
A Chatbot Service for use in

Video Game Development

Alec John Larsen

A dissertation submitted to the Faculty of Engineering and the Built Environment,

University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for

the degree of Master of Science in Engineering.

Johannesburg, August 2014

i

Declaration

I declare that this dissertation is my own, unaided work, except where otherwise

acknowledged. It is being submitted for the degree of Master of Science in Engineering

in the University of the Witwatersrand, Johannesburg. It has not been submitted

before for any degree or examination in any other university.

Signed this day of 20

Alec John Larsen

ii

Abstract

Character dialogue writing for modern digital games is a difficult process as many of

them are non-linear and as such the authors have to write many different versions

of the characters’ dialogues to compensate for different orders that the players

may perform the tasks. The proposed solution is to replace game cut-scenes with

interactive dialogue using a chatbot - a computer program that simulates conversation

by responding to user’s text inputs in a natural language such as English. This

falls into the field of interactive fiction. By investigating existing interaction fiction

systems it was determined that they are difficult to author, use predefined dialogue

and do not handle mood. The proposed solution allows authors to create different non-

playable characters (NPCs) using a single chatbot, based on the Artificial Linguistic

Internet Computer Entity (A.L.I.C.E.) open source project. This single chatbot acts

as the knowledge-base for all the non-playable characters (NPCs) and provides stock

responses to the player’s inputs. These stock responses are then translated to match

the NPC being interacted with. The translation takes the NPCs’ dialects and moods

into account, generating emergent dialogue. This approach simplifies the authoring

approach as the knowledge-base is created once, independently of the NPCs and

simple rules are defined that allow each NPC to convey the relevent persona. The

general chatbot and NPC translation rules are created using a GUI. The hedonic

quality of the GUI was tested by five people via a questionnaire. This showed that

while the GUI is easy to use, the general chatbot workflow could be simplified. A

test game was created and 35 people rated the system via a questionnaire. This

gave a pleasing qualitative result as the NPCs are effective at conveying information,

their responses are variable, their personas are evident through their responses and

players noticed a change in mood. Theoretical analysis shows that the simple rules

can produce extremely variable outputs.

iii

For my dad. You were the best father that a son could wish for. You have shown me

how to fight and to never give up. I love you. May you rest in peace.

iv

Acknowledgements

I would like to thank my supervisors, Stephen Levitt and Hanli Geyser, for their

dedication and advice. I would also like to thank my friends for their encouragement

through the tribulations of the year and for keeping me sane.

I would like to thank my parents for their constant support: financial and otherwise.

The financial assistance of the National Research Foundation (NRF) towards this

research is hereby acknowledged. Opinions expressed and conclusions arrived at, are

those of the author and are not necessarily to be attributed to the NRF.

v

Contents

Declaration i

Abstract ii

Dedication iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xi

Nomenclature xiii

1 Introduction 1

2 Background of digital games, interactive fiction and textual affect

sensing 4

2.1 Introduction . 4

2.2 Game Development . 5

2.2.1 Taxonomy . 5

vi

2.2.2 Narrative . 7

2.3 Interactive fiction . 9

2.4 Textual Affect Sensing . 9

2.5 Conclusion . 11

3 Review of Existing Systems 12

3.1 Introduction . 12

3.2 Non-linear Games . 12

3.2.1 Rage . 13

3.2.2 Mass Effect . 14

3.3 Existing Interactive Fiction Systems 14

3.3.1 Façade . 14

3.3.2 Prom Week . 16

3.3.3 Scenejo . 17

3.4 Existing Affect Sensing Frameworks 18

3.4.1 ConceptNet . 18

3.4.2 SentiStrength . 21

3.5 Conclusion . 24

4 The Problem of creating Interactive Non-Playable Characters 25

4.1 Introduction . 25

4.2 Motivation . 26

4.3 Focus of the research . 27

4.4 Scope . 27

vii

4.5 Methodology . 28

4.6 Conclusion . 30

5 Prototype System Implementation 32

5.1 Introduction . 32

5.2 High Level Overview . 32

5.3 Communication protocol . 33

5.4 General Chatbot GUI . 35

5.5 Model of Dialect . 37

5.6 Mood detection . 40

5.7 NPC GUI . 41

5.8 Conclusion . 42

6 Testing and Results 45

6.1 Introduction . 45

6.2 Theoretical Analysis . 46

6.3 Interactive Testing . 49

6.3.1 Test game implementation . 49

6.3.2 General Chatbot . 51

6.3.3 NPCs . 52

6.3.4 Questionnaire . 57

6.3.5 Metrics . 60

6.3.6 Results . 61

6.4 Authoring Tool Testing . 67

viii

6.4.1 Questionnaire . 67

6.4.2 Results . 68

6.5 Conclusion . 69

7 Conclusion 70

7.1 Conclusions . 70

7.2 Summary of Contributions . 71

7.3 Recommendations for Future Research 72

References 73

A Sample conversation 77

A.1 Conversation with Vincent . 77

ix

List of Figures

1.1 Revenue estimates of the digital game industry. 1

2.1 Venn diagram indicating the problem domain. 5

2.2 The different formats of non-linear games. 8

3.1 A screenshot of Mass Effect’s interactive story. 15

3.2 The operation of a social exchange in the interactive fiction game

Prom Week. 17

3.3 Representation of an actor’s knowledge in Scenejo. 19

3.4 Structure of an interactive fiction plot in Scenejo. 20

3.5 Automatic creation process of ConceptNet from OMCS. 22

4.1 The focus of the research and the use of existing systems. 28

4.2 Summary of the problem scope. 29

5.1 The prototype system’s architecture. 33

5.2 The tree structure in the general chatbot GUI. 37

5.3 Visualization of a keyword: the synonyms (leftmost boxes) result in

the keyword (centre box) which gives the responses (rightmost boxes). 37

5.4 The GUI in “Synonym Mode - Add New” mode, with the system

generated synonym list. 38

5.5 The GUI for creating the manifest file used by PyAIML to load the

chatbot knowledge-base and the resulting manifest file. 38

x

5.6 A simplified UML class diagram of the dialect transform rules. . . . 39

5.7 The translation process. 41

5.8 An example of the mood model using ConceptNet. 42

5.9 The original design of the GUI for creating NPCs. 43

5.10 The final design of the GUI for creating NPCs. 44

6.1 The number of unique NPC-specific responses for a stock response

given s = r = 1 and varying p. The graph looks exactly the same for

p = r = 1 and varying s. 48

6.2 The number of unique NPC-specific responses for a stock response

given p = s = 1 and varying r. 49

6.3 The number of unique NPC-specific responses for a stock response

given p = s = r = [0,10]. 50

6.4 A screenshot of the General Chatbot authoring tool which shows some

of the game related patterns used in authoring the general chatbot.

The MISSIONS pattern synonym list has been expanded to show some

of the synonyms. 52

6.5 Time spent on different elements of NPC creation. 53

6.6 Graphs indicating how the players rated the NPC according to specific

criteria, using the Likert Scale . 65

6.7 Graphs indicating how the players rated the system according to

specific criteria, using the Likert Scale 67

xi

List of Tables

4.1 The requirements and the corresponding solution for the prototype

software tool. 30

5.1 HTTP request structure for communication between the game (client)

and the webserver. 34

5.1 HTTP request structure for communication between the game (client)

and the webserver. 35

6.1 The different LTML documents contain the lookup transforms as

indicated by X. 54

6.1 The different LTML documents contain the lookup transforms as

indicated by X. 55

6.1 The different LTML documents contain the lookup transforms as

indicated by X. 56

6.2 The different personality traits that each character has. This list

was presented to playtesters to rate the NPCs and as such some

unnecessary traits were added to add noise to the selection. 59

6.2 The different personality traits that each character has. This list

was presented to playtesters to rate the NPCs and as such some

unnecessary traits were added to add noise to the selection. 60

6.3 The percentage of acceptable answers to the biographical questions

regarding each character. 62

6.4 Summary of the results. 65

6.4 Summary of the results. 66

xii

6.5 Results of the Likert Scale questions (1 - strongly disagree, 5 - strongly

agree) . 68

6.5 Results of the Likert Scale questions (1 - strongly disagree, 5 - strongly

agree) . 69

xiii

Nomenclature

ABL A Behaviour Language

AI Artificial Intelligence

AIML Artificial Intelligence Markup Language

A.L.I.C.E Artificial Linguistic Internet Computer Entity

ANEW Affective Norms for English Words

CML Character Modelling Language

DM Drama Manager

DTML Dialect Transforms Modelling Language

FML Feelings Modelling Language

FPS First Person Shooter

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDS Interactive Digital Storytelling

IF Interactive Fiction

LIWC Linguistic Inquiry and Word Count

LTML Lookup Template Modelling Language

LSA Latent Semantic Analysis

NPC Non-Playable Character

OMCS Open Mind Common Sense

xiv

PC Personal Computer

RAM Random Access Memory

RNF Response Not Found

RPG Role Playing Game

SRE Stimulus-Response Element

SRP Stimulus-Response Pairs

US(A) United States (of America)

XML eXtensible Markup Language

1

Chapter 1

Introduction

The game development industry has evolved drastically and so has its audience.

Originally only the developers who made the games had the technical skills and

equipment needed to play digital games [1]. Digital games are now enjoyed by a

much wider audience, and can now be played on arcade cabinets, consoles, PCs

and mobile devices (tablets and smartphones). Digital game design requires an

understanding of your target platform and audience [2]. The game development

industry is a multi-billion dollar industry, and is on par with the other sections of

the entertainment industry (such as music, film and books) [3]. The lucrative nature

of the game development industry has lead to an increased interest in game-related

research and is part of the motivation of this research. A summary of the revenue

of the game development industry is presented in Figure 1.1 (the figures are based

mostly on the US revenue in [3], as the global figures are not readily available).

Figure 1.1: Revenue estimates of the digital game industry.

Chapter 1 — Introduction 2

Many modern video games have non-linear narratives [2] [4] which implies that the

players can perform the tasks in many different orders. Usually the game story

is conveyed through cut-scenes: videos that contain dialogue between the player

character and non-playable characters (NPCs). The non-linear narratives imply that

the game writers cannot assume that tasks have been performed in a certain order

when writing the script for a cut-scene. This results in need for the game writers

to create many alternate versions of the script. This can have the cascading effect

of requiring more voice acting and more video editing, as there can many different

versions of the cut-scenes. This implies a higher cost for game studios and since the

game industry continuously evolves it is possible that games will have increasingly

non-linear narratives, making it unfeasible to use cut-scenes to convey the story.

Another problem with cut-scenes is that they are not interactive, which can result in

player boredom [5]. A proposed solution is replace cut-scenes with NPCs that the

players can interact with using typed natural language (such as English). This is

similar to existing computer programs called chatbots, which simulate conversation.

The problem with chatbots is that they require a lot of work to develop as can

be seen by a famous example of a chatbot called the Artificial Linguistic Internet

Computer Entity (A.L.I.C.E), which has been in development for 18 years [6]. As

such it would be impractical to create a chatbot per NPC, as games can have a

large cast of NPCs. The proposed research is to see whether the stock responses of

single chatbot can be transformed using simple rules to convey the different NPC

personas. The chatbot would not have the scope of a chatbot like A.L.I.C.E, which

can answer almost any question in any context, but rather focus on the context

of the game. The research resulted in the development of an NPC model (which

incorporates mood and dialect) to transform the stock responses and authoring tools

for creating the general chatbot and NPC models. The goal is for these tools to be

simple to use, so that non-technical people, such as game writers, can use them. The

prototype system was created and a test game was used in conjunction with surveys

to perform qualitative analysis, which indicated that it is possible to transform the

stock responses of single chatbot to convey different NPC personas. Surveys were

also used to test the hedonic qualities of the authoring tools. Theoretical analysis of

NPC model has also been done as part of the research.

This dissertation is structured as follows:

Chapter 2: This chapter provides a general background to the research, which

incorporates three fields of study, namely game development, interactive fiction (IF)

and textual affect sensing. Relating to game development, the concept of a game is

defined, in terms of its components (mechanics, dynamics and narrative). Interactive

Chapter 1 — Introduction 3

fiction and textual affect sensing are briefly defined and a summary of existing

methods is presented. Textual affect sensing is closely related to psycholinguistics,

which is also discussed in this chapter.

Chapter 3: Existing systems in the game development, interactive fiction and

textual affect sensing domains are discussed in this chapter. Two existing games,

which have complex narrative structures, are discussed. Three interactive fiction

systems (namely Façade, Scene-jo and Prom Week) are discussed and the complexities

involved with creating these systems, as well as the perceived problems with the

systems, are highlighted. The two textual affect sensing libraries used in development

of the prototype, namely ConceptNet and SentiStrength, are discussed in detail.

Chapter 4: The problem of creating interactive non-playable characters is defined.

The relationship between the research question and the three fields of study is also

discussed in this chapter with reference to chapters 2 and 3. The exact contribution

is clearly stated and the existing software frameworks used are highlighted and

accredited in this section.

Chapter 5: This chapter describes the implementation details of the system, by

giving a high-level overview, as well as a description of how dialect is modelled and

mood acquisition. This is described using the class diagrams, flow diagrams and

pseudo-code. The various iterations are the prototype system are discussed. The

advantages and disadvantages of the system are also highlighted.

Chapter 6: The testing methods used and the results obtained are discussed in this

chapter. The methods used to create the surveys used for the qualitative testing as

well as the various metrics are described in detail. Theoretical analysis is provided

to further validate the research. Interpretations of the results are also documented.

Chapter 7: The overall results of the research are summarised in this chapter.

The author’s contributions are re-iterated and some suggestions for further possible

research are presented.

To make the dissertation easier to read, chapters start with a summary and end with

a description of what is covered in the following chapter.

The next chapter gives a details description of the three fields of research being

addressed: games, interactive fiction and textual affect sensing.

4

Chapter 2

Background of digital games,

interactive fiction and textual affect

sensing

The fields of research covered by this dissertation are discussed in this

chapter. A brief history about game development and some taxonomy

relating to digital games is presented. The field of interactive fiction is

described and related to digital games. Textual affect sensing is defined and

some approaches used are described.

2.1 Introduction

This research looks to improve the field of game development, by replacing non-

interactive cutscenes with characters that players can interact with using typed

natural language. This form of interactive experience falls into the field of interactive

fiction. Another research goal is to get the characters to react to the player’s mood

and inferring the player’s mood from typed natural language is called textual affect

sensing. As can be seen above this and in Figure 2.1 this research incorporates

three fields of research. Game development is discussed in Section 2.2, by describing

some game-related terminology (Section 2.2.1) and defining the different narrative

structures that currently exist in games (Section 2.2.2). Interactive fiction and agency

is defined in Section 2.3. A description of textual affect sensing, as well as some

techniques used, are described in Section 2.4.

Chapter 2 — Background of digital games, interactive fiction and textual affect
sensing 5

Figure 2.1: Venn diagram indicating the problem domain.

2.2 Game Development

One of the goals of the research is to create a tool that developers can use to create

richer game characters, in order to immerse players and provide them with a more

entertaining experience. In order to do this one needs to understand the different

subsystems that make up a game, hence a taxonomy of game-related terms is given

in Section 2.2.1. The main focus of the research is the storytelling aspect of digital

games, which is described in Section 2.2.2.

2.2.1 Taxonomy

Game

There are many definitions of what a game is. Rogers [1] states that a game is defined

as an activity that has rules, requires at least one player and there is a way to win.

Another definition for a game is an activity with rules, usually containing conflict

and some objectives/goals, with some form of choice [4]. As can be seen by the above

definitions the exact components of a game are subject to debate but both Rogers

[1] and Brathwaite et al [4] define digital games (or video games) as some form of

game that makes use of a digital video screen to display the game to the player and

some peripheral device to allow the player to interact with the game. This includes

PC games, console games (e.g. Xbox R©video game system, PlayStation R©3), mobile

Chapter 2 — Background of digital games, interactive fiction and textual affect
sensing 6

games (e.g. tablets, smartphones). It is in the domain of digital games that this

research is being conducted.

Mechanics and Dynamics

According to Dille et al [2] the play mechanic is the core gameplay. Mechanics are

defined as the rules that govern the play experience[7]. The “core” of the game is

defined by Brathwaite et al [4] as the experience that the designer is trying to convey,

which depends on the core mechanic (what the player can do), which in turn results

in core dynamics (different play styles). From these definitions the author has come

to the following definitions:

• Mechanics: the allowed actions that the player can perform.

• Dynamics: the different strategies that emerge because of the mechanics.

Player character

In non-digital games (such as board games and card games) there are game bits

which allows the the players to interact with the game (interface) and some game

bits may even be used to represent the player (avatar) [4, 7]. In other words the

game bits are used to represent the state of the game, as it is being played. In

digital games the game state can be displayed on a screen, control is performed

through some peripheral device (e.g. keyboard) and the player is represented by

some player character[2]. Depending on the genre and theme of the digital game,

the player may control one character throughout the game, play as many different

characters at different stages the game or control multiple characters simultaneously.

The player character from digital games is similar to the concept of the player avatar

in non-digital games.

Non-playable characters

Non-playable characters (NPCs) are characters in the game world that the player does

not have direct control over and are controlled by artificial intelligence created by the

programmers. NPCs include enemies, which try to hinder the player’s progress, and

“information-givers”, with whom the player communicates. Player communication

with the “information-givers” teaches the player how to play the game, informs the

Chapter 2 — Background of digital games, interactive fiction and textual affect
sensing 7

player on what objectives need to be performed and/or enhance the narrative by

giving the player information about the game world (such as the history of the game

world). These encounters are usually non-interactive (such as cut-scenes), which

creates player boredom [5], or have limited engagement in the form of conversation

options (which tend to have predictable outcomes). The goal with the research is

to improve these interactions and make the player feel immersed. From here on the

term NPC is used to describe the “information-givers”.

2.2.2 Narrative

The narrative of a digital game is the story, which includes the game world’s

history, NPC backstories and the progression of the plot that the player experiences.

There are many ways of delivering a story in a game, both non-interactive (cut-

scenes) and interactive (limited conversation options when communicating with

NPCs). According to Mateas et al [8] the narrative complexity of most digital

games is primitive compared to the gameplay mechanics, and this is to do with the

abovementioned limited player engagement with the narrative.

In digital games there are two types of stories: writer-friendly and writer-difficult

[2]. Writer-friendly narratives are linear: the player can only perform a set of tasks

in one order and a such only one script has to be written, in order to convey the

story. Writer-difficult narratives occur in non-linear games, where the player can

perform tasks in different orders [2, 4], resulting in many alternate scripts having

to be written, since the writers cannot make assumptions about which tasks have

been performed. According to Dille et al [2] all non-linear games have branching

narratives and there are five types of branching narratives:

• Limited branching: the player can perform tasks in different orders, but the

tasks and the orders that they can be performed in are dependent on tasks

that have already been done.

• Open-ended branching: the player can perform tasks in any order.

• Funneling narrative: tasks contain subtasks that can be performed in any order

but the actually tasks can only be performed in one order. This allows the

player freedom, while providing the writers with control of the overlying story

arc and chronology.

• Critical path: the game is largely linear (player can only perform tasks in a

certain order) but the player is allowed to deviate off this main task to perform

tasks that do not affect the narrative.

Chapter 2 — Background of digital games, interactive fiction and textual affect
sensing 8

• Nodal storytelling: these stories are dependant on what tasks have been

performed or which locations have been visited, which can occur in almost any

order. It is very similar to open-ended branching.

Brathwaite et al [4] define non-linear narratives slightly differently, and provide two

main categories: branching and open-ended narratives. The five types of branching

narratives in [2] can be grouped according to the definition in [4] as follows:

• Branching narratives: limited branching, funneling narrative and critical path.

• Open-ended narratives: open-ended branching and nodal storytelling.

This is illustrated in Figure 2.2. The abovementioned non-linear game narratives

create problems for game writers since many alternate scripts have to be created to

deliver a story that is dependent on the tasks performed. The goal of the research

is to create a tool that allows for the relatively easy creation of interactive NPCs,

independent of the narrative structure of the game and hence speed up the writing

process. The goal is also to increase the narrative complexity of games by replacing

non-interactive storytelling elements (such as cut-scenes), with interactive NPCs.

This falls into the realm of interactive fiction, which is defined more clearly in Section

2.3.

Figure 2.2: The different formats of non-linear games.

Chapter 2 — Background of digital games, interactive fiction and textual affect
sensing 9

2.3 Interactive fiction

Interactive fiction has many synonyms: interactive drama [9, 10, 11], interactive

storytelling [9] and interactive experiences [12], to name a few. There are also many

definitions of what interactive fiction is. It is stated in [9] that interactive dramas

are systems in which the audience experience the story as interactive participants.

The users may be first person protagonist but this is not an explicit requirement

of an interactive fiction system [9]. Some works of interactive fiction make use of

artificial intelligence (AI) techniques, to manage the way the story is generated,

and some do not (e.g. hypertext fiction) [9]. The focus of interactive storytelling is

audience experience [9], this includes building worlds with character and story [10],

where the virtual worlds are dramatically interesting and contain computer-controlled

characters, with whom the user can interact [11]. From [12] the design focus when

creating interactive experiences is agency, immersion (a player feels like an integral

part of the story) and transformation (a player can experience different aspects of

the story), where agency is the most important. Agency is defined in [13] as the

satisfying ability of the player to make meaningful decisions, which have tangible

effects on the play experience. It is not that the players have an unlimited number

of actions at their disposal but rather there are context-based actions that can be

performed, which have a very real impact on the experience [13]. The reason agency

is the main focus when designing interactive fiction is because it allows the player

to have the most substantial influence on the experience and requires the system

to dynamically generate the story based on the player’s unpredictable actions [12].

Examples of interactive fiction systems are discussed in Chapter 3.

2.4 Textual Affect Sensing

Textual affect sensing is the field of study of determining a user’s mood from written

text [14]. There are many other terms which are used synonymously, despite there

being minor technical differences between them, such as affective computing [15],

sentiment strength detection [16], affect detection [17] and mood classification [18].

Despite the psychological differences between the terms sentiment (weightings of

positive, negative and neutral), emotion (specific feeling such as disappointment)

and mood (experience of the emotion) [16], these terms are used synonymously in

this dissertation.

The papers [15] and [19] outline the main approaches used in the field of textual

Chapter 2 — Background of digital games, interactive fiction and textual affect
sensing 10

affect sensing:

Keyword spotting looks at the occurence of obvious keywords (e.g. anger). The

major downfall with this approach is that it does not take into account the syntactic

structure of a sentence but rather looks for the obvious keywords and in general,

the recognition of negation (e.g. not) and intensity modifiers (e.g. very) is handled

poorly. Keyword spotting relies on each keyword to be in a list of emotive words and

generating these lists can be an ardous task. The field of psycholinguistics simplifies

this task and two well-known examples of lists of emotive words are Affective Norms

for English Words (ANEW) [20] and Linguistic Inquiry and Word Count(LIWC) [21].

Another problem with this approach is that, depending on the context in which a

word appears, the word can have a positive or negative connotation. An approach

developed to deal with this is called lexical affinity, where keywords have probabilistic

values associated with them being negative, positive or neutral (e.g. accident has

a 75% chance of being negative, a 5% chance of being positive and a 20% chance

of being neutral). Lexical affinity is still a naive approach as it subject to poor

performance under negation or intensity modification.

Statistical methods use machine learning techniques with a large set of annotated

text, called a corpus, as training data. The strength of statistical methods is that

the affect of different keywords, punctuation and co-occuring words can be taken

into account. The major disadvantage of statistical methods is that the require large

sets of input texts, and are therefore only accurate on a paragraph or page level. An

example of a statistical method is Latent Semantic Analysis (LSA) [15].

Domain-specific models are proprietary and created for a specific application or

a specific group of users. As such, they generally perform poorly on general text.

Knowledge-base approach.A knowledge-base is software system that consists

of a nodal network of assertions made about the real world. These assertions are

usually gathered through surveying a large user group (opinion mining). Some

knowledge-bases have built in affect sensing algorithms and others require developers

to create addition code to perform affect sensing.

The two textual affect sensing frameworks used, namely ConceptNet [22] and Sen-

tiStrength [16], are discussed in more detail in Chapter 3.

Chapter 2 — Background of digital games, interactive fiction and textual affect
sensing 11

2.5 Conclusion

Some background of the three fields of study is given. Game development is described

in terms of some definitions (defining a game, mechanics and dynamics, player

character, NPCs). The domain of interactive fictions is introduced and the definition

of agency (the main focus of interactive fiction) is given as the rewarding ability the

player has to tangibly affect game play through choices. Textual affect sensing is

described and four techniques are described: keyword spotting, statistical methods,

domain-specific models and the knowledge-base approach.

This chapter has given a brief overview of the problem space. Examples of existing

systems in the three fields of research are given in the following chapter.

12

Chapter 3

Review of Existing Systems

In this chapter some examples of non-linear games, interactive fiction systems

and textual affect sensing frameworks are described. This information is

presented to contextualise the research and aspects described below will be

referred to in the following chapter in order to motivate the research.

3.1 Introduction

The research presented in this dissertation is strongly linked to three disciplines

namely game development (with focus on the narrative aspects of video games),

interactive fiction and textual affect sensing. While these have already been defined

in the previous chapter, it is necessary to contextualise the research by presenting

systems that currently exist in these fields. Two digital games, namely Rage and

Mass Effect, are described in Section 3.2 and perceived strengths and weaknesses of

the narratives of these games are presented. Three interactive fiction systems are

described in terms of how they function in Section 3.3. Two textual affect sensing

frameworks were used to create the prototype system (a result of the research) and

are described in Section 3.4.

3.2 Non-linear Games

Two non-linear games are described in this section. Rage was researched through

playing the Xbox R©video game system version of the game for approximately twenty

hours. Mass Effect was researched by watching the documentaries that are included

Chapter 3 — Review of Existing Systems 13

in the Special Edition Box Set of the game and by playing the Xbox R©video game

system version of the game for approximately four hours.

3.2.1 Rage

Rage is a first person shooter (FPS) game released by id Software in 2011 [23]. The

game is set in a post-apocalyptic world, where a meteor strike has scattered the

remaining survivors into settlements. The player takes a role of a survivor, who

was one of many who were cryogenically frozen prior to the meteor’s impact so that

humanity could continue to survive after the impact. The player performs tasks for

the town people at various settlements in exchange for various rewards, including

money and survival gear. The player has to face a variety of hostiles, including

bandits, mutants and “The Authority” (the power-hungry government that rules the

new world). The game has a critical path narrative, as there are multiple quests which

make up the main storyline. These quests are sometimes divided into open-ended

subquests (that can be performed in any order) or linear subquests (which have to

be performed in a certain order). There are also sidequests which reward the player

with money or items but do not have a significant impact on the story of the game.

The story of the game is conveyed in multiple ways:

• NPCs give the player quests and also give explanations of why the player must

do the quests (hence the player is able to piece together the plot of the story

by listening to the NPCs).

• NPCs randomly talk to the player directly, without giving quests, but conveying

information about the game world, events or the player character.

• The player overhears conversations between NPCs about the game world, events

or the player character.

The problem with these encounters is that they are done in a non-interactive way:

the player simply sits passively and listens to what he/she is told, this creates player

boredom and since player control is suspended agency is broken (see Chapter 2 for a

definition of agency). If the player revisits an NPC, who expects the player to do

something, then the NPC repeats verbatim what he/she has previously said. While

it is necessary for the player to get the same information, repetition of instructions

verbatim is unrealistic. This is a problem since the dialogue is set and could easily be

fixed by having a selection of alternate lines (which convey the same information but

are phrased differently) to randomly choose from. The problem with this solution

is that it would require the game writers to do more work since they would have

Chapter 3 — Review of Existing Systems 14

to create alternate ways of saying the same thing. The fixed conversations in Rage

cause repetition and lack of believability.

3.2.2 Mass Effect

Mass Effect is a role-playing game (RPG) released by Bioware in 2007 [24]. Mass

Effect is set in the future, where space travel is the norm and intergalactic allegiances

exists (human beings are allies with certain alien races). The game has a branching

narrative structure. The player assumes the role of a captain on a spaceship and

is able to specify which places the spaceship visits and which worlds his squad

explores, although some are mandatory for plot progression (main quests), others

act as sidequests that enhance the player experience by exposing the player to

environments, enemies or rewards the player will not encounter anywhere else. This

gives the player the opportunity to make meaningful decisions (in terms of risk versus

reward) and this gives the player a sense of agency. Mass Effect has an interactive

dialogue system that allows the player to actively participate in conversations. Instead

of choosing a response and hearing the player character repeat the chosen response,

the player makes emotional decision (e.g. the player may choose to “Reprimand

Private” which will result in the player character saying “How dare you compromise

the mission”). A screenshot is given in Figure 3.1. This interactive system allows

the player to determine what information they access because the player chooses

how to interact, this results in meaningful decisions and player agency. The problem

with the interactive dialogue system is that the dialogue is predefined and seems to

be stored in a tree-like structure and nodes can be re-visited resulting in repetition

of what has already been said. This repetition breaks believability and could be

solved similarly to the method mentioned in Section 3.2.1 but would have the same

shortcomings.

3.3 Existing Interactive Fiction Systems

3.3.1 Façade

Façade is a one-act interactive drama, created as a research experiment in the domains

of art and artificial intelligence (AI), during which the player acts as a long time

friend of a married couple called Grace and Trip [25]. The player, who can choose

their name from list (and implied gender), is invited to the couple’s house for drinks:

Chapter 3 — Review of Existing Systems 15

Figure 3.1: A screenshot of Mass Effect’s interactive story.

a situation that turns ugly [25]. The player interacts with the couple from a first

person perspective using typed English and context-based actions and the interactive

drama reacts to these acts appropriately [12]. Initially Façade tests the player’s

affinity to the other characters (“who does the player favour?”) and then the player

is forced to become a therapist, causing Grace and/or Trip to realise their own faults

and problems [12]. Façade consists of the following subsystems [12]:

• Characters’ actions are scripted using A Behaviour Language (ABL) [11].

• A drama manager that manages the dramatic beats (see below).

• A rule-based system for translating player actions and textual input into

discourse acts.

• A C++ OpenGL based animation engine for rendering the drama to the screen.

• A sound engine that handles the music and the dialogue.

Dramatic beats

Façade’s narrative is sequenced into dramatic beats, each of which consists of between

10 and 100 joint dialog behaviours, and only one beat is active at a time [12]. Each

joint dialog behaviour is created using ABL (which defines the characters’ active

behaviour trees) [11] and is typically a few seconds long [12]. Beats are selected

using the drama manager, based on topics of conversation and player interaction

with objects in the scene [12]. Topics of conversation have three layers allowing the

Chapter 3 — Review of Existing Systems 16

player to get more detail about a topic if he/she refers to it more than once in the

conversation [12]. The drama also handles topics that are not known by creating

general deflections to try get the player on track [12].

Drama Manager

The drama manager (DM) or beat sequencer selects which beat to play out and,

therefore, automatically makes the high level plot decisions. There are 27 beats in

Façade and typically 15 are chosen during a single playthrough [25]. The beats are

selected using preconditions (causal dependence), weights, priorities and the current

tension levels [25]. The drama manager also provides Grace and Trip with long-term

autonomous behaviours (such as pouring a drink), which are longer than joint dialog

behaviours but give the illusion of intelligence and believability [12]. Beats can be

interrupted and the drama manager handles this by swapping to a different beat,

even if the current beat has not finished playing out [12]. Once the new beat has

run to completion the previous beat is resumed.

The player can perform actions (context-based and textual inputs) that result in a

certain game STATE. A complex AI entity called the drama manager manages which

dramatic beat is selected based on the game STATE and the story memory (which

beats have already taken place and current tension levels). The currently selected

dramatic beat affects what Grace and Trip say and how they act. This results in

an ineractive drama experience for the player. This is a sophisticated and powerful

solution but is far too complex for a non-technical person, such as a game author, to

use.

3.3.2 Prom Week

“Prom Week” is comprehensively described in [26]. A short summary of that descrip-

tion follows.

Prom Week is an interactive fiction game that models social interactions as gameplay.

A player takes the role of a high school student during the week leading up to the

prom. There is both causal gameplay elements (see what happens next) and strategic

gameplay (manipulate the social environment in order to achieve specific goals for the

player’s character). The player is able to select one of eighteen high school students,

each of which has specific social gameplay goals (e.g. transforming the nerd into the

Chapter 3 — Review of Existing Systems 17

Prom King). This is done through social exchanges: actions that the player performs

on another student to change their relationship. The student has ability to accept or

reject the player’s intentions, based on the following characteristics:

• Basic traits: this is the core of the student’s personality and does not change

(e.g. the student is shy).

• Temporary statuses: these are the emotions that the student is feeling and can

fluctuate (e.g. the student is happy).

• Variable relationships: these are how the student views and is viewed by the

other students and can change rapidly (e.g. the student’s popularity).

• Constant relationships: these social relationship change really slowly, if ever

(e.g. a student’s true love).

The drama manager in Prom Week is referred to as a “social physics engine”, as

it is analogous to the physics engines used in most digital games but instead of

controlling physical mechanics it handles the social mechanics. The “social physics

engine” is called Comme Il Faut and has over 5000 rules that are based on social

considerations and uses the abovementioned students’ characteristics to handle the

social exchanges. The decisions are deterministic in nature but Comme Il Faut has

some emergent rules in order to match the complexity of social interactions (e.g.

friends fight but they still remain friends). There are over 20 template dialogue

scenes for each social exchange and Comme Il Faut chooses the most appropriate

one, which is then converted into dialogue that is specific to the students interacting

(based on the abovementioned characteristics). Figure 3.2 illustrates the mechanism

of a social exchange. The problem with Prom Week is that the authors had create

predefined dialogue in the form of templates, resulting in a writer-difficult narrative

(see Chapter 2).

Figure 3.2: The operation of a social exchange in the interactive fiction game Prom

Week.

3.3.3 Scenejo

A thorough description of “Scenejo” can be found in [27], which is summarised below.

Chapter 3 — Review of Existing Systems 18

Scenejo is an accessible authoring tool for non-programmers to create works of

interactive fiction. It makes use of the open-source Artificial Linguistic Internet

Computer Entity (A.L.I.C.E) chatbot[6] and Artificial Intelligence Markup Language

(AIML)[28]. The difference between Scenejo and Façade is that Scenejo provides

an easy-to-use tool for authoring interactive stories, while Façade provides ABL,

which is extremely difficult to use. Authors are able to program Scenejo characters

by writing plain AIML, using a text editor, or by using the graphical user interface

(GUI) provided with Scenejo to make transition graphs. Scenejo purely supports plot

generation and, as such, the emotional states of the characters must be conveyed by

the author using dialogue. In Scenejo the plot of the interactive fiction is split into

acts, which is made of scenes. A scene allows for different reactions and dialogues to

occur over time and contains a subset of the overall AIML. The author can either

have full control over the plot or can use conditions to determine scene changes and

create an emergent plot. Scenejo allows for the follow conditions to change the scene:

• Elapsed time.

• User utterances.

• Miscellaneous state changes.

All scenes are made of actors and dialogue graphs. Actors can have knowledge which

is dependent on the scene and permanent knowledge, which is scene independent

(see Figure 3.3 for a representation of this). Dialogue graphs are made of stimulus-

response elements (SREs), represented by AIML patterns (which map an input to

an output). A GUI is used to create the dialogue graphs and the scenes out of SREs.

The structure of Scenejo-based interactive fiction can be seen in Figure 3.4. Scenejo

requires that the authors take the NPCs’ moods into account and as such cannot

dynamically assign mood. Scenejo uses AIML extremely verbosely and requires a

knowledge-base per character per seen, resulting in an inefficient writing process.

3.4 Existing Affect Sensing Frameworks

3.4.1 ConceptNet

“ConceptNet” is described, in detail, in [22]. A summary of this description follows.

ConceptNet is a natural language understanding framework, which can analyse text

in terms of context, concept and affect; and give analogies and summaries. It is based

Chapter 3 — Review of Existing Systems 19

Figure 3.3: Representation of an actor’s knowledge in Scenejo.

on the notion that to fully understand text common sense is required. Common

sense is the millions of basic facts that most people understand because of their

experiences of the world. Common sense is needed for the following reasons:

• Ambiguities in text: e.g. the word “cookies” has drastically different meanings

in “My computer has many corrupt cookies” and “Chocolate-chip cookies are

my favourite”.

• Affect sensing: e.g. an affect sensing algorithm that does not make use of

common sense can easily get the mood from “I am sad” because of the presence

of the affective word “sad” but would struggle with “My dog just kicked the

bucket” because of the lack of obvious emotive keywords.

ConceptNet is similar to the common sense reasoning programs, Cyc and WordNet,

but it is readily available to the public in the form of a free-to-use Python library.

ConceptNet was created from the Open Mind Common Sense (OMCS) knowledge-

base using the automatic process shown in Figure 3.5. Assertions in ConceptNet are

structured into the following groups:

1. K-Lines (1.25 million assertions): ConceptuallyRelatedTo, ThematicKLine,

SuperThematicKLine.

Chapter 3 — Review of Existing Systems 20

Figure 3.4: Structure of an interactive fiction plot in Scenejo.

2. Things (52000 assertions): IsA, PropertyOf, PartOf, MadeOf, DefinedAs.

3. Agents (104000 assertions): CapableOf.

4. Events (38000 assertions): PrerequisiteEventOf, FirstSubEventOf, SubEventOf,

LastSubEventOf.

5. Spatial (36000 assertions): LocationOf.

Chapter 3 — Review of Existing Systems 21

6. Causal (17000 assertions): EffectOf, DesiredEffectOf.

7. Functional (115000 assertions): UsedFor, CapableOfReceivingAction.

8. Affective (34000 assertions): MotivationOf, DesireOf.

ConceptNet makes use of this assertion structure to store its common sense. Tex-

tual affect sensing is performed by rating text according to the Ekman model of

emotion[29], which implies that every possible emotion can be represented by a

weighted sum of the six core emotions, namely happiness, sadness, anger, fear, dis-

gust and surprise. This is calculated by analysing the paths traversed in the assertion

network in order to understand the text and makes use of the associate emotive

qualities and relative frequency of the paths.

3.4.2 SentiStrength

“SentiStrength” is comprehensively described in [16]. The following is a summary.

SentiStrength is a textual affect sensing framework, which makes us of keyword

spotting and statistical methods (see Chapter 2 for a descriptions of textual affect

sensing, keyword spotting and statistical methods) to assess the sentiment of informal

text. SentiStrength gives text a rating of positive (1 to 5) and negative (1 to 5)

simultaneously, which differentiates it from other opinion mining systems which do

not give both positive and negative ratings simultaneously and do not give strengths

of the sentiment but rather an indication of whether it is positive or negative.

SentiStength was created using MySpace user comments (which provided a large

quantity of informal text) as training data sets and evaluation data set. A large list

of users was selected from MySpace. This list was pruned by removing the following

profiles:

• Users that are not US nationals.

• Celebrities.

• Inactive users: two or less friends or no comments.

• Abnormal users: more than 1000 friends or 4000 comments.

2600 comments were given both positive and negative ratings (on the scale mentioned

above) and were used to generate a sentiment word list of 298 positive words and 465

negative words. Some words are considered both positive and negative (e.g. “miss”

has a rating of +-2 since the sentence “I miss you” has associated emotions of sadness

and love, which are negative and positive respectively).

Chapter 3 — Review of Existing Systems 22

Figure 3.5: Automatic creation process of ConceptNet from OMCS.

SentiStrength consists of the following which make up its corpus:

Chapter 3 — Review of Existing Systems 23

• An optimised sentiment word list: an algorithm was applied to the abovemen-

tioned sentiment word list in order to speed up the ranking process.

• A booster word list: words such as “very” increase the strength of the sentiment.

• A negating word lists: word such as “not” invert the value of the sentiment.

• An emoticon word lists: emoticons are typed symbols, such as “:)”, which are

used often in informal text to convey emotion.

SentiStrength first performs spelling correction as follows:

1. Deletes repeated letters that occur more than three in a row (“helllo” becomes

“hello”).

2. Deletes repeated letters that rarely occur twice in a row (“niice” becomes

“nice”).

3. Deletes letters occuring twice in a row if the word is not an English word but

deleting will result in an English word.

SentiStrength then applies keyword spotting using the abovementioned lists. Re-

peated letters are sometimes used in comments to show emotion and SentiStrength

takes this into account by boosting the strength if there are more than one repeated

letters (e.g. “helloo” would be considered incorrect spelling by SentiStrength and

“hellooo” would boost the emotion). Negative emotion is ignored in questions (e.g.

“Are you angry?” is seen as a neutral sentence despite the presence of the negative

keyword “angry”). SentiStrength has the weakness of succumbing to ambiguities

in the text, this is because keyword spotting is semantically weak (as mentioned in

Chapter 2) and does not take into account the overall affect of certain phrases such

as idioms, which could effect the accuracy of the ranking. The test data was created

using five human (female) judges, who gave 1041 comments positive and negative

ratings. Two of the judges’ rating were rejected, because one gave inconsistent results

and the other gave much higher positive ratings than the others. The remaining three

judges ratings were averaged and used as a “gold standard”. SentiStrength’s ratings

were then compared to this “gold standard” and other affect sensing techniques and

it was calculated that SentiStrength has an accuracy of 60.6% for positive ratings

and 72.8% for negative ratings.

Chapter 3 — Review of Existing Systems 24

3.5 Conclusion

Examples of existing systems in the fields of digital games, interactive fiction and

textual affect sensing are described above. The two non-linear games Rage and

Mass Effect suffer from repetition since the dialogue is predefined, but Mass Effect’s

narrative is better since it is interactive (providing the player with a sense of agency).

The interactive drama, Façade, allows the player to interact using natural language

but has the drawback of an extremely complex AI system called the drama manager,

which manages the story. Another problem with Façade is that it was extremely

complex to author and non-technical people would struggle to create their own stories

using the Façade approach (using the ABL programming language). Prom Week,

an interactive fiction game, has a “social physics engine” - a drama manager that

handles all the player’s social actions. The problem with Prom Week is that the

dialogue is all predefined in dialogue templates, which made authoring a labourious

task. The interactive fiction authoring tool, Scenejo, allows non-technical people

to create interactive fiction creating a nodal network of scenes that result in the

overall plot. While it does allow for some variable narrative (since it makes use of

chatbots to model dialogue) Scenejo requires the moods of the NPCs to be handle

directly by the authors and is fairly work intensive to use. ConceptNet is a natural

language understanding framework that uses assertions about the real world to

“understand” text and provides textual affect sensing capabilities. SentiStrength

judges the sentiment of formal text using a corpus created from MySpace comments

using machine learning techniques.

Existing non-linear games, interactive fiction systems and textual affect sensing

frameworks are described in this chapter. The following chapter contains a detailed

description of the problem, with reference to the existing systems presented in this

chapter, and descibes the research question.

25

Chapter 4

The Problem of creating Interactive

Non-Playable Characters

The problem of creating interactive NPCs is specified in detail, by analysing

the weakness of existing systems through research. This research informed a

research question, which in turn resulted in the requirements of the prototype

software system. The main focus on the research is creating an NPC model

of dialect and mood that can be used to translate the stock responses of a

single chatbot to convey different NPCs’ personas. The single chatbot acts as

a central knowledge-base, allowing for the code re-use paradigm of software

development to be applied to game writing. The focus of the research is not

creating a new chatbot architecture or affect sensing algorithms and as such

the prototype makes using of existing frameworks to perform these functions.

4.1 Introduction

The motivation of the research is given in Section 4.2, by referring back to Chapters

2 and 3. The focus of the research, including the research question, is clearly stated

in Section 4.3. Section 4.4 contains the definition of the scope of the research. The

methodology and conclusion are given in Sections 4.5 and 4.6 respectively.

Chapter 4 — The Problem of creating Interactive Non-Playable Characters 26

4.2 Motivation

As mentioned in Chapter 2, there are writer-friendly and writer-difficult narrative

structures in games, namely linear and non-linear narratives respectively. Non-linear

narratives are writer-difficult since the player can perform tasks in different orders

and as such the writers cannot assume that tasks have been performed in a certain

order and end up having to write multiple scripts to convey the story differently

depending on which tasks have been done. As discussed in Chapter 3, the game

Rage has a non-linear narrative but the dialogue with NPCs is set (which results

in repetition which decreases the believability of conversations) and non-interactive

(which creates player boredom). The game Mass Effect has an interactive dialogue

system but the dialogue is set and can be repetitive, which is unrealistic. Both these

games required a large amount of work from the writers. The goal of the research is

create a tool that allows for interactive NPCs to be created as easily and quickly as

possible.

Interactive NPCs fall into the realm of interactive fiction. Three IF systems are

discussed in Chapter 3 and have the following problems:

• Façade: is managed by an extremely complex AI system called the drama

manager. The behaviour of NPCs is controlled using active behaviour trees

using a language called ABL, making it difficult for non-technical people to

create their own stories. The dialogue is predefined, which can result in

predictability and unrealistic results.

• Prom Week: social interactions are managed by the complex “Social physics

engine” and has set dialogue, based on dialogue templates. This made authoring

the conversations a complex tasks and since the dialogue is predefined, it can

be predictable and repetitive.

• Scenejo: relatively simple to use, but uses AIML extremely verbosely (knowledge-

bases per character per scene) and does not automatically handle emotions

(the author has to make the dialogue reflect the NPCs’ moods).

The goal of the research (presented in more detail in Section 4.3) is to make it

easy and quick to create interactive NPCs, which communicate with player using

procedurally-generated dialogue (since the variability in dialogue should give an

illusion of intelligence and realism) [30]. The NPCs should automatically perceive

the player’s mood and respond accordingly. The research question and the exact

contribution of the author are also outlined in Section 4.3. The research results in

Chapter 4 — The Problem of creating Interactive Non-Playable Characters 27

the creation of a prototype system, which makes use of multiple existing software

frameworks, this is discussed in Section 4.4. An overview of the research methodology

and the software development methodology is given in Section 4.5.

4.3 Focus of the research

The aim of the research is to create a tool that non-technical people, such as story

writers for games, can use to easily create interactive NPCs. Of the existing interactive

systems discussed Chapter 3, Scenejo, is the most similar to the system created as

part of this research but it makes use of multiple chatbot knowledge-bases making

authoring quite repetitive and laborious. To improve this, the code re-use paradigm

of software development can be employed in the field of interactive fiction and hence

the proposed system requires a single chatbot to be trained, regardless of how many

NPCs are in the game. The generic responses of the single chatbot are transformed

so that they reflect the persona of the NPC that the player is talking to. Formally

stated, the research question is:

Can the stock responses of a single chatbot be transformed to convey

the personas of different NPCs and thereby reduce the amount of effort

required to simulate conversation with different NPCs?

4.4 Scope

As can be seen by the research question, the research focus is on creating a translation

layer to convert generic responses into NPC-specific responses, and not creating the

general chatbot itself. As such the prototype system makes use of an existing chatbot

framework and affect sensing frameworks. Another important aspect to mention

is that the focus of the research is on emergent dialogue and not necessarily on

conveying a story, hence no drama manager was created. Emergence means simple

rules that result in complex, unpredictable behaviour [31]. An example of emergence

is Chess: the rules are extremely simple but the game can be played in so many

different ways (different strategies). Another reason for the lack of drama manager in

the proposed system is that the it should work regardless of the narrative structure

and as such provides a basic conversation framework that developers could combine

with their own specific drama managers. For example, the proposed system could be

used to generate the dialogue for a system like Prom Week so that dialogue would

Chapter 4 — The Problem of creating Interactive Non-Playable Characters 28

not have to be pre-scripted, but the authors would still have to combine the proposed

system with the “Social physics engine”. The process followed in answering the

research question is described in Section 4.5.

The scope of the research is modelling NPCs’ dialects and moods, in order to create a

translation layer which converts the responses of a general chatbot into NPC-specific

responses. The scope does not include creating a new chatbot architecture or affect

sensing algorithm and as such these tasks are performed by existing frameworks as

can be seen in Figure 4.1. Affect sensing is done using SentiStrength and ConceptNet

(which are described in detail in Chapter 3). The general chatbot uses PyAIML

[32], a python-based AIML interpreter. AIML is used in the chatbot A.L.I.C.E and

provides a method of mapping user inputs to response and provides functionality for

synonyms and multiple responses.

As mentioned in Section 4.2 and Chapter 3 Scenejo, Prom Week and Façade suffer

from authoring complexity and predefined, predictable dialogue. The strengths of

these systems over the proposed system is that they offer the author superior control

over the story. In contrast, the proposed system simply procedurally generates

dialogue and developers using the system would have to create the software to

manage the story. The envisioned strength of the proposed system is the emergent

dialogue, ease-of-use and efficiency of writing (because of the code re-use paradigm).

The scope is summarised in Figure 4.2.

Figure 4.1: The focus of the research and the use of existing systems.

4.5 Methodology

The research process went follows:

1. A prototype software system was designed and created.

Chapter 4 — The Problem of creating Interactive Non-Playable Characters 29

Figure 4.2: Summary of the problem scope.

2. Qualitative testing was peformed via user group surveys, to gauge user experi-

ence (from interacting with a test game) and to assess the hedonic quality of

the authoring tool.

3. Quantitative testing was performed using automated metrics, gathered from

user interaction with a test environment.

4. Theoretical analysis of the emergent rules was done by deriving equations to

describe the variability of the rules.

The fact that user-based testing is done meant that ethics approval is required. The

problem with using a test game to assess the proposed system is that it does not

test how well the proposed system works but rather how well the authoring tools

were used. This is offset by using automated metrics and theoretical analysis. For

more details on the testing process see Chapter 6. The requirements engineering

process allowed for the weaknesses of existing systems (mentioned in Section 4.1) to

be identified and converted into system requirements. These requirements are shown

in Table 4.1. The software prototype was created using the iterative development

paradigm [33].

Chapter 4 — The Problem of creating Interactive Non-Playable Characters 30

Table 4.1: The requirements and the corresponding solution for the prototype software

tool.

Requirement Solution

NPCs should respond to player’s in-

put of typed natural language such

as English.

The tool uses of an existing chatbot

framework, since the chatbot is not

the focus of the research.

Game writers should be able to cre-

ate NPCs quickly.

The tool makes use of one chatbot,

forming a single knowledge-base for

all the NPCs. This is to increase

the speed of the writing process by

ensuring that common-knowledge is

not rewritten. This is analogous to

the code re-use paradigm of software

development.

The software should be easy-to-use. A graphical user interface is provided

to game writers for authoring.

The dialogue should be emergent, in-

stead of predefined.

The generic responses of the single

chatbot are translated to match the

NPCs’ personas using simple prob-

abilistic rules.

NPCs should detect the player’s

mood and respond in a fashion de-

termined by the game writers.

The system makes use of textual af-

fect sensing frameworks.

4.6 Conclusion

Games usually have non-interactive narratives and even when they have interactive

narratives the dialogue used is predefined, resulting in repetition and thererfore

lack of believability. In the field of IF it is generally difficult for non-technical

people to create interactive stories. Even systems, such a Scenejo, that aim to make

the authoring process easier have drawbacks such as requiring authors to create

knowledge-bases for each NPC, resulting in long training process for each NPC and

making it impractical to make lots of different NPCs. This inspired the concept of

having one chatbot knowledge-base which would take a fair amount of time to train,

and having its responses translated into NPC-specific responses using a translation

layer that the authors can define. The training of each NPC’s translation layer should

take a lot less time then training a knowledge-base for each NPC. These problems

Chapter 4 — The Problem of creating Interactive Non-Playable Characters 31

and requirements, resulted in a research question, that was answered through the

development and testing of a prototype system.

The focus of the research, the research question and methodology are discussed in

this chapter. The following chapter contains a description of the implementation of

the prototype software system.

32

Chapter 5

Prototype System Implementation

The prototype system consists of a Python-based webserver that parses

markup files which are created by game writers using the C#-based GUIs.

The game acts as a client and communicates with the webserver using URL-

encoded requests. The system makes use of three frameworks: PyAIML

(general chatbot), ConceptNet and SentiStrength (textual affect sensing).

5.1 Introduction

The implementation of the prototype system consists of many components. An

overview is given in Section 5.2, which describes the client-server architecture of

the system. The communication between the client and the server is described in

Section 5.3. GUIs have been created to make it easier to create NPCs: the GUI for

creating the general chatbot and the GUI for creating the NPC models are described

in Sections 5.4 and 5.7 respectively. The models of dialect and mood are described

in Sections 5.5 and 5.6 respectively.

5.2 High Level Overview

The prototype system has a Python-based web server which hosts the general chatbot

and performs the NPC transforms. The reason for hosting on a webserver is so that

the models for the communication do not take up local storage space and processing

power. Whether the storage space or processing is significant is not the purpose of

the research and as such has not been investigated further - this is just a proposed

Chapter 5 — Prototype System Implementation 33

methodology. The general chatbot was created using PyAIML, a Python-based AIML

interpreter [32] and the chatbot’s knowledge-base can be trained using the GUI to

quickly create AIML files which can be uploaded to the server (see Section 5.4). A

client (e.g. a game) can communicate with the webserver using Hypertext Transfer

Protocol (HTTP) and it responds with a Hypertext Markup Language (HTML)

document (see Section 5.3 for more detail on the communication protocol). The

client has the responsibility of storing the game and NPCs’ states (e.g. NPCs’ moods)

as games can have many players and it would result in less strain on the server to

distribute state logic to the client instead of storing it in one central location. The

system has been designed such that developers can integrate the NPC translation

layer functionality with their own chatbot systems (see Section 5.3 for more detail).

The NPC translation layer is created using a GUI (see Section 5.7) which creates

Character Modelling Language (CML) files (see Section 5.5) which are uploaded onto

the server. CML and AIML files are loaded into the server’s Random Access Memory

(RAM) via XML manifest files. The training GUIs were created using Visual C#.

Figure 5.1 shows the system components.

Figure 5.1: The prototype system’s architecture.

5.3 Communication protocol

The prototype uses a client-server architecture, where the game runs as a client and

communicates with the server. The server does not provide functionality to store

NPC or game state as many instances of the game could be running simultaneously.

Chapter 5 — Prototype System Implementation 34

As such the client (the game) should store the game state such as NPCs’ moods and

player progress and communicates with the webserver to request certain tasks to be

done such as calculating an NPC’s mood or response. HTTP requests are structure

such that paramaters form a URL structure (e.g. /A/B/C gives the parameters “A”,

“B” and “C”), the parameter order is critical and the requests are URL encoded (e.g.

a single whitespace becomes “%20”). The valid requests are given in Table 5.1.

Table 5.1: HTTP request structure for communication between the game (client) and

the webserver.

Request Function Example

/NPC ID/conversation

/MoodValue/message

Get a stock response to

“message” from the gen-

eral chatbot and con-

vert it to a specific re-

sponse for the NPC with

“NPC ID” and a mood of

“MoodValue”.

/Bob/conversation

/Anger/Why%20are

%20you%20cross?

/NPC ID/translate

/MoodValue/response

Translate “response”

into a NPC-specific re-

sponse using “NPC ID”

and “MoodValue”. This

functionality is provided

so that NPC translation

layer can be integrated

with a different chatbot

system. For example, a

developer may feel that

their own proprietary

chatbot system is better

at providing generic

responses, but still

wants to use the NPC

translation layer to

generate NPC-specific

responses. This can be

done using translate.

/Bob/translate/Sadness

/Proprietary%20

General%20

Chatbot%20Response

Chapter 5 — Prototype System Implementation 35

Table 5.1: HTTP request structure for communication between the game (client) and

the webserver.

Request Function Example

/NPC ID/debug

/MoodValue/message

Get the general and spe-

cific responses and out-

put both of them. This

also outputs all debug in-

formation.

/Bob/debug/Happiness

/Why%20are%20you

%20cross?

/NPC ID/changemood

/string

Run textual affect

sensing on “string”

and calculate the new

mood of the NPC with

“NPC ID”. Use this

function to update a

NPC’s mood in client.

/Bob/changemood/You

%20are%20a%20 moron

/message Get the general chat-

bot’s response to “mes-

sage”.

/Why%20are%20you

%20cross?

5.4 General Chatbot GUI

The prototype system makes use of PyAIML, a AIML interpreter based on the

A.L.I.C.E chatbot. The general chatbot uses AIML to store its knowledge-base.

AIML is fairly difficult-to-learn XML based language and as such it was decided

to create a GUI that would allow non-technical people to easily create AIML files

without understanding the language. AIML is a fairly complex language and has

quite a lot of features but since the general chatbot is not the main focus of the

research only a subset of the AIML functionality is visualised in the GUI. In AIML

there are patterns: phrases (which can include wildcard symbols that indicate the

position of the phrase in the sentence) that trigger certain events when detected in

the input string. Two of these events are:

• Respond: a random response is chosen from a set of possible responses.

• Symbolic reduction: the pattern is linked to another pattern, allowing synonym

lookups.

Chapter 5 — Prototype System Implementation 36

For the sake of the GUI a slightly different nomenclature to AIML has been chosen

so that it is easier to understand and also the representation is quite different: the

AIML is parsed and converted into a C# Tree GUI element. The first level node

of the tree is the keyword node (a pattern that does not result in the symbolic

reduction but rather in a response). The keyword node has two children, which

are the headings “Synonyms” and “Responses”. The “Synonyms” node has all the

synonyms (all the patterns that make use of symbolic reduction) as children and the

“Responses” node has all the possible responses to the keyword. This tree structure

is illustrated in Figure 5.2. The user is able to select a node on the tree by double

left clicking and this determine which mode of operation the GUI is in, which can be

one of the following:

• Keyword Mode: a keyword node has been selected. The user is able to create

a new keyword or edit, delete or visualise an existing keyword. Visualizing a

keyword generates an image which represents its relationship with its synonyms

and responses (see Figure 5.3 for an example).

• Synonym Mode - Add New: a “Synonyms” heading node has been selected.

The user is able to add a new synonym (indicating where the synonym shall

appear in the sentence or if it must be detected simply as is). The system

can also suggest synonyms of the keyword, which the user can select to add.

The synonyms are generate automatically using the NHunspell .NET library

[34]. Figure 5.4 is a screenshot of this mode of operation, showing the system

generated synonym list.

• Synonym Mode - Add/Edit/Delete: a synonym node has been selected. This

provides the same functionality as “Synonym Mode - Add New” but also

allows the user to edit or delete the selected synonym and the system generate

synonym list is based on the selected synonym and not the keyword.

• Response Mode - Add New: a “Responses” heading node has been selected.

The user is able to add a new response.

• Response Mode - Edit/Delete: a response node has been selected. The user is

able to edit or delete the existing response.

AIML files are then uploaded onto the server. On startup of the Python-based

webserver the AIML files are loaded into memory, forming the general chatbot’s

knowledge-base. An AIML manifest file specifies which AIML files PyAIML parses

for use in the general chatbot. This allows similar AIML patterns to be grouped into

smaller files, instead of having one monolithic AIML file, which defines all of the

patterns. This manifest file can be created via a GUI, as shown in Figure 5.5.

Chapter 5 — Prototype System Implementation 37

Figure 5.2: The tree structure in the general chatbot GUI.

Figure 5.3: Visualization of a keyword: the synonyms (leftmost boxes) result in the

keyword (centre box) which gives the responses (rightmost boxes).

5.5 Model of Dialect

The term “dialect” is used to describe how an NPC phrases a sentence (e.g.what words

are used). In this dissertation “dialect” is NOT used to describe subtle differences

in language due to the area the speaker comes from. The model for dialect is

based on the concept of emergence - simple rules resulting in complex, unpredictable

behaviours [31]. According to Hendrikx et al [30] procedurally generated behaviour

can result in the illusion of intelligence and as such the procedural conversion of

a generic chatbot’s responses to NPC-specific responses is intended to create the

illusion of intelligence. Three simple transform rules make up the dialect model,

namely:

• Substitution: transforming one phrase into another. For example: cannot

becomes can’t.

• Prefix: a phrase which is appended to the beginning of a general response.

Chapter 5 — Prototype System Implementation 38

Figure 5.4: The GUI in “Synonym Mode - Add New” mode, with the system generated

synonym list.

Figure 5.5: The GUI for creating the manifest file used by PyAIML to load the

chatbot knowledge-base and the resulting manifest file.

• Suffix: a phrase which is appened to the end of a general response.

These rules each have a probability of occuring, which is dependent on the current

mood of the NPC. Only one prefix and one suffix can be applied per response, in

order to prevent stacking of prefixes and suffixes which may result in a response

that does not make sense and/or is extremely verbose. Multiple substitutions can be

applied per response. A basic class diagram of the dialect transform rules is given in

Chapter 5 — Prototype System Implementation 39

Figure 5.6. The prefix and suffix rule lists are randomly shuffled at the beginning of

the translation process. This is to ensure that first rule in the lists is not always the

same and therefore there is not a bias towards the first rule. For example if shuffling

did not take place and the first prefix rule had 50% probability of occuring, then

50% of the time this rule would be applied and 50% of the time it would not. This

means the rest of the prefix rules would only have 50% chance of occuring, since only

one prefix rule can be applied at a time. This example also applies for suffix rules.

As such, shuffling is applied so that the lists of rules are always in different orders so

that one rule is not favoured over the others.

Figure 5.6: A simplified UML class diagram of the dialect transform rules.

Character modelling language (CML) was created so that authors can easily create

NPCs. Included in CML is Dialect Transforms Modelling Language (DTML), which

defines the above-mentioned dialect transforms and their mood-dependent probab-

ilities. CML files can contain DTML tags for performing the dialect transforms

or can reference external DTML files, allowing a single set of dialect rules to be

used by different NPCs. For example, a game writer may wish to create a list of

contractions and save it in “contractions.dtml”. The game writer could then make

several characters that use the dialect transforms defined in “contractions.dtml”.

This is provided to speed up the writing process, similar to the code re-use paradigm

of software development. Game writers may wish to provide NPCs with specific

knowledge such as biographical information (e.g. the NPC’s name, family and align-

ment). For this reason lookup transforms are provided. For example: a player may

type “What is your name?” and the general chatbot may respond “$NAME”. The

“$” indicates that “NAME” is a lookup transform. The NPC’s translation will then

convert “$NAME” to “Bobby” if the game writer has defined this as the lookup.

In traditional storytelling there are different type of characters (e.g. round, flat

and developing characters) [35]. In game writing the lead game writer may wish to

Chapter 5 — Prototype System Implementation 40

define different NPCs by the set of lookup transforms that they have available to

them (e.g. a round character may have forty different lookup transforms while a

flat character may have only ten available lookup transforms). This functionality is

provided via Lookup Template Markup Language (LTML) files. LTML files cannot

be externally referenced like DTML files (mentioned above) but are simply loaded

into the CML files and overloaded. This is because lookup transforms are specific to

an NPC and cannot be shared (e.g. two NPCs should not have exactly the same

conversion of “$NAME”). CML also models mood but this is discussed in Section

5.6. CML also provides the game writers with the ability to define “Response Not

Found” (RNF) responses for the NPCs. An RNF is chosen at random either when

the general chatbot cannot provide a response to the player’s input or when the

general chatbot response contains a lookup which is undefined for the NPC that the

player is interacting with. Figure 5.7 gives the flow of the translation process.

5.6 Mood detection

As mentioned in Section 5.5 the dialect model of the NPC is mood dependent. It is,

therefore, necessary to be able to rank the emotive qualities of the player’s inputted

text. This falls into the field of textual affect sensing (described in Chapter 2). Two

existing textual affect sensing frameworks are used, namely ConceptNet [22] and

SentiStrength [16] (described in detail in Chapter 3). ConceptNet ranks the text

according to Paul Ekman model of emotion (every possible emotion can be described

by a weighted sum of six core emotions: happiness, sadness, anger, fear, disgust

and surprise.) These weights are inputted into a decision making structure. The

game writer defines emotions and the associated multiplicative weights of the six core

emotions, using a language called Feelings Modelling Language (FML) (which is a

subset of CML and can be externally referenced similarly to DTML - see Section 5.5).

The NPC’s mood is determined by selecting the emotion with the greatest output

value based on the inputted core emotion weights. See Figure 5.8 for an example.

This technique of determining the mood is extremely difficult to visualise, making

creating the NPC difficult. As such it was decided to make use of a second textual

affect sensing framework as well, making it the game writer’s responsibility to choose

which textual affect sensing algorithm they would like to use. SentiStrength outputs

a positive and negative rating of text. These values are then summed and if the

resulting value is positive then the NPC is positive, if the resulting value is negative

then the NPC is negative and if the resulting value is zero then the NPC is neutral. It

is the responsibility of the game writer to determine what these distinctions (positive,

Chapter 5 — Prototype System Implementation 41

Figure 5.7: The translation process.

neutral and negative) imply.

5.7 NPC GUI

A GUI was created to simplify the process of creating NPCs and prevent game

writers from having to write the CML code needed to model the game characters,

thereby making the NPC creation process easier to understand and quicker. As

well as the creation of CML the GUI allows the user to create various templates

Chapter 5 — Prototype System Implementation 42

Figure 5.8: An example of the mood model using ConceptNet.

(LTML, DTML and FML) as well as import these templates into a CML document.

The original design of the GUI (see Figure 5.9) featured a similar C# tree structure

to that used in the general chatbot GUI (see Section 5.4), to visualise the CML

document structures (namely lookups, dialect and mood). From feedback it was

determined that this GUI was rather counter-intuitive and it was decided to redesign

it so that it has the appearance of a spreadsheet that simply requires the game writer

to fill in the necessary fields. The redesigned GUI (see Figure 5.10) has C# tables

for the lookup, dialect and mood sections of the CML document. The game writer is

able to select which textual affect sensing algorithm is used as well as specify RNF

responses.

5.8 Conclusion

The prototype systems consists of markup files (which are used to store the knowledge

of the general chatbot as well the NPC models), which are created using GUIs and are

then uploaded onto a webserver which performs the processing. A game acts as client

and communicates with the webserver using URL-encoded requests. The general

chatbot was created using PyAIML, a Python-based AIML interpreter. The mood is

modelled using two different approaches based on the ConceptNet (a Python-based

framework) and SentiStrength (a Java-based framework). Dialect is modelled using

the concept of emergence - three simple probabilistic rules (substitution, prefix and

Chapter 5 — Prototype System Implementation 43

Figure 5.9: The original design of the GUI for creating NPCs.

suffix) to create unpredictable behaviour and the illusion of complexity.

This chapter contains the system implementation details including a high-level

overview and the models of dialect and mood used. The following chapter describes

the validation process including the generation of tests and the qualitative results

obtained from these tests.

Chapter 5 — Prototype System Implementation 44

Figure 5.10: The final design of the GUI for creating NPCs.

45

Chapter 6

Testing and Results

This chapter presents the testing that has been performed. This includes a

theoretical analysis of the variability of the transforms, practical testing and

author testing. The practical testing was performed by creating a test game

with metrics and have playtesters give feedback via an online questionnaire.

Author testing allowed testers to interact with the authoring GUIs and fill

out a questionnaire to gauge the hedonic qualities of the authoring tools.

The generic responses of a single chatbot can be transformed to convey

personas of different NPCs since the transforms are unpredictable (gives the

illusion of intelligence), the test NPCs are effective at conveying information,

the players noticed mood changes and accurately judge the personas.

6.1 Introduction

The purpose of testing is answer the research question, which is stated in Chapter 4

as:

Can the stock responses of a single chatbot be transformed to convey

the personas of different NPCs and thereby reduce the amount of effort

required to simulate conversation with different NPCs?

It was decided the research question can be answered by answering the following

questions:

1. How variable are the transforms?

2. How effective are the NPCs at conveying information?

Chapter 6 — Testing and Results 46

3. How well does this system allow the portrayal of different personas?

4. Did the player notice a change in mood?

A theoretical analysis (Section 6.2) can be used to answer question 1, since equations

can be derived to show the number of unique NPC-specific responses generated

from general stock responses. The number of unique responses can be a measure

of unpredictability since a player will not be able to predict exactly what the NPC

will say. This unpredictability makes the NPCs seem more intelligent and realistic

[30]. The second question can be answered by seeing whether the players are able to

get the NPCs’ backstories and how often the NPCs do not understand player input.

The rest of the questions depend on user experience and as such require a practical

analysis. This has been done by creating a test game environment and allowing users

to interact with the game. A qualitative analysis can be then performed using surveys

(Section 6.3). Certain metrics (Section 6.3.5) can the be measured and interpreted to

give a quantitative analysis of user experience. It must be stated that the practical

analysis is not a true assessment of the system but rather an assessment of how well

the tools have been used to create the NPC and as such, it is an indirect assessment

of the system. Another focus of the research is providing a tool that is easy-to-use

and understand, as well efficient to create NPCs, since existing Interactive Fiction

systems with similar functionality require a deep technical understanding which

most writers do not have or are tedious to use (see Chapter 3). The testing of these

hedonic qualities can be seen in Section 6.4.

6.2 Theoretical Analysis

This section is a theoretical analysis of the transform rules and is included to show

the variability of the NPC-specific responses that are procedurally generated from the

general chatbot’s stock responses given certain assumptions. As already mentioned

variability makes the NPCs seem more intelligent and realistic [30]. For this section it

is important to understand how the dialect transforms are applied, which is described

in Chapter 5. The NPC mood affects the probability of transforms occuring and,

as such, can be ignore in this analysis. Assuming a specific NPC has p prefix rules

and s suffix rules then there are p’ (Equation 6.1) possible prefix transforms and s’

(Equation 6.2) possible suffix transforms.

p′ = p + 1 (6.1)

Chapter 6 — Testing and Results 47

s′ = s + 1 (6.2)

This is because only one prefix rule can be applied at a time and only one suffix rule

can be applied at a time and there exists the state when the transform does not

occur. Since a prefix transform and a suffix transform can be applied simultaneously,

one stock response can result in a (Equation 6.3) unique NPC-specific responses,

assuming there are no substitution rules applied.

a = (p + 1)(s + 1) (6.3)

Now assuming the stock response contains r different substitution phrases (ignoring

the possible substitution phrases that may occur in the prefixes and suffixes) and

each substitution has only one possible replacement, then each substitution is only a

binary decision - it either happens or it does not. Since multiple substitutions can

occur simultaneously the number of possible variations owing to substitution r’ is

like a binary number system with r digits, given by Equation 6.4.

r′ = 2r (6.4)

So the number of unique NPC-specific responses for a stock response with the above

mentioned assumptions is given by Equation 6.5.

n = (p + 1)(s + 1)(2r) (6.5)

Three graphs (see Figures 6.1, 6.2 and 6.3) have been created by varying different

variables in Equation 6.5, to show how the number of unique NPC-specific responses

scale. Figure 6.1 shows that there is a linear relationship between the number of

prefix (or suffix) rules and the number of unique responses. Figure 6.2 shows the

exponential relationship between number of substitution rules and number of unique

responses. Figure 6.3 illustrates how drastically the number of unique responses

increases if the number of each type of dialect rule simultaneously increase (hence

the range of p = s = r = [0,10]).

Chapter 6 — Testing and Results 48

Figure 6.1: The number of unique NPC-specific responses for a stock response given s

= r = 1 and varying p. The graph looks exactly the same for p = r = 1 and varying s.

In order to demonstrate how these transforms scale with a different number of

general responses Equation 6.6 has been derived, by letting i denote the index of

stock response in a list of stock responses. Each stock response may contain a

different number of substitution phrases and therefore r’ is different for each stock

response. So if there are k general responses in the list then the total number of

unique NPC-specific responses is:

n = (p + 1)(s + 1)
k∑

i=1

2ri (6.6)

Chapter 6 — Testing and Results 49

Figure 6.2: The number of unique NPC-specific responses for a stock response given

p = s = 1 and varying r.

6.3 Interactive Testing

6.3.1 Test game implementation

The test game was created using Unity3D and is embedded in the webpage, so that

users are able to test the game online. The player character is represented as a sphere

and the NPCs are represented as cubes from a top-down perspective. This abstract

representation was chosen so that the player cannot derive the NPCs’ personas from

their appearance. This ensures that the player derives the persona purely from

the text responses of the NPC. The game world is populated with two randomly

selected NPCs (Section 6.3.3). Upon starting the game the player is briefed with

some instructions informing them of what to do and how to do it. They can walk

up to an NPC which opens a chat window, allowing the player to interact with the

NPC via typed natural language. A hint box is provided to give the player some

limited guidance on what type about and cycles through the following hints (using

Chapter 6 — Testing and Results 50

Figure 6.3: The number of unique NPC-specific responses for a stock response given

p = s = r = [0,10].

the TAB key):

• Find out about your different missions.

• Where does this NPC’s allegiance lie?

• Who does the NPC consider friends?

• Is this NPC educated?

• Who is this NPC’s boss?

• What is the NPC’s job?

• What scares this NPC?

• What does the NPC want to achieve?

• What does the NPC love?

• Does this NPC have any addictions?

• Remember that not all NPCs are created equal. Do not get frustrated. Rather

Chapter 6 — Testing and Results 51

ask different questions.

• Does the NPC have a job?

• What must you do?

• Ask about someone the NPC has mentioned.

• Ask about a location that the NPC has mentioned.

• Rephrase questions that did not result in satisfying answers. They may yield

different results.

• Ask the NPC about terms that he/she may have mentioned.

• Insult the NPC. See if you can change its mood.

• Compliment the NPC. See if you can change its mood.

• Ask game related questions.

• Try find out more about this character’s backstory by asking relevant questions.

• What about this character do you want to know?

• Different characters have different levels of training. Do not get frustrated if a

decent response is not given then ask a different question.

• Think about this as a character in a game, not a real-life character.

• Imagine you could phrase the questions in Mass Effect. What would you ask a

game character?

• What is the NPC’s name?

Once the player is done chatting to the first NPC they can click on a button, which

opens a Google Survey (in a frame on the same page). The user can no longer chat

to that NPC but can view the conversation (this is to prevent them from interacting

with the NPC further and thereby skewing the results of the survey). The survey then

states that the user must interact with the second NPC and then fill out questions

about mood. For more information on the survey (also referred to as a questionnaire

in this dissertation) see Section 6.3.4.

6.3.2 General Chatbot

The majority of the authoring time was spent on creating the general chatbot since

this acts as the knowledge-base for all of the NPCs. Since the test environment is a

game the focus was to create AIML patterns (using the Authoring GUI) that relate

to the game story and characters and as such the player will get a “Response not

found” response if they type something not related to the game. Some initial testing

Chapter 6 — Testing and Results 52

was done to find as many synonyms for the game-related patterns as possible. Some

game related patterns and synonyms can be seen in a screenshot of the General

Chatbot authoring tool (Figure 6.4). The general chatbot makes use of several

lookup transforms that are tags that converted to NPC-specific answers. NPCs have

different biographical details (such as name, age, wants etc) and world views (of

other NPCs and the environment), which are represented by these lookup transforms.

The NPCs’ relationships and view of the environment were very carefully planned. It

can be seen in Figure 6.5 that creating the general chatbot took the most time. The

general chatbot is minimal trained as only 3 days were spent creating the AIML files

which add up to 120 kB of hard drive space. Compare this to A.L.I.C.E, which has

been in development for 18 years and the AIML files take up over 10 MB of hard

disk space [6], and one can see that the general chatbot is minimally trained.

Figure 6.4: A screenshot of the General Chatbot authoring tool which shows some

of the game related patterns used in authoring the general chatbot. The MISSIONS

pattern synonym list has been expanded to show some of the synonyms.

6.3.3 NPCs

This section assumes the reader is familiar with the implementation of the authoring

tools and the translation layer (see Chapter 5). The game is about different groups

of vampires, called Houses. The setting is quite dark, with betrayal and murder.

Chapter 6 — Testing and Results 53

Figure 6.5: Time spent on different elements of NPC creation.

Each NPC was created using a short description (showed in bold font below) which

summarises the character. The three NPCs are vastly different, allowing it to

be assessed whether the NPCs are correctly portrayed to the player and assess

whether they convey information effectively. The survey and the NPCs were created

iteratively since one is dependant on the other. For example, the survey contains a

list of personality traits (based on [2] and [36] and modified to take nationality into

account), NPCs were created using this list and once some testing was performed

extra traits were added to the list. The final personality trait list can be seen

in Table 6.2 in Section 6.3.4. The authoring of the NPCs consisted of creating

the general chatbot and creating the NPC-specific transforms. As mentioned in

Section 6.3.2 the NPCs make use of lookup transforms. The NPCs have different

levels of training resulting in characters with different amount of backstory (hereon

referred to as developed, partial and undeveloped backstories). This was done

using LTML documents as described in Chapter 5. Dille et al [2] provides a list of

biographical characteristics, and an example of a well-rounded player character is

given. The biographical characteristics list was converted into the different lookup

transforms. Characters with developed backstories were given all of the transforms

while characters with partial backstories have less lookup transforms and characters

with undeveloped backstories have the least. There are other characters purely for

the test game’s story. Each NPC has knowledge about these characters, as well as

the environment. This was taken into account by adding lookup transforms. The

complete list of lookup transforms for developed, partial and undeveloped backstories

can be seen in Table 6.1. All of the NPCs make use of SentiStrength for textual

Chapter 6 — Testing and Results 54

affect sensing, as using ConceptNet proved difficult to get accurate mood changes.

The NPCs have specific responses when they cannot understand the player’s input.

These are called “Response Not Found” responses. These have been designed in such

a way to try convey the NPCs’ personas and also guide to the player’s conversation.

Table 6.1: The different LTML documents contain the lookup transforms as indicated

by X.

Lookup Trans-

form

Description Undeveloped Partial Developed

$NAME The NPC’s name X X X

$ALIGNMENT Who are the NPC’s al-

lies?

X X X

$EDUCATION How/where was the

NPC educated?

X

$FAMILY Information about the

NPC’s family.

X X

$ASPIRATIONS What does the NPC as-

pire too?

X

$ADDICTIONS Does the NPC have any

addictions?

X

$OCCUPATION What is the NPC’s job? X X X

$OBJECTIVES What does the NPC

hope to achieve?

X X X

$WANTS What are the NPC’s

wants?

X X

$LOVES What does the NPC

love?

X

$FEARS What scares the NPC? X X X

$SKILLS What skills does the

NPC possess?

X X X

$BOSS Who does the NPC work

for?

X X X

$NATIONALITY What is the NPC’s na-

tionality?

X X

$RELIGION What are the NPC’s re-

ligious beliefs?

X

$FAVFOOD What is the NPC’s fa-

vourite food?

X

Chapter 6 — Testing and Results 55

Table 6.1: The different LTML documents contain the lookup transforms as indicated

by X.

Lookup Trans-

form

Description Undeveloped Partial Developed

$FAVCOLOUR What is the NPC’s fa-

vourite colour?

X

$BIRTHPLACE Where was the NPC

born?

X X

$HOME Where does the NPC

live?

X X

$MORALITY What morality does the

NPC subscribe too?

X

$COMFORTS What comforts the

NPC?

X

$TAGLINE This is what the NPC is

famous for saying.

X X X

$AGE The NPC’s age. X X X

$MISSION1 One of the missions that

the NPC can give the

player.

X X X

$MISSION2 One of the missions that

the NPC can give the

player.

X X X

$CAECUS What does the NPC

think of Caecus?

X X X

$VINCENT What does the NPC

think of Vincent?

X X X

$PERCY What does the NPC

think of Percy?

X X X

$GABRIEL What does the NPC

think of Gabriel?

X X X

$SAMANTHA What does the NPC

think of Samantha?

X X X

$DIETRICH What does the NPC

think of Dietrich?

X X X

$MELISSA What does the NPC

think of Melissa?

X X X

Chapter 6 — Testing and Results 56

Table 6.1: The different LTML documents contain the lookup transforms as indicated

by X.

Lookup Trans-

form

Description Undeveloped Partial Developed

$ALEXANDER What does the NPC

think of Alexander?

X X X

$HUNTER What does the NPC

think of Hunter?

X X X

$STEINER What does the NPC

think of House of

Steiner?

X X X

$EREBUS What does the NPC

think of House of Ere-

bus?

X X X

$JACKSON What does the NPC

think of House of Jack-

son?

X X X

$VAMPIRE Is the NPC a vampire? X X X

Vincent

Vincent was a successful lawyer when the vampires attacked, turning him

and killing everyone he ever loved. Now he uses his business acuity to

run a shelter for newly-turned vampires.

Vincent has a developed backstory (in terms of the LTML document used) and as

such uses all of the lookup transforms (see Table 6.1). Even though Vincent has

the most developed backstory he took the least amount of time to create out of all

of the game characters (see Figure 6.5). This seems counter-intuitive but from the

above description it can be seen that nothing is mentioned about dialect and mood

and as such less effort had to be made when creating the dialect transforms. This is

because the neutral responses of the general chatbot required only minimal tweaks to

display the neutral character of Vincent. Vincent makes use of a template of dialect

transforms containing common contractions. The “Response Not Found” responses

were created to reflect Vincent’s compassion (e.g. “The House of Jackson looks after

everyone innocent.”) and also references other characters (e.g. “Did Alexander send

you?”), to encourage the player to ask questions about the other characters.

Chapter 6 — Testing and Results 57

Caecus

Caecus is a cruel, arrogant, pure-blooded vampire from Eastern Europe

(Czech Republic or some place similar) and she displays prejudice to any

turned vampire.

Caecus has a partial backstory (see Table 6.1). It took the longest amount of time to

create Caecus because her dialect needs to reflect that she is from Eastern Europe.

This was achieved by translating some of her words into Czech and substituting the

“W” with “V” to convey that stereotypical Transylvanian vampire pronounciation

(e.g. I vant to suck your blood). Caecus does not make use of any dialect templates.

The “Response Not Found” messages were created to illustrate Caecus’ arrogance

(e.g. “How can you talk to a pure-blood like that?”).

Percy

Percy is an alcoholic, British hooligan who is working as Caecus’ slave in

return for the promise of being immortalised via a vampire bite.

Percy has an undeveloped backstory (see Table 6.1). His alcoholic nature is clearly

reflected with prefix and suffix transforms of onomatopoeia indicating hiccups from

exessive consumption. He is also conveyed as an alcoholic through his “Response

Not Found” responses - six out nine of the responses are references to getting drunk.

For Percy it was very important to convey him as British hooligan so that his dialect

is vastly different to Vincent’s dialect. This was achieved by incorporating many

British expressions (such as “Guv” and “innit”) found in British media, such as

websites [37] [38] and British comedies (such as Fawlty Towers and Blackadder). His

hooliganism is displayed through rude British expressions (such as “sod off” and

“shite”), also found in British media.

6.3.4 Questionnaire

The questionnaire was created using Google Forms, which makes it easily accessible

online and provides tools for analysis. The player experience questionnaire contains

the following sections:

1. Personal Details - non-invasive questions to gauge experience (gaming, game

development) in order to contextualise the responses. Players are able to fillout

Chapter 6 — Testing and Results 58

the survey more than once and this section also has a question to determine

how many times the player has filled out the survey.

2. NPC Experience - questions to assess what information the player was able to

gain from the NPC and to see if the the character’s persona is conveyed.

3. Mood Experience - questions to see if the player is able to detect mood changes

in the second NPC.

4. General Experience - questions to assess what the player’s overall opinion of

the system is.

In NPC Experience Section the player is asked to choose which character they

interacted with. The player is then asked to fill in information about the character

(such as age, nationality etc). This is to assess the effectiveness of conveying

information. The player is then given a set of traits and asked to select the ones

that apply to the NPC. This is to test the effectiveness of portraying a persona as

the player answers can be compared to traits defined during the authoring process.

The list of traits in the survey and the author’s assessment of each character (based

what the author was hoping to portray) is given in Table 6.2. The table contains

some unused traits because those were presented to the playtesters to add noise

to the selection. In the Mood Experience Section, the player is asked whether the

NPC’s mood changed, how often and how the NPC responded to different treatment

(compliments versus insults). This is to assess the effectiveness of conveying mood.

In the General Experience Section the player is asked to rate the following aspects of

the NPC, and the system, using the Likert Scale (strongly disagree, disagree, neutral,

agree, strongly agree) [39]:

• Enjoyable: the purpose of gaming is to be fun and as such the interacting with

the NPC via text has to be fun for the system to be viable.

• Frustrating: this influences the effectiveness of conveying information (see

Section 6.3.6).

• Text-based: this acts as a control question, since the system is clearly text-

based.

• Informative: this influences the effectiveness of conveying information (see

Section 6.3.6).

• Realistic: this influences the effectiveness of conveying information and the

effectiveness of portraying a persona (see Section 6.3.6).

• Entertaining: this is to see if the players found the system to be entertaining.

This is because some people may find something entertaining without finding

Chapter 6 — Testing and Results 59

it enjoyable and vice versa. Games need to be enjoyable and/or entertaining

to the player.

• Preferable to cut-scenes: to assess whether the players enjoy the agency

provided.

• Unpredictable: as mentioned, unpredictability gives the illusion of intelligence

and realism.

• Revolutionary: to assess whether the player feels that the system could revolu-

tionise gaming.

• Has lots of potential: with extra work could the system bring something new

and special to the gaming industry.

• Disappointing: to assess whether the player feels that the system could have

been done better.

• Pointless: does the player feel that the system can make no contribution to

gaming.

Table 6.2: The different personality traits that each character has. This list was

presented to playtesters to rate the NPCs and as such some unnecessary traits were

added to add noise to the selection.

Trait Vincent Caecus Percy

Classy X

Alcoholic X

Humble

Rude X X

Cruel X

Kind X

Humanitarian X

Arrogant X

Hooligan X

Eastern European/East Ger-

man

X

British X

Trustworthy

Snob X

Ignorant X

Delusions of Granduer

Vengeful X

Stable X

Chapter 6 — Testing and Results 60

Table 6.2: The different personality traits that each character has. This list was

presented to playtesters to rate the NPCs and as such some unnecessary traits were

added to add noise to the selection.

Trait Vincent Caecus Percy

Volatile X X

Devoted X

Assertive

Aggressive

Good-natured

Lazy X

Organised

Business Acuity X

Patient

Impatient X

American

Friendly

Loyal

Selfish

South African

Depressed

Carribean

Drug addict

6.3.5 Metrics

Metrics are measurements made by the game automatically without the player’s

knowledge [40]. These measurements are made so that developers can gauge players’

styles and update the game experience to suit the players [41]. Metrics have been

implemented in the test game in the form of log files, which can be analyzed using

a Python script. The log files are created by the game by storing the conversation

between the player and the NPC and by logging the following events:

• Stimulus-Response Pairs (SRPs): each interaction between the player and NPC

(player’s message and NPC’s response) is counted.

• “Response Not Found” responses (RNFs) are tagged. The number of occurences

of this tagged can be compared to the total conversation length, as measurement

of the effectiveness of the NPC of conveying information (i.e. the ratio of RNFs

Chapter 6 — Testing and Results 61

to actual responses).

• Mood changes are tagged and can be used to indicate how often the mood

changed, on average, per conversation.

These values are averaged over the total number of conversations and the average

conversation length is also measured. See Section 6.3.6 for the results. See Appendix

A for an excerpt of a conversation.

6.3.6 Results

User Experience Testing

The average conversation length is approximately 22.1 SRPs. The average number

of RNFs is approximately 7.4. This implies that approximately 33.6% of the time

the NPCs did not understand the user input. Considering that the general chatbot

is minimally trained (see Section 6.3.2) and that the different NPCs have different

levels of training, this shows that the NPCs are good at conveying information since

the RNFs are in the minority. There are an average of four mood changes per

conversation, implying that every 5.5 SRPs the NPCs mood changes. This shows

that the NPCs are able to change their moods. There were 42 responses to the

questionnaire. 7 responses were removed because of an incorrectly answered control

question. The remaining responses came from the following demographic:

• Most of the responses were from participants that have jobs (31%) or are

studying at an undergraduate level (34%).

• Most of the responses were from gamers: 49% of the players stated that they

often play games, while 23% stated that they are avid gamers and spend most

of their free-time playing games. 23% stated that they seldom play games.

• Most of the players have never developed a game: 40% stated that they have

never made or designed a game and 14% stated that they have designed games

but never actually made one.

• 80% of the responses are from players doing the questionnaire for the first time.

Of the 35 responses, 42.86% came from the players that interacted with Caecus and

28.57% responses came from players that interacted with Vincent. The rest of the

responses (28.57%) came from players that interacted with Percy. The percentage

of acceptable answers in terms of biographical information about the NPC is given

Chapter 6 — Testing and Results 62

in Table 6.3. A response is rated as acceptable if it matches the NPC’s backstory,

makes sense according to how the NPC dialect and if no response is given where the

NPC does not have any backstory elements related to the question. As can be seen

in Table 6.3, the average percentage of acceptable answers are 52.5%, 43.33% and

70.83% for Vincent, Caecus and Percy. These results may seem counter-intuitive

since Percy has an undeveloped backstory but has a higher average. This could be

attributed to interaction with smarter players, his responses may guide the player

better but the more likely reason is the fact that less information is required for

an acceptable answer because he has less of a backstory. The weighted average

percentage of acceptable responses (calculated by taking the number of players which

interacted with each NPC into account) is 53.81%. This value is high considering

that the players had limited guidance (in the form of a hint box) on what questions

to ask and since they had the freedom to ask anything. As already mentioned, 80%

of the player’s were doing it for the first time, so they would struggle to know what

to ask. Another factor to consider is the limited amount of time that players had.

Taking all of this into account, the NPCs can be considered to be good at conveying

information to the player. Another thing to consider is the fact that the practical

testing does not test the overall system but rather how well the tools were used.

Table 6.3: The percentage of acceptable answers to the biographical questions regard-

ing each character.

Character Information Vincent Caecus Percy

Age 30 13.33 10

Alignment/Friends/Loyalty 70 60 90

Education 30 80 60

Family 80 33.33 100

Favourites (food and colour) 20 66.67 100

Fears 60 33.33 100

Goals and Aspirations 80 40 70

Birthplace and Nationality 10 33.33 30

Employment, Skills and Boss 80 53.33 50

Beliefs, Morality and Comforts 50 33.33 90

Loves, Wants and Addictions 50 40 80

Player’s Missions 70 33.33 70

Average 52.5 43.33 70.83

The respondents identified which personality traits (see Table 6.2) they felt the

NPC that they had interacted with had. The number of respondents to check each

Chapter 6 — Testing and Results 63

trait for each NPC was counted and calculated as a percentage of the number of

respondents to interact with the NPC. An NPC is considered to have a certain trait

if the percentage is 50% or more, since it was decided to treat this as a majority vote

and these traits are added to the “majority vote” set. This was done so that“majority

vote” set can be compared to the traits that the author planned (“author” set) for

each NPC (see Table 6.2).

1. The traits that occur in both the “majority vote” and the “author” set are

added to a set called “common”. This is effectively an AND operation.

2. The traits that occur in either “majority vote” or “author” set or both are

added to a set called “total”. This is effectively an OR operation.

3. The number of traits in the “common” set is the calculated as a percentage of

the number of traits in the “total” set and referred to as “persona accuracy”

below.

Vincent has the lowest persona accuracy of 42.86%, followed by Caecus at 50%

and Percy at 66.67%. The weighted average (calculated by taking the number of

respondents per NPC into account) is 52.72%. Percy was the best at conveying his

persona, with a “persona accuracy” of 66.67%. The reason that Percy has a higher

persona accuracy than Vincent is because Vincent is a fairly neutral character while

Percy is more obvious (see Section 6.3.3). As such the system allows authors to

portray different personas well.

System Experience Testing

The Likert Scale ratings made by the players with respect to the NPC that they

interacted with can be seen in Figure 6.6. The qualitative statements that follow are

based on this figure and compare the number of positive (agree and strongly agree)

responses to the number of negative (disagree and strongly disagree) statements.

Consult the figure for specific values. Most of the players found the game enjoyable

despite the fact that they found it frustrating. These respondents all answered

the control question favourably (agreed that the interaction is text-based). The

feedback on whether the interaction was informative and preferable to cut-scenes

was neutral, tending towards slightly positive. A large majority of the respondents

found the NPC to be unrealistic, but still found it entertaining. The NPCs are

considered unpredictable by most of the respondents. The fact that the majority

of the respondents find the system unrealistic negatively effects the effectiveness of

conveying information and effectiveness of portraying a persona ratings, however,

Chapter 6 — Testing and Results 64

the majority of the people found the game entertaining and enjoyable. Since this is

the goal with gaming these negative attributes can be offset and it can be stated

that the NPCs are effective enough at conveying information. The fact that most

people found interacting frustrating can be attributed to the lack of guidance and

the fact that players can literally type anything to the NPCs, resulting in questions

that do not have answers. This implies that developers using the system have to

balance the amount of guidance they give the players and the verbosity of the NPCs

(models and the general chatbot knowledge-base). Interacting with the characters

therefore becomes a skill that the players must learn and as such can offer a rewarding

experience.

The system experience ratings based on the Likert Scale can be seen in Figure 6.7,

consult the figure for specific values as the following discussion is purely qualitative.

Respondents offered neutral feedback (only slightly positive) about whether the

system is revolutionary or not. The majority of respondents did, however, indicate

that the system has lot of potential and as such further development of the system

could possibly revolutionise gaming. The minority of the respondents found the

system disappointing or pointless. These four ratings indicate that the research is

indeed viable and necessary.

Mood Experience Testing

Mood changes were assessed via a questionnaire (see Section 6.3.4). Most of the

respondents were able to determine the NPC’s initial mood, with only 14% stating

that the mood was indeterminable. Only 29% of the respondents did not notice the

mood changes, while 17% said it was not very obvious, 6% said maybe, 26% said

the mood change was not realistic and 17% stated that there was a definite change

in mood. An equal amount of respondents classified the NPC as Volatile and Very

Stable, at 23%. When asked how the NPC responded to negative treatment, only 7%

of the respondents stated that there was no noticeable change in mood. This figure is

a lot higher (40%) for positive treatment. While the results show that most players

were able to see the NPC’s mood, this element of the system needs improvement (see

Future Research).

Summary of Results

The summary of the results can be found in Table 6.4.

Chapter 6 — Testing and Results 65

Figure 6.6: Graphs indicating how the players rated the NPC according to specific

criteria, using the Likert Scale

Table 6.4: Summary of the results.

Question Qualitative Answers Motivation

How variable are the

transforms?

Extremely variable - this

is desirable.

Theoretical Analysis,

Unpredictability Likert

Scale rating.

Chapter 6 — Testing and Results 66

Table 6.4: Summary of the results.

Question Qualitative Answers Motivation

How effective are the

NPCs at conveying in-

formation?

Good enough at convey-

ing information.

NPC with most correct

biographical answers =

70.83%. Average correct

biographical answers =

53.81%. Percentage

RNFs of SRPs = 33.6%.

Negatively influenced by

player frustration and

lack of realism.

How well does this sys-

tem allow the portrayal

of different personas?

Can portray personas

well, depending on how

well the character has

been written.

Maximum persona ac-

curacy = 66.67%. Av-

erage person accuracy =

52.72%.

Did the player notice a

change in mood?

Yes, however, the mood

changes are harder to

convey.

Average of four mood

changes per conversa-

tion. 29% of respond-

ents stated there was no

mood change and 23%

classified the NPCs as

very stable.

At an implementation

level: “Can the stock

responses of a single

chatbot be transformed

to convey the perso-

nas of different NPCs

and thereby reduce the

amount of effort re-

quired to simulate con-

versation with different

NPCs?”

Yes The results mentioned

above indicate this.

Chapter 6 — Testing and Results 67

Figure 6.7: Graphs indicating how the players rated the system according to specific

criteria, using the Likert Scale

6.4 Authoring Tool Testing

6.4.1 Questionnaire

As can be seen by Figure 6.5, NPCs take many hours to create. As such it was

impractical to get each user create a character (since it was difficult enough to get

people to interact with the test game and fill out a short questionnaire). As such,

each user was given limited instruction (approximately ten minutes each) by using the

NPCs and general chatbot created for the interactive testing as examples. Each user

was then allowed to interact with the GUIs and test the functionality it provides. The

users were then ask to fill out a questionnaire, on the computer. The questionnaire

starts with Likert Scale questions, to get ratings (easy to use, tedious, efficient, fun

to use, feature-rich and understandable). The users were asked open-ended questions

about what they liked best about the system and what disliked the most about the

GUI. This is to ascertain if there are any obvious problems with the GUI and to see

the strengths and weaknesses of the GUI. The user is then given the opportunity to

comment on the GUI.

Chapter 6 — Testing and Results 68

6.4.2 Results

Five users with different educational backgrounds were selected. This was to gauge the

different levels of understanding and compare them for technical and non-technically

minded people. The group comprised of a qualified electrical engineer, a qualified

writer, an indie game developer, a game design student (majoring in writing) and a

lay-person. All the users had relatively similar answers with respect to the Likert

Scale questions, except the lay-person, who found the software a bit more difficult to

understand. The average value of each Likert Scale rating was calculated (overall

average) and compared to the average of ratings excluding the lay-person’s responses

(exclusive average). These averages are given in Table 6.5. As can be seen the

authoring tool is easy to use and understand, efficient and not tedious, fun to use and

feature-rich. Two out of the five users thought the general chatbot visualiser was the

best feature, while the remaining three preferred the templates (lookup and dialect

templates). Everyone found the authoring of the general chatbot a bit difficult and

stated that this could be better visualised. Another concern was brought up that a

decent understanding of the field is needed to use the software. Overall, the system

is easy to use and efficient and, as such, is a success. Some future improvements

could be made to the general chatbot authoring GUI. The users made the following

suggestions:

• Visual programming of the general chatbot.

• Add groups to the general chatbot so that certain NPCs can have access to

certain information, while others do not.

• List synonyms alphabetically.

• Visualise the synonym properties (as is, prefix, suffix and infix) instead of

listing them separately.

• Have a testing environment built into the authoring tool, with some basic

debugging capabilities.

Table 6.5: Results of the Likert Scale questions (1 - strongly disagree, 5 - strongly

agree)

Characteristic Overall Average Excluding Layperson

Easy to use 4.2 4.5

Tedious 1.6 1.5

Efficient 4 4.25

Fun to use 4 4

Chapter 6 — Testing and Results 69

Table 6.5: Results of the Likert Scale questions (1 - strongly disagree, 5 - strongly

agree)

Characteristic Overall Average Excluding Layperson

Feature-rich 4.6 5

Understandable 3.8 4.25

6.5 Conclusion

The generic responses of a single chatbot can be transformed (using dialect and mood)

to convey the personas of different NPCs. This has been proved using theoretical

and practical analysis. The transforms are extremely variable (theoretical analysis

and unpredictability Likert Scale rating), giving the illusion of intellect and realism.

The NPCs are acceptable at conveying information. Most players acknowledged the

mood change but felt that it should be less subtle. The NPCs’ personas can be

perceived in what they say. All these goals are achieveable through the use of an

easy to use, understandable and efficient authoring tool. The general chatbot tool

could be improved, to better visualise AIML so that it is more understandable.

The following chapter contains the conclusions drawn, a summary of the contributions

of the author and suggestions for further research.

70

Chapter 7

Conclusion

7.1 Conclusions

Creating NPCs which respond to text falls into three fields of research: game

development, interactive fiction and textual affect sensing. The prototype NPC

system and authoring tools improve on the shortcomings of existing IF systems

such as Scenejo [27], Prom Week [26] and Façade [25]. The proposed system is

easy-to-use for non-technical people as opposed to the difficulties presented by the

ABL programming language used by Façade. The proposed system makes use of the

code re-use paradigm by allowing the user to create one AIML knowledge-base and

create translation layers to model each NPC. This makes it scalable, unlike Scenejo

which requires a knowledge-base per character per scene. Prom Week and Façade

suffer from set, predictable dialogue, while the proposed system’s transforms are

probabalistic in nature and as such the dialogue is emergent. The research question

based on the shortcomings of these systems is:

Can the stock responses of a single chatbot be transformed to convey

the personas of different NPCs and thereby reduce the amount of effort

required to simulate conversation with different NPCs?

The answer was determined through theoretical and practical analysis. The theoretical

analysis was performed by deriving equations to show the variability of the transforms.

Practical analysis was performed by creating a test game, with three vastly different

NPCs, and having users interact with the game. Results were obtained through

metrics and through voluntary surveys. The research question was answered by

breaking it into four questions, with qualitative answers and motivations based on

Chapter 7 — Conclusion 71

the surveys and metrics. Firstly, the transforms are extremely variable, based on

theoretical analysis as well as the fact that most testers found the NPCs’ dialogue

unpredictable. Secondly, the NPCs are effective at conveying information as they

were able to respond to most of the players’ inputs (only 33.6% of the NPCs responses

were “Response Not Found” responses) and the players were able to get most of the

NPCs’ biographical information (53.81% on average, with a maximum of 70.83%).

Thirdly, the NPCs’ personas can be portrayed through their transformed text (players

chose the traits they believed that the NPCs had and a maximum accuracy of 66.67%

was achieved and the average accuracy is 52.72%). Lastly, the NPCs’ moods change,

but should be more obvious (average of four mood changes per conversation and only

29% of the players did not notice a mood change). From the above it can be seen

that the stock responses of a single chatbot can be transformed to convey different

NPC personas but is best suited to personas that are descriptive as opposed to more

neutral characters (see Percy and Vincent respectively in Chapter 6). The testing of

the hedonic qualities of the software revealed that most people found the authoring

tool ease to understand and use, but the GUI for creating the general chatbot could

be simplified.

7.2 Summary of Contributions

The focus of the research is on creating a translation layer that can convert the

generic responses of a single chatbot to portray different personas of different NPCs.

The transform layer required the development of a model of dialect. The proposed

model contains three types of rules that are applied to a generic response, namely

substitution, appending to the front (prefix) and appending to the back (suffix).

These rules are defined by the author, per NPC, who gives them a probability of

occurrence based on the NPC’s mood. This model and the translation layer is a novel

approach to create NPCs that the player can talk to using typed natural language.

It allows for a single chatbot to be used instead of having a chatbot per NPC. This

makes the system scalable and saves time as training a chatbot takes a lot more

time than defining the NPCs’ dialects (as can be seen in Figure 6.5, Chapter 6).

The author defined a modelling language to store the NPC models and the various

template languages needed to streamline the creation process. Authoring tools, for

creation of the general chatbot’s AIML and creation of the NPCs’ dialects, were

also created and while users found them easy to understand and use they could be

improved. A webserver was created to parse the various files and process the players’

input. A test game was created to test the system and playtesters gave feedback

Chapter 7 — Conclusion 72

of their experiences. The focus of the research is not on creating a new chatbot

architecture and as such AIML is used to store the general chatbot. The focus was

not creating a new AIML interpreter and as such PyAIML [32] was used. The goal

was not to create some novel textual affect sensing technique and so ConceptNet

[22] and SentiStrength [16] frameworks were used. The focus of the research is on

procedural dialogue generation and not plot management, and as such no AI system

was created to control the story.

7.3 Recommendations for Future Research

During testing of the authoring tools it was discovered that users found training of

the general chatbot a bit difficult to understand. This implies the need for some

research into the visualization of AIML. This research could include visualization

of all the functionality provided by AIML, instead of just the subset needed in this

application. The existing A.L.I.C.E. AIML files could be used to test this visualization.

Further research could be conducted into improving the GUIs, possibly by creating

a visual programming interface such as Unreal Kismet [42]. Further research could

be done regarding the dialect rules: some extra functionality could be added such

as conditional “Response Not Found” responses, to provide better context. An AI

system for managing the story, such as a drama manager, could be implemented and

integrated with this system. This could provide collaboration between the author

and creators of existing systems such as Prom Week [26] and Façade [25]. Further

research could be conducted into improving the general chatbot creation process

by using AI techniques to teach the general chatbot by communicating with it via

typing. The existing text-based system could be integrated with speech synthesis

and recognition software to create a truly immersive experience, where the player

chats with a NPC using his/her voice and is able to hear the NPC’s response.

73

References

[1] Rogers, S. (2010), Level Up!: The Guide to Great Video Game Design, Wiley.

[2] Dille, F. & Platten, J.Z. (2007), The Ultimate Guide to Video Game Writing

and Design, Skip Press, USA, first edn.

[3] Video Game Sales Wiki (2012), ‘Video game industry’,

http://vgsales.wikia.com/wiki/Video game industry. Last accessed 1 December

2012.

[4] Brathwaite, B. & Schreiber, I. (2009), Challenges for game designers, Course

Technology.

[5] Österlind, D. (2009), ‘Interactive storytelling.’, http://www.davidosterlind.com/

wp-content/uploads/2010/07/Essay David%C3%96sterlind.pdf. Last accessed

27 December 2013.

[6] A.L.I.C.E. Artificial Intelligence Foundation (2012), ‘A.l.i.c.e. program down-

loads’, http://www.alicebot.org/downloads/programs.html. Last accessed 27

December 2013.

[7] Salen, K. & Zimmerman, E. (2003), Rules of play: Game design fundamentals,

MIT press.

[8] Mateas, M. & Stern, A. (2003), ‘Façade: An experiment in building a fully-

realized interactive drama’, in ‘Game Developers Conference, Game Design

track’, p. 82.

[9] Mateas, M. & Sengers, P. (1999), ‘Narrative intelligence’, in ‘Proceedings AAAI

Fall Symposium on Narrative Intelligence’, pp. 1–10.

[10] Mateas, M. (1999), ‘An oz-centric review of interactive drama and believable

agents’, Artificial intelligence today, pp. 297–328.

[11] Mateas, M. & Stern, A. (2002), ‘A behavior language for story-based believable

agents’, Intelligent Systems, IEEE, vol. 17, no. 4, pp. 39–47.

References 74

[12] Mateas, M. & Stern, A. (2005), ‘Structuring content in the façade interactive

drama architecture’, in ‘Proceedings of Artificial Intelligence and Interactive

Digital Entertainment’, pp. 93–98.

[13] Wardrip-Fruin, N., Mateas, M., Dow, S. & Sali, S. (2009), ‘Agency reconsidered’,

Breaking New Ground: Innovation in Games, Play, Practice and Theory. Pro-

ceedings of DiGRA 2009.

[14] El Shazly, N. & Aly, S. (2011), ‘Profile-based mood extraction from a social net-

work’, http://www.lidi.info.unlp.edu.ar/WorldComp2011-Mirror/ICM4290.pdf.

Last accessed 27 December 2013.

[15] Liu, H., Lieberman, H. & Selker, T. (2003), ‘A model of textual affect sensing

using real-world knowledge’, in ‘Proceedings of the 8th international conference

on Intelligent user interfaces’, ACM, pp. 125–132.

[16] Thelwall, M., Buckley, K., Paltoglou, G., Cai, D. & Kappas, A. (2010), ‘Senti-

ment strength detection in short informal text’, Journal of the American Society

for Information Science and Technology, vol. 61, no. 12, pp. 2544–2558.

[17] Zhang, L., Barnden, J., Hendley, R., Lee, M., Wallington, A. & Wen, Z. (2008),

‘Affect detection and metaphor in e-drama’, International Journal of Continuing

Engineering Education and Life Long Learning, vol. 18, no. 2, pp. 234–252.

[18] Jung, Y., Park, H. & Myaeng, S. (2006), ‘A hybrid mood classification approach

for blog text’, PRICAI 2006: Trends in Artificial Intelligence, pp. 1099–1103.

[19] Liu, H., Lieberman, H. & Selker, T. (2002), ‘Automatic affective feedback in an

email browser’, in ‘In MIT Media Lab Software Agents Group’, ACM.

[20] Bradley, M. & Lang, P. (1999), ‘Affective norms for english words (anew):

Instruction manual and affective ratings’, University of Florida: The Center for

Research in Psychophysiology.

[21] Tausczik, Y. & Pennebaker, J. (2010), ‘The psychological meaning of words:

Liwc and computerized text analysis methods’, Journal of Language and Social

Psychology, vol. 29, no. 1, pp. 24–54.

[22] Liu, H. & Singh, P. (2004), ‘Conceptneta practical commonsense reasoning

tool-kit’, BT technology journal, vol. 22, no. 4, pp. 211–226.

[23] id Software (2011), ‘Rage official site’, http://www.rage.com/en. Last accessed

27 December 2013.

References 75

[24] Bioware (2007), ‘Mass Effect Special Edition Documentary’, Mass Effect Special

Edition Xbox R©video game system Game.

[25] Mateas, M. & Stern, A. (2003), ‘Integrating plot, character and natural lan-

guage processing in the interactive drama façade’, in ‘Proceedings of the 1st

International Conference on Technologies for Interactive Digital Storytelling and

Entertainment’, TIDSE-03.

[26] McCoy, J., Treanor, M., Samuel, B., Reed, A., Wardrip-Fruin, N. & Mateas,

M. (2012), ‘Prom week’, in ‘Proceedings of the International Conference on the

Foundations of Digital Games’, ACM, pp. 235–237.

[27] Spierling, U., Weiß, S. & Müller, W. (2006), ‘Towards accessible authoring tools

for interactive storytelling’, Technologies for Interactive Digital Storytelling and

Entertainment, pp. 169–180.

[28] A.L.I.C.E. Artificial Intelligence Foundation (2012), ‘Aiml: Artificial intelli-

gence markup language’, http://www.alicebot.org/aiml.html. Last accessed 27

December 2013.

[29] Ekman, P. (1992), ‘An argument for basic emotions’, Cognition & Emotion,

vol. 6, no. 3-4, pp. 169–200.

[30] Hendrikx, M., Meijer, S., Van der Velden, J. & Iosup, A. (2011), ‘Procedural

content generation for games: A survey’, ACM Transactions on Multimedia

Computing, Communications and Applications.

[31] Holland, J. (2000), Emergence: From chaos to order, Oxford University Press.

[32] Stratton, C. (2003), ‘Pyaiml (a.k.a program y)’, http://pyaiml.sourceforge.net/.

Last accessed 27 December 2013.

[33] Van Vliet, H. (2008), Software engineering: principles and practice, Citeseer.

[34] Maierhofer Software (2009), ‘NHunspell: Free Spell-Checker, Hyphenation

and Thesaurus for .NET’, http://nhunspell.sourceforge.net/. Last accessed 27

December 2013.

[35] Pickrel, P. (1988), ‘Flat and round characters reconsidered’, The Journal of

narrative technique, vol. 18, no. 3, pp. 181–198.

[36] NCTE/IRA (2010), ‘List of personality traits’,

http://elenaist.edublogs.org/files/2010/11/Personality-Traits-List-of-Adj-

1r20uec.JPG. Last accessed 27 December 2013.

References 76

[37] Duckworth, T. (1998), ‘A dictionary of slang’, http://www.peevish.co.uk/slang/.

Last accessed 27 December 2013.

[38] The American’s guide to speaking British (2000), ‘The Best of British - Slang’,

www.effingpot.com/slang.shtml. Last accessed 27 December 2013.

[39] Allen, I.E. & Seaman, C.A. (2007), ‘Likert scales and data analyses’, Quality

Progress, vol. 40, no. 7, pp. 64–65.

[40] Drachen, A. & Canossa, A. (2009), ‘Towards gameplay analysis via gameplay

metrics’, in ‘Proceedings of the 13th International MindTrek Conference: Every-

day Life in the Ubiquitous Era’, ACM, pp. 202–209.

[41] Tychsen, A. (2008), ‘Crafting user experience via game metrics analysis’, in

‘Proceedings of the Workshop Research Goals and Strategies for Studying User

Experience and Emotion at the 5th Nordic Conference on Human-computer

interaction: building bridges (NordiCHI), Lund, Sweden’, pp. 20–22.

[42] Epic Games (2010), ‘Unreal Kismet User Guide’,

http://udn.epicgames.com/Three/KismetUserGuide.html. Last accessed

27 December 2013.

77

Appendix A

Sample conversation

An excerpt of a conversation between an NPC and a human tester is presented here.

This was gathered during testing (Chapter 6). Included in the presented conversation

are indications of mood changes and NPC RNF responses, indicated by parentheses.

A.1 Conversation with Vincent

Player: Hi

Vincent: HELLO

Player: What’s your name?

Vincent: I AM VINCENT JACKSON

Player:How are you?

Vincent: I AM EXTREMELY PATIENT BUT THAT’S AN INAPPROPRIATE

THING TO SAY (No response)

Player: Okay

Vincent: INDEED... ASK ME SOME RELEVENT. (No response)

Player: What do you want to achieve?

Vincent: IF I COULD I WOULD TRADE ALL MY MONEY TO BE HUMAN

AGAIN. I WANT TO EXPERIENCE SUNLIGHT AND I WISH I COULD EAT

GARLIC.

Player: Who are your allies?

Vincent: WHY YOU (SIGH)... I AM LOYAL TO MY FRIENDS. I DESPISE THE

Appendix A — Sample conversation 78

PETTY SO-CALLED PURE BLOODS AND THIS HUNTER FELLOW.

(Mood changed to neutral)

Player: What are pure bloods?

Vincent: A PURE-BLOOD IS A VAMPIRE THAT WAS BORN A VAMPIRE.

Player: What is Hunter?

Vincent: A REAL PAIN IN MY NECK. HE WIPES OUT ALL VAMPIRES,

TURNED OR PURE-BLOOD, KILLER OR HARMLESS. HE KILLS WITHOUT

QUESTION OR MERCY. TO HIM A VAMPIRE IS JUST A CORPSE.

Player: What are the turned?

Vincent: HMMM... THE TURNED ARE PEOPLE THAT SURVIVE A VAMPIRE

BITE AND BECOME A VAMPIRE THEMSELVES.

Player: Are you a vampire?

Vincent: (SIGH)... YES I AM ONE OF THE DAMNED

Player: What must I do?

Vincent: CAPTURE HUNTER...

Player: What is my mission?

Vincent: CAPTURE HUNTER...

(Mood changed to negative)

Player: What shall I do?

Vincent: (SIGH)... HELP ME FINISH THIS SERUM THAT’LL WIPE OUT

ALL THE SO CALLED PURE. IMAGINE A FUTURE WHERE OUR PEOPLE

ARE FREE AND WE NO LONGER HAVE TO ANSWER TO CAECUS OR

ALEXANDER.

Player: Who is Caecus?

Vincent: JUST A PURE-BLOOD. SHE KILLED MY FAMILY AND TURNED ME.

AND SHE’S A THORN IN MY SIDE BECAUSE AS THE RULER OF THE HOUSE

OF STEINER SHE HAS POWER OVER US. I WILL HAVE MY VENGEANCE

AGAINST HER.

Player: Who is Alexander?

Vincent: (SIGH)... SO CALLED RULER OF ALL THE VAMPIRES. HIS DEATH

Appendix A — Sample conversation 79

SHALL COME SOON ... SIGH

Player: What is House of Steiner?

Vincent: OH.. THE HOUSE OF STEINER. A BUNCH OF ARROGANT PURE-

BLOODS LEAD BY CAECUS. KILL HER AND THE HOUSE WILL PROBABLY

CRUMBLE.

Player: What do you crave?

Vincent: WHY YOU (SIGH)... I LOVE MONEY BUT I LOVE BLOOD EVEN

MORE. BUT I DO NOT BELIEVE IN KILLING PEOPLE, JUST ANIMALS.

Player: What are your fears?

Vincent: OH (SIGH) I FEAR DEATH, SINCE I AM DAMNED THERE IS NOTH-

ING GOOD WAITING FOR ME ON THE OTHER SIDE.

Player: Who is your boss?

Vincent: TECHNICALLY, I ANSWER TO ALEXANDER. BUT THAT WILL

SOON CHANGE.

Player: Who are your friends?

Vincent: I AM LOYAL TO MY FRIENDS. I DESPISE THE PETTY SO-CALLED

PURE BLOODS AND THIS HUNTER FELLOW ... SIGH

Player: What is your job?

Vincent: HMMM... I RUN THE HOUSE OF JACKSON. WE TAKE IN THE

NEWLY TURNED AND HELP THE FIGHT THEIR URGES BY FEEDING

THEM ANIMALS’ BLOOD ... SIGH

Player: Schooling?

Vincent: (SIGH)... THE HOUSE OF JACKSON LOOKS AFTER EVERYONE

INNOCENT. (No response)

Player: School?

Vincent: I AM A HARVARD MAN, THROUGH AND THROUGH. IN MY OLD

LIFE I WAS SUCCESSFUL LAWYER.

Player: What do you love?

Vincent: I LOVE MY TURNED BRETHREN LIKE FAMILY. I STILL LOVE

SAMANTHA AND WISH TO BE WITH HER ONE DAY.

(Mood changed to positive)

Appendix A — Sample conversation 80

Player: Who is Samantha?

Vincent: SHE WAS THE LOVE OF MY LIFE BUT CAECUS TOOK HER FROM

ME AND TURNED ME INTO WHAT I AM NOW. I CANNOT BELIEVE THAT

I USED TO WANT PEACE WITH THOSE PURE-BLOOD MONSTERS.

Player: Do you believe in God?

Vincent: INDEED... I BELIEVE THAT THERE MUST BE SOMETHING BETTER

THAN THIS.

	A Chatbot Service for use in Video Game Development
	Declaration
	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	2 Background of digital games, interactive fiction and textual affect sensing
	2.1 Introduction
	2.2 Game Development
	2.2.1 Taxonomy
	2.2.2 Narrative

	2.3 Interactive fiction
	2.4 Textual Affect Sensing
	2.5 Conclusion

	3 Review of Existing Systems
	3.1 Introduction
	3.2 Non-linear Games
	3.2.1 Rage
	3.2.2 Mass Effect

	3.3 Existing Interactive Fiction Systems
	3.3.1 Façade
	3.3.2 Prom Week
	3.3.3 Scenejo

	3.4 Existing Affect Sensing Frameworks
	3.4.1 ConceptNet
	3.4.2 SentiStrength

	3.5 Conclusion

	4 The Problem of creating Interactive Non-Playable Characters
	4.1 Introduction
	4.2 Motivation
	4.3 Focus of the research
	4.4 Scope
	4.5 Methodology
	4.6 Conclusion

	5 Prototype System Implementation
	5.1 Introduction
	5.2 High Level Overview
	5.3 Communication protocol
	5.4 General Chatbot GUI
	5.5 Model of Dialect
	5.6 Mood detection
	5.7 NPC GUI
	5.8 Conclusion

	6 Testing and Results
	6.1 Introduction
	6.2 Theoretical Analysis
	6.3 Interactive Testing
	6.3.1 Test game implementation
	6.3.2 General Chatbot
	6.3.3 NPCs
	6.3.4 Questionnaire
	6.3.5 Metrics
	6.3.6 Results

	6.4 Authoring Tool Testing
	6.4.1 Questionnaire
	6.4.2 Results

	6.5 Conclusion

	7 Conclusion
	7.1 Conclusions
	7.2 Summary of Contributions
	7.3 Recommendations for Future Research

	References
	A Sample conversation
	A.1 Conversation with Vincent

