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Abstract
Integrated  architectures  for  power  electronic  circuits  have  been  a  subject  of  recent  interest.
Integration offers several benefits such as reliability, control on parasitic elements related to discrete
components, and ease of manufacture. The main objective of this particular research has been to
contribute towards effective modelling of integrated passive circuits operating in power electronic
circuits. 

Integrating passive components in one distributed space can be difficult to understand, and hence to
design.  Field  electromagnetics  is  often  unwieldy for  a  power  electronics  circuit  designer,  so  a
SPICE-like circuit  simulator  is  often an effective design  environment.  This  dissertation closely
examines both lumped and distributed SPICE-compatible models. 

Four  SPICE-compatible  models  have  been  investigated  by comparing  them with  an  analytical
distributed solution. This analytical solution is used to thoroughly derive the causes of all resonance
points,  as  well  as  impedances  at  low/high  frequencies;  which  are  the  important  factors  that
characterize the integrated passive. This analytical solution is only implemented in a narrow range
of boundary conditions; hence the SPICE-compatible methods must be developed, since SPICE
then handles the algorithmic work of handling the more complicated boundary conditions found in
power electronics.
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