LIST OF FIGURES

Figure 1.1 Structure of DWNN Gene	2
Figure 1.2: DWNN Domain Arrangement	3
Figure 1.3: Conserved Amino Acids within the DWNN Domain in Various Species.	3
Figure 1.4: TNF signalling pathway	8
Figure 1.5: Role of mitochondria in apoptosis (Intrinsic Pathway)	11
Figure 1.6: p53-Rb pathway.	15
Figure 1.7: Spatial relationship of various members of Bcl-2 family	16
Figure 1.8: Ubiquitin proteosome pathway	18
Figure 1.9: Arrangement of L1/L2 on the virus like particles	27
Figure 1.10: (A) Schematic representation of the genomic organization of Human	
papillomavirus (HPV)	28
Figure 1.11: Model for the mechanism by which human papillomavirus (HPV) 16 E	5
impairs death-inducing signal complex (DISC) formation (Kabsch and Alonso,	
2002)	45
Figure 2.1: Amino Acid Sequence of DWNN (13 kDa) to which antibodies were rais	sed
against	69
Figure 3.1: H&E of a normal epithelium.	88
Figure 3.2: H&E of Epidermoid cervical cancer.	88
Figure 3.3: H&E of verrucous carcinoma	89
Figure 3.4: H&E of Carcinoma in situ	89
Figure 3.5: Extracted RNA.	92
Figure 3.6: Reverse transcription	92
Figure 3.7: Polymerase chain reaction	93
Figure 3.8: Agarose gel electrophoresis of restriction digests	93
Figure 3.10: Probe concentration estimation.	94
Figure 3.11: Schematic representation of a DIG-labelling reaction.	95
Figure 3.12: In situ hybridization of 5' 1.1 kb probe in moderately-differentiated	
carcinoma	98

Figure 3.13: In situ hybridization of 5' 1.1 kb probe in the stroma
Figure 3.14: In situ hybridization of 5' 1.1 kb probe in well-differentiated carcinoma 99
Figure 3.15: In situ hybridization of 3' 1.1 kb probe in moderately-differentiated
carcinoma
Figure 3.16: In situ hybridization of 3' 1.1 kb probe in the stroma 101
Figure 3.17: In situ hybridization of 3'1.1 kb probe in well-differentiated carcinoma 101
Figure 3.18: In situ hybridization for 3' 6.1 kb probe in moderately differentiated
carcinoma102
Figure 3.19: In situ hybridization of 3'6.1 kb probe in the stroma
Figure 3.20: In situ hybridization of 3'6.1 kb probe in well-differentiated carcinoma. 103
Figure 3.21: In situ hybridization for exon 16 probe in moderately-differentiated
carcinoma104
Figure 3.22: Fluorescent in situ hybridization of 5' 1.1 kb probe 105
Figure 3.23: Fluorescent in situ hybridization of 3'1.1 kb probe 105
Figure 3.24: Fluorescent in situ hybridization of 3'6.1 kb probe 106
Figure 3.25: Fluorescent In Situ Hybridization of Exon 16 106
Figure 3.26: Amino acid sequence of DWNN (13 kDa) to which antibodies were raised
against
Figure 3.27: Schematic representation of immunocytochemistry reaction 109
Figure 3.28: Immunocytochemistry of DWNN-13 kDa in the moderately-differentiated
squamous cell carcinoma116
Figure 3.29: Immucytochemistry of 13 kDa DWNN in well-differentiated squamous cell
carcinoma117
Figure 3.30: Immunocytochemistry of DWNN-13 kDa on the epithelium 117
Figure 3.31: Immunocytochemistry of DWNN-13 kDa on the endocervical glands 118
Figure 3.32: Immunocytochemistry of DWNN-13 kDa on the fibroblasts and keratin
pearls
Figure 3.33: Immunocytochemistry of DWNN-13 kDa on tunnel cluster and mesonephric
ducts
Figure 3.34: DWNN image analysis

Figure 3.35: Immunocytochemistry of DWNN-200 kDa on moderately differentiated	
squamous cell carcinoma 12	0
Figure 3.36: Immunocytochemistry of DWNN-200 kDa on well-differentiated squamous	;
cell carcinoma	1
Figure 3.37: Immunocytochemistry of Bcl-2 on endocervical glands 12	2
Figure 3.38: Immunocytochemistry of Bcl-2 on squamous cell carcinoma 12	3
Figure 3.39: Apoptosis in normal and invaded stroma12	6
Figure 3.40: Apoptosis in endocervical glands and islands of tumour	7
Figure 3.41: Schematic representation of ABC staining reaction	8
Figure 3.42: Ki67 expression on the epithelium, endocervical glands and islands of	
tumour	1
Figure 3.43: Ki67 expression on the invaded stroma and squamous cell carcinoma 13	2
Figure 3.44: Amplification curves of 5'1.1 kb, 3'6.1 kb and exon 16	4
Figure 3.45: Melting curve analysis of 5'1.1 kb, 3'6.1 kb and exon 16	5