
University of the Witwatersrand

Masters Dissertation

Nature-Inspired Meta-Heuristic Algorithms in
PID Controller Tuning for Gimbal Stabilization

Sive Baartman - 723263

Prof. Ling Cheng

A dissertation submitted in fulfilment of the requirements
for the degree of Master of Science

to the

School of Electrical and Information Engineering

September 2020

The financial assistance of the Council for Scientific and Industrial Research (CSIR), Optronic Sensor

Systems (OSS) department towards this research is hereby acknowledged. Opinions expressed and conclusions

arrived at, are those of the author and are not necessarily to be attributed to the CSIR OSS department.

http://www.university.com
Department or School Web Site URL Here (include http://)

Declaration
I, Sive Baartman, declare that this dissertation titled, “Nature-Inspired Meta-
Heuristic Algorithms in PID Controller Tuning for Gimbal Stabiliza-
tion" and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research
degree at this University.

� Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, has been
clearly stated.

� Where I have consulted the published work of others, this is always clearly
attributed.

� Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this dissertation is entirely my own
work.

� I have acknowledged all the main sources of help.

Signed:

Date:

i

UNIVERSITY OF THE WITWATERSRAND

Abstract
Engineering and the Built Environment

School of Electrical and Information Engineering

Master of Science

Nature-Inspired Meta-Heuristic Algorithms in PID Controller Tuning
for Gimbal Stabilization

by Sive Baartman - 723263

Supervisor: Prof. Ling Cheng

Inertial stabilization systems are essential in ensuring that the optical system
tracks the target of interest and rejects any disturbance. The work presented in
this dissertation focuses on optimizing the Proportional-Integral-Derivative (PID)
controller in order to ensure that the gimbal used in the chosen inertial stabiliza-
tion system follows the Line-of-Sight (LOS) rate command input (which represents
the target velocity) and rejects disturbance. The main objective of this research
was to compare which optimization methods for tuning the PID controller work
best for the one-axis gimbal stabilization system. The methods compared are three
nature-inspired meta-heuristic algorithms; the Teaching Learning Based Optimiza-
tion (TLBO) algorithm, the Flower Pollination Algorithm (FPA) and the Genetic
Algorithm (GA). This research also involved tuning the parameters of the algo-
rithms themselves in order for the algorithms to optimize the controller. This work
also encompasses tuning the common algorithm parameters including the popula-
tion size and search space bounds, tuning algorithm-specific parameters for each
algorithm that requires this, and comparing whether dynamic or static parame-
ters are better suited for the problem instances presented. These parameters were
optimized for three different problem instances, which represent different target
motions and additional disturbances in the system. It was found that different pa-
rameters work best for different problem instances and that this research favoured
the TLBO when comparing the algorithm performances overall.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

This dissertation is dedicated to my paternal grandmother Doreen Baartman and

my maternal grandfather Milton Mzukhona Mjamekwana. In achieving their

master’s degrees during unfavourable circumstances, they displayed exceptional

character. Their resilience and belief in education is inspirational.

iii

Acknowledgements

First and foremost, I thank my supervisor, Professor Ling Cheng, for the guidance,

support and encouragement throughout this study. Furthermore, the support,

assistance and facilities provided by the University of the Witwatersrand do not

go unappreciated, with special regards to Mr Tapiwa Venge, who provided relief

during stressful long nights.

I would also like to recognise the invaluable assistance and contribution provided

by Mr Nelis Willers during this study. The excellent advice provided by him,

and others at the Council for Scientific and Industrial Research (CSIR), proved

monumental towards the success of this study.

I acknowledge the financial assistance provided by the CSIR and will forever be

grateful for the opportunity provided by the Optronic Sensor System (OSS) de-

partment.

Finally, I wish to express my deepest gratitude to my family and friends, and

in particular my mom, Fundiswa Mjamekwana, my dad, Sibusiso Baartman and

my sister, Lilitha Baartman, whom without even realising, provided me with the

strength to continue.

iv

Contents

Declaration i

Abstract ii

Dedication iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xii

Abbreviations xiv

1 Introduction 1
1.1 Problem Statement . 3
1.2 Research Questions . 4
1.3 Research Significance . 4
1.4 Research Objectives and Scope . 5

1.4.1 Objectives . 6
1.4.2 Scope . 7

1.5 Research Contributions . 8
1.6 Dissertation Outline . 9

2 Literature Review 11
2.1 The Gimbal Stabilization Problem and the PID Controller 11

2.1.1 Gimbal Stabilization . 11
2.1.2 The PID Controller for Gimbal Stabilization 12

2.2 PID Controller Tuning Techniques 14
2.2.1 Classical Controller Tuning Techniques 14
2.2.2 Optimization Controller Tuning Techniques 15

2.3 Meta-Heuristic Algorithms used on Control Systems 15
2.3.1 The Genetic Algorithm . 18
2.3.2 The Flower Pollination Algorithm 19
2.3.3 The Teaching-Learning-Based Optimization Algorithm . . . 19

2.4 Parameter Optimization . 20
2.4.1 Parameter Tuning and Parameter Control 20

v

Contents vi

2.4.2 Common Algorithm Parameters 24
2.4.2.1 Population Size . 25
2.4.2.2 Stopping Criteria 26
2.4.2.3 Search Space . 28
2.4.2.4 Fitness Function 29

2.5 Performance Measures for Evaluating Meta-Heuristic Algorithms in
Gimbal Stabilization . 32
2.5.1 Performance Measures of Meta-Heuristic Algorithms 33
2.5.2 Performance Measures of Tuning PID Controllers Gimbal

Stabilization Control Systems 34
2.6 Theoretical Analysis of Meta-Heuristic Algorithm Performance . . . 35

2.6.1 Convergence Analysis . 35
2.6.2 Statistical Analysis . 38
2.6.3 Time Complexity of Algorithms 40

2.7 Computational Experimentation . 42
2.8 Concluding Remarks . 46

3 Background and Preliminaries 47
3.1 Plant Model Details . 47

3.1.1 The Rate Gyro Sensor . 48
3.1.2 The Gimbal . 50
3.1.3 The DC Motor . 52
3.1.4 PID Controller . 54

3.1.4.1 Proportional Gain 54
3.1.4.2 Integral Gain . 55
3.1.4.3 Derivative Gain . 55

3.1.5 Added Non-Linearities . 57
3.1.5.1 Torque Disturbance due to Friction 57
3.1.5.2 Torque Disturbance due to Base Motion and Mass

Unbalance . 59
3.2 Algorithm Details . 60

3.2.1 The Genetic Algorithm . 60
3.2.1.1 Dynamic Parameters 64

3.2.2 The Flower Pollination Algorithm 70
3.2.2.1 Dynamic Switch Probability 71
3.2.2.2 Global Pollination 72
3.2.2.3 Local Pollination 73

3.2.3 The Teaching-Learning-Based Optimization Algorithm . . . 73
3.2.3.1 Teacher Phase . 74
3.2.3.2 Learner Phase . 74

3.3 Performance Criteria for Evaluating Gimbal Stabilization System . 76
3.3.1 Transient Response . 76
3.3.2 Fitness Function . 78

3.4 Theoretical Analysis Details . 79

Contents vii

3.4.1 Statistical Analysis . 80
3.4.2 Time Complexity of Algorithms 81

3.5 Method . 81
3.5.1 Computational Experimental Design 82
3.5.2 Common Parameters . 82
3.5.3 Algorithm-Specific Parameters 83
3.5.4 Problem Instances used in the Experiments 84
3.5.5 Research Environments . 85
3.5.6 Work Breakdown Structure 85

4 Parameter Optimization for Nature-Inspired Meta-Heuristic Al-
gorithms 87
4.1 Research Questions . 87
4.2 Parameterless Teaching Learning Based Optimization Algorithm

Results . 88
4.3 Dynamic and Static Flower Pollination Algorithm Results 94
4.4 Dynamic and Static Genetic Algorithm Results 100
4.5 Concluding Remarks . 105

4.5.1 Conclusions . 105
4.5.2 Suggestions for Future Practitioners 106

5 Robustness Investigation of Nature-Inspired Meta-Heuristic Al-
gorithms 108
5.1 Research Questions . 108
5.2 Dynamic Input . 109

5.2.1 Parameterless Teaching Learning Based Optimization Results109
5.2.2 Dynamic and Static Flower Pollination Algorithm Results . 112
5.2.3 Dynamic and Static Genetic Algorithm Results 115

5.3 Additional Non-Linearities . 119
5.3.1 Parameterless Teaching Learning Based Optimization Results119
5.3.2 Dynamic and Static Flower Pollination Algorithm Results . 123
5.3.3 Dynamic and Static Genetic Algorithm Results 126

5.4 Concluding Remarks . 131
5.4.1 Dynamic Input Conclusions 131
5.4.2 Additional Non-Linearity Conclusions 131
5.4.3 Suggestions for Future Practitioners 132

6 Performance Evaluation 133
6.1 Research Questions . 133
6.2 Comparison of Algorithm Performance using Fitness Value and Be-

havioural Response . 133
6.3 Statistical Analysis . 138
6.4 Convergence . 139
6.5 Time Complexity . 141
6.6 Concluding Remarks . 144

Contents viii

6.6.1 Conclusions . 144
6.6.2 Suggestions for Future Practitioners 145

7 Conclusions and Future Work 146
7.1 Research Summary . 146
7.2 Research Contributions . 147
7.3 Research Conclusions . 147
7.4 Possible Future Work . 148

A Model Validation 150

B Time Complexity Analysis 153

References 157

List of Figures

1.1 Applications of optical systems. The left image shows a guided
missile [1], the middle image shows a fighting vehicle with optical
systems [2], and the right image shows a Hubble space telescope
used to point at distant stars and galaxies [3] 1

1.2 Illustration adapted from [4] showing the two optimization problems
found in applying meta-heuristics on a problem with the control flow
(right) and information flow (left) 3

2.1 Diagram showing how the experiments were conducted 45

3.1 Block diagram showing the model of the simple gimbal control sys-
tem adapted from [5]. The Figure shows V in, which is the command
voltage taken from the controller, Tm is the output motor torque,
ωout is the angular velocity of the gimbal, and ωm is the measured
angular velocity. 48

3.2 Block diagram showing the rate gyro model adapted from [5] . . . 49
3.3 CAD adaptation of the camera gimbal that was used in this study

taken from [6] . 51
3.4 Block diagram showing the DC motor adapted from [5] 53
3.5 PID controller structure adapted from [7] 54
3.6 PID controller structure with an added low-pass filter 56
3.7 A representation of the relationship between friction force and ve-

locity adapted from [8]. (a) Coulomb, viscous and static friction.
(b) Stribeck friction model . 58

3.8 Flowchart showing dynamic GA adapted from [9] 64
3.9 Diagram showing the change of the switch probability value p as

the iteration number progresses . 72
3.10 Basic figures of merit of a control system for the time-domain adapted

from [10] . 77
3.11 Work breakdown structure describing tasks required for this study . 86

4.1 Bar graph showing the solution and fitness values for each algorithm
design for the TLBO . 90

4.2 The step response of the algorithm designs for the TLBO 92
4.3 Bar graph showing the solution and fitness values for each algorithm

design for the static and dynamic FPA 96
4.4 The step response of the algorithm designs for the static and dy-

namic FPA . 98

ix

List of Figures x

4.5 Bar graph showing the solution and fitness values for each algorithm
design for the static and dynamic GA 102

4.6 The step response of the algorithm designs for the static and dy-
namic GA . 103

5.1 Bar graph showing the solution and fitness values for each algorithm
design for TLBO on the control system on the second problem instance110

5.2 The ramp response of the algorithm designs for the TLBO 111
5.3 Bar graph showing the solution and fitness values for each algorithm

design for static and dynamic FPA on the second problem instance 114
5.4 Bar graph showing the fitness values for each algorithm design for

FPA on the second problem instance 114
5.5 The ramp response of the algorithm designs for the FPA 115
5.6 Bar graph showing the solution and fitness values for each algorithm

design for GA on the second problem instance 117
5.7 Bar graph showing the change of fitness value with changing algo-

rithm design for the GA algorithm on the second problem instance
. 117

5.8 The ramp response of the algorithm designs for the GA 118
5.9 Bar graph showing the solution and fitness values for each algorithm

design for TLBO on the last problem instance 120
5.10 Bar graph showing the time domain responses with changing algo-

rithm design for the TLBO on the last problem instance 120
5.11 The step response of the algorithm designs for the TLBO on the

last problem instance . 121
5.12 The step response showing the TLBO algorithm without the voltage

constraint of the motor . 122
5.13 Bar graph showing the solution and fitness values for each algorithm

design for FPA and the last problem instance 124
5.14 Bar graph showing the change of fitness value with changing algo-

rithm design for the FPA algorithm on the last problem instance
. 124

5.15 Bar graph showing the change of time-domain responses with chang-
ing algorithm design for the static and dynamic FPA on the last
problem instance . 125

5.16 The step response of the algorithm designs for the FPA with the
last problem instance . 125

5.17 The step response showing the Dynamic FPA algorithm without
the voltage constraint of the motor 126

5.18 Bar graph showing the solution and fitness values for each algorithm
design for FPA on the last problem instance 128

5.19 The change of fitness value with changing algorithm design for the
static and dynamic GA on the last problem instance 128

5.20 The change of the time domain responses with changing algorithm
design for the static and dynamic GA algorithm on the last problem
instance . 129

List of Figures xi

5.21 The step response of the algorithm designs for the GA on the last
problem instance . 129

5.22 The step response showing the dynamic GA algorithm without the
voltage constraint of the motor on the control system 130

6.1 The step response comparing the algorithm performance for the
plant with step input and no additional friction 134

6.2 The step response comparing the algorithm performance for the
control system with step input . 135

6.3 The comparison of the ramp response of the algorithm performance 136
6.4 The comparison of the step response of the algorithm performance

on the control system with additional non-linearity 137
6.5 Run-length distributions showing the convergence performance for

different Simulation conditions . 140
6.6 Bar graph comparing the computational time required for all three

runs . 142

A.1 Diagram showing the results for the step response system shown in
Figure 11 of [5] . 150

A.2 Diagram showing the simulated results for the step response of the
system from the model . 151

B.1 Time complexity of FPA . 153
B.2 Time complexity of TLBO . 154
B.3 Time complexity of Static GA . 154
B.4 Time complexity of Dynamic GA 155

List of Tables

2.1 Meta-heuristic algorithms for tuning PID controllers in different
applications . 16

3.1 Gyro information . 49
3.2 Gimbal performance specifications 52
3.3 Motor specifications . 53
3.4 Friction values taken from [11] . 58
3.5 Parameters of the GA compared . 63
3.6 2-level factorial design bounds . 83
3.7 Factorial design . 83

4.1 Descriptive statistical results illustrating the changes in the fitness
value for the different algorithm designs 88

4.2 Time-domain results for the TLBO for the first problem instance . . 89
4.3 Descriptive statistical results for the FPA for the first problem in-

stance . 94
4.4 Time-domain results for the FPA for the first problem instance . . . 95
4.5 Descriptive statistical results for the GA for the first problem instance101
4.6 Time-domain results for the GA for the first problem instance . . . 101

5.1 Descriptive statistical results for the TLBO for the second problem
instance . 109

5.2 PIDN solution results for the TLBO for the second problem instance110
5.3 Descriptive statistical results of the fitness value for the FPA for

the second problem instance . 113
5.4 Time domain results for the FPA for the second problem instance . 113
5.5 Descriptive statistical results of the fitness value for the GA for

second problem instance . 116
5.6 Time-domain results for the GA for the second problem instance . . 116
5.7 Descriptive statistical results for the TLBO for the last problem

instance . 119
5.8 Time-domain results for the TLBO for the last problem instance . 119
5.9 Descriptive statistical results for the FPA for the last problem in-

stance . 123
5.10 Time-domain results for the FPA for the last problem instance . . 123
5.11 Descriptive statistical results for the GA on the last problem in-

stance . 127
5.12 Time-domain results for the GA for the last problem instance . . . 127

xii

List of Tables xiii

6.1 Comparison of time-domain results for a step input 134
6.2 Comparison of fitness value and algorithm solutions 136
6.3 Comparison of time-domain results for a step input and added non-

linearity . 137
6.4 Data for the Friedman Test . 138
6.5 Friedman Test results . 138
6.6 Posthoc comparison of absolute difference among mean ranks 138
6.7 Posthoc comparison of p-values . 139
6.8 Posthoc comparison of p-values < α 139
6.9 Time complexity result for each algorithm analysed in appendix B . 143

A.1 Showing the maximum, minimum and average fitness value at each
iteration value. 152

Abbreviations

ABC Artificial Bee Colony

ACO Ant Colony Optimization Algorithm

AGC Automatic Generation Control

AI Artificial Intelligence

ANOVA ANalysis Of VAriance

AVR Automatic Voltage Regulator

BA Bat Algorithm

BFO Bacteria Foraging Optimization Algorithm

CI Computational Intelligence

CIA Computational Intelligence Approach

CS Cuckoo Search Algorithm

DE Differential Evolution Algorithm

DOE Design Of Experiments

EA Evolutionary Algorithms

FA Firefly Algorithm

FOPDT First Order Plus Dead Time

FOPID Fractional Order Proportional Integral Derivative

FPA Flower Pollination Algorithm

GA Genetic Algorithm

HBA Hyrbid Bat Algorithm

HVAC Heat Ventilating and Air Conditioning

HPD Healthy Population Diversity

LFC Load Frequency Control

LOS Line Of Sight

LQG Linear Quadratic Regulator

xiv

Abbreviations xv

LQR Linear Quadratic Gaussian

LTI Linear Time Invariant

MIMO Multiple Input Multiple Output

MRAC Model Reference Adaptive Control

NFL No Free Lunch

NM Nelder Mead

NP Non-deterministic Polynomial

PID Proportional Integral Derivative

PSO Particle Swarm Optimization Algorithm

QFT Quantitative Feedback Theory

SA Simulated Annealing Algorithm

SI Swarm Intelligence

SISO Single Input Single Output

SPD Standard Population Diversity

TLBO Teaching Learning Based Optimization Algorithm

UAV Unmanned Aeriel Vehicle

WBS Work Breakdown Structure

CHAPTER 1

Introduction

The human strive to perfection is expressed in

optimisation theory
Author Unknown

Moving vehicles, hand-held or ground-mounted systems make use of optical sys-

tems such as infra-red cameras, radars, and lasers [12]. Examples of these applica-

tions include navigation and tracking systems, guided missiles, and astronomical

telescopes, as seen in Figure 1.1 [13].

Figure 1.1: Applications of optical systems. The left image shows a guided
missile [1], the middle image shows a fighting vehicle with optical systems [2],
and the right image shows a Hubble space telescope used to point at distant

stars and galaxies [3]

These optical systems mainly function by stabilizing1 the sensor’s line-of-sight

(LOS) towards a target of interest. Thus, the ability of the system to reject

disturbances and accurately track a target is imperative. There are instances,

such as when the optical system is mounted on a moving base, that creates a

stabilization challenge [14].

A gimbal stabilization system (sometimes referred to as an inertial stabilization

platform (ISP) and thus these terms will be used interchangeably) is a solution
1Stabilization in this context refers to following a commanded rate input [12], and not other

definitions of stabilization in other fields.

1

Chapter 1. Introduction 2

for this problem. How the ISP performs generally is categorized into two different

groups. The first group deals with command tracking, i.e. how well the motion fol-

lows the commanded input. The second group deals with how well the disturbance

is rejected [11]. Accurately following the commanded input means rejecting the

disturbance. The ISP system makes use of a controller, amongst other elements,

to stabilize the sensor towards the target and reject disturbance.

How the controller performs highly depends on how it is tuned. A well-tuned

controller can have excellent disturbance rejection, good tracking response with-

out being easily influenced by noise [15]. Classical tuning methods have proven

to possess limitations because compared to intelligent methods, the classical tun-

ing methods do not produce desired results [15] [16]. Because of the limitations

that classical tuning methods possess, intelligent tuning methods, such as meta-

heuristic algorithms, are a promising alternative to tuning the controller.

Nature-inspired meta-heuristic algorithms can aid in solving problems that in-

clude non-linear constraints, multiple objectives, and dynamic non-linear prop-

erties. However, there are over 100 different types of algorithms and new (or

deviations of) meta-heuristic algorithms are continually being developed without

understanding the underlying mechanisms of those that already exist [17]. Not

much work has gone into finding a method for selecting a suitable one(s) for

specific applications and understanding why certain algorithms are suitable for

certain applications. Thus, choosing the algorithm for the required application

is highly dependent on the experience and mathematical knowledge of the algo-

rithm practitioner [18]. These algorithms have the powerful potential to solve

complex problems, although, not having a good understanding of how the under-

lying mechanisms work can make using nature-inspired meta-heuristic algorithms

a less practical and accessible solution. Because the complexity of problems which

researchers attempt to solve is ever-increasing, improving these algorithms, and

having a good understanding of these algorithms is essential.

Because these algorithms are powerful, many researchers make use of them and

have to either conduct various experiments for configuring and analysing them.

Chapter 1. Introduction 3

Some researchers have to guess which algorithm would work best to suit their

application. Using the algorithms this way limits their performance, and the

experimental work can be time-consuming. Figure 1.2 shows the two essential

factors to consider when applying meta-heuristic algorithms. These two factors

are parameter tuning of the algorithm and solving the problem presented by the

application.

Design Layer

Algorithm Layer

Application Layer

Design Layer

Algorithm Layer

Application Layer

optimizes

optimizes

algorithm quality

solution quality

parameter tuning

problem solving

Figure 1.2: Illustration adapted from [4] showing the two optimization prob-
lems found in applying meta-heuristics on a problem with the control flow (right)

and information flow (left)

The left diagram in Figure 1.2 illustrates how parameter tuning of the algorithm

optimizes its design, and how the algorithm is then used for optimization in the

problem solving of the application. The right diagram shows how the application

determines the quality of the solution, which then determines the algorithm qual-

ity, which indicates the performance of the algorithm design. How the parameters

of the algorithm itself or the application of interest affect the performance, for ex-

ample, is important and should be understood to be able to choose the appropriate

algorithm [19].

1.1 Problem Statement

The one-axis gimbal system used in this study as the application of interest was

developed computationally and tested. The controller in the gimbal system is

Chapter 1. Introduction 4

imperative for stabilization, and for tracking the command input. However, tun-

ing the controller using meta-heuristic techniques to improve the performance of

the proposed one-axis gimbal stabilization system has not been investigated. Fur-

thermore, the lack of investigation of how the parameters of the algorithm and

application affect the performance makes choosing which algorithm to use for the

characteristics displayed in the application difficult. Investigating the effects of the

algorithm and application parameters is essential in order for algorithms to be seen

as a more practical solution and to optimize their performance. It is also crucial

because classical tuning techniques seem to possess limitations that meta-heuristic

algorithms could be able to solve.

1.2 Research Questions

From the problem statement above, the research questions are as follows:

• How does applying meta-heuristic algorithms to tune a Proportional-Integral-

Derivative (PID) controller, namely the Flower Pollination Algorithm (FPA),

the Genetic Algorithm (GA), and the Teaching-Learning-Based Optimization

Algorithm (TLBO) affect the one-axis inertial stabilization system? How do

these algorithms compare in performance?

• Do the parameters of the algorithms and the characteristics of the one-axis

inertial stabilization system affect the performance? If so, how?

1.3 Research Significance

Meta-heuristic algorithms are continually being developed and are growing in num-

bers. Rather than creating yet another algorithm, the significance of this research

lies in investigating how the parameters of the algorithm affect the performance of

the control system. Furthermore, the significance also lies in showing what char-

acteristics of the control system are essential in the performance with the hopes

that this will aid the next researcher in choosing an algorithm appropriately for

Chapter 1. Introduction 5

a similar type of application with similar characteristics. In attempting to inves-

tigate how these parameters affect the performance of the algorithms and control

system, this research gives an understanding of the underlying mechanisms of the

algorithms.

Secondly, the application of the meta-heuristic algorithms for tuning the PID con-

troller on a real-world application such as the gimbal stabilization system, rather

than benchmark problems is significant to prove that these algorithms can aid in

real-world scenarios. Real-world problems come with real-world non-linearities,

and it is important to observe whether these algorithms would be able to perform

in these scenarios.

PID controllers are continually being used (approximately 95% of the controllers

in the process industry are PID controllers) due to their ease of implementation.

Thus improving on their performance makes this research practical and beneficial

for the many that make use of this controller. Various applications use gimbal

stabilization systems. Therefore, this research can contribute to improving such

applications.

1.4 Research Objectives and Scope

The focus of this research was two-fold. The focus included investigating the

performance of each algorithm and comparing the performance of these algorithms

with each other. Hooker [20] explained the difference between competitive and

scientific testing. Scientific testing of meta-heuristic algorithms focuses on using

scientific methods in experimentation to gain insights into the working mechanisms

of the algorithm. In contrast, competitive testing is more concerned with obtaining

an algorithmic set-up that performs better than a specific benchmark [4] [20]. This

research combined these testing methods.

Chapter 1. Introduction 6

1.4.1 Objectives

The first two objectives were related to scientific testing because they address the

effects of changing the parameters and the problem instances to gain insights into

each algorithm. The last objective was related to competitive testing because it

compares the algorithm performances to each other.

• The first objective identified the possible effects the algorithm parameters

had on the performance, and whether this effect was constant for all algo-

rithms. Determining these effects included observing the common-algorithm

parameter changes, and algorithm-specific parameter changes. Algorithm-

specific parameters, in this research, were either static or dynamic. Investi-

gating the parameter effects aids in understanding the underlying working

mechanisms of the algorithms, and thus can contribute to knowing which

algorithms to choose for different applications.

• The second objective was to determine the robustness of the algorithms.

Robustness can be measured using two factors; robustness to changes in

problem instances, and robustness to change in parameter values [4]. Ro-

bustness to changes in parameter values was addressed in the first objective.

However, this objective was to observe how the changes in the application

affect the performance of the algorithms. Thus, the three algorithms were

applied on three variations of the gimbal control system: (1) a gimbal sta-

bilization control system with step input where the step input represents

a constant target velocity, (2) a gimbal stabilization control system where

the ramp input represents a target velocity with constant acceleration, and

(3) a control system with added non-linearity and a step input where this

application tests whether the LOS rate can follow the target velocity with

additional non-linearities in the system.

• The final objective was to compare the performance of the algorithms with

their chosen ‘best’ parameters, which performs best in the different variants

of the gimbal control system.

Chapter 1. Introduction 7

1.4.2 Scope

A gimbal control system usually consists of two loops; the rate of the LOS which

aids in stabilization and rate disturbance rejection, and the LOS angle control

system loop which focuses more on tracking the target of interest. The current

study focused on the rate control system loop.

Many studies compare the performance of the meta-heuristic algorithms with the

classical PID control tuning methods such as the Ziegler-Nichols (ZN) tuning

method. The current study will not be doing this for two main reasons. The

first is that the ZN method is used on systems where the step response curve is

S-shaped so that the delay time and time constant can be determined to approx-

imate a first order plus dead time (FOPDT) system equation. This then allows

the PID controller gains to be determined from a set of rules. The system in this

research did not exhibit an S-shaped step response curve so these rules could not

be used. The second way to determine the PID controller gains using ZN method

is to observe how the system responds when increasing the proportional gain until

sustained oscillations, while setting the integral and derivative gains to infinity

and zero, respectively. However, this could not be implemented because of the

constraints of the motor voltage in the system that did not allow the proportional

gain to be increased until the required sustained oscillations.

Ogata [21] states that the ZN tuning method gives an educated guess on the PID

controller gains, rather than giving the final settings. This emphasises the im-

portance of investigating other techniques because the classical tuning techniques

would still require manual tuning after implementation, which is time-consuming.

This also shows why it would be hard to compare the optimization methods to

the classical tuning methods, as the researcher would use results obtained from

the algorithms for the manual tuning of the PID controller gains after using the

ZN method, which would not make for a fair comparison.

Another factor to consider is real-time controller tuning. Real-time controller

Chapter 1. Introduction 8

tuning can mean different things. It can mean finding the optimal values of con-

troller gains continuously while the target motion changes and environmental dis-

turbances vary. It can also mean including hardware in the loop such that the

results obtained are directly from system hardware. In the current study, using

meta-heuristic algorithms to tune the controller is not referred to as real-time ap-

plication as the algorithms produce the optimized parameter gains after a specified

iteration number. Also, the study will not include hardware. There are valuable

benefits for implementing real-time tuning applications; however, it was not part

of the scope of this study.

There are many different types of controllers used to control a gimbal stabiliza-

tion system. However, this study will only use the classical Proportional, Integral

and Derivative controllers. Furthermore, various applications use different PID

controller structures. However, this study will only partake in using the conven-

tional parallel form of the PID controller with an added N filter coefficient on the

Derivative controller.

The gimbal platform was assumed to be rigid and not flexible. It was also assumed

that the rotation of the earth has a negligible impact on the gimbal motion. This

simplified the gimbal equations of motion derivation. The rate gyro has drift

and drag [22] [23], which is important over longer time runs, however since these

experiments were conducted over a short time (1.5 seconds), this will be ignored.

1.5 Research Contributions

The contributions of this research are as follows:

• A comprehensive application of nature-inspired meta-heuristic algorithms on

an existing real-life problem. The three algorithms chosen are from different

categories, and thus this application contributes to a deeper understanding

of the underlying mechanisms of the different categories of the algorithms.

Chapter 1. Introduction 9

• Parameter optimization of the three algorithms chosen to contribute to know-

ing how parameters affect algorithm performance in the chosen existing real-

life problem. Chapter 4 shows this contribution.

• Observing how the algorithms perform with changes in the problem instance

as a method of evaluating how changes in the problem affect algorithms and

parameters. Chapter 5 shows this contribution.

• The computational time complexity analysis for these algorithms is made,

and this contributes to further understanding of how these algorithms per-

form and the computational costs required. Chapter 6 shows this contribu-

tion.

• The main purpose of this research is to aid future meta-heuristic practition-

ers on how to choose algorithms for this kind of problem. Thus, the final

contribution is the suggestions for future practitioners obtained from each

experiment shown on Chapters 4, 5 and 6.

1.6 Dissertation Outline

The dissertation is arranged as follows: Chapter 2 gives the literature survey of

the research. This includes looking at the current state of the literature on PID

control and the gimbal stabilization problem, tuning techniques for the PID con-

troller which then leads to meta-heuristic algorithms and how they are applied

to the problem. Since this type of research requires computational experimenta-

tion, the literature survey also highlights some important considerations for that

type of experimentation. The parameter optimization for the algorithms along

with the performance measures are crucial factors, and thus, the literature survey

elaborated on them. Chapter 2 ends with a survey of the theoretical analysis of

meta-heuristic algorithms, followed by concluding remarks.

Chapter 3 gives some background and preliminary technical theory required for

this research, including observing the plant model details, algorithm details, and

the performance criteria used.

Chapter 1. Introduction 10

This chapter is then followed by Chapters 4, 5, and 6, which are the contributing

chapters for this dissertation. Chapter 4 reports on the results obtained from

the parameter optimization experiments. This chapter is followed by Chapter 5,

which reports on the results obtained from the robustness experiments. Chapter 6

then discusses and compares the performance of the algorithms using theoretical

analysis.

The dissertation concludes in Chapter 7. This chapter includes a research sum-

mary, briefly stating the research contributions before detailing the research con-

clusions. The chapter ends by presenting ideas for future work.

CHAPTER 2

Literature Review

This chapter serves as an overview of the current standing of literature to justify

important decisions regarding this research.

It begins by observing the Proportional-Integral-Derivative (PID) controller on

the gimbal stabilization problem, including looking at how this controller is tuned

and gives an understanding of why this controller was chosen for this study by

reviewing similar work. The tuning techniques of the PID controller is surveyed,

including classical and optimization techniques. This chapter justifies choosing

the three algorithms used in this study.

The factors of parameter optimization are then discussed, including the reasons

for choosing certain values for parameters, and fitness function structure. How

performance is evaluated, including some theoretical aspects, is also reviewed in

this chapter. This chapter ends by discussing the essential factors of computational

experimentation.

2.1 The Gimbal Stabilization Problem and the PID Con-
troller

2.1.1 Gimbal Stabilization

Inertial Stabilization Platforms (ISP) generally started being utilised approxi-

mately 100 years ago [12]. Various applications such as airborne vehicles (including

11

Chapter 2. Literature Review 12

missiles, Unmanned Ariel Vehicles (UAVs) and satellites), and non-airborne vehi-

cles (such as ground vehicles, submarines and ships) contain the ISPs. ISPs are

featured because they consist of optical sensors used for tracking military targets,

providing high-resolution imagery, and stabilize communication antennas [12].

There are alternative methods, other than using a gimbal, which can form part

of an ISP and can be used to stabilize an optical sensor. An example of such

methods is the incorporation of mechanisms such as moving platforms and springs

into unstable systems to combat the effect of disturbances [24]. Airborne vehicles

such as helicopters or missiles commonly make use of gimbal stabilization systems

[24].

The gimbal stabilization system can undertake different electro-mechanical con-

figurations. In some configurations, the optical sensor is directly mounted on the

gimbal. In contrast, other configurations consist of mirrors or other optical ele-

ments mounted onto the gimbal, with the optical sensor mounted onto the vehicle.

What is common in these configurations are some of the elements to make the

system. These elements include motors or actuators, gimbal, gyroscopes or rate

sensors, optical sensor or payload, and a controller [12]. The gimbal stabilization

system in this current study used the PID controller.

2.1.2 The PID Controller for Gimbal Stabilization

The ISP problem has used various types of controllers. Some have used the stan-

dard classical controllers (i.e. PID control) [5] [14] [25], whereas others have used

robust control methods [26] [27] [28]. Baskin et al. [26] stated that using classi-

cal controllers is time-consuming because finding a controller that satisfies both

the stability and performance is an iterative process. That is why the authors

purely made use of robust controller design, namely the Linear Quadratic Gaus-

sian (LQG)/ Linear Quadratic Regulator (LQR) and H-infinity (H∞). Bujela [29]

compares using PID control with robust control algorithms (such as H∞, Quan-

titative Feedback Theory (QFT), and adaptive control) to observe which control

Chapter 2. Literature Review 13

method is suitable for the gimbal stabilization system. He correctly points out

that the need for using robust methods is because these methods can cope with

changing environments in plants, which the PID controller may not be able to.

However, the importance of using the PID controller is due to it being the con-

troller used most in industry (approximately 95% [30]) because of its ease of im-

plementation and understanding. The PID controller is then a practical choice

to optimize. The performance of the PID controller highly depends on how it is

tuned. Many applications make use of the classical PID controllers and combine

other controller algorithms to choose the parameters of these classical controllers.

Zhou et al. combined the Model Reference Adaptive Control (MRAC) method

with the PID method for non-linear disturbance rejection in an aerial ISP [31].

The PID controller used the MRAC method so that the ISP system can reject the

non-linear and time-varying mass unbalance torque disturbance. This technique

was chosen because it does not require online identification of the mathematical

model of mass unbalance torque. Adaptive controllers are useful when the param-

eters of the plant are unknown or change with time [32]. Khayatian and Aghaee

[33] compared the performance of a standard PD controller tuning method with

a PD controller adjusted by an adaptive controller to observe which controller

performs best in optimizing a two-axis gimbal stabilization system with unknown

dynamic parameters.

Other applications made use of alternative methods for choosing the parameters

of the PID controller. Caponetto and Xibilia compared the performance of the

standard PID controller with a Fractional Order PID (FOPID) controller where

the Genetic Algorithm (GA) designed the parameters for the stabilization of a one-

axis gimbal [34]. Rajesh et al. chose to implement the standard PID controller

but tuned it by using the Particle Swarm Optimization (PSO) and GA for the

stabilization of a three-axis gimbal system [25]. Abdo et al. applied fuzzy logic

for the choosing of the parameters of the PID controller for the stabilization of

a two-axis gimbal [14]. Zhou et al. optimized the PID control parameters for

Chapter 2. Literature Review 14

the two-axis ISP platform by using a method based on the co-simulation of a

mechatronic system [35].

Rather than implementing the standard PID controller configuration, other appli-

cations implement the cascade form of the classical controllers and use standard

tuning techniques. The study conducted by Abdo et al. made use of a cascade

controller for the control of a one-axis gimbal system [11].

The studies above mentioned show that PID controllers are efficient for this ap-

plication. However, the efficiency and performance of these controllers highly

depend on the implementation and tuning of the controller gains. Thus, rather

than choosing a different controller, this research focused on how to improve the

PID controller by implementing meta-heuristic algorithms as a possible method

of improving the PID controller performance.

2.2 PID Controller Tuning Techniques

As stated previously, the performance of the feedback control system highly de-

pends on the tuning of the controller [36]. If the controller is not tuned appropri-

ately, the closed-loop system becomes unstable [36]. There are different types of

tuning methods which are classical/conventional and optimization techniques.

2.2.1 Classical Controller Tuning Techniques

In classical techniques, the controller parameters highly depend on the assumptions

made of the plant and its desired output [36] [37]. These techniques are popular

since they are easy to implement and use. However, due to the assumptions

required for the technique to work, the preferred outcome can be challenging to

obtain in real-life scenarios where those assumptions are not relevant [36]. There

are many classical techniques. Some include Skogestad’s method, the Internal

Model Control method, the Lambda tuning and the Amigo method [38]. However,

the most common are the Ziegler-Nichols, Cohen-Coon method, Manual Tuning

Chapter 2. Literature Review 15

method and using PID Tuning Software methods [39]. The Ziegler-Nichols tuning

method being the most popular of the four.

These techniques are also time-consuming [40], and do not handle non-linearities

very well [36]. Optimization techniques provide better performance when faced

with numerous performance specifications [16]. These techniques contribute to

the system’s fast responses while decreasing overshoot and presenting satisfactory

steady-state errors [15].

2.2.2 Optimization Controller Tuning Techniques

Optimization techniques are classified into two categories; classical optimization

techniques and advanced optimization techniques [36]. Classical optimization tech-

niques include Calculus Methods, Linear Programming, Dynamic Programming

and Stochastic Programming.

The advanced optimization methods are those that use Artificial Intelligent (AI)

techniques. The importance of these techniques lies in their abilities to overcome

the weaknesses of the classical optimization techniques [36]. One such weakness

is that classical optimization techniques are only applicable to functions that are

continuous and differentiable. In contrast, advanced optimization techniques are

applicable even on discontinuous and non-differentiable functions [36]. These ad-

vanced optimization techniques include the nature-inspired meta-heuristic algo-

rithms and other AI techniques such as neural networks, and fuzzy logic.

2.3 Meta-Heuristic Algorithms used on Control Systems

The motivation behind using meta-heuristic algorithms for tuning the PID con-

troller lies in the categorisation of the PID control problem to be NP-hard, ac-

cording to [41]. Heuristic and meta-heuristic algorithms are efficient solutions to

problems characterised as NP-hard or NP-complete [42]. NP is an abbreviation

for Non-deterministic Polynomial. A problem classified as just Polynomial (P)

Chapter 2. Literature Review 16

means that a deterministic algorithm can solve it in polynomial time. In contrast,

a problem classified as NP means that a non-deterministic algorithm can solve it

in polynomial time. The more complex the problem is, the less ability the deter-

ministic algorithm has to solve it. Polynomial time is better than non-polynomial

time (e.g. exponential time) as this means that the problem can be solved faster.

The complexity of problems theory deals with decision problems. Optimization

problems which have a binary yes or no answer reduce to decision problems [43].

Various control systems use meta-heuristic algorithms to tune PID controllers.

Table 2.1 illustrates this, including which algorithms performed best.

Table 2.1: Meta-heuristic algorithms for tuning PID controllers in different
applications

Algorithm Application Best Reference
Genetic Algorithm (GA), Particle Swarm Optimization (PSO) Algorithm Camera gimbal stabilization system PSO [25]

Flower Pollination Algorithm (FPA) Automatic Generation Control (AGC) N/A [40]
PSO, Artificial Bee Colony (ABC) algorithm AGC ABC [44]

Differential Evolution (DE) variants planar robot N/A [45]
FPA, GA, PSO Load Frequency Control (LFC) FPA [46]

Bat Algorithm (BA), Hybrid BA, PSO, DE, GA, Cuckoo Search (CS) Robot arm PSO [47]
PSO, GA, Simulated Annealing (SA), PSO-Nelder-Mead (NM) Speed control of DC Motor SA-NM [48]GA-NM, SA-NM

GA CNC machines, industrial robot N/A [49]
GA Heating, Ventilation, and Air Conditioning N/A [50]

Teaching-Learning Based Optimization (TLBO), Firefly Algorithm (FA) Automatic Voltage Regulator TLBO [51]Bacteria Foraging Optimization (BFO), PSO

The purpose of this research was to focus on the gimbal stabilization problem.

Other than the study in [25], not many researchers have used meta-heuristic al-

gorithms to tune the PID controller for the gimbal stabilization problem, which

feeds into the motivation for this current work.

The Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Ant Colony

Optimization (ACO) algorithms are known to be the most popular and well es-

tablished meta-heuristic algorithms [52]. The PSO and ACO are both swarm

intelligence algorithms, whereas the GA is an evolutionary algorithm. Though

these three algorithms are most popular, there are many different algorithms and

so choosing which is most appropriate for the application is challenging and an

ongoing topic in interdisciplinary research [53]. The algorithms used in this study

Chapter 2. Literature Review 17

belonging to different meta-heuristic algorithm groups also feeds into the motiva-

tion for this research as the underlying justification for it is to make it easier to

know which group of algorithms work best for the gimbal stabilization system.

Observing which algorithm performs best on other applications is one factor used

as a method of selecting the algorithms to use in this study, as seen by study-

ing Table 2.1. Algorithms which perform well in other applications are promising

and have a higher chance of performing well in this application as well. Never-

theless, this is not guaranteed as algorithms can perform differently for different

applications. Another factor to consider is observing how recently developed the

algorithms because the assumption is that recently developed algorithms improve

the performance of previous algorithms. Since this is a comparative study, it was

essential to choose algorithms with different characteristics to be able to observe

whether the characteristics of the algorithms affect the performance of the system.

The three algorithms chosen are the Flower Pollination Algorithm (FPA), TLBO

and GA. The FPA was chosen since it has performed well in [40] and [46] and it is

also recently developed in 2012. The TLBO was selected since it performed well

in [51] and is also recently developed in 2016. Another advantage to choosing the

TLBO is because the FPA and GA have algorithm-specific parameters, which the

TLBO does not, and thus it was possible to observe whether this made a difference

in performance. The reason for choosing the GA is because it is one of the popular

and established algorithms, and a ‘standard’ one to compare the performance of

others. Since the FPA and TLBO are swarm intelligence algorithms, and GA is the

evolutionary algorithms. Thus, it would be useful for a comparison of performance

between the two algorithm classes. Since the FPA and TLBO are relatively newly

developed in comparison to the PSO and ACO, observing the capabilities of these

algorithms would prove to be beneficial.

Chapter 2. Literature Review 18

2.3.1 The Genetic Algorithm

The Genetic Algorithm (GA) is one of the oldest meta-heuristic algorithms, along

with DE and PSO. John Holland executed the first GA from the 1960s to 1980s

[54] [55]. From this, the DE emerged next in 1995, along with the PSO [56] [57].

The book ‘Adaptation in Natural and Artificial Systems’ by John Holland was the

first book documenting the GA [58]. This GA was developed to solve problems that

brute force algorithms could not solve. Brute force algorithms refer to algorithms

that check every possible solution when solving a problem.

The GA initially developed using binary representation [59]. Binary representation

means the variables that the GA optimizes are as an encoded binary string. How-

ever, this study uses continuous values as variables because the PIDN controller

values are continuous themselves. Thus, there was no need to convert to binary

representation. Also, if the value of the variable is large, this would require many

bits to represent it. Thus the variables are expressed as floating-point numbers.

The advantage of using continuous variables as it requires less storage than binary

variables.

Since the Darwinian evolution forms the basis of the GA, knowing the three core

principles of this evolution becomes imperative in understanding the GA.

The three Darwinian principles include [55]:

1. Heredity: Creatures pass down genetic information to their descendants,

provided they live long enough to reproduce.

2. Variation: There must be variation present in a population. If there is no

variation, parents will be identical to children, and no new combination of

traits will be present. Therefore nothing can evolve.

3. Selection: There must be some form of mechanism that chooses which par-

ents will be able to reproduce. Selection is ‘survival of the fittest’ with fittest

not being described as which creature is the strongest or most prominent,

Chapter 2. Literature Review 19

but which creature has adapted well to the environment, thus having a better

likelihood of surviving.

Based on the three core principles mentioned above, the GA is then divided into

three parts; creating the population, selection and reproduction. These three parts

are what forms the basis of the algorithm for optimization.

2.3.2 The Flower Pollination Algorithm

The Flower Pollination Algorithm (FPA), developed by Yang [60], is a swarm-

based optimization technique. It has gained popularity in many optimization

fields due to its impressive capabilities [61] because the FPA, though has fewer

parameters, has shown to work well in different optimization scenarios [61]. The

pollination of flowers forms the basis and inspiration of the FPA. There are two

main branches for updating the solutions; local search step that mimics local

pollination of flowers, and global search step that mimics global pollination of

flowers [62]. Global pollination occurs when pollinators, such as bees and bats,

travel long distances to pollinate flowers, wheres local pollination occurs when the

flower self-pollinates.

2.3.3 The Teaching-Learning-Based Optimization Algorithm

The Teaching-Learning-Based Optimization (TLBO) optimization technique stemmed

from all evolutionary and swarm-based algorithms requiring input parameters for

operation. Other algorithms required proper tuning of these input parameters in

order for optimal performance. Improper tuning of these parameters may result

in local convergence rather than global convergence. Therefore, the need for a

non-parameter based optimization technique such as the TLBO came about.

The TLBO is an algorithm based on and inspired by the teaching and learning

process [63]. It consists of two phases, the teacher and the learner phase. In the

teacher phase, the learners gain knowledge from teachers. In the learner phase,

Chapter 2. Literature Review 20

the learners gain knowledge from each other as they interact with each other

[63]. The learners are the population members, and the learner who performs

the best is the teacher [63]. The design variables of the optimization problem are

the population members subjects offered to each learner. The learner’s results or

‘marks’ of these subjects are the ‘fitness’ value of the optimization problem. Thus

these design variables are parameters which are involved in the objective function

of the optimization problem. The best solution to the optimization problem is the

best value of the objective function [63].

2.4 Parameter Optimization

The mathematical folklore of the No Free Lunch (NFL) theorem(s) for optimiza-

tion states that the performance of all algorithms is, on average, the same. In

other words, if an algorithm does well in one application, it will ‘pay’ for this

by doing poorly in another application, and thus averaging out the performance

of all algorithms [64] [65]. This folklore is a result of the work done by Wolpert

and Macready in [64] and highlights the importance of exploiting problem-specific

algorithms because its performance depends on the application.

The effects of the parameters on the performance of the algorithm, though, re-

mains an ongoing problem. Perhaps the algorithms which perform poorly in some

applications have the potential to perform well if the right parameters are chosen

for that algorithm. This section discusses the algorithm-specific parameters, and

common algorithm parameters, how these parameters are usually determined, and

the possible effects these have.

2.4.1 Parameter Tuning and Parameter Control

Choosing the algorithm parameters may be an optimization problem itself, which

is why using these algorithms to tune an optimization problem falls under hyper-

optimization. Karr and Wilson [66] state that there are no guidelines for choosing

these parameters for the different applications.

Chapter 2. Literature Review 21

Parameter tuning refers to choosing the parameters of the algorithm before run-

ning the algorithm for optimization, meaning that the parameters of the algorithm

are static throughout its run. Parameter control refers to choosing dynamic pa-

rameters of the algorithm such that they change as the algorithm runs. According

to Eiben et al. [67], there are three categories for parameter control which are:

deterministic, adaptive, and self-adaptive. Deterministic parameter control is us-

ing a deterministic rule for altering the parameters. This deterministic rule is

determined before the algorithm is run, such as, a formula. Therefore, this for-

mula does not use the feedback of the algorithm performance to determine the

parameters. Adaptive parameter control is where the feedback of the algorithm

performance feeds into choosing the parameters of the algorithm. Self-adaptive

parameter control is where the parameters are part of the parameters that will be

optimized by the algorithm.

In parameter tuning, when choosing static parameters for the algorithm, the ques-

tion about what values to use for the parameters becomes important. The static

values are either chosen by testing different combinations and observing the perfor-

mance, or by choosing the same parameters from similar work. The disadvantage

of testing different parameters and observing the performance is that trying all

different combinations can be time-consuming and sometimes impossible [68].

The optimal parameter settings for the algorithms tend to differ with different

problem instances. Also, if the justification for using meta-heuristic algorithms

for tuning the PID controller is that the process of tuning this controller can be

automated and more accurate, spending time tuning the algorithm itself makes

this justification less significant. The problem with choosing the parameters of

an algorithm by using studies which have done ‘similar’ work and have proved to

be successful [68], is that it is unclear where the similarities should lie in order

that the slight differences in the model do not affect the algorithm performance.

Karafotias et al. [68] stated that the perceived similarities between problems do

not imply that the algorithm parameters should be similar too. Another problem

with choosing static algorithm parameters is that different values of the parameters

would work better at different stages of the algorithm. For example, in the EA, the

Chapter 2. Literature Review 22

mutation rate should be higher in the beginning stages to allow for diversification

and exploration of solutions. As the algorithm progresses, the mutation should

decrease to allow for the intensification and fine-tuning of the solutions [68].

Most studies, however, do choose parameters of an algorithm from observing pa-

rameter values chosen from the studies that have done similar work and deem this

as enough justification. Some just choose static parameter values without proper

justification [48] [47] [69] [70]. The main reason for this is because parameter

control requires additional computational effort and may not result in significant

performance improvement.

Another tuning method would be to use a theoretical approach. Using a theoretical

approach for the parameter setting has been tried, specifically for the evolution-

ary algorithms, with some theoretical investigations on the optimal mutation and

crossover probabilities [71] [72] [73]. However, these investigations are typically

based on simplified functions for optimization problems, thus would not be of

help for real-world problems. The theoretical approach for many meta-heuristic

algorithms still needs to be developed, so this may not be an option for every

algorithm.

There are studies which have implemented parameter control on their algorithms.

For example, in [49], a changing mutation rate was implemented in the GA, for

three experimental tests, namely two Computer Numerical Control (CNC) ma-

chines, and an industrial robot. The mutation applied a deterministic parameter

control technique—this technique used of a formula which adapts the mutation

value depending on the current generation cycle. Lin and Lui [74] compared the

adaptive GA, classic GA and Ziegler-Nichols method for tuning the PID controller

for a plant described by a 3rd order transfer function. In this study, classical GA

is where the parameters are static throughout the algorithm run. The adaptive

GA is where the crossover and mutation rate were adapted according to a specified

formula. The study found that the adaptive GA performed the best.

Ginley et al. [9] chose to use a self-adaptive parameter control technique for tuning

the parameters of the algorithm because it does not rely on the time or iteration

Chapter 2. Literature Review 23

as deterministic techniques do but on the performance output of the algorithm.

Notably, the technique focuses on maintaining the diversity of the population

of the GA. The GA is well known for local or premature convergence [75], and

this technique aids in helping the algorithm in this by ensuring that diversity in

the population is maintained. Since this method promises to mitigate premature

convergence and to ensure diversity, this GA was used in this study as the adaptive

GA.

There are many other parametric studies for the GA, and the literature on this

topic is vast since this algorithm is the oldest [76]. According to Yang, the essence

of this literature states that the crossover rate should be higher (around 0.7 to

0.95), and the mutation rate should be low (0.1 to 0.01) to ensure convergence [76].

The book by Haupt et al. [59] implements the continuous GA by using a crossover

rate of 100% (which means all the population members undergo crossover) and

uses the mutation rate of 0.2 or 20%. The static GA uses this implementation in

this research.

The FPA has a switch probability parameter which controls the diversity, and in-

tensity balance which is usually chosen as 0.8 [60] however Ozsoydan and Bayka-

soglu [77] highlight the importance of this parameter and how this needs further

analysis even though there are not many studies which conduct this. This became

a motivation for analysing the effects of various switch probability characteris-

tics in that study. Their analysis included evaluating the effects of changing the

switch probability exponentially, linearly, and through sawtooth changing patterns

throughout the iterations. The study in [78] chose a deterministic technique to

change this parameter as the algorithm runs, which is dependent on the generation

cycle.

This current study makes use of two implementations of the FPA: the static FPA

with a switch probability of 80%, and an adaptive FPA with a deterministic switch

probability adapted from[78] to compare how this affects performance.

Yang et al. [79] presented a self-tuning optimization algorithm framework in or-

der to mitigate the burden of tuning the algorithm itself first before solving the

Chapter 2. Literature Review 24

problem at hand. However, this framework is applied to optimization problems

where the optimal solution is known, which is not the case for this study nor most

real-world problems.

Some complexities exist when using adaptive GA in comparison with the adaptive

FPA. The GA has more than one parameter to tune with a two-level tuning

required. In other words, there are two layers related to most of the parameters.

The first layer involves choosing the type of parameter and the second choosing

the value associated with that type. For example, in choosing the mutation for

the GA, there are different mutation types and different mutation rates. It is the

same with the crossover and selection parameter. The FPA however, only consists

of two parameters, namely the switch probability and a scaling factor. Moreover,

these factors do not have different types of parameters but only different values.

The perceived advantage of the TLBO is that it does not have any algorithm-

specific parameters. While the FPA and GA have parameters which choose whether

the population encounters diversification or intensification, the TLBO does not.

The whole population moves from the teacher phase, where diversity and explo-

ration are fostered, to the learner phase where intensification and exploitation

occurs, all in one iteration. That is why the TLBO does not have algorithm-

specific parameters. However, what all the algorithms do have to choose and tune

are the common algorithm parameters.

2.4.2 Common Algorithm Parameters

These are parameters which are not algorithm-specific. Comparative studies mostly

use the same common algorithm parameter values as these parameters can be seen

as the ‘resources’ which the algorithms need to perform.

The common algorithm parameters considered in this study include the population

size, stopping criteria, search space bounds and fitness function.

Chapter 2. Literature Review 25

2.4.2.1 Population Size

All the algorithms used in this study are population-based. These algorithms use

population members, which are different solutions to the problem to observe which

member performs the best. Thus, the number of solutions, which is the population

size, must be chosen. The population size affects the performance of the algorithm

because it is the number of solutions that the algorithm will be testing to observe

which performed best. The smaller the population size, the less the solutions, and

this risks the optimal solution not being part of the population. However, a larger

population size increases the computational time required to obtain the optimal

solution.

Fister et al. [47] applied meta-heuristic algorithms to the PID controller to con-

trol a robot arm. In that study, the parameter values of the algorithms were

small because the study tested the reactive nature of the algorithms. Thus, the

population size value was 10, and the number of iterations value was 10. The

authors of [60] found that when developing the FPA and testing it against other

algorithms (namely the GA and PSO), a population size of 25 was sufficient for

the test functions. In [48], the study tested two population-based optimization

algorithms, namely the GA and the PSO. The population size chosen for each

algorithm differed, with GA population size being 20 and PSO population size

being 40.

For the evolutionary algorithms, there are some theoretical investigations on the

population size [80] [81] [82] [83]. However, these investigations are generally

based on simplified functions for optimization problems. Some suggest varying

the population size as the generation number progresses [84]. Talbi [43, Chapter

3], states that for evolutionary algorithms, it is customary to choose a population

size between 20 and 100. A population of size 25 has been proposed for the FPA

to work the best [60]; however, this study applied these algorithms to benchmark

functions. The TLBO population size used in [63, Chapter 2] was 5. However, the

study applied the TLBO on benchmark problems.

Chapter 2. Literature Review 26

The study by Bujok et al. [85] made use of two benchmark sets to test the per-

formance of eleven nature-inspired and bio-inspired algorithms. These two bench-

marks include the CEC 2011 collection of 22 real-world optimization problems and

the suite of 30 artificial optimization problems defined for the competition of the

algorithms within CEC 2014. Initially, all algorithms used the same population

size, with a population size of 90 for the first benchmark sets, and 50 for the sec-

ond benchmark sets. The authors then decided to compare these population sizes

with the recommended population size for each algorithm to observe whether the

recommended population size from other studies allows the algorithm to performs

better. Two of the eleven algorithms decreased population size linearly as the

iteration progresses.

Since this research was a comparative study, the same population size values were

used for all three algorithms to observe which algorithms converge faster. The

population size chosen was between 20 and 60 based on the literature above. This

decision was made because the FPA recommended population size is 25, the TLBO

was developed with a population size of 5 and EA algorithms recommendations

are between 20 and 100.

2.4.2.2 Stopping Criteria

There are various methods used in heuristics to halt the execution. These methods

include using the CPU time, computational count, or solution quality [86]. In the

first method mentioned, the algorithm is halts after a given time. The second

method halts the execution after a given number of computational counts such

as the iteration number or number of fitness function evaluations. The last type

mentioned observes how close the solution is to optimal. It usually halts execution

after achieving the optimal solution or if the solution is within a defined tolerance.

Using computational count is most common partly because of the disadvantages

the other methods possess. Using CPU time has been criticized on the grounds of

reproducibility [87]. CPU time is affected by other factors such as the machine the

algorithms use and the implementation of the code. Thus, the results may not be

Chapter 2. Literature Review 27

able to be reproduced by other practitioners. Using the solution quality is limited

to cases where the optimal solution is known. Another method used as a stopping

criterion is by observing the population diversity and halting execution when the

diversity is below a given threshold [19]. However, this would require one to define

that threshold. Because of this, this current study will use computational count.

This study will make use of the number of fitness function evaluations rather

than the iteration number for the computational count stopping criteria. This

is because different algorithms have different fitness function evaluations in one

iteration. Each function evaluation represents an assessment of the solution and

an opportunity to improve this solution. For a fair comparison, it is better to ob-

serve the number of fitness function evaluations rather than the iteration number,

though these are closely related.

The performance of the algorithm is also dependent on the computational effort

required the obtain the optimal solution. The fewer the number of iterations or

fitness function evaluations needed to converge to an optimal solution, the better

the performance of the algorithm because of the lower computational effort re-

quired for the algorithm to perform well [88]. An ideal algorithm would only take

one iteration to converge to an optimal solution [88]. However, nothing is ever

ideal. Ridge [86] emphasizes the challenge in choosing the right computational

count since this has a significant impact in finding the right solution in a reason-

able time. Socha [89] investigated the influence of different running times on the

parameter choices of the max-min ant system and found that there is an effect

that the different running times have on the parameters of the system and that

the results are dependent on the stopping criteria used.

Some research aims to investigate the impact of the stopping criteria by changing

the stopping criteria after each experiment [86] [89]. This current study has made

use of fitness function evaluations as a stopping criteria. Hence, keeping a constant

number of iterations but changing the population size to investigate the different

levels of fitness function evaluations was most appropriate, as the population size

and iteration number are what determine the fitness function evaluations.

Chapter 2. Literature Review 28

2.4.2.3 Search Space

Another common algorithm parameter is the search space. Because these algo-

rithms are search techniques, there must be a limitation to exploring a reasonable

region of variable space. This region must be diverse enough in the initial popu-

lation to explore a reasonably sized variable space before the algorithm focuses on

a specific region [59]. Some studies actually improve the algorithm performance

by optimizing how the algorithm interacts with the search space [90]. This shows

the importance of the algorithm’s search space and thus, this is the first step to

finding the optimal solution.

The distance from one solution to the next is also an important factor when

analyzing the search space. This distance can be a measure of the diversification

and intensification of a particular solution. Some algorithms, such as the scatter

search take into account diversification when generating the initial population or

search space. This algorithm does this by ensuring that the minimum distance

between the solutions is maximised [43].

According to Talibu [43, Chapter 3], there are four categories of strategies dealing

with the initialization of the population and thus the search space. These cat-

egories are random generation; sequential diversification; parallel diversification;

and heuristic initialization. Random generation is usually used in continuous op-

timization and was used in this research. Random generation is where the initial

population is generated randomly within specified bounds. However, the term

‘randomly’ means pseudo-randomly because software cannot produce truly ran-

dom numbers. The problem with using pseudo-random numbers lies in that this

implementation can introduce a bias in the algorithm’s behaviour since it is not

truly random [86]. Ridge suggests that because of this, the computational exper-

iments must be replicated using more than one generator [86]. However, this will

not be considered because all the experiments were implemented in one machine.

The search space bounds, for the random generation of population, are dependent

on the application and must be chosen such that they encompass the optimal

Chapter 2. Literature Review 29

solution. In [47], the search space bounds for the PID controller gains differed for

the two-axis robotic arm, with the upper bounds being 0 to 400 for one axis, and

0 to 20 for the other axis. In [48], where a DC motor used the PID controller

for speed control, the search space bounds for the PID controller gain were taken

to be 0.0001 to 1.5 for Kp, and 0.0001 to 1.0 for both the Ki and Kd values.

These bounds were taken from [91], where an AVR system used a PID controller.

The importance of observing which bound suits the algorithm performance lies

in that these bounds are what allows for the optimal region of solutions to exist.

Thus, this study tests different search space bounds to observe whether this affects

performance. A fitness function is required to measure which solution is, in fact,

optimal.

2.4.2.4 Fitness Function

The fitness function is imperative for the optimization of the algorithm and its

satisfactory performance on the specified application. Some differentiate between

an objective function and a fitness function though it is essentially the same thing.

The objective function contains different variables that are the performance mea-

sures of the system. The fitness function then becomes a question of whether or

not this objective function will be minimised or maximised. This current study

uses these terms interchangeably.

Sometimes the fitness function can be based on one performance criterion, such

as checking whether the response time of the system is short. However, there are

instances where there are multiple performance criteria which need to be satisfied

to optimize the specified system. The purpose of a merit function is to combine

multiple objectives into a single objective by using a weighted sum [92]. A merit

function can be written in the following manner [92]:

F =
m∑
i=1

wifi,

Chapter 2. Literature Review 30

with m being the number of objectives, w being the non-negative weights, and f

being the objectives. Choosing which performance criteria to use and what the

weighting values should be, is at the discretion of the engineer and depends on the

application.

Some studies, such as those in [47] and [48] simply choose the fitness function

without any justification. Furthermore, many solely observe the time-domain re-

sponse of the control system as the variables to the fitness functions. The fitness

function chosen to be maximised in [47] is:

F = 1
2(w1(1− | P −MP |) + w2(1− tS) + w3(1− ess)),

where w1, w2 and w3 represent the weights of the function, P represents the de-

sired overshoot value,MP represents the actual overshoot, tS represents the actual

settling time and ess represents the actual steady-state error. This is different from

the fitness function in [48] shown to be:

F = (1− e−w)(MP + ess) + e−w(tS − tR),

where w is the weight value, ess is the steady-state error, MP is the overshoot

value, tS is the settling time, and tR is the rise time of the response of the system.

This fitness function, adapted from [93] where the PSO algorithm, was used to

tune the PID controller for an Automatic Voltage Regulator (AVR) system. What

is interesting in [48] is that the weighting factor w was tested for three different

values to see which weighting gives a better response.

Unlike the research mentioned previously, the study in [40] chose not to use the

time response of the control system but rather compared the error response of the

system.

The study in [40] compared four different performance indexes, namely, the In-

tegral Square Error (ISE), the Integral Time Square Error (ITSE), the Integral

Absolute Error (IAE) and lastly, the Integral Time Absolute Error (ITAE). From

here, the study found that the ISE and ITSE work best and thus, the research

Chapter 2. Literature Review 31

uses the ISE as the fitness function. These four cost functions were also compared

in [69] where the meta-heuristic algorithms tuned the for an Automatic Genera-

tion Control (AGC) application. This study also found that the ISE performed

best. The study in [49] combined tuning the PID controller using the GA with

the Gain-Phase Margin method. This novel new combination was compared with

the individual methods (i.e. using GA and Gain-Phase Margin individually) to

see which performs best in the application of a CNC machines and an industrial

robot. The fitness function used in this study is:

F = w1V ISE + w2MP + w3V MSE,

where V ISE and V MSE are the values of the ISE and the Mean Square Error (MSE)

respectively, and wi are the weight values.

The research in [51] shows the combination of the time-domain and error response

variables for the fitness or objective function, where:

F = w1Mp + w2tS + w3V ITAE + w4V ITSE,

with wi being the weights chosen, tS being the settling time, and V ITAE, and V ITSE

being the ITAE and ITSE values respectively. The combination is also seen in the

equation:

F = w1Mp + w2tS + w3V
2
MSE,

where wi are the weights and V MSE is the mean square error value, where this

equation was used as the objective function in [50] for the tuning of a PID controller

using GA, for a Heat Ventilating and Air Conditioning (HVAC) system.

An objective function does not usually combine the performance indices n with

the time domain step responses because the performance indices affect the time

domain response. Thus adding all these variables into one objective function

may be redundant, and the weights would hold no significant value. The study

performed in [94] indicates that for tuning the FOPID controller, the ITAE reduces

oscillations but with the expense of producing high initial system error and a longer

Chapter 2. Literature Review 32

rise time. The ISE and ITSE both improve the rise time of the system, however

with both error indices resulting in high system oscillations. The shortest rise time

with the largest overshoot was ISE, followed by ITSE.

The designed merit function included weighted averages on both the ISE and the

ITAE to compensate for the advantages and disadvantages of the performance

indices. The ISE will help decrease the large initial system error and aid in the

fast response of the system. The ITAE will reduce oscillations caused by the ISE

while mitigating the steady-state error of the system. The merit function chosen

is shown in Equation (2.1):

F = τ(V ISE) + β(V ITAE) (2.1)

where τ is the weight value of the ISE chosen to be 0.6; V ISE is the value of the

ISE; β is the weight value of the ITAE chosen to be 0.4 and V ITAE is the value of

the ITAE. The weights were chosen based on the application at hand. The gimbal

stabilization system needs to respond quickly to commands. However, it is also

vital that it does not produce large overshoots as it may be supporting optical

equipment, hence the weight of the ITAE error-index is not less than 0.4. Image

processing can be used to mitigate small errors caused by oscillations, for example.

However, tracking the target on time is essential. Equation (2.1) was, therefore

used as the fitness function in this current research.

2.5 Performance Measures for Evaluating Meta-Heuristic
Algorithms in Gimbal Stabilization

McGeoch correctly states that choosing the performance measures depends on the

questions that motivate the research [95]. Since this study was applying meta-

heuristic algorithms on a control system, it investigated two categories of perfor-

mance measures. The one category dealt with the performance of the algorithms

themselves. The other category dealt with the performance of the control system.

This section aims to tackle these two categories briefly.

Chapter 2. Literature Review 33

2.5.1 Performance Measures of Meta-Heuristic Algorithms

The primary performance measure used for meta-heuristic algorithms is the obser-

vation of the fitness value for each solution. The aim of the solutions would either

be to decrease or increase this fitness value, and thus the solution with the lowest

or highest value is one which has the highest quality. If the optimal solution is

known, then presenting solutions as a percentage over this best solution can be

done [86].

The probability of the algorithm obtaining the optimal solution for a given in-

stance can also be of interest. However, there are limitations associated with this

performance measure. One of which is that this performance measure is useful

when the optimal solution is known [87]. This measure also ignores the solutions

which are close to the optimal since the focus is on the optimal. Thus, the measure

emphasises on finding the optimal rather than finding a good enough solution in

a reasonable amount of time, which is the purpose of heuristic algorithms [86].

Since these are stochastic algorithms, each run may not give the same solution.

Hence the need for running the algorithms multiple times to observe the average

response. The question is whether the overall final solution of the algorithm is the

best or the average solution. Birattari and Dorigo [96] criticise that choosing the

best solution from a number of runs as the solution of the algorithm is being over-

optimistic for the algorithm performance since it is less likely that the algorithm

will reproduce this solution and more likely that it will reproduce a solution closer

to the average solution. However, Eiben and Jelasity [97] note that in a real-life

scenario, the best solution from the number of runs will be chosen rather than

the average solution. This research recorded both the best and average solution

(i.e. those that give the lowest and average fitness function value). However, for

comparison purposes, the average solution will be used as this is purely simulation

work and not real-life. With simulation work, the purpose is to observe which

solution the algorithm is most likely to be reproducible.

Chapter 2. Literature Review 34

2.5.2 Performance Measures of Tuning PID Controllers

Gimbal Stabilization Control Systems

One of the most important ways to measure the performance of the gimbal control

system is to observe how accurately it follows the commanded input. There are

many different signals to use as the commanded input, but a common one is a

step input signal, which can either represent the LOS rate or position. Abdo et

al. use this as one method of observing the performance of the control system for

the two-axis gimbal system when tuning the PID controller using fuzzy control

[14]. Rajesh and Ananda do the same in the control of the camera position in an

Unmanned Aeriel Vehicle (UAV) using a two-axis gimbal system [98]. This is also

evident in Rajesh’s work, where the camera gimbal stabilization system used the

PID controller [25]. Other commonly used signals for control systems, in general,

are ramp functions, sinusoidal functions, impulse functions, and white noise [21].

Using a step response allows for the measure of the control signal to quantify

how fast it responds to the command signal. The time response characterises

the transient response includes observing the rise time, settling time, overshoot

percentage, amongst other measures, except for the steady-state error. For control

systems, however, one can also observe the frequency response of the system.

The frequency response of a system is described as the steady-state response with

a sinusoidal input signal [10]. The frequency response performance requirements

are based on a few classical control theories, two of which are the Nyquist criterion

and Bode. The main purpose of these requirements is to quantify the robustness

of the system [99]. Singh et al. made use of the bode plot to observe how the

optimized PID controller performs with the gimbal system [100]. However, for

this research, the main focus was observing the transient response of the system,

particularly on the step and ramp input functions. Future work can consider the

frequency response and other input signals.

Note that since the control system for this research was on controlling the LOS rate,

the step input function represents a constant LOS rate or velocity, which means the

Chapter 2. Literature Review 35

target is moving at a constant rate or velocity. The ramp input function, therefore,

represents an increasing LOS rate or velocity, but with a constant acceleration.

These are the two scenarios that the two signals used in this research represent.

2.6 Theoretical Analysis of Meta-Heuristic Algorithm Per-
formance

Meta-heuristic algorithms are applied in various systems and problems, however,

the theoretical and mathematical analysis of these algorithms still has many open

questions [17]. Theoretical analysis of meta-heuristic algorithms is challenging be-

cause of the highly non-linear, complex and stochastic interactions between the

factors of these algorithms [53]. Krüger [53] states that even when a solution is

known to be optimal, it is difficult to prove that theoretically. Even when a sub-

optimal solution is known, estimating how far this solution is from the optimal

solution is challenging. Giving an analytical prediction of whether a solution is

achievable with the given computational resources then becomes impossible [101].

Questions such as what the optimal balance between exploration and exploitation

is, or how algorithm parameters affect performance efficiency cannot be theoreti-

cally answered [17]. This chapter will focus on three ways which the performance

of meta-heuristic algorithms can be theoretically analysed. These three ways are

convergence analysis, statistical analysis, and complexity.

2.6.1 Convergence Analysis

In stochastic algorithms, convergence is the ability of the algorithm to transform

from one solution to a new random solution which provides the optimal perfor-

mance [102]. If the considered problem has a solution, the convergence analysis

answers the question: Will the algorithm be able to find the desired optimal so-

lution, given sufficient time and resources? In other words, is the current solution

able to converge to the optimal solution? if so, how fast does this happen? [53].

Chapter 2. Literature Review 36

Since meta-heuristic algorithms are inherently random, there is no guarantee that

the algorithm will find the optimal solution. This is why convergence analysis

makes use of probability and the probability theory. There are two types of

stochastic convergence defined in convergence probability: convergence in proba-

bility and convergence in probability 1 [53].

Definition 1 Convergence in probability [53]: A sequence δn, n = 1, 2, ... of random

variables, with δ being the random variable, converges with a probability towards

δ if for all ε > 0

lim
n→∞

P (| δn − δ |≥ ε) = 0 (2.2)

Definition 2 Almost sure convergence (or convergence in probability 1) [53]:

A sequence δn, n = 1, 2, ... of random variables converges almost surely with or

almost everywhere towards δ,

lim
n→∞

P (δn = δ) = 1 (2.3)

Equation (2.2) is derived from the weak law of large numbers, also known as

Bernoulli’s theorem of large numbers in probability theory. Equation (2.3) is

derived from the strong law of large numbers [103]. Chen et al. [103] analyzes

the general convergence properties of the GA, ACO and PSO algorithms by firstly

building a computational intelligence approach (CIA) model of the algorithms

based from observing their common features in methodology.

After building the CIA model, the study in [103] then made use of convergence in

probability and convergence in probability 1 with the aid of the Markov chain and

Martingale theory. The problem with using convergence in probability is that it

is only applicable to problems where the optimal solution δ is known and thus, ε

can be calculated. However, in real-life problems, this is often not the case. Much

like this study, in real-life applications, there is no known optimal solution, thus

calculating how far the distance from the current solution to the known optimal

solution is not feasible.

Chapter 2. Literature Review 37

The study in [53] discusses theoretical methods to prove convergence for meta-

heuristic algorithms. One of these methods is the best-so-far convergence where

this type of convergence questions whether the best-so-far solution xbsft converges

("w. pr. 1" or "in probability") to an optimal solution x∗, as t → ∞. The

study in [104] mentions that best-so-far convergence is easy to prove but not

useful practically. The study in [102] states that this type of convergence is too

"generous" because even an inefficient algorithm such as the random search, can

be proved to converge to a global optimum.

Another method for convergence introduced by Krüger is model convergence [53].

Model convergence is analyzing the properties of the algorithm that guide the

search process towards the region, which contains the optimal solution. Unlike

best-so-far convergence, which assesses the probability of one solution (xbsft) con-

verging to the optimal solution, model convergence assesses the probability that

the algorithm eventually generates only the optimal solution(s). This convergence

is harder to prove because a balance between exploration and exploitation of the

search is required. That is achieved by fine-tuning the parameters of the algorithm

[102]. Davidović and Krüger propose conditions that swarm intelligence methods

must incorporate to assure model convergence [102]: (i) all the feasible solutions

must be able to be obtained, which represents the best-so-far convergence, and

(ii) when the optimal solution is known, its generation must be favoured, which

represents the model convergence. There are other methods which are used to

prove convergence though.

The study in [62] proved global convergence for the FPA by using the Markov

chain theory. A further step was conducted on the GA in [105] by producing

bounds for the static and adaptive GA convergence, after modelling the GA’s

as stationary and non-stationary Markov chains, respectively. In analyzing the

canonical (binary) GA in [106], it was proved, by making use of the finite Markov

chain analysis, that the only way the canonical GA will converge is by maintain-

ing the best solution in the population. The motivation for the study conducted

by Mahmoodabadi and Ostadzadeh in [107] was to improve the TLBO algorithm

by increasing the convergence speed for better results in a shorter time. This

Chapter 2. Literature Review 38

was done by introducing a social learning factor into the teaching phase, inspired

by the PSO algorithm. This new TLBO was tested on mathematical benchmark

functions, and a real-life design problem and was found to be a promising improve-

ment. The improved convergence rate was measured by comparing the run-length

distributions of the fitness values for the original TLBO, and the TLBO with a

social factor. The study in [108] describes the spatial convergence of the popula-

tion of the TLBO. This was possible after conducting a geometric interpretation

of the TLBO.

All these studies mentioned making use of mathematical theory to prove conver-

gence. However, as stated in [102], the practical usability of these mathematical

proofs is still an open question. Davidović and Krüger admit that an infinite

number of iterations cannot be performed; thus, limits cannot be assessed, so a

method of evaluating the convergence speed is needed. The need for evaluating

the convergence speed is also seen in the work by He et al. [62] where the FPA

convergence was proved using the Markov chain theory. Then this algorithm was

tested practically for the convergence speed. The convergence speed was tested

using the run-length distribution graphs where fitness function value against the

iteration number is plotted.

The run-length distributions are plotted to observe which algorithm gives the

fastest convergence speed, given the same resources in order to compare the con-

vergence speed of the three chosen algorithms of this research. These plots give a

practical result of how the algorithms perform in real-life scenarios.

2.6.2 Statistical Analysis

The field of statistics forms a foundation in the use and analysis of meta-heuristic

algorithms. The advantage of statistics is that it creates a systematic framework in

which algorithms can be experimented with and analysed [101]. The importance of

using statistical methods in this study was so that the results and conclusions are

Chapter 2. Literature Review 39

objective rather than judgemental [86]. Analysis of Variance (ANOVA) is a statis-

tical term used to define statistical experiments conducted in order to determine

whether results are significantly different from each other. In inferential statistics,

there are two main problem analyses: single-problem and multiple-problem anal-

ysis. Single problem analysis deals with results obtained over several runs of the

algorithms over a given problem, whereas multiple problem analysis deals with a

result per algorithm and problem pair [109].

In inferential statistics, two different hypotheses are used: the null hypothesis

(H0) which states that there is no difference between two items being tested, i.e.

H0 : µ1 = µ2 = ...µk, where µ is the mean or median of the results, and k is the pop-

ulations observed. The alternative hypothesis (H1) states that there is a significant

difference between the populations being tested, i.e. H1 : not all means/medians

µ1, µ2, ...µk are equal [110]. The deciding factor which determines which hypoth-

esis is accepted or rejected is the level of significance α. The p-value is a method

of stipulating α by providing information about whether a statistical test is sig-

nificant or not, and how significant the result is [109].

In the statistical procedures developed, there are two classes developed; para-

metric and non-parametric [109]. Parametric tests were popular in the analysis

of performance in Computational Intelligence (CI). However, these tests rely on

assumptions which are most likely violated. These assumptions include indepen-

dence, normality, and homoscedasticity. This study made use of non-parametric

tests to quantify whether there are differences between the algorithm performance

as no distribution is assumed. There are two categories which exist under non-

parametric tests, pairwise and multiple comparisons. Pairwise statistical methods

compare only two different algorithms, whereas multiple comparisons compare

more than this [109]. This study made use of multiple comparisons since it is

comparing multiple algorithms with each other.

The tutorial for using non-parametric statistical tests as a method for comparing

Swarm Intelligence (SI) algorithms and Evolutionary Algorithms (EA) states that

using Friedman tests is useful for multiple comparisons [109]. If the null hypothesis

Chapter 2. Literature Review 40

is rejected (i.e. there is a difference in the algorithm performances), then the

experiment must proceed with a posthoc test to find the pairwise comparisons

that produce these differences.

There are many different tests and posthoc tests to use. The study in [47], where

a PID controller was tuned using meta-heuristic algorithms for controlling a robot

arm, makes use of the Friedman test, followed by the Wilcoxon two-paired test

applied as a posthoc test, because the Nemenyi procedure does not usually reveal

any difference in most experiments [111]. The study in [112] also made use of the

Friedman test along with the Bonferroni-Dunn test as a posthoc test to quantify

how well the new meta-heuristic algorithm is in comparison to the well-known

algorithms, for the tuning of a PI controller in a wind turbine system. Mohammed

et al. [113] also made use of the Friedman and Wilcoxon signed-rank tests for

determining which algorithm performs best in the tuning of the PID controller for

benchmark functions.

The Friedman tests, developed by the United States economist Milton Friedman

[114] [115], was used in this current study to quantify the difference in the perfor-

mance of the algorithms.

2.6.3 Time Complexity of Algorithms

Comparing the running time of the algorithms is imperative to choosing which

algorithm suits the application best. Some algorithms may do well with regards

to the quality of results, but take time to acquire such a result. Taking time to

acquire a result may not be practical when a fast response in the algorithms is

essential. The importance of knowing the time complexity matters not only on

evaluating how suitable the algorithm is for the application but also in the inherent

evaluation of the algorithm itself.

There are tools available which can determine the running time of an algorithm.

However, this running time is affected by other factors besides the algorithm itself,

which can make for an unfair comparison. These factors include the processor and

Chapter 2. Literature Review 41

hardware used for the algorithm or the programming language and coding style

used for implementation [116]. This means that there needs to be an alternative

to evaluating and comparing the run time, which disregards these factors.

There are two crucial resources the algorithm requires to solve a problem: time and

space [43]. The time complexity of an algorithm includes determining what the

run-time and behaviour of an algorithm are when the input increases or decreases

in size [116]. The time complexity links the size of the input to the fundamental

steps of the algorithm to do this [117]. This is different from space complex-

ity, where the space complexity relates the input size to the fundamental storage

locations [117].

The time complexity analysis utilizes three fundamental notations, including the

Big-O (O), Theta (Θ), Omega (Ω), however one which is most popular is the Big-

O notation because it describes the upper bound of the complexity. In contrast,

the Ω and Θ notation describe the lower and tight bound, respectively [43] [116].

The Big-O notation is also easier to determine and is of practical use because

it describes the ‘worst-case’ behaviour of the algorithm [43]. Paul Bachmann,

Edmund Landaum and others invent this notation. It is also referred to as the

Bachmann–Landau notation, the asymptotic notation or popularly known as the

Big-O notation [118].

The asymptotic behaviour of each algorithm had to be analysed to determine the

time complexity of the three algorithms. This meant examining the fundamental

steps of each algorithm and determining the complexity.

Previous work has determined the time-complexity of well-known algorithms such

as the ACO, and the GA for the all-pairs shortest path problem, and a ‘sophis-

ticated parent selection mechanism’ to be O(n3 log n) [119], where n is the input.

The discrete FPA algorithm time complexity was also determined in [120] for the

TSP problem and also found to be O(n3 log n). However, these algorithms, along

with the FPA, have not been determined for this type of problem. This was

required for the comparison nature of these algorithms.

Chapter 2. Literature Review 42

2.7 Computational Experimentation

It is important to pay attention to the design of computational experiments when

researching heuristic and meta-heuristic algorithms. The main purpose for heuris-

tic and meta-heuristic algorithms is to solve difficult optimization problems with

satisfactory quality results in a reasonable amount of time [86] and the compu-

tational experiments must be conducted such that this is possible. Johnson [87]

lists some questions which must be asked when conducting a heuristics research

question that deal with factors such as the adequate number of tests and runs, the

type of questions the experiment must address, and who will it benefit given the

current state of literature.

From these questions, the computational experiment must be conducted appro-

priately. Barr et al. [121] characterise two different types of experiments with

algorithms; (1) comparing the performance of different algorithms for the same

class of problems, and (2) observing the performance of one algorithm in isolation.

However, Ridge [86] observed that there are various types of experiments that are

identified in the literature:

• Dependency study [95]. This type of experiment how certain parameters

of algorithms affect a specific performance measure. For example, how the

switch probability p affects convergence rate in FPA.

• Robustness study [95]. This observes the distributions of results and

exams how much deviation there is from the average.

• Probing study[95]. This is where the internal features of the algorithm are

investigated to understand its strengths, weaknesses and inner workings.

• Horse race study [87]. This is when different algorithms are put in com-

petition with each other to determine the superiority of one algorithm over

another.

Chapter 2. Literature Review 43

• Application study [87]. An application study is where a particular algo-

rithm or code is implemented on a particular problem, and thus, the perfor-

mance of the algorithm is dependent on the application. This experimental

type is usually implemented in conjunction with the other experimental types

in that all the others are performed using a particular code with a particular

application.

This dissertation makes use of a combination of these types. The primary focus

is on dependency study because it investigates the parameters of the algorithms

to observe their effect on the performance. Robustness study is then conducted

to observe how far the results deviate from average, and further to observe if

the optimal parameters are robust to handle changes in problem instances. This

study is also partly a horse race study because it consists of implementing different

algorithms to observe which one results in a better performance.

For the experimental types identified for this study, there are relevant research

questions which emerge. For the dependency study:

• What are the effects of changing the parameter value and type [122]?

• How does the problem size and set affect the performance [122]?

• Is there an interaction between the factors and how does it affect the per-

formance [122]?

These are questions which the computational design attempted at answering. For

the robustness study:

• Does the new algorithm perform consistently even with the changes in new

class instances? [87]

• How far is the best solution from those which are more easily found? [121]

For the horse race:

Chapter 2. Literature Review 44

• Is there a best overall method for solving the problem? [122]

• What is the quality of the best solution found? [122]

• How does the algorithm running time compare with those of its competitors?

[87]

Because of the three studies (dependency, robustness, horse race) that are relevant

in this work, the experiment was divided into three parts; as seen in Figure 2.1.

Chapter 2. Literature Review 45

Dependency Study (Parameter Optimization)

Robustness Study (Robustness Analysis)

Horse Race Study (Analysis of Results)

Keep problem instance constant

Observe performance when
changing parameters for all
algorithms on the one problem
instance

Record results and choose best parameters

Use two problem instances

Observe performance when
changing parameters for all
algorithms on the two problem
instance

Record results and observe whether the best pa-
rameters are the same as those obtained in the
independency study

Using the chosen parameters from each problem
instance, compare the performance of the algo-
rithms

Figure 2.1: Diagram showing how the experiments were conducted

Chapter 2. Literature Review 46

2.8 Concluding Remarks

The literature review has various factors which all contributed to this study. This

review started with observing the history and elements of the gimbal stabiliza-

tion, including the PID controller. It then continued by describing the classic and

optimization techniques used for tuning the PID controller, which allowed for the

introduction of the meta-heuristic algorithms. How to measure the performance

for both the algorithms and control system was essential to observe. That in-

cludes discussing the theoretical considerations of this work. The review ended by

reviewing how to conduct the computational experiments for this type of work.

The next chapter will describe the background and preliminary theory required in

order for conducting the experiments.

CHAPTER 3

Background and Preliminaries

This chapter serves as a detailed description of the different models and algo-

rithms used and the underlying theory applicable to the models and algorithms.

The chapter begins by describing the gimbal system model and elements and the

different algorithms involved. It then continues to describe how the performance

was measured. The discussion of the theoretical analysis used for this study fol-

lows, and the chapter ends by illustrating the methodology used to obtain the

results.

3.1 Plant Model Details

The model of the rate control gimbal system used in this study is shown in Fig-

ure 3.1 and adapted from [5]. The primary purpose of the study conducted in [5]

was to compare the quality of different rate gyro sensors to determine how this

affects the performance of the system. The study mainly focused on testing four

different rate gyro sensors on an ideal gimbal system which included a DC motor,

a PID controller and a gimbal.

The study conducted by Jia et al. [5] also tested the same rate gyro sensors on the

system with added environmental effects which were friction, structural resonance

and dynamic system input. This research, however, observed the environmental

effects due to friction and added base motion instead of structural resonance, as

this effect seems to be commonly studied. The dynamic input observed in [5]

included tracking a rate command, an angle command and a sinusoidal command.

47

Chapter 3. Preliminaries 48

Rate
Command +

- PID(s) V in

ωoutV limitController

Motor Model

Tm
1

0.157s

ωout

ωout

ωm

Rate Gyro Model

Gimbal

Figure 3.1: Block diagram showing the model of the simple gimbal control
system adapted from [5]. The Figure shows V in, which is the command voltage
taken from the controller, Tm is the output motor torque, ωout is the angular

velocity of the gimbal, and ωm is the measured angular velocity.

This research, though, made use of a step input rate command, and a ramp input

rate command.

The model of this study was chosen because it represents a simple generic system

which aids in explaining the algorithm performance on this type of plant, rather

than on a rare and specific plant. Of course, the results of this study will only

be valid for this plant. However, the hope is that choosing a plant with typical

elements allows for others with similar control systems to be able to gain from this

study. This model was also chosen because the results of the rate command control

loop were able to be repeated; thus, achieving model validation. This section aims

to discuss the model details.

3.1.1 The Rate Gyro Sensor

The term gyroscope (or gyro), coined by French physicist Leon Foucault, is a

joining of two Greek words: gyros meaning ‘rotation’ and skopeein meaning ‘to see’

[123]. The advantage of the gyro, compared to other sensors, lies in its ability to

measure the absolute motion of an object without needing external infrastructure

or reference signal [123]. There are two groups which categorize gyros; rate or

angle gyros [124]. Rate gyros are different from angle gyros because they measure

the angular rates in the plane of interest [14], rather than the angular position. In

Chapter 3. Preliminaries 49

a control system, the rate gyro is typically mounted on the gimbal to measure the

inertial rotation about the axes that require stabilization and control [11].

ωn
2

s2+2ζωns+ωn2

Band-limited
white noise

ωout+ Krd

Gyro Transfer Fcn

KADCRoundKDACKdr

Saturation

ωm

Figure 3.2: Block diagram showing the rate gyro model adapted from [5]

Figure 3.2 shows the rate gyro model used for this study. The rate gyro is an

essential element in the control system, as its performance can highly affect the

performance of the system. Though there are different types of rate gyros, the

modelling of the performance of those is quite similar [5]. One of the main con-

tributing factors to the performance of the system is the rate gyro frequency

response or bandwidth. This frequency response is modelled as a second-order

system with a transfer function shown as:

GGyro(s) = ωn
2

s2 + 2ζωns+ ωn2 (3.1)

where the natural frequency, ωn = 2πfBW with fBW being the frequency response

or bandwidth and ζ = 0.707 is the damping ratio.

Table 3.1: Gyro information

Gyro Specifications
Bandwidth 250 Hz

ARW 0.0009 deg/
√
hr

Range 1000 deg/s
Sampling rate 500 Hz
Analog to digital conversion specifications

ADC Signed 32 bit
Maximum rate ±1000 deg/s

sensitivity 525× 10−9 deg/s

Since the study’s main contribution in [5] was to evaluate how different quality rate

gyros affect the performance of the system, the gyro model added non-linearities.

Chapter 3. Preliminaries 50

They thus were added in this study as well. One of these non-linearities is the

internal noise of the gyro itself. The gyroscope review conducted in [125] states

that the main concern in the rate gyro sensors is, in fact, the errors in the mea-

surement of the angular velocity. One cause of these errors is noise. Noise can be

expressed differently with different types of gyro’s, either through the resolution

R or by the Angle Random Walk (ARW) [125]. The study in [5] does not state

the type of gyro used, though they state it is a commercially used gyro. However,

in [125], it states that usually, the Ring Laser Gyroscopes (RGL) are those that

express noise using ARW, and the study in [5] used these. When a rate gyro is

measuring the movement of a stationary system, the output can produce an error

measurement in the noise. A white noise block in Simulink simulates this noise.

This noise block requires a Power Spectral Density (PSD) value in (deg /s)2/Hz.

Equation 3.2, which makes use of the ARW value, calculates the PSD value.

PSD[(deg /s)2

Hz] = (1
3600)(ARW [deg√

hr
])2 (3.2)

Because the gyro measurements are typically used in digital platforms, like micro-

processors, an analogue to digital conversion (ADC) needs to be performed for the

model to reflect reality, the modelling of the gyro includes this process. Table 3.1

includes the gyro specifications and ADC information.

3.1.2 The Gimbal

The gimbal system, adapted from [6], was re-modelled for this study and is shown

in Figure 3.3.

Axsys Technologies developed this gimbal as part of the Cineflex range and is

primarily used to house cameras for helicopters [126]. The moment of inertia is

determined using Equation (3.3) with assuming a spherical shape for the mass,

and observing Table 3.2 for the given mass and dimensions, and assuming a solid

sphere since the gimbal system is carrying an optical unit, with the centre of mass

assumed at the centre of the sphere.

Chapter 3. Preliminaries 51

Gimbal

Optical Housing and Equipment (Load)

Bearings and Motor

ωout

x

y

z

Figure 3.3: CAD adaptation of the camera gimbal that was used in this study
taken from [6]

Jg = 2
5mr

2 = 0.155 kg m2 (3.3)

With the assumption of an ideal rotational system with no friction, and using

Newton’s 2nd law, the motor torque Tm is

Tm = J∗gαg, (3.4)

where J∗g is the sum of the gimbal and motor inertia Jm because the motor torque is

exalted on this as well, and αg is the angular acceleration of the gimbal. Therefore,

J∗g = Jg + Jm = 0.157 kg m2. Using the Laplace transform, the transfer function

from the motor torque, T (s), to the angular rate, ω(s), is shown in Equation (3.5).

T (s)
ω(s) = 1

Js
= 1

0.157s (3.5)

Chapter 3. Preliminaries 52

Table 3.2: Gimbal performance specifications

Spec Type Spec Value
Size (diameter) 35.6 cm

Weight 12.3 kg
Slew rate 55 deg/s

Max acceleration slew rate 100 deg /s2

The required torque for this gimbal is determined by observing the maximum

acceleration slew rate limitation presented in Table 3.2 as 100 deg /s2. This max-

imum acceleration slew rate corresponds to a gimbal slew rate of 55 deg /s. Thus,

for a rise time measured from 10-90% to the final commanded input, this gives

the range of 55× 80% = 0.44 deg /s. In order to comply with the maximum accel-

eration slew rate, this means the gimbal must have a maximum rise time of 0.44

seconds.

To accelerate the gimbal to 100 deg /s2, this requires a motor torque of Tm = Jgα =

0.157×(100× π
180) = 0.274 N m, Jg is the gimbal inertia, and α is the acceleration.

Thus, the power required for the motor is P = Tmω = 0.274×44× π
180 = 0.21042 W,

where ω is the velocity of the gimbal. This calculation was used to determine which

motor to use.

3.1.3 The DC Motor

Many actuators are used for this type of application. The advantage of a DC motor

comes in its simplicity, ease of implementation and convenience [29]. Differential

equations usually represent the dynamics of the motor. These equations have

parameters and variables shown in Table 3.3.

These equations are listed below:

V in(t) = Ri(t) + L
di

dt
+ e(t), (3.6)

e(t) = Keω(t), (3.7)

Chapter 3. Preliminaries 53

Table 3.3: Motor specifications

Description Symbol Value
Voltage limit V max 27 V
Resistance R 4.5 Ω
Inductance L 0.003 H

Motor inertia Jm 0.0017 kg m2

Motor mechanical constant Kt 0.85 Nm/A
Motor electrical constant Ke 0.85 V/(rad/s)

Tm(t) = Kti(t), (3.8)

Table 3.3 shows the direct-drive DC Motor specifications derived from [5].

From the equations (3.6) (3.7) (3.8), Figure 3.4 illustrates how the DC motor is

applied in the control system, with the description of the symbols shown in Table

3.3.

1
s

TmKt

R

Ke

V in

ωout L

+

−

−

Integrator
di
dt

i

output

input

input

Figure 3.4: Block diagram showing the DC motor adapted from [5]

The direct voltage to torque transfer function for the motor input voltage, V(s),

to motor torque T(s), is shown in Equation (3.9)

V (s)
T (s) = Kt

Ls +R
(3.9)

Chapter 3. Preliminaries 54

3.1.4 PID Controller

The parallel PID controller in the form shown in Figure 3.5 was used.

+

-

KP

KI
s

KDs

+ + PlantActuator

Sensor

Figure 3.5: PID controller structure adapted from [7]

From Figure 3.5, the PID controller has the following gains; KP representing the

proportional constant of the controller, KI representing the integral constant of the

controller and lastly the KD representing the derivative constant of the controller

[37].

Some systems do not necessarily have to make use of all the components in the

PID controller because each component in the controller contributes differently to

reduce the system error. Some systems do not require all components to reduce

the error in the system. The following sections describe how each term of the PID

controller affects the controller output.

3.1.4.1 Proportional Gain

The proportional gain component in the controller acts on the present value of

the error. That is why the proportional control mode is important when the rate

of change of error is high as it improves the transient response [127]. Increasing

KP will only reduce the steady-state error but not diminish it. The KP gain

would have to be increased to infinity to diminish the steady-state error, which is

impossible [39]. Increasing the proportional gain decreases the rise time, making

the system response faster.

Chapter 3. Preliminaries 55

Furthermore, increasing the KP gain decreases the error; however, the system

becomes more oscillatory [37]. Note that increasing KP only after a certain limit

causes the response to overshoot [39]. These observations are mainly based on the

type of plant; hence it is important to observe responses with the specific plant of

interest [39].

How the system responds also depends on the order of the system. In second-order

systems, for example, the P controller generally gives the output described above

[39]. Increasing KP gain decreases the gain and phase margin in the frequency

domain, which is disadvantageous [39]. This increase also results in a larger sen-

sitivity to noise [37].

There are a few ways of diminishing the steady-state error discussed above. One

method is to add the integral controller, making a PI controller.

3.1.4.2 Integral Gain

The integral gain acts on the average of past errors. Because the integral gain cal-

culates the average of past errors, it can detect the steady-state error and diminish

it. Therefore, this system improves the steady-state response [127]. However, using

this controller may result in a negative impact on the speed and overall stability of

the system. Thus this controller should only be used when the speed of response

of the system is not a critical issue [39]. Additionally, because the integral control

cannot predict future error, it cannot reduce and diminish oscillations [39]. After a

limit, increasing KI gain will cause oscillations. Hence, the need for the derivative

term of the PID controller.

3.1.4.3 Derivative Gain

The derivative gain predicts future errors based on linear extrapolation of the

signal. Increasing the derivative gain KD results in the oscillation, overshoot, and

settling time of the system decreasing [127]. Some systems make use of only the

Chapter 3. Preliminaries 56

PD controller, without including the integral term, if the specific plant does not

require a small steady-state error.

The problem which may arise in the derivative controller is that it amplifies high-

frequency signals, and those signals could be noise. That is evident because as the

frequency becomes large, this tends the derivative controller to infinity since the

algorithm is KD × s, with s = jω. Also, the higher the frequency of a sinusoidal

signal, the larger the tangential line of that signal (i.e. the larger the derivative).

Introducing a low-pass filter changes the definition of the derivative section of the

algorithm from KD × s to definition (3.10),

KD ×
N

1 +N 1
s

(3.10)

where N is the filter coefficient which determines the cut off frequency for the low-

pass filter. This change in the derivative section then changes the block diagram

of the controller from Figure 3.5 to Figure 3.6.

+

KP

1
s+ + PlantActuator

Sensor

KD

1
s

N
+

−

−

+

KI

Figure 3.6: PID controller structure with an added low-pass filter

Choosing the filter coefficient is not as simple as one might think. In most cases,

the signal that is of interest usually has a low frequency but high amplitude, and

the noise signal usually has low amplitude but high frequency. However, this is

not always the case. Choosing a high cut-off frequency may result in increasing

the amount of noise in the system, and choosing a low cut-off frequency may result

Chapter 3. Preliminaries 57

in cutting off some of the signal that is of interest. The advantage of using meta-

heuristics as the tuning method is that it allows for an additional variable that

must be tuned, and that is the filter coefficient. Thus, the algorithms tuned the

three PID controller gains, and the filter coefficient gain N.

3.1.5 Added Non-Linearities

3.1.5.1 Torque Disturbance due to Friction

Additional friction was modelled and included in the gimbal system to observe

how the different algorithms behave when considering added non-linearities in the

plant. From Newton’s 2nd law, this then changes the Equation (3.4) to

Tm + Td = J∗gαg (3.11)

where Td is the net disturbance torque, caused by friction in this case. This

frictional force is considered as acting on the rotational elements of the gimbal [5].

Modelling friction can be done in many ways because the topic is quite a broad

and complex phenomena [5] [8]. For engineering purposes, friction contains three

components; the static, coulomb and the viscous friction [8]. Static friction refers

to the friction that the motor torque needs to overcome in order for the system to

move. Coulomb friction occurs during motion and is dependent on the direction

of the velocity. Viscous friction also occurs during motion and is proportional to

the velocity.

There are two methods of modelling friction: static friction modelling and dynamic

friction modelling. Static friction models include an attempt to model the Stribeck

effect shown in Figure 3.7. The Stribeck effect is where the frictional force or

torque decreases as velocity increases for a particular velocity regime [8]. Dynamic

friction modelling, however, takes into account the effect of not only velocity on

the frictional force but also material displacement. The model used this study is

Chapter 3. Preliminaries 58

Velocity

Friction Force Friction Force

Velocity

a) b)

Figure 3.7: A representation of the relationship between friction force and
velocity adapted from [8]. (a) Coulomb, viscous and static friction. (b) Stribeck

friction model

part of the static friction modelling and is named the Tustin model [8], shown in

the Equation (3.12),

T f = (T c + (T s − T c)e
−|ω|
ωs)sign(ω) + T vω, (3.12)

where T c is the Coulomb friction torque in Nm, T s is the static friction torque in

Nm, ω is the angular velocity in rad/s, ωs is the stick friction transition rate in

rad/s, and T v is the viscous friction torque coefficient in Nm/rad/s. The values

for these quantities are shown in Table 3.4.

Table 3.4: Friction values taken from [11]

Friction Type Friction Value

Static Friction Coefficient T s 0.2 Nm

Viscous Friction Coefficient T v 0.025 Nm/rad/s

Coulomb Friction T v 0.7 Ts

Transition Rate ωs 0.01 rad/s

Chapter 3. Preliminaries 59

3.1.5.2 Torque Disturbance due to Base Motion and Mass Unbalance

Base motion occurs when the movement of the vehicle that the gimbal is mounted

causes disturbance in the gimbal field of view. This base motion can cause un-

wanted disturbance torque because of static mass unbalance.

The static mass imbalance occurs from the centre of gravity of the gimbal not

being in the pivot point of the gimbal [128]. This is due to various components

like the structure design error, material defects, machining or assembly defects

[128].

The gimbal should be able to reject the base motion such that the final LOS signal

is not affected. How well the base motion is rejected depends on the application.

In some instances, it is sufficient to reject motion such that the target remains

within the field of view (FOV). In other instances, like in a laser range finder, the

LOS must remain stabilized such that the target remains at the centre of the FOV

of the stabilized sensor [29].

The disturbance torque is calculated using the equation

T d = a×m× roffset, (3.13)

where a represents the base vibration acceleration, m represents the gimbal mass,

and roffset represents the centre of mass offset distance from the rotational axis.

These non-linearities were modelled using band-limited white noise block in Simulink

[5].

The vibration acceleration used for approximation is taken from [129], where the

study measured the vibration level for helicopters and found to have frequency

spectrum peaks from 0.84 to 1.68 m s−2. For an average value for the white noise

level, the acceleration was taken to be 0.5 m s−2. The offset radius was taken

to be 5mm. Thus, using the gimbal mass stated in Table 3.2 of 12.3 kg, and

Equation (3.13), the torque disturbance was calculated to be

Chapter 3. Preliminaries 60

T d = (0.5)(12.3)(0.005) = 0.03075 N m. (3.14)

The torque T d must be squared to determine the PSD torque level to apply to the

Simulink noise generation. This squaring equates to

PSD = (0.03075)2 = 0.000941(N m)2/Hz. (3.15)

3.2 Algorithm Details

This section details the algorithms chosen, including how they were implemented

in this study and important considerations for implementing these algorithms in

this study.

3.2.1 The Genetic Algorithm

As stated previously, the GA is based on the three core principles from the Dar-

winian evolution, which are heredity, variation and selection.

Each member of the population created encompasses ‘DNA’. DNA, in this context,

is described as having a set of properties that govern the look and behaviour of

population members. Once a randomly generated population of DNA is created,

the next phase of the GA is the selection phase. There are two parts to the

selection phase, namely evaluating fitness, and creating a mating pool [55].

A fitness function is used to numerically evaluate the fitness of each member of

the population. The fittest population members survive to the next generation.

This mimics natural selection. These survivors are then called the mating pool

because this is where the parents of the new offspring are chosen for reproduction.

The selection rate Xrate is what determines how many chromosomes or population

members will survive to the next generation. Having a small selection rate limits

availability in genes for the new population, whereas, having a high selection rate

Chapter 3. Preliminaries 61

allows for non-fit members and their bad traits to survive. Another method of

determining the mating pool is to use thresholding. Thresholding is where all

chromosomes which have a fitness score above some threshold survive [59]. In this

study, however, the top 50% of the population (i.e. 50% of the population with

the best fitness scores) will be part of the mating pool. Thus, the selection rate is

chosen as 50%.

From the mating pool, parents need to be chosen for reproduction. There are differ-

ent ways of doing this. Tournament selection and roulette wheel are the standard

selection methods for most GAs. Tournament selection involves randomly choos-

ing a small subset of population members (tournament size), and the population

member with the best fitness score from this, becomes the parent. This process

repeats itself until there are enough parents to reproduce the full population size.

Roulette wheel is done by assigning probabilities to chromosomes in the mating

pool that are either proportional to their fitness score (cost weighting) or to their

rank in the population (rank weighting). The chromosomes that have better fitness

scores or better ranks in the population then have a higher chance of being selected

to be parents [59]. Once the parents are selected, the reproduction phase begins.

The most common way of reproduction is by using two parents to produce two

offsprings [59]. Crossover is one method used. Crossover entails choosing one or

more chromosomes in the DNA to be the crossover points. The variables between

these crossover points (represented as the arrows) are exchanged to produce the

offspring as shown:

parent1 = [pm1, pm2, pm3, pm4, pm5, ..., pmNvar] (3.16)

parent2 = [pd1, pd2, pd3, pd4, pd5, ..., pdNvar] (3.17)

offspring1 = [pm1, pm2, ↑ pd3, pd4, ↑ pm5, ..., pmNvar] (3.18)

offspring2 = [pd1, pd2, ↑ pm3, pm4, ↑ pd5, ..., pdNvar] (3.19)

Crossover is a popular method that entails combining both the parent’s genetic

code to create a child. There are different types of crossover methods, dependent

Chapter 3. Preliminaries 62

on the number of crossover points. Single-point crossover is where there is only one

crossover point, and the chromosomes after that point are exchanged [59]. There is

also two-point crossover where these are two crossover points and uniform crossover

where there are crossover points at each chromosome. The reader is referred to

[130] for more information. Crossover merely introduces new combinations in the

material and does not introduce new genetic material which shows why mutation

is needed.

Mutation is usually performed after crossover and before the offspring has been

added to the next generation. There are two factors to mutation: type of muta-

tion, and rate of mutation [59]. Some types of mutation include uniform mutation,

non-uniform mutation, order k mutation, and simple variation of day mutation.

Gaussian mutation is categorised under uniform mutation [59]. For more infor-

mation on this, the reader is referred to [84] [130]. Mutation is not a necessary

step but is only done to introduce additional variety to the evolution process [55].

Mutation rate is described using a percentage. For example, a 1% mutation rate

means that for each DNA, there is a 1% probability that it will experience muta-

tion. Mutation is usually not conducted on the best population member, which

allows for elitism. Elitism allows the population member to continue to survive

without ‘ruining’ what already works. Once the mutation is complete, the off-

spring is added to the next generation. The process mentioned above continues

until the algorithm reaches the maximum number of iterations.

The different parameters of the algorithm aid in balancing exploration and ex-

ploitation, or diversification and intensification. Exploration/diversification is

what allows an algorithm to explore new regions in the search space, and exploita-

tion/intensification is what fine-tunes the solutions from the best-chosen regions

in the search space. The GA is known for slow or premature convergence [59]

[130], which means that it does not perform enough exploration but quickly goes

to exploitation.

Having a high mutation rate increases diversity in the population and allows the

algorithm to explore more regions in the solution space. Performing crossover

Chapter 3. Preliminaries 63

does not introduce new genetic material but rather fine-tunes existing solutions

by checking different combinations, and thus performs exploitation.

In this study, the crossover type implemented is the single-point crossover. The

blending method was used along with single-point crossover to ensure that the

algorithm does not purely rely on the mutation to introduce new genetic material

[59]. This is where the two offspring members, pnew1 and pnew2, are calculated

using Equation 3.20.

pnew1 = pmα− β(pmα− pdα) (3.20)

pnew2 = pdα + β(pmα− pdα) (3.21)

where α is the randomly chosen variable to be the crossover point, β = random

number between 0 and 1, pmα is the mother chromosome in the crossover point,

and pdα is the crossover point in the father chromosome.

Since this study compared how the parameters of the GA are chosen and how this

affects performance, Table 3.5 shows the difference in the implementation of the

static and adaptive/dynamic GA. Figure 3.8 shows a flowchart of the dynamic

GA implemented. Algorithm 1 and 2 show the implementation of the static and

dynamic GA, respectively. Algorithm 3 shows how the dynamic parameters were

obtained. Section 3.2.1.1 details how the dynamic parameters of the adaptive GA

were calculated.

Table 3.5: Parameters of the GA compared

Parameters Static GA taken from [59]
Crossover Probability No crossover probability. All chromosomes undergo crossover

Selection Type Rank weighting
Mutation Rate Static mutation rate of 0.2
Parameters Adaptive/Dynamic GA taken from [9]

Crossover Probability The crossover probability is adaptable
Selection Type Tournament selection with adaptable tournament size
Mutation Rate Adaptable mutation rate

Chapter 3. Preliminaries 64

Adaptive Crossover Probability
P c determined by SPD

P c

Select 2 individuals from Adap-
tive Tournament Selection (Us-
ing HPD)

Select 1 individuals from Adap-
tive Tournament Selection (Us-
ing HPD)

Perform Uniform Crossover be-
tween both parents

Low rate of random mutation
(Pm = 0.01). This is for local
search.

Exploitation Division Exploration Division

Adaptive Mutation

(Pm determined
by SPD and
parent fitness)

Elitist
Selection
T size = P

1 individual

Elite

For every offspring to
be generated

Figure 3.8: Flowchart showing dynamic GA adapted from [9]

3.2.1.1 Dynamic Parameters

The GA has various algorithm-specific parameters which need to be tuned ac-

cordingly. This includes the mutation rate, crossover rate, and the tournament

size. Because the GA is known to converge locally, the study in [9] proposed that

these parameters are to be adapted based on maintaining a level of diversity in

the algorithm population. This is done by evaluating the Standard Population

Diversity (SPD) and the Healthy Population Diversity (HPD) and calculating the

parameters based on these.

The SPD is defined as a quantitative value describing the level of variation in

the population [131] [132] [133] [134]. This means it shows how far the values of

the population are from each other. In a population consisting of R population

members, calculating the SPD first involves computing the variable-wise average

Chapter 3. Preliminaries 65

Algorithm 1 Static Genetic Algorithm pseudo code
Require:
R . Population size
M . Iteration number
varhi, varlo . Search space bounds for population
Nvar . Number of variables
µ . Mutation rate
Xrate . Selection rate
f(X) . Objective function

1: Pop← (varhi− varlo)×random number(R,Nvar) + varlo . Population initialization R×Nvar matrix
2: for j = 1 : R do . O(R)
3: Evaluate population using f(X) . O(R)
4: end for
5: Sort population according to best fitness . O(Rlog(R))
6: function GA(R, M , Nvar, µ, Xrate)
7: for t = 1 : M do . O(M)
8: Nkeep ← R×Xrate . Population members that will be kept
9: nmut← (R− 1)×Nvar × µ . Number of mutations
10: Nmate ←

R−Nkeep
2 . Number of matings

11: procedure Selection
12: pick1 ← random number (1, Nmate) . For ma
13: pick2 ← random number (1, Nmate) . For pa
14: Pj ←

Nkeep−j+1∑Nkeep
j=1 j

. Nkeep × 1 probability for selection matrix

15: Cp ←
∑j

i=1 Pj . 1×Nkeep cumulative probabilities matrix
16: while ind <= Nmate do . O(Nmate)
17: for k = 2 : keep+ 1 do . O(Nkeep)
18: if pick1(ind) <= Cp(k) and pick1(ind) > Cp(k − 1) then
19: ma(ind) ← k − 1
20: end if
21: if pick2(ind) <= Cp(k) and pick2(ind) > Cp(k − 1) then
22: pa(ind) ← k − 1
23: end if
24: end for
25: end while
26: end procedure
27: procedure Crossover
28: β ← random number(1, Nmate) . mixing parameter
29: for s = 1 : Nmate do . O(Nmate)
30: ρnew1 = ρmα - β[ρmα − ρdα]
31: ρnew2 = ρdα − β[ρmα + ρdα]
32: offspring1 = [ρm1, ρm2...ρnew1...ρdNvar]
33: offspring2 = [ρd1, ρd2...ρnew2...ρmNvar]
34: end for
35: end procedure

36: procedure Mutation
37: mrow ← random number(1, nmut) ×R− 1
38: mcol← random number(1, nmut) ×Nvar
39: for ii = 1 : nmut do . O(nmut)
40: Pop(mrow(ii),mcol(ii)) = (varhi(1,mcol(ii)) − varlo(1,mcol(ii)))× random number(0,1)

+varlo(1,mcol(ii))
41: end for
42: end procedure
43: Evaluate new population . O(R)
44: Sort according to best fitness . O(Rlog(R))
45: end for
46: end function

Chapter 3. Preliminaries 66

Algorithm 2 Adaptive Genetic Algorithm pseudo code
Require:
R . Population size
M . Iteration number
Nvar . Number of variables
f(X) . Objective function

1: for j = 1 : R do . O(R)
2: Initialize population . R×Nvar matrix
3: Evaluate population using f(X) . O(R)
4: end for
5: Sort population according to best fitness . O(Rlog(R))
6: function GA(R, M , Nvar, algorithm 3)
7: for t = 1 : M do . O(M)
8: keep← R×Xrate . Population members that will be kept
9: Run ACROMUSE procedure and obtain values for P c, Pm and T size . O(R) + O(Nvar)
10: procedure Exploitation Section
11: Population to be exploited is Nexploit = P c ×R
12: Select parents from T size and implement tournament competition . O(Nexploit/2)
13: Perform single point crossover with blending method . O(R)
14: Use low rate of mutation of Pmstatic = 0.01 to mutate and generate offspring . O(R)
15: end procedure
16: procedure Exploration Section
17: Population size to be explored is Nexplore = (P c − 1)×R
18: Select one individual from tournament selection using T size . O(R)
19: Perform mutation using Pm obtained from ACROMUSE . O(R)
20: end procedure
21: procedure Elitist Section
22: Best individual does not get mutated, and survives to next generation
23: end procedure
24: Evaluate new population . O(R)
25: Sort according to best fitness . O(Rlog(R))
26: end for
27: end function

Algorithm 3 ACROMUSE pseudo code
1: procedure SPD Calculation
2: Calculate the variable-wise average Gave

n . O(R)
3: Calculate SPDi . O(Nvar)
4: Calculate the gene-wise standard deviation σ(Gave

n) . O(Nvar)
5: Calculate SPD . O(Nvar)
6: end procedure
7: procedure HPD Calculation
8: Calculate wi . O(R)
9: Calculate gene-wise weighted average GW.ave

n . O(R)
10: Calculate HPDi . O(Nvar)
11: Calculate the gene-wise standard deviation σ(GW.ave

n) . O(R)
12: Calculate HPD . O(Nvar)
13: end procedure
14: procedure Calculation of parameters
15: Calculate P c
16: Calculate Pm
17: Calculate T size
18: end procedure

Chapter 3. Preliminaries 67

for all R individuals in the population as follows:

G
ave
n = 1

R

R∑
i=1

Gi,n, (3.22)

with each population member i consisting of Nvar variables with Gin referring to

the nth variable of the population member i, Gi = (Gi,1, Gi,2, ...Gi,Nvar). From this,

SPDi is calculated. This value refers to the population member i′s contribution

to SPD. It is calculated using the euclidean distance between the individual i and

Gave shown on Equation (3.23),

SPDi =

√√√√Nvar∑
n=1

(Gi,n −Gave
n)2. (3.23)

Though the summation of SPDi should calculate SPD, the summation cannot be

normalized according to the mean. If SPD is not normalized, the SPD measure will

vary for different problems and populations. For a normalized SPD, a standard

deviation measure must be employed. This is calculated as the gene-wise standard

deviation over all R individuals using Equation (3.24),

σ(Gave
n) =

√√√√ 1
R

R∑
i=1

(Gi,n −Gave
n)2. (3.24)

Due to this approach, the standard deviation is expressed relative to the mean,

using the coefficient of variation (Cv). This coefficient of variation is used as the

measure of SPD, shown on Equation (3.25),

SPD = Cv(Gave) = 1
Nvar

Nvar∑
j=1

σ(Gave
j)

G
ave
j

. (3.25)

The HPD is different from the SPD in that it measures a spread of healthy indi-

viduals (i.e. individuals with a high fitness score) across the population, rather

than purely looking at the spread of individuals in the search space. This is why

HPD is referred to as the fitness-weighted measure of population diversity. The

Chapter 3. Preliminaries 68

contribution to diversity in the solution space of each individual is according to

its fitness. The first step to calculating the HPD is first to obtain the individual’s

fitness expressed as a proportion of total fitness using Equation (3.26),

wi = fi∑R
k=1 fk

, (3.26)

where f represents the fitness value. From this, the weighted average individ-

ual is calculated by summing the fitness-weighted gene-wise average across all R

individuals using the Equation (3.27),

G
W.ave
n =

R∑
i=1

wiGi,n. (3.27)

HPDi is the individual i′s contribution to healthy diversity. This is calculated

using the Equation (3.28),

HPDi = wi

√√√√Nvar∑
i=1

(Gi,n −GW.ave
n). (3.28)

The normalised HPD, much like the SPD, is computed by calculating the popula-

tion’s gene-wise fitness weighted standard deviation using the Equation (3.29),

σ(GW.ave
n) =

√√√√ R∑
i=1

wi(Gi,n −GW.ave
n). (3.29)

Thus HPD is then calculated by obtaining the weighted coefficient of variation

using Equation (3.30),

HPD = Cv(G
W.ave) = 1

Nvar

Nvar∑
j=1

σ(GW.ave
j)
G

ave
j

. (3.30)

The value of SPD, shown on Equation (3.25) is used to calculate the crossover

probability P c. The crossover probability determines the size of the exploration

Chapter 3. Preliminaries 69

and exploitation divisions. A high crossover probability means an increase in the

exploitation division. P c is calculated using Equation (3.31),

P c =
 SPD

SPDmax
× (K2 −K1)

 +K1, (3.31)

where P c ranges from K1 = 0.4 to K2 = 0.8. SPDmax is set to 0.4 because

according to [9], this is what is regular practice.

Adaptive mutation probability is calculated using two components, mutation due

to diversity and mutation due to fitness. Mutation due to diversity is calculated

using Equation (3.32),

P
Diversity
m = SPDmax − SPD

SPDmax
×K, (3.32)

where K = 0.5, which is the upper-bound of Pm. Mutation probability due to

fitness is calculated using Equation (3.33),

P
Fitness
m = f − fmin

fmax − fmin
×K, (3.33)

where f is the parent fitness. Equation (3.34) describes how the mutation proba-

bility is then obtained

Pm = P
Fitness
m + P

Diversity
m

2 . (3.34)

The tournament size is calculated using HPD shown on Equation (3.30). This is

done using Equation (3.35),

T size = HPD

HPDmax
× T size.max, (3.35)

where T size.max refers to the maximum selection pressure applied to the population.

This value is calculated as PopulationSize/6. HPDmax is the maximum HPD

possible and is set to 0.3.

Chapter 3. Preliminaries 70

3.2.2 The Flower Pollination Algorithm

The FPA was developed by Yang in 2012 and inspired by the pollination of flowers

in nature [60]. Pollination is the transfer of pollen from the male anther to the

female stigma of a flower in order for flower reproduction to occur. This can occur

by cross-pollination or self-pollination. Cross-pollination, also referred to as biotic

or allogamy [60], occurs when pollen grains are transferred from one plant to the

next using a pollinator, like an insect. Whereas self-pollination, also referred to

as abiotic [60], occurs when the plant does not use a pollinator and sheds its

pollen from its anther to its stigma [135]. Cross-pollination is then considered as

global-pollination and self-pollination as local-pollination. This is mainly because

pollinators, such as bats or birds, can travel long distances while pollinating [60].

As discussed above, there are two methods of pollination. However, 90% of flow-

ering plants are pollinated via cross-pollination or global-pollination [60].

The probability that controls the local and global pollination is a switch probability

(p), which has the range [0,1]. Physical factors such as wind may increase local

pollination probability. However, a probability switch value of 0.8 works best in

most applications [60]. The FPA is easier to implement, as compared to other

algorithms because it only has a few parameters, namely the switch probability

(p) and a scaling factor (α) [136].

The four rules of the FPA are [60]:

1. Biotic or cross-pollination is considered as global-pollination with pollinators

traveling using the Lévy flight distribution.

2. Abiotic or self-pollination is considered as local-pollination.

3. Flower constancy, also seen as the reproduction probability, is proportional

to the similarity of the two flowers involved in the pollination process.

4. The switch probability controls whether global or local-pollination is per-

formed.

Chapter 3. Preliminaries 71

Mathematical derivations are developed from these assumptions and above rules

to explain local and global-pollination.

The scaling factor λ value in this study was 1.5, adapted from [60]. However, this

study compared two ways to implement the FPA; the static method where switch

probability value is 0.8, and the adaptive method where the switch probability

changes as the algorithm iterates. Section 3.2.2.1 shows how the dynamic switch

probability is calculated.

3.2.2.1 Dynamic Switch Probability

The switch probability (p) is what balances the diversification and intensification

of the algorithm. The method of how the dynamic switch probability is calculated

is adapted from [78] and shown in Equation (3.36),

p = p−1 − 0.015× (M − t
M

), (3.36)

where p−1 is the value of the switch probability in the previous iteration, M is

the maximum number of iterations, and t is the current iteration of the algorithm.

Figure 3.9 shows the change of the switch probability value as the iteration number

progresses, based from Equation (3.36). The switch probability starts from 0.9

(90%) and decreases using the step size of 0.015 as the iterations progress in order

to increase the probability of local pollination.

Chapter 3. Preliminaries 72

0 5 10 15 20 25 30 35 40 45 50

Iteration Number

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

S
w

itc
h

P
ro

ba
bi

lit
y

Figure 3.9: Diagram showing the change of the switch probability value p as
the iteration number progresses

3.2.2.2 Global Pollination

For global pollination, the mathematical representation is as follows:

xt+1
i = xti + L(xti − g∗), (3.37)

where xti is the pollen i or the solution vector xti at iteration t, g∗ is the current

best solution found in the current iteration; L is used to represent the step size.

There are many different ways to determine step size. One way is using the Lévy

flight distribution, which is shown below:

L(s) = λΓ(λ) sin(πλ/2)
π

1
s1+λ , (3.38)

where Γ(λ) represents the standard gamma function, with this study using λ =

1.5 adapted from [60]. This distribution is valid for steps s > 0.

Chapter 3. Preliminaries 73

3.2.2.3 Local Pollination

For local pollination, the mathematical representation is as follows:

xt+1
i = xti + ε(xtj − xtk), (3.39)

where xtj − xtk are pollens from different flowers on the same plant.

Algorithm 4 shows the implementation of the FPA.

Algorithm 4 Flower Pollination Algorithm pseudo code
Require:
R . Population size
M . Iteration number
varhi, varlo . Search space bounds for population
Nvar . Number of variables
f(X) . Objective function

1: Pop← (varhi− varlo)×random number(R,Nvar) + varlo . Population initialization R×Nvar matrix
2: for j = 1 : R do . O(R)
3: Evaluate population using f(X) and find global best solution g∗
4: end for
5: function FPA(R,M,Nvar)
6: ρ← random number(0,1) . for static switch probability
7: ρ← dynamic switch probability function G(M)
8: for t < M do . O(M)
9: for i = 1 : R do . O(R)

10: if random number < p then
11: Draw a Nvar-dimensional step vector L obeys a Lévy distribution
12: Do global pollination: xt+1

i = xti + L(xti − g
∗) . O(Nvar)

13: else
14: Draw ε from a uniform distribution in [0,1]
15: Randomly choose j and k among all the solutions
16: Do local pollination: xt+1

i = xti + ε(xtj − x
t
k) . O(Nvar)

17: end if
18: Evaluate new solutions . O(R)
19: Update new solutions in population if they are better
20: Update current best solution g∗
21: end for
22: end for
23: end function

3.2.3 The Teaching-Learning-Based Optimization Algorithm

The Teaching-Learning-Based Optimization Algorithm (TLBO) algorithm is based

on the interactions in the classroom between learners and teachers to improve

learner marks for different subjects. There are two phases in the algorithm: the

teacher phase and the learner phase. The teacher phase is where the learners gain

Chapter 3. Preliminaries 74

knowledge from the teacher, and the learner phase is where learners interact and

gain knowledge from each other.

3.2.3.1 Teacher Phase

In this phase, the teacher attempt to increase the mean result of the class average

[63]. Let R be the total number of learners and Nvar be the total number of

class subjects. In the ith iteration, the performance or mark of the kth learner,

where k = 1, 2, ..., R in the jth subject, where j = 1, 2, ..., Nvar is Xk,j,i. In this

algorithm, the learner who performs the best becomes the teacher. The difference

in mean results between the best learner (i.e. teacher) and the average result of

the learners, ∆̄k,j,i, is given by the following equation:

∆̄k,j,i = ri(Xk∗,j,i − TfMj,i), (3.40)

where ri represents a random number in the range [0,1], Xk∗,j,i represents the result

of the best learner (k∗) in the subject j and at iteration i, Tf represents the is

teaching factor which is found to work best when it is either 1 or 2 [63], and Mj,i

represents the average result of the learners in subject j and at iteration i. From

equation (3.40), the solution is updated using the following equation:

X ′k,j,i = Xk,j,i + ∆̄k,j,i, (3.41)

where X ′k,j,i is the updated value of Xk,j,i and is only accepted if it results in better

function value. Otherwise, the old solution is retained. All accepted values in the

teacher phase become inputs to the learner phase.

3.2.3.2 Learner Phase

In this phase, the learners gain knowledge by interacting with each other. The

learners gain knowledge from other learners who have acquired more knowledge

than them. For a population size R and with jt meaning the result for all subjects,

Chapter 3. Preliminaries 75

randomly1 select two learners P and Q, such that X ′P,jt,i 6= X ′Q,jt,i. The learner

phase is mathematically represented in the equations below:

X ′′P,j,i = X ′P,j,i + ri(X ′P,j,i −X ′Q,j,i) if X ′P,jt,i < X ′Q,jt,i (3.42)

X ′′P,j,i = X ′P,j,i + ri(X ′Q,j,i −X ′P,j,i) if X ′Q,jt,i < X ′P,jt,i (3.43)

This completes one iteration of the TLBO algorithm. This process continues until

the algorithm reaches the desired outcome.

The advantage of TLBO is that it only requires non-algorithmic specific parame-

ters, such as the population size and the number of generations. It does not require

any algorithm-specific parameters [63]. In this particular study, each learner of

the population has four subjects being the PIDN gains. The difference between

the standard TLBO described above, and the TLBO algorithm implemented in

this study is that there will not be the best learner for each subject. Instead, the

best learner will be the one which the combination of the controller gains gives

the best fitness function output. This means that (3.40) becomes

∆̄k,i = ri(Xk∗,i − TfMi), (3.44)

and (3.41) becomes

X ′k,i = Xk,i + ∆̄k,i. (3.45)

The learner phase equations (3.42) and (3.43) then also change to

X ′′P,i = X ′P,i + ri(X ′P,i −X ′Q,i) if X ′P,i < X ′Q,i (3.46)

X ′′P,i = X ′P,i + ri(X ′Q,i −X ′P,i) if X ′Q,i < X ′P,i (3.47)

1The randperm MATLAB function is used to randomly select two learners. There is a remote
chance that the selected learners could be the same; however, there have not been any studies
on the disadvantages of this. The code implements an if and else loop, thus if the two selected
learners are the same, equation (3.43) will be implemented.

Chapter 3. Preliminaries 76

Algorithm 5 The Teaching-Learning-Based Optimization Algorithm pseudo code
Require:
R . Population size
M . Iteration number
Nvar . Population dimension
f(X) . Objective function

1: for j = 1 : R do . O(R)
2: Initialize population . R×Nvar matrix
3: Evaluate population using f(X) and find best learner k∗ . O(R)
4: end for
5: function TLBO(R, M , Nvar)
6: for i = 1 : M do . O(M)
7: for k = 1 : R do . O(R)
8: procedure Teacher Phase
9: Mi ← mean student
10: Tf ← teaching factor
11: ri ← random number(0,1)
12: Find difference mean using best: ∆̄k,i = ri(Xk∗,i − TfMi) . O(Nvar)
13: Find new solution using: X′k,i = Xk,i + ∆̄k,i . O(Nvar)
14: Evaluate new solution . O(R)
15: Replace old solution if new solution better
16: end procedure
17: procedure Learner Phase
18: Randomly choose two learners P and Q such that X′P,i 6= X′Q,i
19: Update learner P: X′′P,i = X′P,i + ri(X′P,i −X

′
Q,i) if X′P,i < X′Q,i . O(Nvar)

20: Update learner Q: X′′P,i = X′P,i + ri(X′Q,i −X
′
P,i) if X′Q,i < X′P,i . O(Nvar)

21: end procedure
22: Evaluate new solution . O(R)
23: Replace old solution if new solution better
24: end for
25: Find the current best learner k∗
26: end for
27: end function

3.3 Performance Criteria for Evaluating Gimbal Stabiliza-
tion System

There must be a desired performance standard which must be defined to analyse

how the gimbal stabilization system has performed. This standard inherently

evaluates the accuracy and stability of the control system by observing how well-

tuned the controller with meta-heuristic techniques is [10].

3.3.1 Transient Response

Standard performance measures are typically based on a step input [10] shown in

Figure 3.10. This figure also shows the basic figures of merit used to assess the

performance of the time response of the system.

Chapter 3. Preliminaries 77

MP (Peak Overshoot)

tP (Peak Time)

tR (Rise Time)

tS (Settling Time)

Step Response

Time (seconds)

A
m
p
li
tu
d
e

Figure 3.10: Basic figures of merit of a control system for the time-domain
adapted from [10]

The rise time tR, and peak time tP, characterise how fast the system responds to

a command input [10] [99]. The rise time is measured differently according to how

the system is damped. For under-damped systems, the rise time is measured from

0 to 100% of the final value. However, for over-damped systems, the rise time is

measured from 10% to 90% of the final value. The most popular method is using

rise time from 10 to 90% of the final value and, thus, this was used for the current

study. The peak time is not usually defined in over-damped systems [10] and is

not used as a performance measure in this study. How well the system tracks the

command input is measured by settling time tS, percentage overshoot, and the

steady-state error ess [10] [99]. Settling time also characterises the time required

for the system response to follow the system input within a specified percentage

range [10]. This range is usually within 2% of the input. The settling time was

defined in this way in the current study.

The steady-state error refers to the error after the transient response has been

diminished, having only the continuous error [10]. This merit provides a good

indication of the stability of the system. The degree to which the response is well

controlled is determined by the percentage overshoot and peak amplitude [99].

Chapter 3. Preliminaries 78

Percentage overshoot can be defined as

Percentage overshoot = MP − Af

Af
× 100,

where MP is the peak value of the time response and Af is the final amplitude

value of the response [10]. A shorter rise time, time constant and peak time may

result in a larger overshoot and settling time. This means that these requirements

are in contradiction, and thus a compromise must be established [10].

The question of what is deemed as good performance when observing these figures

of merit is important. Since this a comparative study, it will focus on comparing

the performance of the different algorithms rather than the values they obtain.

However, it is still important to observe their performance with other similar

systems. According to the study in [137] where the performance of a one-axis

gimbal control system was observed, the standard performance requirements for

the figures of merit are shown below:

• Rise Time ≤ 0.2 sec

• Settling time ≤ 0.3

• Maximum Overshoot ≤ 20 %

This is a comparison study, so observing how the algorithms perform in comparison

to each other was more important than observing how they do in comparison to

the performance requirements. However, these requirements were considered in

order to compare the performance of the algorithms to the standard performance

requirements.

3.3.2 Fitness Function

In an example of an optimization problem where the objective is to minimise the

fitness function, let the solution space be S with S −→ R, with each solution

represented by x ⊆ S. X is defined as the feasible solution space, where the

Chapter 3. Preliminaries 79

solutions in X are those that satisfy the constraints defined by the optimization

problem. An optimal solution is defined as the solution x∗ ε X where the f(x∗) ≤

f(x) for all x ε X. Thus, the fitness function is vital in improving the performance

of a meta-heuristic algorithm because it aids in choosing the best solution x∗. The

fitness function is the goal which is intended to be achieved for the system that is

being optimized [43].

As stated previously, the fitness function used in this study is shown on Equation

(3.48),

F = µ(VISE) + α(VITAE), (3.48)

with µ and α being the non-negative weights chosen to be 0.6 and 0.4 respectively,

and VISE and VITAE are the values of the integral of the square of the error and

integral time absolute square of the error respectively. How these performance

indices are calculated are shown in Equations 3.49 and 3.50 respectively [10],

ISE =
∫
e2(t)dt (3.49)

ITAE =
∫
t | e(t) | dt (3.50)

where e(t) represents the error value for each time, and t represents the time.

3.4 Theoretical Analysis Details

The theoretical analysis used in this study is detailed here. This includes statistical

and time complexity analysis. How the theoretical analysis was implemented in

this study is discussed in this section.

Chapter 3. Preliminaries 80

3.4.1 Statistical Analysis

The statistical analysis quantifies whether the differences in the performance of

the algorithms are significant. This is done by testing whether the null hypothesis

H0 is accepted or rejected.

The Friedman test answers whether there is a difference in the median or mean

values of the populations for a set of k samples, where k ≥ 2. In this research, k

represents the algorithms, and n the problem instances. The data that was used

was the mean fitness values of the different algorithms at the different problem

instances.

The Friedman analysis was calculated using the program developed by Cardillo

[138]. This program is different from the built-in Friedman analysis MATLAB

function. This is because when k and n are large (≥ 10), the probability distri-

bution is approximated to chi-square or F distribution. However, if k and n are

small, which is the case in this research, this approximation becomes weak, and

other means must be used to obtain the required values for this analysis, such as

the p-values. The p-values are obtained from tables prepared explicitly for the

Friedman analysis. The program in [138] addresses this.

The steps to calculating the Friedman test statistic are as follows:

1. Rank data from the best result (1) to worst (k). These ranks are denoted as

rji (1 ≤ j ≤ k).

2. For each algorithm j, calculate the average ranks obtained for all the problem

instances to obtain final rank Rj = 1
n

∑
i=1 r

j
i .

Once these ranks have been obtained, the Friedman statistic is then calculated by

using Equation (3.51).

Q = 12
nk(k + 1)

 k∑
j=1

(
∑

Rj)2

− 3n(k + 1) (3.51)

Chapter 3. Preliminaries 81

Once this test statistic Q is calculated, it is compared to the critical value obtained

to observe if the null hypothesis can be rejected. If the Friedman statistic is larger

than the critical value, then the null hypothesis is rejected, and thus a posthoc

analysis is required. The program in [138] does this automatically, by using the

posthoc test, which is a method equivalent to Fisher’s least significant difference

method described in [139].

3.4.2 Time Complexity of Algorithms

For an input n, the complexity was determined by a few rules of thumb obtained

from [116]:

• The slowest instruction determines the asymptotic behaviour.

• O(1) is a constant time algorithm.

• O(n) is linear

• O(n2) is quadratic

• O(log(n)) is logarithmic

• The nested loop in the programs is vital. A single loop over n items becomes

f(n) = n. A loop within a loop becomes f(n) = n2. A loop within a loop

becomes f(n) = n3.

• Sorting algorithm complexity is O(nlog(n))

3.5 Method

This section aims to illustrate the methodology followed to obtain the results. The

method includes observing the design of the experiments conducted, the research

environments used and the implemented tasks.

Chapter 3. Preliminaries 82

3.5.1 Computational Experimental Design

The Design of Experiments (DOE) methodology is used in statistics theory to

provide clear experimental methods to evaluate stochastic problems. Changing

an algorithm parameter one-factor-at-a-time is the most effective way to observe

how each parameter affects the performance so that the parameter values are

optimized [140]. This method, however, is also time-consuming and in most cases,

impractical. This is why there is a need for 2k factorial designs as they have shown

to be more economical [140]. A 2k factorial design is a basic DOE technique where

the experimenter chooses two values for each algorithm parameter (k) that will be

tested. These factors can either be quantitative (e.g. two different temperature

values) or qualitative (e.g. two types of catalysts).

3.5.2 Common Parameters

The common parameters were optimized and chosen using the DOE methodology.

In this study, the common parameters that were optimized are:

• Search Space Bound (quantitative)

• Population Size (quantitative)

Choosing which two values will be used for the common quantitative parameters

depends on the time and computational resources required for this application.

The gimbal system that is used in this study is typically applied to the stabilization

of an optical system in a helicopter for media coverage [141]. In this application,

the gimbal must stabilize the optical system rapidly to ensure that the optical

system performs best when covering and tracking what is required. This means

there is a reasonable limitation on the time and computational resources given

to the algorithm. This was kept in mind when selecting the two values for each

parameter, as shown in Table 3.6.

Chapter 3. Preliminaries 83

Table 3.6: 2-level factorial design bounds

Factor Level 1 Level 2
Search Space Upper Bound 100 500

Population Size 20 60

Table 3.7: Factorial design

AD Population Size Search Space
1 20 100
2 60 100
3 20 500
4 60 500

The detail of each algorithm design is shown in Table 3.7.

Thus, each algorithm design AD was compared in each experiment in order to find

the optimal algorithm design AD for the problem instance. The 2k factorial design

is also implemented to observe the effect of each algorithm design on the problem

instance, so that this gives more insight into the problem and algorithm. Since

these algorithms are stochastic, they were run three times for each experiment,

and the average, best, and worst performance was observed.

3.5.3 Algorithm-Specific Parameters

The main difference in the Teaching Learning Based Optimization (TLBO), when

compared to the other algorithms, lies in the TLBO being ‘parameter-less’. The

TLBO algorithm does not contain algorithm-specific parameters, but only contains

common parameters.

The main difference in the Flower Pollination Algorithm (FPA), when compared

to the other algorithms, lies in the switch probability of the algorithm being what

controls whether the algorithm performs exploration or exploitation at each itera-

tion. The TLBO algorithm does not have anything that controls this and performs

exploration and exploitation in one iteration.

Chapter 3. Preliminaries 84

This is also different from the Genetic Algorithm (GA), which has more than

one parameter that controls this. Therefore, the algorithms progress from the

GA to the TLBO with the FPA in between, with regards to how much control

the practitioner has on it performing exploration or exploitation. The value of

choosing to compare these algorithms lies in the ability to see how increasing

the practitioner’s control on implementing exploration or exploitation affects the

performance.

3.5.4 Problem Instances used in the Experiments

The function of the control system was to stabilize the LOS rate of the gimbal

to the commanded input, which represents the target movement rate. As seen

in Figure 2.1, in Section 2.7 of Chapter 2, there are three problem instances (or

scenarios) of the application which the algorithms are tested on.

The first scenario is by inputting a step input function into the gimbal control

system without any added additional non-linearity. The only non-linearity which

exists in this system is due to the rate gyro modelling, which is described in

Section 3.1. This input step function represents a constant velocity of the target

to which the gimbal must follow. This means that in this scenario, the target is

moving and the rate of movement remains constant at 1 rad/s.

Instead of the step input function, the second scenario consists of a ramp input

function as a representation of the target motion. The ramp input function is

a dynamic input which represents an increasing target velocity but with a con-

stant acceleration of 1 rad/s2. There is still no additional non-linearity, as this

experiment only observes how the algorithms and algorithm designs perform with

a different input.

The last scenario is where the control system includes additional non-linearity in

the control system. This non-linearity is described in Section 3.1.5 and represents

Chapter 3. Preliminaries 85

the friction acting on the rotational elements of the gimbal, and the torque dis-

turbance due to base motion and mass unbalance. This scenario tested how the

algorithms perform with a step input and added non-linearity.

3.5.5 Research Environments

The operating system that used for this study is the Microsoft Windows 10 64-bit

operating system with 8GB RAM and i7 core processor. The research environment

chosen for this study was MATLAB/Simulink. The research environment chosen

is due to various studies which involved tuning a controller using nature-inspired

heuristic algorithms having utilised the MATLAB/Simulink environment.

3.5.6 Work Breakdown Structure

The experiments conducted compared the different elements of this study to ob-

serve system response. Figure 3.11 shows the work break down structure (WBS),

which describes the tasks required for this study when implementing the experi-

ments and comparisons.

C
hapter

3.
Prelim

inaries
86

PID Tuning using Meta-Heuristic
algorithms

Parameter Optimization Robustness Analysis Theoretical Considerations

Run the TLBO on the first
scenario using 2k factorial
design and record results

Run the static and dynamic
FPA, using the 2k factorial
design on the first scenario
and compare and record re-
sults

Run the static and dynamic
GA using the 2k factorial de-
sign on the first scenario and
compare and record results

Choose the common and
algorithm-specific parame-
ters (for the GA and FPA)
which gave the best perfor-
mance

Run the TLBO on the sec-
ond scenario using 2k facto-
rial design and record results

Run the static and dynamic
FPA, using the 2k facto-
rial design on the second
scenario and compare and
record results

Run the static and dynamic
GA using the 2k factorial de-
sign on the second scenario
and compare and record re-
sults

Choose the common and
algorithm-specific parame-
ters (for the GA and FPA)
which gave the best perfor-
mance and observe if these
are the same results ob-
tained from the parameter
optimization experiment

Compare the performance of
the TLBO, the chosen FPA
and chosen GA on all three
sceanrios to observe which
algorithm performed best

Using inferential statistics,
observe if there was a differ-
ence in performance of the
algorithms in the three sce-
narios

Using convergence graphs,
observe the convergence rate
of each of the algorithms in
the three scenarios

Determine the time com-
plexity of the three algo-
rithms and compare

Figure 3.11: Work breakdown structure describing tasks required for this study

CHAPTER 4

Parameter Optimization for Nature-Inspired

Meta-Heuristic Algorithms

Freedom is not the absence of obligation or

restraint, but the freedom of movement within

healthy, chosen parameters.
Kristin Armstrong

This chapter addresses how the common and algorithm-specific parameters of the

three algorithms affect the performance of this problem instance. This problem

instance is described as a constant target velocity modelled as a step input, with

the LOS rate of the gimbal attempting to follow the commanded input.

The chapter begins by describing the research questions and hypotheses relevant

to this experiment. It then continues to describe the results obtained for each al-

gorithm and discussing these results. The chapter then ends with some concluding

remarks, which connects the research questions to the results obtained.

4.1 Research Questions

For this particular case study, the relevant research questions which the experi-

ments attempted to answer are as follows:

1. Do common algorithm parameters, specifically the population size and search

space bounds, affect the algorithm performance for this problem instance?

87

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 88

2. Should algorithm-specific parameters be adaptive (also referred to as dy-

namic) or static for this problem instance and do these parameters interact

with the common algorithm parameters?

4.2 Parameterless Teaching Learning Based Optimization
Algorithm Results

Table 4.1 shows the fitness value descriptive statistical results of the TLBO for

this problem instance, where AD represents the different algorithm designs shown

in Table 3.7 in Chapter 3, Section 3.5.2.

Table 4.1: Descriptive statistical results illustrating the changes in the fitness
value for the different algorithm designs

AD Best Mean Max Std Dev % increase from % increase from
best to mean best to max

1 34.6681 34.6725 34.6807 0.0176 0.0128 0.0363
2 34.5966 34.5981 34.6007 0.0191 0.00424 0.0118
3 34.418 34.4190 34.4201 0.00420 0.00281 0.00610
4 34.4131 34.4152 34.4181 0.00474 0.00610 0.0145

Table 4.1 shows the percentage increase of the fitness value from the best (which

is the minimum fitness value) to the mean, and from the best to the maximum.

This is to illustrate how much higher the average and maximum fitness values are

compared to the minimum value to show the range of the fitness value results.

The highest percentage increase from the best to the maximum is produced by

algorithm design one with 0.036%. This means that no solution has given a fitness

value above 0.036% higher than the lowest fitness value. The TLBO is a stochastic

algorithm which means each run produces a different answer.

However, since the maximum range in the results is less than 1%, this indicates two

things: (1) either these solutions are from the same region which the algorithm has

the ability to identify at each run or the problem is multi-modal because different

solutions produce similar fitness value results, and (2) the lower the range in fitness

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 89

value, the higher the probability that this algorithm produces the optimal or near-

optimal solution at each run. To determine which one of (1) is true, one must

observe the PIDN solutions obtained from the algorithm shown in Table 4.2.

Table 4.2 also shows the time-domain results produced by the solution gains for

each algorithm design, with tR, tS, Mp, and tc representing the rise time, settling

time, percentage overshoot, and computational time respectively. The PIDN con-

troller gains represent the average controller gains obtained from the three runs

implemented.

Table 4.2: Time-domain results for the TLBO for the first problem instance

AD Mean Fitness Kp K i Kd N tR (s) tS (s) Mp (%) tc(s)
1 34.6725 94.740 46.199 0.1883 13.58 0.026 0.0397 0.0393 882.79
2 34.5981 99.896 49.720 82.35 0.2096 0.0252 0.035 0.0329 3273.93
3 34.4190 242.325 48.304 0.03903 20.93 0.0250 0.0403 2.4547 885.21
4 34.4152 294.563 47.709 0.1649 90.25 0.0250 0.0313 1.981 2684.20

Table 4.2 shows that the algorithm designs which produced the lowest rise time are

algorithm designs 3 and 4 with 0.025 seconds. These algorithm designs, though,

resulted in a high percentage overshoot relative to the other algorithm designs.

The solutions of these algorithm designs show higher proportional gains in com-

parison to algorithm design one and two. This shows that a higher proportional

controller gain results in a slower rise time, but runs the risk of experiencing a

higher overshoot.

The solutions that are shown in Table 4.2 also indicate that the problem in multi-

modal since the changes in the controller gains had little effect to the fitness value,

with the range in fitness values being less than 1% as shown in Table 4.1.

It is worthy to note that the results shown in Table 4.2 surpass the standard time-

domain results for a gimbal stabilization system stipulated in [137] and shown in

Chapter 3 Section 3.3.

Figure 4.1 compares the changes in the PIDN gain values to the changes in the

changes in the fitness values for each algorithm design. This figure shows how the

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 90

changes in the algorithm design change the PIDN solutions and fitness value, and

the effect of this on the time domain responses.

1 2 3 4
Algorithm Design

0

50

100

150

200

250

300

Va
lu

e

Kp
Ki
Kd
N
Av Fitness

(a) Solution values

1 2 3 4

Algorithm Design
0

5

10

15

20

25

30

35

Fi
tn

es
s V

al
ue

Av Fitness

(b) Fitness values

1 2 3 4

Algorithm Design
0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
Do

m
ai

n
Re

su
lts

tr
ts
Mp

(c) Time-domain response

Figure 4.1: Bar graph showing the solution and fitness values for each algo-
rithm design for the TLBO

Figure 4.1a confirms further that the changes in the controller gains, particularly

the Kp and Kd values, contribute to relatively small changes in the average fitness,

with the changes in the average fitness shown more closely in Figure 4.1b.

The increase in population size from algorithm design one to two led to an increase

in the PID controller gains as seen in Figure 4.1a, and a decrease in the filter

coefficient N. This has led to a decrease in the fitness value as seen in Figure 4.1b.

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 91

Decreasing the population size and increasing the search space in algorithm design

one resulted in the proportional controller gain increasing significantly, along with

the filter coefficient while the derivative gain decreases. Algorithm design three has

also lead to a significant increase in the percentage overshoot, with a significant

decrease in the fitness value. This means an increase in the diversity of solutions

since there are fewer population members with a broader range of solutions.

Increasing the population size from algorithm design three to four has lead to a

slight decrease in fitness value and percentage overshoot.

The difference between algorithm design two and three is the search space which

resulted in a high percentage overshoot. Increasing the population size from design

three to four decreased the overshoot percentage. This indicates that a higher

search space requires a higher population size and computational resources to find

the optimal algorithm design.

Figure 4.2 shows the step response of the different algorithm designs.

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 92

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

S
te

p
R

es
po

ns
e

input
A

D1

A
D2

A
D3

A
D4

(a) Steady-state response

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

Time (s)

0.9

0.95

1

1.05

S
te

p
R

es
po

ns
e

input
AD1

AD2

AD3

AD4

(b) Zoomed-in view of Figure 4.2a showing the transient response

Figure 4.2: The step response of the algorithm designs for the TLBO

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 93

Figure 4.2a indicates that all the algorithm designs follow the commanded input

within the required time of 1.5 seconds. However, 4.2b illustrates the high Mp

given by algorithm design three and four, as mentioned previously. The most

favourable step response behaviour is algorithm design two, as seen in Figure 4.2b.

Table 4.2 shows that this design resulted in the lowest settling time and percentage

overshoot while maintaining a reasonably low rise time.

The process of choosing which algorithm design is best suited requires the results

to be analysed collectively for the decision to be made. This is because there

will not be a clear outstanding result, but a good compromise of the different

performance requirements can be obtained. For example, a short rise time usually

comes with a higher overshoot, and a small overshoot is accompanied by a longer

settling time. Thus it imperative to collectively observe the results.

The fitness function described in Section 3.3.2 places emphasis on reducing the

ISE value with its weight being 60%, and the ITAE weight being 40%. The ISE

value is given a higher weight because of its ability to reduce rise time because it

is important for this application to show a quick response. This is why a solution

like the one produced by algorithm design four, though has a high percentage

overshoot, is considered a good quality solution because it contains the lowest rise

time and gives the lowest fitness value.

The increase in population size from algorithm design three to four resulted in

a decrease in percentage overshoot. However, the decrease in this overshoot is

not comparable to the low overshoot given by algorithm design one and two. This

indicates that for the higher search space bound in the algorithm designs three and

four, a suitable solution could be found with a higher population size. This means

that a suitable solution requires a larger number of fitness function evaluations

and computational resources.

Algorithm design two displays the most favourable response in comparison to the

other algorithm designs. The difference between algorithm design one and two is

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 94

the higher population size which means higher fitness function evaluations. Algo-

rithm design two displays an improvement of results from algorithm one; however,

one must reflect on whether this is worth the increase in the computational cost.

Given the limited resources that this study has, choosing the appropriate design

for this context is essential. Though algorithm design four resulted in the lowest

fitness value, algorithm design two (which was the algorithm design that had a

population number of 60 and a search space of 100) gives the most favourable

response and a good compromise for the opposing requirements. Thus this design

was chosen as the best performing.

4.3 Dynamic and Static Flower Pollination Algorithm Re-
sults

Table 4.3: Descriptive statistical results for the FPA for the first problem
instance

Algorithm Type AD Best Mean Max Std dev % Av over best sln % Max over best sln

Static FPA

1 34.7419 35.3164 35.7037 0.4144 1.654 2.768
2 34.7207 34.7680 34.8546 0.06130 0.1363 0.3856
3 34.7934 35.6921 37.013 0.9541 2.583 6.379
4 34.4621 34.4678 34.4713 0.004084 0.01663 0.02670

Dynamic FPA

1 34.9104 35.0569 35.1935 0.1158 0.4196 0.8109
2 34.7202 34.7257 34.729 0.003915 0.01584 0.02534
3 34.4853 34.5036 34.5137 0.01294 0.05297 0.08235
4 34.4365 34.4446 34.4575 0.009238 0.02342 0.0610

Table 4.3 shows that the algorithm design displaying the lowest fitness value

(shown in bold) is algorithm design four for both the static and dynamic FPA.

The lowest mean fitness value from the algorithm variations is the dynamic FPA

with a fitness value of 34.4446.

Table 4.3 also shows that the average and maximum percentage over the best

solution for the static FPA is higher than that of the dynamic FPA, for all the

algorithm designs besides algorithm design four. This means that the static FPA,

for the most part, produces a larger solution diversity in comparison to the dynamic

FPA. This shows the effect of the switch probability since the static FPA keeps this

probability at 0.8 (80%), which gives global pollination an advantage and allows for

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 95

diversity. In contrast, the dynamic FPA changes this switch probability to increase

the likelihood of local pollination to occur and the fine-tuning of solutions in later

iterations.

Since the dynamic FPA results in the lowest fitness value, this means that the

problem prefers the dynamic FPA and benefits from fine-tuning and exploitation

in later iterations rather than a constant higher probability of global pollination

throughout all iterations. This is aligned with the conclusions obtained by Ozsoy-

dan, and Baykasoglu [77] who when testing different methods of implementing the

switch probability on well-known unconstrained function minimisation problems,

found that they should perform exploitation at later iterations. Because this prob-

lem benefits from this, this means that small changes in the solutions within the

same region can increase performance rather than changing the region entirely.

Table 4.4 shows that the PI controller with an N coefficient is the solution both the

static and dynamic FPA algorithm produced for all the algorithm designs, except

for algorithm design three. Since the derivative controller is zero for the algorithm

designs besides algorithm design three, the N coefficient for those particular designs

makes no difference in the performance. The PI controller solution means that

the system does not need additional damping and that it is sufficiently damped

because the purpose of the D controller is to reduce overshoot and oscillations, i.e.

increasing damping.

Table 4.4: Time-domain results for the FPA for the first problem instance

Static FPA

AD Mean Fitness Kp K i Kd N tR (s) tS (s) Mp% tc(s)
1 35.3164 92.709 45.725 0 17.142 0.0261 0.0393 0.0327 2723.10
2 34.7680 98.551 46.868 0 53.923 0.0258 0.038 0.0375 3361.03
3 35.6921 280.80 38.765 32.170 41.389 0.172 0.424 0.2308 1144.82
4 34.4678 269.84 48.041 0 67.333 0.0250 0.0454 2.9912 2950.97

Dynamic FPA

1 35.0569 94.031 44.599 0 58.756 0.0260 0.0390 0.0278 2208.62
2 34.7257 99.210 46.390 0 50.734 0.0257 0.0378 0.0355 3316.39
3 34.5036 463.491 48.279 0.0250 0.0619 0.0250 0.0619 4.7349 2092.01
4 34.4446 322.725 49.776 0 69.509 0.0250 0.0521 3.6999 7124.08

For algorithm design three, there is a derivative controller for both the static and

dynamic FPA, and thus this design gives a PIDN solution. Algorithm design

three consists of the larger search space limit with the smaller population size.

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 96

Because of this, the solutions are more likely to display a higher diversity. This is

why algorithm design three resulted in a derivative controller. When the design

changed from three to four, i.e. when the population size increased, this resulted

in a solution without the derivative controller.

How the changes in the PIDN controller gains affect the fitness value is shown

in Figure 4.3, where the prefix D and S represent the dynamic and static FPA

results, respectively.

1 2 3 4

Algorithm Design
0

50

100

150

200

250

Va
lu

e

Kp
Ki
Kd
N
S-Fitness

(a) Static FPA

1 2 3 4

Algorithm Design
0

100

200

300

400

Va
lu

e

Kp
Ki
Kd
N
D-Fitness

(b) Dynamic FPA

1 2 3 4

Algorithm Design
0

5

10

15

20

25

30

35

Fi
tn

es
s V

al
ue

S-Fitness
D-Fitness

(c) Comparison of fitness value

1 2 3 4

Algorithm Design
0

1

2

3

4

Ti
m

e
Do

m
ai

n
Re

su
lts

S-tr
S-ts
S-Mp
D-tr
D-ts
D-Mp

(d) Comparison of time-domain results

Figure 4.3: Bar graph showing the solution and fitness values for each algo-
rithm design for the static and dynamic FPA

The changes in the proportional gain are similar to the changes observed in the

TLBO results, in that the proportional gain greatly increases when the search

space bound is increased in algorithm design three, for the dynamic and static

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 97

FPA. This results in a lower rise time fitness value with the expense of a larger

overshoot.

What is different from the TLBO is the increase in fitness value for the static FPA

from algorithm design two to three. This is because of the derivative controller,

which was part of the solution produced by algorithm design three, as seen in

Table 4.4.

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 98

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

S
te

p
R

es
po

ns
e

input
S-A

D1

S-A
D2

S-A
D3

S-A
D4

D-A
D1

D-A
D2

D-A
D3

D-A
D4

(a) Steady-state Response

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time (s)

0.75

0.8

0.85

0.9

0.95

1

1.05

S
te

p
R

es
po

ns
e

input
S-AD1

S-AD2

S-AD3

S-AD4

D-AD1

D-AD2

D-AD3

D-AD4

(b) Zoomed in view of 4.4a showing the transient response

Figure 4.4: The step response of the algorithm designs for the static and
dynamic FPA

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 99

The step response shown in Figure 4.4 illustrates the high percentage overshoot

shown by the algorithm designs four for the static FPA and design three and four

for the dynamic FPA.

Algorithm design three for the static FPA shows a different behavioural step re-

sponse in comparison to the other step response behaviours. The difference in the

solution for this design is the relatively large derivative controller value coupled

with a relatively large filter coefficient. A large derivative allows for noise to enter

the system, hence the need for a filter coefficient. However, a large filter coeffi-

cient means a large cut-off frequency as the filter coefficient informs the cut-off

frequency. This means that a large cut-off frequency allows for more noise to enter

the system which is shown in this response. The PIDN gain solutions obtained

from design three of the static FPA show a response with noise throughout the

1.5 seconds in Figure 4.4. This may be due to the higher cut-off frequency value,

which allows for high-frequency noise.

When observing Figure 4.4a, algorithm design one and two gave favourable and

similar step response behaviour, for both the static and dynamic FPA. The effect of

population size is seen when comparing algorithm design one to two, and algorithm

design three to four. Table 4.4 shows that algorithm design two resulted in the

lowest fitness value for both the static and dynamic FPA, and so did algorithm

design four. This confirms that at any search space limit, the algorithm design

with the higher population improves the performance.

The lowest mean fitness value when comparing the dynamic and static FPA, and

observing the algorithm design two is the dynamic FPA. The similarity between

the TLBO and the dynamic FPA is that they encourage exploitation as much they

do exploration, whereas the static FPA focuses more on the exploration.

The difference between the dynamic FPA and the TLBO is that the dynamic FPA

increases the probability of exploitation occurring in later iterations. In contrast,

the TLBO does not operate with probability but rather guarantees exploitation

in each iteration with the learner phase of the algorithm.

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 100

For algorithm design two, the dynamic FPA resulted in the lowest fitness value.

Thus, design two was chosen as the best performing, and this design, along with a

dynamic switch probability, was used in the algorithm comparison in Chapter 6.

4.4 Dynamic and Static Genetic Algorithm Results

Table 3.5 in Chapter 3, Section 3.2.1 illustrates the differences in the dynamic and

static GA. This table shows that along with comparing the quantitative param-

eters, such as the mutation rate and crossover probability, this experiment also

compares a qualitative parameter of the GA being the selection type. The static

GA is one that has a 100% probability of crossover, which means that this GA

favours exploitation rather than exploration. Also, the dynamic GA maintains a

certain level of diversity, which means that this GA favours exploration.

Algorithm design four gives the lowest fitness value for both the static and dynamic

GA, as seen in Table 4.5, with the static GA giving the lowest fitness value. The

highest maximum over best solution percentage is given by algorithm design one

for both the static and dynamic GA, with the highest being the dynamic GA

at 1.65%. This is expected as the dynamic GA allows for maintenance of high

diversity individuals, and thus would be the algorithm with the higher range in

performance.

The corresponding solutions and time domain responses for the mean fitness values

shown in Table 4.6 further illustrate that the lowest rise times, which were obtained

by algorithm design four for the static GA and algorithm design three and four for

the dynamic GA, are coupled with a relatively large percentage overshoot. This

reflects how the fitness function was weighted.

The difference in the GA solutions compared to the FPA solutions discussed in

Section 4.3, is that the GA solutions contain the full PIDN controllers and not

only the PI controller. This indicates that this application could be multi-modal

and the GA has been able to locate other regions within the search space, which

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 101

Table 4.5: Descriptive statistical results for the GA for the first problem
instance

Ad Best Mean Max Std Dev % Av over best sln % Max over best sln

Static GA

1 34.6685 34.8308 35.108 0.1969 0.4682 1.268
2 34.6238 34.6730 34.7143 0.03736 0.1420 0.2614
3 34.4337 34.4861 34.552 0.04922 0.1523 0.3436
4 34.4213 34.4354 34.4635 0.01989 0.04087 0.1226

Dynamic GA

1 34.7719 34.9649 35.346 0.2695 0.5550 1.651
2 34.7046 34.7191 34.7404 0.01537 0.04188 0.1032
3 34.4498 34.6076 34.7876 0.1388 0.4580 0.9806
4 34.4284 34.5078 34.6351 0.09095 0.2305 0.6004

Table 4.6: Time-domain results for the GA for the first problem instance

Static GA

Ad Mean Fitness Kp K i Kd N tR (s) tS (s) Mp (%) tc(s)
1 34.8308 96.194 44.240 6.428 12.316 0.0257 0.239 0.0987 932.11
2 34.6730 95.787 51.150 33.586 7.382 0.0252 0.680 0.0222 2765.62
3 34.4861 342.763 56.735 36.674 32.442 0.147 0.401 0.200 1117.40
4 34.4354 234.309 54.873 94.169 0.263 0.0250 0.0436 2.799 2827.08

Dynamic GA

1 34.9649 97.624 43.775 2.180 3.716 0.0256 0.0379 0.0267 954.69
2 34.7191 98.634 46.065 0.67976 3.4715 0.0257 0.0379 0.0269 3455.12
3 34.6076 413.701 50.9061 5.5924 2.4306 0.0250 0.0597 4.5017 977.71
4 34.5078 409.622 50.102 3.8476 25.643 0.0250 0.0757 0.0983 7709.43

can produce quality results which are different from the solutions produced by the

FPA.

Figure 4.5a and 4.5b indicate the rise in the proportional gain controller from

algorithm design 2 to algorithm design three, as seen in the TLBO and FPA

results. Figure 4.5c shows the decrease in fitness value, which has been seen in

both the dynamic and static GA.

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 102

1 2 3 4

Algorithm Design
0

50

100

150

200

250

300

350
Va

lu
e

Kp
Ki
Kd
N
S-Fitness

(a) Static GA

1 2 3 4

Algorithm Design
0

50

100

150

200

250

300

350

400

Va
lu

e

Kp
Ki
Kd
N
D-Fitness

(b) Dynamic GA

1 2 3 4

Algorithm Design
0

5

10

15

20

25

30

35

Fi
tn

es
s V

al
ue

D-Fitness
S-Fitness

(c) Change of fitness value

1 2 3 4

Algorithm Design
0

1

2

3

4

Ti
m

e
Do

m
ai

n
Re

su
lts

S-tr
S-ts
S-Mp
D-tr
D-ts
D-Mp

(d) Change of time domain results

Figure 4.5: Bar graph showing the solution and fitness values for each algo-
rithm design for the static and dynamic GA

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 103

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2
S

te
p

R
es

po
ns

e
input
S-A

D1

S-A
D2

S-A
D3

S-A
D4

D-A
D1

D-A
D2

D-A
D3

D-A
D4

(a) Steady-state response

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

S
te

p
R

es
po

ns
e

input
S-AD1

S-AD2

S-AD3

S-AD4

D-AD1

D-AD2

D-AD3

D-AD4

(b) Transient response

Figure 4.6: The step response of the algorithm designs for the static and
dynamic GA

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 104

The most favourable response is algorithm design one and two of the dynamic GA

shown in Figure 4.6. These solutions contained relatively low derivative controllers,

which effectively is a PI controller, as seen in Table 4.6. A larger overshoot is seen

by algorithm design three for the dynamic GA and algorithm design four for the

static GA. The static GA response shows a similar response to the static FPA

when both algorithms were using algorithm design three parameters. The PID

solutions to these responses are also very similar, with the filter co-efficient and

derivative controller gain both being large in value simultaneously. This confirms

that this behaviour is because of the noise that the larger derivative gain and large

filter coefficient allow. Other algorithm designs resulted in a behaviour indicating

a longer settling time, as seen in Figure 4.6. Table 4.6 also shows that even though

the proportional gain can be high, increasing the derivative controller decreases

potential overshoot, but with the expense of increasing settling time.

This is why the static GA, though gives the lowest fitness value, was not chosen

to be used as it displays the long settling time. The dynamic GA, with the motive

of constantly maintaining diversity in the algorithm, obtains favourable behaviour

by making use of algorithm design one and two, with algorithm design two being

most favourable and thus this algorithm design was chosen.

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 105

4.5 Concluding Remarks

This section describes the conclusions obtained and suggestions derived from the

results discussed above.

4.5.1 Conclusions

The following conclusions are made:

• In this instance, since the fitness function favoured a shorter rise time, so-

lutions with the shortest rise time, though contained large overshoots and

longer settling times, were considered to be good by the fitness function

since this resulted in the lowest fitness value. However, these solutions did

not produce favourable step responses due to their overshoot and settling

time. The algorithm designs with the most favourable step responses and

the best compromise of the different objectives were chosen.

• There is an important relationship between the search space limit and the

population size. A larger search space upper bound can be beneficial if there

is a larger population to explore the search space fully. A large search space

is not beneficial if there are not enough population members to explore it.

Thus, if there are limited computational resources (i.e. population size),

instead choose the limited search space upper bound which still suits the

application.

• When observing the fitness value as a form of performance measure, the

dynamic FPA, which encourages exploitation, gave the lowest fitness value

in this problem when compared to the static FPA. The static GA, which

also allows for exploitation, gave the lowest fitness value in comparison to

the dynamic GA. This means that this problem, with this fitness function,

preferred algorithms which implement a higher probability of intensification

as well, rather than those that favoured diversification. The importance of

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 106

fine-tuning solutions rather than constantly looking for other solutions in

different search space regions is shown here. This also indicates that the

problem is not multi-modal, and thus the algorithm must be able to focus

on a specific region of the search space.

• Algorithm design two resulted in the most suitable step response with a rea-

sonable compromise between the requirements for all the algorithms. This

means that when observing all the requirements (i.e. fitness function value

and favourable response), algorithm design two resulted in the best per-

forming. This means that the algorithms applied in this problem instance

performed best with a higher population size of 60 but limited search space

bound of 100.

4.5.2 Suggestions for Future Practitioners

From these conclusions, some considerations or suggestions can be drawn for future

meta-heuristic algorithm practitioners when tackling this kind of problem with

these kinds of algorithms:

1. If the application requires a fast rise time (this translates to an increase in

the weight of the objective which applies to rise time in the fitness function),

ensure that the maximum number of population members are used while

limiting the search space. Limiting the search space creates a constraint for

settling time and overshoot, while the higher population members ensure the

search space is fully explored to find a solution which gives the fastest rise

time.

2. Ensure that the algorithm-specific parameters chosen give a higher proba-

bility for exploitation in later iterations as this problem favoured that.

3. The static GA gave the lowest fitness value but was not chosen as the best

performing because of the settling time. The settling time was present be-

cause of the high derivative controller value. Since the best solutions for all

Chapter 4. Parameter Design Considerations for Meta-Heuristic Algorithms 107

the algorithms resulted in high PI controller gains. But with low derivative

controller gains or filter coefficients, it would be good to reduce the search

space upper bound of the derivative controller to something less than that

of the other controller gains (i.e. less than 100) so that this may increase

the number of viable solutions in the search space.

CHAPTER 5

Robustness Investigation of Nature-Inspired

Meta-Heuristic Algorithms

This chapter determines which problem instances affect the common and algorithm-

specific parameters of the algorithm, and thus the system performance. The ro-

bustness analysis refers to whether the algorithms can perform well with changing

problem instances, and if there is a need to change the algorithm parameters to

suit the problem.

The chapter begins by stating the research questions which are relevant for these

experiments. It continues to describe and discuss the results obtained from the

three algorithms on the two different problem instances. The chapter then ends

with some concluding remarks.

5.1 Research Questions

The relevant research questions for this study are as follows:

1. Can the algorithms perform when presented with a different input and added

non-linearity in the problem?

2. Do the common and algorithm-specific parameters affect the performance of

the algorithms in these problem instances?

108

Chapter 5. Robustness of Meta-Heuristic Algorithms 109

5.2 Dynamic Input

This problem instance is described as the target of interest moving at a constant

acceleration, thus an increasing velocity. This movement is modelled as a ramp

input where the gimbal LOS rate tries to follow the commanded input. The three

algorithms were tested on this problem instance, with changing the algorithm

designs from one to four.

5.2.1 Parameterless Teaching Learning Based Optimiza-

tion Results

Table 5.1 shows that algorithm design four obtained the lowest fitness value.

Table 5.1: Descriptive statistical results for the TLBO for the second problem
instance

Ad Best Mean Max Std Dev % increase from % increase from
av to max best to max

1 5.8445 5.8688 5.8858 0.01761 0.4152 0.7066
2 5.8001 5.8217 5.8466 0.01913 0.3718 0.8017
3 1.7782 1.7817 1.7876 0.004196 0.1968 0.5286
4 1.7603 1.7662 1.7719 0.004738 0.3352 0.6590

The table also shows that there is also not a vast range of solutions, with the

standard deviation not exceeding 0.02 and the maximum percentage over the best

solution not exceeding 0.9%.

Table 5.2 shows the average solutions obtained from each algorithm design, and

the computational time used to obtain these results. Since this is a ramp input

design, time-domain results cannot be utilised to access performance as these are

only applicable to step inputs.

The results shown in Table 5.2 are different from the results observed in Table 4.2

with regards to the PIDN controller gains produced. Table 5.2 shows that the

TLBO, in this problem instance, produced a PIDN controller with the larger

integral controller solutions producing smaller fitness values.

Chapter 5. Robustness of Meta-Heuristic Algorithms 110

Table 5.2: PIDN solution results for the TLBO for the second problem in-
stance

AD Mean Fitness Kp K i Kd N tc(s)
1 5.8688 55.590 55.485 13.416 98.672 1214.84
2 5.8217 55.253 56.989 13.282 99.816 6313.58
3 1.7817 20.638 500 1.5931 15.883 984.45
4 1.7662 16.546 499.73 3.7085 58.287 2939.56

Table 5.2 also shows that the increase in population size from algorithm design 1

and 2 resulted in a high increase in the computational time without a significant

decrease in the fitness value. However, when changing the search space bound to

the higher value from algorithm design 2 to 3, this caused a significant decrease

in the fitness value. This is due to the high increase in the integral controller gain

with a lowered proportional and derivative gain, respectively.

Figure 5.1 confirms that the large integral gain from algorithm design 2 to 3 has

significantly dropped the fitness value.

1 2 3 4

Algorithm Design
0

100

200

300

400

500

Va
lu

e

Kp
Ki
Kd
N
Av Fitness

(a) Solution Values

1 2 3 4

Algorithm Design
0

1

2

3

4

5

6

Fi
tn

es
s V

al
ue

Av Fitness

(b) Fitness Values

Figure 5.1: Bar graph showing the solution and fitness values for each algo-
rithm design for TLBO on the control system on the second problem instance

.

Chapter 5. Robustness of Meta-Heuristic Algorithms 111

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
S

te
p

R
es

po
ns

e
input
A

D1

A
D2

A
D3

A
D4

(a) Steady State Response

0.3285 0.329 0.3295 0.33 0.3305 0.331 0.3315 0.332 0.3325

Time (s)

0.325

0.33

0.335

0.34

S
te

p
R

es
po

ns
e

input
A

D1

A
D2

A
D3

A
D4

(b) Close Up of Figure 5.2a

Figure 5.2: The ramp response of the algorithm designs for the TLBO

This integral gain has improved ramp performance behaviour, as seen in Figure 5.2.

Figure 5.2b shows that algorithm design one and two resulted in an oscillation

around the input, whereas algorithm design three and four were able to track

commanded input without the oscillation. This gives reason as to why the fitness

value for algorithm design three and four has decreased in comparison to algorithm

design one and two.

The proportional controller functions by observing the error term between the

commanded input and output and attempts to reduce this error proportionally.

Since this is a ramp input and not a step input, the error difference at the beginning

of the simulation is zero as both input and output begin at zero. This is why there

is no requirement for a high proportional gain. The integral controller is used to

sum the error term over time to reduce the steady-state error. Algorithm design

one and two followed the ramp input, but oscillating around it and causing a high

steady-state error. The increase in the integral gain reduced this steady-state error

which resulted in a decreased fitness value.

However, the question is whether the decrease in the fitness value was a result of

solely increasing the integral gain, or the combination of increasing the integral

gain and decreasing the proportional, derivative, and filter coefficient value. In

other words, would the performance be similar if the ratio between the PIDN

Chapter 5. Robustness of Meta-Heuristic Algorithms 112

values for algorithm design one and two were the same as the ratio between these

values for algorithm design three and four, even though the actual values are not

the same? Obtaining similar ratio’s between these algorithm designs would mean

increasing the integral gain and decreasing the other controller gains.

Upon investigation, it was found that the ratio’s between the controller gains are

important, and there are solutions which could have decreased the oscillations in

the performance within the search space bounds of 100, i.e. using algorithm design

one or two. However, these solutions result in a higher fitness value because they

have a large steady-state error which accumulates to a larger fitness value than

the oscillations. This means that the ratio’s of the controller gains, as well as the

actual controller gain values, are important in improving the system.

Since this experiment resulted in algorithm design four performing best with the

lowest fitness value and best response behaviour, this means that the algorithm

design must change from algorithm design two to algorithm design four when the

input changes from a unit step to a unit ramp for the TLBO. This shows that to

achieve optimal performance, the parameters of the algorithm must change to suit

the problem instance. The difference between algorithm design two and four is the

search space bound since the population size is the same. This problem instance

required a larger search space bound because of the large integral value.

5.2.2 Dynamic and Static Flower Pollination Algorithm

Results

Table 5.3 shows the descriptive results of the FPA for the ramp input. The main

difference in these results in comparison to the TLBO is the FPA illustrating a

higher range of solutions in some algorithm designs, such as in algorithm design

three having a maximum over best solution percentage of 113.52% for the static

FPA, and algorithm design three having a maximum over best solution percentage

of 137.93% for the dynamic FPA.

Chapter 5. Robustness of Meta-Heuristic Algorithms 113

Table 5.3: Descriptive statistical results of the fitness value for the FPA for
the second problem instance

AD Best Mean Max Std Dev % increase from % increase from
best to mean best to max

Static FPA

1 5.9893 6.0283 6.067 0.03172 0.6517 1.297
2 5.9434 5.9586 5.9702 0.01122 0.2552 0.4509
3 1.7912 2.5121 3.8246 0.9296 40.2468 113.5217
4 1.9285 2.0599 2.3004 0.1703 6.8153 19.2844

Dynamic FPA

1 5.9841 6.0467 6.1432 0.0693 1.046 2.659
2 5.8848 5.9151 5.9502 0.0269 0.5143 1.1113
3 1.8479 2.7479 4.3967 1.1675 48.706 137.93
4 1.8959 1.9352 1.9893 0.03955 2.0711 4.926

The lowest mean fitness values were obtained using algorithm design four for both

the static and dynamic FPA, with the lowest of the two being obtained using

the dynamic FPA. Table 5.4 shows the mean resulting in PIDN solutions and

corresponding computational time.

Table 5.4: Time domain results for the FPA for the second problem instance

Static FPA

AD Mean Fitness Kp K i Kd N tc(s)
1 6.0283 40.1764 81.8759 18.885 73.44 1524.62
2 5.9586 63.2204 62.4606 14.018 92.984 4770.29
3 2.5121 35.5488 439.103 0 89.712 1326.10
4 2.0599 23.6209 499.912 0.7366 50.310 4708.81

Dynamic FPA

1 6.0467 21.6075 50.2750 18.4842 70.8343 2245.45
2 5.9151 45.8924 67.3278 15.434 86.261 34128.27
3 2.7479 184.644 500 0 89.077 1096.75
4 1.9352 28.435 500 0 94.729 3246.95

Similar output to the one produced by the TLBO results on Section 5.2.1 shows

that from algorithm design two to three shows a significant increase in the integral

controller gain value and a decrease in the proportional and derivative controller

gains. The resulting solution shows a PI controller for algorithm design three and

four, which is different from the TLBO results, which showed a PIDN controller

output. The increase in the integral gain is evident in Figure 5.3.

Chapter 5. Robustness of Meta-Heuristic Algorithms 114

1 2 3 4

Algorithm Design
0

100

200

300

400

500
Va

lu
e

Kp
Ki
Kd
N
S-Fitness

(a) Static FPA

1 2 3 4

Algorithm Design
0

100

200

300

400

500

Va
lu

e

Kp
Ki
Kd
N
D-Fitness

(b) Dynamic FPA

Figure 5.3: Bar graph showing the solution and fitness values for each algo-
rithm design for static and dynamic FPA on the second problem instance

1 2 3 4

Algorithm Design
0

1

2

3

4

5

6

Fi
tn

es
s V

al
ue

S-Fitness
D-Fitness

Figure 5.4: Bar graph showing the fitness values for each algorithm design for
FPA on the second problem instance

The fitness value decreases for each algorithm design, as shown in Figure 5.3, with

the lowest being on algorithm design four for both the static and dynamic FPA.

The dynamic FPA obtains the lowest of the two algorithms. The behaviour of

the algorithms follow the commanded input, but some algorithm designs show

an oscillating response, as seen in Figure 5.5b. These are algorithm designs one

and two for both the static and dynamic FPA. The algorithm showing the best

Chapter 5. Robustness of Meta-Heuristic Algorithms 115

behaviour would be algorithm design three from the dynamic FPA since it resulted

in following the commanded input the closest and fastest.

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
te

p
R

es
po

ns
e

input
S-A

D1

S-A
D2

S-A
D3

S-A
D4

D-A
D1

D-A
D2

D-A
D3

D-A
D4

(a) Steady-state response

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

Time (s)

0

0.05

0.1

0.15

0.2

0.25

S
te

p
R

es
po

ns
e

input
S-A

D1

S-A
D2

S-A
D3

S-A
D4

D-A
D1

D-A
D2

D-A
D3

D-A
D4

(b) Zoomed-in view of Figure 5.5a

Figure 5.5: The ramp response of the algorithm designs for the FPA

Since this problem favoured the dynamic FPA instead of the static FPA, it may

be that this problem is not multi-modal and thus requires fine-tuning of a specific

region in the search space rather than searching for other regions in the search

space. Also, the increase in the search space greatly reduced the fitness function

value. This problem instance may require a higher search space bound, which is

also what was found with the TLBO results.

5.2.3 Dynamic and Static Genetic Algorithm Results

Table 5.5 shows that the lowest fitness value was obtained by algorithm design

four for the static GA, and algorithm design three for the dynamic GA, with the

lowest of the two being the static GA. The highest standard deviation obtained was

by algorithm design one for the static GA with a value of 0.1118, and algorithm

design four for the Dynamic GA with a value of 0.3211.

Chapter 5. Robustness of Meta-Heuristic Algorithms 116

Table 5.5: Descriptive statistical results of the fitness value for the GA for
second problem instance

AD Best Mean Max Std Dev % increase from % increase from

best to mean best to max

Static GA

1 5.8788 6.0265 6.1493 0.1118 2.5130 4.6013

2 5.819 5.8851 5.9591 0.05747 1.1354 2.4076

3 1.7981 1.8645 1.95 0.06346 3.6946 8.4478

4 1.7851 1.8055 1.8297 0.01841 1.1409 2.4985

Dynamic GA

1 5.9386 6.0641 6.1784 0.09822 2.1139 4.0380

2 5.8286 5.8897 5.9499 0.04952 1.0477 2.0811

3 1.8052 1.9381 2.0947 0.1194 7.3602 16.0370

4 1.8499 2.0991 2.5525 0.3211 13.4728 37.9804

Table 5.6 shows the PIDN solutions from the different algorithm designs. This

table shows that both GA variations obtained PIDN solutions for all the algorithms

designs.

Table 5.6: Time-domain results for the GA for the second problem instance

Static GA

AD Mean Fitness Kp K i Kd N tc(s)

1 6.0265 46.6182 63.7817 27.2353 55.4945 1193.14

2 5.8851 73.2471 56.6878 17.4954 72.4885 3440.20

3 1.8645 11.6549 487.486 2.56039 6.05713 2189.95

4 1.8055 14.5861 493.192 17.5416 1.96974 3926.19

Dynamic GA

1 6.0641 52.4165 65.0099 35.1302 44.8876 1159.19

2 5.8897 91.6233 95.4977 17.2062 74.87 3610.61

3 1.9381 17.9465 489.75 3.5627 14.71 1042.06

4 2.0991 14.2973 495.80 13.0905 3.240 5218.73

Algorithm designs three and four both resulted in a higher integral gain and rela-

tively low proportional and derivative gain, similar to what was observed for the

FPA and TLBO results. The change in integral gain is also observed in Figure 5.6

for both variations of the GA.

Chapter 5. Robustness of Meta-Heuristic Algorithms 117

1 2 3 4

Algorithm Design
0

100

200

300

400

500
Va

lu
e

Kp
Ki
Kd
N
S-Fitness

(a) Static GA

1 2 3 4

Algorithm Design
0

100

200

300

400

500

Va
lu

e

Kp
Ki
Kd
N
D-Fitness

(b) Dynamic GA

Figure 5.6: Bar graph showing the solution and fitness values for each algo-
rithm design for GA on the second problem instance

The algorithm that resulted in the lowest fitness value for all the algorithm designs

is indeed the static GA, as shown in Figure 5.7.

1 2 3 4

Algorithm Design
0

1

2

3

4

5

6

Fi
tn

es
s V

al
ue

S-Fitness
D-Fitness

Figure 5.7: Bar graph showing the change of fitness value with changing
algorithm design for the GA algorithm on the second problem instance

The ramp response in Figure 5.8 gives the same trend in that the algorithm designs

one and two provide oscillatory responses. Though algorithm design three for the

dynamic GA resulted in tracking the commanded input appropriately, this result

also displayed small oscillations, as seen in Figure 5.8. This is because of the

Chapter 5. Robustness of Meta-Heuristic Algorithms 118

higher proportional gain seen on algorithm design three as compared to four for

the dynamic GA.

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
te

p
R

es
po

ns
e

input
S-A

D1

S-A
D2

S-A
D3

S-A
D4

D-A
D1

D-A
D2

D-A
D3

D-A
D4

(a) Steady-state response

0.294 0.296 0.298 0.3 0.302 0.304 0.306 0.308 0.31 0.312 0.314

Time (s)

0.296

0.298

0.3

0.302

0.304

0.306

0.308

0.31

0.312

0.314

0.316

S
te

p
R

es
po

ns
e

input
S-A

D1

S-A
D2

S-A
D3

S-A
D4

D-A
D1

D-A
D2

D-A
D3

D-A
D4

(b) Zoom-in of Figure 5.8a

Figure 5.8: The ramp response of the algorithm designs for the GA

Because of this, the static GA is most appropriate for this instance, as opposed to

the dynamic GA. The static GA also resulted in the lowest fitness value obtained.

This is a similar result obtained by the FPA results shown on Section 5.2.2 as this

section also favoured the algorithm-specific parameters which show more exploita-

tion rather than exploration, as seen by the static GA. Algorithm design four has

been observed to be the best performing since this resulted in the lowest fitness

value and appropriate ramp response behaviour.

This further confirms that the problem is not multi-modal, and the optimal solu-

tion is found in one region. This is why this problem benefits from fine-tuning the

solution rather than exploring other regions. This also means that the algorithm

was capable of obtaining the optimal region in the search space, as fine-tuning will

only be beneficial when the optimal region is found.

Chapter 5. Robustness of Meta-Heuristic Algorithms 119

5.3 Additional Non-Linearities

This problem instance for this experiment is described as the target of interest

moving at a constant velocity modelled as a step input, but with additional non-

linearity including base motion and friction. The three algorithms were tested on

this problem instance, with changing the algorithm designs from one to four.

5.3.1 Parameterless Teaching Learning Based Optimiza-

tion Results

Table 5.7 shows that the TLBO maintains its robustness with the maximum per-

centage over the best solution, not exceeding 0.4%. The lower this percentage

is, the higher the probability of achieving the same or similar solution after each

independent run, and the more robust the algorithm is, by this measure.

Table 5.7: Descriptive statistical results for the TLBO for the last problem
instance

Ad Best Mean Max Std Dev % Av over best sln % Max over best sln
1 32.6425 32.6858 32.757 0.05072 0.1328 0.3508
2 32.6297 32.6304 32.6317 0.000899 0.002247 0.006129
3 32.6945 32.717 32.7392 0.01825 0.06882 0.1367
4 32.6267 32.6669 32.6932 0.02889 0.1233 0.2038

Table 5.8: Time-domain results for the TLBO for the last problem instance

AD Mean Fitness Kp K i Kd N tR (s) tS (s) Mp % tc(s)
1 32.69 0.02926 0.001432 2.7849 9.4272 0.4696 1.4391 3.4600 1250.69
2 32.63 0 0 2.77 9.53 0.4742 1.4387 3.4433 3607.96
3 32.72 0 0 2.7228 10.0261 0.4856 1.4372 3.3897 1166.06
4 32.67 0 0 2.8121 9.3537 0.4663 1.4391 3.4608 3489.32

What is interesting to note is that the solutions in Table 5.8 mostly show that the

control system is comprised of the derivative controller and filter coefficient, i.e. a

DN solution, except for algorithm design one. The lowest fitness value is achieved

Chapter 5. Robustness of Meta-Heuristic Algorithms 120

by algorithm design two, with a fitness value of 32.63. Figure 5.9b also illustrates

this.

1 2 3 4
Algorithm Design

0

5

10

15

20

25

30

Va
lu

e

Kp
Ki
Kd
N
Av Fitness

(a) Solution values

1 2 3 4

Algorithm Design
0

5

10

15

20

25

30

Fi
tn

es
s V

al
ue

Av Fitness

(b) Fitness values

Figure 5.9: Bar graph showing the solution and fitness values for each algo-
rithm design for TLBO on the last problem instance

Figure 5.10 illustrates the time domain response and shows that the change in al-

gorithm design did not make a significant difference in response. The step response

in Figure 5.11 confirms that the behaviour of the solutions for all the algorithm

designs is similar.

1 2 3 4

Algorithm Design
0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
Do

m
ai

n
Re

su
lts

tr
ts
Mp

Figure 5.10: Bar graph showing the time domain responses with changing
algorithm design for the TLBO on the last problem instance

This step response also shows that the solutions were not able to overcome the

torque disturbance produced by added non-linearity in the system.

Chapter 5. Robustness of Meta-Heuristic Algorithms 121

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

S
te

p
R

es
po

ns
e

input
A

D1

A
D2

A
D3

A
D4

Figure 5.11: The step response of the algorithm designs for the TLBO on the
last problem instance

This indicates that either the optimal solutions are not present in the search space

are not present at all, or that the algorithm was not capable of finding these

solutions.

Removing the voltage limit in the control system resulted in a significant improve-

ment in the results, as shown in Figure 5.12. This result was obtained using the

algorithm design two since it was chosen as the best fitting for the step response

study in the first problem instance experiments. Since this problem instance re-

quires a higher voltage for the system to perform, it means it requires a higher

motor torque order overcome the disturbance torque.

Chapter 5. Robustness of Meta-Heuristic Algorithms 122

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

S
te

p
R

es
po

ns
e

Figure 5.12: The step response showing the TLBO algorithm without the
voltage constraint of the motor

The required torque can be achieved by choosing a different motor which satisfies

these requirements. However, a larger motor which has a larger voltage limit also

comes with its disadvantages such as increased size and weight of that motor which

inevitably increases the size and weight of the system.

Another solution is to input gears into the system so that this increases the torque

output the gimbal. However, there are disadvantages to inputting gears such as

reaction torques from a geared actuator which causes torque disturbance [12].

Hilkert [12] states that gearing arrangements are highly likely to introduce addi-

tional friction and torsional resonances in the system, which is why the direct drive

was chosen for this system. Also, increasing the torque results in decreasing the

velocity, which then means that the gimbal will respond slower to the commanded

input.

Chapter 5. Robustness of Meta-Heuristic Algorithms 123

5.3.2 Dynamic and Static Flower Pollination Algorithm

Results

Table 5.9: Descriptive statistical results for the FPA for the last problem
instance

Ad Best Mean Max Std Dev % Av over best sln % Max over best sln

Static FPA

1 33.586 37.2782 39.2475 2.6127 10.993 16.8567
2 35.2428 37.5304 38.698 1.6177 6.4911 9.8040
3 38.49 39.3525 39.8738 0.6143 2.2409 3.5952
4 39.6738 39.8154 40.0393 0.1602 0.3569 0.9213

Dynamic FPA

1 35.7665 37.8904 39.2142 1.5169 5.9381 9.6395
2 37.30 38.9643 38.9643 0.6845 4.4588 4.4588
3 38.8103 40.1025 40.1025 0.5373 3.3295 3.3295
4 38.6823 39.5351 39.5351 0.3483 2.2046 2.2046

Table 5.10: Time-domain results for the FPA for the last problem instance

Static FPA

AD Mean Fitness Kp K i Kd N tR (s) tS (s) Mp % tc(s)
1 37.28 54.77 5.151 6.424 23.920 0.1937 1.4460 3.7808 1524.62
2 37.53 24.38 0 11.76 19.88 0.3689 1.446 3.7939 3604.63
3 39.35 345.68 72.685 20.731 35.964 0.1683 1.4460 3.7756 1326.10
4 39.82 230.39 89.175 14.128 46.725 0.1785 1.4459 3.7747 4708.81

Dynamic FPA

1 37.8904 65.824 1.306 6.5731 26.775 0.1917 1.4460 3.7756 1355.88
2 38.9643 99.2391 5.03345 6.4573 28.143 0.1712 1.4459 3.7723 3496.21
3 40.1025 390.261 3.90398 40.6506 27.273 0.1853 1.4461 3.7870 1356.44
4 39.5351 499.960 10.2658 28.7254 32.559 0.1636 1.4459 3.7748 3634.05

The FPA descriptive fitness value solutions for this problem instance is shown

in Table 5.9, illustrating a higher range of solutions as compared to the TLBO,

shown in Table 5.7. The lowest fitness value was obtained by algorithm design

one for both the static and dynamic FPA, with the static FPA being the lowest.

Furthermore, the solutions are comprised of a PIDN controller shown in Table 5.10

rather than the DN solutions shown in Table 5.8 by the TLBO. Figure 5.13 shows

the increase in the proportional gain when the algorithm design changed from

two to three, which has not made a great impact on the fitness value shown in

Figure 5.14 and has increased the fitness value.

Chapter 5. Robustness of Meta-Heuristic Algorithms 124

1 2 3 4

Algorithm Design
0

50

100

150

200

250

300

350
Va

lu
e

Kp
Ki
Kd
N
S-Fitness

(a) Static FPA

1 2 3 4

Algorithm Design
0

100

200

300

400

500

Va
lu

e

Kp
Ki
Kd
N
D-Fitness

(b) Dynamic FPA

Figure 5.13: Bar graph showing the solution and fitness values for each algo-
rithm design for FPA and the last problem instance

The time-domain results have also remained relatively the same throughout the

algorithm designs, as shown in Figure 5.15.

1 2 3 4

Algorithm Design
0

5

10

15

20

25

30

35

40

 F
itn

es
s V

al
ue

S-Fitness
D-Fitness

Figure 5.14: Bar graph showing the change of fitness value with changing
algorithm design for the FPA algorithm on the last problem instance

Chapter 5. Robustness of Meta-Heuristic Algorithms 125

1 2 3 4

Algorithm Design
0

1

2

3

4

Ti
m

e
Do

m
ai

n
Re

su
lts

S-tr
S-ts
S-Mp
D-tr
D-ts
D-Mp

Figure 5.15: Bar graph showing the change of time-domain responses with
changing algorithm design for the static and dynamic FPA on the last problem

instance

The step response shown in Figure 5.16 shows a bigger range in behaviour as

compared to the TLBO, but still shows no real improvement or satisfactory per-

formance.

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

S
te

p
R

es
po

ns
e

input
S-A

D1

S-A
D2

S-A
D3

S-A
D4

D-A
D1

D-A
D2

D-A
D3

D-A
D4

Figure 5.16: The step response of the algorithm designs for the FPA with the
last problem instance

Chapter 5. Robustness of Meta-Heuristic Algorithms 126

This further indicates that the problem may not be the algorithm itself, but the

constraints of the control system and search space.

Figure 5.17 shows the result of the Dynamic FPA without a voltage limit, using

algorithm design two.

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
te

p
R

es
po

ns
e

Figure 5.17: The step response showing the Dynamic FPA algorithm without
the voltage constraint of the motor

Though this indicates a large overshoot, this can be reduced by decreasing the

proportional gain. Compared to 5.16, removing the voltage has increased perfor-

mance.

5.3.3 Dynamic and Static Genetic Algorithm Results

Table 5.11 showing the descriptive statistical results illustrates that the static

GA achieved the lowest fitness values, and the dynamic GA achieved the highest.

Table 5.12 shows that the algorithm which gave the lowest fitness value is the static

Chapter 5. Robustness of Meta-Heuristic Algorithms 127

Table 5.11: Descriptive statistical results for the GA on the last problem
instance

Algorithm Type AD Best Mean Max Std Dev % Av over best sln % Max over best sln

Static GA

1 34.8727 35.5638 36.6387 0.7704 1.982 5.064
2 34.2518 34.5305 34.7232 0.2018 0.8136 1.376
3 39.2131 39.3275 39.4161 0.08486 0.2917 0.5177
4 39.1988 39.3025 39.5019 0.1410 0.2645 0.7732

Dynamic GA

1 36.1146 36.7911 37.4648 0.5512 1.873 3.739
2 34.6821 35.5134 36.125 0.6092 2.3969 4.160
3 39.2968 39.4862 39.6646 0.1504 0.4821 0.9360
4 39.1272 39.1898 39.2219 0.04429 0.1601 0.2420

GA using algorithm design two. Algorithm design two gave the lowest mean fitness

value for both the static and dynamic GA.

Table 5.12: Time-domain results for the GA for the last problem instance

Static GA

AD Mean Fitness Kp K i Kd N tR (s) tS (s) Mp % tc(s)

1 35.56 3.5573 2.8851 3.8855 18.129 0.4726 1.4336 3.2872 1196.77

2 34.53 3.76 0.34 3.52 21.53 0.8299 1.4289 3.0935 3748.57

3 39.3 408.48 24.792 23.017 31.738 0.1621 1.4459 3.7735 1138.60

4 39.30 391.06 116.93 21.655 31.280 0.1585 1.4459 3.7734 3463.39

Dynamic GA

1 36.79 14.8797 0.8995 6.9688 31.4849 0.8099 1.4372 3.4158 1129.06

2 35.51 5.16 1.65 2.74 23.92 0.8168 1.4396 3.4989 3361.75

3 39.49 437.475 47.5729 27.8541 28.0786 0.1634 1.4460 3.7805 1130.83

4 39.19 330.992 24.2029 15.8751 36.1856 0.1591 1.4459 3.7709 3356.82

The GA also results in a full PIDN solution rather than the DN solution observed

by the TLBO algorithm.

Figure 5.18 shows a rise in the proportional gain value from algorithm design two

to three, which has resulted in a rise in the fitness value, as shown in Figure 5.19.

Chapter 5. Robustness of Meta-Heuristic Algorithms 128

1 2 3 4

Algorithm Design
0

50

100

150

200

250

300

350

400
Va

lu
e

Kp
Ki
Kd
N
S-Fitness

(a) Static GA

1 2 3 4

Algorithm Design
0

100

200

300

400

Va
lu

e

Kp
Ki
Kd
N
D-Fitness

(b) Dynamic GA

Figure 5.18: Bar graph showing the solution and fitness values for each algo-
rithm design for FPA on the last problem instance

This rise in proportional gain resulted in a decrease in the rise time for both the

static and dynamic GA but was accompanied by the rise in percentage overshoot,

as shown in Figure 5.20. The settling time has remained the same, which is the

duration of the simulation itself, being 1.5 seconds. This indicates that the signal

did not follow the input command within the time frame of 1.5 seconds.

1 2 3 4

Algorithm Design
0

5

10

15

20

25

30

35

40

Fi
tn

es
s V

al
ue

S-Fitness
D-Fitness

Figure 5.19: The change of fitness value with changing algorithm design for
the static and dynamic GA on the last problem instance

Chapter 5. Robustness of Meta-Heuristic Algorithms 129

1 2 3 4

Algorithm Design
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
Do

m
ai

n
Re

su
lts

S-tr
S-ts
S-Mp
D-tr
D-ts
D-Mp

Figure 5.20: The change of the time domain responses with changing algo-
rithm design for the static and dynamic GA algorithm on the last problem

instance

The step response of the algorithms is shown in Figure 5.21. This further indicates

that the GA was not able to find a suitable solution to the control system.

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

S
te

p
R

es
po

ns
e

input
S-A

D1

S-A
D2

S-A
D3

S-A
D4

D-A
D1

D-A
D2

D-A
D3

D-A
D4

Figure 5.21: The step response of the algorithm designs for the GA on the
last problem instance

Chapter 5. Robustness of Meta-Heuristic Algorithms 130

Figure 5.22 shows that no voltage limit has increased the gimbal response when

using the dynamic GA with algorithm design two.

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

S
te

p
R

es
po

ns
e

Figure 5.22: The step response showing the dynamic GA algorithm without
the voltage constraint of the motor on the control system

With the three algorithms not being able to perform when the system has added

non-linearity further indicates that the problem is not with the algorithms but

with the constraints of the control system itself, as stated in Section 5.3.1 when

the performance of the TLBO was discussed.

Chapter 5. Robustness of Meta-Heuristic Algorithms 131

5.4 Concluding Remarks

5.4.1 Dynamic Input Conclusions

From the experiments conducted, the following concluding remarks are made:

• There is a shift in the importance of the controller gain as the input of the

control system changes. The integral controller becomes more critical in

tracking the commanded input is tracked while reducing overshoot.

• The algorithm design with the higher search space upper bound resulted in

the lowest fitness value for this problem instance. This was seen in algorithm

design three and four with algorithm design four, producing the lowest fitness

value for all the algorithms.

• The ramp input also requires more exploitation rather than exploration.

Hence this problem instance favoured dynamic FPA and static GA. This may

be due to this problem also not being multi-modal, and thus the algorithm

must be able to focus on a specific region of the search space.

• The initial common parameter design that was chosen to be the best in

Chapter 4 (algorithm design two) has changed in this Chapter to algorithm

design four. These means that these parameters are not robust and must be

changed with changing problem instances.

• Algorithm design four contains a larger search space bound of 500, with a

larger population size of 60.

5.4.2 Additional Non-Linearity Conclusions

The experiments conducted allowed for the following concluding remarks to be

made:

Chapter 5. Robustness of Meta-Heuristic Algorithms 132

• The overall performance of the control system is not satisfactory for all

algorithms. This indicates one of two possibilities: the algorithms cannot

operate under problems with additional non-linearity, or there is no solution

for this control system under the constraints given in this problem instance.

• Removing the voltage limit of the motor improves the performance of all the

algorithms and system. This may mean that there is not enough voltage, and

thus not enough torque in order for the actuator to overcome the disturbance

torque.

• However, removing the voltage limitation of the motor makes the system

non-practical as that limit is used as part of modelling the motor closer to

real-life.

5.4.3 Suggestions for Future Practitioners

From these conclusions, some considerations or suggestions can be drawn for future

heuristic algorithm practitioners when tackling this kind of problem with this kind

of meta-heuristic algorithms:

1. If the target is already moving with a constant velocity (step input) when the

simulation begins, then proportional gain should be high since the gimbal is

starting from zero velocity and needs to reach the target velocity. However,

if the target begins from zero as well and moves with constant acceleration

(ramp input), then the integral gain is significant which shows the error over

time because the gimbal moves with the target rather than attempting to

reach the target motion.

2. If the system is required to overcome torque disturbance, consider adding

arrangements that increase motor torque in the system in order to increase

the performance of the algorithms and solution quality. The search space

bound must adjust accordingly.

CHAPTER 6

Performance Evaluation

This chapter compares the performance of the algorithms, not only by using the

performance evaluations shown in Chapter 4 and 5 but by other crucial perfor-

mance evaluations which are relevant to meta-heuristic algorithms.

The chapter begins by comparing the performance of the meta-heuristic algorithms

in the different problem instances. It continues to conduct a statistical analysis of

the performance of the algorithms, to quantify whether there was a difference in

performance. The chapter then focuses on the convergence of algorithms, along

with the time complexity analysis. The chapter ends off with concluding remarks.

6.1 Research Questions

The research questions for this particular case study are as follows:

1. How does the performance of the algorithms when observing their fitness

value, behaviour, statistical analysis and convergence for the different prob-

lem instances?

6.2 Comparison of Algorithm Performance using Fitness Value
and Behavioural Response

Table 6.1 compares the performance for the three chosen best-performing algo-

rithms from Chapter 4 for the first problem instance, which is described as a step

input with no additional non-linearity.

133

Chapter 6. Performance Evaluation 134

Table 6.1: Comparison of time-domain results for a step input

Algorithm Type Mean Fitness Kp K i Kd N tR (s) tS (s) % OS tc(s) % increase from best to max

TLBO 34.5981 99.8965 49.7202 82.3452 0.2096 0.0252 0.035 0.0329 3273.93 0.01185

Dynamic FPA 34.7257 99.2101 46.3896 0 50.7338 0.0257 0.0378 0.0355 3316.39 0.02535

Dynamic GA 34.7191 98.6337 46.0652 0.6798 3.4715 0.0257 0.0379 0.0269 3455.12 0.6004

The table shows that the algorithm with the lowest fitness value for this particular

instance is the TLBO. The table also shows that the TLBO has the lowest rise

and settling time, with the lowest overshoot obtained by the dynamic GA. The

TLBO also resulted in the lowest range of solutions, with the percentage increase

from the lowest to highest fitness value being 0.0118%. This makes the TLBO

more likely to achieve a solution of similar quality at each run, in comparison to

the other algorithms. In other words, the TLBO has a higher success rate when

compared to the other algorithms for this problem.

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

S
te

p
R

es
po

ns
e

input
TLBO
DYNAMIC FPA
DYNAMIC GA

Figure 6.1: The step response comparing the algorithm performance for the
plant with step input and no additional friction

Chapter 6. Performance Evaluation 135

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (s)

0.94

0.95

0.96

0.97

0.98

0.99

1
S

te
p

R
es

po
ns

e
input
TLBO
DYNAMIC FPA
DYNAMIC GA

(a) Close up showing transient response

0.4862 0.4864 0.4866 0.4868 0.487 0.4872 0.4874

Time (s)

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

1.0002

1.0003

1.0004

S
te

p
R

es
po

ns
e

input
TLBO
DYNAMIC FPA
DYNAMIC GA

(b) Close up showing steady-state response

Figure 6.2: The step response comparing the algorithm performance for the
control system with step input

Figure 6.1 shows that the step response behaviour of all the algorithms is very

similar in performance. The differences are shown in Figure 6.2 as the TLBO

reaches the commanded input faster (because it contains the lowest rise time) as

seen in Figure 6.2a, and also follows the commanded input closer in comparison

to the other algorithms, as seen in Figure 6.2b.

As mentioned previously, the difference between the TLBO and the other algo-

rithms lies in the TLBO being ‘parameterless’. The algorithm-specific parameters

are used to control the exploration and exploitation of the algorithms. The TLBO

does not have these parameters because there is a guarantee that the algorithm

performs exploration and exploitation. Exploration and exploitation control how

the algorithm moves through the search space to obtain the optimal solution. The

TLBO performing best in the first problem instance shows that guaranteeing both

the exploration and exploitation is better than assigning parameters which control

the probability of which one occurs.

Since the exploration and exploitation occur in one iteration, each iteration fine-

tunes the solutions which give a reason as to why the TLBO has a higher success

rate, when compared to the other algorithms.

Chapter 6. Performance Evaluation 136

Table 6.2 shows that for the problem instance involving a ramp input, which shows

that the TLBO algorithm has the lowest fitness value.

Table 6.2: Comparison of fitness value and algorithm solutions

Algorithm Type Mean Fitness Kp K i Kd N tc(s) % increase from best to max
TLBO 1.7662 16.5460 499.73 3.7085 58.2873 2939.56 0.6590

Dynamic FPA 1.9352 28.4353 500 0 94.7292 3246.95 4.9264
Static GA 1.8055 14.5861 493.192 17.542 1.9697 3926.19 2.4985

The TLBO also resulted in the lowest fitness value and range of solutions. The

highest fitness value was obtained by the dynamic FPA, along with the highest

range of solutions.

Figure 6.3 showing the behaviour of the algorithm performance illustrates that the

best performing algorithm is the dynamic FPA with it following the ramp input

closest.

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
te

p
R

es
po

ns
e

input
TLBO
Dynamic FPA
Static GA

(a) Comparison of Ramp Response

0.827 0.8272 0.8274 0.8276 0.8278 0.828 0.8282

Time (s)

0.8255

0.826

0.8265

0.827

0.8275

0.828

S
te

p
R

es
po

ns
e

input
TLBO
Dynamic FPA
Static GA

(b) Zoomed-in view of 6.3a

Figure 6.3: The comparison of the ramp response of the algorithm perfor-
mance

Table 6.3 compares the time-domain results for the problem instance with added

non-linearity.

Chapter 6. Performance Evaluation 137

Table 6.3: Comparison of time-domain results for a step input and added
non-linearity

Algorithm Type Mean Fitness Kp K i Kd N tR (s) tS (s) Mp % tc(s)

TLBO 32.63 0 0 2.77 9.53 0.4742 1.4387 3.4433 3607.96

Static FPA 37.53 24.38 0 11.76 19.88 0.3689 1.4462 3.7939 3604.63

Dynamic GA 35.51 5.16 1.65 2.74 23.92 0.8168 1.4396 3.4989 3361.75

From this table, it is seen that the lowest fitness value is produced by the TLBO,

which also produced the solution with the lowest settling and overshoot percentage

time. The lowest rise and computational time are obtained from the dynamic GA.

Figure 6.4 compares the step response behaviour for the system with added non-

linearity.

0 0.5 1 1.5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

S
te

p
R

es
po

ns
e

input
TLBO
Static FPA
Dynamic GA

Figure 6.4: The comparison of the step response of the algorithm performance
on the control system with additional non-linearity

As seen in Figure 6.4, the step response behaviour is very similar to the algorithm

performance being affected by the non-linearity similarly presented in the system.

Chapter 6. Performance Evaluation 138

6.3 Statistical Analysis

Table 6.4 shows the mean fitness values obtained from the three different problem

instances. The mean fitness is then used as the data required in order to implement

the Friedman inferential statistical analysis.

Table 6.4: Data for the Friedman Test

Plant Type TLBO FPA GA
Problem Instance 1 (step input) 34.60 34.77 34.72
Problem Instance 2 (ramp input) 1.77 1.94 1.81

Problem Instance 3 (added non-linearity) 32.63 37.53 34.53

The Friedman test results are shown in Table 6.5.

Table 6.5: Friedman Test results

Problem Instances Algorithms Sum of Squared Ranks Q cv DF (k - 1) α
3 3 42 18 6 2 0.05

Since the computed Q, which is the Friedman statistic is higher than the critical

value cv, the null hypothesis is rejected, which means that the algorithms do not

have identical effects. There is a significant difference in performance.

Tables 6.6, 6.7, and 6.8 show the results of the posthoc tests.

Table 6.6: Posthoc comparison of absolute difference among mean ranks

TLBO FPA GA
TLBO 0 0 0
FPA 6 0 0
GA 3 3 0

This means that there is only one pair-wise comparison of the algorithms which

showed a significant difference in the performance, which is the comparison be-

tween the TLBO and the FPA with the second problem instance. The statistical

Chapter 6. Performance Evaluation 139

analysis observed the performance of these two algorithms in this problem instance

as the only significant difference since this is the only comparison where the p-value

is less than the chosen level of significance α.

Table 6.7: Posthoc comparison of p-values

TLBO FPA GA
TLBO 0 0 0
FPA 0.0093 0 0
GA 0.3056 0.3056 0

Table 6.8: Posthoc comparison of p-values < α

TLBO FPA GA
TLBO 0 0 0
FPA 1 0 0
GA 0 0 0

According to the statistical analysis, the algorithms performed relatively the same

with each problem instance, except for the TLBO and FPA on the second problem

instance.

6.4 Convergence

Figure 6.5 shows the run-length distributions of the chosen algorithms and algo-

rithm design for all the problem instances. TLBO was compared for 25 iterations

because this algorithm performs fitness evaluations twice in one iteration, rather

than once in one iteration like the other algorithms.

Chapter 6. Performance Evaluation 140

0 5 10 15 20 25 30 35 40 45 50

Iteration Number

34

35

36

37

38

39

40

41

42

V
al

ue
 o

f F
itn

es
s

fu
nc

tio
n

run-1
run-2
run-3

(a) Dynamic FPA

with step input

0 5 10 15 20 25 30 35 40 45 50

Iteration Number

34

35

36

37

38

39

40

41

42

43

44

V
al

ue
 o

f F
itn

es
s

fu
nc

tio
n

run-1
run-2
run-3

(b) Dynamic GA with

step input

0 5 10 15 20 25

Iteration Number

34.55

34.6

34.65

34.7

34.75

34.8

34.85

34.9

34.95

35

V
al

ue
 o

f F
itn

es
s

fu
nc

tio
n

run-1
run-2
run-3

(c) TLBO with step input

0 5 10 15 20 25 30 35 40 45 50

Iteration Number

1

2

3

4

5

6

7

V
al

ue
 o

f F
itn

es
s

fu
nc

tio
n

run-1
run-2
run-3

(d) Dynamic FPA

with ramp input

0 5 10 15 20 25 30 35 40 45 50

Iteration Number

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

V
al

ue
 o

f F
itn

es
s

fu
nc

tio
n

run-1
run-2
run-3

(e) Static GA with ramp

input

0 5 10 15 20 25

Iteration Number

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

V
al

ue
 o

f F
itn

es
s

fu
nc

tio
n

run-1
run-2
run-3

(f) TLBO with ramp in-

put

0 5 10 15 20 25 30 35 40 45 50

Iteration Number

35

36

37

38

39

40

41

42

43

V
al

ue
 o

f F
itn

es
s

fu
nc

tio
n

run-1
run-2
run-3

(g) Static FPA

with added non-

linearity

0 5 10 15 20 25 30 35 40 45 50

Iteration Number

34

35

36

37

38

39

40

41

V
al

ue
 o

f F
itn

es
s

fu
nc

tio
n

run-1
run-2
run-3

(h) Dynamic GA with

added non-linearity

0 5 10 15 20 25

Iteration Number

32

33

34

35

36

37

38

39

40

V
al

ue
 o

f F
itn

es
s

fu
nc

tio
n

run-1
run-2
run-3

(i) TLBO with added non-

linearity

Figure 6.5: Run-length distributions showing the convergence performance
for different Simulation conditions

Observing the performance of the algorithms for Figures 6.5a, 6.5b, and 6.5c, all

three runs converged to a similar point. However, the TLBO shows the fastest

convergence rate with the algorithm converging to the lowest fitness value at 25

iterations. These figures also show that the dynamic FPA converged before 40

iterations and the dynamic GA converging before 35 iterations.

Chapter 6. Performance Evaluation 141

Figures 6.5d, 6.5e and 6.5f show the convergence behaviour when a ramp function

is the command input for the three algorithms. These figures show that the

lowest fitness value is again, obtained by the TLBO. Figure 6.5f also shows that

the TLBO drops to a lower fitness value in comparison to the other algorithm

convergence behaviours, which gradually decrease. This further confirms that the

TLBO converges faster in this problem instance as well.

Figures 6.5g, 6.5h, and 6.5i show the convergence behaviour of the algorithms with

a control system that has added non-linearity. Figure 6.5i again shows that TLBO

converges to the lowest fitness value and faster. The dynamic GA does not seem

to have converged, as seen in Figure 6.5h as the three runs produced different final

behaviours. This is also seen in Figure 6.5g, where the convergence behaviour of

run 1 shows that the static FPA may have converged locally in the other two runs.

6.5 Time Complexity

The time complexity analysis begins by observing the measured computational

time for the three problem instances using the chosen algorithm design.

Figure 6.6 shows the measured computational time for the three problem instances

and algorithms.

Chapter 6. Performance Evaluation 142

Step Input Ramp Input Added Non-linearity
Problem Instances

0

500

1000

1500

2000

2500

3000

3500

4000

Co
m

pu
ta

tio
na

l T
im

e
(s

)

FPA
GA
TLBO

Figure 6.6: Bar graph comparing the computational time required for all three
runs

The measured computational time shows that the TLBO is the lowest for the first

two problem instances. The GA is the lowest in the last problem instance, though

the GA is the highest in the first two problem instances. These measured results

are dependent on the research environments shown in Section 3.5.5 of Chapter 3,

and on how the code was implemented.

The analysis of the complexity of the algorithms was first done by analyzing each

step of the algorithm, as shown in their respective pseudo-codes found in Chapter 3,

Section 3.2. How the time complexity is analysed is shown in Appendix B. The

complexity is then calculated by cascading the individual complexities of the steps.

Table 6.9 shows the result from the time complexity analysis.

Chapter 6. Performance Evaluation 143

Table 6.9: Time complexity result for each algorithm analysed in appendix B

Algorithm Type Complexity Result

TLBO O(MR2)

FPA O(MR2)

Static GA O(MR logR)

Dynamic GA O(MR logR)

Note that M and R are the values for the iteration number and population size.

Also, the complexity of both the static and dynamic FPA is the same. This means

that the deterministic calculation of the switch probability does not add to the

complexity.

The complexity analysis shows that the complexity of the FPA and TLBO is higher

than that of the GA. Thus, the GA has a lower asymptotic bound, which makes

it the most favourable when compared to the other algorithms.

Chapter 6. Performance Evaluation 144

6.6 Concluding Remarks

6.6.1 Conclusions

From the sections stated above, the concluding remarks are as follows:

• When observing the algorithm fitness value as a measure of performance,

the TLBO performed the best due to this algorithm giving the lowest fitness

value for all three problem instances.

• When considering repeatability of the obtained solution at each run as a

robustness measure, the TLBO is robust. It is robust because of its ability

to conduct exploration and exploitation in one iteration rather than other

algorithms which have algorithm-specific parameters that use probability to

choose whether exploration or exploitation occurs in each iteration.

• The TLBO algorithm also resulted in the lowest range of fitness values, thus,

with the highest probability of achieving quality solutions at each run. This

is important for meta-heuristic algorithms since these algorithms contain

random seeds, and thus each run is highly more likely to produce a different

result.

• When observing the statistical analysis, using a significant level α = 0.05,

this shows that there is one significant difference in the algorithm perfor-

mance which is between the TLBO and FPA for the ramp input problem

instance. It was found that the TLBO performs significantly better than the

FPA in this problem instance. Other than this pair, however, the perfor-

mance of the algorithms using the chosen parameters, are all the same.

• The TLBO converges to the optimal solution with the smallest number of

iterations of 25 compared to the iteration number of 50. This algorithm also

resulted in the lowest measured time for both the step and ramp input.

• When observing the time complexity of the algorithms, it was found that the

GA resulted in the lesser complexity, as compared to the FPA and TLBO.

Chapter 6. Performance Evaluation 145

6.6.2 Suggestions for Future Practitioners

From these conclusions, some considerations can be drawn for future heuristic

algorithm practitioners:

1. Since the TLBO resulted in obtaining the lowest fitness function values and

obtained a higher success rate in comparison to the other algorithms, this

algorithm must be considered for future experimentation. However, this is

with caution as this algorithm also resulted in a higher time complexity

result, which means for applications which require large iteration numbers

or population size, it will be slow and the results obtained may not be worth

the computational effort.

CHAPTER 7

Conclusions and Future Work

In literature and in life we ultimately pursue,

not conclusions, but beginnings.
Sam Tanenhaus

Literature Unbound

7.1 Research Summary

The main aim for the research was to answer two research questions; "How does

applying meta-heuristic algorithms to tune a PID Controller, namely the Flower

Pollination Algorithm (FPA), the Genetic Algorithm (GA) and the Teaching-

Learning-Based Optimization Algorithm (TLBO), affect the one-axis inertial sta-

bilization system? How do these algorithms compare in performance?" and "Do

the parameters of the algorithms and the characteristics of the one-axis inertial

stabilization system affect the performance? If so, how?". The research began by

conducting a literature review in Chapter 2, where various aspects of the study

were combined and surveyed. The purpose was to propose how to conduct this

study, including what to consider, based on the current standing of literature.

Chapter 3 describes the background and preliminaries on the fundamental techni-

cal theory and models used. That included a description of the gimbal stabiliza-

tion system, the algorithms used with the different common and algorithm-specific

parameters, and the chosen performance criteria in order to create a strong foun-

dation for the following chapters. The following chapters described the parameter

146

Chapter 8. Conclusions and Future Work 147

optimization procedure, the results obtained from each problem instance, and the

comparison of the algorithms using some theoretical aspects, each with research

questions.

7.2 Research Contributions

Below is a summary of the research contribution. The reader is referred to Sec-

tion 1.5 in Chapter 1 for more detail.

This research was a comparison study. Thus, the underlying contribution lies in

its ability to conduct a comprehensive study of the algorithms on an existing real-

life problem to observe how these algorithms behave when given different problem

instances. In doing so, questions such as what parameters affect performance for

changing problem instances, and whether to use static or dynamic parameters, are

then able to be answered.

7.3 Research Conclusions

Below are the research conclusions drawn from the research contributions and

results obtained:

• According to the inferential statistical methods used, the significant perfor-

mance from the algorithms is between the TLBO and FPA for the ramp

input problem instance in that the TLBO performed significantly better

than the FPA. Other than this, there was no significant difference in the

performance of the three algorithms. However, the TLBO resulted in the

lowest fitness value and reached the near-optimal solution with the lowest

iteration number.

• Since there is no significant difference in the algorithm performances (except

for that one instance), this may indicate that all algorithms have reached the

Chapter 8. Conclusions and Future Work 148

‘optimal’ solution and that the reason one cannot obtain a better solution is

because of constraints that lie in the control system itself.

• The common algorithms do have an effect on the performance of the system.

It was found that increasing the upper bound of the search space results in

a performance with a high overshoot for the simple control system design.

• The common parameters of the algorithms are not robust. This was seen

when changing the parameters of the control system resulting in an unsatis-

factory response.

• Lastly, the insignificant difference in the performance of the algorithms indi-

cates that there is no particular better algorithm class (i.e. no better between

SI or EA). However, the performance of (any) algorithm highly depends on

how it is tuned, and the problem it is solving.

7.4 Possible Future Work

There are different avenues that need further investigation. How these algorithms

perform for a two or three-axis gimbal stabilization system is crucial for future

work. It is crucial because more often than not, an inertial stabilization platform

requires two or more gimbal axes. Thus, exploring this would be beneficial. How-

ever, there are complexities which two-axis systems introduce, such as coupling,

and observing how these algorithms perform in this setting is essential.

On this note, there are other non-linearity which could be explored in this type

of application. More of these are illustrated in Figure 9 of [12], which include

structural flexibility like bending, and actuator and gear reactions.

This work could be expanded by introducing other methods for adaptively tuning

the algorithm parameters, whether common or algorithm-specific. The burden

of choosing what values to use for the parameters can be a cumbersome and

unnecessary burden when the main point is to solve the problem at hand. The

Chapter 8. Conclusions and Future Work 149

studies in [142] and [143] move towards implementing parameterless GA to solve

an optimization problem, and perhaps that is the way forward.

The fitness function was an important aspect of this study as it quantifies the

performance. The effect of the weight value chosen for the different objectives for

this study was evident. There are two ways of combining multiple and conflicting

objectives for optimization; using a weighted cost function (such as the one used

in this study) or making use of a Pareto front. When plotting two conflicting

objectives against one another and observing the fitness value, the Pareto front is

the set of points on this graph, where one objective cannot be improved without

sacrificing the other. This then would give the weight values of the fitness function

rather than making assumptions on what the weight values should be. This may

improve the fitness function and thus, the overall performance on the system.

Stiction plays a significant role in the initial response of the system rather than

in the long term. Inserting sinusoidal command in the control system to observe

how the algorithms perform with a constant change in the direction would be of

interest, as this input represents a constant change in direction which is when

stiction is more important to observe.

There are other factors which can and should be considered in future work, which

were not considered in this work. These factors include modelling the gimbal

system with additional non-linearity, which brings it closer to reality, such as

adding an integral wind-up algorithm for the integral controller. Other factors

also include adding the frequency domain response as a performance measure

rather than solely looking at the time domain response for the control system, and

observing space-complexity rather than only looking at the time-complexity of the

algorithms.

Appendix A

Model Validation

This section aims to describe the method used to ensure that the model used in

this study is the same as the one adapted from [5] for validation purposes. This

will be done by comparing the step response result obtained for the simple one-axis

control system, using the elements and models stipulated in Section 3.1.

Figure A.1 shows the step response obtained on the study in [5] and Figure A.2

shows the simulated solution.

Figure A.1: Diagram showing the results for the step response system shown
in Figure 11 of [5]

150

Chapter 8. Conclusions and Future Work 151

The study in [5] was comparing two different controllers (i.e. the PI and the PID

controller) as seen in Figure A.1. The performance behaviour is quite similar;

however, the difference that was stipulated in the paper, is the rise time.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e
(r

ad
/s

)

Figure A.2: Diagram showing the simulated results for the step response of
the system from the model

Table A.1 compares the rise time from the paper for both the PI and PID con-

trollers with the rise time obtained from this simulation, where a PID controller

was used.

Appendix A 152

Table A.1: Showing the maximum, minimum and average fitness value at each
iteration value.

Taken from Rise Time (s)

Journal Paper

PI

0.456

Journal Paper

PID

0.485

Simulink Simu-

lation (PID)

0.4753

Transfer Func-

tion Simulation

(PID)

0.4826

The results are very similar when comparing the PID controller response from the

journal paper, with the PID controller response from the simulations conducted

in this research; however, there is a slight difference. The journal paper presented

a Simulink model together with the deduced transfer function of the model. The

result obtained from using the transfer function in the simulation of this research

is most similar with the journal paper result. This may indicate that the journal

paper obtained results from using the transfer function. However, the importance

of using Simulink for simulation lies in the ability of Simulink to model non-

linearities to which transfer functions are not able to. If the journal paper study

did make use of the Simulink model rather than the transfer function, then the

difference in the rise time performance may be due to the difference in Simulink

solvers used or whether the filter coefficient was used and the difference in its

value, if it was. These two parameters are not stipulated in the journal paper and

thus can contribute to the difference in results. Nonetheless, the result obtained is

satisfactory, and thus, the control system model has been validated and was used

in this study.

Appendix B

Time Complexity Analysis

Population Initialization O(R)

Evaluation of Objective Function to Find Global Best O(R)

for (iteration size) O(M)

for (population size) O(R)

Global Pollination O(Nvar)

Local Pollination O(Nvar)

Evaluation of Objective Function O(R)

OR

Figure B.1: Time complexity of FPA

O(R +M(R(Nvar +R))) = O(MR2) (B.1)

153

Appendix A 154

Evaluation of Objective Function to Find Global Best O(R)

for (iteration size) O(M)

for (population size) O(R)

Teacher Phase O(Nvar)

Learner Phase O(Nvar)

Evaluation of Objective Function O(R)

Initialization of Population O(R)

Evaluation of Objective Function O(R)

Figure B.2: Time complexity of TLBO

O(R +R +M(R(Nvar +RNvar +R))) = O(MR2) (B.2)

Population Initialization O(R)

Evaluation of Objective Function to Find Global Best O(R)

for (iteration size) O(M)

while (number of matings) O(Nmate)

for (number of matings) O(Nmate)

Evaluation of Objective Function O(R)

Sort Population according to Best Fitness O(R log(R))

for (mating pool) O(Nkeep)

for (number of mutation) O(nmut)

Sort Population according to Best Fitness O(R log(R))

Figure B.3: Time complexity of Static GA

Appendix A 155

O(R+R+M(NmateNkeep +Nmate +nmut+R+R logR) = O(MR logR) (B.3)

Population Initialization O(R)

Evaluation of Objective Function to Find Global Best O(R)

for (iteration size) O(M)

Perform crossover O(R)

Evaluation of Objective Function O(R)

Sort Population According to Best Fitness O(R log(R))

SPDi calculation O(Nvar)O(D)

Variable-wise average G
ave
n calculation O(R)

Gene-wise standard deviation σ(G
ave
n) calculation O(Nvar)

SPD calculation O(Nvar)

wi calculation O(R)

Gene-wise weighted average G
W.ave
n calculation O(R)

HPDi calculation O(Nvar)

Gene-wise standard deviation σ(G
W.ave
n) O(R)

HPD calculation O(Nvar)

HPD calculation

SPD calculation

Tournament selection O(R)

Perform mutation O(R)

Sort Population According to Best Fitness O(R log(R))

Run ACROMUSE procedure O(R) + O(Nvar)

Figure B.4: Time complexity of Dynamic GA

Appendix B 156

O(R+R+R logR+M(R+Nvar +R+R+R+R logR)) = O(MR logR) (B.4)

References

[1] “R-3 Series Short-Range Air-to-Air Missile | Military-Today.com.” [Online].

Available: http://www.military-today.com/missiles/r3.htm

[2] “Parts for the Hubble Space Telescope.” [Online]. Available: https:

//www.darpa.mil/about-us/dar/hubble

[3] “ATMOS 2000,” Version ID: 908685875, Jul. 2019. [Online]. Available: https:

//en.wikipedia.org/w/index.php?title=ATMOS_2000&oldid=908685875.

[4] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and analyz-

ing evolutionary algorithms,” Swarm and Evolutionary Computation, vol. 1,

no. 1, pp. 19–31, Mar. 2011.

[5] R. Jia, V. Nandikolla, G. Haggart, C. Volk, and D. Tazartes, “System per-

formance of an inertially stabilized gimbal platform with friction, resonance,

and vibration effects,” Journal of Nonlinear Dynamics, vol. 2017, pp. 1–20,

2017, doi: https://doi.org/10.1155/2017/659486110.1155/2017/6594861.

[6] N. Layshot and Xiao-Hua Yu, “Modeling of a gyro-stabilized helicopter cam-

era system using artificial neural networks,” in 2011 IEEE International

Conference on Information and Automation, 2011, pp. 454–458.

[7] K. A. Tehrani and A. Mpanda, “Pid control theory,” in Introduction to

PID Controllers, R. C. Panda, Ed. Rijeka: IntechOpen, 2012, ch. 9, pp.

213–228. [Online]. Available: https://doi.org/10.5772/34364.

[8] L. Marton and B. Lantos, “Modeling, identification, and compensation of

stick-slip friction,” IEEE Transactions on Industrial Electronics, vol. 54,

no. 1, pp. 511–521, Feb. 2007.

157

http://www.military-today.com/missiles/r3.htm
https://www.darpa.mil/about-us/dar/hubble
https://www.darpa.mil/about-us/dar/hubble
https://en.wikipedia.org/w/index.php?title=ATMOS_2000&oldid=908685875.
https://en.wikipedia.org/w/index.php?title=ATMOS_2000&oldid=908685875.
https://doi.org/10.1155/2017/6594861 10.1155/2017/6594861
https://doi.org/10.5772/34364.

References 158

[9] B. McGinley, J. Maher, C. O’Riordan, and F. Morgan, “Maintaining healthy

population diversity using adaptive crossover, mutation, and selection,”

IEEE Transactions on Evolutionary Computation, vol. 15, no. 5, pp. 692–

714, 2011.

[10] R. C. Dorf and R. H. Bishop, Modern Control Systems, 9th ed. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 2001.

[11] M. Abdo, A. R. Vali, A. R. Toloei, and M. R. Arvan, “Modeling control and

simulation of two axes gimbal seeker using fuzzy PID controller,” in 2014

22nd Iranian Conference on Electrical Engineering (ICEE). Tehran, Iran:

IEEE, May 2014, pp. 1342–1347.

[12] J. M. Hilkert, “Inertially stabilized platform technology concepts and prin-

ciples,” IEEE Control Systems Magazine, vol. 28, no. 1, pp. 26–46, Feb.

2008.

[13] M. Abdo, A. R. Vali, A. Toloei, and M. R. Arvan, “Research on the cross-

coupling of a two axes gimbal system with dynamic unbalance,” Interna-

tional Journal of Advanced Robotic Systems, vol. 10, no. 10, Oct. 2013, doi:

https://doi.org/10.5772/56963.

[14] M. M. Abdo, A. R. Vali, A. R. Toloei, and M. R. Arvan, “Stabilization loop

of a two axes gimbal system using self-tuning PID type fuzzy controller,”

ISA Transactions, vol. 53, no. 2, pp. 591–602, Mar. 2014.

[15] J. M. S. Ribeiro, M. F. Santos, M. J. Carmo, and M. F. Silva, “Comparison

of PID controller tuning methods: Analytical/classical techniques versus

optimization algorithms,” in 2017 18th International Carpathian Control

Conference (ICCC), May 2017, pp. 533–538.

[16] V. Chopra, S. K. Singla, and L. Dewan, “Comparative analysis of tuning

a pid controller using intelligent methods,” Acta Polytechnica Hungarica,

vol. 11, no. 8, pp. 235–249, 2014.

https://doi.org/10.5772/56963

References 159

[17] A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H. Alavi, “Metaheuristic

algorithms in modeling and optimization,” in Metaheuristic Applications in

Structures and Infrastructures, A. H. Gandomi, X.-S. Yang, S. Talatahari,

and A. H. Alavi, Eds. Oxford: Elsevier, 2013, pp. 1–24.

[18] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary

Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary

Computation), 2nd ed. Berlin, Heidelberg: Springer-Verlag, 2007.

[19] A. Memari, R. Ahmad, and A. R. A. Rahim, “Metaheuristic algorithms:

guidelines for implementation,” Journal of Soft Computing and Decision

Support Systems, vol. 4, no. 7, pp. 1–6, 2017.

[20] J. N. Hooker, “Testing heuristics: We have it all wrong,” Journal of Heuris-

tics, vol. 1, no. 1, pp. 33–42, Sep. 1995.

[21] K. Ogata, Modern Control Engineering, 5th ed. Boston: Prentice-Hall,

2010.

[22] S. Seshan and A. Seshan, “Using the gyro sensor and dealing with

drift.” [Online]. Available: https://stemrobotics.cs.pdx.edu/sites/default/

files/Gyro.pdf.

[23] S. Li, Y. Gao, G. Meng, G. Wang, and L. Guan, “Accelerometer-based gy-

roscope drift compensation approach in a dual-axial stabilization platform,”

Electronics, vol. 8, no. 5, May 2019.

[24] E. A. Carmona, “Development of active camera stabilization system for

implementation on uav’s.” [Online]. Available: https://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.939.6007&rep=rep1&type=pdf.

[25] R. J. Rajesh and P. Kavitha, “Camera gimbal stabilization using conven-

tional PID controller and evolutionary algorithms,” in 2015 International

Conference on Computer, Communication and Control (IC4). Indore:

IEEE, Sep. 2015, doi: 10.1109/IC4.2015.7375580.

https://stemrobotics.cs.pdx.edu/sites/default/files/Gyro.pdf.
https://stemrobotics.cs.pdx.edu/sites/default/files/Gyro.pdf.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.939.6007&rep=rep1&type=pdf.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.939.6007&rep=rep1&type=pdf.
10.1109/IC4.2015.7375580

References 160

[26] M. Baskin and K. LeblebicioğLu, “Robust control for line-of-sight stabiliza-

tion of a two-axis gimbal system,” Turkish Journal of Electrical Engineering

& Computer Sciences, vol. 25, pp. 3839–3853, 2017.

[27] V. Sangveraphunsiri and K. Malithong, “Control of inertial stabilization

systems using robust inverse dynamics control and sliding mode control,”

in The 6th International Conference on Automative Engineering (ICAE-6),

BITEC, Bangkok, Thailand, Mar 29, 2010, p. 8.

[28] H.-P. Lee and I.-E. Yoo, “Robust control design for a two-axis gimbaled

stabilization system,” in 2008 IEEE Aerospace Conference, 1 March 2008,

doi: 10.1109/AERO.2008.4526568.

[29] B. W. Bujela, “Investigation into the robust modelling, control and simu-

lation of a two-dof gimbal platform for airborne applications,” MSc thesis,

University of the Witwatersrand, Johannesburg, SA, 2013.

[30] K. Kawada, T. Shiino, T. Yamamoto, M. Komichi, and T. Nishioka, “Data-

Driven PD Gimbal Control,” in 2008 International Conference on Com-

putational Intelligence for Modelling Control Automation, Dec. 2008, pp.

993–998.

[31] X. Zhou, C. Yang, and T. Cai, “A model reference adaptive control/PID

compound scheme on disturbance rejection for an aerial inertially stabilized

platform,” Journal of Sensors, vol. 2016, 2016, doi: 10.1155/2016/7964727.

[32] I. D. Landau, R. Lozano, and M. M’Saad, “Introduction to adaptive control,”

in Adaptive Control, ser. Communications and Control Engineering, I. D.

Landau, R. Lozano, and M. M’Saad, Eds. Springer: London, 1998, pp.

1–30.

[33] M. Khayatian and P. K. Aghaee, “Adaptive control of a two-axis gimbal sys-

tem using modified error,” in The 3rd International Conference on Control,

Instrumentation and Automation, Tehran, Iran, Dec. 28, 2013, pp. 1–5.

10.1109/AERO.2008.4526568
10.1155/2016/7964727

References 161

[34] R. Caponetto and M. G. Xibilia, “Fractional order PI control of a gimbal

platform,” in 2017 European Conference on Circuit Theory and Design (EC-

CTD), Catania, Italy, Sep. 4, 2017, pp. 1–4.

[35] X. Zhou, B. Zhao, and G. Gong, “Control parameters optimization based on

co-simulation of a mechatronic system for an UA-based two-axis inertially

stabilized platform,” Sensors, vol. 15, no. 8, pp. 20 169–20 192, Aug. 2015.

[36] B. Singh and N. Joshi, “Tuning techniques of PID controller: A review,”

International Journal on Emerging Technologies, vol. 8, no. 1, pp. 481–485,

2017.

[37] F. Haugen, “Basic Dynamics and Control,” Skien, Norway: TechTeach, 2010.

[38] O. Garpinger, “Analysis and design of Software-Based Optimal PID Con-

trollers,” PhD thesis, Lund University, Lund, Sweden, 2015.

[39] F. T. Asal and M. Coşgun, “EE 402 Discrete Time Systems Project

Report PI , PD , PID Controllers,” 2012. [Online]. Available: https://pdfs.

semanticscholar.org/d149/c7ad9deba6d0f3a7a615a48fbd11fc16a1a8.pdf.

[40] P. Dash, L. C. Saikia, and N. Sinha, “Flower pollination algorithm optimized

PI-PD cascade controller in automatic generation control of a multi-area

power system,” International Journal of Electrical Power & Energy Systems,

vol. 82, pp. 19–28, Nov. 2016.

[41] M. A. Johnson and M. H. Moradi, Eds., PID Control: New Identification

and Design Methods. London: Springer-Verlag, 2005.

[42] J. H. Chow, F. F. Wu, and J. A. Momoh, Eds., Applied Mathematics for

Restructured Electric Power Systems: Optimization, Control, and Compu-

tational Intelligence. NY, USA: Springer, 2005.

[43] E.-G. Talbi, Metaheuristics: From Design to Implementation. Hoboken,

N.J: John Wiley & Sons, 2009.

https://pdfs.semanticscholar.org/d149/c7ad9deba6d0f3a7a615a48fbd11fc16a1a8.pdf.
https://pdfs.semanticscholar.org/d149/c7ad9deba6d0f3a7a615a48fbd11fc16a1a8.pdf.

References 162

[44] H. Gozde, M. Cengiz Taplamacioglu, and İ. Kocaarslan, “Comparative per-

formance analysis of Artificial Bee Colony algorithm in automatic generation

control for interconnected reheat thermal power system,” International Jour-

nal of Electrical Power & Energy Systems, vol. 42, no. 1, pp. 167–178, Nov.

2012.

[45] M. G. Villarreal-Cervantes and J. Alvarez-Gallegos, “Off-line PID control

tuning for a planar parallel robot using DE variants,” Expert Systems with

Applications, vol. 64, pp. 444–454, Dec. 2016.

[46] K. Jagatheesan, B. Anand, S. Samanta, N. Dey, V. Santhi, A. S. Ashour, and

V. E. Balas, “Application of flower pollination algorithm in load frequency

control of multi-area interconnected power system with nonlinearity,” Neural

Computing and Applications, vol. 28, no. 1, pp. 475–488, Dec. 2017.

[47] D. Fister, I. Fister Jr, I. Fister, and R. Šafarič, “Parameter tuning of

PID controller with reactive nature-inspired algorithms,” Robotics and Au-

tonomous Systems, vol. 84, pp. 64–75, Oct. 2016.

[48] M. M. Sabir and J. A. Khan, “Optimal design of PID controller for the

speed control of DC motor by using metaheuristic techniques,” Advances

in Artificial Neural Systems, vol. 2014, pp. 1–8, 2014, doi: 10.1155/2014/

126317.

[49] A. Y. Jaen-Cuellar, R. de J. Romero-Troncoso, L. Morales-Velazquez, and

R. A. Osornio-Rios, “PID-controller tuning optimization with genetic algo-

rithms in servo systems,” International Journal of Advanced Robotic Sys-

tems, vol. 10, no. 9, p. 324, Sep. 2013, doi: 10.5772/56697.

[50] W. Huang and H. N. Lam, “Using genetic algorithms to optimize controller

parameters for HVAC systems,” Energy and Buildings, vol. 26, no. 3, pp.

277–282, 1997.

[51] V. Rajinikanth and S. C. Satapathy, “Design of controller for automatic volt-

age regulator using teaching learning based optimization,” Procedia Technol-

ogy, vol. 21, pp. 295–302, Jan. 2015.

10.1155/2014/126317
10.1155/2014/126317
10.5772/56697

References 163

[52] C. Fonlupt, D. Robilliard, P. Preux, and E.-G. Talbi, “Fitness landscapes

and performance of meta-heuristics,” in Meta-Heuristics: Advances and

Trends in Local Search Paradigms for Optimization, S. Voß, S. Martello, I. H.

Osman, and C. Roucairol, Eds. Boston, MA: Springer, 1999, pp. 257–268.

[Online]. Available: https://doi.org/10.1007/978-1-4615-5775-3_18.

[53] T. J. Krüger, “Development, implementation and theoretical analysis of the

bee colony optimization meta-heuristic method,” Dissertation, Faculty of

Technical Sciences, University of Novi Sad, Novi Sad, Serbia, 2017.

[54] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learn-

ing,” Machine Learning, vol. 3, no. 2, pp. 95–99, Oct. 1988.

[55] D. Shiffman, “The nature of code,” 2012. [Online]. Available: http:

//wtf.tw/ref/shiffman.pdf.

[56] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-

of-the-art,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1,

pp. 4–31, Feb. 2011.

[57] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm the-

ory,” inMHS’95. Proceedings of the Sixth International Symposium on Micro

Machine and Human Science, Oct. 1995, pp. 39–43.

[58] M. Mitchell, “Genetic algorithms: An overview,” Complexity, vol. 1, no. 1,

pp. 31–39, Sep. 1995.

[59] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd ed. Hobo-

ken, N.J: John Wiley and Sons, Inc., 2004.

[60] X.-S. Yang, “Flower pollination algorithm for global optimization,” in Un-

conventional Computation and Natural Computation, J. Durand-Lose and

N. Jonoska, Eds., vol. 7445. Berlin, Heidelberg: Springer, 2012, pp. 240–

249.

https://doi.org/10.1007/978-1-4615-5775-3_18.
http://wtf.tw/ref/shiffman.pdf.
http://wtf.tw/ref/shiffman.pdf.

References 164

[61] Z. A. A. Alyasseri, A. T. Khader, M. A. Al-Betar, M. A. Awadallah, and X.-

S. Yang, “Variants of the flower pollination algorithm: A review,” in Nature-

Inspired Algorithms and Applied Optimization, X.-S. Yang, Ed. Cham:

Springer International Publishing, 2018, vol. 744, pp. 91–118.

[62] X. He, X.-S. Yang, M. Karamanoglu, and Y. Zhao, “Global convergence

analysis of the flower pollination algorithm: A discrete-time markov chain

approach,” Procedia Computer Science, vol. 108, pp. 1354–1363, 2017.

[63] R. V. Rao, Teaching-Learning-Based Optimization and Its Engineering Ap-

plications. Cham, Switzerland: Springer, 2016.

[64] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimiza-

tion,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp.

67–82, Apr. 1997.

[65] D. H. Wolpert and W. G. Macready, “Coevolutionary free lunches,” IEEE

Transactions on Evolutionary Computation, vol. 9, no. 6, pp. 721–735, Dec.

2005.

[66] C. L. Karr and E. Wilson, “A self-tuning evolutionary algorithm applied to

an inverse partial differential equation,” Applied Intelligence, vol. 19, no. 3,

pp. 147–155, Nov. 2003.

[67] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evo-

lutionary algorithms,” IEEE Transactions on Evolutionary Computation,

vol. 3, no. 2, pp. 124–141, Jul. 1999.

[68] G. Karafotias, M. Hoogendoorn, and A. E. Eiben, “Parameter control in evo-

lutionary algorithms: Trends and challenges,” IEEE Transactions on Evo-

lutionary Computation, vol. 19, no. 2, pp. 167–187, Apr. 2015.

[69] H. Gozde, M. Cengiz Taplamacioglu, and İ. Kocaarslan, “Comparative per-

formance analysis of Artificial Bee Colony algorithm in automatic generation

References 165

control for interconnected reheat thermal power system,” International Jour-

nal of Electrical Power & Energy Systems, vol. 42, no. 1, pp. 167–178, Nov.

2012.

[70] W. Huang and H. N. Lam, “Using genetic algorithms to optimize controller

parameters for HVAC systems,” Energy and Buildings, vol. 26, no. 3, pp.

277–282, Jan. 1997.

[71] T. Bäck, “Optimal mutation rates in genetic search,” in Proceedings of the

5th International Conference on Genetic Algorithms. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1993, pp. 2–8.

[72] E. Goldberg, “Toward a better understanding of mixing in genetic algo-

rithms,” J. SICE, vol. 32, no. 1, pp. 10–14, 1993.

[73] J. D. Schaffer and A. Morishima, “An adaptive crossover distribution mech-

anism for genetic algorithms,” in Proceedings of the Second International

Conference on Genetic Algorithms and Their Application. J. J. Grefen-

stette, Ed. Hillsdale, NJ: Lawrence Erlbaum Associates Inc., 1987, p. 36–40.

[74] G. Lin and G. Liu, “Tuning PID controller using adaptive genetic algo-

rithms,” in 2010 5th International Conference on Computer Science Educa-

tion, Aug. 2010, pp. 519–523.

[75] T. Park and K. R. Ryu, “A dual-population genetic algorithm for adaptive

diversity control,” IEEE Transactions on Evolutionary Computation, vol. 14,

no. 6, pp. 865–884, Dec. 2010.

[76] X.-S. Yang, “Metaheuristic optimization: Nature-inspired algorithms and

applications,” in Artificial Intelligence, Evolutionary Computing and Meta-

heuristics, X.-S. Yang, Ed. Berlin, Heidelberg: Springer, 2013, vol. 427, pp.

405–420.

References 166

[77] F. B. Ozsoydan and A. Baykasoglu, “Analysing the effects of various switch-

ing probability characteristics in flower pollination algorithm for solving un-

constrained function minimization problems,” Neural Computing and Appli-

cations, vol. 31, no. 11, pp. 7805–7819, Nov. 2019.

[78] W. Li, Z. He, J. Zheng, and Z. Hu, “Improved flower pollination algorithm

and its application in user identification across social networks,” IEEE Ac-

cess, vol. 7, pp. 44 359–44 371, 2019.

[79] X.-S. Yang, S. Deb, M. Loomes, and M. Karamanoglu, “A framework for self-

tuning optimization algorithm,” Neural Computing and Applications, vol. 23,

no. 7-8, pp. 2051–2057, Dec. 2013.

[80] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc., 1989.

[81] D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic algorithms, noise, and

the sizing of populations,” Complex Systems, vol. 6, pp. 333–362, 1992.

[82] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. L. Miller, “The gambler’s

ruin problem, genetic algorithms, and the sizing of populations,” in Proceed-

ings of 1997 IEEE International Conference on Evolutionary Computation

(ICEC ’97), Apr. 1997, pp. 7–12.

[83] D. Thierens, “Dimensional analysis of allele-wise mixing revisited,” in Par-

allel Problem Solving from Nature — PPSN IV, ser. Lecture Notes in Com-

puter Science, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,

Eds. Heidelberg, Berlin: Springer, 1996, pp. 255–265.

[84] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-

grams, 3rd ed. Berlin, Heidelberg: Springer-Verlag, 1996.

[85] P. Bujok, J. Tvrdík, and R. Poláková, “Comparison of nature-inspired

population-based algorithms on continuous optimisation problems,” Swarm

and Evolutionary Computation, vol. 50, Jan. 2019.

References 167

[86] E. Ridge, “Design of experiments for the tuning of optimisation algorithms,”

PhD thesis, Dept. of Computer Science, University of York, York, UK, 2007,

doi: https://doi.org/10.1016/j.swevo.2019.01.006.

[87] M. H. Goldwasser, D. S. Johnson, and C. C. McGeoch, Eds., Data Struc-

tures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS

Implementation Challenges, ser. DIMACS Series in Discrete Mathematics

and Theoretical Computer Science. Providence, Rhode Island: American

Mathematical Society, Dec. 2002, vol. 59.

[88] X.-S. Yang, Nature-Inspired Optimization Algorithms, 1st ed. Amsterdam,

Boston: Elsevier, 2014.

[89] K. Socha, “The influence of run-time limits on choosing ant system pa-

rameters,” in Genetic and Evolutionary Computation — GECCO 2003, ser.

Lecture Notes in Computer Science, E. Cantú-Paz, J. A. Foster, K. Deb,

L. D. Davis, R. Roy, and O’Reilly, Eds. Berlin, Heidelberg: Springer, 2003,

pp. 49–60.

[90] N. Zlobinsky and L. Cheng, “SAM: a meta-heuristic algorithm for single

machine scheduling problems,” SAIEE Africa Research Journal, vol. 109,

pp. 58 – 68, Mar. 2018. [Online]. Available: http://www.scielo.org.za/scielo.

php?script=sci_arttext&pid=S1991-16962018000100006&nrm=iso.

[91] C.-C. Wong, S.-A. Li, and H.-Y. Wang, “Optimal PID controller design for

AVR System,” Tamkang Journal of Science and Engineering, vol. 12, no. 3,

pp. 259–270, 2009.

[92] X.-S. Yang, M. Karamanoglu, and X. He, “Flower pollination algorithm: A

novel approach for multiobjective optimization,” Engineering Optimization,

vol. 46, no. 9, pp. 1222–1237, Sep. 2014.

[93] Z. L. Gaing, “A particle swarm optimization approach for optimum design of

PID controller in AVR system,” IEEE Transactions on Energy Conversion,

vol. 19, no. 2, pp. 384–391, Jun. 2004.

https://doi.org/10.1016/j.swevo.2019.01.006
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1991-16962018000100006&nrm=iso.
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1991-16962018000100006&nrm=iso.

References 168

[94] F. Pan and L. Liu, “Research on different integral performance indices ap-

plied on fractional-order systems,” in 2016 Chinese Control and Decision

Conference (CCDC), May 2016, pp. 324–328.

[95] C. C. McGeoch, “Feature Article - Toward an experimental method for al-

gorithm simulation,” INFORMS Journal on Computing, vol. 8, no. 1, pp.

1–15, Feb. 1996.

[96] M. Birattari and M. Dorigo, “How to assess and report the performance of

a stochastic algorithm on a benchmark problem: mean or best result on a

number of runs?” Optimization Letters, vol. 1, no. 3, pp. 309–311, May 2007.

[97] A. E. Eiben and M. Jelasity, “A critical note on experimental research

methodology in EC,” in Proceedings of the 2002 Congress on Evolution-

ary Computation. CEC’02, vol. 1. Honolulu, HI, USA: IEEE, May 12 2002,

pp. 582–587.

[98] R. J. Rajesh and C. M. Ananda, “PSO tuned PID controller for controlling

camera position in UAV using 2-axis gimbal,” in 2015 International Confer-

ence on Power and Advanced Control Engineering (ICPACE). Bengaluru,

India: IEEE, Aug. 2015, pp. 128–133.

[99] P. B. Jackson, “Overview of missile flight control systems,” Johns Hopkins

APL Technical Digest, vol. 29, no. 1, 2010.

[100] A. Singh, S. Chatterjee, and R. Thakur, “Design of tracking of moving tar-

get using PID controller,” International Journal of Engineering Trends and

Technology, vol. 15, no. 8, pp. 403–406, Sep. 2014.

[101] M. Chiarandini, L. Paquete, M. Preuss, and E. Ridge, “Experiments

on metaheuristics: methodological overview and open issues.” [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.

4291&rep=rep1&type=pdf.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.4291&rep=rep1&type=pdf.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.4291&rep=rep1&type=pdf.

References 169

[102] T. Davidović and T. Jakšić Krüger, “Convergence analysis of swarm intelli-

gence metaheuristic methods,” in International Conference on Optimization

Problems and Their Applications, Jun. 2018, pp. 251–266.

[103] J. Chen, J. Ni, and M. Hua, “Convergence analysis of a class of computa-

tional intelligence approaches,” Mathematical Problems in Engineering, vol.

2013, 2013, doi: 10.1155/2013/409606.

[104] T. J. Krüger and T. Davidović, “Model convergence properties of the con-

structive bee colony optimization algorithm,” in XLI Simpozijum o opera-

cionim istrazivanjima, Sept. 16, 2014, pp. 340–345.

[105] J. He and L. Kang, “On the convergence rates of genetic algorithms,” The-

oretical Computer Science, vol. 229, no. 1-2, pp. 23–39, Nov. 1999.

[106] G. Rudolph, “Convergence analysis of canonical genetic algorithms,” IEEE

Transactions on Neural Networks, vol. 5, no. 1, pp. 96–101, Jan. 1994.

[107] M. J. Mahmoodabadi and R. Ostadzadeh, “CTLBO: Converged teach-

ing–learning–based optimization,” Cogent Engineering, vol. 6, no. 1, Aug.

2019, doi: 10.1080/23311916.2019.1654207.

[108] J. K. Pickard, J. A. Carretero, and V. C. Bhavsar, “On the convergence

and origin bias of the Teaching-Learning-Based-Optimization algorithm,”

Applied Soft Computing, vol. 46, pp. 115–127, Sep. 2016.

[109] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on

the use of nonparametric statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms,” Swarm and Evolutionary

Computation, vol. 1, no. 1, pp. 3–18, Mar. 2011.

[110] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algo-

rithm for numerical optimization,” in 2005 IEEE Congress on Evolutionary

Computation, vol. 2, Sep. 2005, pp. 1785–1791.

10.1155/2013/409606
10.1080/23311916.2019.1654207

References 170

[111] S. García and F. Herrera, “An extension on "statistical comparisons of clas-

sifiers over multiple data sets" for all pairwise comparisons,” Journal of Ma-

chine Learning Research, vol. 9, pp. 2677–2694, 2008.

[112] M. M. Alhato and S. Bouallègue, “Direct power control optimization for

doubly fed induction generator based wind turbine systems,” Mathematical

and Computational Applications, vol. 24, no. 3, Aug. 2019, doi 10.3390/

mca24030077.

[113] S. Mohammed, K. M. Fayçel, and B. B. Rochdi, “Statistical analysis of

harmony search algorithms in tuning PID controller,” International Journal

of Intelligent Engineering and Systems, vol. 9, no. 4, pp. 98–106, Dec. 2016.

[114] M. Friedman, “The use of ranks to avoid the assumption of normality implicit

in the analysis of variance,” Journal of the American Statistical Association,

vol. 32, no. 200, pp. 675–701, 1937.

[115] M. Friedman, “A comparison of alternative tests of significance for the prob-

lem of m rankings,” The Annals of Mathematical Statistics, vol. 11, no. 1,

pp. 86–92, Mar. 1940.

[116] D. Zindros, “A Gentle Introduction to Algorithm Complexity Analysis,”

https://discrete.gr/complexity/.

[117] J. P. Gibson, “MSP: Mathematical foundations - MAT7003/Introduction.1

MAT 7003 : mathematical foundations (for software engineering),”

https://slideplayer.com/slide/2529946/, 2012.

[118] A. Maniuk, “Introduction in big-O notation,” Software Development,

June 5, 2019. [Online]. Available: https://www.maniuk.net/2019/06/

introduction-in-big-o-notation.html.

[119] D. Sudholt and C. Thyssen, “Running time analysis of Ant Colony Optimiza-

tion for shortest path problems,” Journal of Discrete Algorithms, vol. 10, pp.

165–180, Jan. 2012.

10.3390/mca24030077
10.3390/mca24030077
https://www.maniuk.net/2019/06/introduction-in-big-o-notation.html.
https://www.maniuk.net/2019/06/introduction-in-big-o-notation.html.

References 171

[120] R. Strange, A. Y. Yang, and L. Cheng, “Discrete flower pollination algorithm

for solving the symmetric travelling salesman problem,” in 2019 IEEE Sym-

posium Series on Computational Intelligence (SSCI), Xiamen, China, Dec.

6, 2019.

[121] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and W. R. Stew-

art Jr., “Designing and reporting on computational experiments with heuris-

tic methods,” Journal of Heuristics, vol. 1, no. 1, pp. 9–32, Sep. 1995.

[122] M. M. Amini and M. Racer, “A rigorous computational comparison of alter-

native solution methods for the generalized assignment problem,” Manage-

ment Science, vol. 40, no. 7, pp. 868–890, July 1994.

[123] A. A. Trusov, “Overview of MEMS gyroscopes: History, principles of

operations, types of measurements,” 2011. [Online]. Available: http://

alexandertrusov.com/uploads/pdf/2011-UCI-trusov-whitepaper-gyros.pdf.

[124] A. M. Shkel, “Type I and Type II micromachined vibratory gyroscopes,” in

2006 IEEE/ION Position, Location, And Navigation Symposium, Apr. 2006,

pp. 586–593.

[125] V. M. N. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Cam-

panella, “Gyroscope technology and applications: a review in the industrial

perspective,” Sensors, vol. 17, no. 10, Oct. 2017, doi 10.3390/s17102284.

[126] Cineflex, “Cineflex media: Stabilized broadcast & ENG camera system.”

[Online]. Available: http://pdf.directindustry.com/pdf/axsys-technologies/

cineflex-media/36088-395321.html#open.

[127] D. Lakshmi, A. P. Fathima, and R. Muthu, “A novel flower pollination

algorithm to solve load frequency control for a hydro-thermal deregulated

power system,” Circuits and Systems, vol. 7, no. 4, pp. 166–178, Apr. 2016.

[128] H. Yang, Y. Zhao, M. Li, and F. Wu, “The static unbalance analysis and its

measurement system for gimbals axes of an inertial stabilization platform,”

Metrology and Measurement Systems, vol. 22, no. 1, pp. 51–68, Mar. 2015.

http://alexandertrusov.com/uploads/pdf/2011-UCI-trusov-whitepaper-gyros.pdf.
http://alexandertrusov.com/uploads/pdf/2011-UCI-trusov-whitepaper-gyros.pdf.
10.3390/s17102284
http://pdf.directindustry.com/pdf/axsys-technologies/cineflex-media/36088-395321.html#open.
http://pdf.directindustry.com/pdf/axsys-technologies/cineflex-media/36088-395321.html#open.

References 172

[129] J. Johnson and D. Priser, “Vibration levels in army helicopters - measure-

ment and recommendations and data,” U.S. Army Aeromedical Research

Laboratory, Fort Rucker, Alabama 36362, USAARL Report 81-5, Sep. 1981.

[130] S. M. Lim, A. B. M. Sultan, M. N. Sulaiman, A. Mustapha, and K. Y.

Leong, “Crossover and mutation operators of genetic algorithms,” Interna-

tional Journal of Machine Learning and Computing, vol. 7, no. 1, pp. 9–12,

Feb. 2017.

[131] K. Q. Zhu, “A diversity-controlling adaptive genetic algorithm for the ve-

hicle routing problem with time windows,” in Proceedings. 15th IEEE In-

ternational Conference on Tools with Artificial Intelligence, Nov. 2003, pp.

176–183.

[132] R. K. Ursem, “Diversity-guided evolutionary algorithms,” in International

Conference on Parallel Problem Solving from Nature — PPSN VII, ser. Lec-

ture Notes in Computer Science, J. J. M. Guervós, P. Adamidis, H.-G. Beyer,

H.-P. Schwefel, and J.-L. Fernández-Villacañas, Eds. Heidelberg, Berlin:

Springer, 2002, pp. 462–471.

[133] T. Bäck and F. Hoffmeister, “Extended selection mechanisms in genetic al-

gorithms,” in 4th International Conference on Genetic Algorithms, 1991, pp.

92–99.

[134] D. Curran, C. O’Riordan, and H. Sorensen, “The effects of lifetime learning

on the diversity and fitness of populations,” in GECCO ’07 Proceedings of

the 9th Annual Conference on Genetic and Evolutionary Computation, July

2007, p. 337.

[135] Diffen, “Cross-Pollination vs Self-Pollination.” [Online]. Available: https:

//www.diffen.com/difference/Cross_Pollination_vs_Self_Pollination.

[136] T. Kathuria, A. Gupta, J. Kumar, V. Kumar, and K. P. S. Rana, “Study of

optimization methods for tuning of PID gains for three link manipulator,”

in 2017 7th International Conference on Cloud Computing, Data Science &

Engineering - Confluence. Noida, India: IEEE, Jan. 2017, pp. 99–104.

https://www.diffen.com/difference/Cross_Pollination_vs_Self_Pollination.
https://www.diffen.com/difference/Cross_Pollination_vs_Self_Pollination.

References 173

[137] A. R. Vali, M. Abdo, and M. R. Arvan, “Modeling, control and simulation of

cascade control servo system for one-axis gimbal mechanism,” International

Journal of Engineering, vol. 27, no. 1, Jan. 2014.

[138] G. Cardillo, “MyFriedman: Friedman test for non para-

metric two way ANalysis Of VAriance,” 2009. [On-

line]. Available: https://kr.mathworks.com/matlabcentral/fileexchange/

25882-myfriedman?focused=6e2d1502-b544-76e1-0ef3-141808fb0823.

[139] W. J. Conover, Practical Nonparametric Statistics, 3rd ed., ser. Wiley Series

in Probability and Statistics. Applied Probability and Statistics Section.

New York: Wiley, 1999.

[140] T. Bartz-Beielstein and S. Markon, “Tuning search algorithms for real-world

applications: A regression tree based approach,” in Proceedings of the 2004

Congress on Evolutionary Computation (IEEE Cat. No.04TH8753). Port-

land, OR, USA: IEEE, 2004, pp. 1111–1118.

[141] Arial Camera Systems, “Cineflex HD V14.” [Online]. Available: https:

//www.aerialcamerasystems.com/_resource/_pdf/HD-Cineflex-V14.pdf.

[142] G. R. Harik and F. G. Lobo, “A parameter-less genetic algorithm,” in

GECCO’99. Proceedings of the 1st Annual Conference on Genetic and Evo-

lutionary Computation, Jul. 1999, pp. 258–265.

[143] T. Bäck, A. E. Eiben, and N. A. L. van der Vaart, “An empirical study on

GAs "without parameters",” in International Conference in Parallel Problem

Solving from Nature, 2000, pp. 315–324.

https://kr.mathworks.com/matlabcentral/fileexchange/25882-myfriedman?focused=6e2d1502-b544-76e1-0ef3-141808fb0823.
https://kr.mathworks.com/matlabcentral/fileexchange/25882-myfriedman?focused=6e2d1502-b544-76e1-0ef3-141808fb0823.
https://www.aerialcamerasystems.com/_resource/_pdf/HD-Cineflex-V14.pdf.
https://www.aerialcamerasystems.com/_resource/_pdf/HD-Cineflex-V14.pdf.

	Declaration
	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Research Significance
	1.4 Research Objectives and Scope
	1.4.1 Objectives
	1.4.2 Scope

	1.5 Research Contributions
	1.6 Dissertation Outline

	2 Literature Review
	2.1 The Gimbal Stabilization Problem and the PID Controller
	2.1.1 Gimbal Stabilization
	2.1.2 The PID Controller for Gimbal Stabilization

	2.2 PID Controller Tuning Techniques
	2.2.1 Classical Controller Tuning Techniques
	2.2.2 Optimization Controller Tuning Techniques

	2.3 Meta-Heuristic Algorithms used on Control Systems
	2.3.1 The Genetic Algorithm
	2.3.2 The Flower Pollination Algorithm
	2.3.3 The Teaching-Learning-Based Optimization Algorithm

	2.4 Parameter Optimization
	2.4.1 Parameter Tuning and Parameter Control
	2.4.2 Common Algorithm Parameters
	2.4.2.1 Population Size
	2.4.2.2 Stopping Criteria
	2.4.2.3 Search Space
	2.4.2.4 Fitness Function

	2.5 Performance Measures for Evaluating Meta-Heuristic Algorithms in Gimbal Stabilization
	2.5.1 Performance Measures of Meta-Heuristic Algorithms
	2.5.2 Performance Measures of Tuning PID Controllers Gimbal Stabilization Control Systems

	2.6 Theoretical Analysis of Meta-Heuristic Algorithm Performance
	2.6.1 Convergence Analysis
	2.6.2 Statistical Analysis
	2.6.3 Time Complexity of Algorithms

	2.7 Computational Experimentation
	2.8 Concluding Remarks

	3 Background and Preliminaries
	3.1 Plant Model Details
	3.1.1 The Rate Gyro Sensor
	3.1.2 The Gimbal
	3.1.3 The DC Motor
	3.1.4 PID Controller
	3.1.4.1 Proportional Gain
	3.1.4.2 Integral Gain
	3.1.4.3 Derivative Gain

	3.1.5 Added Non-Linearities
	3.1.5.1 Torque Disturbance due to Friction
	3.1.5.2 Torque Disturbance due to Base Motion and Mass Unbalance

	3.2 Algorithm Details
	3.2.1 The Genetic Algorithm
	3.2.1.1 Dynamic Parameters

	3.2.2 The Flower Pollination Algorithm
	3.2.2.1 Dynamic Switch Probability
	3.2.2.2 Global Pollination
	3.2.2.3 Local Pollination

	3.2.3 The Teaching-Learning-Based Optimization Algorithm
	3.2.3.1 Teacher Phase
	3.2.3.2 Learner Phase

	3.3 Performance Criteria for Evaluating Gimbal Stabilization System
	3.3.1 Transient Response
	3.3.2 Fitness Function

	3.4 Theoretical Analysis Details
	3.4.1 Statistical Analysis
	3.4.2 Time Complexity of Algorithms

	3.5 Method
	3.5.1 Computational Experimental Design
	3.5.2 Common Parameters
	3.5.3 Algorithm-Specific Parameters
	3.5.4 Problem Instances used in the Experiments
	3.5.5 Research Environments
	3.5.6 Work Breakdown Structure

	4 Parameter Optimization for Nature-Inspired Meta-Heuristic Algorithms
	4.1 Research Questions
	4.2 Parameterless Teaching Learning Based Optimization Algorithm Results
	4.3 Dynamic and Static Flower Pollination Algorithm Results
	4.4 Dynamic and Static Genetic Algorithm Results
	4.5 Concluding Remarks
	4.5.1 Conclusions
	4.5.2 Suggestions for Future Practitioners

	5 Robustness Investigation of Nature-Inspired Meta-Heuristic Algorithms
	5.1 Research Questions
	5.2 Dynamic Input
	5.2.1 Parameterless Teaching Learning Based Optimization Results
	5.2.2 Dynamic and Static Flower Pollination Algorithm Results
	5.2.3 Dynamic and Static Genetic Algorithm Results

	5.3 Additional Non-Linearities
	5.3.1 Parameterless Teaching Learning Based Optimization Results
	5.3.2 Dynamic and Static Flower Pollination Algorithm Results
	5.3.3 Dynamic and Static Genetic Algorithm Results

	5.4 Concluding Remarks
	5.4.1 Dynamic Input Conclusions
	5.4.2 Additional Non-Linearity Conclusions
	5.4.3 Suggestions for Future Practitioners

	6 Performance Evaluation
	6.1 Research Questions
	6.2 Comparison of Algorithm Performance using Fitness Value and Behavioural Response
	6.3 Statistical Analysis
	6.4 Convergence
	6.5 Time Complexity
	6.6 Concluding Remarks
	6.6.1 Conclusions
	6.6.2 Suggestions for Future Practitioners

	7 Conclusions and Future Work
	7.1 Research Summary
	7.2 Research Contributions
	7.3 Research Conclusions
	7.4 Possible Future Work

	A Model Validation
	B Time Complexity Analysis
	References

