations of four recent task splitting formulations through solution of 22

example problems using the GAMS CPLEX solver in order to demonstrate the

effectiveness of the proposed approach and highlight its advantages. It is shown how

the proposed formulation is the most reliable due to its ability to converge in all of the

considered problem instances and not get trapped at suboptimal solutions due to

iterative procedures relating to task splitting. The proposed model performed the fastest

during solution in 16 of these examples, while in the other six (Examples 4.1 and 10.4

to 10.8.), the solution time was very comparable to the other formulations investigated.

The proposed model demonstrated a best-case CPU time reduction of more than 90%.

iv

Contents

Declaration ... i

Acknowledgements ... ii

Abstract .. iii

Contents.. iv

List of Figures .. vi

List of Tables .. vii

Nomenclature ... viii

1. Introduction .. 1-1

1.1. Background .. 1-1

1.2. Motivation .. 1-4

1.3. Scope .. 1-6

1.4. Objectives ... 1-6

1.5. Problem Statement ... 1-7

1.6. Structure of the Dissertation ... 1-8

2. Literature Review ... 2-1

2.1. Optimization Principles for Batch Scheduling .. 2-1

2.1.1 Mathematical Programming .. 2-2

2.1.2 Simplex Method ... 2-3

2.1.3 Branch and Bound Technique ... 2-5

2.1.4 Genetic Algorithm.. 2-8

2.2. Batch Scheduling ... 2-9

2.3. Conclusions .. 2-41

3. Mathematical Model and Constraints ... 3-1

3.1. Introduction .. 3-1

3.2. Assumptions ... 3-1

3.3. Model Constraints .. 3-2

3.3.1 Allocation Constraints ... 3-3

3.3.2 Capacity Constraints .. 3-3

3.3.3 Material Balance Constraints .. 3-3

3.3.4 Storage Constraints .. 3-10

3.3.5 Linking Constraints .. 3-13

3.3.6 Duration Constraints .. 3-14

3.3.7 Sequence Constraints ... 3-15

3.3.8 Tightening Constraint .. 3-19

v

3.3.9 Objective Function ... 3-19

4. Model Validation and Analysis .. 4-1

4.1. Data Details and Sources... 4-1

4.2. Maximization of Profit .. 4-6

4.2.1 Example 1 ... 4-7

4.2.2 Example 2 ... 4-9

4.2.3 Example 3 ... 4-10

4.2.4 Example 4.1 .. 4-11

4.2.5 Example 5 ... 4-13

4.2.6 Example 6 ... 4-15

4.2.7 Example 7 ... 4-16

4.2.8 Examples 8 and 9 ... 4-18

4.3. Minimization of Makespan ... 4-22

4.3.1 Example 4.2 .. 4-22

4.3.2 Example 10 - Westenberger-Kallrath Problem 4-26

4.4. Summary of Findings .. 4-35

5. Conclusions and Recommendations ... 5-1

 References .. R-1

vi

List of Figures
Figure 1-1. Importance of Improvement in the Modelling of Task Splitting 1-4

Figure 1-2. Optimal Schedule for Example 1 (Proposed Model) 1-5

Figure 2-1. Linear Programming .. 2-2

Figure 2-2. LP, IP and MIP ... 2-4

Figure 2-3. Branch and Bound Algorithm ... 2-5

Figure 2-4. Continuous and Batch Processes... 2-10

Figure 2-5. Multiproduct and Multipurpose Batch Recipes 2-14

Figure 2-6. Batch Recipe Classification... 2-15

Figure 2-7. Generic Schedule Gantt Chart ... 2-16

Figure 2-8. STN for a Network-Represented Batch Process 2-18

Figure 2-9. Discrete/Even Time Representation ... 2-19

Figure 2-10. RTN for a Network-Represented Batch Process.................................. 2-20

Figure 2-11. State-Equipment Network ... 2-21

Figure 2-12. Global Event Continuous/Uneven Time Representation 2-23

Figure 2-13. Schedule-Graph .. 2-25

Figure 2-14. Unit-Specific Continuous/Uneven Time Representation 2-27

Figure 2-15. SSN for a Network-Represented Batch Process 2-28

Figure 2-16. Post-processing Unit Wait ... 2-30

Figure 2-17. Task Splitting ... 2-31

Figure 2-18. Pre-processing Unit Wait .. 2-35

Figure 2-19. Conditional Sequencing... 2-36

Figure 2-20. Fractional Extraction ... 2-38

Figure 4-1. STN for Example 1 .. 4-7

Figure 4-2. STN for Example 2 .. 4-9

Figure 4-3. STN for Example 3 .. 4-10

Figure 4-4. STN for Example 4 .. 4-12

Figure 4-5. STN for Example 5 .. 4-14

Figure 4-6. STN for Example 6 .. 4-15

Figure 4-7. STN for Example 7 .. 4-17

Figure 4-8. STN for Examples 8 and 9 .. 4-19

Figure 4-9. Optimal Schedule for Example 9 (Proposed Model) 4-21

Figure 4-10. Optimal Schedule for Example 4.2 (Proposed Model)........................ 4-25

Figure 4-11. STN for Example 10 .. 4-27

Figure 4-12. Optimal Schedule for Example 10.14 (Proposed Model) 4-35

Figure 4-13. Model Computational Performance by CPU Time.............................. 4-36

Figure 4-14. Model Computational Performance by Number of Instances 4-36

file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881880
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881881
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881882
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881883
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881884
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881885
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881886
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881887
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881888
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881889
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881890
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881891
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881892
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881893
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881894
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881895
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881896
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881897
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881898
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881899
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881900
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881901
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881902
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881903
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881904
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881905
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881906
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881907
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881908
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881909
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881910
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881911
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881912
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881913
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881914
file:///D:/Chemical%20Engineering/5%20Masters/Dissertation/ZZ%20-%20Final%20(Submission)/Joel%20Croft%20MSc%20Thesis%20v6.docx%23_Toc108881915

vii

List of Tables

Table 4-1. State Information for All Examples ... 4-4

Table 4-2. Task Information for All Examples .. 4-5

Table 4-3. Computational Results for Example 1.. 4-8

Table 4-4. Computational Results for Example 2.. 4-10

Table 4-5. Computational Results for Example 3.. 4-11

Table 4-6. Computational Results for Example 4.1 .. 4-13

Table 4-7. Computational Results for Example 5.. 4-15

Table 4-8. Computational Results for Example 6.. 4-16

Table 4-9. Computational Results for Example 7.. 4-18

Table 4-10. Computational Results for Example 8 ... 4-20

Table 4-11. Computational Results for Example 9 ... 4-22

Table 4-12. Computational Results for Example 4.2 .. 4-24

Table 4-13. Demand Scenarios for Example 10 .. 4-27

Table 4-14. Computational Results for Examples 10.1 to 10.3 4-29

Table 4-15. Computational Results for Examples 10.4 and 10.5 4-30

Table 4-16. Computational Results for Example 10.6 to 10.8.................................. 4-32

Table 4-17. Computational Results for Example 10.10 and 10.12 4-33

Table 4-18. Computational Results for Examples 10.13 and 10.14 4-34

viii

 Nomenclature

Indices Parameters

𝑝, 𝑝′ Event points 𝑀 Largest expected value for the time horizon

𝑠 Material states 𝐻
Time horizon of interest (becomes a variable in case

of makespan minimization)

𝑗, 𝑗′ Processing units 𝑉 𝑈(𝑠𝑖𝑛,𝑗) Maximum capacity of a unit for a particular task

𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛 ,𝑗
′ , 𝑠𝑖𝑛,𝑗

′′
Effective states representing

tasks
 𝑉 𝐿(𝑠𝑖𝑛,𝑗) Minimum capacity of a unit for a particular task

Sets 𝑎(𝑠𝑖𝑛,𝑗) Fixed processing time term for a task

𝑃 Event points 𝑏(𝑠𝑖𝑛,𝑗)
Batch size-dependent processing time coefficient for a

task

𝑆 Material states 𝑞𝑈(𝑠)
Maximum storage capacity for an intermediate state

𝑠 ∈ 𝑆𝐼

𝑆𝑅 Raw material states 𝑞0(𝑠)
Initial inventory of intermediate state 𝑠 ∈ 𝑆𝐼 at the

start of the time horizon

𝑆𝐼 Intermediate material states 𝜌𝑐
𝐿 (𝑠, 𝑠𝑖𝑛,𝑗)

Minimum fraction of consumed state 𝑠 ∈ 𝑆𝐶 in

material consumed by task 𝑠𝑖𝑛,𝑗 ∈ 𝑆𝑖𝑛,𝐽′
𝑐

𝑆𝑃 Product material states 𝜌𝑐
𝑈 (𝑠, 𝑠𝑖𝑛 ,𝑗)

Maximum fraction of consumed state 𝑠 ∈ 𝑆𝐶 in

material consumed by task 𝑠𝑖𝑛,𝑗 ∈ 𝑆𝑖𝑛,𝐽′
𝑐 (also used

when the consumption ratio is constant)

𝑆𝐶
Consumed states – raw

materials and intermediates
 𝜌𝑝

𝐿 (𝑠, 𝑠𝑖𝑛,𝑗)
Minimum fraction of produced state 𝑠 ∈ 𝑆𝑀 in

material produced by task 𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝

𝑆𝑀
Produced states –

intermediates and products
 𝜌𝑝

𝑈 (𝑠, 𝑠𝑖𝑛 ,𝑗)

Maximum fraction of produced state 𝑠 ∈ 𝑆𝑀 in

material produced by task 𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝

 (also used

when the production ratio is constant)

𝑆𝐸
End point states – raw

materials and products
 𝑆𝑃𝑟 (𝑠)

Sell value of product state 𝑠 ∈ 𝑆𝑃 (can be extended to

other states if applicable)

𝑆𝐹𝐼𝑆

Intermediate states which

have finite dedicated storage

facilities

 𝑑(𝑠)
Demand profile for product state 𝑠 ∈ 𝑆𝑃 (can be

extended to other states if applicable)

𝑆 𝑍𝑊

Intermediate states which

must be consumed

immediately upon production

due to material instability

 Continuous Variables

𝑆𝑁𝐼𝑆

Stable intermediate states

which have no dedicated

storage facilities

 𝑚𝑢 (𝑠𝑖𝑛,𝑗 , 𝑝)
Total quantity of material charged to a unit to begin

processing in task 𝑠𝑖𝑛,𝑗 at event 𝑝

𝑆𝑈𝑊

Intermediate states which are

stable and need not be

consumed immediately upon

production (𝑆𝐹𝐼𝑆 ∪ 𝑆𝑁𝐼𝑆)

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛 ,𝑗 , 𝑝)

Quantity of consumed state 𝑠 ∈ 𝑆𝐶 charged to a unit

to begin processing at event 𝑝 for a task 𝑠𝑖𝑛,𝑗 ∈

𝑆𝑖𝑛,𝐽′
𝑐 ∩ 𝑆

𝑖𝑛,𝐽′
𝑐,𝑉

 which can consume 𝑠 in a variable

fraction

𝑆𝑁𝑆

Intermediate states which

have no dedicated storage

facilities (𝑆 𝑍𝑊 ∪ 𝑆𝑁𝐼𝑆)

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛 ,𝑗 , 𝑝)

Quantity of produced state 𝑠 ∈ 𝑆𝑀 produced by task

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝

∩ 𝑆
𝑖𝑛,𝐽′
𝑝,𝑉

, which can produce 𝑠 in a

variable fraction

𝑆𝐽
𝑐

Set of all states 𝑠 which are

consumed by specified task

𝑠𝑖𝑛,𝑗

 𝑡𝑖𝑛 (𝑠𝑖𝑛,𝑗 , 𝑝)
Time at which processing of task 𝑠𝑖𝑛,𝑗 begins at event

𝑝

𝑆𝐽

𝑝

Set of all states 𝑠 which are

produced by specified task

𝑠𝑖𝑛,𝑗
 𝑡𝑜𝑢𝑡(𝑠𝑖𝑛 ,𝑗 , 𝑝)

Time at which processing of task 𝑠𝑖𝑛,𝑗 ends at event 𝑝

ix

𝐽 Processing units 𝑗 𝑞𝑇(𝑠)

Total quantity of raw material or product 𝑠 ∈ 𝑆𝐸

respectively consumed or produced over the time

horizon of interest

𝑆𝑖𝑛,𝐽

Tasks described as effective

state 𝑠 entering unit 𝑗 for

processing

 𝑞(𝑠, 𝑝) Excess quantity of FIS state 𝑠 ∈ 𝑆𝐹𝐼𝑆 stored at event 𝑝

𝑆𝑖𝑛,𝐽

𝐽

Set of all possible tasks 𝑠𝑖𝑛,𝑗

which can be performed in

specified unit 𝑗
 𝑏1 (𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝)

Quantity of material 𝑠 ∈ 𝑆𝐼 transferred to consuming

task 𝑠𝑖𝑛 ,𝑗
′ ∈ 𝑆𝑖𝑛,𝐽′

𝑐 at event 𝑝 from producing task

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝

 at event 𝑝 − 1, due to lack of available

material in storage for consumption task 𝑠𝑖𝑛,𝑗
′

𝑆
𝑖𝑛,𝐽′
𝐽

Set of all possible tasks 𝑠𝑖𝑛,𝑗

which can be performed in

specified unit 𝑗′

 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛 ,𝑗
′ , 𝑠, 𝑝)

Quantity of material 𝑠 ∈ 𝑆𝐹𝐼𝑆 consumed by task

𝑠𝑖𝑛,𝑗
′ ∈ 𝑆𝑖𝑛,𝐽′

𝑐 at event 𝑝, which is produced by task

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝

 at event 𝑝 − 1, in order to prevent FIS

violations

𝐶𝑖𝑛,𝐽

Set of all possible tasks 𝑠𝑖𝑛,𝑗

in all possible units 𝑗 which

consume specified state 𝑠

 𝑢(𝑠, 𝑠𝑖𝑛 ,𝑗 , 𝑝)

Quantity of material 𝑠 ∈ 𝑆𝐼 produced by task 𝑠𝑖𝑛,𝑗 ∈

𝑆
𝑖𝑛,𝐽′
𝑝

 at event 𝑝 − 1 or earlier which is temporarily

stored in its producing unit at event 𝑝

𝑃𝑖𝑛,𝐽

Set of all possible tasks 𝑠𝑖𝑛,𝑗

in all possible units 𝑗 which

produce specified state 𝑠

 Binary Variables

𝑃𝑖𝑛,𝐽
𝑍𝑊

Set of all possible tasks 𝑠𝑖𝑛,𝑗

in all possible units 𝑗 which

produce at least one ZW state

 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝)
Indicates whether or not task 𝑠𝑖𝑛 ,𝑗 begins production at

event 𝑝

𝐶𝑖𝑛,𝐽
𝑉

Set of all tasks 𝑠𝑖𝑛,𝑗 which

consume states in a variable

ratios

 𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛 ,𝑗
′ , 𝑠𝐼 , 𝑝)

Indicates whether or not state 𝑠 ∈ 𝑆𝐼 is transferred to

consuming task 𝑠𝑖𝑛,𝑗
′ ∈ 𝑆𝑖𝑛,𝐽′

𝑐 at event 𝑝 from

producing task 𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝

 at event 𝑝 − 1 due to lack

of available material in storage for consumption task

𝑠𝑖𝑛,𝑗
′

𝑃𝑖𝑛,𝐽
𝑉

Set of all tasks 𝑠𝑖𝑛,𝑗 which

produce states in a variable

ratios

 𝑣(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

Indicates whether or not state 𝑠 ∈ 𝑆𝐹𝐼𝑆 is directly

transferred to unit 𝑗′ for consumption by task 𝑠𝑖𝑛,𝑗
′ ∈

𝑆𝑖𝑛,𝐽′
𝑐 ∩ 𝑆𝑖𝑛,𝐽′

′ at event 𝑝 after being produced by task

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝

∩ 𝑆𝑖𝑛,𝐽
′ in unit 𝑗 ≠ 𝑗′ at event 𝑝 − 1, in

order to prevent FIS violations

 𝑥(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

Indicates whether or not state 𝑠 ∈ 𝑆𝐹𝐼𝑆 is consumed by

task 𝑠𝑖𝑛 ,𝑗
′ ∈ 𝑆𝑖𝑛,𝐽′

𝑐 ∩ 𝑆𝑖𝑛,𝐽′
′ in unit 𝑗′ at event 𝑝 at a time

prior to production of the same state in task 𝑠𝑖𝑛 𝑗 ∈
𝑆

𝑖𝑛,𝐽′
𝑝

∩ 𝑆𝑖𝑛,𝐽
′ in unit 𝑗 ≠ 𝑗′ at event 𝑝 − 1 in order to

prevent FIS violations

 𝑤(𝑠𝑖𝑛,𝑗 , 𝑝)

Indicates whether or not states 𝑠 ∈ 𝑆 𝑍𝑊 produced by

task 𝑠𝑖𝑛 𝑗 ∈ 𝑆
𝑖𝑛,𝐽′
𝑝,𝑍𝑊

 continue to be stored at event 𝑝 in

the unit that produced them at event 𝑝 − 1 or earlier

x

Term Abbreviation

Common intermediate storage CIS

Cost units c.u.

Finite intermediate storage FIS

Finite wait FW

Hours h

Infeasible sets IS

Integer program IP

Linear programming LP

Mass unit m.u.

Mixed-integer linear program MILP

Mixed-integer nonlinear program MINLP

Mixed-integer program MIP

No intermediate storage NIS

No storage NS

Nonlinear program NLP

Process intermediate storage PIS

Rakovitis et al. (2019) R 2019

Resource-task network RTN

Seconds s

Shaik and Vooradi (2017) S&V 2017

State-equipment network SEN

State-sequence network SSN

State-task network STN

Unlimited intermediate storage UIS

Unlimited wait UW

Vooradi and Shaik (2012) V&S 2012

Vooradi and Shaik (2013) V&S 2013

Zero wait ZW

1-1

Introduction

1.1. Background

The chemical industry is dedicated to the production of a wide array of solid, liquid and

gaseous materials and products, such as metals, ceramics, plastics, petroleum and other

oil products, solvents, agrochemicals, pharmaceuticals, specialty chemicals and food

products. Such products are used on a day-to-day basis by a large portion of the global

population as well as downstream manufacturing sectors, making the industry largely

impactful in terms of its economic, environmental and social impact.

In a recent report, it was estimated that the chemical industry directly contributed $1.1

trillion to the global GDP in 2017, making it the fifth largest manufacturing sector, with

8.3% of the global manufacturing sector’s economic value (Oxford Economics, 2019).

The chemical sector in the report was limited to the basic chemicals, fertilizer, plastics

and synthetic rubbers; pesticides and agrochemicals; paints, varnishes, inks and

mastics; soaps, detergents, cleaning, polishing, perfume and toilet preparations;

explosives and pyrotechnic, glue, essential oil; and man-made fibre sub-sectors.

The manufacture of such chemical products is broadly conducted in two major

categories: continuous processes and batch processes, although hybrid classifications

exist. In the former, products, which are often of lower relative value, are produced in

great scale due to a very large and stable demand. Perhaps the best example of this is

the petroleum industry, where crude oil is consumed continuously to produce a variety

of fuel products. Continuous processes require transient start-up and shut-down

1-2

procedures, however they are mainly designed for steady state operation, which occurs

for the vast majority of the active time of the processing plant.

Batch processes, on the other hand, produce relatively smaller quantities of high-value

products. These products are often characterised as having a lower demand, however

they may have more stringent restrictions such as consistency in product quality.

Alternatively, they may be produced in smaller quantities due to fluctuating demands

in unstable markets.

Due to the current competitive state of global economies, as well as the scale of the

chemical industry, the latter has been identified as a prime target for study, analysis and

improvement in terms of productivity and intensification as well as time and waste

reduction. In this regard, the optimization of chemical production plants has become

the focus of much research.

Historically, optimization studies have targeted continuous plants (Majozi, 2010). This

is largely because of an understanding that the scale of raw material and utility

consumption as well as the generation of waste is somewhat larger in such plants.

However, this understanding has been changing as the demand for flexible processing

has increased. It is now understood that optimization studies of batch plants can also

offer significant savings through careful planning, scheduling and utilization of

resources. However, methodologies for batch process synthesis, design, scheduling and

resource integration are far less mature than their continuous counterparts, due to a

pertinent feature of batch plants: discrete tasks distributed in time.

Unlike in continuous processes, the production of wasteful by-products and the

consumption of raw material or utilities occurs discretely in time and therefore any

analysis must consider such discrete consumption and production. Therefore, studies of

1-3

batch production often include, in some form or another, the idea of scheduling, in

addition to dynamic considerations of batch reaction and separation unit operations.

Another important consideration, is that of intermediate storage, which, while also

present in continuous production plants, is perhaps more important in batch plants in

order to debottleneck processes.

The added dimension of time renders most optimization studies of batch processes

impossible via graphical and insight-based methods. Simplifying assumptions can be

made by approximating continuous circumstances, or sequential procedures can be

implemented whereby the time dimension is fixed beforehand, removing it from

consideration in the optimization studies. However, this approach may result in the

exclusion of the globally optimal solution (Papageorgiou et al., 1994). Instead,

mathematical optimization and the use of high-performance computation is required for

a complete study. Superstructure representation is often employed, in which all

possibilities and combinations of the problem to be solved are contained. The optimal

solution is then a subset of this superstructure and many techniques exist for isolating

the optimal configuration.

In many cases, resulting optimization studies may be too complex to solve practically,

due to large computational time requirements for problem solution, and further

assumptions are made to simplify the problem. Alternatively, near-optimal solutions

may be satisfactory. As the state of batch optimization is still in its infancy, it is still

quite academic and many improvements are required in formulation, both in terms of

computational efficiency and practicality. However, the application to real industrial

problems is still possible in a number of cases.

1-4

1.2. Motivation

The complexity arising in batch scheduling models has been a major limitation in its

development and application. This is a limitation which the current work aims to

diminish.

Furthermore, a model is only as good as the simplifying assumptions it makes. Models

which represent physical phenomena seldom characterize their full extent. They include

simplifications which reduce the search space as a trade-off for facilitating the

acquisition of usable results. The same is true for batch scheduling. Due to the decisions

which are required in batch scheduling, such as assignment and distribution of

resources, a highly combinatorial problem often results, for which the solution

algorithm has been shown to be exponential. Due to this, a model seldom represents all

possibilities which may be achievable in practice and focuses instead on excluding all

infeasible solutions. Therefore, the current work also aims at improving the scope of

batch scheduling in order to include more possible interactions in an attempt to obtain

better solutions.

Figure 1-1. Importance of Improvement in the Modelling of Task Splitting

1-5

The current work is aimed at overcoming the limitations in previous techniques for

implementing task splitting, while accurately handling the Finite Intermediate Storage

(FIS) policy, rigorous conditional sequencing and pre- and post-processing unit wait.

The importance of this is highlighted in Figure 1-1, which demonstrates the excessive

compounded computational time which may be required in certain examples in order

to obtain the globally optimal solution. The figure contains the solution time results for

the solution of Example 9 (presented in Section 4.2.8), solved with the formulation by

Vooradi and Shaik (2013), with varying values of ∆P along with the cumulative solution

time after each iteration. For comparison, it is possible to achieve the same solution

quality with the proposed model, without uncertainty regarding ∆P and in significantly

lower computational time.

Furthermore, it was observed that the proposed method of handling task splitting

facilitates fractional extraction without the requirement of a binary variable for non-

ZW intermediates. Fractional extraction is the ability to fractionally discharge produced

intermediates from the unit that produced them at a number of event points and times.

This was first published by Rakovitis et al. (2019). The concept is demonstrated in

Figure 1-2, where the obviously maximal production of 10 units of product is not

identifiable in most unit-specific event-based formulations due to insufficient dedicated

storage availability for the intermediate. The example is that of Example 1 (presented

in Section 4.2.1).

Batch Size

(m.u.)

Beginning

Event Point
j2

j1

j1 storage

Figure 1-2. Optimal Schedule for Example 1 (Proposed Model)

1-6

1.3. Scope

Scheduling may refer to short or long-term scheduling and may be cyclic. Cyclic

scheduling occurs when a number of tasks are repeated continuously and in the exact

same manner (Draper et al., 1999). The type of scheduling considered in the current

work is short-term scheduling, where a single cycle is considered over a relatively short

horizon spanning a number of hours or days. This may reflect dynamic production

demands occurring on a daily basis, or where a particular schedule is to be used

frequently among other schedules for separate production demands.

Furthermore, batch scheduling is a highly problem-specific study. Many unique

characteristics may exist in any given batch plant. Production demands may include

numerous, temporally-distributed deadlines or the consideration of utility integration

during production may be desired. Additionally, the changeover and setup time

requirement, as well as the cleaning requirement, between consecutive tasks occurring

in a batch processing unit may depend on the order of these consecutive tasks. This is

known as sequence-dependent changeover. These extended features are not considered

in the current work. Therefore, the proposed work aims at addressing the form of

scheduling which involves meeting a demand for a number of products by a single given

due date, minimizing the makespan required for such a given demand or maximizing

production throughput in a given time horizon.

1.4. Objectives

The objective of the current work is to investigate a method for scheduling a generic

batch production plant while improving on the scope of what is realistically possible to

achieve while simultaneously improving the problem formulation for faster

computational performance. The idea is to provide an improved scheduling basis which

1-7

can be used independently or which provides a better foundation for the inclusion of

synthesis, design, resource integration and other problem-specific features than those

currently available. The expected results are therefore improved solutions for the same

underlying problems obtained in faster time, as compared with published literature.

1.5. Problem Statement

This works aims to provide an improved method for determining an optimal operating

schedule for batch production processes in the chemical industry, via mathematical

optimization techniques, in order to address better resource utilisation and waste

minimization in such processes. The scheduling problem addressed by this work can be

described as follows:

Given:

i The process recipe, detailing the required path from raw materials to products

via any necessary intermediates,

ii the available units, their associated task suitability and maximum and minimum

capacities,

iii the processing time requirements for each task, as a linear function of the batch

size processed,

iv the initial inventory levels and maximum storage capacity for each state,

v the economic data of the states involved, such as raw material costs and value

of the final products and

vi the time horizon of interest or the required demand profile

Determine:

i the optimal assignment of tasks to units and their sequences

ii the batch sizes of each task,

1-8

iii their start and end times as well as their durations

which maximize the economic criteria of the process or minimize the time required to

meet the given demand.

1.6. Structure of the Dissertation

The dissertation is organised as follows:

Chapter 1 provides the background and motivation of the investigation into batch

schedule optimization. Chapter 2 contains an overview of concepts and terminology

used in the field of batch process scheduling, followed by a survey of historical model

development. In this chapter, opportunity for model improvement is identified. Chapter

3 introduces an improved mathematical model which includes an improved approach

to batch scheduling through removing a dimension of iteration during the solution of a

given problem. A detailed model is presented and explained. Chapter 4 introduces a

number of challenging or benchmark case studies commonly studied in the literature

and contains comparative results from the proposed model. This section serves as

validation for the proposed model and provides a demonstration of its advantages as

well as a summary of the results obtained during the study in graphical format. Chapter

5 draws conclusions from the outcomes of the model analysis and discussion.

2-1

Literature Review

The following chapter presents some background into the field of batch scheduling

optimization. Section 2.1 begins with an overview of optimization and the most

common and well understood principles and methods used to perform optimization,

which are not necessarily specific to batch process scheduling. Important characteristics

and the development of historical models, as well as discussion of mathematical

programming techniques specifically designed for the field of short-term batch

scheduling, are then presented in Section 2.2.

2.1. Optimization Principles for Batch Scheduling

Optimization is a study performed on a system in order to improve its performance. The

system is usually described by a number of variables which represent the various

physical characteristics of the system. These variables are related by a number of

equations and inequalities. When the number of independent equations match the

number of variables, the system is well defined and the values of all the variables are

set. A study carried out in this fashion is called simulation, whereby it is of interest to

view how the system behaves under set conditions. Otherwise there is room for variance

in one or more variables, resulting in a number of degrees of freedom in the system.

Changing these variables will affect the output of the system. At least one degree of

freedom is required for optimization. Additionally, the system should have some

performance criteria by which it can be measured, such as throughput, profit or time

required. This serves as an objective function for optimization.

2-2

2.1.1 Mathematical Programming

A very well-structured approach to optimization is that of mathematical programming.

This involves describing a physical system with purely mathematical constraints, often

algebraic. The simplest form of mathematical programming is linear programming

(LP), in which all the equations and inequalities as well as the objective function are

linear and the variables are defined over continuous ranges. A simple two-dimensional

example is shown in Figure 2-1. The system consists of two variables and one constant:

x, y and c respectively. The red, green and blue lines represent the problem constraints

which communicate the relationship between the system variables as well as their

bounds. The constraints indicate the feasible region (shaded triangle) wherein all

feasible solutions lie. The black dot is the objective function, which is a function of a

number of the system variables. The objective is to either maximize or minimize Z. In

LP, the best objective value always lies at a vertex of the feasible region.

In reality, problems are often far more complex and can be defined over thousands of

variables. This means the problem is defined over thousands of dimensions and is not

Figure 2-1. Linear Programming

2-3

possible to represent graphically. However, the principles of the LP remain the same

and the problem can be solved mathematically, with the help of powerful computing.

The standard form of the LP is given by:

𝑀𝑖𝑛 𝑐𝑇𝑥 𝑠. 𝑡. {
𝐴𝑥 = 𝑏
𝐶𝑥 ≤ 𝑑

Where x is a vector of the problem variables, c, b and d are vectors of known coefficients

and A and C are matrices of known coefficients.

2.1.2 Simplex Method

The simplex method is the most commonly used method to solve LP problems. In this

method, the problem constraints and objective function are organised into a matrix

representing the search space or feasible region. The objective function is then

evaluated at the vertices of the resulting polytope sequentially, by moving from vertex

to vertex according to the greatest rate of improvement in the objective function value.

This is done via matrix row operations until convergence criteria for optimality and

feasibility are met. Two simplex algorithms exist, namely: the primal simplex and dual

simplex algorithms. In the former, successive iterations are all feasible and successively

less suboptimal, whereas in the latter, successive iterations are successively less

infeasible and less superoptimal.

Other algorithms exist for solving LPs. The documentation for the CPLEX solver in the

GAMS user manual (28.2.0 - August 19, 2019) mentions the network optimizer, the

barrier algorithm and the sifting algorithm, however they rarely outperform the simplex

method.

2-4

Often, in engineering and other optimization problems, discrete decisions need to be

made as part of a system, such as the assignment of resources to processing tasks or the

number of stages to include in a membrane water purification system. These discrete

variables are integers and therefore are not defined continuously in the search space for

the solution. They can, however, be included in mathematical programming studies,

although special solution techniques will be required. If all the variables of a problem

must assume integer values, the mathematical program is classified as an Integer

Program (IP). If only some of the variables are integers, while others are real or

continuous, the classification is a Mixed-Integer Program (MIP). Figure 2-2 provides a

visual representation of LP, IP and MIP as well as how such restrictions can affect the

optimal solution of a problem. When the problem is linear, integer variables result in a

Mixed-Integer Linear Program (MILP). In order to solve mathematical programs

involving discrete variables, the branch and bound technique is used.

Figure 2-2. LP, IP and MIP

2-5

2.1.3 Branch and Bound Technique

The branch and bound technique maps out all combinations of integer variables as

nodes in a search tree and systematically searches through the tree for the optimal

solution. The algorithm generally exhibits an exponential relationship between the

computational time required to find the optimal solution and the number of integer

variables. In the worst case scenario, all combinations of the integer variables will need

to be considered, however, as the search progresses, more and more information is

obtained about the upper and lower bounds of the objective and this information is used

to cut unnecessary branches from the tree, significantly reducing computational time

requirements. The algorithm is displayed graphically in Figure 2-3.

Initially, the problem is relaxed and solved without any integer restrictions on the

variables. In the case of a MILP, the solution at the first node is that of a LP. In the case

of a minimization problem, this solution provides a hard lower bound on the optimal

solution.

Figure 2-3. Branch and Bound Algorithm

2-6

If the solution obtained at the first node is such that all integer variables assume integer

values, then the problem is solved and is said to have a zero integrality gap. The

integrality gap is the absolute difference between the value of the objective for the

relaxed problem, containing only continuous or real-valued variables, and for the actual

problem, containing integer variables. Usually, integer variables will take fractional

values at the first node and therefore branching occurs for each of these variables. For

each non-integral variable, a subproblem is generated with an additional constraint

stating that the variable of interest must be less than or equal to its previous value

rounded down and another subproblem is generated where the variable must be greater

than or equal to its previous value rounded up. This way, child nodes are generated, at

which the current problem is again relaxed and solved without integer variables as a

LP.

The process continues until a feasible (integral) solution is first obtained, in which all

the constraints of the original problem are satisfied. This solution provides an upper

bound on the optimal solution to the problem. From this point, when the relaxed

solution at any node is inferior to (greater than) the current best solution, it and all its

descendant nodes can be removed from the search tree. This is because the relaxed

solution at a node is always better than or equal to any solutions occurring in its

descendant nodes. Additionally, whenever imposing the additional bounds on the

integer variables results in an infeasible LP, the current node can progress no further

and is removed from the search space. The upper bound or best current feasible integer

solution is updated whenever a better one is found.

Once the entire tree has been pruned and searched, the upper bound and lower bound

will have converged and the globally optimal solution will have been found, assuming

that the problem has at least one feasible solution. Note that in the case of

2-7

nonconvexities appearing in nonlinear mathematical programs, global optimality

cannot be guaranteed.

While the branch and bound algorithm generally processes nodes based on integer

variables, some novel techniques were employed in batch schedule optimisation, such

as in a solution procedure developed by Schilling and Pantelides (1996), where the

algorithm branches on both binary and continuous variables.

The branch and bound algorithm can occur with a breadth-first search or a depth-first

search. In the former, each level is explored before descendent nodes, whereas in the

latter, all descendent nodes are exhausted before moving across to the next node on a

particular level. However, the extent to which backtracking occurs can also vary

between these two extremes in certain optimization suites, such as with the GAMS

CPLEX solver.

When the system constraints involve nonlinear relationships, a Nonlinear Program

(NLP) results. If integer variables are also present, a Mixed-Integer Nonlinear Program

(MINLP) results. Some batch scheduling formulations, especially the earlier ones,

resulted in MINLPs (Zhang & Sargent, 1996; Mockus & Reklaitis, 1997). These are

discussed in more detail in Section 2.2. These problems are generally more difficult to

solve, especially if nonconvexities exist in the nonlinear constraints, however, the

current state of batch scheduling formulations includes mainly MILP problems

(Ierapetritou & Floudas, 1998; Seid & Majozi, 2012; Lee & Maravelias, 2017).

The size of a LP is defined by the number of variables and constraints that comprise it

i.e. the number of rows and columns respectively in its matrix. The current practical

limit on the size of a LP is considered to be of the order 106 rows and columns. In order

to reduce the dimensionality of both integer and continuous variables as well as

2-8

constraints, pre-processing can be performed whereby the problem structure and

inherent relationships can be exploited. This technique can also have the effect of

improving the problem’s bounds (Biegler & Grossmann, 2004).

Despite this, however, sometimes a problem may be too large to practically solve via

mathematical modelling. In these cases, approximations may be made to reduce the

problem size and speed up computation at the expense of accuracy or the exclusion of

a set of solutions, some of which may potentially be optimal. An alternative is to use

stochastic modelling. This involves the generation of random solutions and

implementing an algorithm which randomly iterates upon the variables in an attempt to

improve the solution. This continues until a stopping criterion, such as a maximum

number of iterations or some objective improvement criterion in consecutive iterations,

is met. In stochastic optimization, there is no guarantee that the returned solution will

be optimal for the problem and performing the procedure twice will likely yield

different results for many problems.

2.1.4 Genetic Algorithm

A popular stochastic optimization method is that of genetic algorithms. This algorithm

simulates biological evolution as it iterates. A set of initial solutions is randomly

generated and the fitness of each is measured using a fitness function. This determines

the quality of the solutions and is to be minimized or maximized like an objective

function. The population of solutions then undergoes changes in their variables in order

to obtain a new set of solutions. This can occur via selection, mutation and crossover.

Selection involves retaining the best solutions from one generation or iteration to the

next. Mutation involves making random changes to the underlying problem variable

values in order to produce different results. Crossover involves producing solutions for

the next iteration by combining characteristics i.e. values of certain variables from two

2-9

parent solutions. Crossover attempts to retain strong genes from a population while

varying the other variables and mutation allows for random variance which can help

prevent solutions from becoming trapped in local optima. The algorithm proceeds over

a number of generations until an upper limit on the number of generations is reached or

until a set number of consecutive iterations produces too small an improvement. The

algorithm has been used successfully in batch scheduling applications, among others,

such as in Woolway and Majozi (2018).

2.2. Batch Scheduling

Batch scheduling involves the planning and assignment of limited shared resources to

processing tasks such that a set of products can be generated from a set of raw materials.

Tasks require a number of items in order for processing to occur. These include, among

others, a unit, the input materials and resources, such as utilities or manpower. Such

items are often limited in availability and must be shared amongst a number of

competing tasks, without the consumption levels violating the upper and lower

availability bounds. Furthermore, each task is associated with a specific processing

time, which separates the consumption and generation of items along the time

dimension. Some important considerations in performing a batch scheduling

optimization study are the time representation, the storage policy for any intermediates

required in the process and the layout of the batch plant and interconnectivity of its

tasks. These are discussed in more detail below.

Batch processes differ from continuous processes in that tasks occur in discrete intervals

and the profiles of material quantity, temperatures, flowrates and other process

variables fluctuate along a time horizon of interest. The fundamental difference between

batch and continuous processes is summarized in Figure 2-4, which has been adapted

from Majozi (2010). Figure 2-4a depicts a continuous process, in which all the units are

2-10

active constantly along the time axis. This is representative of the steady state condition

applicable to continuous processes which allows the suppression of the time dimension.

However, Figure 2-4b represents a batch process in which no steady state condition is

possible due to the discrete nature of the processing tasks. In a scheduling study, careful

placement of tasks in time must occur in order to ensure that intermediates are not

consumed or produced in infeasible quantities with respect to their relative producing

and consuming tasks.

Typically, batch processes involve a number of processing units which are each suited

to one or more specific tasks responsible for the transformation of materials. Raw

materials are the starting materials. These are processed to produce products or

intermediates. Intermediates may be stored in dedicated storage vessels in order to

debottleneck the process by allowing units to be emptied in a timely fashion and to

begin processing subsequent tasks. Intermediates are then further processed in other

tasks in a series of steps until final products are produced. Sometimes, for a particular

Figure 2-4. Continuous and Batch Processes

2-11

batch scheduling problem, some intermediates exist at the start of the time horizon of

interest, such as when there are residual intermediates from a previous cycle.

Storage policies refer to how excess material states should be managed within the batch

processing plant. These almost invariably concern how much storage is available for

the materials, although this can also be affected by unique qualities of the materials

themselves. A number of storage policies exist.

When unlimited intermediate storage (UIS) is considered for a particular state, it means

that the processing facility, or the study thereof, is not concerned with limiting the

excess available quantity of the state i.e. infinite storage availability is assumed. This

may occur when a storage vessel for a state is to be designed after information regarding

the maximum requirement for storage is determined. Therefore, the UIS policy is more

of a theoretical policy.

FIS for a state implies that a restriction is placed on the maximum excess availability

of the state at any given instant in time in order to prevent a given upper bound from

being exceeded. This occurs when a dedicated storage vessel for the state already exists

or when the maximum capacity thereof is known prior to scheduling. The FIS policy is

desirable in practice since the availability of dedicated intermediate storage often

facilitates significant debottlenecking of a process.

The no intermediate storage (NIS) policy is applied when any produced intermediates

must be consumed immediately or be temporarily stored in a processing unit prior to

consumption, since no dedicated storage vessel exists for the state. NIS is essentially a

special case of the FIS policy, where the upper bound on the quantity of stored material

is zero. The NIS and FIS policies represent the more practical storage policies in

chemical batch plants and, according to Sanmarti, Friedler and Puigjaner (1998), the

2-12

NIS policy is very common. The NIS policy is often implemented under duress due to

a lack of physical space in a batch plant to facilitate storage vessels.

The zero wait (ZW) policy applies to unstable intermediates which must be consumed

immediately upon production, without delay, in order to prevent degradation of the

material which may render it unusable. This implies that no storage is possible for these

materials.

Other classifications exist which are used less commonly. The common intermediate

storage (CIS) policy refers to the sharing of a storage vessel among a number of

different states. This is uncommon and is more appropriately considered an academic

policy due to the strict regulations on product contamination and integrity existing in

many batch production industries, such as those of food and pharmaceuticals. Process

intermediate storage (PIS) refers to the utilization of processing units as temporary

storage for a set of states (Pattinson & Majozi, 2010). Finite wait (FW) refers to an

unstable intermediate which can be stored for some maximum amount of time before it

must be consumed. Unlimited wait (UW) refers to materials which may be stored

indefinitely without degrading. States adhering to either the FIS or NIS policies also

adhere to the UW policy. The no storage (NS) policy applies to all states for which no

storage exists, however the description does not differentiate states following the NIS

and ZW policies.

Where FIS, NIS, ZW etc. states are mentioned in the remainder of this work, this refers

to the states adhering to the mentioned storage policy for a given problem.

As mentioned above, batch processes involve the transformation of raw materials

through any necessary intermediates to produce final products. This network of

predetermined processing steps is known as a batch recipe. Batch recipes can be

2-13

classified according to their characteristics which ultimately determine the structure of

the plant. The type of recipe also informs the method used to (optimally) schedule

production. In this regard, a batch plant may be described as sequential or network-

represented.

Sequential batch plants retain the unique identity of each intermediate produced as a

batch progresses along the ordered set of processing stages. This often occurs in the

automotive industry where intermediates are physical artefacts for which the

subsequent processing stage is easily identifiable. However, it can also occur in

manufacturing or chemical processes which handle fluids and in which the integrity of

produced intermediates must be ensured due to strict quality control requirements.

Network-represented processes allow batch mixing and splitting and therefore careful

consideration of intermediate quantities must be observed. Storage vessels may be used

to aggregate intermediates of the same type and therefore the unique identity and

quantity of the intermediates produced by specific instances of specific stages is not

recognisable. This often occurs when intermediates may be processed by a number of

different subsequent stages to ultimately produce different products.

2-14

A batch process recipe may also be described as single-stage, multistage or

multiproduct. Single-stage processes do not include any intermediates and simply

convert raw materials into final products via a single operation which may occur in a

single processing unit or multiple processing units of a similar type. A single-stage

process is neither sequential nor network-represented. This type of recipe is represented

in Figure 2-6a (Lee & Maravelias, 2017).

A multistage process requires a number of sequential operations which are performed

in the same processing unit or a number of different ones. There may be one or more

units per stage, allowing parallel processing. However, each product follows the same

route through the process, i.e. the same order of stages and the same set of machines

which are assigned to each stage. Multistage processes are sequential processes and are

also referred to as flow shop processes or multiproduct processes. Each stage produces

the exact quantity of intermediate needed to perform the next stage and therefore no

mixing from different batches is required. This type of recipe is represented in Figure

2-6b (Lee & Maravelias, 2017) and Figure 2-5a (Majozi, 2010).

Figure 2-5. Multiproduct and Multipurpose Batch Recipes

2-15

Multipurpose processes require a number of product-specific stages to be conducted in

a specified sequence in order to produce products i.e. each product may have a unique

number of stages which may occur in the same units but in a different order and the

same processing unit may be used more than once for the same batch. Sequential

multipurpose processes are referred to as job shop processes, however multipurpose

processes may also be network-represented processes. This type of recipe is represented

in Figure 2-6c (Lee & Maravelias, 2017) and Figure 2-5b (Majozi, 2010).

Network-represented processes are the most complex out of these classifications due to

the flexibility of merging and splitting batches through the use of inter-batch transfer

and storage vessels. A large number of processes in the batch chemical industry fall

into this category. In order to model these types of processes, a representation of the

product recipes aids in providing a basis for mathematical formulations.

In order to model the assignment and activation of tasks for a multipurpose batch plant,

with batch mixing and splitting and variable assignment of tasks to units, a framework

of event points is required. Event points mark points along a time grid where one or

more events, such as the beginning or ending of processing tasks, occur. Binary

variables are used to model the decision regarding the activation of a task at a particular

event point. As shown in Figure 2-7, a bar or rectangle represents an active task 𝑠𝑖𝑛,𝑗,

the unit in which the active task is being processed is represented by 𝑗 and 𝑝 represents

the ordered event at or in which the processing is occurring. Events written along the

abscissa indicate the individual beginning and ending events of the task, while events

Figure 2-6. Batch Recipe Classification

2-16

written inside bars indicate that the task both begins and ends at the mentioned event.

These distinct structures are sometimes termed event point or slot based structures,

however, the terms are often used somewhat freely. The difference lies in which

numbered event relates an end time variable to the start time variable for a given task,

however both structures require a variable for or to determine each time. Specifically,

the event point structure may require an additional numbered event over the slot

structure for the same problem and therefore most contemporary formulations actually

use the slot structure. However, these formulations often refer to event points or are

referred to as event-based formulations. Event points have been used in three major

classes of time representation: discrete time representation, global, continuous time

event-based representation and unit-specific, continuous time event-based

representation. These are discussed in more detail below.

Various Gantt charts, similar to Figure 2-7, are provided in the remainder of this chapter

to demonstrate concepts used in batch schedule optimization. The letters A, B and C

occurring in some of them represent a task producing one or more intermediates, a task

consuming one or more of these intermediates and unrelated tasks respectively.

In the optimization of a batch schedule, the aim is to determine the best possible

configuration of tasks in time in order to maximize product throughput in a given

Figure 2-7. Generic Schedule Gantt Chart

2-17

horizon, or minimize the time required to meet a given production demand. This has to

be achieved while considering a number of physical constraints such that the resulting

solution may actually be implemented. Some of the primary physical constraints

include that a material state cannot be consumed in a quantity greater than that which

is available at that time; that the excess available material state cannot exceed the

capacity assigned for it and that a processing unit cannot perform more than one task at

any given time. However, secondary constraints exist, such as those used to represent

possible transfers of materials between units and storage vessels. This can be a difficult

objective to achieve when just a few different products, units and resources exist for a

given batch plant. The problem requires decisions to be made regarding the assignment

of materials, units and resources to tasks, resulting in a highly combinatorial search.

This is why the scheduling of batch plants is often considered in the short term.

The question then concerns the most accurate method of modelling physically feasible

interactions while obeying the primary constraints and yet having a model which can

actually return a useable solution in feasible time. As such, models have developed by

including features to better represent reality, by facilitating interactions which were

previously ignored or by solving flaws in representations of such features. Simplifying

assumptions are, of course, also required. For instance, while batch reaction material

balances and kinetics are often modelled with differential and nonlinear equations, such

detail is often omitted in batch scheduling due to the hardships they impose on the

solution procedure. Instead, many combinatorial batch scheduling problems assume

that every processing task has a duration which is constant or at most a linear function

of the batch size which it processes. This maintains the linearity of the scheduling

problem. In practicality, it is desirable to design a tool that will provide accurate results

using rigorous methods of solution, that requires the shortest time possible. Speed is of

2-18

the essence, for example, in reactive decision making during unexpected occurrences

in plant operation.

The first attempts at improving the operating capacity or efficiency of batch chemical

production plants were concerned with multiproduct plants. The earliest efforts at

process scheduling optimization occurred in the late 1950s, however the concept only

began to gain traction in the chemical industry with the advent of the STN and

scheduling formulation by Kondili et al. (1993).

The state-task network (STN) is a bipartite graph used for the ambiguity free

representation of processes (Kondili et al., 1993). There are two types of nodes present

in the STN. Circular nodes represent different states, which are unique or distinct

materials present in the process. Rectangular nodes represent tasks which act to convert

a set of states into another set of states. Arcs display the precedence relationship

between tasks, or the order which must be followed in order to produce products from

raw materials, via any necessary intermediates. The STN includes data concerning the

ratios of the different states required to begin a task as well as those produced from a

task. It does not, however, include data concerning the capacity of units in the process

or processing time data. A commonly studied, network-represented batch process is

depicted in Figure 2-8.

Figure 2-8. STN for a Network-Represented Batch Process

2-19

Based on the STN, Kondili et al. (1993) developed a MILP for the determination of an

optimal production schedule. The MILP was distinguished from its predecessors in its

ability to address concepts present in multipurpose batch plants, including batch mixing

and splitting, the assignment of units to tasks, variable batch sizes, using a unit for

different tasks at different times and combinations of various storage policies. The

model employs discrete-time representation.

In discrete, or even time representation, the time horizon is divided into even intervals

of pre-specified duration. The ordinalities of the events are then exactly related to the

times at which the events occur. A binary variable is defined for each task (in each

applicable unit) at each potential event and activation of the task is represented by

setting the binary variable to a value of 1. This class of time representation is displayed

graphically in Figure 2-9.

The drawback of this approach is that a large number of binary variables are required

in many cases. This impacts heavily on the duration of the solution procedure.

Additionally, this technique does not allow for continuously variable processing time

due to the predetermined event points at which events can start or finish. Therefore, a

degree of inaccuracy may be present in the timing of tasks. However, a major advantage

is the ease with which time-varying aspects can be accounted for, such as intermediate

due dates, that is, product demands occurring before the end of the time horizon of

interest, and changes in raw material or utility availability.

Figure 2-9. Discrete/Even Time Representation

2-20

Pantelides (1994) introduced the resource-task network (RTN) framework for

mathematical formulations and demonstrated how all process resources, such as

material states, utilities, equipment and manpower can be addressed uniformly. The

RTN expands on the STN by including a wider range of states, known as resources

(Pantelides, 1994). These include material states of the STN as well as equipment units,

utilities, availability of manpower etc. This is demonstrated in Figure 2-10 where

equipment units are included as resources. The tasks are shown to consume the unit

resource and regenerate it (upon completion of the task).

The author also demonstrated how a wider array of process scheduling problems can

be modelled by a single common formulation based on the RTN framework than is

possible with one based on the STN framework. The latter often requires specialized

constraints in order to address resource utilization and the many novel types of process

scheduling problems. Finally, the RTN formulation proposed was shown to be

computationally superior to equivalent STN formulations. This is due to its ability to

Figure 2-10. RTN for a Network-Represented Batch Process

2-21

express tasks occurring in multiple units of the same type with a single binary variable.

The result is both “smaller linear programming relaxations” and “reduced integer

degeneracy in the solution of the MILP” (Pantelides, 1994). The formulation was still

based on a discrete representation of time, however, resulting in the same issues of

approximating the time dimension and the large problem size. The RTN is still used in

more recent formulations, however it is not as popular as the STN.

An alternative framework was postulated by Smith and Pantelides (1995) which

became known as the state-equipment network (SEN). The SEN is an approach to

flowsheet and recipe representation (Smith & Pantelides, 1995). It assumes the material

states and choice equipment units are known and these are represented as nodes on a

diagram. Full connectivity between the equipment nodes exists. When used in batch

scheduling, a sequence of tasks, or operating modes, are assigned to the units during

optimization. Due to the use of detailed unit operation modelling associated with the

SEN, no fixed mixing or splitting ratios of input and output states are pre-specified on

the SEN. A simple representative example is given in Figure 2-11 (Nie et al., 2012).

As before, a superstructure is generated with state nodes and, this time, equipment

nodes. Full connectivity between equipment units is assumed. The authors discussed

how the SEN facilitates the inclusion of detailed unit operation modelling, which is

advisable in order to obtain more accurate results which are more readily implemented

and realised in practice. Originally, the SEN was intended for design and synthesis

Figure 2-11. State-Equipment Network

2-22

optimization of continuous processes, however it was adapted to batch plant scheduling,

such as in the formulation by Nie et al. (2012). This formulation implements rigorous

detailed modelling of batch processes through dynamic optimization simultaneously

with the scheduling aspect. The main difference in the scheduling module is that many

variables, such as batch size and timing variables, are defined over units instead of tasks

(like in the STN) which reduces the problem size when a unit may perform multiple

tasks. Nonetheless, the popularity of the STN remained in future formulations due to

the prioritization of tactical scheduling decisions over more accurate unit operation

modelling as well as the lack of any significant advantage of the SEN in terms of

generality and computational performance.

To overcome the limitations of the discrete-time representation, continuous or uneven

time representations were developed. In continuous time representation, the exact

positions of the events in time are not known beforehand, except that they are

chronological, and the intervals are not necessarily equal. The spacing and positioning

of the events are subject to optimization. Therefore, in this type of time representation,

one or more continuous variables are declared for each event and used to describe the

exact time at which the event occurs.

These techniques significantly reduce the number of binary variables required for

scheduling and facilitate improved accuracy in the representation of time (Majozi,

2010). Redundant events are eliminated by allowing the assignment of events only to

the start and end times of tasks as required. Continuous time variables match the ordered

events to their placement in actual time, allowing the timings of tasks to vary

continuously without being forced into predefined slots with predefined durations.

However, these formulations require numerous big M constraints which increase the

integrality gap of the model, thereby exacerbating the search for global optimality.

2-23

Continuous time formulations can be further categorised into global event point and

unit-specific event point formulations. The latter is discussed in detail later, however,

the former uses a common time grid for all units, thereby facilitating simple tracking of

excess quantities of materials, units and resources. In global event-based time

representation, sequencing constraints exist in order to ensure the chronological

progression of each event and to allow tasks to continue over a number of adjacent

events. Global continuous time event-based time representation is displayed in Figure

2-12.

Zhang and Sargent (1996) developed the first continuous time formulation for general

network-represented processes based on the RTN. The formulation addressed batch as

well as continuous processing and used monotonically increasing event points over a

global time horizon. In order to address sequencing and timing of tasks, the formulation

incorporated multi-dimensional binary variables as well as nonlinear, nonconvex

products of variables. The authors also discussed solution techniques for the resulting

large MINLPs.

Similarly, Mockus and Reklaitis (1997) developed a continuous time based formulation

for general network-represented processes, however it was based on the STN. The

authors included constraints to address limited renewable and non-renewable resources

such as utilities and manpower. The resulting formulation contains bilinear terms,

resulting again in large scale, nonconvex MINLP problems which can be linearized in

Figure 2-12. Global Event Continuous/Uneven Time Representation

2-24

the case of simple objective functions. Otherwise, for problems involving the

minimization of storage or utility costs, a modified outer approximation algorithm was

proposed for the solution. The authors noted how the computational effort required for

the solution of a particular problem is not always correlated to the problem size i.e. the

number of binary and continuous variables and constraints, but that the problem

structure and the values of the parameters also play an important role.

Schilling and Pantelides (1996) developed an RTN-based, continuous time, global

event formulation for the scheduling of general network-represented batch plants.

Instead of representing time using events spaced non-uniformly along the time horizon,

the boundaries of which represent the start and end times of tasks, the formulation

utilizes time slots of unknown duration. Additionally, the formulation requires that, in

cases where multiple instances of a task begin at the same time, all of the instances must

process the same quantity of material and therefore must be processed for the same

duration. The formulation results in a MINLP with bilinear terms including products of

binary and continuous variables, which can be readily linearized using the

transformations in Glover (1975). The authors also proposed a novel solution procedure

whereby branching occurs on the continuous variables for slot durations as well as

binary ones in order to tighten the bounds on these variables.

An alternative to event or slot based formulations is that of precedence-based

scheduling techniques. Perhaps the most noteable of these is the schedule-graph, or S-

graph, developed by Sanmarti et al. (1998). The S-graph is a very computationally

efficient method of representing and scheduling a class of multipurpose batch

processes.

The framework is used in depicting network-represented processes and consists of

nodes for process tasks and arcs indicating precedence relationships between the tasks.

2-25

There is one node for each stage of a product batch plus one additional node to indicate

the completion of the batch. Each node contains information regarding the node identity

and the unit in which the task occurs. The arcs may occur for two reasons: a recipe

precedence relationship, existing due to the required order of processing a batch to

correctly produce a product and/or equipment scheduling, which specifies the sequence

of tasks occurring in a given unit. The arcs also contain information relating to the

duration of tasks or required delay before units can be used. An example S-graph is

displayed in Figure 2-13.

Using the S-graph, Sanmarti et al. (1998) developed an algorithm which determines the

minimum makespan required for a given product demand. A branch and bound

technique is used where a lower bound for the makespan is computed using only recipe

precedence relationships and a longest path algorithm. Tasks are then arbitrarily added

to a given unit’s sequence, thereby generating a branch. The longest path algorithm is

implemented to determine the makespan at each node and an infeasibility detection

algorithm is applied. Once an entire schedule is obtained, an upper bound is computed

and suitable branches can be pruned. If unlimited waiting time for intermediates

produced in tasks is impossible, a LP is solved to determine the makespan instead of

the longest path algorithm. Once the entire tree has been explored, the optimal solution

is determined. Due to the relative simplicity of the algorithms involved, compared to,

Figure 2-13. Schedule-Graph

2-26

say those of solving MILPs, the algorithm is computationally efficient, especially when

unlimited waiting times are assumed. However, in this approach, the applicability of

the S-graph is limited to scheduling of processes with a prespecified number of batches

for each product. It follows that profit maximization cannot be applied. Additionally,

while the UIS and NIS policies are readily handled, the S-graph cannot be applied to

processes requiring the FIS policy. Finally, constant processing times of each task must

be specified a priori. Due to these limitations, event or slot based formulations are

preferable over precedence based scheduling techniques for more general batch process

scheduling.

Majozi and Friedler (2006) developed an algorithm based on the S-graph to facilitate

varying numbers of product batches to be used in profit maximization studies. This was

achieved by fixing the time horizon and searching combinations of the number of

batches of each product against time-horizon feasibility criteria. A number of insights

derived from the representation of the number of batches in a multidimentional plane

facilitated extensive exclusion of suboptimal and infeasible possibilities from the

subsequent schedule generation algorithm, thereby greatly improving computational

performance over competing techniques. The methodology still requires fixed batch

sizes and cannot be used for problems involving the FIS policy, however, approaches

based on the S-graph constitute the only truly continuous time techniques due to their

not requiring prespecification of the number of time or event points.

A further improvement to the representation of time in event-based, batch scheduling

formulations was heralded by Ierapetritou and Floudas (1998), who proposed a STN-

based, continuous time formulation for general network-represented processes. This

formulation introduced the novel concept of a unique time grid for each unit in a given

problem, allowing different tasks in different units which start at the same event to start

2-27

at different actual times. This means that the chronological ordering of two events

occurring in different units does not imply anything about the relative timing of the two

tasks. The authors also proposed the novel concept of decoupling task events from unit

events. Additionally, the authors postulated the elimination of unnecessary binary and

continuous variables by examining and pre-processing the STN for tasks which cannot

take place at, or which do not provide value at certain events. The formulation

drastically reduced the number of binary and continuous variables by eliminating

unnecessary events at which certain tasks do not occur in certain units. This in turn

reduced the computational time required to solve a given problem and afforded

increased schedule flexibility. However, this asynchronicity requires complicated and

stringent sequencing constraints in order to accurately monitor material and resource

inventories. Unit-specific event-based time representation is displayed in Figure 2-14.

The additional sequencing considerations, which are required in unit-specific event-

based formulations to manage production – consumption task couples, can result in

difficulties regarding the FIS policy. In order to address this, the authors considered the

addition of storage tasks and storage units to rigorously monitor the excess quantities

of intermediate states.

Lin and Floudas (2001) proposed a continuous time, unit-specific event-based

formulation, based on the STN which addressed the simultaneous synthesis, design and

scheduling of multipurpose batch plants. The objective, among other possibilities, is an

Figure 2-14. Unit-Specific Continuous/Uneven Time Representation

2-28

economic minimization involving capital costs of dynamically chosen operating units

offset by profits obtained via the production scheduling. The scheduling aspects of

many of the constraints are based on those by Ierapetritou and Floudas (1998) and

storage tasks are used to accurately model FIS considerations. However, the duration

constraints for processing times and the cost functions for units include nonlinear terms

in the form of powers of variables. The authors discuss how the resulting nonconvex

MINLPs can be transformed into convex lower-bounding problems, thereby facilitating

the ability of the model to determine globally optimal solutions in many cases.

Majozi and Zhu (2001) proposed an adapted STN, namely the SSN, in which only state

nodes are required. This is due to the insight that the transformation of one state to

another implicitly indicates the presence of a task and corresponding unit.

The state-sequence network (SSN) is also a method of recipe representation wherein

only one type of node is required: the state node (Majozi & Zhu, 2001). This is due to

the fact that two connected state nodes indicate a transition and imply the presence of a

task and unit. The same batch process represented above using the STN and RTN are

shown in Figure 2-15 with the SSN.

Figure 2-15. SSN for a Network-Represented Batch Process

2-29

The resulting continuous time, unit-specific event-based MILP formulation proposed

requires only the definition of assignment binary variables based on an effective input

state to a task and the event at which the task occurs – 𝑦(𝑠, 𝑝). An effective state is

defined as one of the states required by the task and represents the subset of such states.

However, this definition is effectively the same as a task, even for cases where a task

can be performed in multiple units. This is because such tasks can be treated as separate

tasks, resulting in a one to one task-unit ratio (Ierapetritou & Floudas, 1998). The result

is that SSN-based formulations require the same number of binary variables as STN-

based formulations and therefore the latter have remained more prevalent in recent

batch scheduling models. The authors also discussed an alternative representation of

task duration based on various influencing factors such as catalyst health, raw material

purity and operator response time. Finally, the authors demonstrated how the use of

aggregate modelling for multiple units of similar performance can be used to reduce the

problem size without compromising accuracy in a number of examples.

Maravelias and Grossmann (2003) developed a continuous time, global event point

formulation for the optimal scheduling of multipurpose batch plants based on the STN

representation. This formulation, due to the use of the global event point approach, can

easily facilitate consideration of resources. The authors discuss how global event point

formulations are more general than unit-specific ones and can therefore find better

solutions in certain examples, however they acknowledge the advantages that the latter

afford in terms of model size and computational performance. Nevertheless, the

solution times in the examples studied were of comparible values. The authors also

introduce tightening constraints aimed at reducing the integrality gap associated with

big M constraints and discuss their mechanisms in leading to improved solution

2-30

performance. The formulation addresses post-processing unit wait for tasks as well as

sequence dependant changeover times and costs.

Post-processing unit wait, shown in Figure 2-16, is simply the ability of a unit, having

performed a task, to continue to hold any produced intermediates subsequent to the

completion of the task i.e. the unit is active for a duration exceeding the task’s

processing time. This introduces additional flexibility into resulting schedules by

providing temporary storage for the produced intermediates and facilitating discharge

at more convenient times. Note that this concept is not applicable to ZW intermediates.

Storage vessels that can store one of a set of states are also addressed. Finally the authors

discuss how makespan minimization problems are more computationally complex than

profit maximization problems.

Floudas and Lin (2004) provide a review of developments in scheduling frameworks

and formulations, which includes the major shift from discrete to continuous

representations of the time horizon. Formulations by various authors are discussed

while distinguishing and explaining key batch scheduling considerations such as

sequential and general network-represented processes as well as global and unit-

specific event-based formulations. The authors discuss how continuous time

representations provide better computational performance by overcoming the

challenges of explosive binary dimensions and approximations of the time horizon

inherent in discrete-time representations. Furthermore, they note that while unit-

specific event-based formulations tend to perform best in terms of computational time,

Figure 2-16. Post-processing Unit Wait

2-31

they require more complex sequencing constraints. However, continuous time

formulations suffer from uncertainty regarding the globally optimal solution and a

sufficient stopping criterion for the iterations through the number of event points

considered. This is because better solutions may exist when more event points are

considered.

Janak et al. (2004) developed a unit-specific event-based continuous time formulation

based on the STN process representation. The authors introduced the concept of task

splitting for unit-specific event-based formulations.

Task splitting, as demonstrated in Figure 2-17, refers to the assignment of an active task

over a number of consecutive event points. In Janak et al. (2004), this increased the

flexibility of resulting schedules by allowing tasks of different duration to begin at the

same event. The concept is important in discrete time as well as global continuous time

event-based formulations, due to the fact that all tasks beginning at a given event also

begin at the same time. However, Janak et al. (2004) show how this is also important

in unit-specific event-based formulations in order to accommodate accurate modelling

of limited resource utilization.

The formulation is an extension of that in Ierapetritou and Floudas (1998) in that it

addresses limited resources other than material and equipment, however in order to

accomplish this, all tasks that consume a resource and that begin at a given event are

forced to begin at the same time. The formulation uses two binary variables to indicate

the start and end events of tasks, however it also utilises a continuous variable which

determines whether or not a task is active at each event. This facilitates the splitting of

Figure 2-17. Task Splitting

2-32

tasks over a number of event points while monitoring batch sizes and related variables.

Additionally, storage tasks are used to accurately monitor the quantity of excess FIS

states stored in dedicated storage units at a given point in time as they are produced and

consumed by tasks at asynchronous events. As per resource consumption, all tasks

beginning to consume a state at a given event must begin at the end time of the storage

task for that state. The formulation is capable of effectively handling intermediate due

dates by allowing the solver to select which tasks and which events are relevant for the

production of a given order by a given time. Finally, the formulation contains many big

M constraints as well as constraints written for every pair of events (𝑝, 𝑝′), 𝑝′ ≥ 𝑝

which can be explosive in larger, more complex problems.

Janak and Floudas (2008) discuss how task splitting is required to address FIS

scheduling, especially in certain examples containing recycle streams, in addition to

addressing resource considerations. Partial task splitting, defined as only allowing

tasks which produce or consume FIS states or recycled states, is implemented. The

authors present a hybrid unit-specific event-based, continuous time formulation which

combines the formulations of Ierapetritou and Floudas (1998) and Janak et al. (2004)

in order to incorporate partial task splitting. The authors also introduce a number of

techniques in the effort to reduce the large integrality gap inherent in unit-specific

continuous time formulations. These include the pre-processing of a given STN in order

to remove as many unnecessary binary and continuous variables as possible; the

addition of tightening constraints and valid inequalities to bound the sums of key

variables, the bounds of which are determined from the overall problem’s relaxed

solution as well as through the solution of supporting subproblems; and the

implementation of a reformulation linearization technique which allows for tighter

relaxations.

2-33

Shaik and Floudas (2008) presented the first unit-specific event-based continuous time

formulation based on the RTN which supports the FIS policy without the need for

considering storage as a separate task. This facilitated the elimination of binary and

continuous variables as well as constraints which were previously necessary in order to

address the FIS policy. This is accomplished by enforcing a zero-wait policy between

production – consumption task pairs occurring at adjacent events for the same FIS state.

The authors also propose a constraint to ensure that the starting time of consuming tasks

is equal to the finishing time of producing tasks at the same event, in order to avoid

real-time storage violations.

Shaik and Floudas (2009) proposed a novel formulation based on the STN for

addressing both problems with and without resources in a unified way using three index

binary and continuous variables to represent the start and end times of tasks. Again this

is accomplished by enforcing that all tasks beginning or ending at a given event which

produce or consume the same non-material resource must begin or end at the same time.

The authors demonstrate the importance of allowing tasks to split over multiple events,

even in unit-specific continuous time formulations without resource considerations, in

order not to exclude globally optimal solutions in certain examples. A splitting

parameter, ∆𝑃 in this work, is used to limit the maximum number of events over which

a task is allowed to continue in order to control the problem size. However, this

approach has a number of limitations. The splitting parameter has the ability to truncate

the problem to the extent where potential globally optimal solutions may be excluded.

Additionally, it requires that a nested iteration procedure be conducted through both ∆𝑃

and the maximum number of events considered for a given problem. This compounds

the computational time and complexity of the solution procedure.

2-34

Pattinson and Majozi (2010) proposed some modifications to the formulation by Majozi

and Zhu (2001) whereby the latent storage available in idle processing units could be

utilized i.e. the PIS policy. Through application to a case study, the authors

demonstrated that throughput could be improved by 50% when no dedicated storage

vessels were present and that a 20% reduction in dedicated storage capacity could be

achieved for a given throughput. Additionally, the concept was extended to the design

of a multipurpose batch plant in a second case study. The concept clearly facilitates

improvements in the scope of what is practically achievable in a batch production plant,

however it has not featured in subsequent formulations. This is presumably due to the

large increase in model size which results from the implementation of the PIS, with

solution times increasing by a factor of 30 and 2 in the first case study compared to

when PIS is not implemented. Furthermore, the design case study was reported to

require a solution time of over three hours.

Vooradi and Shaik (2012) improved the formulation of Shaik and Floudas (2009) by

introducing the concept of active task, thereby reducing the number of constraints and

big M terms required. A number of improvements in the allocation, duration and

sequencing constraints were also incorporated.

Seid and Majozi (2012) proposed a robust continuous time scheduling formulation

based on the SSN. The formulation facilitated non-simultaneous material transfers or

pre-processing unit wait, which is another important concept requiring explicit

consideration and deliberate implementation in batch scheduling models.

2-35

Pre-processing unit wait is the ability to allow a task producing an intermediate

(producing task) to transfer the intermediate to another unit in which it will

subsequently be consumed, prior to the commencement of the consuming task. This

allows debottlenecking of the producing unit and is especially effective when multiple

intermediates, produced in different multipurpose units are required for a consuming

task. This is demonstrated in Figure 2-18.

Additionally, the formulation relaxed sequencing of production – consumption task

pairs at adjacent events where the produced material is not directly required for the

consuming task i.e. partial conditional sequencing was introduced.

Up to this point, batch scheduling formulations were predicated on unconditional

sequencing, where all tasks which consume an intermediate must be sequenced in time

to follow any tasks producing the intermediate (e.g. Ierapetritou & Floudas, 1998;

Vooradi & Shaik, 2012). This is done in order to facilitate the FIS policy, however it

excludes potential sequencing opportunities. Thus conditional sequencing, which

sequences producing – consuming task pairs only when transfer occurs between them,

was developed in order to obtain higher quality solutions. However, further

complications in model formulation are required in order to achieve this. Figure 2-19

demonstrates a producing task and a consuming task (of the same intermediate) at

adjacent events which do not respectively supply and consume the same specific batch

of any intermediates and are therefore not sequenced accordingly. The figure also

Figure 2-18. Pre-processing Unit Wait

2-36

demonstrates a pair which is sequenced due to the existence of such transfer. The former

may occur if the feed material to the consuming task is available from other sources.

However, for the model in Seid and Majozi (2012), in cases where produced material

is required in an adjacent consuming task, all consumption tasks at the following event

are aligned with the producing task, hence the term partial conditional sequencing.

Sequencing was also relaxed where sufficient storage space is available for produced

states, thereby not requiring the consuming task to begin immediately after production.

These conditional sequencing aspects overcome drawbacks in previous methods of

modelling the FIS policy, thereby facilitating more accurate solution of certain

problems with fewer events, resulting in better objective values in shorter CPU times.

The model also simulated task-splitting by allowing units to continue to hold the

materials they produced for subsequent events before eventual discharge at a later and

more convenient event. However, the formulation lacked rigorous sequencing

constraints to prevent real-time storage violations through the overlapping of pre- or

post-processing unit wait with actual processing in a unit.

Vooradi and Shaik (2013) improved conditional sequencing by introducing rigorous

conditional sequencing in which material flows between individual production –

consumption task pairs are accurately monitored. This allowed only specific

consumption tasks to be conditionally sequenced while others could be sequenced more

flexibly. The model is structurally based on that of Vooradi and Shaik (2012) and Shaik

Figure 2-19. Conditional Sequencing

2-37

and Floudas (2009) before it. The formulation also addressed FIS violations that were

present in the formulation by Seid and Majozi (2012). This formulation uses three-index

variables and a splitting parameter similar to the formulation by Vooradi and Shaik

(2012).

Shaik and Vooradi (2017) reformulated constraints in order to facilitate material

transfer at the same event, unlike previous formulations which were predicated on

material transfer at adjacent events. The model is also structurally based on the three-

index formulation of Shaik and Floudas (2009) and uses a parameter to indicate the

maximum number of events over which a task can split. The model is not capable of

handling problems involving recycle streams however a hybrid approach was

implemented in order to deal with states involved in recycle loops. The model provides

substantial decreases in the required number of events to solve many multiproduct

problems, however it is not capable of solving certain multipurpose problems involving

the production and consumption of a state in the same unit to global optimality, due to

the modelling of material transfer at the same event.

Similarly, Rakovitis et al. (2018) proposed a formulation where production-

consumption task pairs are allowed to occur at the same event for tasks not involved in

recycle loops. The constraints are much the same as those in Shaik and Vooradi (2017)

except that the FIS policy is not adequately dealt with due to the lack of constraints

regarding the maximum stored capacity of FIS intermediates. Additionally, a more

comprehensive definition of recycling tasks is used.

The model was expanded by Rakovitis et al. (2019) to address conditional sequencing.

Noteably, this formulation allows for intermediates to continue to wait in the units

which produced them for a number of events while providing the necessary sequencing

restrictions to allow the material to be extracted in fractions from the units.

2-38

Fractional extraction, demonstrated in Figure 2-20, refers to the ability of a unit to

discharge one or multiple of its produced intermediates in fractions at different events

and times. This can occur in multiple stages. The processing unit continues to hold the

remaining portions of these intermediates until it is more convenient to discharge them

to storage or to consuming tasks and therefore no subsequent tasks should occur in this

unit until it has been completely emptied. Fractional extraction improves the flexibility

of resulting schedules and addresses major drawbacks of previous formulations.

However, in the model by Rakovitis et al. (2019), a binary variable is used for every

unit at every event where intermediates may be temporarily stored. The formulation

also uses the three index technique to address task splitting and does not include pre-

processing unit wait or address ZW states.

The foundations for fractional extraction were present in the formulation by Seid and

Majozi (2012), however it only become completely functional in the model by

Rakovitis et al. (2019). It is developed further in this work.

Lee and Maravelias (2017) developed two MILPs for the scheduling of multipurpose

batch processes belonging to the sequential environment. This is a class of problems in

which batches are processed by one or multiple units in parallel through one or multiple

product-specific stages and where batch mixing and splitting is not allowed. The

authors addressed two drawbacks of previous formulations for this class of problems

i.e. the simultaneous consideration of batching decisions and scheduling as well as the

consideration of limited intermediate storage. The formulation is based on a discrete

Figure 2-20. Fractional Extraction

2-39

representation of time which facilitates the ability of the model to address time-

dependent availability of renewable resources. The formulation also allows the

modelling of stage-dependent batch sizes however it assumes constant batch processing

times for all tasks. A detailed comparison is performed comparing two types of models.

In the first, all sub-batches for a given order are labelled explicitly and scheduled

independently. In the second, feasible batch size intervals are identified to form bounds

on the sizes of each sub-batch for a given order. This provides guidelines which should

be used to model a given problem. It was shown how large scale problems, for which

the time horizon is defined over hundreds of hours and for which hundreds of thousands

of discrete variables are involved, can be solved for the minimization of cost, earliness

or makespan in reasonable time.

Woolway and Majozi (2018) developed a novel scheduling framework by

implementing a stochastic metaheuristic approach involving a coupled-chromosome

genetic algorithm. The technique is aimed at addressing the scheduling of multipurpose

batch facilities including tasks with variable processing times. It was shown to be very

effective in drastically reducing the computational time requirements for large instances

of two commonly studied examples to mere seconds. This is due to the fact that the

algorithm does not scale exponentially with increased problem size. However, its

stochastic nature did result in slightly inferior solutions compared to the MILP

formulation it was tested against (Seid & Majozi, 2012).

Lee and Maravelias (2018) developed a scheduling algorithm for multipurpose batch

processes belonging to the network environment which combines the relative strengths

of continuous- and discrete-time formulations while overcoming their drawbacks. The

algorithm consists of three stages: in the first stage, a discrete-time formulation is solved

without too small a discretization interval in order to obtain an approximate solution.

2-40

In the second stage, a mapping algorithm is used to identify the activity of units and

states present in the solution from the first stage for use in the third stage. This allows

binary variables to be eliminated. In the third stage, resolution of timing variables is

performed via the solving of a LP in order to improve the accuracy and quality of the

original solution. The authors consider objective functions of profit maximization, cost

minimization and makespan minimization. Discrete-time formulations allow for the

straight forward modeling of time-varying resource availability and intermediate

delivery and demand scenarios. This advantage is retained in the proposed

methodology, while speedy solution times for large scale problems is facilitated. The

algorithm assumes the UIS policy for intermediate states.

Puranik et al. (2018) present a systematic approach for the determination of infeasibility

sources in the modelling of multipurpose batch processes. The aim is to identify

constraints or groups of constraints which cause infeasibility in a model status.

Specifically, constraints related to insufficient raw material, insufficient time horizon

for processing or insufficient available capacity for processing intermediates, especially

ZW intermediates form part of the investigation. An algorithm, referred to as the s-

filter, which is an extension of the deletion filter for infeasibility analysis, is presented

in order to isolate infeasible sets (IS) of constraints. Guidelines are given for pre-

processing of the constraints performed for determining inviolable constraints,

constraint weighting/ordering and constraint grouping, in order to facilitate the s-filter

algorithm and improve the computational performance of the infeasibility analysis. The

algorithm operates by successively eliminating groups of constraints and determining

if the model is still infeasible. Unnecessary constraints (which do not render the

infeasible model feasible) are eliminated until a small subset of constraints remains (the

IS). The algorithm can be applied successively to determine multiple independent

2-41

infeasibilities. The authors discuss how the results can be meaningfully presented to

plant operators with little to no optimization experience so that decisions can readily be

made on how to correct the infeasibility.

2.3. Conclusions

The capability of a model to allow tasks to split, or to consume input states at a given

event and produce output states at some later event, even for unit-specific event-based

formulations, is very important as evidenced by a number of examples which cannot be

solved to global optimality otherwise. The technique has been successfully achieved in

a number of unit-specific event-based formulations using three-index binary variables,

containing two indices for event points. For larger problems, defining binary variables

for combinations of two event points (𝑝, 𝑝′), 𝑝′ ≥ 𝑝 can lead to extremely large and

often intractable problems. Therefore, in order to render more complex problems

tractable, a limit on the maximum number of events over which a task can split is

imposed. This is done through the use of a splitting parameter, referred to as ∆𝑃 in this

work, which reflects this maximum number of events over which a task can split. It is

not possible to know the optimum value of ∆𝑃 a priori, therefore it is determined

iteratively. This iterative procedure is terminated, similar to the determination of the

number of event points, by increasing its value until no change in the objective value is

obtained for a given number of consecutive iterations.

While the issue of uncertainty regarding the globally optimal solution is ever present in

event-based formulations, due to the potential of hidden superior solutions at a higher

number of events, this problem is worsened through imposing the additional limit on

the maximum number of events over which a task can split. Moreover, computational

time requirements are also aggravated through the nested iteration present in these

formulations. This effect has not been well investigated or discussed in the literature.

2-42

The present work is aimed at overcoming this limitation by simulating the concept of

task splitting over any number of events without requiring increasing numbers of binary

and continuous variables and iteration through ∆𝑃. This is done while incorporating the

concepts of rigorous conditional sequencing, pre- and post-processing unit wait and

fractional extraction.

3-1

Mathematical Model and Constraints

3.1. Introduction

The proposed model is capable of multipurpose batch scheduling for profit

maximization or makespan minimization in general problems involving stream splitting

and mixing, multiple units suitable for a given task, single units suitable for multiple

different tasks, different storage policies such as FIS, ZW and NIS and any number of

tasks with variable consumption and production ratios for any number of input and

output streams. The model is capable of allowing pre- and post-processing unit wait

and rigorous conditional sequencing. Task splitting is facilitated by allowing units to

continue to hold material over multiple events, even for ZW states, without the need for

separate indices to describe the start and end events of the task and without prefixing

the maximum or iterating through the number of split events. Furthermore, the proposed

formulation allows states to be fractionally extracted from a unit, thereby allowing a

portion of produced states to wait for storage or transfer, or in the case of multiple

products produced in a task, for some states to be removed while others continue to

wait. The objective is for the proposed batch scheduling model to obtain better and

more consistent solutions in faster time by allowing more flexibility and being more

computationally efficient than existing models.

3.2. Assumptions

In the proposed formulation, tasks begin and end at the same event. Intermediates enter

storage at the event after which they are produced, however products enter storage at

the same event. This handling of intermediates is crucial for obtaining the globally

3-2

optimal solution in some multipurpose batch production setups where a state can be

produced and consumed in the same unit, such as Example 5 appearing in Section 4.2.5.

Additionally, it is assumed in this model and examples under study that raw materials

are available as and when required and that there is unlimited storage available for

product states. Simple constraints can readily be incorporated to restrict the raw

material consumption or product storage if necessary. It is further assumed that profit

maximization or makespan minimization occurs over a single cycle. Therefore, NS

states, which are ZW and NIS states, cannot be consumed at the first event and ZW

states cannot be produced at the last event. All variables and constraints relating to such

tasks are eliminated in pre-processing before solving the model via rigorous exclusion.

This means that, wherever possible, certain constraints are not written for certain states,

units, tasks or events and other constraints are reduced to exclude unnecessary terms. If

the model is to be applied to cyclic systems, these constraints can be relaxed. As such,

generalised pre-processing is performed for every example under study. The

elimination of STN-specific tasks relating to tasks which cannot be performed or which

do not add value at certain events, as proposed by Janak and Floudas (2008), is not

performed. Finally, the proposed model does not include specific consideration for UIS

states as this storage policy is the simplest and easiest to handle. It has been addressed

at length in the literature. If the proposed model is to be applied to case studies involving

UIS states, simple amendments can be made to the constraints or UIS states can be

treated as FIS states having a very large dedicated storage capacity.

3.3. Model Constraints

The proposed model is comprised of the following constraints, which are expressed

below in written equations. The constraint and equation number are the same.

3-3

3.3.1 Allocation Constraints

Constraint 1 states that a maximum of one task can begin in a unit 𝑗 at any given event

𝑝. This allows for situations in which no task begins in unit 𝑗 at event 𝑝. The constraint

is written for every unit 𝑗 at every event 𝑝 where more than one task is possible.

 ∑ 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽
𝐽

≤ 1, ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃
(1)

3.3.2 Capacity Constraints

Constraints 2 and 3 respectively limit batch sizes for every task to be between their

maximum and minimum capacities if the task is active and equal to zero otherwise.

 𝑚𝑢 (𝑠𝑖𝑛,𝑗 , 𝑝) ≤ 𝑉𝑈(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝), ∀ 𝑠𝑖𝑛,𝑗 ∈ 𝑆𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃 (2)

 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) ≥ 𝑉𝐿(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝), ∀ 𝑠𝑖𝑛,𝑗 ∈ 𝑆𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃 (3)

3.3.3 Material Balance Constraints

Constraints 4 and 5 are only written for tasks which consume states in variable ratios.

The variable 𝑚𝑐
𝑉(𝑠, 𝑠𝑖𝑛,𝑗, 𝑝) is defined for each state consumed in these tasks and must

lie between the minimum and maximum allowed ratio for the state if the task is active

i.e. if 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) is positive. Otherwise it is equal to zero.

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≤ 𝜌𝑐

𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝), ∀ 𝑠 ∈ (𝑆𝑅 ∪ 𝑆𝐼), 𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃 (4)

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ 𝜌𝑐

𝐿 (𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝), ∀𝑠 ∈ (𝑆𝑅 ∪ 𝑆𝐼), 𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃 (5)

Constraints 6 and 7 are similar to 4 and 5 but apply to tasks which produce states in

variable ratios. This occurs, for example, in the Westenberger-Kallrath problem

(Kallrath, 2002).

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≤ 𝜌𝑝

𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝), ∀ 𝑠 ∈ (𝑆𝐼 ∪ 𝑆𝑃), 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃 (6)

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ 𝜌𝑝

𝐿 (𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝), ∀ 𝑠 ∈ (𝑆𝐼 ∪ 𝑆𝑃), 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃 (7)

3-4

Constraint 8 ensures that the total batch size for tasks which consume states in variable

ratios is equal to the sum of its parts. Constraint 9 does the same for tasks which produce

states in variable ratios.

 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) = ∑ 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠 ∈ 𝑆𝐽
𝑐

, ∀ 𝑠𝑖𝑛,𝑗 ∈ 𝐶𝑖𝑛,𝐽
𝑉 , 𝑝 ∈ 𝑃

(8)

 𝑚𝑢 (𝑠𝑖𝑛,𝑗 , 𝑝) = ∑ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠 ∈ 𝑆𝐽
𝑝

, ∀ 𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽
𝑉 , 𝑝 ∈ 𝑃

(9)

Constraint 10 is written for all raw material states and calculates the total required

quantity of each over the time horizon of interest. This quantity is contributed to by

tasks which consume it in both variable and constant ratios. In the case of constant

ratios, the upper bound for the ratio of the state consumed in the task is used.

𝑞𝑇(𝑠) = ∑ [∑ 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽
𝑉)𝑝 ∈ 𝑃

+ ∑ 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉)

], ∀ 𝑠 ∈ 𝑆𝑅

(10)

Constraint 11 is similar to Constraint 10, however it refers to the total quantity of

product states produced over the time horizon of interest. The constraint assumes that

there is no initial inventory of any product states, however this can be modified as

necessary.

𝑞𝑇(𝑠) = ∑ [∑ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉)𝑝 ∈ 𝑃

+ ∑ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉)

], ∀ 𝑠 ∈ 𝑆𝑃

(11)

Constraints 12 and 13 track the excess available quantity of FIS states at each event

over the time horizon of interest. Constraint 12 is written at the first event and

Constraint 13 is for subsequent events. The difference is that Constraint 12 considers

3-5

the initial inventory of the state and does not include terms for the production of the

state, since produced FIS states only reflect in storage at the event after which they are

produced.

 𝑞(𝑠, 𝑝) = 𝑞0(𝑠) − ∑ 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉)

− ∑ 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉)

,

(12)

 ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑝 ∈ 𝑃, 𝑝 = 1

 𝑞(𝑠, 𝑝) = 𝑞(𝑠, 𝑝 − 1) + ∑ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 − 1)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉)

+ ∑ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝 − 1)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉)

− ∑ 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽
𝑉)

− ∑ 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉)

,

(13)

 ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑝 ∈ 𝑃, 𝑝 > 1

Constraint 14 states that if a FIS state-consuming task, which requires more of a

particular FIS state than is available in storage (excess state which was produced at 𝑝 −

2 or earlier), should begin at event 𝑝, then it must receive material produced at 𝑝 − 1

by another task or instance of a task i.e. transfer mechanism 𝑏1. A positive value for 𝑏1

activates the binary variable 𝑧, which is used in Constraint 40 to enforce the condition

that the consuming task must begin after the producing task finishes, since the produced

material is being used in the consuming task. This way, conditional sequencing is

facilitated, allowing certain consuming tasks to be placed more flexibly when they are

not consuming material produced by tasks at 𝑝 − 1. If exclusion of tasks which produce

ZW states at the last event or tasks which consume NS states at the first event result in

a zero-valued left-hand side or zero valued summation on the right-hand side, the

3-6

constraint can be excluded altogether for that FIS state at that event, since this reduces

the constraint to a simple storage and material balance.

Note that 𝑏1 exists for all production – consumption task pairs for UW states (FIS and

NIS states). Its corresponding binary variable, 𝑧 , only exists for production –

consumption task pairs that occur in different units, since the sequencing, for which 𝑧

exists, is taken care of in Constraint 39 for production – consumption tasks in the same

unit. This is different for ZW states.

 ∑ 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽
𝑉)

+ ∑ 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉)

≤ 𝑞(𝑠, 𝑝 − 1) + ∑ ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑝

∈ 𝑃, 𝑝 > 1

(14)

Constraints 15a and 15b ensure that the tasks responsible for production of FIS states

are active and that batch sizes are sufficient for transfer to consuming tasks via the

mechanism 𝑏1, if the transfer is indeed occurring. Otherwise the constraints are trivially

satisfied. Constraint 15a is for tasks which produce states in variable ratios and

Constraint 15b is for those producing states in constant ratios.

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝

∈ 𝑃, 𝑝 < 𝑃

(15a)

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗

∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 < 𝑃

(15b)

Constraints 16 – 19 carefully monitor the production, temporary in-unit storage, transfer

and consumption of NS states. Constraints 16a and 16b deal with the production of NS

states at the first event for variable production ratios and constant production ratios

respectively.

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) = 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

,
(16a)

3-7

 ∀ 𝑠 ∈ 𝑆𝑁𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 = 1

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) = 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

,
(16b)

 ∀ 𝑠 ∈ 𝑆𝑁𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 = 1

Constraints 17a and 17b deal with the production and temporary in-unit storage of NS

states at intermediate events.

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) = 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

,
(17a)

 ∀ 𝑠 ∈ 𝑆𝑁𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃 − 1

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

= 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, (17b)

 ∀ 𝑠 ∈ 𝑆𝑁𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃 − 1

At the last event, NIS states are allowed to wait in the unit at the end of production

whereas for ZW states, there is no production or storage allowed. Constraints 18a and

18b deal with production and temporary in-unit storage of NIS states at the penultimate

event, whereas Constraints 19a and 19b address ZW states at the penultimate event.

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) = 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

,
(18a)

 ∀ 𝑠 ∈ 𝑆𝑁𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 = 𝑃 − 1

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

= 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) + ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, (18b)

 ∀ 𝑠 ∈ 𝑆𝑁𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 = 𝑃 − 1

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) = ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

,
(19a)

 ∀ 𝑠 ∈ 𝑆 𝑍𝑊, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 = 𝑃 − 1

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) = ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

,
(19b)

 ∀ 𝑠 ∈ 𝑆 𝑍𝑊, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 = 𝑃 − 1

3-8

Note that temporary in-unit storage of ZW states occurs over event points only and is

not allowed to extend in actual time, which would be akin to allowing post-processing

unit wait for tasks which produce ZW states. This is enforced in Constraint 48.

Constraints 20a and 20b ensure that the tasks consuming FIS states are active and that

batch sizes are large enough to accommodate what is transferred from producing tasks

via the mechanism 𝑏1, if the transfer is indeed occurring. Otherwise the constraints are

trivially satisfied. Constraint 20a is for tasks which consume states in variable ratios

and Constraint 20b is for those consuming states in constant ratios.

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗

′ , 𝑝) ≥ ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽

𝑉), 𝑝

∈ 𝑃, 𝑝 > 1

(20a)

 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗

′) 𝑚𝑢(𝑠𝑖𝑛,𝑗
′ , 𝑝) ≥ ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗
′

∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 > 1

(20b)

Constraints 21a and 21b carefully monitor the consumption of NS states regarding the

transfer from producing tasks and in-unit temporary storage.

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗

′ , 𝑝) = ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝑁𝑆, 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽

𝑉), 𝑝

∈ 𝑃, 𝑝 > 1

(21a)

 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗

′) 𝑚𝑢(𝑠𝑖𝑛,𝑗
′ , 𝑝) = ∑ 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝑁𝑆, 𝑠𝑖𝑛,𝑗
′

∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 > 1

(21b)

Constraint 22 deals with the FIS policy and prevents violations by controlling the upper

limit on storage. Material continuing to wait, in a unit which produced it, at subsequent

events is considered in this constraint. This effectively increases the maximum storage

capacity. The term 𝑏2 reflects the freeing up of storage space via one of two

mechanisms. One mechanism is the transfer of produced material into a consuming unit

directly, for pre-processing unit wait or immediate consumption, which is controlled

via the binary variable 𝑣. This requires that the producing task at event 𝑝 − 1 ends after

3-9

any other possible task in the consuming unit at event 𝑝 − 1 so that the unit is free to

receive material for consumption at event 𝑝. The other mechanism is that some of the

FIS state is consumed at event 𝑝 at a time prior to the end of production at event 𝑝 − 1,

thereby ensuring that there is enough storage space for the produced material. This is

controlled via the binary variable 𝑥. These two mechanisms work together to ensure

that there are sufficient options available for flexible production and consumption

interaction without any FIS violations.

If, at event 2, the summations on the left-hand side have a zero value due to exclusion

of tasks which consume NS states at the first event, the constraint need not be written

for the particular FIS state at event 2. However, if the double summation on the right-

hand side has a zero value due to exclusion of tasks which produce ZW states at the last

event, the constraint still needs to be written in order to prevent storage violations.

 𝑞(𝑠, 𝑝 − 1) + ∑ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 − 1)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉)

+ ∑ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝 − 1)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉)

≤ 𝑄𝑈(𝑠) + ∑ 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

+ ∑ [∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

]

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

,

(22)

∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑝 ∈ 𝑃, 𝑝 > 1

Constraints 23 – 24 are similar to 15a and 15b except that they apply to mechanism 𝑏2.

Note that in the case of 𝑏2 transfer, some of the transferred material can come from

temporary in-unit storage. Constraints 23a and 24a are for tasks which produce states

in variable ratios and Constraints 23b and 24b are for those producing states in constant

ratios. Constraints 23a and 23b are for the first event and Constraints 24a and 24b are

for all intermediate events.

3-10

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝

∈ 𝑃, 𝑝 = 1

(23a)

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗

∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 = 1

(23b)

 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, (24a)

∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽

𝑉), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃

 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, (24b)

∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽

𝑉), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃

Constraints 25a and 25b are similar to Constraints 20a and 20b except that they apply

to mechanism 𝑏2. Constraint 25a is for tasks which consume states in variable ratios

and Constraint 25b is for those consuming states in constant ratios.

 𝑚𝑐
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗

′ , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝐶𝑖𝑛,𝐽

𝑉), 𝑝

∈ 𝑃, 𝑝 > 1

(25a)

 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗

′) 𝑚𝑢(𝑠𝑖𝑛,𝑗
′ , 𝑝) ≥ ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽

, ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗
′

∈ (𝐶𝑖𝑛,𝐽 \ 𝐶𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 𝑝 > 1

(25b)

3.3.4 Storage Constraints

The variable 𝑢 was introduced by Seid and Majozi (2012) in order to allow produced

states to wait in the unit that produced them at subsequent events, thereby effectively

increasing the maximum storage capacity. However necessary constraints which

carefully control the quantity of stored material and sequencing of its discharge in order

to prevent FIS violations and simultaneous processing and post-processing unit wait

were lacking. The concept was also used by Rakovitis et al. (2019). This is updated and

carefully managed in the current work whereby material in temporary in-unit storage is

3-11

only reduced via the 𝑏2 mechanism. 𝑢 can be used to allow production of a state

exceeding maximum storage capacity for consumption at the subsequent event,

however it can also be used to hold material over a number of events. In the latter case,

production at event 𝑝 results in temporary in-unit storage at event 𝑝 + 1 and

consumption at some event 𝑝′ ≥ 𝑝 + 2. The actual quantity stored is precisely tracked

until the unit is emptied. This ensures that if material is temporarily stored in a unit for

a number of events, the start time of the following task in the unit is always

appropriately late enough such that all of the stored material can be discharged to a

consuming task. Constraints 26 – 31 and Constraint 48 enforce the necessary

restrictions on the variable 𝑢.

Constraints 26 and 27 ensure that, at any given event, a unit is either providing

temporary storage to produced states or processing states as part of a task and never

both. Since 𝑢 can only be reduced via transfer mechanism 𝑏2, as per Constraints 28 –

30, Constraints 26 and 27 state that when any task begins in unit 𝑗, full transfer of any

stored states to consuming tasks must have been completed. The constraints have been

adapted from Seid and Majozi (2012) in that they include summations of all possible

tasks producing states for temporary in-unit storage and are as such written for each

unit as opposed to being written for each producing task individually. This reduces the

number of constraints in the model. Constraint 26 is not written at the last event, since

ZW materials cannot continue to wait in a unit at the last event. Constraint 27 is

therefore written only for UW states at the last event.

∑ [∑ 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽∩ 𝑆𝑖𝑛,𝐽
𝐽

)

]

𝑠 ∈ 𝑆𝐼

≤ max
𝑠𝑖𝑛,𝑗 ∈ 𝑆

𝑖𝑛,𝐽
𝐽

[𝑉𝑈(𝑠𝑖𝑛,𝑗)] [1 − ∑ 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽
𝐽

],
(26)

∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃

3-12

∑ [∑ 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽∩ 𝑆𝑖𝑛,𝐽
𝐽

)

]

𝑠 ∈ 𝑆𝑈𝑊

≤ max
𝑠𝑖𝑛,𝑗 ∈ 𝑆

𝑖𝑛,𝐽
𝐽

[𝑉𝑈(𝑠𝑖𝑛,𝑗)] [1 − ∑ 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝)

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽
𝐽

],
(27)

∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃, 𝑝 = 𝑃

Constraint 28 states that variable 𝑢 must maintain its value from previous events unless

discharge occurs via the 𝑏2 mechanism.

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) ≥ 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) − ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, (28)

∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃

Constraints 29 and 30 ensure that material in temporary in-unit storage can only occur

at the event after production or if it was already stored in the unit at the previous event.

Together, Constraints 28 – 30 ensure rigorous upper and lower bounds for the variable

𝑢 to exactly monitor its value over production and consumption via transfer.

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) ≤ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) − ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, (29a)

∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽

𝑉), 𝑝 ∈ 𝑃, 𝑝 = 1

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) ≤ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) − ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, (29b)

∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽

𝑉), 𝑝 ∈ 𝑃, 𝑝 = 1

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) ≤ 𝑚𝑝
𝑉 (𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) − ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, (30a)

∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑃𝑖𝑛,𝐽

𝑉), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝 + 1) ≤ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝)

− ∑ 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝 + 1)

𝑠𝑖𝑛,𝑗
′ ∈ 𝐶𝑖𝑛,𝐽

, (30b)

 ∀ 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑉), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃

3-13

3.3.5 Linking Constraints

Constraints 28 – 30 are written for FIS states only because strict control for the variable

𝑢 for NS states is worked into the material balances in Constraints 16 – 19. However,

for ZW states, additional control is required to ensure that temporary in-unit storage

does not result in post-processing unit wait. This is done using the variable 𝑤 in

Constraints 31 and 48.

 𝑢(𝑠, 𝑠𝑖𝑛,𝑗 , 𝑝) ≤ 𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑉𝑈(𝑠𝑖𝑛,𝑗) 𝑤(𝑠𝑖𝑛,𝑗 , 𝑝), ∀ 𝑠 ∈ 𝑆 𝑍𝑊, 𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃, 1 < 𝑝

< 𝑃
(31)

It is noted here that the variables 𝑏1, 𝑏2, 𝑧, 𝑣, 𝑥, 𝑢 and 𝑤 do not exist at the first event

for any tasks and states, since they represent production at the previous event to which

they are written.

Constraint 32 links the continuous variable 𝑏1 to its corresponding binary variable 𝑧.

This is necessary in order to provide rigorous conditional sequencing based on whether

𝑏1 takes a zero or positive value. The coefficient for binary variable 𝑧 is the minimum

of the maximum quantity of produced state in the producing task and the maximum

quantity of consumed state in the consuming task, since the quantity transferred is

limited by the smaller of these values. In Vooradi and Shaik (2013), binary variables 𝑧

and 𝑣, for transfer of NIS states, both enforce that consumption of NIS states occurs at

a later time relative to its production at the previous event, as per their Constraints 20

and 39 respectively. Additionally, the condition that the start time of consumption must

be less than or equal to the finish time of production, thereby ensuring equality of these

times, is only enforced for variable 𝑧, as per their Constraint 35. For variable 𝑣, it is

enforced that the finish time of production at event 𝑝 − 1 must lie between the finish

time of all tasks occuring in the consuming unit at 𝑝 − 1 and the start time of the

consuming task in the consuming unit at event 𝑝, as per their Constraint 28. This case

3-14

is a general case of the condition for variable 𝑧 and to distinguish them for NIS states

is not necessary. Therefore in this formulation, only one binary variable 𝑧 is used to

describe the sequencing for production – consumption of NIS states, and it takes on the

more general role of that for binary variable 𝑣 for NIS states in Vooradi and Shaik

(2013).

 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

≤ min[𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑉𝑈(𝑠𝑖𝑛,𝑗), 𝜌𝑐

𝑈(𝑠, 𝑠𝑖𝑛,𝑗
′) 𝑉𝑈(𝑠𝑖𝑛,𝑗

′)]

× 𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝),

(32)

∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝑈𝑊, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆

𝑖𝑛,𝐽′
𝐽) , 𝑝 ∈ 𝑃, 𝑝 > 1

Constraint 33 is written for ZW states and is similar to Constraint 32 except that it must

be written even for production – consumption task pairs occurring in the same unit since

this unique sequencing is not applied elsewhere.

 𝑏1(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)

≤ min[𝜌𝑝
𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑉𝑈(𝑠𝑖𝑛,𝑗), 𝜌𝑐

𝑈(𝑠, 𝑠𝑖𝑛,𝑗
′) 𝑉𝑈(𝑠𝑖𝑛,𝑗

′)]

× 𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝),

(33)

∀ 𝑠 ∈ 𝑆𝑍𝑊, 𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽 , 𝑠𝑖𝑛,𝑗

′ ∈ 𝐶𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃, 𝑝 > 1

Constraint 34 is similar to Constraints 32 and 33 except that it is written for transfer

mechanism 𝑏2.

 𝑏2(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝) ≤ min[𝜌𝑝

𝑈(𝑠, 𝑠𝑖𝑛,𝑗) 𝑉𝑈(𝑠𝑖𝑛,𝑗), 𝜌𝑐
𝑈(𝑠, 𝑠𝑖𝑛,𝑗

′) 𝑉𝑈(𝑠𝑖𝑛,𝑗
′)]

× [𝑥(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝) + 𝑣(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝)],
(34)

∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′ , 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆

𝑖𝑛,𝐽′
𝐽) , 𝑝 ∈ 𝑃, 𝑝 > 1

3.3.6 Duration Constraints

For tasks which produce only UW states, there is no need to include variable 𝑡𝑖𝑛 at the

first event, since the tasks can always begin at the start of the time horizon of interest.

The material can then simply wait in the unit (post-processing unit wait at the same

event) until whenever it should be discharged to storage or transferred to a consuming

task. Similarly, there is no need to include variable 𝑡𝑜𝑢𝑡 for such tasks at the last event,

3-15

as long as there is sufficient time between the start of the task and the end of the time

horizon of interest. This way it is possible to exclude unnecessary continuous variables

and reduce the model size. It is necessary to include 𝑡𝑖𝑛 for tasks which produce at least

one ZW state at the first event because such tasks cannot accommodate post-processing

unit wait.

 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝) ≥ 𝑎(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑏(𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝), ∀ 𝑠𝑖𝑛,𝑗 ∈ (𝑆𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑍𝑊), 𝑝

∈ 𝑃, 𝑝 = 1

(35)

𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝) ≥ 𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑎(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑏(𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝),

(36)

∀ 𝑠𝑖𝑛𝑗 ∈ (𝑆𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽

𝑍𝑊), 𝑝 ∈ 𝑃, 1 < 𝑝 < 𝑃

Constraint 37 doubles as an upper-bounding constraint for variables 𝑡𝑜𝑢𝑡 , and by

extension, 𝑡𝑖𝑛.

 𝐻 ≥ 𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑎(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑏(𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝), ∀ 𝑠𝑖𝑛𝑗 ∈ (𝑆𝑖𝑛,𝐽 \ 𝑃𝑖𝑛,𝐽
𝑍𝑊), 𝑝

∈ 𝑃, 𝑝 = 𝑃
(37)

Constraint 38 is excluded at the last event, since no tasks which produce ZW states are

permitted at the last event. Note that no upper-bounding for start and end times are

explicitly required for ZW-producing tasks, since all produced ZW material must be

directly transferred and consumed by the last event, as per Constraints 19a and 19b

(𝑢(𝑠, 𝑠𝑖𝑛,𝑗, 𝑝) does not exist at the last event for ZW states). Therefore, the upper-

bounding applied to the consuming tasks will take care of this.

 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝) = 𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑎(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑏(𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝), ∀ 𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽
𝑍𝑊, 𝑝

∈ 𝑃, 𝑝 < 𝑃

(38)

3.3.7 Sequence Constraints

Constraint 39 is written for all tasks occurring in a given unit. It combines the

traditionally separated approaches for same task in same unit and different task in same

unit sequencing constraints.

3-16

𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝 + 1) ≥ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝), ∀ 𝑗 ∈ 𝐽, 𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ ∈ 𝑆𝑖𝑛,𝐽

𝐽 , 𝑝 ∈ 𝑃, 𝑝 < 𝑃
(39)

Constraint 40 is written for intermediate state production – consumption task pairs, that

is, it represents the different task in a different unit constraints. It is only written for

tasks which occur in different units because sequencing at adjacent events in the same

unit is taken care of by Constraint 39. In Constraint 40, sequencing is only enforced if

transfer actually occurs between tasks 𝑠𝑖𝑛,𝑗 and 𝑠𝑖𝑛,𝑗
′ . In other words, binary variable 𝑧

must be activated by a positive valued 𝑏1, which is done in Constraints 32 and 33.

𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝) ≥ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝 − 1) − 𝑀[1 − 𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)],

(40)

∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝐼, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆

𝑖𝑛,𝐽′
𝐽) , 𝑝 ∈ 𝑃, 𝑝 > 1

Constraint 41 is similar to Constraint 40 except that it is only written for production –

consumption pairs involving ZW states and that the inequality is reversed. This is to

ensure that ZW states are consumed immediately upon production in terms of time

(even though it may be a few events later). A third difference is that it is written even

when the production and consumption tasks occur in the same unit.

𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝) ≤ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝 − 1) + 𝑀[1 − 𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)],

(41)

∀ 𝑠 ∈ 𝑆 𝑍𝑊, 𝑠𝑖𝑛,𝑗 ∈ 𝑃𝑖𝑛,𝐽 , 𝑠𝑖𝑛,𝑗

′ ∈ 𝐶𝑖𝑛,𝐽 , 𝑝 ∈ 𝑃, 𝑝 > 1

Constraint 42 addresses sequencing of production – consumption pairs transferring

material via the mechanism 𝑏2, whereby produced material is directly transferred to the

consuming unit. The constraint deals with three separate tasks. 𝑠𝑖𝑛,𝑗 is the producing

task, occurring in unit 𝑗 at event 𝑝 − 1. 𝑠𝑖𝑛,𝑗
′ is the consuming task, occurring in unit 𝑗′

at event 𝑝 and 𝑠𝑖𝑛,𝑗
′′ is any other auxiliary task which may be occurring in the consuming

unit 𝑗′ at event 𝑝 − 1. The constraint states that the producing task must finish after the

end of the auxiliary task, such that material can be transferred to the receiving unit

3-17

without any pre-processing unit wait overlapping in time with the processing of the

auxiliary task. Units 𝑗 and 𝑗′ must be different.

𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗

′′ , 𝑝 − 1) ≤ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝 − 1) + 𝑀[1 − 𝑣(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)],

(42)

∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆

𝑖𝑛,𝐽′
𝐽) , 𝑠𝑖𝑛,𝑗

′′ ∈ 𝑆
𝑖𝑛,𝐽′
𝐽 , 𝑝 ∈ 𝑃, 𝑝 > 1

Constraint 43 is similar to Constraint 42 except that it is applied to NIS states for which

the binary variables 𝑧 and 𝑣 are combined. It is emphasized here that production of NIS

states may begin at event 𝑝′ ≤ 𝑝 − 1, however when they are transferred from the

producing unit to the consuming unit for consumption at event 𝑝, the time will be that

of the finishing time of the producing task at event 𝑝 − 1.

𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗

′′ , 𝑝 − 1) ≤ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝 − 1) + 𝑀[1 − 𝑧(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)],

(43)

 ∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝑁𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽
𝐽), 𝑠𝑖𝑛,𝑗

′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽
𝐽), 𝑠𝑖𝑛,𝑗

′′ ∈ 𝑆𝑖𝑛,𝐽
𝐽 , 𝑝

∈ 𝑃, 𝑝 > 1

Constraint 44 addresses sequencing of production – consumption pairs via the

mechanism 𝑏2, whereby a state is consumed at event 𝑝 prior to production at event 𝑝 −

1 in order to ensure that sufficient storage space is available for the produced state.

𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝) ≤ 𝑡𝑜𝑢𝑡(𝑠𝑖𝑛,𝑗 , 𝑝 − 1) + 𝑀[1 − 𝑥(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝)],

(44)

∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑝 ∈ 𝑃, 𝑝 > 1

Constraint 45 states that if production – consumption tasks are coupled via mechanism

𝑏2, only one form is allowed i.e. direct transfer or prior consumption. However, this

mechanism need not occur between the producing and consuming tasks at all.

𝑥(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗

′ , 𝑠, 𝑝) + 𝑣(𝑠𝑖𝑛,𝑗 , 𝑠𝑖𝑛,𝑗
′ , 𝑠, 𝑝) ≤ 1,

(45)

∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑝 ∈ 𝑃, 𝑝 > 1

The proposed model operates, as is the case in Seid and Majozi (2012) and Vooradi and

Shaik (2013), by allowing produced FIS states to freely enter and leave storage as is

3-18

deemed optimal without the rigorous tracking of flows, except at adjacent events.

Therefore, in order to prevent FIS violations, it is enforced, perhaps in a limiting way,

that any consuming task beginning at event 𝑝 must begin at a time greater than or equal

to any possible producing tasks at event 𝑝 − 2 (or earlier), as long as the producing task

did indeed begin at event 𝑝 − 2. Constraint 46 enforces this.

𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝) ≥ 𝑡𝑜𝑢𝑡(𝑠𝑖𝑛,𝑗 , 𝑝 − 2) − 𝑀[1 − 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝 − 2)],
(46)

∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝐹𝐼𝑆 , 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑝 ∈ 𝑃, 𝑝 > 2

Constraint 47, originally proposed by Shaik and Floudas (2008) and used by Shaik and

Floudas (2009), Vooradi and Shaik (2012), Vooradi and Shaik (2013) and Shaik and

Vooradi (2017), is incorporated in the proposed model to prevent FIS violations arising

as a result of production – consumption task couples occurring at the same event. The

constraint is not written at the first event if either 𝑠𝑖𝑛,𝑗 or 𝑠𝑖𝑛,𝑗
′ consume NS states. The

constraint is amended here in that it is additionally not written at the first event for tasks

𝑠𝑖𝑛,𝑗
′ which do not produce ZW states, since there is no need for the variable 𝑡𝑖𝑛 at the

first event for such tasks.

𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗

′ , 𝑝) ≤ 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑀[1 − 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝)],
(47)

∀ 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, 𝑠 ∈ 𝑆𝐹𝐼𝑆, 𝑠𝑖𝑛,𝑗 ∈ (𝑃𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑠𝑖𝑛,𝑗
′ ∈ (𝐶𝑖𝑛,𝐽 ∩ 𝑆𝑖𝑛,𝐽

𝐽), 𝑝 ∈ 𝑃, 𝑝 < 𝑃

Constraint 48 states that if temporary in-unit storage for ZW states occurs at event 𝑝 +

1, there must be no delay between the start time of the task at event 𝑝 + 1 and the end

time at event 𝑝. This prevents post-processing unit wait for units holding ZW states.

However, if ZW and UW states are produced simultaneously, then once the ZW states

have been discharged, there is no need for binary variable 𝑤 to be active and the UW

states may participate in post-processing unit wait at subsequent events.

3-19

 𝑡𝑖𝑛(𝑠𝑖𝑛,𝑗 , 𝑝 + 1) − 𝑡𝑜𝑢𝑡 (𝑠𝑖𝑛,𝑗 , 𝑝) ≤ 𝑀[1 − 𝑤(𝑠𝑖𝑛,𝑗 , 𝑝 + 1)], ∀ 𝑠𝑖𝑛𝑗 ∈ 𝑃𝑖𝑛,𝐽
𝑍𝑊, 𝑝 ∈ 𝑃, 𝑝

< 𝑃 − 1
(48)

3.3.8 Tightening Constraint

Constraint 49 was introduced by Maravelias and Grossmann (2003) in order to tighten

the bounds on the allowed number and duration of tasks in each unit over the time

horizon of interest. The constraint contributes towards reducing the computational time

required to solve a given problem, however it is not strictly necessary for finding

feasible solutions.

 ∑ ∑ [𝑎(𝑠𝑖𝑛,𝑗) 𝑦(𝑠𝑖𝑛,𝑗 , 𝑝) + 𝑏(𝑠𝑖𝑛,𝑗) 𝑚𝑢(𝑠𝑖𝑛,𝑗 , 𝑝)]

𝑠𝑖𝑛,𝑗 ∈ 𝑆
𝑖𝑛,𝐽
𝐽𝑝 ∈ 𝑃

≤ 𝐻, ∀ 𝑗 ∈ 𝐽 (49)

3.3.9 Objective Function

In the case of profit maximization, the parameter 𝑀 appearing throughout the model

should be set to the value of the time horizon of interest, or simply replaced with the

parameter 𝐻. The objective function is expressed in Constraint 50, which is the sum of

the selling price of each product multiplied by its final stored quantity, for all product

states. Other financial aspects can readily be included in Constraint 50. For example,

the cost price of raw materials used can be subtracted. Operating costs for certain tasks

can be included by multiplying them by the binary variable 𝑦 for task activation.

 maximize ∑ 𝑆𝑃𝑟(𝑠) 𝑞𝑇(𝑠)

𝑠 ∈ 𝑆𝑃

 (50)

In the case of makespan minimization, the parameter 𝑀 appearing throughout the

model should be set to the maximum expected value of the time horizon, 𝐻 (which

becomes a variable). The smaller the value of 𝑀, the tighter the formulation and hence

the easier the problem is to solve, however it must be made large enough so that no

potential solutions are excluded from the solve procedure. Additionally, with makespan

minimization, a demand profile needs to be included which is to be met in the minimum

3-20

time. This is expressed in Constraint 51. The objective function is expressed in

Constraint 52.

𝑞𝑇(𝑠) ≥ 𝑑(𝑠), ∀ 𝑠 ∈ 𝑆𝑃

(51)

minimize 𝐻

(52)

4-1

Model Validation and Analysis

4.1. Data Details and Sources

The proposed model was applied to 22 instances between 10 examples in order to

compare computational performance and determine whether the proposed model is

indeed capable of increasing scope and reducing computational time requirements in

batch optimization studies. The examples were taken from Vooradi and Shaik (2012),

Vooradi and Shaik (2013) and Rakovitis et al. (2019). The models by Vooradi and Shaik

(2012), Vooradi and Shaik (2013), Shaik and Vooradi (2017) and Rakovitis et al.

(2019), hereafter referred to as V&S 2012, V&S 2013, S&V 2017 and R 2019

respectively, were reproduced in order to accurately measure computational

performance using the same hardware and software against the proposed model. The

main motivating examples are Example 1, in which fractional extraction is

demonstrated and Examples 7, 8 and 9, in which the limitations of the three-index

variable technique for task splitting are demonstrated.

Each example is introduced along with its STN in Sections 4.2.1 to 4.3.2. Data for the

examples can be found in Table 4-1 for state information and Table 4-2 for task

information. Note that a task is represented as an effective state and a unit i.e. 𝑠𝑖𝑛,𝑗

symbolises a group of states, represented by s, entering a suitable unit, represented by

j, for processing as per the recipe depicted in the relevant STN. Example 10 is

subdivided into 10.1 – 10.8, 10.10 and 10.12 – 10.14 to reflect different demand

scenarios which were taken from Vooradi and Shaik (2012). Example 4 is subdivided

into Example 4.1 and 4.2 due to the different objective functions considered for them.

Examples 1 – 4.1 and 5 – 9 are solved for maximum profit, while Example 4.2 and all

4-2

of Example 10 are solved for the minimum makespan. All examples include

intermediate states which are subjected to the FIS, NIS and/or ZW policies.

Each example was solved three times for each of the four models and each variation of

∆𝑝 and number of event points considered, except for solutions which had not

converged after the given maximum resource limit of 10 000 seconds. This was done

in order to obtain an average CPU time and rule out the possibility of freezing, crashing

or other random behaviour of the solver, even though the models are all deterministic.

For V&S 2012, post-processing unit wait is allowed and their Constraints 12b and 23a

were used for each example for the tighter bounds. In order to address task splitting,

each V&S model was solved at one iteration beyond what was required to obtain what

is known to be the globally optimal solution in order to verify it and provide a concrete

stopping criterion for iteration. The solution times for each iteration were then summed

to yield the total solution time required at a given number of event points. For the three-

index models, the number of event points were determined by their authors through

nested iteration, successively increasing the number of splitting events and task events,

until the solution no longer improved. The values published by the authors were used

as a guideline in this work, however, one or two task events on either side of the optimal

number were investigated. The number of splitting events was investigated from zero

until one greater than their proposed optimal number. This investigation is not portrayed

in the original works.

The system used to solve the examples included an Intel® Core™ i7-8700 CPU at 3.20

GHz and 16 GB RAM. The operating system was 64 bit Windows 10 and the solution

software was GAMS v24.8.5. The default CPLEX solver was used with default settings

except that the relative gap for termination was set to zero and node files were allowed

to be stored on disk.

4-3

Results for the examples considered are given in Table 4-3 to Table 4-18. The best

bound for unconverged solutions is included as an end note where applicable. Note that

the numbers of binary and continuous variables as well as constraints differ slightly

from those originally reported in the respective papers by Vooradi and Shaik. This is

due to the omission of necessary details by the authors regarding the exact exclusion

criteria. A perfect recreation was attempted; however, it was unsuccessful. Furthermore,

the general exclusion criteria used in this work differs from their works in that STN-

specific pre-processing was not included.

4-4

Table 4-1. State Information for All Examples

State Type Q0

(m.u. 1)

QU

(m.u. 1)

Cost/m.u.1 State Type Q0

(m.u. 1)

QU

(m.u. 1)

Cost/m.u.1

Example 1 Example 6

s1 SR ∞ ∞ s1 SR ∞ ∞

s2 SNIS 0 0 s2 SFIS 0 6

s3 SP 0 ∞ 10 s3 SFIS 0 4

Example 2 s4 SP 0 ∞ 1

s1 SR ∞ ∞ Example 7

s2 SR ∞ ∞ s1 SR ∞ ∞

s3 SR ∞ ∞ s2 SR ∞ ∞

s4 SR ∞ ∞ s3 SR ∞ ∞

s5 SR ∞ ∞ s4 SFIS 0 60

s6 SFIS 0 10 s5 SFIS 0 60

s7 SP 0 ∞ 1 s6 SP 0 ∞ 1

s8 SP 0 ∞ 1 s7 SP 0 ∞ 1

s9 SP 0 ∞ 1 Example 8

s10 SP 0 ∞ 1 s1 SR ∞ ∞

s11 SP 0 ∞ 1 s2 SFIS 0 10

Example 3 s3 SFIS 0 15

s1 SR ∞ ∞ s4 SFIS 0 10

s2 SFIS 0 200 s5 SFIS 0 15

s3 SFIS 0 250 s6 SP 0 ∞ 10

s4 SP 0 ∞ 5 Example 9

Example 4 s1 SR ∞ ∞

s1 SR ∞ ∞ s2 SFIS 0 10

s2 SR ∞ ∞ s3 SFIS 0 17.5

s3 SR ∞ ∞ s4 SFIS 0 10

s4 SR ∞ ∞ s5 SFIS 0 18

s5 SFIS 0 100 s6 SP 0 ∞ 10

s6 SFIS 0 150 Example 10

s7 SP 0 ∞ 10 s0 SR ∞ ∞

s8 SFIS 0 200 s1 SFIS 20 30

s9 SFIS 0 200 s2 SFIS 20 30

s10 SP 0 ∞ 10 s3 SFIS 0 15

Example 5 s4 SFIS 20 30

s1 SR ∞ ∞ s5 SZW 0 0

s2 SR ∞ ∞ s6 SFIS 0 10

s3 SFIS 0 100 s7 SFIS 0 10

s4 SFIS 0 100 s8 SFIS 0 10

s5 SFIS 0 300 s9 SZW 0 0

s6 SFIS 50 150 s10 SZW 0 0

s7 SFIS 50 150 s11 SFIS 0 10

s8 SR ∞ ∞ s12 SZW 0 0

s9 SFIS 0 150 s13 SFIS 0 10

s10 SFIS 0 150 s14 SP 0 ∞ /

s11 SR ∞ ∞ s15 SP 0 ∞ /

s12 SP 0 ∞ 5 s16 SP 0 ∞ /

s13 SP 0 ∞ 5 s17 SP 0 ∞ /
1 m.u.: mass unit s18 SP 0 ∞ /

4-5

Table 4-2. Task Information for All Examples

Task Formula Unit a (h) b (h/m.u. 1) VL (m.u. 1) VU (m.u. 1)

Example 1

s1in1 𝑠1 → 𝑠2 1 4 0 0 10

s2in2 𝑠2 → 𝑠3
 2 2 0 0 5

Example 2

s1in1 𝑠1 → 𝑠6 1 2 0 0 3

s1in2 𝑠1 → 𝑠6 2 2 0 0 9

s2in3 𝑠2 → 𝑠7 3 3 0 0 1

s3in4 𝑠3 → 𝑠8 4 3 0 0 1

s4in1 𝑠4 → 𝑠9 1 3 0 0 1

s5in2 𝑠5 → 𝑠10 2 3 0 0 1

s6in3 𝑠6 → 𝑠11 3 2 0 0 3

s6in4 𝑠6 → 𝑠11 4 2 0 0 9

Example 3

s1in1 𝑠1 → 𝑠2 1 1.333 0.01333 0 100

s1in2 𝑠1 → 𝑠2 2 1.333 0.01333 0 150

s2in3 𝑠2 → 𝑠3 3 1 0.005 0 200

s3in4 𝑠3 → 𝑠4 4 0.667 0.00445 0 150

s3in5 𝑠3 → 𝑠4 5 0.667 0.00445 0 150

Example 4

s1in1 𝑠1 → 𝑠2 1 0.667 0.00667 0 100

s2in2 𝑠2 + 𝑠3 → 𝑠6 2 1.334 0.02664 0 50

s2in3 𝑠2 + 𝑠3 → 𝑠6 3 1.334 0.01665 0 80

s5in2 𝑠5 + 𝑠6 → 𝑠7 + 𝑠8 2 1.334 0.02664 0 50

s5in3 𝑠5 + 𝑠6 → 𝑠7 + 𝑠8 3 1.334 0.01665 0 80

s4in2 𝑠4 + 𝑠8 → 𝑠9 2 0.667 0.01332 0 50

s4in3 𝑠4 + 𝑠8 → 𝑠9 3 0.667 0.008325 0 80

s9in4 𝑠9 → 𝑠8 + 𝑠10 4 1.3342 0.00666 0 200

Example 5

s1in1 𝑠1 → 𝑠3 1 0.667 0.00667 0 100

s2in2 𝑠2 → 𝑠4 2 1.333 0.01333 0 100

s2in3 𝑠2 → 𝑠4 3 1.333 0.00889 0 150

s3in2 𝑠3 + 𝑠4 → 𝑠5 2 0.667 0.00667 0 100

s3in3 𝑠3 + 𝑠4 → 𝑠5 3 0.667 0.00445 0 150

s5in4 𝑠5 → 𝑠4 + 𝑠6 + 𝑠7 4 2 0.00667 0 300

s6in1 𝑠6 + 𝑠8 → 𝑠9 1 1 0.01 0 100

s7in5 𝑠7 + 𝑠10 + 𝑠11 → 𝑠12 5 1.333 0.00667 20 200

s7in6 𝑠7 + 𝑠10 + 𝑠11 → 𝑠12 6 1.333 0.00667 20 200

s9in2 𝑠9 → 𝑠10 + 𝑠13 2 1.333 0.0133 0 100

s9in3 𝑠9 → 𝑠10 + 𝑠13 3 1.333 0.00889 0 150

Example 6

s1in1 𝑠1 → 𝑠2 1 1 0 0 10

s2in2 𝑠2 → 𝑠3 2 3 0 0 4

s2in3 𝑠2 → 𝑠3 3 1 0 0 2

s3in4 𝑠3 → 𝑠4 4 2 0 0 10

4-6

Task Formula Unit a (h) b (h/m.u. 1) VL (m.u. 1) VU (m.u. 1)

Example 7

s1in1 𝑠1 + 𝑠2 + 𝑠3 → 𝑠4 1 1.5 0 0 150

s4in2 𝑠4 → 𝑠5 2 4.5 0 0 60

s4in3 𝑠4 → 𝑠5 3 1.5 0 0 30

s4in4 𝑠4 → 𝑠5 4 1.5 0 0 30

s5in5 𝑠5 → 𝑠6 5 3 0 0 150

Example 8

s1in1 𝑠1 → 𝑠2 + 𝑠3 1 1.666 0.03335 0 40

s2in2 𝑠2 → 𝑠4 2 2.333 0.08335 0 20

s3in3 𝑠3 → 𝑠5 3 0.667 0.0666 0 5

s4in4 𝑠4 + 𝑠5 → 𝑠6 4 2.667 0.008325 0 40

Example 9

s1in1 𝑠1 → 𝑠2 + 𝑠3 1 1.666 0.03335 0 40

s2in2 𝑠2 → 𝑠4 2 2.333 0.08335 0 20

s3in3 𝑠3 → 𝑠5 3 0.333 0.0668 0 2.5

s4in4 𝑠4 + 𝑠5 → 𝑠6 4 2.667 0.008325 0 40

Example 10

s0in1 𝑠0 → 𝑠1 1 2 0 3 10

s1in2 𝑠1 → 𝑠2 + 𝑠3 2 4 0 5 20

s2ain4 𝑠2 → 𝑠5 4 4 0 4 10

s2bin4 𝑠2 → 𝑠6 4 4 0 4 10

s2in5 𝑠2 → 𝑠9 5 6 0 4 10

s3in3 𝑠3 → 𝑠1 + 𝑠4 3 2 0 4 10

s4ain4 𝑠4 → 𝑠7 4 4 0 4 10

s4bin4 𝑠4 → 𝑠8 4 4 0 4 10

s4in5 𝑠4 → 𝑠10 5 6 0 4 10

s5in8 𝑠5 + 𝑠11 → 𝑠16 8 4 0 4 12

s6in6 𝑠6 → 𝑠11 6 4 0 3 7

s6in7 𝑠6 → 𝑠11 7 5 0 3 7

s7in6 𝑠7 → 𝑠12 6 5 0 3 7

s7in7 𝑠7 → 𝑠12 7 6 0 3 7

s8in6 𝑠8 → 𝑠13 6 6 0 3 7

s8in7 𝑠8 → 𝑠13 7 6 0 3 7

s9in8 𝑠9 → 𝑠14 8 4 0 4 12

s9in9 𝑠9 → 𝑠14 9 6 0 4 12

s10in8 𝑠10 → 𝑠15 8 4 0 4 12

s10in9 𝑠10 → 𝑠15 9 6 0 4 12

s12in8 𝑠12 → 𝑠17 8 6 0 4 12

s12in9 𝑠12 → 𝑠17 9 6 0 4 12

s13in8 𝑠13 → 𝑠18 8 6 0 4 12

s13in9 𝑠13 → 𝑠18 9 6 0 4 12
1 m.u.: mass unit

4.2. Maximization of Profit

Examples 1, 2, 3, 4.1, 5, 6, 7, 8 and 9 are all solved for maximum profit. Computation

results for these examples may be found in Table 4-3 to Table 4-11 respectively.

4-7

4.2.1 Example 1

Example 1 is adapted from Rakovitis et al. (2019) in order to demonstrate fractional

extraction, which allows produced intermediates to be fractionally extracted from a

processing unit at various event points. In this sequential batch process, the STN of

which is presented in Figure 4-1, there are three states: one raw material, one

intermediate and one product. Additionally, there are two tasks occurring in their own

dedicated units. State 2 is subject to the NIS policy and therefore any state 2 produced

by task 𝑠1𝑖𝑛1 must be directly transferred to and consumed by task 𝑠2𝑖𝑛2. Task 𝑠1𝑖𝑛1 can

produce enough state 2 to supply two consecutive batches of task 𝑠2𝑖𝑛2 of maximum

volume, however since there is no dedicated storage vessel for state 2, material must

continue to be stored in the producing vessel in order to achieve this. As such, a partial

amount of the state 2 produced at event 1 must be transferred to task 𝑠2𝑖𝑛2 for

consumption at event 2 and the remaining quantity must be directly transferred for

consumption at event 3. The proposed model as well as R 2019 allow this interaction

whereas the other three models do not. This feature introduces flexibility into the model

and can allow for better objective values to be obtained.

Table 4-3 contains the results of Example 1. Using 2, 2 and 1 event(s) for V&S 2012,

V&S 2013 and S&V 2017 respectively all three models achieved the suboptimal

solution of 50 cost units (c.u.). Increasing the number of events did not improve the

objective value, whereas the proposed model and R 2019 found the globally optimal

solution of 100 c.u with three and two events respectively. The results, however, for 3,

3 and 2 events are also displayed as these represent the minimum number of events

which would be necessary for the models to find the globally optimal solution for the

Figure 4-1. STN for Example 1

4-8

other models. This is because three consecutive tasks occur, and by modelling

production – consumption tasks to occur at adjacent events, the number of events

required would be three for V&S 2012 and V&S 2013. By modelling production –

consumption tasks to occur at the same event, as per S&V 2017, two events would be

required. The above results are obtained with the splitting parameter of ∆𝑃 = 0. The

solution times for all four models are comparable at about 0.1 s. The proposed model

requires fewer binary variables (7) than V&S 2013 (9), the fewest number of continuous

variables (19 vs 26, 28, 20 and 33) and more constraints (34) than only S&V 2017 (30).

R 2019 had the highest number of continuous variables and constraints (33 and 64

respectively). The V&S, S&V and R models are also solved with the splitting parameter

of ∆𝑃 = 1 in order to provide a stopping criterion and verify that the solution found is

the best possible. In this case, the total combined solution times for the other models

are effectively doubled, requiring a total of ~0.2 s each. The Gantt chart for the optimal

solution of Example 1 is presented in Figure 1-2.

Table 4-3. Computational Results for Example 1

Model H Profit Avg. CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

V&S 2012 8.0 50.0 0.1 0.1 2 0 3 17 35 0 50.0

V&S 2012 8.0 50.0 0.1

0.2

3 0 5 26 57 0 100.0

V&S 2012 8.0 50.0 0.1 3 1 8 29 72 0 100.0

V&S 2013 8.0 50.0 0.1 0.1 2 0 5 18 36 0 50.0

V&S 2013 8.0 50.0 0.1

0.2

3 0 9 28 60 0 100.0

V&S 2013 8.0 50.0 0.1 3 1 12 31 75 7 100.0

S&V 2017 8.0 50.0 0.1 0.1 1 0 2 11 16 0 50.0

S&V 2017 8.0 50.0 0.1

0.2

2 0 4 20 30 0 100.0

S&V 2017 8.0 50.0 0.1 2 1 6 22 48 5 100.0

R 2019 8.0 100.0 0.1

0.2

2 0 6 33 64 0 100.0

R 2019 8.0 100.0 0.1 2 1 8 35 70 0 100.0

This Work 8.0 100.0 0.1 0.1 3 / 7 19 34 0 100.0

4-9

4.2.2 Example 2

Example 2 is Case Study 2 in Vooradi and Shaik (2013). Its STN is presented in Figure

4-2. The case study is used in this work to benchmark the proposed model on its ability

to correctly handle the FIS policy and to test that it does not allow overlapping of pre-

processing unit wait with actual task processing. The process involves five sequential

sub-processes, each producing their own single product from their own raw material.

However, the six different tasks that can occur share four units, resulting in limitations

on equipment resources. The objective is to maximize profit over a 5 hour time horizon.

The results in Table 4-4 demonstrate how all five models were able to correctly obtain

the optimal solution of 15 c.u without the need for task splitting. The proposed model,

V&S 2013, S&V 2017 and R 2019 require only two event points whereas V&S 2012

requires three. All four models had comparable solution times (~0.1 s). The number of

binary variables for the rigorous-conditional sequencing formulations of R 2019 were

the highest (44), followed by the proposed work and V&S 2013 (28), however the

proposed model required the fewest continuous variables (55) and the second fewest

constraints (131) after S&V 2017 (128). R 2019 is again the largest model in these

metrics. Again the other models were solved with ∆𝑃 = 1 in order to verify the optimal

Figure 4-2. STN for Example 2

4-10

solution. As per Example 1, the total combined solution times are doubled, making the

proposed formulation solve in the fastest total time.

Table 4-4. Computational Results for Example 2

Model H Profit Avg. CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

V&S 2012 5.0 15.0 0.1

0.2

3 0 24 111 253 48 22.2

V&S 2012 5.0 15.0 0.1 3 1 40 127 333 136 23.0

V&S 2013 5.0 15.0 0.1

0.2

2 0 28 84 167 0 16.0

V&S 2013 5.0 15.0 0.1 2 1 36 92 207 0 16.0

S&V 2017 5.0 15.0 0.1

0.2

2 0 16 76 128 15 22.6

S&V 2017 5.0 15.0 0.1 2 1 24 84 184 22 22.7

R 2019 5.0 15.0 0.1

0.2

2 0 44 163 308 29 24.0

R 2019 5.0 15.0 0.1 2 1 52 171 332 103 24.0

This Work 5.0 15.0 0.1 0.1 2 / 28 55 131 0 16.0

4.2.3 Example 3

Example 3 is taken from Vooradi and Shaik (2012). The STN for the example is shown

in Figure 4-3. The process is sequential with three different tasks occurring in five units

to produce a single product from a single raw material. The objective is to maximize

profit over a 16 hour time horizon.

In Table 4-5, it is shown that all five models obtain the optimal objective of 5038.1 c.u.

without any need for task splitting. The proposed model is the second slowest with a

CPU time of 41.6 s at nine events, being ~12 seconds faster than the slowest model of

S&V 2017, which also required nine events. The proposed model solved ~25 seconds

slower than the fastest model, V&S 2012, which required 11 events. Compared to its

rigorous conditional sequencing counterparts, the proposed model required the same

number of binary variables (141) as V&S 2013, one more than R 2019, but fewer

continuous variables (234 vs 237 and 351) and constraints (646 vs 710 and 1012). V&S

2012 required 55 binary variables, 211 continuous variables and 627 constraints,

Figure 4-3. STN for Example 3

4-11

whereas for S&V 2017 these values were 45, 173 and 342 respectively. In verifying the

optimality of the results with a splitting parameter of ∆𝑃 = 1, a drastic increase in

solution time was observed. V&S 2012 required a total time of over 20 minutes, V&S

2013 required over six minutes, S&V 2017 required almost two hours and R 2019

required eight and a half minutes in order to solve. After this verification, the proposed

model performed considerably faster than any of the V&S models while obtaining the

globally optimal solution without the need for any iteration beyond the number of event

points.

Table 4-5. Computational Results for Example 3

Model H Profit Avg. CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

V&S 2012 16.0 5038.1 16.3

1324.9

11 0 55 211 627 80172 6236.0

V&S 2012 16.0 5038.1 1308.6 11 1 105 261 877 5293975 6601.7

V&S 2013 16.0 5038.1 33.1

376.3

9 0 141 237 710 134361 6601.7

V&S 2013 16.0 5038.1 343.2 9 1 181 277 910 1122780 6601.7

S&V 2017 16.0 5038.1 53.8

6989.4

9 0 45 173 342 233343 6601.7

S&V 2017 16.0 5038.1 6935.5 9 1 85 213 632 11693039 6601.7

R 2019 16.0 5038.1 30.6

516.8

7 0 140 351 1012 138405 6601.7

R 2019 16.0 5038.1 486.2 7 1 170 551 1102 2061760 6601.7

This Work 16.0 5038.1 41.6 41.6 9 / 141 234 646 175992 6601.7

4.2.4 Example 4.1

Example 4 has been extensively researched in literature by multiple authors. It features

a complex multipurpose batch process with batch splitting and mixing as well as

multiple tasks which can occur in a single processing unit and tasks which can be

performed in multiple processing units. The STN is shown in Figure 4-4. The process

involves nine different states, five different tasks and four units. In this particular

representation, states 3 and 4, which are the same state, are differentiated in order to

facilitate task differentiation. Three reaction tasks compete for two reactors, resulting

in the requirement to efficiently manage limited equipment resources. The problem also

includes a recycle loop involving states 8 and 9. Example 4.1 is solved for maximum

4-12

profit over a 16 hour time horizon. Example 4.2 is solved for the minimum makespan

in Section 4.3.1.

For Example 4.1, as shown in Table 4-6, all the models found the optimal objective of

3738.4 c.u. All the models except S&V 2017 required eight event points and no task

splitting. S&V 2017 required one more event than the other models as well as a splitting

parameter of ∆𝑃 = 1 in order to obtain the optimal objective value, with a total solution

time of over 25 minutes. This difficulty in the solution is attributed to the modelling of

production – consumption tasks at the same in combination with unconditional

sequencing. Since many production – consumption tasks can occur in the same unit,

produced material must enter storage at the event it is produced before it can be

consumed at the next event in the unit that produced it. This can cause conflict with the

capacity of the storage unit and can impede the solution procedure or even exclude

(potentially optimal) solutions in certain problems, such as in Example 5 in Section

4.2.5. The proposed model, requiring 21.5 s to solve, outperformed V&S 2013 by ~5 s

but was slower than V&S 2012 and R 2019 by ~17 s and ~2 s respectively. The

proposed model required the same number of binary variables as V&S 2013 (274)

whereas V&S 2012 required only 64. S&V 2017 and R 2019 required 136 and 392 at

Figure 4-4. STN for Example 4

4-13

the minimum requirements for the optimal solution. The proposed model required more

continuous variables (466) and fewer constraints (1440) than V&S 2013 (464 and 1473)

whereas V&S 2012 required about half of these numbers. The size of the R 2019 model

was around double the proposed model. After verifying the optimality with ∆𝑃 = 1,

V&S 2012 still outperformed the proposed model by ~5 seconds whereas V&S 2013

took three times as long as the proposed model. S&V 2017 was not verified at ∆𝑃 = 2

due to the lengthy solution time at ∆𝑃 = 1. R 2019 required just over a minute in total.

Table 4-6. Computational Results for Example 4.1

Model H Profit Avg. CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

V&S 2012 16.0 3738.4 4.7

16.9

8 0 64 268 875 12354 4291.7

V&S 2012 16.0 3738.4 12.1 8 1 120 324 1155 29675 4291.7

V&S 2013 16.0 3738.4 26.3

64.4

8 0 274 464 1473 50103 4291.7

V&S 2013 16.0 3738.4 38.1 8 1 330 520 1753 60677 4291.7

S&V 2017 16.0 3724.4 11.2

53.5

8 0 64 268 687 19207 4316.9

S&V 2017 16.0 3724.4 42.3 8 1 120 324 1047 70500 4316.9

S&V 2017 16.0 3724.4 77.6

1538.9

9 0 72 301 776 160515 4450.7

S&V 2017 16.0 3738.4 1461.3 9 1 136 365 1186 1818306 4450.7

R 2019 16.0 3738.4 19.4

67.8

8 0 392 942 2563 29421 4291.7

R 2019 16.0 3738.4 48.4 8 1 448 998 2731 51650 4291.7

This Work 16.0 3738.4 21.5 21.5 8 / 274 466 1440 40988 4291.7

4.2.5 Example 5

Example 5 is a larger version of Example 4 with much of the same features. The STN

is displayed in Figure 4-5. It involves 13 states, four of which are raw materials, seven

are intermediates and two are products. States 4 and 5 are involved in a recycle loop.

There are seven different tasks competing for six units. This example is solved for

maximum profit over a 16 hour time horizon.

4-14

Examples 5 – 9 display some of the benefits of the proposed model, due to the

requirement of task splitting. Table 4-7 contains the results for Example 5 in which

V&S 2012 required a splitting parameter of ∆𝑃 = 1 in order to obtain the optimal

solution of 4262.8 c.u. For this example, S&V 2017 and R 2019 were unable to find the

optimal solution for up to 11 and 9 events respectively in a resource limit of 10 000 s.

This is due to a major drawback in modelling production – consumption tasks to occur

at the same event as discussed in Section 3.2. With 10 events and ∆𝑃 = 1 as well as

with 11 events and ∆𝑃 = 0, the solver was unable to converge for S&V 2017. As

discussed in R 2019, the R 2019 model is able to obtain the optimal solution when

considering all tasks as recycling tasks, however, this is not concomitant with the

authors’ definition of the term and it is therefore not possible to know where this can

be applied on an ad hoc basis. For the minimum requirements to determine the optimal

solution, as per Example 4.1, the proposed model required the same number of binary

variables as V&S 2013 (569), but more continuous variables (826 vs 807) and fewer

constraints (2774 vs 2843). The model size was significantly smaller for V&S 2012

(231, 621 and 2329), however this did not help in speedy convergence. The proposed

Figure 4-5. STN for Example 5

4-15

model performed the fastest for any single run by a minimum of ~11 s, however when

compounded times for iterations of ∆𝑃 were accounted for in providing a stopping

criterion for iteration and verifying optimal solutions, the proposed model was

significantly faster than the V&S models by a minimum of ~223 s, despite being a larger

model in many respects.

Table 4-7. Computational Results for Example 5

Model H Profit Avg. CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

V&S 2012 16.0 4245.8 113.8

3793.0

11 0 121 511 1779 112929 5644.6

V&S 2012 16.0 4262.8 689.8 11 1 231 621 2329 457946 5644.6

V&S 2012 16.0 4262.8 2989.5 11 2 330 720 2725 1596394 5644.6

V&S 2013 16.0 4262.8 120.4

325.7

10 0 569 807 2843 134965 5225.9

V&S 2013 16.0 4262.8 205.3 10 1 668 906 3338 193584 5225.9

S&V 2017 16.0 4026.3 1258.5

4949.1

9 0 99 419 1153 1248956 5640.6

S&V 2017 16.0 4193.6 3690.6 9 1 187 507 1719 1639888 5640.6

S&V 2017 16.0 4205.0 2224.5

/

10 0 110 465 1285 1230625 5654.1

S&V 2017 16.0 4225.7 10000.01 10 1 209 564 1920 3844937 5654.1

S&V 2017 16.0 4227.3 10000.02 / 11 0 121 511 1417 4557616 5654.1

R 2019 16.0 4241.4 10000.03 9 0 626 1429 4335 1523114 5640.6

R 2019 16.0 4241.4 10000.04 / 9 1 714 1517 4599 1098569 5640.6

This Work 16.0 4262.8 102.5 102.5 10 / 569 826 2774 106616 5225.9

Best bound: 14242.8, 24561.8, 34249.0, 44278.8

4.2.6 Example 6

Example 6 is a simple sequential process involving four states: one raw material, two

intermediates and one product as shown in the STN in Figure 4-6. There are three

different tasks occurring in four units. The objective is to maximize profit over a 6 hour

time horizon.

In Table 4-8, it is shown that all five models obtained the optimal solution of 10 c.u.

with V&S 2012 and S&V 2017 both requiring ∆𝑃 = 1. The proposed model performed

the fastest over any single run with five events, tied with S&V 2017 with 3 events and

∆𝑃 = 0, however the latter resulted in a suboptimal solution of 8 c.u. At the minimum

Figure 4-6. STN for Example 6

4-16

requirements to obtain the optimal solution, the proposed model had the same number

of binary variables as V&S 2013 (68) and more than R 2019 (57), however both

continuous variables (109 vs 114 and 130) and constraints (310 vs 343 and 377) were

fewer. V&S 2012 required fewer binary (36) and continuous (98) variables, however it

required more constraints (319) than the proposed model. S&V 2017 was the smallest

model at 20 binary and 58 continuous variables and 165 constraints. When comparing

the total CPU time including all necessary iterations, the proposed model required less

than half the time of the other models. Nonetheless, all five models performed

comparably with solution times under a third of a second.

Table 4-8. Computational Results for Example 6

Model H Profit Avg. CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

V&S 2012 6.0 8.0 0.1

0.3

5 0 20 82 239 13 12.6

V&S 2012 6.0 10.0 0.1 5 1 36 98 319 5 14.0

V&S 2012 6.0 10.0 0.1 5 2 48 110 367 14 14.0

V&S 2013 6.0 10.0 0.1

0.2

5 0 68 114 343 17 14.0

V&S 2013 6.0 10.0 0.1 5 1 84 130 423 45 14.0

S&V 2017 6.0 8.0 0.1

0.3

3 0 12 50 101 39 14.0

S&V 2017 6.0 10.0 0.1 3 1 20 58 165 43 14.0

S&V 2017 6.0 10.0 0.1 3 2 24 62 181 5 14.0

R 2019 6.0 10.0 0.1 3 0 57 130 377 18 14.0

R 2019 6.0 10.0 0.1 0.3 3 1 65 138 401 80 14.0

This Work 6.0 10.0 0.1 0.1 5 / 68 109 310 9 14.0

4.2.7 Example 7

Example 7 is also a simple sequential process involving three raw materials, two

intermediates and two products as shown in the STN in Figure 4-7. There are three

different tasks occurring in five units. The objective is to maximize profit over a 9 hour

time horizon.

4-17

Table 4-9 shows that again all five models obtained the optimal objective value of 210

c.u. V&S 2013 required ∆𝑃 = 1 with five events while V&S 2012 and S&V 2017 both

required ∆𝑃 = 2 with five and three events respectively. Note that for both V&S 2012

and S&V 2017, the same suboptimal objective value of 180 c.u. is obtained for two

consecutive iterations i.e. for ∆𝑃 = 0 and ∆𝑃 = 1 . This demonstrates a major

drawback of formulations relying on the parameter ∆𝑃 since there is always uncertainty

regarding the globally optimal solution and the sufficiency of a stopping criterion for

the iterations on the parameter. If the stopping criterion for this example had been

obtaining the same objective value for two consecutive iterations, solution would have

terminated with the suboptimal objective of 180 c.u for these two models. All the

models had comparable solution times of ~0.1 s except R 2019 which required double

this. At the minimum requirements for the optimal solution, the proposed model

required fewer binary variables (97), continuous variables (145), constraints (420) and

nodes (50) than V&S 2013, which required 117, 182, 567 and 91 respectively. S&V

2017 required far fewer binary variables (30), continuous variables (85) and constraints

(239), however it required more nodes (64). V&S 2012 required fewer binary variables

(60) but more continuous variables (149) and constraints (478). The number of required

nodes (31) was also lower. R 2019 required fewer binary variables (81) but was larger

in the other metrics, as has been the trend in the other examples. V&S 2012 was solved

at ∆𝑃 = 3, V&S 2013 at ∆𝑃 = 2 and R 2019 at ∆𝑃 = 1 in order to verify the optimal

Figure 4-7. STN for Example 7

4-18

solution and provide a stopping criterion for iteration. S&V 2017 was not verified at

∆𝑃 = 3 since it required a total of three events. When the total time for the iterations

was considered, the proposed model required less than a third of the time of the other

models which came to 0.4, 0.5, 0.3 and 0.5 s for V&S 2012, V&S 2013, S&V 2017 and

R 2019 respectively, although the difference is negligible due to the order of magnitude

of the solution times.

Table 4-9. Computational Results for Example 7

Model H Profit Avg. CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

V&S 2012 9.0 180.0 0.1

0.4

5 0 25 114 318 10 266.7

V&S 2012 9.0 180.0 0.1 5 1 45 134 418 27 300.0

V&S 2012 9.0 210.0 0.1 5 2 60 149 478 31 300.0

V&S 2012 9.0 210.0 0.1 5 3 70 159 518 23 300.0

V&S 2013 9.0 180.0 0.1

0.5

5 0 97 162 467 75 300.0

V&S 2013 9.0 210.0 0.1 5 1 117 182 567 91 300.0

V&S 2013 9.0 210.0 0.2 5 2 132 197 627 74 300.0

S&V 2017 9.0 180.0 0.1

0.3

3 0 15 70 139 15 300.0

S&V 2017 9.0 180.0 0.1 3 1 25 80 219 71 300.0

S&V 2017 9.0 210.0 0.1 3 2 30 85 239 64 300.0

R 2019 9.0 210.0 0.2 3 0 81 220 550 115 300.0

R 2019 9.0 210.0 0.2 0.5 3 1 91 230 580 112 300.0

This Work 9.0 210.0 0.1 0.1 5 / 97 145 420 50 300.0

4.2.8 Examples 8 and 9

Examples 8 and 9 are respectively Examples 7 and 8 in Vooradi and Shaik (2012).

These examples assertively demonstrate the necessity of allowing tasks to split over

multiple events. They also reiterate the drawbacks of facilitating task splitting via three-

index variables using the ∆𝑃 parameter i.e. the iteration stopping criterion and

compounded solution time. The STN for Examples 8 and 9 is presented in Figure 4-8.

The process involves one raw material, four intermediates and one product. Four

different tasks occur in dedicated units. The objective is maximization of profit over a

10 hour time horizon. Note that the data given in Table 4-1 and Table 4-2 differ for the

two examples.

4-19

Table 4-10 contains the computational results for Example 8. In this example, V&S

2012, V&S 2013 and S&V 2017 require a task to split over three events in order to

obtain the optimal solution of 400 c.u, while the requirement for R 2019 is four. Note

that, similarly to Example 7, all four models obtain the same suboptimal solution, of

200.1 c.u. in this case, for two consecutive iterations i.e. ∆𝑃 = 0 and ∆𝑃 = 1. If the

stopping criterion for iteration had been two consecutive solutions of the same value,

the solution procedure would have terminated at ∆𝑃 = 1 , thereby excluding the

globally optimal solution. At the minimum requirements for the optimal solution, the

proposed model had fewer binary variables (84), continuous variables (151) and

constraints (446) than V&S 2013 and R 2019, which had 132, 198 and 697, and 135,

306 and 931 respectively. This is due to the large value of ∆𝑃 required by those models.

The proposed model and S&V 2013 required six events, while R 2019 required five.

S&V 2017 is altogether a smaller model, requiring only four events. V&S 2012, while

requiring fewer binary variables (72), required more continuous variables (158) and

constraints (525) at six events. Nonetheless, the proposed model required up to ~1 s less

than the other models. Furthermore, when the compounded solution times were taken

into account, the other models’ CPU time requirements ranged from eight to 478 times

that of the proposed model.

Figure 4-8. STN for Examples 8 and 9

4-20

Table 4-10. Computational Results for Example 8

Model H Profit Avg. CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

V&S 2012 10.0 200.1 0.2

0.8

6 0 24 110 313 141 400.0

V&S 2012 10.0 200.1 0.3 6 1 44 130 413 1453 400.0

V&S 2012 10.0 300.0 0.2 6 2 60 146 477 386 400.0

V&S 2012 10.0 400.0 0.1 6 3 72 158 525 0 400.0

V&S 2012 10.0 400.0 0.1 6 4 80 166 557 34 400.0

V&S 2013 10.0 200.1 0.4

2.4

6 0 84 150 485 1207 400.0

V&S 2013 10.0 200.1 1.1 6 1 104 170 585 3962 400.0

V&S 2013 10.0 300.0 0.6 6 2 120 186 649 1341 400.0

V&S 2013 10.0 400.0 0.1 6 3 132 198 697 0 400.0

V&S 2013 10.0 400.0 0.2 6 4 140 206 729 52 400.0

S&V 2017 10.0 200.1 0.2

1.0

4 0 16 74 149 295 400.0

S&V 2017 10.0 200.1 0.3 4 1 28 86 241 1598 400.0

S&V 2017 10.0 300.0 0.2 4 2 36 94 273 315 400.0

S&V 2017 10.0 400.0 0.1 4 3 40 98 289 72 400.0

S&V 2017 10.0 400.0 0.1 4 4 40 98 289 72 400.0

R 2019 10.0 200.1 3.0

47.8

5 0 95 266 811 6010 400.0

R 2019 10.0 200.1 27.2 5 1 111 282 859 69732 400.0

R 2019 10.0 300.0 13.3 5 2 123 294 895 21188 400.0

R 2019 10.0 350.0 3.3 5 3 131 302 919 4977 400.0

R 2019 10.0 400.0 1.0 5 4 135 306 931 1492 400.0

This Work 10.0 400.0 0.1 0.1 6 / 84 151 446 0 400.0

For Example 9, the results are shown in Table 4-11. All of the above observations are

present on a larger scale as the optimal solution requires a task to split over seven events

to obtain the optimal solution of 400 c.u. R 2019 required eight splitting events. Note

that V&S 2012 obtains the same suboptimal solution of 200.133 c.u. for two

consecutive iterations, at ∆𝑃 = 2 and ∆𝑃 = 3. V&S 2013 obtains this solution for four

consecutive iterations, from ∆𝑃 = 0 to ∆𝑃 = 3 and S&V 2017 returns this solution for

three consecutive iterations, from ∆𝑃 = 1 to ∆𝑃 = 3 . R 2019 also obtained this

solution for four consecutive iterations, from ∆𝑃 = 0 to ∆𝑃 = 3. This would surely

meet any reasonable stopping criterion and prevent the determination of the optimal

solution. V&S 2012, V&S 2013 and the proposed model required 10 events, while S&V

2017 and R 2019 required eight and nine events respectively to find the optimal

solution. At the minimum requirements for this solution, due to the large number of

splitting events, S&V 2017 is only marginally smaller than the proposed model with

144 binary variables and 258 continuous variables, compared to 148 and 263

4-21

respectively. The proposed model required fewer constraints (794 vs 841) and nodes

(62 vs 333). V&S 2012, V&S 2013 and R 2019 were all larger models on all accounts.

The proposed model had the shortest single run solution time of ~0.2 s along with V&S

2012 at ∆𝑃 = 7. The other solution times range from 0.3 to 6852.7 s. R 2019 was unable

to converge within 10 000 s for ∆𝑃 = 2 and ∆𝑃 = 3. When compounded iteration times

are accounted for, V&S 2012, V&S 2013 and S&V 2017 required totals of 264.0,

2663.6 and 432.7 seconds to solve, respectively. These solution times are three to four

orders of magnitude higher than that of the proposed model. Note that S&V 2017 was

not solved at ∆P = 8 since it required a total of eight events. Similarly, R 2019 was not

solved at ∆P = 9 since it required a total of nine events. The Gantt Chart displaying the

optimal schedule for Example 9 can be found in Figure 4-9. The chart displays the batch

sizes of each task as well as the event at which the task occurs. It can be seen that Task

𝑠1𝑖𝑛1 produces 20 units of state 2 at event 1 which is more than the allowed storage.

Therefore, unit j1 continues to hold the material until event 9 where it can be discharged

to unit j2 for consumption, imitating task splitting. However, unit j1 also discharges

produced state 3 to unit j3 at event 2.

Figure 4-9. Optimal Schedule for Example 9 (Proposed Model)

j4

j3

j2

j1

4-22

Table 4-11. Computational Results for Example 9

Model H Profit Avg.

CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

V&S 2012 10.0 200.1 1.5

264.0

10 0 40 182 529 5881 400.0

V&S 2012 10.0 200.1 43.4 10 1 76 218 709 183662 400.0

V&S 2012 10.0 200.1 99.0 10 2 108 250 837 278379 400.0

V&S 2012 10.0 200.1 72.7 10 3 136 278 949 149327 400.0

V&S 2012 10.0 250.0 22.5 10 4 160 302 1045 39344 400.0

V&S 2012 10.0 300.0 21.4 10 5 180 322 1125 31683 400.0

V&S 2012 10.0 350.0 2.9 10 6 196 338 1189 2198 400.0

V&S 2012 10.0 400.0 0.2 10 7 208 350 1237 91 400.0

V&S 2012 10.0 400.0 0.3 10 8 216 358 1269 274 400.0

V&S 2013 10.0 200.1 9.8

2663.6

10 0 148 254 845 24191 400.0

V&S 2013 10.0 200.1 166.2 10 1 184 290 1025 345637 400.0

V&S 2013 10.0 200.1 417.1 10 2 216 322 1153 964619 400.0

V&S 2013 10.0 200.1 1495.1 10 3 244 350 1265 2572875 400.0

V&S 2013 10.0 250.0 449.1 10 4 268 374 1361 524677 400.0

V&S 2013 10.0 300.0 111.1 10 5 288 394 1441 101603 400.0

V&S 2013 10.0 350.0 12.0 10 6 304 410 1505 14036 400.0

V&S 2013 10.0 400.0 1.6 10 7 316 422 1553 1563 400.0

V&S 2013 10.0 400.0 1.7 10 8 324 430 1585 1533 400.0

S&V 2017 10.0 200.1 2.6

432.7

8 0 32 146 301 10972 400.0

S&V 2017 10.0 200.1 65.4 8 1 60 174 505 137305 400.0

S&V 2017 10.0 200.1 125.9 8 2 84 198 601 206271 400.0

S&V 2017 10.0 200.1 153.9 8 3 104 218 681 276276 400.0

S&V 2017 10.0 250.0 45.8 8 4 120 234 745 75469 400.0

S&V 2017 10.0 300.0 35.8 8 5 132 246 793 35826 400.0

S&V 2017 10.0 350.0 3.0 8 6 140 254 825 2911 400.0

S&V 2017 10.0 400.0 0.3 8 7 144 258 841 333 400.0

R 2019 10.0 200.1 120.0

/

9 0 171 478 1491 241563 450.0

R 2019 10.0 200.1 4558.1 9 1 203 510 1587 5815447 450.0

R 2019 10.0 200.1 10000.01 9 2 231 538 1671 8524578 450.0

R 2019 10.0 200.1 10000.02 9 3 255 562 1743 4335637 450.0

R 2019 10.0 250.0 6852.7 9 4 275 582 1803 2847939 450.0

R 2019 10.0 300.0 6369.3 9 5 291 598 1851 2450455 450.0

R 2019 10.0 350.0 2774.0 9 6 303 610 1887 999775 450.0

R 2019 10.0 380.0 60.6 9 7 311 618 1911 41426 450.0

R 2019 10.0 400.0 4.1 9 8 315 622 1923 2572 450.0

This Work 10.0 400.0 0.2 0.2 10 / 148 263 794 62 400.0

Best bound: 1200.1, 2300.0

4.3. Minimization of Makespan

Table 4-12 to Table 4-18 contain the computational results for Examples 4.2, 10.1 –

10.8, 10.10 and 10.12 – 10.14, which are solved for minimum makespan.

4.3.1 Example 4.2

Example 4.2 uses the same data as Example 4.1 except that it is not concerned with the

selling price of products. The big M value used in all necessary constraints is 100. The

demand profile is 500 units for state 7 and 400 units for state 10.

4-23

Table 4-12 contains the results for Example 4.2. Note that none of the V&S models or

R 2019 were able to converge by the resource limit of 10 000 s on the globally optimal

solution for any value of ∆𝑃 considered. This brings into question which value of ∆𝑃

should be considered, since in practice the models would not be run two or three times

for the duration of the given resource limit. The proposed model was able to converge

on the globally optimal solution of 47.683 hours after just 425.1 seconds (~7 minutes),

despite being the largest model for most of the runs, after R 2019, which is generally

the largest model. The optimal schedule as determined by the proposed model is shown

in Figure 4-10. The proposed model has the same number of binary variables (768) as

V&S 2013 at ∆𝑃 = 0, more continuous variables (1298 vs 1257) and fewer constraints

(4093 vs 4113) however all of these values were lower than V&S 2013 at ∆𝑃 = 1. On

the other hand, they were all higher than those of V&S 2012 and S&V 2017 for any

value of ∆𝑃. The proposed model also had the worst relaxed solution at 46.5. S&V 2017

had the worst solutions of 48.8 at ∆𝑃 = 0 and 48.9 at ∆𝑃 = 1. In fact, the solution

deteriorated when increasing the number of splitting events to one. These higher values

are attributed to the sequencing of production – consumption tasks at the same event

without the use of conditional sequencing as compensation. V&S 2012 and V&S 2013

both displayed improving objective values at increasing values of ∆𝑃 and V&S 2012

actually found the optimal solution at ∆𝑃 = 2, although it did not converge on it.

Nevertheless, it is not clear whether this solution would be obtained in practice due to

the length of time required and the uncertainty regarding the optimal number of splitting

events. Note that for S&V 2017 and R 2019, no solution was possible at fewer events,

as the solver reported the demand profile to be infeasible at 20 events with ∆𝑃 = 0

through ∆𝑃 = 2.

4-24

Table 4-12. Computational Results for Example 4.2

Model H Average CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

V&S 2012 47.7 10000.01

 /

21 0 168 697 2371 1419197 47.5

V&S 2012 47.7 10000.02 21 1 328 857 3171 1120017 47.4

V&S 2012 47.7 10000.03 21 2 480 1009 3779 2118671 47.4

V&S 2013 47.7 10000.04

 /

21 0 768 1257 4113 572195 47.5

V&S 2013 47.7 10000.05 21 1 928 1417 4913 1723942 47.4

S&V 2017 48.8 10000.06

 /

21 0 168 697 1845 1351464 47.5

S&V 2017 48.9 10000.07 21 1 328 857 2855 1285509 47.4

R 2019 47.7 10000.08

/

21 0 1042 2476 6945 922920 47.3

R 2019 47.7 10000.09 21 1 1202 2636 7425 673494 47.3

This Work 47.7 425.1 425.1 21 / 768 1298 4093 101150 46.5

Best bound: 147.5, 247.6, 347.4, 447.7, 547.4, 647.5, 747.4, 847.5, 947.4

Relative Gap: 10.45%, 20.19%, 30.64%, 40.01%, 50.65%, 62.68%, 73.20%, 80.45%, 90.63%

4-25

j4

j3

j2

j1

F
ig

u
re

 4
-1

0
.
O

p
ti

m
al

 S
ch

ed
u

le
 f

o
r

E
x

am
p

le
 4

.2
 (

P
ro

p
o

se
d

 M
o
d

el
)

4-26

4.3.2 Example 10 - Westenberger-Kallrath Problem

This example is a popular benchmark problem for scheduling formulations which was

publicized by Kallrath (2002). The data for the problem is largely the same as that

initially published, except that the task duration data is scaled for each task while

maintaining the original ratios. Therefore, the data is more accurately as per that in

Vooradi and Shaik (2012). The large process, for which the STN is depicted in Figure

4-11, involves 19 states: one raw material, 13 intermediates and five products. States 1

and 3 are involved in a recycle loop. There are 17 different tasks occurring in nine

processing units with multiple tasks competing for some of the equipment resources.

Notably, the problem involves four states which must adhere to the ZW policy: states

5, 9, 10 and 12. Note that results for R 2019 are not included for this examples as the

model does not include handling of states which must adhere to the ZW policy. The

problem is solved for the minimum makespan required to satisfy 12 different demand

scenarios appearing in Vooradi and Shaik (2012). The demand patterns are given in

Table 4-13 below, where patterns 9, 11 and 0 are excluded due to their excessive

computational complexity. Tasks which were not required for a given demand profile

were rigorously excluded along with their associated binary and continuous variables

as well as any appropriate constraints. The big M value was taken as 100 for all

scenarios. Note that for V&S 2013, modifications are required in many constraints

relating to rigorous conditional sequencing in order to allow for variable production

ratios in task 𝑠1𝑖𝑛2. The same substitutions are made for each of these cases as in V&S

2012, whereby the quantity of produced states 2 and 3 are expressed through a material

balance around storage and excess quantities of these states.

4-27

Table 4-13. Demand Scenarios for Example 10

Demand Scenario Product 14 Product 15 Product 16 Product 17 Product 18

1 20 20 20 0 0

2 20 20 0 20 0

3 20 20 0 0 20

4 20 0 20 20 0

5 20 0 20 0 20

6 20 0 0 20 20

7 0 20 20 20 0

8 0 20 20 0 20

10 0 0 20 20 20

12 30 20 20 10 10

13 10 20 30 20 10

14 18 18 18 18 18

Figure 4-11. STN for Example 10

4-28

Table 4-14 and Table 4-15 contain the results for Examples 10.1 – 10.3 and 10.4 to 10.5

respectively, all of which are smaller problems requiring no task splitting. For Example

10.1, the proposed model is the largest in all aspects except for having fewer binary

variables (214) than V&S 2013 at ∆𝑃 = 1 (253) and fewer constraints (1061) than V&S

2013 at both ∆𝑃 = 0 (1108) and ∆𝑃 = 1 (1360). The proposed model solves in 0.2 s,

which is slower than only V&S 2012 at ∆𝑃 = 0 (0.1 s). However, when compounded

time is considered for V&S models, the proposed model required about half the time of

the other models. For Example 10.2, the proposed model is again the largest except for

having fewer binary variables (238) than V&S 2013 at ∆𝑃 = 1 (282) and fewer

constraints (1171) than V&S 2012 at ∆𝑃 = 1 (1238) and V&S 2013 at ∆𝑃 = 0 (1216)

and ∆𝑃 = 1 (1536). The proposed model is slower (0.4 s) than only V&S 2012 at ∆𝑃 =

0 (0.3 s). When total solution times are considered, the proposed model solved in half,

a third and a tenth of the time required by V&S 2012, V&S 2013 and S&V 2017

respectively. For Example 10.3, the proposed model was the largest except for having

fewer binary (280) and continuous (451) variables than V&S 2013 at ∆𝑃 = 1 (336 and

508) and fewer constraints (1374) than V&S 2013 at ∆𝑃 = 0 (1435) and ∆𝑃 = 1

(1765). On any single run, the proposed model solved slower than V&S 2013 and S&V

2017 at ∆𝑃 = 0 (0.2 s), however against the total compounded solution times, the

proposed model required half the time of V&S 2012 and V&S 2013 and an ninth of the

time for S&V 2017.

4-29

Table 4-14. Computational Results for Examples 10.1 to 10.3

Model H Average CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

Example 10.1

V&S 2012 28.0 0.1

0.4

5 0 62 253 777 17 24.0

V&S 2012 28.0 0.3 5 1 110 301 1029 25 24.0

V&S 2013 28.0 0.2

0.4

5 0 205 355 1108 31 24.0

V&S 2013 28.0 0.2 5 1 253 403 1360 74 24.0

S&V 2017 28.0 0.2

0.6

4 0 56 222 534 123 24.0

S&V 2017 28.0 0.3 4 1 98 264 820 222 24.0

This Work 28.0 0.2 0.2 5 / 214 490 1061 56 24.0

Example 10.2

V&S 2012 28.0 0.3

0.8

6 0 74 296 918 122 24.0

V&S 2012 28.0 0.6 6 1 134 356 1238 880 24.0

V&S 2013 28.0 0.5

1.2

6 0 222 408 1216 575 24.0

V&S 2013 28.0 0.7 6 1 282 468 1536 560 24.0

S&V 2017 28.0 0.4

4.1

5 0 70 272 654 992 24.0

S&V 2017 28.0 3.6 5 1 126 328 1034 3485 24.0

This Work 28.0 0.4 0.4 6 / 238 520 1171 79 24.0

Example 10.3

V&S 2012 28.0 0.3

0.6

6 0 78 308 988 17 24.0

V&S 2012 28.0 0.4 6 1 142 372 1318 154 24.0

V&S 2013 28.0 0.2

0.7

6 0 272 444 1435 54 24.0

V&S 2013 28.0 0.5 6 1 336 508 1765 129 24.0

S&V 2017 28.0 0.2

2.8

5 0 70 272 669 112 24.0

S&V 2017 28.0 2.6 5 1 126 328 1049 2639 24.0

This Work 28.0 0.3 0.3 6 / 280 451 1374 119 24.0

For Example 10.4, the globally optimal solution of 27 hours was obtained by all four

models. S&V 2017 required five events and the other models required six. The

proposed model required the most binary (321) and continuous (519) variables after

V&S 2013 at ∆𝑃 = 1 (376 and 575) as well as the most constraints (1610) after V&S

2013 at both ∆𝑃 = 0 (1647) and ∆𝑃 = 1 (2022). In this example, the proposed model

required the third highest solution time for any single run (4.0 s), whereas the quickest

model was V&S 2012 at ∆𝑃 = 0 (0.5 s). It was faster than V&S 2013 at ∆𝑃 = 1 (5.1

s) and S&V 2017 at ∆𝑃 = 1 (5.7 s). When comparing the total solution times, the

proposed model was slower than V&S 2012 by ~2.6 s but faster than the others by at

least 2.4 s. Example 10.5 was solved with five event points by S&V 2017 and with six

event points by the other models. The proposed model was the largest except for having

fewer binary (363) and continuous (557) variables than V&S 2013 at ∆𝑃 = 1 (430 and

4-30

615). As expected the proposed model also had fewer constraints (1810) than V&S

2013 at both ∆𝑃 = 0 (1861) and ∆𝑃 = 1 (2246). On a single run basis, the proposed

model required more time (1.8 s) than V&S 2012 at ∆𝑃 = 0 (0.6 s) and ∆𝑃 = 1 (0.9 s)

and S&V 2017 at ∆𝑃 = 0 (0.5 s), however when an extra iteration is considered in order

to verify the optimal solution, the proposed model was slower than V&S 2012 by only

~0.3 s while it was faster than the others by a minimum of ~3 s.

Table 4-15. Computational Results for Examples 10.4 and 10.5

Model H Average CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

Example 10.4

V&S 2012 27.0 0.5

1.4

6 0 87 347 1118 323 16.0

V&S 2012 27.0 0.9 6 1 158 418 1493 864 16.0

V&S 2013 27.0 3.0

 8.1

6 0 305 504 1647 3198 16.0

V&S 2013 27.0 5.1 6 1 376 575 2022 5774 16.0

S&V 2017 27.0 0.7

6.4

5 0 80 312 798 935 16.0

S&V 2017 27.0 5.7 5 1 144 376 1218 4532 16.0

This Work 27.0 4.0 4.0 6 / 321 519 1610 3594 16.0

Example 10.5

V&S 2012 26.0 0.6

1.5

6 0 91 359 1187 608 16.0

V&S 2012 26.0 0.9 6 1 166 434 1572 683 16.0

V&S 2013 26.0 3.1

6.7

6 0 355 540 1861 3563 16.0

V&S 2013 26.0 3.6 6 1 430 615 2246 3083 16.0

S&V 2017 26.0 0.5

4.8

5 0 80 312 813 885 16.0

S&V 2017 26.0 4.2 5 1 144 376 1233 3845 16.0

This Work 26.0 1.8 1.8 6 / 363 557 1810 3417 16.0

As shown in Table 4-16, Example 10.6 required that tasks in both V&S 2012 and S&V

2017 split over one event in order to obtain the optimal solution of 30 hours. S&V 2017

required six events and the other models required eight. The proposed model required

fewer binary (466) and continuous (731) variables than V&S 2013 at ∆𝑃 = 1 (553 and

806) as well as fewer constraints (2300) than V&S 2012 at ∆𝑃 = 2 (2466) and V&S

2013 at both ∆𝑃 = 0 (2341) and ∆𝑃 = 1 (2887). It solved slower than V&S 2012 by

~223 s under the minimum requirements for the optimal solution however it was slower

only by ~121 s when total solution time was accounted for. Under these conditions, it

was faster than V&S 2013 and S&V 2017 by at least ~214 s. Note that V&S 2013 does

4-31

not scale well for this example when increasing the number of splitting events, as at

∆𝑃 = 1, the solver required 1391.8 s to converge. Also shown in Table 4-16, Example

10.7 required no task splitting and was solved by S&V 2017 with six events and with

seven events by the other models. The proposed model followed a familiar trend in

terms of size being the largest except for having fewer binary (387) and continuous

(622) variables than V&S 2013 (454 and 686) as well as fewer constraints (1944) than

V&S 2013 at both ∆𝑃 = 0 (1977) and ∆𝑃 = 1 (2436). The proposed model was slower

(14.1 s) than V&S 2012 at ∆𝑃 = 0 (1.0 s), however the cumulative solution time for

V&S 2012 was 6.2 s. Also in the case of compounded solution time it was twice as fast

as V&S 2013 (28.7 s) and more than three times as fast as S&V 2017 (49.6 s). Again

in Table 4-16, Example 10.8 displayed the poorest results for the proposed model in

which the compounded solution times for the V&S models were better in the case of

V&S 2012 (7.0 s) as well as S&V 2017 (1.5 s) against 14.9 s. V&S 2013 required 30.4

s. Again this example required no task splitting and the trends on binary and continuous

variables as well as constraints were consistent with Example 10.7.

4-32

Table 4-16. Computational Results for Example 10.6 to 10.8

Model H Average CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

Example 10.6

V&S 2012 31.0 21.3

170.3

8 0 121 469 1564 9593 16.0

V&S 2012 30.0 68.7 8 1 226 574 2110 26263 16.0

V&S 2012 30.0 80.3 8 2 315 663 2466 26065 16.0

V&S 2013 30.0 241.3

1633.0

8 0 448 701 2341 114177 16.0

V&S 2013 30.0 1391.8 8 1 553 806 2887 267711 16.0

S&V 2017 31.0 43.1

505.7

6 0 96 368 956 25021 16.0

S&V 2017 30.0 119.7 6 1 176 448 1476 43286 16.0

S&V 2017 30.0 343.0 6 2 240 512 1732 95805 16.0

This Work 30.0 291.6 291.6 8 / 466 731 2300 103036 16.0

Example 10.7

V&S 2012 28.0 1.0

6.2

7 0 103 409 1331 762 16.0

V&S 2012 28.0 5.1 7 1 190 496 1790 2254 16.0

V&S 2013 28.0 7.0

28.7

7 0 367 599 1977 5604 16.0

V&S 2013 28.0 21.7 7 1 454 686 2436 12068 16.0

S&V 2017 28.0 2.6

49.6

6 0 96 374 963 3124 16.0

S&V 2017 28.0 47.0 6 1 176 454 1483 21463 16.0

This Work 28.0 14.1 14.1 7 / 387 622 1944 10531 16.0

Example 10.8

V&S 2012 28.0 1.6

7.0

7 0 107 421 1406 1135 16.0

V&S 2012 28.0 5.4 7 1 198 512 1873 2826 16.0

V&S 2013 28.0 8.2

30.4

7 0 425 639 2225 6559 16.0

V&S 2013 28.0 22.2 7 1 516 730 2692 15261 16.0

S&V 2017 28.0 0.4

1.5

5 0 80 312 813 507 16.0

S&V 2017 28.0 1.1 5 1 144 376 1233 886 16.0

This Work 28.0 14.9 14.9 7 / 435 665 2177 14265 16.0

The results for Examples 10.10 and 10.12 are displayed in Table 4-17. No task splitting

was required and S&V 2017 obtained the globally optimal solution of 35 hours with

seven events where as the other models required eight. The trends for model size are

again consistent with Example 10.8 and 10.7. The proposed model solved slower (17.1

s) than the single runs for V&S 2012 at ∆𝑃 = 0 and ∆𝑃 = 1, V&S 2013 at ∆𝑃 = 0 and

S&V 2017 at ∆𝑃 = 0 by a maximum of ~11 s, however against the compounded

solution times the proposed model solved the fastest by up to ~135 s. Example 10.12

requires no task splitting and was solved with eight events by V&S 2012 and with seven

events by the other three formulations. Again the proposed formulation followed a

similar trend in terms of model size as above, except that it also required fewer

constraints (3164) than V&S 2012 at ∆𝑃 = 1 (3291). The proposed model also had the

4-33

shortest single run time (1.4 s), however it was significantly faster than V&S 2012 and

S&V 2017, especially when compounded solution times for iterations necessary to

verify the optimal objective value were considered. V&S 2013 performed well at 6.8 s,

however V&S 2012 and S&V 2017 required a total of ~109 and ~2690 s respectively.

Table 4-17. Computational Results for Example 10.10 and 10.12

Model H Average CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

Example 10.10

V&S 2012 35.0 6.3

18.5

8 0 138 536 1890 3024 24.0

V&S 2012 35.0 12.3 8 1 258 656 2511 4286 24.0

V&S 2013 35.0 11.0

48.7

8 0 563 831 3053 7463 24.0

V&S 2013 35.0 37.7 8 1 683 951 3674 19674 24.0

S&V 2017 35.0 16.3

152.4

7 0 126 485 1371 10845 24.0

S&V 2017 35.0 136.1 7 1 234 593 2058 39301 24.0

This Work 35.0 17.1 17.1 8 / 581 877 3016 14441 24.0

Example 10.12

V&S 2012 34.0 19.9

109.0

8 0 180 694 2476 4900 30.0

V&S 2012 34.0 89.1 8 1 336 850 3291 12146 30.0

V&S 2013 34.0 2.4

6.8

7 0 573 899 3249 287 30.0

V&S 2013 34.0 4.4 7 1 705 1031 3939 386 30.0

S&V 2017 34.0 41.6

2690.1

7 0 168 639 1843 14242 30.0

S&V 2017 34.0 2648.5 7 1 312 783 2752 392539 30.0

This Work 34.0 1.4 1.4 7 / 598 914 3164 519 30.0

Table 4-18 contains the results for Example 10.13 which required no task splitting and

was solved by S&V 2017 with eight events and by the other models with nine events.

The proposed model was the largest on any single run except for having fewer binary

(800) and continuous (1216) variables than V&S 2013 at ∆𝑃 = 1 (945 and 1363) as

well as fewer constraints (4256) than V&S 2013 at both ∆𝑃 = 0 (4341) and ∆𝑃 = 1

(5281). The proposed model was also the third fastest (30.7 s), after V&S 2013 at ∆𝑃 =

0 (26.6 s) and V&S 2012 at ∆𝑃 = 0 (30.6 s), however, after accounting for

compounded solution times, required to verify the global optimal solution, the proposed

model significantly outperformed the other models by up to ~255 s. Example 10.14 also

required no task splitting although S&V 2017 was unable to converge or obtain the

optimal solution of 36 hours with nine events, as shown in Table 4-18. In terms of

4-34

model size, the proposed formulation followed the common trend of being the largest

with the exception of having fewer binary (800) and continuous (1216) variables than

V&S 2013 at ∆𝑃 = 1 (945 and 1363) as well as fewer constraints (4256) than V&S

2013 at both ∆𝑃 = 0 (4341) and ∆𝑃 = 1 (5281). These values are identical to those in

Example 10.13. For a given single run, only V&S 2013 at ∆𝑃 = 0 solved faster (547.9

s) than the proposed model (925.5 s), however when compounded solution time for

iterations was accounted for, the proposed model was the fastest by a significant

margin, as the other models did not scale well. V&S 2012 at ∆𝑃 = 1 was unable to

converge on the optimal solution after 10 000 s, having a best bound by this stage of

~30 hours. The total solution time for V&S 2013 was just under 5594 s (~1.5 hours)

and, as mentioned above, S&V 2017 was unable to converge at either ∆P = 0 or at

∆P = 1. The optimal schedule for Example 10.14 as determined by the proposed model

is shown in Figure 4-12.

Table 4-18. Computational Results for Examples 10.13 and 10.14

Model H Average CPU

Time (s)

Total CPU

Time (s)

Event

Points

∆p Binary

Variables

Continuous

Variables

Constraints Nodes RMIP

Example 10.13

V&S 2012 36.0 30.6

83.9

9 0 204 785 2820 4857 24.0

V&S 2012 36.0 53.3 9 1 384 965 3760 7036 24.0

V&S 2013 36.0 26.6

106.1

9 0 765 1183 4341 3294 24.0

V&S 2013 36.0 79.5 9 1 945 1363 5281 7402 24.0

S&V 2017 36.0 155.0

285.5

8 0 192 730 2117 18921 24.0

S&V 2017 36.0 130.5 8 1 360 898 3173 17606 24.0

This Work 36.0 30.7 30.7 9 / 800 1216 4256 11886 24.0

Example 10.14
V&S 2012 36.0 2305.6

/

10 0 228 876 3164 282640 21.6

V&S 2012 36.0 10000.01 10 1 432 1080 4229 383929 21.6

V&S 2013 36.0 547.9

5593.8

9 0 765 1183 4341 110734 21.6

V&S 2013 36.0 5045.9 9 1 945 1363 5281 1267050 21.6

S&V 2017 37.0 10000.02

 /

9 0 216 821 2391 505518 21.6

S&V 2017 38.0 10000.03 9 1 408 1013 3594 517330 21.6

This Work 36.0 925.5 925.5 9 / 800 1216 4256 74371 21.6

Best bound: 130.0, 228.6, 327.6

4-35

4.4. Summary of Findings

Figure 4-14 and Figure 4-13 summarize the overall performance of the proposed model

against the other four models considered through a number of metrics. Figure 4-14

displays the number of instances of a model performing the fastest with the optimal

parameters and with total, cumulative time as well as the number of considered

examples converging on the globally optimal solution.

Figure 4-12. Optimal Schedule for Example 10.14 (Proposed Model)

j4

j3

j2

j1

j5

j6

j7

j8

j9

4-36

Figure 4-13 displays the maximum solution time for any one problem instance as well

as the total solution time for all 22 instances. The figure also displays the greatest lead

each model had over the next fastest model when it was fastest, and the greatest lag it

had behind the fastest model, across all 22 problem instances. Note that the results for

R 2019 are for the first 10 example instances only, which do not include ZW states.

This heavily impacts the maximum and total solution time.

The examples in which the proposed model was outperformed are Examples 4.1 and

10.4 to 10.8. These six examples were solved faster by V&S 2012 and only Example

Figure 4-13. Model Computational Performance by CPU Time

Figure 4-14. Model Computational Performance by Number of Instances

4-37

10.8 was solved faster than the proposed model by S&V 2017. V&S 2013 and R 2019

did not outperform the proposed model in any of the examples considered. In all of

these inconsistent examples, except Example 10.6, task splitting was not required by

the other models in order to find the globally optimal solution. This infers a smaller

number of binary variables for these problems when solved by V&S 2012 and S&V

2017, as the requirement of a nonzero splitting parameter expands the number of binary

variables required by a model significantly. In these cases, the number of binary

variables required by V&S 2012, at the maximum value of ∆p investigated, was still

less than half of that of the proposed model. This difference is perhaps the reason why

the proposed model was outperformed in some cases.

5-1

Conclusions and Recommendations

A new MILP formulation for the scheduling of multipurpose batch plants is presented

which incorporates the techniques of rigorous conditional sequencing, pre- and post-

processing unit wait and fractional extraction as well as facilitates task splitting without

the need for iterative procedures on a task splitting parameter. Additionally, guidelines

for rigorous exclusion of unnecessary constraints and variables are given in an attempt

to diminish the model size.

It was shown how the proposed formulation overcomes the drawbacks of three-index

based formulations by allowing tasks to effectively split over any number of events with

a fixed model size for a given problem. This is done without the need for iteration or

guesswork on the model parameters which compounds the problem size and complexity

as well as the required computational time and may exclude potentially optimal

solutions. The proposed formulation was able to determine the known best solutions for

all the problem instances considered in as far as the optimal number of events over

which a task should split is concerned.

It is acknowledged that the combined solution time of iteration for the determination of

the optimal number of events is not shown in this work. Nonetheless a nested iterative

procedure over both the number of events and the maximum number of events over

which tasks can split is bound to exacerbate the problem and lead to higher solution

times than if only a one-dimensional iterative procedure is required.

Furthermore, the proposed formulation was shown to be the most reliable in its ability

to converge for all of the problems considered. The inability to converge in reasonable

time (10 000 s) was demonstrated to occur in a number of examples solved by other

5-2

models. The proposed model converged on the optimal solution in no more than 925.5

seconds for any of the examples considered.

Of the 22 examples discussed, when comparing the solution time for fastest

convergence to global optimality for a single run at the lowest number of total and

splitting events, V&S 2012 performs the fastest or ties with the others in 13 examples,

V&S 2013 in seven, S&V 2017 in seven, R 2019 in three and nine are solved in the

fastest time or tied by the proposed model. However, for V&S 2012, five of these

solutions were only obtainable at a number of splitting events greater than zero. Unless

an algorithm is developed to determine a priori the optimal number of splitting events

or it is guessed for a single run, iterations would result in a longer total solution time.

Additionally, when one further iteration above those necessary to first obtain the

optimal solution was performed on ∆𝑃, in order to verify its optimality and provide a

concrete stopping criterion for iteration, the proposed model solved the fastest in 16 of

the examples, while V&S 2012 and S&V 2017 respectively solved five and one of the

examples the fastest. V&S 2013 and R 2019 did not solve any examples the fastest in

these circumstances. Of the six in which the proposed model was outperformed, it had

the second fastest solution time in five. Furthermore, the proposed model and R 2019

are the only models which obtain the globally optimal solution in Example 1m while

the proposed model is the only one which converges on the globally optimal solution

within 10 000 seconds for Example 4.2.

The proposed model was outperformed in terms of CPU time by a maximum of ~378

seconds across all examples for any given single run. This occurred in Example 10.14.

However, when one additional iteration on the number of splitting events was

performed and the solution time summed for all necessary iterations, the proposed

model outperformed the other models by a maximum of ~6948 seconds, just under two

5-3

hours, excluding the examples in which the V&S models did not converge. This

corresponds to a CPU time reduction of 99.4% and occurred in Example 3.

It was shown that three-index formulations do not always scale well with increasing

values of ∆𝑃 and the solution time can either increase exponentially or behave

inconsistently with longer solution times at intermediate values of ∆𝑃 and smaller

solution times at extreme values. It was also demonstrated how the size of a model is

not always a direct indicator of performance, since for many of the examples

considered, the proposed model was larger and yet it resulted in superior reliability,

accuracy and speed. The proposed model solved every example in reasonable time (no

more than 15.5 minutes), outperforming the other models in every example where task

splitting was required, except in Example 10.6. In cases where the proposed model did

not outperform the other models, it performed very comparably.

Finally, the proposed model allows for fractional extraction of states from a producing

unit, further improving the flexibility and allowing, in some cases, better schedules to

be determined. Together with the computational efficiency and steady convergence for

all problems considered, the objectives of the work outlined in Section 1.4 have been

satisfied.

The proposed model does not address resource considerations at the current time. It is

possible to incorporate resource considerations by defining monotonically increasing

continuous variables for the timing of resource utilization and enforcing that all tasks

consuming a resource at a particular event begin and end at the same time as the

resource times, as discussed in the literature. Alternatively, this can be incorporated

efficiently by treating resources as states and modelling their regeneration at the event

subsequent to the completion of the tasks which consumes them. A binary variable can

be used to track when direct transfer to a consuming task at the subsequent event occurs

5-4

for the purposes of enforcing sequencing. This is as per the work by Vooradi and Shaik

(2013).

R-1

References

Biegler, L. T., & Grossmann, I. E. (2004). Retrospective on optimization. Computers

and Chemical Engineering, 1169-1192.

Draper, D. L., Jonsson, A. K., Clements, D. P., & Joslin, D. E. (1999). Cyclic

Scheduling. IJCAI'99 Proceedings of the 16th International Joint Conference

on Artificial Intelligence - Volume 2 (pp. 1016-1021). Stockholm: Morgan

Kaufmann Publishers Inc.

Floudas, C. A., & Lin, X. (2004). Continuous-time versus discrete-time approaches for

scheduling of chemical processes: a review. Computers and Chemical

Engineering, 2109-2129.

Glover, F. (1975). Improved linear integer programming formulations of nonlinear

integer problems. Management Science, 455-460.

Ierapetritou, M. G., & Floudas, C. A. (1998). Effective continuous-time formulation for

short-term scheduling: I. multipurpose batch processes. Industrial and

Engineering Chemistry Research, 4341-4359.

Janak, S. L., & Floudas, C. A. (2008). Improving unit-specific event based continuous-

time approaches for batch processes: Integrality gap and task splitting.

Computers and Chemical Engineering, 913-955.

Janak, S. L., Lin, X., & Floudas, C. A. (2004). Enhanced continuous-time unit-specific

event-based formulation for short-term scheduling of multipurpose batch

processes: resource constraints and mixed storage policies. Industrial and

Engineering Chemistry Research, 2516-2533.

R-2

Kallrath, J. (2002). Planning and scheduling in the process industry. OR Spectrum, 219-

250.

Kondili, E., Pantelides, C. C., & Sargent, R. W. (1993). A general algorithm for short-

term scheduling of batch operations - I. MILP formulation. Computers and

Chemical Engineering, 211-227.

Lee, H., & Maravelias, C. T. (2017). Mixed-integer programming models for

simultaneous batching and scheduling in multipurpose batch plants. Computers

and Chemical Engineering, 621-644.

Lee, H., & Maravelias, C. T. (2018). Combining the advantages of discrete- and

continuous-time scheduling models: Part 1. Framework and mathematical

formulations. Computers and Chemical Engineering, 176-190.

Lin, X., & Floudas, C. A. (2001). Design, synthesis and scheduling of multipurpose

batch plants via an effective continuous-time formulation. Computers and

Chemical Engineering, 665-674.

Majozi, T. (2010). Batch Chemical Process Integration. Springer Science + Business

Media.

Majozi, T., & Friedler, F. (2006). Maximization of Throughput in a Multipurpose Batch

Plant under a Fixed Time Horizon: S-graph Approach. Industrial and

Engineering Chemistry Research, 6713-6720.

Majozi, T., & Zhu, F. X. (2001). A novel continuous-time MILP formulation for

multipurpose batch plants. 1. Short-term scheduling. Industrial and Engineering

Chemistry Research, 5935-5949.

R-3

Maravelias, C. T., & Grossmann, I. E. (2003). New general continuous-time state-task

network formulation for short-term scheduling of multipurpose batch plants.

Industrial and Engineering Chemistry Research, 3056-3074.

Mockus, L., & Reklaitis, G. V. (1997). Mathematical programming formulation for

scheduling of batch operations based on nonuniform time discretization.

Computers and Chemical Engineering, 1147-1156.

Nie, Y., Biegler, L. T., & Wassick, J. M. (2012). Integrated scheduling and dynamic

optimization of batch processes using state equipment networks. AIChE

Journal.

Oxford Economics. (2019). The Global Chemical Industry: Catalyzing Growth and

Addressing Our World's Sustainability Challenges. Washington DC:

International Council of Chemical Associations (ICCA).

Pantelides, C. C. (1994). Unified frameworks for optimal process planning and

scheduling. In D. Rippin, & J. Hale (Ed.), Proceedings of the second

international conference on foundations of computer-aided process operations

(pp. 253-274). Colorado: CACHE Publications.

Papageorgiou, L. G., Shah, N., & Pantelides, C. C. (1994). Optimal scheduling of heat-

integrated multipurpose plants. Industrial Engineering and Chemistry

Research, 3168-3186.

Pattinson, T., & Majozi, T. (2010). Introducing a new operational policy: the PIS

operational policy. Computers and Chemical Engineering, 59-72.

R-4

Puranik, Y., Samudra, A., Sahinidis, N. V., Smith, A. B., & Sayyar-Rodsari, B. (2018).

Infeasibility resolution for multi-purpose batch process scheduling. Computers

and Chemical Engineering, 69-79.

Rakovitis, N., Li, J., & Zhang, N. (2018). A novel modelling approach to scheduling of

multipurpose batch processes. Proceedings of the 13th International Symposium

on Process Systems Engineering (pp. 1333-1338). San Diego: Elsevier.

Rakovitis, N., Li, J., & Zhang, N. (2019). An improved approach to scheduling

multipurpose batch processes with conditional sequencing. Proceedings of the

29th European Symposium on Computer Aided Process Engineering (pp. 1387-

1392). Eindhoven: Elsevier.

Sanmarti, E., Friedler, F., & Puigjaner, L. (1998). Combinatorial technique for short

term scheduling of multipurpose batch plants based on schedule-graph

representation. Computers and Chemical Engineering, S847-S850.

Schilling, G., & Pantelides, C. C. (1996). A simple continuous-time process scheduling

formulation and a novel solution algorithm. Computers and Chemical

Engineering, S1221-S1226.

Seid, E. R., & Majozi, T. (2012). A robust mathematical formulation for multipurpose

batch plants. Chemical Engineering Science, 36-53.

Shaik, M. A., & Floudas, C. A. (2008). Unit-specific event-based continuous-time

approach for short-term scheduling of batch plants using RTN framework.

Computers and Chemical Engineering, 260-274.

Shaik, M. A., & Floudas, C. A. (2009). Novel unified modeling approach for short-term

scheduling. Industrial and Engineering Chemistry Research, 2947-2964.

R-5

Shaik, M. A., & Vooradi, R. (2017). Short-term scheduling of batch plants:

reformulation for handling material transfer at the same event. Industrial and

Engineering Chemistry Research, 11175-11185.

Smith, E. M., & Pantelides, C. C. (1995). Design of reaction/separation networks using

detailed models. Computers and Chemical Engineering, S83-S88.

Vooradi, R., & Shaik, M. A. (2012). Improved three-index unit-specific event-based

model for short-term scheduling of batch plants. Computers and Chemical

Engineering, 148-172.

Vooradi, R., & Shaik, M. A. (2013). Rigorous unit-specific event-based model for

short-term scheduling of batch plants using conditional sequencing and unit-

wait times. Industrial and Engineering Chemistry Research, 12950-12972.

Woolway, M., & Majozi, T. (2018). A novel metaheuristic framework for the

scheduling of multipurpose batch plants. Chemical Engineering Science, 678-

687.

Zhang, X., & Sargent, R. W. (1996). The optimal operation of mixed production

facilities - a general formulation and some approaches for the solution.

Computers and Chemical Engineering, 897-904.

