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A B S T R A C T

The problem of a two-dimensional, pre-existing, fluid-driven fracture
propagating in a permeable rock is considered. The flow of fluid in the
fracture is laminar and the fracture is driven by a viscous incompress-
ible Newtonian fluid. Lubrication theory is applied to the fracturing
fluid and the Cauchy principal value integral derived from linear elas-
tic fracture mechanics is used to describe the elasticity equation relat-
ing the fluid pressure to the fracture half-width. The fluid leak-off at
the fracture interface into the rock formation is modelled in two ways,
namely, using a leak-off velocity term and by using Darcy’s law. Ap-
propriate initial and boundary conditions for the model are stated and
discussed. Similarity solutions are derived for the fracture half-width,
length, leak-off velocity and leak-off depth. Numerical results are ob-
tained for a nonlinear diffusion equation with leak-off velocity term
and for a nonlinear diffusion equation coupled with Darcy’s model. The
results are illustrated using computer generated graphs.
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Mathematics, rightly viewed, possesses not only truth, but supreme
beauty — a beauty cold and austere, like that of sculpture, without

appeal to any part of our weaker nature, without the gorgeous
trappings of painting or music, yet sublimely pure, and capable of a

stern perfection such as only the greatest art can show. The true spirit
of delight, the exaltation, the sense of being more than Man, which is

the touchstone of the highest excellence, is to be found in
mathematics as surely as poetry.

— Bertrand Russell
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Part I

O V E RV I E W O F T H E S T U D Y



1
I N T R O D U C T I O N A N D B A C K G R O U N D

1.1 I N T R O D U C T I O N

Reservoir stimulation and artificial lifting are the two main activities for
a production engineer in the oil and gas industry [16]. The main pur-
pose of stimulation is to increase well productivity. One of the primary
engineering techniques used to increase well productivity is hydraulic
fracturing. Hydraulic fracturing has made it possible to access under-
ground mineral resources where they were previously inaccessible and
it has proved to be a very useful and standard technique for petroleum
production, extraction of gas and the generation of geothermal energy
[20]. This led many scientists and engineers, including mathematicians,
to take an interest in this technique. Simple mathematical models of
hydraulic fractures were introduced between the 1940s and 1950s [9,
11, 31, 35, 80]. These models included (i) the Khristianovic-Geertsma-
de Klerk (KGD) model [28, 44]; (ii) the Perkins-Kern-Nordgren (PKN)
model [63, 66]; and (iii) the radial or penny–shaped model [79]. A
notable number of hydraulic fracture problems in literature have been
modelled with the use of the PKN formulation which gives a simple
linear relationship between the net-fluid pressure and the fracture half-
width [7, 21, 43]. The PKN concept is based upon the assumptions of
plain strain condition in vertical planes [69, 87]. One of the shortcom-
ings of this model is that the net pressure necessarily vanishes at the
fracture tip and therefore the stress intensity factor K cannot be de-
fined. The stress intensity factor can be described as a numerical value
that measures the magnitude of the effect of the stress singularity at
the tip of the fracture [24]. Essentially, the stress intensity factor pro-
vides a convenient mathematical framework for the study of fracture
development and propagation.

In this thesis, we will extend the analysis of a pre-existing fluid-
driven fracture from a case in which the PKN model is used to describe
the elasticity equation to a more complex case in which the elasticity
of the rock is modelled using the Cauchy principal value integral. This
model will be formulated to describe the evolution of the fracture prop-
agating in a permeable rock. The flow of fluid inside the porous rock
matrix will be modelled in two ways, firstly, by using a leak-off velocity
term and secondly, by using the Darcy’s fluid flow model.
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1.2 B A C K G R O U N D T O H Y D R AU L I C F R A C T U R I N G 3

1.2 B A C K G R O U N D T O H Y D R AU L I C F R A C T U R I N G

Hydraulic fracturing is a key process in petroleum and mining engi-
neering. In this process, fluid is pumped into a rock fracture at ultra-
high pressure in order to extend it. If the encompassing formation is
permeable then some proportion of the injected fluid will escape at
the fracture walls into the formation. Furthermore, if the fracturing
fluid is water then the process is called hydrofracturing [17]. Frac-
tures can occur as a result of a natural process or can be man-made.
Kilometres-long volcanic dikes driven by magma can be considered as
natural examples while hydraulic fractures initiated to extracting shale
gas or improving well productivity in reservoir rocks with low perme-
ability are considered examples of man-made fractures [4, 83]. When
the process of hydraulic fracturing was introduced in the 1940s, it was
just a timid technology. Its proliferation took place in the 1950s [16].
Over the years, this technology became more important due to its ap-
plication in geothermal projects and shale gas exploitation [94]. Other
applications of hydraulic fracturing include tunnel and dam construc-
tion, carbon sequestration, rock burst mitigation, block cave mining,
groundwater remediation, and water well development [5]. It is esti-
mated that seventy percent (70%) of gas wells and fifty percent (50%)
of oil wells that have been drilled in North America since the 1950s
have been hydraulically fractured [88].

In general, the hydraulic fracturing process consists of the follow-
ing main phases: fracture initiation (in a case of zero-initial length
fracture), fracture propagation, the flow of fluid through the channel
and fluid leak-off into the formation [71]. During this process, four
different types of mechanics are involved, namely, rock, fracture, fluid,
and thermal. The rock mechanics describes the deformation of the sur-
rounding rock due to fluid pressure; fracture mechanics describes the
mechanisms of failure and parting that occur near the fracture tip; fluid
mechanics describes the flow of fluid inside the fracture; and thermal
mechanics describes the interaction and the exchange of heat between
the formation and the fracturing fluid [16]. The combination of these
mechanics results in the study of fracture propagation [88]. Analytical
models to describe each of the responses have been developed.

According to Adachi et al. [4], the basic mathematical equations gov-
erning the hydraulic fracturing process are: (i) the elasticity equation;
(ii) the fluid flow equation; (iii) the leak-off term; (iv) the proppant
transport equation; and (v) the fracture growth condition. In this the-
sis, we will utilize these equations to describe the evolution of the hy-
draulic fracture propagation.



1.3 L I T E R AT U R E R E V I E W 4

1.3 L I T E R AT U R E R E V I E W

Since the introduction of hydraulic fracturing into the reservoir stim-
ulating practice, several introductory and key papers focusing on hy-
draulic fracture modelling have been published. These papers formed
the foundation of hydraulic fracture modelling. The first two-dimensional
fracture model was developed in the work of Khristianovich and Zhel-
tov [44]. Carter [9, 16] neglected both solid mechanics and fluid viscos-
ity and focused on leak-off when investigating the hydraulic fracture
problem. His work resulted in the most widely used leak-off model.
Perkins and Kern [16, 66] assumed that fracture mechanics was neg-
ligible and concentrated on fluid flow. An extensive review of existing
fracture models is given in [69].

Smirnov and Tagirova [77] obtained self-similar solution to the prob-
lem of hydraulic fracture formation in a permeable medium. They mod-
eled the elasticity of the rock using the PKN formulation and the fluid
leak-off through the fracture walls using Darcy’s law. Self-similar solu-
tions were determined when either the fluid flow rate or the net-fluid
pressure was specified at the fracture entrance. Emerman et al. [17]
presented similarity solutions for laminar and turbulent fluid fracture.
They showed that flow resistance of the fluid is more important than
the fracture resistance of the solid for most geological problems.

Fitt et al. [27] obtained similarity solution for a pre-existing hy-
draulic fracture embedded in an impermeable rock. Fareo and Mason
[21] modified the model to a fluid-driven fracture propagating in a per-
meable rock with 1D fluid leak-off at the fracture walls. Fareo and Ma-
son [21] showed that when the fracture half-width is proportional to
the leak-off velocity, there exists some regions where there is extraction
of the fluid at the fracture entrance and inflow of fluid at the fracture
walls. Fareo and Mason [22, 23] investigated a fracture problem in
which the fracturing fluid is non-Newtonian. A review of magma-filled
fractures is given by Rubin [72].

Dontsov [14] investigated a penny-shaped fluid-driven fracture that
accounts for fluid viscosity, fracture toughness, and leak-off. He ob-
tained a closed-form approximate solution for the penny-shaped hy-
draulic fracture. Kanaun [42] investigated the propagation of hydraulic
fracture crack in an elastic medium with varying fracture toughness. A
comparison study of the Khristianovic-Geertsma-de Klerk model (KGD),
Perkins-Kern-Nordgren model and a modified pseudo-3D model was
performed by Nasirisavadkouhi [59].

Nchabeleng and Fareo [61, 62] derived group invariant and numeri-
cal solutions for a two-dimensional fracture driven by a laminar incom-
pressible Newtonian fluid in a permeable rock. The PKN approximation
was used to close the model. A fracture problem in which the fluid is
non-Newtonian and the Cauchy principal integral is used to model the
elasticity equation is considered in [67] .
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Spence and Turcotte [83] derived a similarity solution for a two-
dimensional fracture propagating in an impermeable medium. They
argued that their solution was in good agreement with numerical so-
lutions obtained by Spence and Sharp [82]. The technique that was
used by Spence and Sharp [82] when deriving the self-similar solu-
tions for a elastohydrodynamic cavity flow was to expand the cavity
height in terms of Chebyshev polynomials for which the elastic pres-
sure distribution can be calculated in closed form. Subsequently, they
minimized a quadratic functional that depends non-linearly on the co-
efficients of the polynomials to meet the boundary condition of lubrica-
tion theory. They augmented a Chebyshev expansion by a term having
the right singular behaviour at the origin, which results in rapid conver-
gence. Mitchell et al. [54] presented an asymptotic framework which
describes interaction between fracture toughness, fluid viscosity and
leak-off.

Fitt et al. [25] considered the propagation of a one-dimensional fluid-
filled fracture in a hot dry rock geothermal energy reservoir. Two crack
laws (a linear law and a hyperbolic law) are considered as well as two
flow laws (a cubic law and a linear law). It was found after perform-
ing a perturbation analysis that for some law combinations, a strained-
coordinate analysis is required, whilst for others a matched asymptotic
approach is needed. In the latter case the problem may be reduced to
that of solving a linear, non-homogeneous singular integrodifferential
equation to determine the behaviour in the boundary layer.

Tvardvsky [86] investigated stress intensity factors for anisotropic
layered composites. He analyzed the influence of isolated collinear
cracks in every other layer of a laminate with three or more layers.
He implemented Fourier transform to reduce the problem to a singu-
lar integral equation. He found stress intensity factors for different
layer thickness ratio, fracture length and composite material proper-
ties. Hayes [33] investigated the origins of the stress intensity factor
approach to fracture.

Stoeckhert et al. [85] investigated fracture initiation and propaga-
tion process for a highly anisotropic rock with a special interest in
slate rock. He performed a series of tensile fracturing laboratory ex-
periments under uniaxial loading. The experiments were repeated for
triaxial loading. A test utilising the fairly isotropic bebertal sandstone
as a somewhat isotropic rock was likewise performed for comparison.
Tensile fractures were created using the sleeve cracking technique in
which a polymer tube put inside the bore-hole is pressurized to cre-
ate tensile fractures propagating from the bore-hole. In the uniaxial
test arrangement, the loading was varied with a specific end goal to
ascertain the transition from strength-dominated fracture propagating
at low loading magnitudes to stress-dominated fracture propagation at
high loading magnitudes.
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In their study, Asadi et al. [8] examined the initiation and propaga-
tion of hydraulic fracturing with the use of laboratory and numerical
methods. The results obtained were compared with analytical meth-
ods. They use a series of laboratory tests to determine the fracture
mechanics parameters as input parameters for hydraulic fracture simu-
lation calculations. The laboratory tests showed that heterogeneity of
the specimens greatly affects the initiation and propagation of the frac-
tures. Asadi et al. [8] extracted the stress intensity factor in order to
investigate the manner in which fractures initiate and propagate. Ac-
cording to linear elastic fracture mechanics, when the stress intensity
factor is equal to fracture toughness, the fracture will propagate. It was
shown by comparison that the Numerical results and the experimental
results had good relation. The stress distribution was compared with
the theoretical solution near the tip of the fracture.

Sheibani and Olson [76] considered the determination of stress in-
tensity factor of a three-dimensional fracture using the displacement
discontinuity method. They investigated a numerical method to eval-
uate the stress intensity factor in Mode I, II and III at the tip of the
fracture. The stress field near the crack tip controls fracture propaga-
tion. Linear elastic fracture mechanics was used to study the fracture
development. Zeeb and Konietzky [95] and Zeeb, Wolgast and Koniet-
zky [96] conducted three-dimensional numerical calculations by using
the DEM-code 3DEC for hydraulic fracturing. Detailed reviews of var-
ious numerical methods applied in rock mechanics can be found in
[40].

Mondal and Mandal [56] developed an analytical method for solv-
ing singular integral equations of the first kind with Cauchy kernel.
They used Chebyshev polynomials of the first kind, Tn(x), second kind,
Un(x), third kind, Vn(x), and fourth kind, Wn(x), to obtain complete
analytical solutions. Eshkuvatov et al. [18] studied approximate meth-
ods for solving Cauchy type singular integral equations of the first kind
over a finite interval. They showed that the method of approximate so-
lution gives an exact solution when the force function is linear. Similar
conclusion is given by Chakrabarti and Berge [10].

Kim [45] solved Cauchy type singular integrals equations by using
Gaussian quadrature and chose the zeros of Chebyshev polynomials of
first and second kinds as the collocation and abscissa points. Srivastav
and Zhang [84] solved the Cauchy type singular integral equations by
using the general quadrature-collocation nodes. Abdulkawi [1] used
differential method to obtain numerical solution of a singular integral
equation of the first kind with Cauchy kernel.

In their paper, Seifi et al. [75] proposed a numerical method to solve
Cauchy type Fredholm integral equations of the first kind. A collocation
technique based on Bernstein polynomials was used to approximate
the solution of several cases of Cauchy type Fredholm integrals. By
transforming their problem into a system of linear algebraic equations,



1.4 T H E O R E T I C A L B A C K G R O U N D 7

Seifi et al. [75] showed that their approach is computationally simple
and attractive.

1.4 T H E O R E T I C A L B A C K G R O U N D

1.4.1 Mechanics of hydraulic fracturing

1.4.1.1 Linear Elastic Fracture Mechanics and the stress intensity factor

The use of fracture mechanics approach to hydraulic fracture criterion
was introduced by Abou-Sayed et al. [2]. The approach is based on the
linear elastic fracture mechanics assumptions. Linear elastic fracture
mechanics is the basic theory of fracture. It was originally developed
through the work of Griffith [29] and later completed by Irwin [39].
Linear elastic fracture mechanics deals explicitly with sharp cracks in
elastic bodies and assumes that the material is isotropic and linearly
elastic. The above-mentioned assumptions respectively implies that the
material properties do not depend on direction, and these materials
have only two independent elastic constants which are Young’s modu-
lus and Poisson’s ratio. It should be noted that there exists a small zone
termed plastic zone in which the linear theory of elasticity is invalid.
This zone is also referred to as the inelastic zone or fracture process
zone [24].

The introduction of the stress intensity factor was a significant achieve-
ment in the theoretical foundation of linear elastic fracture mechanics.
The stress intensity factor K is a parameter that is used to predict the
stress state near the tip of the fracture. This factor depends on the
fracture shape, fracture size, loading and geometric boundaries. An im-
portant feature of the stress intensity factor is that it determines the
stress field in the vicinity of the fracture tip. There are a number of
publications on the results of calculations of stress intensity factors for
different geometries and loading cases [85–87, 89]. Figure 1 depicts
the three different types of loading that a crack in a body can be sub-
jected to.

According to Rummel and Winter [73], hydraulic fracture will hap-
pen when the Mode I stress intensity factor (KI) at tip of the fracture
reaches a critical fracture toughness (KIC), that is, when KI is kept
nearly equal to the critical stress intensity factor KIC, the fracture will
start to grow. The fracture toughness parameter illustrates the resis-
tance force to fracture growth [73]. It should be mentioned that stress
intensity factors also exists for Mode II and III. There are numerous
approaches available to determine the stress intensity factor. The most
commonly used methods are [8]: numerical methods, analytical meth-
ods, and experimental methods. Generally, the stress intensity factor
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Figure 1: (a) Mode I (Opening) (b) Mode II (Sliding) and (c) Mode III (Tear-
ing) deformations [6].

KI for a simple case of a fracture in an infinite sheet is expressed in the
form

KI = σ
√

πa, (1.4.1)

where a is a length scale characterising the fracture geometry and σ

is the tensile stress perpendicular to the fracture. Expressions for the
stress intensity factor for some additional geometries are given in Table
1.

Type of fracture Stress intensity factor, KI

Center fracture in an infinite plate with length 2a σ
√

πa

Edge fracture in a semi-infinite plate with length a 1.12σ
√

πa

Central penny-shaped fracture in an infinite

plate with radius a
2σ
√ a

π

Center fracture in a plate of width W with length

2a
σ
√

W tan
(

πa
W

)
2 symmetrical edge fractures in a plate of total

width W, each with length a
σ
√

W
[
tan

(
πa
W

)
+ 0.1 sin

( 2πa
W

)]
Table 1: Stress intensity factors for different geometries.
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1.4.2 Fracture geometry models

In the course of recent years, several models which can be broadly
classified into two-dimensional and three-dimensional have been de-
veloped to study fracture propagation. These models form an integral
part in the understanding and design of hydraulic fracture treatments.
In this research, we restrict our discussion to two-dimensional mod-
els since we will be investigating a two-dimensional hydraulic fracture.
The three most commonly used geometry models for describing the hy-
draulic fracture process are the KGD model [28], the PKN model [66],
and the Penny-Shaped fracture model [49]. It is worth noting that both
the PKN and KGD geometries are based on the plane strain assumption.
A detailed history of hydraulic fracture models is given in [4].

1.4.2.1 The Khristianovic-Geertsma-de Klerk model

The KGD model is one of the classic two-dimensional hydraulic fracture
models that has been dominant in the routine prediction of hydraulic
fractures. This model, which is based on the assumptions of plane
strain condition in horizontal planes, was first developed by Khristianaovic
and Zheltov [44] in 1955. It was further developed by Geertsma and
de Klerk [28] in 1969. The horizontal plain strain condition holds true
only if the ratio of the height to length is near unity or less. The KGD
[28] model takes into account the fracture mechanics of the fracture tip
and also assumes that fluid flow inside the fracture as well as the frac-

Figure 2: The KGD model [15].
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ture propagation are one-dimensional. The fracture height is consid-
ered to be constant. The KGD geometry is depicted in Figure 2, where
w(x, t) represents the fracture width, h f , the fracture height, L(t), the
fracture length and rw is the wellbore radius.

1.4.2.2 The Perkins-Kern-Nordgren model (PKN)

Perkins and Kern [66] developed equations to calculate the fracture
length and width for a fixed height fracture. In their work, Perkins and
Kern [66] adapted the classic Sneddon plane strain crack solution to
formulate the PK model [80]. The PK model was one of the ground-
breaking achievement in this research area. Later Nordgren [63] im-
proved this model by including the effects of fluid loss, hence, the
model is now referred to as the PKN model. The PKN formulation is
based on the assumption that fracture toughness is negligible, and that
the fracture has a constant height and an elliptical cross-section. In
addition to this, gravitational effects are not taken into account. The
geometry of a PKN fracture is shown in Figure 3. Figure notations are
the same as the KGD model. The specific assumptions for this model
are given in [63, 93].

Figure 3: The PKN fracture model [69].

1.4.2.3 The radial fracture model

Radial fractures were considered by both Perkins and Kern [66] and
Geertsma and de Klerk [28]. Their studies led to the development of
the radial model. The radial model is relevant when there are no barri-
ers constraining the growth of the fracture height or when a horizontal
fracture is considered. The radial fracture model, also known as the
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penny-shaped model, assumes that the fracture propagates within a
given plane and that the geometry of the fracture is symmetrical with
respect to the point at which fluid is injected (see Figure 4).

Figure 4: The Penny–Shaped model [28].

1.4.2.4 Comparison between two-dimensional models

The two-dimensional geometries discussed in the preceding sections
contain a number of assumptions and properties. In Table 2, we give a
comparison of these two-dimensional hydraulic fracture models.

Model Assumptions Shape Suitable application

KGD

Fixed height, Horizontal plane strain,

Fluid flow is one-dimensional

along the fracture, Fracture propagation

is dominated by the tip process

Rectangular cross section Height� length

PKN

Fixed height, Vertical plane strain,

Fluid flow is one-dimensional

along the fracture, Neglects fracture

mechanics

Elliptical cross section Height� length

Radial
Propagates in a given plane, Symmetrical

to the wellbore
Circular cross section Radial

Table 2: Comparison between traditional two-dimensional hydraulic fracture
models

1.4.3 Darcy’s law

Leak-off phenomenon is common in permeable rock formations where
some volume of the fracturing fluid is lost due to infiltration into the
surrounding formation. There exists various leak-off models that can be
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used to describe the flow of fluid in a porous medium each accounting
for different effects and scenario settings. The most commonly used
leak-off model was developed in the work of Carter [9] and it is given
by

uL =
CL√

t− texp
, (1.4.2)

where uL is the leak-off velocity, CL, the leak-off coefficient, t, the
current time and texp, the time at which point uL was exposed. Even
though over the years the Carter’s model has been the standard model
in oil field applications, it is not without limitations. An important lim-
itation of the Carter’s leak-off model is that it requires the injection
pressure to not propagate beyond the current extent of the fracture
[65]. Hagoort et al. [30] showed that Carter’s model overestimates
the fracture propagation rate by a factor of two compared to the their
three-dimensional numerical model. It was also shown in [46] that the
particle velocity at the fracture tip becomes infinite if Carter’s model
is coupled with a non-local elasticity operator such as the KGD model.
Moreover, the applicability of Carter’s model is limited to short peri-
ods of time. In this research work, the flow of fluid through the inter-
face into the rock formation will be modelled using Darcy’s empirical
flow law which is valid under a limited range of low velocities. The
law resulted from experimental studies carried out by Henry Darcy in
1856. In his investigation, Darcy was concerned with the flow of water

Figure 5: Schematic of Darcy’s experimental equipment [13].

through unconsolidated sand filters for water purification. The filter
that he designed to use for his experiments is shown in Figure 5. As
a result of his experiments, Darcy provided an empirical equation that
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related the flow of fluid through porous materials to the pressure gra-
dient, which is given by

Q
A

= − κ

µ
∇pd, (1.4.3)

where Q is the volume flow rate, A is the cross-sectional area, κ is the
rock permeability, µ is the dynamic viscosity and pd is the fluid pres-
sure driving the fluid that has leaked-off through the interface. Hubbert
[36] showed that it is possible to derive Darcy’s law from Navier-Stokes
equation of motion of a viscous fluid.

1.5 O U T L I N E O F R E S E A R C H

In this thesis, we study two related hydraulic fracture problems. A two-
dimensional hydraulic fracture propagating in a permeable rock un-
der the influence of a Newtonian fluid injected into the fracture under
high pressure is considered. Since the fluid-rock interface is permeable,
fluid leaks through it into the surrounding rock formation in the di-
rection normal to the interface, with velocity vn. In the first problem,
an equation involving vn is not given apriori. A relationship between
the leak-off velocity vn(t, x) and fracture half-width h(t, x) is assumed.
In the second problem, we consider a two-dimensional hydraulic frac-
ture problem where Darcy’s empirical flow model is used to describe
the fluid leak-off through the permeable fluid-rock interface. The the-
sis consists of eight chapters and is divided into three parts. Part I is an
introduction and a background. It consists of Chapter 1 and 2. Part II is
concerned with mathematical preliminaries and models. It consists of
Chapter 3 and 4. Part III contains the main results and conclusions. It
consists of Chapter 5 to 8.

In Chapter 2, we review and give a detailed discussion on integral
equations.

In Chapter 3, numerical methods for solving Cauchy-type singular
integral equations are introduced. We start by solving a simple singu-
lar integral equation analytically subject to some prescribed boundary
conditions. We then solve the same singular integral equation using
four different numerical techniques. The analytical solution was used
to evaluate the accuracy of the numerical solutions.

In Chapter 4, the mathematical model and governing equations are
derived. We begin by introducing the problem and stating the general
assumptions around the problem. The primary physical mechanisms
involved are outlined and, finally, we derive the similarity solutions for
the hydraulic fracture problem.

In Chapter 5, we solve the problem of a fluid-driven fracture prop-
agating in a permeable rock when the leak-off velocity, vn, is propor-
tional to the half-width of the fracture, h, using numerical techniques
developed in Chapter 3. The numerical solutions are presented and
discussed.
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In Chapter 6, a related problem of a fluid-driven fracture in perme-
able rock where the leak-off velocity is proportional to the gradient
of the fluid-rock interface is considered. Numerical solutions are also
obtained and discussed.

In Chapter 7, a two-dimensional fluid-driven fracture with Darcy
flow through the fluid-rock interface and into the rock formation is
considered. Numerical solutions for the governing equations are inves-
tigated.

Finally, conclusions drawn from the results are given in Chapter 8.



2
I N T E G R A L E Q UAT I O N S

2.1 I N T R O D U C T I O N

In this chapter, we will derive the mathematical model for a two-dimensional
fluid-driven fracture propagating in a permeable rock and the Cauchy
principal value integral derived from linear elastic fracture mechan-
ics will be used to model the elasticity of the rock. The presence of
the Cauchy principal value integral in the mathematical formulation
poses a challenge in solving the mathematical problem. Thus, it is
appropriate to introduce integral equations. Problems having Cauchy
principal value integrals have been solved using a number of meth-
ods such as linear spline method, Chebyshev method, finite difference
method, Galerkin method, etc. Several books on singular integral equa-
tions have been published. Worth mentioning is the book by Mushkel-
ishvili [58]. We will begin this chapter by reviewing integral equations,
in particular, singular integral equations; and their method of solution.

2.2 B A C K G R O U N D T O I N T E G R A L E Q UAT I O N S

Integral equations are equations in which some unknown function ψ(x)
to be determined appears under one or several integral signs [70, 91,
92]. The name integral equation was first coined by du Bois-Reymond
in 1888. More details about the origins of integral equations can be
found in [19, 34, 74]. Integral equations arise in several fields of sci-
ence; for example, in elasticity, potential theory, fluid mechanics, biome-
chanics, approximation theory, plasticity, game theory, queuing theory,
medicine, acoustics, heat and mass transfer, economics [12]. Many
physical problems can be described or stated mathematically using dif-
ferential equations. These differential equations can be transformed
into problems of solving some approximate integral equations. Specifi-
cally, initial value problems can be converted to Volterra integral equa-
tions or vice versa. Similarly, boundary value problems can be con-
verted to Fredholm integral equations or vice versa [12].

A general form of an integral equation in ψ(x) is [70, 92]

δ(x)ψ(x) = f (x) + λ
∫ β(x)

α(x)
K(x, t)ψ(t)dt, (2.2.1)

where δ(x) and f (x) are forcing functions, α(x) and β(x) are the limits
of integration, λ is a constant parameter (nonzero, real or complex),
K(x, t) is the kernel of the integral equation, and ψ(x) is the unknown
function to be determined. It is important to state that the forcing func-

15
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tions δ(x) and f (x) together with the kernel function K(x, t) are pre-
scribed in advance. It can be easily seen in (2.2.1) that the unknown
function ψ(x) appears under the integral sign.

In what follows, we will review different types of integral equations
and outline their basic definitions and properties.

2.3 C L A S S I F I C AT I O N O F I N T E G R A L E Q UAT I O N S

There are many types of integral equations. The classification of in-
tegral equations depends on several factors such as the limits of in-
tegration, placement of the unknown function, nature of the forcing
functions, the singular behaviour of the integral equation, linearity, ho-
mogeneity, the kind of the integral, etc. Similar to ordinary and partial
differential equations, integral equations can be classified as linear or
nonlinear; and also homogeneous or nonhomogeneous [12, 70, 92]. A
linear integral equation is one in which the unknown function ψ(x) un-
der the integral sign is raised to the power of 1, i.e., it occurs linearly.
However, an integral equation is called nonlinear if the unknown func-
tion ψ(x) under the integral sign is raised to a power different from
1 or it is replaced by a nonlinear function such as sin ψ(x), sinh ψ(x),
eψ(x). On the other hand, an integral equation is said to be homoge-
neous if the forcing function f (x) ≡ 0. Otherwise the integral equation
is said to be nonhomogeneous or inhomogeneous.

Let us now consider a standard form of a linear integral equation

δ(x)ψ(x) = f (x) + λ
∫ φ(x)

a
K(x, t)ψ(t)dt, a ∈ R. (2.3.1)

Table 3 gives a list of conditions that can be used to classify an integral
equation.

No. Type Condition

1 First kind δ(x) = 0

2 Second kind δ(x) = 1

3 Third kind δ(x) = ϕ(x)

4 Homogeneous f (x) = 0

5 Nonhomogeneous f (x) 6= 0

6 Fredholm integral equations φ(x) = b, b ∈ R

7 Volterra integral equations φ(x) = x

Table 3: Conditions for classifying integral equations.

A list of the types of integral equations is given below

1. Fredholm integral equations

2. Volterra integral equations
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3. Singular integral equations

4. Volterra-Fredholm integral equations

The most frequently used linear integral equations are Fredholm and
Volterra integral equations. Figure 6 illustrates the tree structure of
these classes of linear integral equations.

Integral   
Equations

Fredholm Integral   
Equations

Volterra-Fredholm 
Integral Equations

Singular Integral   
Equations

Volterra Integral   
Equations

Cauchy 
singular

Infinite 
interval

Finite 
interval First kind Second kind Third kind

Closed arc

Open arc

Closed as 
finite interval

Wiener hopf

First kind Second kind Third kind

Singular 
kernel

Non-singular 
kernel

Figure 6: Structure of Fredholm and Volterra integral equations, adapted
from [47].

We will outline the basic definitions and properties of each integral
type.

2.3.1 Fredholm integral equations

The general form of a linear Fredholm integral equation is given by
[70, 92]

δ(x)ψ(x) = f (x) + λ
∫ b

a
K(x, t)ψ(t)dt, (2.3.2)

where the limits of integration a, b are fixed and the function f (x) and
the kernel K(x, t) are prescribed in advance. Equation (2.3.2) is called
a linear integral equation because the unknown function ψ(x) appears
linearly under the integral sign.
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The value of the forcing function δ(x) gives the following kinds of
Fredholm integral equations:

1. when δ(x) = 0, equation (2.3.2) becomes

f (x) + λ
∫ b

a
K(x, t)ψ(t)dt = 0, (2.3.3)

and the resulting integral equation is termed Fredholm integral
equation of the first kind.

2. when δ(x) = 1, equation (2.3.2) becomes

ψ(x) = f (x) + λ
∫ b

a
K(x, t)ψ(t)dt, (2.3.4)

which is called Fredholm integral equation of the second kind.

3. when δ(x) = ϕ(x), equation (2.3.2) becomes

ϕ(x)ψ(x) = f (x) + λ
∫ b

a
K(x, t)ψ(t)dt, (2.3.5)

and in this case we obtain the general equation of Fredholm in-
tegral equation also called the Fredholm integral equation of the
third kind. Integral equations of the second kind are the most im-
portant since the first and third kinds can often be reduced to the
second kind.

Let us consider the problem of converting a boundary value problem
to an equivalent Fredholm integral equation. In what follows, we give
an illustrative example of converting a boundary value problems into
Fredholm integral equation.

Example: consider the boundary value problem

y′′(x) + y(x) = x, 0 6 x 6 1, (2.3.6)

subject to boundary conditions

y(0) = 1, y(1) = 0. (2.3.7)

We can solve equation (2.3.6) subject to (2.3.7) using standard meth-
ods to obtain

y(x) = x + cos x− cot
(

1
2

)
sin x. (2.3.8)

Now, in order to convert the differential equation (2.3.6) into Fredholm
integral equation, we start by setting

y′′(x) = ψ(x). (2.3.9)
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Integrating both sides of (2.3.9) twice from 0 to x and using the bound-
ary condition at x = 0 gives

y(x) = 1 + xy′(0) +
∫ x

0

(∫ s

0
ψ(t)dt

)
ds. (2.3.10)

Integrating by parts with u =
∫ s

0 ψ(t)dt and dv = ds, we are able to
reduce the multiple integrals in (2.3.10) into a single integral to get

y(x) = 1 + xy′(0) + x
∫ x

0
ψ(t)dt +

∫ x

0
tψ(t)dt (2.3.11)

Applying the boundary condition at x = 1, we obtain

y′(0) = −1−
∫ 1

0
(1− t)ψ(t)dt

= −1−
∫ x

0
(1− t)ψ(t)dt−

∫ 1

x
(1− t)ψ(t)dt.

(2.3.12)

Substituting (2.3.12) into (2.3.10) and expressing the multiple inte-
grals as a single integral, we find

y(x) = 1− x−
∫ x

0
x(1− t)ψ(t)dt−

∫ 1

x
x(1− t)ψ(t)dt

+
∫ x

0
(x− t)ψ(t)dt.

(2.3.13)

Using (2.3.9) and (2.3.13), (2.3.6) becomes

ψ(x) = x− y (2.3.14)

= 2x− 1 +
∫ x

0
t(1− x)ψ(t)dt +

∫ 1

x
x(1− t)ψ(t)dt.

(2.3.15)

Equation (2.3.15) can be rewritten as

ψ(x) = 2x− 1 +
∫ 1

0
K(x, t)ψ(t)dt, (2.3.16)

where f (x) = 2x− 1 and the kernel K(x, t) is given by

K(x, t) =

t(1− x), 0 6 t 6 x,

x(1− t), x 6 t 6 1.
(2.3.17)

This implies that equation (2.3.6) can be written as Fredholm integral
equation.

Consider now the problem of converting Fredholm integral equation
(2.3.16) to an equivalent boundary value problem. Differentiating both
sides of equation (2.3.16) with respect to x and using the differentia-
tion under the integral sign rule we find

ψ′(x) = 2−
∫ x

0
tψ(t)dt +

∫ 1

x
(1− t)ψ(t)dt. (2.3.18)
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We differentiate both sides of (2.3.18) again in order to remove of
the integral signs. Generally, the differentiating process should be con-
tinued until a pure differential equation without the integral sign is
obtained. From the second differentiation we obtain

ψ′′(x)− ψ(x) = 0. (2.3.19)

The related boundary conditions are obtained by substituting x = 0
and x = 1 into (2.3.15) to find that

ψ(0) = f (0) = −1, ψ(1) = f (1) = 1. (2.3.20)

2.3.2 Volterra integral equations

The general form of a linear Volterra integral equation is given by [70,
92]

δ(x)ψ(x) = f (x) + λ
∫ x

a
K(x, t)ψ(t)dt, (2.3.21)

where the kernel K(x, t) and the function f (x) are known and the un-
known function ψ(x) under the integral sign is linear. For Volterra equa-
tions, at least one of the limits of integration is a function of x or a
variable.

Similarly, we have the following kinds of Volterra integral equations:

1. when δ(x) = 0, equation (2.3.21) becomes

f (x) + λ
∫ x

a
K(x, t)ψ(t)dt = 0, (2.3.22)

and the integral equation is called Volterra integral equation of
the first kind.

2. when δ(x) = 1, equation (2.3.21) becomes

ψ(x) = f (x) + λ
∫ x

a
K(x, t)ψ(t)dt, (2.3.23)

and the integral equation is referred to as the Volterra integral
equation of the second kind.

3. when δ(x) = ϕ(x), equation (2.3.21) becomes

ϕ(x)ψ(x) = f (x) + λ
∫ x

a
K(x, t)ψ(t)dt, (2.3.24)

and the integral equation is called the Volterra integral equation
of the third kind.

We will now give an illustrative example of how an initial value prob-
lem can be converted to a Volterra integral equation.
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Example: consider the initial value problem

ψ′(x) = 6xψ2(x), x > 0, (2.3.25)

subject to the initial condition

ψ(0) = 1. (2.3.26)

Solving equation (2.3.25) using the method of separation of variables
subject to the initial condition, we obtain

ψ(x) =
1

1− 3x2 . (2.3.27)

Now, integrating equation (2.3.25) with respect to x from 0 to x, we
obtain∫ x

0
ψ′(t)dt =

∫ x

0
6tψ2(t)dt, (2.3.28)

and using the initial condition (2.3.26), (2.3.28) yields the following

ψ(x) = 1 +
∫ x

0
6tψ2(t)dt. (2.3.29)

Equation (2.3.29) is a nonlinear Volterra integral equation of the sec-
ond kind. It is nonlinear because the unknown function ψ(t) under
the integral sign is raised to the power of 2. In (2.3.29), we have
δ(x) = f (x) = λ = 1, α(x) = 0, β(x) = x, and the kernel K(x, t) = 6t.
Now, suppose we are given a Volterra integral equation as in (2.3.29)
instead. In order to convert the Volterra integral equation to an equiv-
alent ordinary differential equation, we will differentiate both sides of
(2.3.29) and use the differentiation under the integral sign rule for
differentiating an integral. Initial conditions can be determined by sub-
stituting x = 0 in the integral equation. Differentiating (2.3.29) with
respect x and substituting x = 0 into (2.3.29) yields

ψ′(x) = 6xψ2(x), ψ(0) = 1. (2.3.30)

Thus, the equivalent ordinary differential equation is the same as the
one provided initially in equation (2.3.25) subject to the initial condi-
tion (2.3.26).

2.3.3 Singular integral equations

An integral equation may be called singular if the lower limit or the
upper limit or both the limits of integration are infinite, or if the ker-
nel function K(x, t) is infinite at one or more points in the integration
interval [19]. Specifically, integral equations of the first kind given by
the form [70, 91, 92]

f (x) = λ
∫ β(x)

α(x)
K(x, t)ψ(t)dt, (2.3.31)
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or integral equations of the second kind given the form

ψ(x) = f (x) + λ
∫ β(x)

α(x)
K(x, t)ψ(t)dt, (2.3.32)

are called singular if α(x), or β(x), or both limits of integration are
infinite. Moreover, the equation (2.3.31) or (2.3.32) is also called a
singular integral equation if the kernel K(x, t) contains a singularity,
that is, K(x, t) = ±∞ at some points in the interval of integration.
Examples of type-1 singular integral equations are

ψ(x) = 1 +
∫ ∞

0
K(x, t)ψ(t)dt, (2.3.33)

L{u(x)} =
∫ ∞

0
e−λxψ(x)dx, (2.3.34)

F{u(x)} =
∫ ∞

−∞
e−iλxψ(x)dx. (2.3.35)

The integral equations (2.3.34) and (2.3.35) are the Laplace transform
and the Fourier transform of the function ψ(x) respectively. Examples
of type-2 singular integral equations are

f (s) =
∫ s

0

1
(s− t)α

ψ(t)dt, 0 < α < 1, (2.3.36)

f (s) =
∫ s

0

1√
s− t

ψ(t)dt, (2.3.37)

ϕ(s) = 1 +
√

s−
∫ s

0

1√
s− t

ϕ(t)dt, (2.3.38)

where the singular behaviour is attributed to the kernel function K(s, t)
becoming infinite as t → s . It is important to highlight that inte-
gral equations such as (2.3.36) and (2.3.37) are called the generalized
Abel’s integral equations and Abel’s problems respectively. Singular in-
tegral equations similar to (2.3.38) are called weakly-singular second
kind Volterra integral equations.

In this thesis, we are concerned with singular integral equations
where the kernel function K(x, t) possess some sort of singularity at
t = x. When a singularity of the kernel function K(x, t) exists, it may
be weak or strong. If the kernel function K(x, t) is of the form

K(x, t) =
F(x, t)
|x− t|α

, (2.3.39)

where the function F(x, t) is bounded, and α is an arbitrary constant
such that 0 < α < 1, and the kernel function is weakly singular, then
the corresponding integral equation is called a weakly singular integral
equation [51]. Abel’s integral equation is an example of a weakly sin-
gular integral equation. However, if the kernel function K(x, t) is of the
form

K(x, t) =
F(x, t)
x− t

, a < x < b, (2.3.40)
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where the function F(x, t) is differentiable with F(x, x) 6= 0, then the
kernel function K(x, t) has a strong singularity at t = x or equally put,
it has a Cauchy type singularity at t = x, and the integral

∫ b
a K(x, t)dt

is taken to be a Cauchy principal value. The integral equation then is
called a Cauchy type singular integral [51]. Cauchy singular integral
equations are a special and important type of singular integral equa-
tions.

An example of a Cauchy singular integral kernel is

K(x, t) =
1

x− t
, x 6= t. (2.3.41)

If an integral equation contains additional derivatives of the unknown
function ψ(x) (inside or outside the integral), then the equation is
called an integro-differential equation. The equation

ψ′(x) = f (x) +
∫ b

a

ψ(t)
t− x

dt, a 6 x 6 b, (2.3.42)

is an example of an integro-differential equation.

2.3.4 Volterra-Fredholm integral equations

In this section, we consider Volterra-Fredholm integral equations. These
types of integral equations arise from parabolic boundary value prob-
lems, from the mathematical modelling of the spatio-temporal develop-
ment of an epidemic, and from various physical and biological models
[50, 90, 91]. The Volterra-Fredholm equations can appear in the fol-
lowing two forms, namely

δ(x)ψ(x) = f (x)+λ1

∫ γ(x)

0
K1(x, t)ψ(t)dt+

λ2

∫ b

a
K2(x, t)ψ(t)dt,

(2.3.43)

and the mixed form

δ(x)ψ(x) = f (x) + λ
∫ γ(x)

0

∫ b

a
K(s, t)ψ(t)dtds, (2.3.44)

where the functions δ(x), γ(x) and f (x) are known functions, the func-
tions K(x, t), K1(x, t) and K2(x, t) are known kernel functions, ψ(x) is
the unknown function and λ, λ1 and λ2 are constants. The integral
equation (2.3.43) is considered to be a functional integral equation
with proportional delay when γ(x) is a first order polynomial. Exam-
ples of the two kinds of the Volterra-Fredholm integral equations are
given by

ψ(x) = x2 + 2−
∫ x

0
ψ(t)dt−

∫ 1

0
tψ(t)dt, (2.3.45)

and

ψ(x) = 2x2 + 6x +
∫ x

0

∫ 1

0
ψ(t)dtds. (2.3.46)
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2.4 S T R U C T U R E O F K E R N E L

The nature of the kernel function plays a pivotal role when considering
numerical techniques for solving an integral equation. Different types
of kernel and singularities requires individual treatment. A Kernel func-
tion can take one of the following properties [81]:

1. A kernel function is considered to be symmetric or complex sym-
metric or Hermitian, if

(i) K(x, t) = K(t, x),

(ii) K(x, t) = K̄(t, x) where K̄(t, x) is the complex conjugate of
K(x, t).

2. A kernel function is called a degenerate or seperable kernel if the
kernel K(x, t) can be expressed as

K(x, t) =
n

∑
i=0

ri(x)si(t). (2.4.1)

3. A kernel function is said to be a difference kernel if K(x, t) =

K(x− t).

4. If the solution of the integral equation

ψ(x) = f (x) + λ
∫ γ(x)

a
K(x, t)ψ(t)dt (2.4.2)

is of the form

ψ(x) = f (x) + λ
∫ γ(x)

a
Γ(x, t; λ) f (t)dt. (2.4.3)

The kernel function Γ(x, t; λ) is called the reciprocal or resolvent
kernel.

Remarks
In summary, an integral equation is of the first kind if the unknown
function ψ(x) appears only under the integral sign. However, the inte-
gral equation is said to be of the second kind if the unknown function
ψ(x) appears inside and outside the integral sign. Lastly, the most gen-
eral form of an integral equation is said to be the third kind.

The following basic characteristics are used to classify an integral:

1. Limits of integration

• Both fixed: Fredholm equation.

• One variable: Volterra equation.

2. Position of the unknown function ψ(x)

• Inside the integral only: first kind.
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• Inside and outside the integral: second kind.

3. Nature of the known function f (x)

• Identically zero: Homogeneous.

• Not identically zero: inhomogeneous.

4. Linearity

• Linear integral equations.

• Nonlinear integral equations.

A great deal of effort has been put into the development of numerical
techniques for solving integral equations appearing in different forms.
In Table 4 we present some of the frequently encountered integrals
in scientific and engineering problems. Traditional methods such as
the method of successive approximations and the method of successive
substitutions are amongst the most commonly used methods for solv-
ing these types of integral equations. In fact, Ioakimidis [37] was first
to apply the successive approximation method to the airfoil equation.
Some singular integral equations, namely the Volterra type singular
equations and Abel’s equations, can easily be solved using the Laplace
transform method. Newly developed methods, for example, the Ado-
mian decomposition method and the modified decomposition method
for solving nonlinear integral equations have attracted much attention
from mathematicians and engineers, however, numerical methods still
remain useful for solving highly complicated integral problems.

Name Form

Fredholm integral equation - first kind f (x) = λ
∫ b

a K(x, t)ψ(t)dt

Fredholm integral equation - second kind ψ(x) = f (x) + λ
∫ b

a K(x, t)ψ(t)dt

Volterra integral equation - first kind f (x) = λ
∫ x

a K(x, t)ψ(t)dt

Volterra integral equation - second kind ψ(x) = f (x) + λ
∫ x

a K(x, t)ψ(t)dt

Abel equation ψ(x) =
∫ x

a
ψ(s)

(x−s)α ds, 0 < α < 1

Cauchy-type integral equation ψ(x) = f (x) + λ
∫ b

a
ψ(s)
x−s ds,

Carleman equation δ(x)ψ(x) = f (x) + λ
∫ b

a
ψ(s)
x−s ds

Integral equation of logarithmic kernel
∫ b

a ln |x− t|ψ(t)dt = f (x)

Wiener-Hopf integral equation ψ(x) = f (x) + λ
∫ ∞

0 K(x− t)ψ(t)dt

Table 4: Frequently encountered integral equations, λ is a parameter

2.5 C O N C L U S I O N

In this chapter, we introduced integral equations, and a detailed review
and discussion of singular integral equations was given.
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In the next chapter, we outline numerical methods for solving singu-
lar integral equations. We consider a simple Cauchy integral equation
that can be solved analytically to obtain a closed-form solution. We will
then compare the numerical results to the analytical solution to evalu-
ate the accuracy of the numerical methods. Matlab and Mathematica
environment will be used to perform the numerical computations.
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3
S O M E N U M E R I C A L T E C H N I Q U E S A N D S O L U T I O N S
F O R C AU C H Y-T Y P E S I N G U L A R I N T E G R A L E Q UAT I O N S
O F T H E F I R S T K I N D

3.1 I N T R O D U C T I O N

In this chapter, we introduce a number of numerical techniques that
can be used to solve integro-differential equations. A simple and less
complicated singular integral equation of the first kind with a Cauchy-
type singular kernel for which an analytical solution exists will be pre-
sented. In addition, we will also compute numerical solutions for the
simple singular integral equation using four different numerical meth-
ods and compare with the analytical solution to evaluate the accuracy
of the numerical methods.

3.2 C AU C H Y P R I N C I PA L VA L U E I N T E G R A L S

Let us first study singular integral equations containing Cauchy-type
kernels before we introduce the simple singular integral equation that
will be solved.

Suppose that f (x) is unbounded in the neighbourhood of x = c with
a < c < b. The Cauchy principal value of the integral denoted

−
∫ b

a
f (x)dx, x ∈ R

is defined by the limit

−
∫ b

a
f (x)dx = lim

α→0+

[
−
∫ c−α

a
f (x)dx +−

∫ b

c+α
f (x)dx

]
. (3.2.1)

The Hilbert transform

−
∫ b

a

f (x)
x− s

dx = g(s), −∞ 6 a < b 6 ∞, a < s < b, (3.2.2)

is an example of a principal value integral. A sufficient condition for
the existence of this Cauchy principal value integral (3.2.2) is that f (x)
satisfy a Hölder condition in [a, b]. This means that there are constants
d > 0 and 0 6 β 6 1 such that for any two points x1 and x2 in [a, b] we
have

| f (x1)− f (x2)| 6 d |x1 − x2|β . (3.2.3)

The Hilbert transform (3.2.2) has a Cauchy singularity at s = x. Some-
times a singularity can be eliminated or avoided by a change of vari-
able or a suitable transformation in the complex plane. Longman [48]

28
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presented a simple method of evaluating Cauchy-type integrals by de-
composing the integrand into its odd and even components and by
noting that the integral of the former vanishes. He showed that the re-
maining integral can be approximated using any standard method for
numerical integration since it does not contain a singularity. Monacella
[55] proposed an alternative method whereby Cauchy principal value
integrals can be approximated by simply ignoring the singularity. He
showed that by ignoring the singularity, the problem of numerically
approximating integrals of the form

−
∫ b

a

f (x)
x− ξ

dx, a < ξ < b, (3.2.4)

where f (x) and its derivatives are continuous throughout interval of
integration can be reduced to the numerical evaluation of the integral

I = −
∫ a

−a

f (x)
x

dx. (3.2.5)

The integral in (3.2.5) can be rewritten as a

I =
∫ a

−a

f (x)− f (0)
x

dx +−
∫ a

−a

f (0)
x

dx. (3.2.6)

The first integral in (3.2.6) is a proper integral and the second integral
is singular and identically zero. Another method that can be used to nu-
merically evaluate Cauchy principal values is the method of subtracting
out the singularity. This method has been used widely [32]. With this
method, we subtract the singularity so that we are left with some in-
tegral that can be integrated numerically using a Gaussian quadrature.
The best-known example of this method is as follows. Assume f (x) to
be continuous at ξ. That is,

I = −
∫ b

a

f (x)
x− ξ

dx =
∫ b

a

f (x)− f (ξ)
x− ξ

dx + f (ξ)−
∫ b

a

1
x− ξ

dx

=
∫ b

a

f (x)− f (ξ)
x− ξ

dx + f (ξ) log
b− ξ

ξ − a
.

(3.2.7)

Note that for a = −b,

lim
b→∞

log
b− ξ

ξ − a
= 0. (3.2.8)

If the derivative of f (x) is also continuous at ξ, then the function

φ(x) =
f (x)− f (ξ)

x− ξ
, (3.2.9)

is defined at x = ξ by

φ(ξ) =
d f
dx

∣∣∣∣
x=ξ

≡ f ′(ξ) (3.2.10)

and is regular in the vicinity of ξ. Hence,∫ b

a
φ(x)dx (3.2.11)

can be evaluated by any standard integration formula.
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3.3 A N I N V E R S I O N T E C H N I Q U E U S I N G P R O P E RT I E S O F A B E L ’ S
E Q UAT I O N

For the purpose of the study, we will consider one of the most basic
Cauchy-type singular integral equations over a finite interval. Moreover,
we restrict our discussion to Cauchy-type equations of the first kind on
the real line.

Consider the singular integral equation

−
∫ b

a

Φ(t)dt
t− σ

= F(σ), a < σ < b, (3.3.1)

where F(σ) is a known function and the integral is understood in the
principal value sense. As mentioned in Chapter 2, a kernel function of
the form

K(t− σ) =
1

t− σ
, (3.3.2)

is called a Cauchy kernel. Integral equations that contain this type of
kernel are called Cauchy-type singular integral equations. It should be
noted that the limits of integration a and b can be any real number.
Moreover, it can easily be shown using the translations t = a+ (b− a)ξ
and σ = a + (b− a)x that equation (3.3.1) can be reduced to the case
where a = 0 and b = 1 (see Appendix A for details). That is, equation
(3.3.1) can be replaced by

−
∫ 1

0

ψ(ξ)dξ

ξ − x
= f (x), 0 < x < 1, (3.3.3)

without loss of generality. To derive the solution for (3.3.3) we use a
method due to Peters [68]. The left hand side of (3.3.3) can be written
in the form

−
∫ 1

0

ψ(ξ)dξ

ξ − x
= −
∫ 1

0

(
1− ξ + x + ξ − x

ξ − x

)
ψ(ξ)dξ,

= −
∫ 1

0

ψ(ξ)dξ

ξ − x
−−
∫ 1

0

ξψ(ξ)dξ

ξ − x
+ x−

∫ 1

0

ψ(ξ)dξ

ξ − x
+
∫ 1

0
ψ(ξ)dξ,

= f (x)−−
∫ 1

0

ξψ(ξ)dξ

ξ − x
+ x f (x) +

∫ 1

0
ψ(ξ)dξ,

(3.3.4)

wherein (3.3.3) has been utilized. From (3.3.3) and (3.3.4), we obtain

−
∫ 1

0

ξψ(ξ)dξ

ξ − x
= x f (x) + c, (3.3.5)

where

c =
∫ 1

0
ψ(ξ)dξ. (3.3.6)
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Multiplying both sides of equation (3.3.5) by 1/
√

x and integrating
with respect to x gives

−
∫ 1

0
ln
∣∣∣∣√ξ −

√
x√

ξ +
√

x

∣∣∣∣√ξψ(ξ)dξ =
∫ x

0

√
θ f (θ)dθ + 2c

√
x. (3.3.7)

The kernel function can be expressed as

−ln
∣∣∣∣√ξ −

√
x√

ξ +
√

x

∣∣∣∣ =

∫ ξ

0
ds√

ξ−s
√

x−s , ξ < x,∫ x
0

ds√
ξ−s
√

x−s , ξ > x.
(3.3.8)

Therefore,

−
√

ξψ(ξ)ln
∣∣∣∣√ξ −

√
x√

ξ +
√

x

∣∣∣∣ =

√

ξψ(ξ)
∫ ξ

0
ds√

ξ−s
√

x−s , ξ < x,

√
ξψ(ξ)

∫ x
0

ds√
ξ−s
√

x−s , ξ > x.

(3.3.9)

If we substitute this representation into (3.3.7), we find

∫ x

0

√
ξψ(ξ)

∫ ξ

0

ds√
ξ − s

√
x− s

dξ +
∫ 1

x

√
ξψ(ξ)

∫ x

0

ds√
ξ − s

√
x− s

dξ

=
∫ x

0

√
θ f (θ)dθ + 2c

√
x.

(3.3.10)

Next, we change the order of integration for each of the integrals on
the left hand side of (3.3.10) to obtain∫ x

0

1√
x− s

∫ x

s

√
ξψ(ξ)dξ√

ξ − s
ds +

∫ x

0

1√
x− s

∫ 1

x

√
ξψ(ξ)dξ√

ξ − s
ds

=
∫ x

0

√
θ f (θ)dθ + 2c

√
x,

(3.3.11)

which is equivalent to∫ x

0

1√
x− s

∫ 1

s

√
ξψ(ξ)dξ√

ξ − s
ds =

∫ x

0

√
θ f (θ)dθ + 2c

√
x. (3.3.12)

Equation (3.3.12) can be transformed into Abel’s integral equation∫ x

0

φ(s)√
x− s

ds = ω(x), (3.3.13)

where

φ(s) =
∫ 1

s

√
ξψ(ξ)dξ√

ξ − s
ds. (3.3.14)
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Equation (3.3.13) has the solution

φ(x) =
1
π

d
dx

∫ s

0

ω(s)ds√
x− s

, (3.3.15)

and if ω(s) is differentiable, then

φ(x) =
1
π

[
ω(0)√

x
+
∫ x

0

ωs(s)ds√
x− s

]
. (3.3.16)

Applying this result in (3.3.12) leads to∫ 1

s

√
ξψ(ξ)dξ√

ξ − s
=

1
π

∫ s

0

√
x f (x)√
s− x

dx + c. (3.3.17)

Similarly, the solution of the integral equation∫ 1

s

ϕ(ξ)dξ√
ξ − s

= g(s) (3.3.18)

can be derived from Abel’s equation (3.3.13) as

ϕ(ξ) = − 1
π

d
dξ

∫ 1

ξ

g(s)ds√
s− ξ

. (3.3.19)

Therefore, (3.3.17) leads to

√
ξψ(ξ) =

c
π
√

1− ξ
− 1

π2
d
dξ

∫ 1

ξ

1√
s− ξ

∫ σ

0

√
x f (x)dx√

x− s
ds.

(3.3.20)

Equation (3.3.20) is the formula for the solution of (3.3.3) but it is not
the standard one. To obtain the standard formula, we change the order
of integration in the second term on the right hand side of equation
(3.3.20) and perform further manipulation (see Appendix A) to get

ψ(ξ) =
c

π
√

ξ(1− ξ)
− 1

π2
√

ξ(1− ξ)
−
∫ 1

0

√
x(1− x) f (x)dx

x− ξ
, (3.3.21)

where c is an arbitrary constant arising from inversion of the singular
integral. This is the standard formula.

Let us consider a very special case of (3.3.3) where the forcing func-
tion f (x) is set equal to 1, i.e.,

−
∫ 1

0

ψ(ξ)dξ

ξ − x
= 1. (3.3.22)

Using the standard formula (3.3.21), the solution for (3.3.22) is given
by

ψ(ξ) =
c

π
√

ξ(1− ξ)
− 1

π2
√

ξ(1− ξ)
−
∫ 1

0

√
x(1− x)dx

x− ξ
. (3.3.23)
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Solving the integral term on the right hand side of (3.3.23), we obtain

−
∫ 1

0

√
x(1− x)dx

x− ξ
=

π

2
(1− 2ξ). (3.3.24)

The integration was done with the help of a built–in integration func-
tion within Mathematica. We specified within the integration function
that the supplied definite integral must be taken to be a Cauchy prin-
cipal value integral. Now, using this result, equation (3.3.23) becomes

ψ(ξ) =
c− 1

2 + ξ

π
√

ξ(1− ξ)
. (3.3.25)

3.4 A S U RV E Y O F S O M E N U M E R I C A L M E T H O D S F O R S I N G U L A R

I N T E G R A L E Q UAT I O N S

Our aim in this section is to derive and study solutions of a simple
integral differential equation.

Consider the problem of solving the singular integral equation given
by

1
π

d
dx

(
−
∫ 1

0

hξ(ξ)dξ

ξ − x

)
= 1, 0 6 x 6 1, (3.4.1)

subject to the boundary conditions

hx(0) = 0, h(1) = 0. (3.4.2a-b)

This problem was considered in [57]. In the sequel, we will solve
(3.4.1) subject to (3.4.2a-b) both analytically and numerically. The an-
alytical solution will be used to check the accuracies of numerical meth-
ods.

3.4.1 Analytical solution

We begin by integrating (3.4.1) with respect to x to obtain the charac-
teristic singular integral equation∫ 1

0

hξ(ξ)dξ

ξ − x
= πx + A, (3.4.3)

where A is an arbitrary constant. We will utilize the standard inversion
formula we derived in the previous section. In relation to the current
problem, the unknown function ψ(x) and forcing function f (x) are
given by ψ(x) = hx(x) and f (x) = πx + A respectively. Thus, the
inverse of (3.4.3) is given by

hx(x) =
c√

x(1− x)
− 1

π2
√

x(1− x)
−
∫ 1

0

√
ξ(1− ξ)

ξ − x
(πξ + A)dξ.
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(3.4.4)

We will proceed by solving the integral equation in (3.4.4) with the use
of a built–in integration function within Mathematica. We obtained the
following results

−
∫ 1

0

√
ξ(1− ξ)

ξ − x
dξ =

π

2
(1− 2x), (3.4.5)

−
∫ 1

0

ξ
√

ξ(1− ξ)

ξ − x
dξ =

π

8
(1 + 4x− 8x2). (3.4.6)

Using (3.4.5) and (3.4.6), (3.4.4) becomes

hx(x) =
c√

x(1− x)
− 1 + 4x− 8x2

8
√

x(1− x)
− A(1− 2x)

2π
√

x(1− x)
. (3.4.7)

Integration of (3.4.7) yields

h(x) = 2c sin−1(
√

x)−
(

x
2
+

1
4
+

A
π

)√
x(1− x) + B, (3.4.8)

where A, B and c are unknown constants. The solution in (3.4.8) con-
tains three unknown constants. We will therefore need three conditions
to solve for the three unknowns. We will now assume

h(0) =
3π

8
. (3.4.9)

Using the boundary conditions (3.4.2b) and (3.4.9), we find

h(1) = πc + B = 0, and h(0) = B =
3π

8
, (3.4.10)

which gives B = 3π/8 and c = −3/8. Equation (3.4.8) becomes

h(x) = −3
4

sin−1(
√

x)−
(

x
2
+

1
4
+

A
π

)√
x(1− x) +

3π

8
. (3.4.11)

Consider now equation (3.4.7) in the following rearranged form

hx(x) =
1√

x(1− x)

(
c− 1

8
− A

2π

)
+

1√
x(1− x)

(
Ax
π
− 4x + 8x2

)
.

(3.4.12)

From the slope condition (3.4.2a), as x → 0 we have hx(x) → 0. The
slope condition is satisfied only if

c− 1
8
− A

2π
= 0, (3.4.13)

which, after solving, gives A = −π. Hence, the analytical solution for
(3.4.1) is

h(x) = −3
4

sin−1(
√

x) +
(

3
4
− x

2

)√
x(1− x) +

3π

8
. (3.4.14)
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Equation (3.4.14) corresponds to the solution stated in [57]. Alterna-
tively from (3.4.7), we rewrite∫ 1√

−x2 + x
dx =

∫ 1√
−
(
x− 1

2

)2
+ 1

4

dx. (3.4.15)

Integrating the right side of (3.4.15) yields∫ 1√
−
(
x− 1

2

)2
+ 1

4

dx = sin−1 (2x− 1) + c2, (3.4.16)

where c2 is the constant of integration. The solution is then given by

h2(x) = c sin−1 (2x− 1)−
(

x
2
+

1
4
+

A
π

)√
x(1− x) + B. (3.4.17)

where A, B, and c are constants. In this case, applying the boundary
conditions (3.4.2a-b) yields A = −π, B = 3π/16 and c = −3/8, and
the analytical solution is given by

h(x) = −3
8

sin−1 (2x− 1) +
(

3
4
− x

2

)√
x(1− x) +

3π

16
. (3.4.18)

3.4.2 Approximate analytical solution

According to Chakrabarti and Berge [10], the approximation method
for solving Cauchy-type singular integral equations of the first kind us-
ing polynomial approximation of degree n gives an exact solution when
the force function is linear. In this section, we derive the approximate
solution for the Cauchy integral equation given by (3.4.1). As an initial
step, we introduce the following variables

h(x) = H(y), where y = 2x− 1, (3.4.19)

to transform the Cauchy integral equation into some form that will
allow us to use some properties of Chebyshev polynomials. Substituting
(3.4.19) into (3.4.1), we find

d
dy

(∫ 1

−1

Hs(s)ds
s− y

)
=

π

4
, (3.4.20)

and the corresponding boundary conditions are given by

H(−1) =
3π

8
, H(1) = 0, and Hy(−1) = 0. (3.4.21)

For mathematical convenience, we set ϕ(s) = Hs(s) and as a result

d
dy

(∫ 1

−1

ϕ(s)ds
s− y

)
=

π

4
. (3.4.22)
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Let the unknown function ϕ in (3.4.22) be approximated by the poly-
nomial function ϕn

ϕn(y) = w(y)
n

∑
i=0

βiTi(y), (3.4.23)

where βi, i = 0, 1, 2, . . . , n, are unknown coefficients, w(y) is the weight
function given by

w(y) =
1√

1− y2
, (3.4.24)

and Ti(y) is the Chebyshev polynomials of the first kind defined by

Ti(y) = cos
[
i cos−1(y)

]
, i = 0, 1, 2, . . . , n. (3.4.25)

Substituting the approximate solution (3.4.23) into (3.4.22) yields

d
dy

(
n

∑
i=0

βi

∫ 1

−1

w(s)Ti(s)
s− y

ds

)
=

π

4
. (3.4.26)

Rewrite equation (3.4.26) as

d
dy

(
n

∑
i=0

βiri(y)

)
=

π

4
, (3.4.27)

where

ri(y) =
∫ 1

−1

w(s)Ti(s)
s− y

dy =
∫ 1

−1

Ti(s)√
1− s2(s− y)

dy. (3.4.28)

Let xk be a zero of the Chebyshev polynomials of the second kind

Ui−1(x) =
sin
[
i cos−1(x)

]
sin [cos−1(x)]

, i = 0, 1, 2, . . . , n. (3.4.29)

Then,

xk = cos
(

kπ

i + 1

)
, k = 1, 2, . . . , n. (3.4.30)

It is well known (see [52]) that∫ 1

−1

Ti(s)√
1− s2(s− y)

dy = πUi−1(y), (3.4.31)

where Ui(y) is Chebyshev polynomial of the second kind. Equation
(3.4.27) becomes, after using (3.4.31),

d
dy

(
n

∑
i=0

βiUi−1(y)

)
=

1
4

. (3.4.32)
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i=0 i=1 i=2 i=3 i=4 i=5

Ui−1(x) 0 1 2x 4x2 − 1 8x3 − 4x 16x4 − 12x2 + 1

Table 5: Chebyshev polynomials of the Second kind (n = 5).

We set n = 5 so that we can solve the problem by hand calculations.
Table 5 shows the first few Chebyshev polynomials of the second kind.
Using the first five Chebyshev polynomials, equation (3.4.32) becomes

d
dy

[β1 + 2β2y + β3(4y2 − 1) + β4(8y3 − 4y)

+ β5(16y4 − 12y2 + 1)
]
=

1
4

.
(3.4.33)

Taking the derivative with respect to y gives

2β2 + β5
(
64y3 − 24y

)
+ β4

(
24y2 − 4

)
+ 8β3y =

1
4

. (3.4.34)

We seek to determine the coefficients βi, i = 0, 1, 2, . . . , 5. Equating
the coefficients of various powers of y from both sides of (3.4.34), we
find β2 = 1/8, β3 = β4 = β5 = 0. The unknown function can now be
expressed as

ϕ5(y) =
1√

1− y2

[
β0 + β1y +

1
8
(2y2 − 1)

]
. (3.4.35)

This implies

Hy(y) =
1√

1− y2

[
β0 + β1y +

1
8
(2y2 − 1)

]
. (3.4.36)

Integrating (3.4.36) gives

H(y) = β0 sin−1(y)−
√

1− y2
(y

8
+ β1

)
+ c3. (3.4.37)

Next, using the boundary conditions, we obtain

H(−1) = −π

2
β0 + c3 =

3π

8
, (3.4.38)

H(1) =
π

2
β0 + c3 = 0. (3.4.39)

Solving for β0 and c3 we get β0 = −3/8 and c3 = 3π/16. Hence,
(3.4.37) becomes

H(y) = −3
8

sin−1(y)−
√

1− y2
(y

8
+ β1

)
+

3π

16
. (3.4.40)

It is now left to determine the value of β1. Equation (3.4.36) shows
that as y→ −1,

Hy(y) ∼
1√

1− y2

[
β0 − β1 +

1
8

]
= 0, (3.4.41)
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which implies that β1 = − 1
4 . Then,

H(y) = −3
8

sin−1(y)−
√

1− y2

(
y
8
− 1

4

)
+

3π

16
. (3.4.42)

Reverting back to h(x), we get

h(x) = −3
8

sin−1(2x− 1) +
(

3
4
− x

2

)√
x(1− x) +

3π

16
. (3.4.43)

Equation (3.4.43) is identical to equation (3.4.18) which is the ana-
lytical solution. For any choice of n > 3, β2 = 1/8 and βi = 0 for
i = 3, . . . , n.

3.4.3 Finite difference method

In this section, we will use finite difference approaches to solve the
simple Cauchy integral equation. Finite difference approaches are gen-
erally employed to find solutions to differential equations by using ap-
proximate spatial and temporal derivatives that are based on discrete
values at spatial grid points and discrete time levels [41]. It is impor-
tant to note that the values of the grid spacing ∆x and time step ∆t
affects the accuracy and behaviour of the solution, i.e., small values of
∆x and ∆t leads to small error values. Before we start using the finite
difference approach, let us first derive the finite difference scheme that
is appropriate for solving singular integral equations such as (3.4.1).
We will use forward and backward Taylor series expansion to derive
the finite difference approximations of the derivatives.

3.4.3.1 Central difference at midpoints

Taylor series expansion of a real function around a point xj = j∆ for a
uniform grid, as shown in Figure 7, is

f j+k = f j +
∞

∑
m=1

(k∆)m

m!
f (m)
j , (3.4.44)

where k = ±1/2,±3/2, . . . , (2n− 1)/2 and n ∈ Z+. Equation (3.4.44)
will be used to derive the numerical approximations for the derivatives.

The Taylor series expansion when k = ±1/2 is

f j+ 1
2
= f j +

1
2

∆ f ′j +
1
8

∆2 f ′′j +
1
48

∆3 f ′′′j +
1

384
∆4 f (4)j + . . .

(3.4.45)

f j− 1
2
= f j −

1
2

∆ f ′j +
1
8

∆2 f ′′j −
1
48

∆3 f ′′′j +
1

384
∆4 f (4)j − . . .

(3.4.46)

Taking the difference between (3.4.45) and (3.4.46) yields

f j+ 1
2
− f j− 1

2
= ∆ f ′j +

1
24

∆3 f ′′′j +O(∆5). (3.4.47)
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Figure 7: Central difference at midpoints on uniform grid [41].

However, if we take the sum of the two Taylor series, we find

f j+ 1
2
+ f j− 1

2
= 2 f j +

1
4

∆2 f ′′j +O(∆4). (3.4.48)

From (3.4.47) and (3.4.48), we obtain the finite difference formula for
f j and f ′j as

f j =
f j+ 1

2
+ f j− 1

2

2
− 1

8
∆2 f ′′j +O(∆4), (3.4.49)

f ′j =
f j+ 1

2
− f j− 1

2

∆
− 1

24
∆2 f ′′′j +O(∆4). (3.4.50)

To derive the second-derivative approximation, we widen the stencil to
include two additional points of j± 3/2 (see Figure 7). Expanding the
Taylor series for k = ±3/2 we obtain

f j+ 3
2
= f j +

3
2

∆ f ′j +
9
8

∆2 f ′′j +
9
16

∆3 f ′′′j +
27

128
∆4 f (4)j + . . .

(3.4.51)

f j− 3
2
= f j −

3
2

∆ f ′j +
9
8

∆2 f ′′j −
9
16

∆3 f ′′′j +
27

128
∆4 f (4)j − . . .

(3.4.52)

Taking the sum of the two Taylor series yields

f j+ 3
2
+ f j− 3

2
= 2 f j +

9
4

∆2 f ′′j +
27
64

∆4 f (4)j +O(∆6). (3.4.53)

Using the finite difference approximation for f j, the finite difference
formula for f ′′j is given by

f ′′j =
f j− 3

2
− f j+ 1

2
− f j− 1

2
+ f j+ 3

2

2∆2 − 27
128

∆2 f (4) +O(∆4). (3.4.54)

3.4.3.2 A conventional finite difference approach

In this section, we are interested in solving equation (3.4.1) subject to
the boundary conditions (3.4.2) using the finite difference method. The
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first step is to partition the interval of integration [0, 1] into n equally
spaced sub-intervals [ξ j, ξ j+1] of length h = 1/n where 0 6 j 6 n− 1.

Let P(x) be defined as

P = −
∫ 1

0

hξ(ξ)dξ

ξ − x
, (3.4.55)

then (3.4.1) becomes

dP
dx

= π. (3.4.56)

We will use finite differences to approximate dP/dx and evaluate P
at mid-grid points where it can be evaluated (see for example Smith,
1994) [78]. Using the central finite difference approximations, equa-
tion (3.4.1) becomes

Pi+ 1
2
− Pi− 1

2

ξi+ 1
2
− ξi− 1

2

= π, 1 6 i 6 n− 1, (3.4.57)

where Pi± 1
2

and ξi± 1
2

are respectively given by

Pi± 1
2
= −
∫ 1

0

hξ(ξ)dξ

ξ − ξi± 1
2

, (3.4.58)

ξi± 1
2
=

i± 1
2

n
. (3.4.59)

Assuming that the slope is constant in each sub-interval and by approx-
imating hξ(ξ) using forward differences, we obtain

Pi− 1
2
=

n−1

∑
j=0

j 6=i−1

(
hj+1 − hj

ξ j+1 − ξ j

) ∫ ξ j+1

ξ j

dξ

ξ − ξi− 1
2

+

(
hj+1 − hj

ξ j+1 − ξ j

)
−
∫ ξi

ξi−1

dξ

ξ − ξi− 1
2

,

(3.4.60)

Pi+ 1
2
=

n−1

∑
j=0
j 6=i

(
hj+1 − hj

ξ j+1 − ξ j

) ∫ ξ j+1

ξ j

dξ

ξ − ξi+ 1
2

+

(
hj+1 − hj

ξ j+1 − ξ j

)
−
∫ ξi+1

ξi

dξ

ξ − ξi+ 1
2

.

(3.4.61)

By definition of the Cauchy principal value, the second integral in
(3.4.60) is given by

−
∫ ξi

ξi−1

dξ

ξ − ξi− 1
2

= lim
α→0+

[∫ ξ
i− 1

2
−α

ξi−1

dξ

ξ − ξi− 1
2

+
∫ ξi

ξ
i− 1

2
+α

dξ

ξ − ξi− 1
2

]

= lim
α→0+

[
ln
∣∣∣ξ − ξi− 1

2

∣∣∣ξi− 1
2
−α

ξi−1
+ ln

∣∣∣ξ − ξi− 1
2

∣∣∣ξi

ξ
i− 1

2
+α

]
.

(3.4.62)
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Evaluating the terms in brackets, we get

ln
∣∣∣ξ − ξi− 1

2

∣∣∣ξi− 1
2
−α

ξi−1
= ln |−α| − ln

∣∣∣ξi−1 − ξi− 1
2

∣∣∣ , (3.4.63)

ln
∣∣∣ξ − ξi− 1

2

∣∣∣ξi

ξ
i− 1

2
+α

= ln
∣∣∣ξi − ξi− 1

2

∣∣∣− ln |α| . (3.4.64)

Thus,

lim
α→0+

[
ln
∣∣∣ξ − ξi− 1

2

∣∣∣ξi− 1
2
−α

ξi−1
+ ln

∣∣∣ξ − ξi− 1
2

∣∣∣ξi

ξ
i− 1

2
+α

]
= ln

∣∣∣∣∣ ξi − ξi− 1
2

ξi−1 − ξi− 1
2

∣∣∣∣∣
= ln

∣∣∣∣∣ ξ j+1 − ξi− 1
2

ξ j − ξi− 1
2

∣∣∣∣∣ ,

(3.4.65)

since j = i− 1. Hence,

−
∫ ξi

ξi−1

dξ

ξ − ξi− 1
2

= ln

∣∣∣∣∣ ξ j+1 − ξi− 1
2

ξ j − ξi− 1
2

∣∣∣∣∣ . (3.4.66)

Similarly, we find that

−
∫ ξi

ξi−1

dξ

ξ − ξi+ 1
2

= ln

∣∣∣∣∣ ξ j+1 − ξi+ 1
2

ξ j − ξi+ 1
2

∣∣∣∣∣ . (3.4.67)

Also,

−
∫ ξ j+1

ξ j

1
ξ − ξi± 1

2

dξ = ln

∣∣∣∣∣ ξ j+1 − ξi± 1
2

ξ j − ξi± 1
2

∣∣∣∣∣ . (3.4.68)

This means

P
(

ξi± 1
2

)
=

n−1

∑
j=0

(
hj+1 − hj

ξ j+1 − ξ j

)
ln

∣∣∣∣∣ ξ j+1 − ξi± 1
2

ξ j − ξi± 1
2

∣∣∣∣∣ . (3.4.69)

Substituting (3.4.69) into (3.4.57) and rearranging, we find

n−1

∑
j=0

hj+1 − hj

(ξi+ 1
2
− ξi− 1

2
)(ξ j+1 − ξ j)

[
ln

∣∣∣∣∣ ξ j+1 − ξi+ 1
2

ξ j − ξi+ 1
2

∣∣∣∣∣− ln

∣∣∣∣∣ ξ j+1 − ξi− 1
2

ξ j − ξi− 1
2

∣∣∣∣∣
]
= π.

(3.4.70)

Equation (3.4.70) becomes

n−1

∑
j=0

(hj+1 − hj) ln
∣∣∣∣ (2j− 2i + 1)2

(2j− 2i + 3)(2j− 2i− 1)

∣∣∣∣ = π

n2 , (3.4.71)

where ξi+ 1
2
− ξi− 1

2
= ξ j+1− ξ j =

1
n . This can be equivalently written as

n−1

∑
j=0

(hj+1 − hj)ai,j =
π

n2 , (3.4.72)
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where

ai,j = ln
∣∣∣∣ (2j− 2i + 1)2

(2j− 2i + 3)(2j− 2i− 1)

∣∣∣∣ .

Expanding the summation and evaluating the resulting equation at
i = 1, 2, . . . , n − 1 generates a system of n − 1 linear equations in
n − 1 unknowns since h(x0) = h0 is known and hn = 0 according to
(3.4.2a-b). If we impose the boundary condition hx(0) = 0, we are able
to determine one unknown to get an n− 1 system in n− 2 unknowns.
As a result we have an over-determined system. Any n − 2 equations
and not n− 1 is therefore sufficient to determine the unknowns. We can
choose, for example, index i, such that 1 6 i 6 n− 2 or 2 6 i 6 n− 1
or any n− 2 systems. To illustrate this idea, we set n = 5.

Equation (3.4.72) becomes

4

∑
j=0

(hj+1 − hj)ai,j =
π

25
. (3.4.73)

If 2 6 i 6 4, we have the linear system given by

(a2,1 − a2,2)h2 + (a2,2 − a2,3)h3 + (a2,3 − a2,4)h4 =
π

25
+ a2,1h1,

(3.4.74)

(a3,1 − a3,2)h2 + (a3,2 − a3,3)h3 + (a3,3 − a3,4)h4 =
π

25
+ a3,1h1,

(3.4.75)

(a4,1 − a4,2)h2 + (a4,2 − a4,3)h3 + (a4,3 − a4,4)h4 =
π

25
+ a4,1h1,

(3.4.76)

The system of equations (3.4.74)-(3.4.76) consists of 3 unknowns. Fig-
ure 8 illustrates the results for the combination of equations involving
the point i = n− 1. It can be noted that when the point Pn−1/2 is in-
volved in the computations the margin of error is quite big. However,
if 1 6 i 6 3, we have the linear system as

(a1,1 − a1,2)h2 + (a1,2 − a1,3)h3 + (a1,3 − a1,4)h4 =
π

25
+ a1,1h1,

(3.4.77)

(a2,1 − a2,2)h2 + (a2,2 − a2,3)h3 + (a2,3 − a2,4)h4 =
π

25
+ a2,1h1,

(3.4.78)

(a3,1 − a3,2)h2 + (a3,2 − a3,3)h3 + (a3,3 − a3,4)h4 =
π

25
+ a3,1h1,

(3.4.79)

Similarly, the system of equations (3.4.77)-(3.4.79) consists of 3 un-
knowns. Figure 9 illustrates the results for the combination of equa-
tions excluding the point i = n− 1 for various values of n. It is clear
that the exclusion of the point Pn−1/2 leads to very small error margins.
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Figure 8: Graph of h(x) plotted against x for (i) n = 5, (ii) n = 50 and (iii)
n = 100 when 2 6 i 6 n− 1, using the conventional finite difference
approach.
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We can now resolve that the current method is unstable for solving the
underlying problem. It is in fact standard practice to exclude the tip
when solving problems of this form. The best approach is to isolate the
tip behaviour and that is why we need to progress from this method
to a new method where we now use the tip behaviour as a variable.
In the next section, we review and apply this new method to solve the
underlying problem.

3.4.3.3 An approach using transformation

In this section, we present an alternative approach to the conventional
approach in Section 3.4.3.2 whose accuracy depends on using the right
combination of equations. We want a method that will work regardless
of the choice of linear system. It is clear from the analytical solution
(3.4.14) that h(x)→ 0 like

√
1− x as x → 1. Therefore, there is singu-

larity in the slope of h(x) near x = 1, i.e., hx(x)→ ∞ as x → 1. It is this
singularity at x = 1 which disrupts the numerical scheme used in the
preceding section. In order to address this, we consider the following
transformation [57]

h(x) = F(y) where y =
√

1− x. (3.4.80)

Under this transformation equation (3.4.1) becomes

1
π

(
−
∫ 1

0

Fη(η)dη

y2 − η2

)
y
= 2y, (3.4.81)

subject to the boundary conditions

F(0) = 0, Fy(1) = 0, F(1) =
3π

8
. (3.4.82a-c)

Similarly, the finite differences were used to approximate Py, where

P = −
∫ 1

0

Fη(η)dη

y2 − η2 ,

so that

dP
dy

= 2πy.

Using finite differences, we have

Pi+ 1
2
− Pi− 1

2

ηi+ 1
2
− ηi− 1

2

=
2πi
n

, (3.4.83)

where Pi+1/2 and ηi+1/2 are respectively given by

Pi± 1
2
= −
∫ 1

0

Fη(η)dη

η2
i± 1

2
− η2

,
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Figure 9: Graph of h(x) plotted against x for (i) n = 5, (ii) n = 50 and (iii)
n = 100 when 1 6 i 6 n− 2, using the conventional finite difference
approach.
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ηi± 1
2
=

i± 1
2

n
.

Assuming that the slope dF/dη is constant in each interval, we obtain

Pi− 1
2
=

n−1

∑
j=0

j 6=i−1

(
Fj+1 − Fj

ηj+1 − ηj

) ∫ ηj+1

ηj

dη

η2
i− 1

2
− η2

+

(
Fi − Fi−1

ηi − ηi−1

)
−
∫ ηi

ηi−1

dη

η2
i− 1

2
− η2

,

(3.4.84)

Pi+ 1
2
=

n−1

∑
j=0

j 6=i−1

(
Fj+1 − Fj

ηj+1 − ηj

) ∫ ηj+1

ηj

dη

η2
i+ 1

2
− η2

+

(
Fi − Fi−1

ηi − ηi−1

)
−
∫ ηi

ηi−1

dη

η2
i+ 1

2
− η2

.

(3.4.85)

Using the definition of a Cauchy’s principal value, the singular integral
equation in (3.4.84) can be expressed as

−
∫ ηi

ηi−1

dη

η2
i− 1

2
− η2

= lim
α→0+

∫ η
i− 1

2
−α

ηi−1

dη

η2
i− 1

2
− η2

+
∫ ηi

η
i− 1

2
+α

dη

η2
i− 1

2
− η2



= lim
α→0+

 1
2ηi− 1

2

ln

∣∣∣∣∣ηi− 1
2
+ η

ηi− 1
2
− η

∣∣∣∣∣
η

i− 1
2
−α

ηi−1

+
1

2ηi− 1
2

ln

∣∣∣∣∣ηi− 1
2
+ η

ηi− 1
2
− η

∣∣∣∣∣
ηi

η
i− 1

2
+α

 .

(3.4.86)

Evaluating the first term in brackets we get

ln

∣∣∣∣∣ηi− 1
2
+ η

ηi− 1
2
− η

∣∣∣∣∣
η

i− 1
2
−α

ηi−1

= ln

∣∣∣∣∣2ηi− 1
2
− α

α

∣∣∣∣∣− ln

∣∣∣∣∣ηi− 1
2
+ ηi−1

ηi− 1
2
− ηi−1

∣∣∣∣∣
= ln

∣∣∣∣∣∣
(

2ηi− 1
2
− α
) (

ηi− 1
2
− ηi−1

)
α
(

ηi− 1
2
+ ηi−1

)
∣∣∣∣∣∣ .

(3.4.87)

The second term in brackets gives

ln

∣∣∣∣∣ηi− 1
2
+ η

ηi− 1
2
− η

∣∣∣∣∣
ηi

η
i− 1

2
+α

= ln

∣∣∣∣∣ηi− 1
2
+ ηi

ηi− 1
2
− ηi

∣∣∣∣∣− ln

∣∣∣∣∣2ηi− 1
2
+ α

−α

∣∣∣∣∣
= ln

∣∣∣∣∣∣
−α
(

ηi− 1
2
+ ηi

)
(

ηi− 1
2
− ηi

) (
2ηi− 1

2
+ α
)
∣∣∣∣∣∣ .

(3.4.88)
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Using (3.4.87) and (3.4.88) in (3.4.86), we get

−
∫ ηi

ηi−1

dη

η2
i− 1

2
− η2

= lim
α→0+

 1
2ηi− 1

2

ln

∣∣∣∣∣∣
(

2ηi− 1
2
− α
) (

ηi− 1
2
− ηi−1

) (
ηi− 1

2
+ ηi

)
(

2ηi− 1
2
+ α
) (

ηi− 1
2
+ ηi−1

) (
ηi− 1

2
− ηi

)
∣∣∣∣∣∣


=
1

2ηi− 1
2

ln

∣∣∣∣∣∣
(

ηi− 1
2
− ηi−1

) (
ηi− 1

2
+ ηi

)
(

ηi− 1
2
+ ηi−1

) (
ηi− 1

2
− ηi

)
∣∣∣∣∣∣ .

(3.4.89)

Similarly,

−
∫ ηi

ηi−1

dη

η2
i+ 1

2
− η2

=
1

2ηi+ 1
2

ln

∣∣∣∣∣∣
(

ηi+ 1
2
− ηi−1

) (
ηi+ 1

2
+ ηi

)
(

ηi+ 1
2
+ ηi−1

) (
ηi+ 1

2
− ηi

)
∣∣∣∣∣∣ . (3.4.90)

Since j = i− 1, we have

Pi− 1
2
=

n−1

∑
j=0

(
Fj+1 − Fj

ηj+1 − ηj

)
1

2ηi− 1
2

ln

∣∣∣∣∣∣
(

ηi− 1
2
− ηj

) (
ηi− 1

2
+ ηj+1

)
(

ηi− 1
2
+ ηj

) (
ηi− 1

2
− ηj+1

)
∣∣∣∣∣∣ ,

(3.4.91)

Pi+ 1
2
=

n−1

∑
j=0

(
Fj+1 − Fj

ηj+1 − ηj

)
1

2ηi+ 1
2

ln

∣∣∣∣∣∣
(

ηi+ 1
2
− ηj

) (
ηi+ 1

2
+ ηj+1

)
(

ηi+ 1
2
+ ηj

) (
ηi+ 1

2
− ηj+1

)
∣∣∣∣∣∣ .

(3.4.92)

Substituting (3.4.91) and (3.4.92) into (3.4.83) and expressing the re-
sults in terms of i and j, we obtain

n−1

∑
j=0

(Fj+1 − Fj)

[
1

2i + 1
ln
∣∣∣∣ (2i + 2j + 3)(2i− 2j + 1)
(2i + 2j + 1)(2i− 2j− 1)

∣∣∣∣ −
1

2i− 1
ln
∣∣∣∣ (2i + 2j + 1)(2i− 2j− 1)
(2i + 2j− 1)(2i− 2j− 3)

∣∣∣∣] = 2πi
n4 .

(3.4.93)

If we evaluate (3.4.93) for any n and impose the boundary conditions
(3.4.2) we obtain a system of (n− 1)× (n− 2) linear equations. The re-
sulting system can be solved using any combination of equations since
the transformation removed the singularity in hx(x) at x = 1. The re-
sults plotted in Figure 10 for the current numerical scheme compares
well with the analytical results.

3.4.3.4 Integral approximation approach

In this section, we are interested in using a simple integral approxima-
tion method to estimate the integral in (3.4.1). To do this, composite
integration rules will be used. For example, the interval of integration
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Figure 10: Graph of h(x) plotted against x for (i) n = 5, (ii) n = 50 and (iii)
n = 100, using the transformation method
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will be divided into equal sub-intervals and an integration rule will
be applied in each sub-interval. In relation to the paradigm problem
(3.4.1), the function f (ξ, x) has singularities at ξ = x. As a result, the
values of ξ at which the integral is evaluated cannot be the mid-points
of the sub-interval but edge-points of the sub-interval. One of the sim-
plest methods of approximating an integral is the left-end point rule
and it is given by∫ ξ j+1

ξ j

f (ξ, x)dξ = h f (ξ j, x). (3.4.94)

We now implement this technique in our problem. Let us first split
the interval of integration [0, 1] into n equal-sized sub-intervals and
then represent the integral as a sum of the integrals in each sub-interval.
That is, the expression for P given in (3.4.55) at mid-points can be writ-
ten in the form

Pi± 1
2
=
∫ 1

0

hξ(ξ)dξ

ξ − ξi± 1
2

=
n−1

∑
j=0

∫ ξ j+1

ξ j

hξ(ξ)

ξ − ξi± 1
2

dξ. (3.4.95)

Using the left-end point rule, we have

n−1

∑
j=0

∫ ξ j+1

ξ j

hξ

ξ − ξi± 1
2

dξ ≈
n−1

∑
j=0

h
hξ

ξ j − ξi± 1
2

=
n−1

∑
j=0

hj+1 − hj

ξ j − ξi± 1
2

, (3.4.96)

which implies that

Pi± 1
2
≈

n−1

∑
j=0

hj+1 − hj

ξ j − ξi± 1
2

. (3.4.97)

Substituting (3.4.97) into (3.4.57), we find

n−1

∑
j=0

hj+1 − hj

ξ j − ξi+ 1
2

−
n−1

∑
j=0

hj+1 − hj

ξ j − ξi− 1
2

=
(

ξi+ 1
2
− ξi− 1

2

)
π =

π

n
, (3.4.98)

since ξi+1/2 − ξi−1/2 = h = 1/n and 1 6 i 6 n− 1. Imposing the slope
condition, equation (3.4.98) can be expressed as

n−1

∑
j=1

(hj+1 − hj) fi,j =
π

2n2 , (3.4.99)

where
fi,j =

1
2j− 2i− 1

− 1
2j− 2i + 1

.

For any choice of n and assuming we know h0 and h′(x0), equation
(3.4.99) will result in a system of n− 1 equations and n− 2 unknowns.
We will then have a over-determined system and any combination of
n − 2 equations can be used to solve for the n − 2 unknowns. We
demonstrate this idea with a small value of n. Setting n = 5, (3.4.99)
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Figure 11: Graph of h(x) plotted against x for (i) n = 5, (ii) n = 50 and (iii)
n = 100, using the integral approximation approach.
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yields

( fi,1− fi,2)h2 + ( fi,2− fi,3)h3 + ( fi,3− fi,4)h4 =
π

50
+ fi,1h1. (3.4.100)

Here, we will evaluate (3.4.100) for 1 6 i 6 3 and represent the result-
ing system of linear equations in matrix form( f1,1 − f1,2) ( f1,2 − f1,3) ( f1,3 − f1,4)

( f2,1 − f2,2) ( f2,2 − f2,3) ( f2,3 − f2,4)

( f3,1 − f3,2) ( f3,2 − f3,3) ( f3,3 − f3,4)


h2

h3

h4

 =


π
50 + f11h1
π
50 + f21h1
π
50 + f31h1

 .

The solution of the system is shown in Figure 11 where graphs of h(x)
plotted against x for n = 5, 50, 100. It can be seen that we did not
lose much accuracy by approximating the integral by the left-end point
rule.

3.4.4 Spline method

Spline methods such as the linear spline, quadratic splines, cubic splines,
etc., can be used to solve equations such as (3.4.1) subject to (3.4.2).
We will restrict our discussion to the linear spline method. Given a func-
tion f (x) defined on [a, b] and a set of nodes a = x0 < x1 < · · · < xn =

b, a linear spline interpolant s(x) for f (x) is a function satisfying

• s(x) is a linear polynomial (see Figure 12), denoted si(x), in the
sub-interval [xi, xi+1] for each i = 0, 1, . . . , n− 1;

• Each linear spline passes through two consecutive points and
agrees with the function f (x) at a set of known points x0, x1, . . . , xn.
For example si(xi) = f (xi) and si+1(xi+1) = f (xi+1) for each
i = 0, 1, . . . , n− 1;

• Two successive linear splines are continuous at their common in-
terior points i.e. si(xi+1) = si+1(xi+1) for each i = 0, 1, . . . , n− 2.

The splines are given by

si(x) = aix + bi, xi 6 x 6 xi+1,

where i = 0, 1, . . . , n− 1 and there are 2n unknown coefficients ai and
bi, i = 0, 1, . . . , n− 1. To find the 2n unknowns, we need to set up 2n
equations and then solve them simultaneously.

Consider now equations (3.4.1) and (3.4.2). Since h(x) → 0 like√
1− x as x → 1, we extract this tip behaviour and represent the re-

maining part of h(x) using a linear spline. Furthermore, we divide the
interval [0, 1] into n sub-intervals of equal sizes such that in each sub-
interval [ξi, ξi+1], h(x) takes the form

hi(ξ) = (1− ξ)
1
2 si(ξ), (3.4.101)
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Figure 12: Linear spline interpolant s(x).

where si(ξ) is a piece-wise linear function given by

si(ξ) = aiξ + bi.

Then,

dhi

dξ
= ai(1− ξ)

1
2 − 1

2
√

1− ξ
(aiξ + bi) . (3.4.102)

Using (3.4.102), we can write the expression for P given in (3.4.55) at
mid-points as

Pj± 1
2
=

n−1

∑
i=0
−
∫ ξi+1

ξi

 (2− 3ξ)ai − bi

2
√

1− ξ
(

ξ − ξ j± 1
2

)
dξ. (3.4.103)

Equation (3.4.103) can be rewritten as

Pj− 1
2
=

n−1

∑
i=0

i 6=j−1

∫ ξi+1

ξi

 (2− 3ξ)ai − bi

2
√

1− ξ
(

ξ − ξ j− 1
2

)
dξ +−

∫ ξ j

ξ j−1

 (2− 3ξ)aj−1 − bj−1

2
√

1− ξ
(

ξ − ξ j− 1
2

)
dξ,

(3.4.104)

and

Pj+ 1
2
=

n−1

∑
i=0
i 6=j

∫ ξi+1

ξi

 (2− 3ξ)ai − bi

2
√

1− ξ
(

ξ − ξ j+ 1
2

)
dξ +−

∫ ξ j+1

ξ j

 (2− 3ξ)aj − bj

2
√

1− ξ
(

ξ − ξ j+ 1
2

)
dξ.

(3.4.105)
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Define

Ri,j± 1
2
=
∫ ξi+1

ξi

2− 3ξ

2
√

1− ξ
(

ξ − ξ j± 1
2

)dξ, (3.4.106)

R∗i,j± 1
2
= −
∫ ξi+1

ξi

2− 3ξ

2
√

1− ξ
(

ξ − ξ j± 1
2

)dξ, (3.4.107)

Qi,j± 1
2
=
∫ ξi+1

ξi

1

2
√

1− ξ
(

ξ − ξ j± 1
2

)dξ, (3.4.108)

Q∗i,j± 1
2
= −
∫ ξi+1

ξi

1

2
√

1− ξ
(

ξ − ξ j± 1
2

)dξ, (3.4.109)

where i = j − 1 in (3.4.107) and i = j in (3.4.109). The integrals
R∗i,j±1/2 and Q∗i,j±1/2 are Cauchy principal value integrals and we will
use (3.2.1) and the method of subtracting out the singularity to deal
with the singularity. Thus,

I = −
∫ ξi+1

ξi

2− 3ξ

2
√

1− ξ
(

ξ − ξ j+ 1
2

)dξ = I− + I+

= lim
α→0

∫ ξ
i+ 1

2
−α

ξi

2− 3ξ

2
√

1− ξ
(

ξ − ξ j± 1
2

)dξ

+
∫ ξi+1

ξ
j+ 1

2
+α

2− 3ξ

2
√

1− ξ
(

ξ − ξ j+ 1
2

)dξ

 .

(3.4.110)

Setting f (ξ) = 2− 3ξ and subtracting the singularity, we obtain

I− =
∫ ξ

i+ 1
2
−α

ξi

f (ξ)− f
(

ξ j+ 1
2

)
2
√

1− ξ
(

ξ − ξ j+ 1
2

)dξ + f
(

ξ j+ 1
2

) ∫ ξ
i+ 1

2
−α

ξi

dξ

2
√

1− ξ
(

ξ − ξ j+ 1
2

)
≈
∫ ξ

i+ 1
2
−α

ξi

f ′(ξ)dξ

2
√

1− ξ
+ f j+ 1

2

∫ ξ
i+ 1

2
−α

ξi

dξ

2
√

1− ξ
(

ξ − ξ j+ 1
2

) .

(3.4.111)

Similarly,

I+ =
∫ ξi+1

ξ
i+ 1

2
+α

f (ξ)− f
(

ξ j+ 1
2

)
2
√

1− ξ
(

ξ − ξ j+ 1
2

)dξ + f j+ 1
2

∫ ξi+1

ξ
i+ 1

2
+α

dξ

2
√

1− ξ
(

ξ − ξ j+ 1
2

)
≈
∫ ξi+1

ξ
i+ 1

2 +α

f ′(ξ)dξ

2
√

1− ξ
+ f j+ 1

2

∫ ξi+1

ξ
i+ 1

2
+α

dξ

2
√

1− ξ
(

ξ − ξ j+ 1
2

) .
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(3.4.112)

The whole integral can now be written as

I =
∫ ξ

i+ 1
2

ξi

f ′(ξ)dξ

2
√

1− ξ
+
∫ ξi+1

ξ
i+ 1

2

f ′(ξ)dξ

2
√

1− ξ
+

f j+ 1
2

2
−
∫ ξi+1

ξi

dξ
√

1− ξ
(

ξ − ξ j+ 1
2

) .

(3.4.113)

The last integral in (3.4.113) is a Cauchy principal value integral and
when evaluated gives

−
∫ ξi+1

ξi

dξ
√

1− ξ
(

ξ − ξ j+ 1
2

) =
1√

1− ξ j+ 1
2

ln

∣∣∣∣∣∣
√

1− ξi +
√

1− ξ j+ 1
2

√
1− ξi −

√
1− ξ j+ 1

2

√
1− ξi+1 −

√
1− ξ j+ 1

2
√

1− ξi+1 +
√

1− ξ j+ 1
2

∣∣∣∣∣∣ .

(3.4.114)

The remaining integrals contain weak singularities at ξ = 1. To over-
come this singularities, we will numerically compute the integrals using
the Matlab built-in function quadgk which can handle functions that
have end point singularities. It should be noted that we can directly
evaluate the integral in (3.4.103) using the quadgk function. The above
analysis of handling a Cauchy principal value integral is also applied to
Ri,j−1/2.

Using the result in (3.4.114), we get

Q∗i,j± 1
2
=

1√
1− ξ j± 1

2

ln

∣∣∣∣∣∣
√

1− ξi +
√

1− ξ j± 1
2

√
1− ξi −

√
1− ξ j± 1

2

√
1− ξi+1 −

√
1− ξ j± 1

2
√

1− ξi+1 +
√

1− ξ j± 1
2

∣∣∣∣∣∣ .

(3.4.115)

Equation (3.4.104) and (3.4.105) becomes, respectively

Pj− 1
2
=

n−1

∑
i=0

i 6=j−1

(
aiRi,j− 1

2
− biQi,j− 1

2

)
+ aj−1R∗j−1,j− 1

2
− bj−1Q∗j−1,j− 1

2
,

(3.4.116)

Pj+ 1
2
=

n−1

∑
i=0
i 6=j

(
aiRi,j+ 1

2
− biQi,j+ 1

2

)
+ ajR∗j,j+ 1

2
− bjQ∗j,j+ 1

2
. (3.4.117)

Substituting (3.4.116) and (3.4.117) into (3.4.57), yields

n−1

∑
i=0
i 6=j

(
aiRi,j+ 1

2
− biQi,j+ 1

2

)
+ ajR∗j,j+ 1

2
− bjQ∗j,j+ 1

2

−
n−1

∑
i=0

i 6=j−1

(
aiRi,j− 1

2
− biQi,j− 1

2

)
− aj−1R∗j−1,j− 1

2
+ bj−1Q∗j−1,j− 1

2
=

π

n
,
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(3.4.118)

where 1 6 j 6 n − 1. The current task is to solve for {ai, bi} in each
sub-interval. There are n such sub-intervals, and therefore, we have 2n
unknowns. Equation (3.4.118) will generate a system of n − 1 linear
equations which leads to an under-determined system. Consequently,
additional equations are required to solve for all the unknowns.

Consider now the continuity of si(ξ) at interior points, i.e., at ξ = ξi,
si(ξi) = si−1(ξi). Since,

si(ξi) = aiξi + bi, and si−1(ξi) = ai−1ξi + bi−1. (3.4.119a-b)

The continuity at ξi = i/n implies that

aiξi + bi = ai−1ξi + bi−1. (3.4.120)

That is,

(ai − ai−1)ξi + (bi − bi−1) = 0, for 1 6 i 6 n− 1. (3.4.121)

Using (3.4.121), we get an additional n− 1 equations, i.e.,

i = 1 : (a1 − a0)ξ1 + (b1 − b0) = 0,

i = 2 : (a2 − a1)ξ2 + (b2 − b1) = 0,

i = 3 : (a3 − a2)ξ3 + (b3 − b2) = 0,
...

...
...

i = n− 1 : (an−1 − an−2)ξ3 + (bn−1 − bn−2) = 0.

(3.4.122)

From (3.4.118) and (3.4.121), we get a total of 2n− 2 equations. Using
the 2n − 2 equations and the boundary conditions (3.4.2b-c), we are
able to solve for all the unknowns.

For n = 5, the splines are given by

s0 = a0ξ + b0, ξ0 6 ξ 6 ξ1,

s1 = a1ξ + b1, ξ1 6 ξ 6 ξ2,

s2 = a2ξ + b2, ξ2 6 ξ 6 ξ3,

s3 = a3ξ + b3, ξ3 6 ξ 6 ξ4,

s4 = a4ξ + b4, ξ4 6 ξ 6 ξ5.

(3.4.123)

We now need to find the coefficients ai and bi of the linear splines.
There are 10 unknowns coefficients in total to be determined. This
means that we need 10 equations to determine these coefficients. Using
the boundary conditions (3.4.2b-c), we obtain respectively

a0 =
3π

16
, and b0 =

3π

8
. (3.4.124)
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We are now left to determine the remaining 8 unknown coefficients.
Since each linear spline goes through two consecutive points, we re-
quire the splines to be continuous at interior points, which gives 4 con-
tinuity equations

a0ξ1 + b0 − a1ξ1 − b1 = 0,

a1ξ2 + b1 − a2ξ2 − b2 = 0,

a2ξ3 + b2 − a3ξ3 − b3 = 0,

a3ξ4 + b3 − a4ξ4 − b4 = 0.

(3.4.125)

Also, we evaluate equation (3.4.118) for 1 6 j 6 4 to obtain 4 addi-
tional equations

a0R∗0,1 + b0Q∗0,1 + a1R∗1,1 + b1Q∗1,1 + a2R2,1 + b2Q2,1 + a3R3,1

+b3Q3,1 + a4R4,1 + b4Q4,1 =
π

5
,

(3.4.126)

a0R0,2 + b0Q0,2 + a1R∗1,2 + b1Q∗1,2 + a2R∗2,2 + b2Q∗2,2 + a3R3,2

+b3Q3,2 + a4R4,2 + b4Q4,2 =
π

5
,

(3.4.127)

a0R0,3 + b0Q0,3 + a1R1,3 + b1Q1,3 + a2R∗2,3 + b2Q∗2,3 + a3R∗3,3

+b3Q∗3,3 + a4R4,3 + b4Q4,3 =
π

5
,

(3.4.128)

a0R0,4 + b0Q0,4 + a1R1,4 + b1Q1,4 + a2R2,4 + b2Q2,4 + a3R∗3,4

+b3Q∗3,4 + a4R∗4,4 + b4Q∗4,4 =
π

5
, (3.4.129)

where Ri,j = Ri,j+1/2−Ri,j−1/2, Qi,j = Qi,j−1/2−Qi,j+1/2, R∗i,j = R∗i,j+1/2−
Ri,j−1/2 or R∗i,j = Ri,j+1/2 − R∗i,j−1/2 and Q∗i,j = Q∗i,j−1/2 − Qi,j+1/2 or
Q∗i,j = Qi,j−1/2−Q∗i,j+1/2. The set of equations (3.4.124)-(3.4.129) can
be written in matrix form as

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

ξ1 −ξ1 0 0 0 1 −1 0 0 0

0 ξ2 −ξ2 0 0 0 1 −1 0 0

0 0 ξ3 −ξ3 0 0 0 1 −1 0

0 0 0 ξ4 −ξ4 0 0 0 1 −1

R∗0,1 R∗1,1 R2,1 R3,1 R4,1 Q∗0,1 Q∗1,1 Q2,1 Q3,1 Q4,1

R0,2 R∗1,2 R∗2,2 R3,2 R4,2 Q0,2 Q∗1,2 Q∗2,2 Q3,2 Q4,2

R0,3 R1,3 R∗2,3 R∗3,3 R4,3 Q0,3 Q1,3 Q∗2,3 Q∗3,3 Q4,3

R0,4 R1,4 R2,4 R∗3,4 R∗4,4 Q0,4 Q1,4 Q2,4 Q∗3,4 Q∗4,4





a0

a1

a2

a3

a4

b0

b1

b2

b3

b4



=



3π
16
3π
8

0

0

0

0
π
5
π
5
π
5
π
5



.

Since we have a linear system Ax = b, we can easily compute the
inverse of A and then calculate the solution as x := A−1b. Figure 13
shows graphs of h(x) plotted against x for n = 5, 50, 100. Once again,
it can be noted that the margin of error is reasonably small for large n
values.
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Figure 13: Graph of h(x) plotted against x for (i) n = 5, (ii) n = 50 and (iii)
n = 100, using the spline method.
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Figure 14: Graph of h(x) plotted against x for (i) n = 5, (ii) n = 50 and (iii)
n = 100.
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Figure 15: Plots of the relative error for (i) n = 5, (ii) n = 50 and (iii) n =
100.



3.5 C O N C L U S I O N 60

3.4.5 Comparison of the numerical methods

In this section, we compare the results obtained from solving equa-
tion (3.4.1) using all the numerical methods presented in the previ-
ous subsections. Figure 14 shows the graphs of h(x) plotted against x
for all the numerical methods when n = 5, 50, 100. All the numerical
methods compare well with the analytical solution. The conventional
finite difference approach and the spline method showed a much better
agreement with the analytical solution (see subplots in Figure 14 (ii)
and (iii)) and were faster in terms of convergence. We also investigated
these numerical methods in more detail by plotting the relative error,
which is the ratio of the difference between exact and numerical solu-
tion to the exact solution, i.e., error = (exact− numerics)/exact. As n
increases in Figure 15, we see the errors for all the numerical methods
except the transformation method are decreasing. In particular, we see
that the linear spline method did well in approximating the solution
at x = 1, which was expected since the expression for h(x) includes
the
√

1− x tip behaviour. The errors from the integral approximation
approach are larger towards x = 1 than the errors from the other nu-
merical methods, however, the results are still acceptable (see Figure
14).

3.5 C O N C L U S I O N

In this chapter the method of solution for Cauchy-type singular inte-
gral equations were investigated. We started the chapter by deriving
the standard formula for the solution of a singular integral equation of
the first kind with a Cauchy kernel. Afterwards, we introduced a simple
singular integral equation that can be solved both analytically and nu-
merically. The standard formula was used to obtain the analytical solu-
tion of the simple integral equation. We then derived the approximate
analytical solution of the singular integral equation and showed that it
is the exact solution. The reason behind this was that the force function
was a polynomial of degree one. It was also shown in [10, 18, 56] that
for a Cauchy-type singular integral equation of the first kind with a lin-
ear force function the method of approximate solution gives an exact
solution. Numerical solutions were then computed using four different
techniques and the results were plotted against the analytical solution
to evaluate the accuracy of the numerical methods. Plots showing er-
rors from the numerical methods are also presented (see Figure 15).
The most interesting observation that was made in this chapter was
that the singularity in h(x) at x = 1 disrupts the numerical schemes.
To avoid this disruption, we select discrete points away from the point
x = 1. It is important to highlight that some of the numerical schemes
such as the linear spline method were able to handle this singularity.



4
M AT H E M AT I C A L M O D E L S A N D G O V E R N I N G
E Q UAT I O N S

4.1 I N T R O D U C T I O N

In this chapter, we derive the mathematical model for a two-dimensional
fluid-driven fracture propagating in a permeable medium. The Cauchy
principal value integral derived from linear elastic fracture mechanics
is used to close the model. The model is then non-dimesionalized and
similarity solutions are derived.

4.2 P R O B L E M D E S C R I P T I O N

We consider a two-dimensional hydraulic fracture propagating in a per-
meable rock. The two-dimensional hydraulic fracture is a pre-existing
fracture and a viscous incompressible Newtonian fluid is injected at
sufficiently high pressure to propagate it. A proportion of the driving
fluid infiltrates the rock formation through the fracture interface. The
fracturing fluid causes the fracture to extend along the negative and
positive x-direction, perpendicular to the compressive stress. The sur-
rounding rock–mass is characterized by its Young’s modulus E and Poi-
son ratio ν. The flow of fluid inside the thin fracture is laminar and
will be modelled using lubrication theory [3]. A detailed review of hy-
draulic fracture modelling is given in [53].

4.3 G O V E R N I N G E Q UAT I O N S

In this section, we derive the thin fluid-film equations for the flow of
Newtonian fluid inside the two-dimensional fracture. The coordinate
system and nomenclature are illustrated in Figure 16. The fracture is
fully filled by a Newtonian fluid injected at the fracture centre x =

0 at a rate Q(t, 0). The fracture evolves under plane strain and it is
symmetrical about the x-axis. The x-axis is defined along the length of
the fracture and the z-axis along the width of the fracture. The flow
of fluid is symmetrical about the plane z = 0. All the quantities are
independent of y. The fracture is bounded by z = h(t, x) above and
z = −h(t, x) below where −L(t) 6 x 6 L(t) and t > 0. Since the
fracture is symmetric with respect to x = 0, we restrict our analysis
to one of the symmetrical parts of the fracture x ∈ [0, L(t)]. The body
force due to gravity is neglected. The flow of fluid inside the fracture

61
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Figure 16: A pre-existing two-dimensional fluid-driven fracture propagating
in a permeable rock where h(t, x) represents the fracture half-
width and L(t) the fracture length.

satisfies the Navier-Stokes and conservation of mass equations for an
incompressible fluid,

∂v
∂t

+ (v · ∇)v = −1
ρ
∇p + ν∇2v, ∇.v = 0, (4.3.1a-b)

where v = (υx(t, x, z), 0, υz(t, x, z)) denotes the fluid velocity, p(t, x, z),
the fluid pressure, ρ, the fluid density and µ, the fluid shear viscosity.
In order to simplify equation (4.3.1a-b) for a fracture whose length
is much greater than its height, we impose the lubrication approxima-
tion on the fracturing fluid. The thin film approximation of lubrication
theory, given by

ε =
H
L0
� 1, ε2Re� 1, (4.3.2a-b)

will be used in this work. In (4.3.2a-b), H is the characteristic fracture
half-width, L0 is the characteristic fracture length, and Re = UL0/ν

is the Reynolds number. We proceed to compare the order of magni-
tude of the terms in the conservation of mass equation and the Navier-
Stokes equation. Let us first introduce the remaining characteristic quan-
tities:

• the characteristic fluid velocity along the x-direction U

• the characteristic fluid velocity along the z-direction W = UH
L0

• the characteristic fluid pressure P = µUL0
H2
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• the characteristic time T = L0
U .

We now give a justification for these quantities. We begin with the ex-
pression for the characteristic velocity along the z-direction. The con-
servation of mass equation written in cartesian coordinates is

∂υx

∂x
+

∂υz

∂z
= 0. (4.3.3)

Equation (4.3.3) becomes, after substituting the characteristic quanti-
ties,

U
L0

+
W
H
∼ 0, (4.3.4)

and therefore,

W ∼ UH
L0

. (4.3.5)

We now justify the expression for the characteristic fluid pressure. Con-
sider the x-component of the Navier-Stokes equation

ρ
Dυx

Dt
= −∂p

∂x
+ µ

[
∂2υx

∂x2 +
∂2υx

∂z2

]
(4.3.6)

which can be expressed in terms of the characteristic quantities as

ρ
U
T
∼ − P

L0
+ µ

(
U
L2

0
+

U
H2

)
. (4.3.7)

Since (4.3.2a) is satisfied, we have

U
L2

0
� U

H2 . (4.3.8)

The viscous term is approximated to be µU/H2 and (4.3.7) becomes

ρ
U
T
∼ − P

L0
+

µU
H2 . (4.3.9)

Now

inertial term
viscous term

=
ρU
T
÷ µU

H2 = ε2Re� 1. (4.3.10)

Therefore, equation (4.3.9) reduces to

P ∼ µUL0

H2 , (4.3.11)

which is the characteristic fluid pressure. We will now non-dimensionalise
the conservation of mass equation and each component of the Navier-
Stokes equation using the following non-dimensional variables:

L̄ =
L
L0

, x̄ =
x
L0

, z̄ =
z
H

, t̄ =
t
T

, h̄ =
h
H

, b̄ =
b
B

,

ῡx =
υx

U
, ῡz =

υzL0

UH
, p̄ =

H2 p
µUL0

, V =
V

HL0
,

(4.3.12)
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where, as described above, L0 = L(0), is the characteristic fracture
length, and H = h(0, 0), is the characteristic fracture half-width. A
new length scale, denoted by B, is the characteristic length scale for
fluid leak-off. The conservation of mass equation and the x and z com-
ponents of the Navier-Stokes equation in dimensionless form are

∂ῡx

∂x̄
+

∂ῡz

∂z̄
= 0, (4.3.13)

Re
(

H
L0

)2 (∂ῡx

∂t̄
+ ῡx

∂ῡx

∂x̄
+ ῡz

∂ῡx

∂z̄

)
= −∂ p̄

∂x̄

+

(
H
L0

)2 ∂2ῡx

∂x̄2 +
∂2ῡx

∂z̄2 ,

(4.3.14)

Re
(

H
L0

)4 (∂ῡz

∂t̄
+ ῡx

∂ῡz

∂x̄
+ ῡz

∂ῡz

∂z̄

)
= −∂ p̄

∂z̄
+

(
H
L0

)4 ∂2ῡz

∂x̄2

+

(
H
L0

)2 ∂2ῡz

∂z̄2 .

(4.3.15)

Imposing the thin fluid-film approximation and dropping the over-
head bars, the conservation of mass and Navier-Stokes equations in
dimensionless form become

∂υx

∂x
+

∂υz

∂z
= 0, (4.3.16)

∂p
∂x

=
∂2υx

∂z2 , (4.3.17)

∂p
∂z

= 0. (4.3.18)

Note that the conservation of mass equation is unaltered after the ap-
plication of the thin fluid-film approximation.

4.4 B O U N D A RY E Q UAT I O N S

We now specify the boundary and initial conditions for the underly-
ing fracture problem. The boundary conditions for the lower surface
z = −h(t, x) and upper surface z = h(t, x) are the no-slip condition
and leak-off for a viscous fluid. Since the rock is permeable, the leak-
off condition is imposed. The boundary conditions are as follows:

No-slip condition

z = h(t, x) : υx(t, x, h(t, x)) = 0, (4.4.1)

z = −h(t, x) : υx(t, x,−h(t, x)) = 0. (4.4.2)



4.4 B O U N D A RY E Q UAT I O N S 65

Leak-off condition:

z = h(t, x) : υz(t, x, h) =
∂h
∂t

+ υx(t, x, h)
∂h
∂x

+ vn(t, x)

=
∂h
∂t

+ vn(t, x),

(4.4.3)

z = −h(t, x) : υz(t, x,−h) = −∂h
∂t
− υx(t, x,−h)

∂h
∂x
− vn(t, x)

= −
(

∂h
∂t

+ vn(t, x)
)

,
(4.4.4)

since υx(t, x,±h) = 0 from the no slip boundary condition (4.4.1) and
(4.4.2).
Initial conditions

t = 0, L(0) = 1, h(0, 0) = 1. (4.4.5)

The rock has a pre-existing fracture, hence

t = 0 : h(0, x) = h0(x), 0 6 x 6 L(t). (4.4.6)

At the fracture tip

x = L(t) : h(t, L(t)) = 0. (4.4.7)

The half-width of the fracture vanishes at the fracture tip. It should
be noted that the fracture tip condition (4.4.7) is a moving boundary
condition since the fracture length L(t) increases as the fracture prop-
agates.

The mathematical formulation in dimensionless form is given as fol-
lows:
Governing equations

∂υx

∂x
+

∂υz

∂z
= 0, (4.4.8)

∂p
∂x

=
∂2υx

∂z2 , (4.4.9)

∂p
∂z

= 0. (4.4.10)

Boundary conditions

z = h(t, x) : υx(t, x, h(t, x)) = 0, (4.4.11)

z = −h(t, x) : υx(t, x,−h(t, x)) = 0. (4.4.12)
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Leak-off condition:

z = h(t, x) : υz(t, x, h(t, x)) =
∂h
∂t

+ vn(t, x), (4.4.13)

z = −h(t, x) : υz(t, x,−h(t, x)) = −
(

∂h
∂t

+ vn(t, x)
)

. (4.4.14)

Initial conditions

t = 0 : L(0) = 1, h(0, 0) = 1, (4.4.15)

t = 0 : h(0, x) = h0(x), 0 6 x 6 L(t). (4.4.16)

Fracture tip conditions

x = L(t) : h(t, L(t)) = 0. (4.4.17)

4.5 S O L I D M E C H A N I C S E Q UAT I O N S

As the fracture propagation takes place in the rock, equations govern-
ing the flow of fluid inside the fracture are coupled with solid mechan-
ics equations. Elasticity theory is used to define the relation between
the fracture half-width and the net fluid pressure. In this work, we are
concerned with the problem of a fluid-driven pre-existing hydraulic
fracture propagating in a permeable rock where the elasticity of the
rock is modelled using the Cauchy principal value integral derived from
linear elastic fracture mechanics.

4.5.1 Cauchy principal value integral

At the fracture wall z = h(t, x), from Cauchy’s formula relating the
stress vector to the stress tensor, we have

σzz = −p f (t, x) + 2µ
∂υz

∂z
on z = h(t, x). (4.5.1)

Since

p f ∼
µUL0

H2 (4.5.2)

and

µ
∂υz

∂z
∼ µ

U
L0

, (4.5.3)

the ratio of their order of magnitude gives

µ
U
L0
÷ µUL0

H2 =

(
H
L0

)2

� 1. (4.5.4)

Thus,

σzz(t, x, z) = −p f (t, x), (4.5.5)
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in dimensional form. The normal stress at the fracture wall is supported
fully by the fluid pressure p f (t, x). In [61, 62], the fluid-driven fracture
problem was considered, in which the PKN elasticity equation was em-
ployed. In this research work, we will describe the elasticity equation
using the relation due to Spence and Sharp [82]:

σzz − σ∞
zz =

2G
π(1− ν)

−
∫ L(t)

0

∂h(t, s)
∂s

s
(s2 − x2)

ds, (4.5.6)

where σzz is the elastic normal stress along the fracture walls, σ∞
zz is

the normal stress at infinity within the rock-mass, G is the elastic shear
modulus, ν is the Poisson’s ratio and G/(1− ν) is defined as the elastic
stiffness of the rock, a measure of resistance of rock to deformation.
The bar on the integral sign represents the Cauchy principal value. The
fracture will only extend when the net pressure of the fluid

p = p f + σ∞
zz (4.5.7)

is positive. Using (4.5.5) and (4.5.7), (4.5.6) becomes

p(t, x) = − 2G
π(1− ν)

−
∫ L(t)

0

∂h(t, s)
∂s

s
(s2 − x2)

ds. (4.5.8)

Substituting the dimensionless variables into (4.5.8) yields

Pp̄(t̄, x̄) = − 2GH
π(1− ν)L0

−
∫ L̄(t̄)

0

∂h̄(t̄, s̄)
∂s̄

s̄
s̄2 − x̄2 ds̄. (4.5.9)

Suppressing the overhead bars, in dimensionless form, equation (4.5.9)
becomes

p(t, x) = − 2
π
−
∫ L(t)

0

∂h
∂s

s
s2 − x2 ds, (4.5.10)

where

P =
GH

(1− ν)L0
(4.5.11)

is another scale for pressure. Equating (4.3.11) and (4.5.11) for the
characteristic pressure, we find that characteristic velocity is

U =
GH3

µ(1− ν)L2
0

. (4.5.12)

4.5.2 Fracture propagation criterion and the stress intensity factor

Early pioneers of fracture mechanics have published a lot of works on
fracture propagation criterion for solid materials. These works laid a
solid foundation for research in this area. Griffith [29] used an energy-
balance approach on brittle materials to develop a model that can accu-
rately predict the relationship between critical stress and the crack size.
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However, his model failed when applied to metals. This was due to the
assumption that the surface energy is the sole cause of fracture growth,
which is only applicable for brittle materials. The failure was later cor-
rected, at least in part, through the work of Irwin [38] and Orowan
[64]. Irwin [38] proposed a similar energy approach to fracture prop-
agation criterion. He presented the concept of energy release rate G
which is the measure of energy release required for an increment of
fracture extension. He suggested that the fracture will propagate when
G reaches a critical value Gc where Gc is taken to be the critical strain
energy release rate or fracture toughness. In plane stress the modified
Griffith equation is:

σf =

√
EGc

πa
, (4.5.13)

where σf is the stress level, E the Young’s modulus and a the fracture
length. While the energy-balance approach proposed by both Griffith
[29] and Irwin [38] provides a great deal of insight into the fracturing
process, an alternative approach that considers the stress state near the
fracture tip has proven to be extremely useful in engineering. This ap-
proach is characterized by a constant K that describes the behaviour of
a linear elastic material at the fracture tip. In this research, we will use
the stress intensity factor approach for fracture propagation criterion.
The stress intensity factor, K, is defined by [39]

−p(t, x)→ K

[2(x− L(t))]
1
2

as x → L(t)+. (4.5.14)

Substituting the dimensionless variables into (4.5.14) yields

−Pp̄(t̄, x̄)→ [K]γ

[2L0(x̄− L̄(t̄))]
1
2

as x → L+ (4.5.15)

where P = GH/(1− ν)L0. Dropping the overhead bars, in dimension-
less form, equation (4.5.15) becomes

−p(t, x)→ γ

[2(x− L(t))]
1
2

, as x → L+ (4.5.16)

where [K] = GH/(1− ν)
√

L0 and γ is taken to be the dimensionless
stress intensity factor.

4.6 N O N L I N E A R D I F F U S I O N E Q UAT I O N W I T H L E A K - O F F V E L O C -
I T Y T E R M

In this section, we will derive the nonlinear diffusion equation govern-
ing the evolution of the hydraulic fracture half-width. The resulting
partial differential equation will relate the fracture half-width h(t, x) to
the fluid pressure p(t, x) and the leak-off velocity vn(t, x).



4.6 N O N L I N E A R D I F F U S I O N E Q UAT I O N W I T H L E A K - O F F V E L O C I T Y T E R M 69

As a result of equation (4.4.10), we find that p = p(t, x). We now
integrate the mass conservation equation across the fracture width to
obtain

υz(t, x, h)− υz(t, x,−h) +
∫ h

−h

∂υx(t, x, z)
∂x

dz = 0. (4.6.1)

Imposing the boundary conditions (4.4.13) and (4.4.14), (4.6.1) be-
comes

2
(

∂h
∂t

+ vn(t, x)
)
+
∫ h

−h

∂υx(t, x, z)
∂x

dz = 0. (4.6.2)

Using the differentiation under the integral sign (see Appendix C) in
conjunction with the boundary conditions (4.4.11) and (4.4.12), the
integral term in (4.6.2) can be written as∫ h

−h

∂υx(t, x, z)
∂x

dz =
∂

∂x

∫ h

−h
υx(t, x, z)dz. (4.6.3)

Consequently, equation (4.6.2) becomes

2
(

∂h
∂t

+ vn(t, x)
)
+

∂

∂x

∫ h

−h
υx(t, x, z)dz = 0. (4.6.4)

Now, in order to derive the expression for the fluid velocity along the
fracture vx(t, x), we integrate (4.4.9) subject to the boundary condi-
tions (4.4.11) and (4.4.12) to obtain

υx(t, x, z) =
1
2

∂p
∂x
[
z2 − h2] . (4.6.5)

The fluid-driven fracture is long and thin, and therefore, as shown in
(4.4.10), the fluid pressure does not vary along the z-direction. It is
therefore reasonable to define the fluid flow in the fracture in terms of
the average fluid velocity υ∗x(t, x) which is independent of the z coordi-
nate and given by

υ∗x(t, x) =
1

2h

∫ h

−h
υx(t, x, z)dz. (4.6.6)

In terms of the average fluid velocity, υ∗x(t, x), the total flux of fluid
along the fracture is given by

Q(t, x) = 2
∫ h

−h
υx(t, x, z)dz = 4h(t, x)υ∗x(t, x). (4.6.7)

Thus, υ∗x(t, x) is the velocity of propagation of the flux of fluid. Sub-
stituting (4.6.5) into (4.6.6) and integrating the resulting expression
with respect to z from z = −h to z = h yields

υ∗x = −h2

3
∂p
∂x

. (4.6.8)
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Using (4.6.6) and (4.6.8), (4.6.4) becomes

∂h
∂t
− 1

3
∂

∂x

(
h3 ∂p

∂x

)
+ vn = 0. (4.6.9)

Equation (4.6.9) is a nonlinear diffusion equation for the fracture half-
width containing the leak-off velocity vn. The fluid pressure is related
to the fracture half-width by

p(t, x) = − 2
π
−
∫ L

0

∂h
∂s

s
s2 − x2 ds. (4.6.10)

Equations (4.6.9) and (4.6.10) are to be solved subject to the boundary
conditions

h(0, 0) = 1, hx(t, 0) = 0, h(L(t), t) = 0, (4.6.12a-c)

where

−p(t, x)→ γ

[2(x− L(t))]
1
2

as x → L+. (4.6.13)

The final condition that can be obtained is the global mass balance
equation. The balance law states that the rate of change of the total
volume of the fracture must be equal to the difference of the fluid flow
into the fracture at the entry and the volume of fluid that has leaked-off
at the fracture walls. The balance law can be expressed as

dV
dt

= Q(t, 0)−Q`(t, x), (4.6.14)

where dV/dt is the rate of change of the total volume of the fracture,
Q the total volume flux of fluid in the x-direction along the fracture
and Q` the flow rate of the leaked-off fluid. The volume of the fracture,
V(t), is

V(t) = 4
∫ L(t)

0
h(t, x)dx, (4.6.15)

and the flux of fluid leaving the fracture at the interface, Q`, is

Q`(t, x) = 4
∫ L(t)

0
vn(t, x, z)dx. (4.6.16)

Using (4.6.8), the volume flux of the fluid in the x-direction along the
fracture becomes

Q(t, x) = 4
∫ h(t,x)

0
vx(t, x, z)dz = 4h(t, x)υ∗x(t, x) = −4

3
h3 ∂p

∂x
. (4.6.17)

At the fracture entry, x = 0, the rate of fluid flow into the fracture

Q(t, 0) = 4
∫ h(t,0)

0
vx(t, 0, z)dz = −4

3
h3(t, 0)

∂p(t, 0)
∂x

. (4.6.18)
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The global mass balance equation can be equivalently expressed as

dV
dt

= −4
3

h3(t, 0)
∂p(t, 0)

∂x
− 4

∫ L(t)

0
vn(t, x)dx,

= 4h(t, 0)υ∗x(t, 0)− 4
∫ L(t)

0
vn(t, x)dx.

(4.6.19)

Substituting the dimensionless variables in (4.3.12) into (4.6.19), we
obtain, given that vn ∼ [vn]

HL0

T
dV
dt̄

= 4UHh̄(t̄, 0)υ∗x(t̄, 0)− 4[vn]L0

∫ L̄(t̄)

0
vn(t̄, x̄)dx̄. (4.6.20)

Multiplying through by 1/UH and dropping the overhead bars, we
obtain

dV
dt

= 4h(t, 0)υ∗x(t, 0)− 4
∫ L(t)

0
vn(t, x)dx, (4.6.21)

where vn ∼ UH/L0.

Similarity Solution

A transformation which reduces a partial differential equation to an
ordinary differential equation is called a similarity transformation. The
resulting solution to the partial differential equation obtained by a sim-
ilarity transformation is called a similarity solution. In this section, we
derive the similarity solution for equations (4.6.9) to (4.6.13). We in-
troduce the independent similarity variable ξ = x/L(t) and seek the
solution of the form

h(t, x) = a(t) f (ξ), vn(t, x) = r(t)g(ξ), η =
s

L(t)
. (4.6.22a-c)

The functions a(t), r(t) and L(t) have to be determined. Substituting
(4.6.22a) into (4.6.10), we obtain

p(t, x) = − 1
π

a(t)
L(t)
−
∫ 1

0

d f
dη

η

η2 − ξ2 dη, (4.6.23)

where η is a similarity variable. If we define

p(t, x) =
a(t)
L(t)

P(ξ), (4.6.24)

then

P(ξ) = − 2
π
−
∫ 1

0

d f
dη

η

η2 − ξ2 dη. (4.6.25)

Substituting (4.6.22a-c) into (4.6.9) yields

−L2(t)
a3(t)

dL
dt

ξ
d f
dξ

+
L3(t)
a4(t)

da
dt

f (ξ)−1
3

d
dξ

(
f 3 dP

dξ

)
+

r(t)L3(t)
a4(t)

g(ξ) = 0.
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(4.6.26)

In order for the similarity solution to exist it is necessary that (4.6.26)
does not depend on variable t. Therefore,

L2(t)
a3(t)

dL
dt

= c1,
L3(t)
a4(t)

da
dt

= c2,
r(t)L3(t)

a4(t)
= c3, (4.6.27a-c)

where c1, c2,and c3 are constants. Thus,

−c1ξ
d f
dξ

+ c2 f (ξ)− f 2 d f
dξ

dP
dξ
− 1

3
f 3 d2P

dξ2 + c3g(ξ) = 0. (4.6.28)

We now consider the equation describing the stress intensity factor. Us-
ing (4.6.22a-c) and (4.6.24), (4.6.13) becomes

−P(ξ)→ γ

[2(ξ − 1)]
1
2

L
1
2 (t)

a(t)
as ξ → 1+. (4.6.29)

That is,

−P(ξ)→ γ

[2(ξ − 1)]
1
2

as ξ → 1+, (4.6.30)

where

a(t) = L
1
2 (t). (4.6.31)

Substituting (4.6.31) into (4.6.27a) and using the boundary condition
L(0) = 1, yield

L(t) =
(

3
2

c1t + 1
) 2

3

. (4.6.32)

Then, it follows directly that

a(t) =
(

3
2

c1t + 1
) 1

3

, (4.6.33)

r(t) = c3L−1(t) = c3

(
3
2

c1t + 1
)− 2

3

. (4.6.34)

Similarly, using L(t) and a(t) in (4.6.27b), we get that

c1 = 2c2. (4.6.35)

The boundary value problem for the integro-differential system is given
by

c2 f (ξ)− 2c2ξ
d f
dξ
− 1

3
d
dξ

(
f 3 dP

dξ

)
+ c3g(ξ) = 0, (4.6.36)

P(ξ) = − 2
π
−
∫ 1

0

d f
dη

η

η2 − ξ2 dη, (4.6.37)

f (0) = 1, f ′(0) = 0, f (1) = 0, (4.6.38a-c)
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where

−P(ξ)→ γ

[2(ξ − 1)]
1
2

as ξ → 1+. (4.6.39)

The similarity solutions are given by

L(t) = (3c2t + 1)
2
3 , (4.6.40)

h(t, x) = L
1
2 (t) f (ξ), (4.6.41)

vn(t, x) = c3L−1(t)g(ξ), (4.6.42)

p(t, x) = L−
1
2 (t)P(ξ). (4.6.43)

Substituting (4.6.41) into (4.6.15) where ξ = x/L(t), we obtain

V(t) = V0(3c2t + 1), (4.6.44)

where

V0 = 4
∫ 1

0
f (ξ)dξ. (4.6.45)

From (4.6.41) and (4.6.43),

h3 ∂p
∂x

= f 3 dP
dξ

, (4.6.46)

so that

Q(t, x) = −4
3

f 3(ξ)
dP(ξ)

dξ
. (4.6.47)

The fluid flux at the fracture entry, Q(t, 0), becomes

Q(t, 0) = −4
3

f 3(0)
dP(0)

dξ
. (4.6.48)

The fluid flux at the fracture entry will therefore be a constant, say
Q0, for the boundary value problem (4.6.36)-(4.6.38a-c) to admit a
similarity solution. Substituting (4.6.42) into (4.6.16) gives the fluid
leak-off flux at the interface given by

Q` = 4c3

∫ 1

0
g(ξ)dξ. (4.6.49)

Thus, the mass balance equation is then given by

12c2

∫ 1

0
f (ξ)dξ = −4

3
f 3(0)

dP(0)
dξ

− 4c3

∫ 1

0
g(ξ)dξ. (4.6.50)
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4.7 C O N C L U S I O N

In this chapter, we have considered a mathematical model for a two-
dimensional pre-existing fracture propagating in a permeable rock. The
governing equations for the flow of the Newtonian fluid in the two-
dimensional fracture are the continuity and momentum balance equa-
tions. Since the fracture half-width is assumed to vary slowly along
its length, such that the ratio of the fracture half-width to the fracture
length is sufficiently small, lubrication theory holds. As a result, the gov-
erning equations - the continuity and momentum balance equations are
simplified using lubrication theory. The Cauchy principal value integral
derived from linear elastic fracture mechanics was used to describe the
elasticity equation relating the fluid pressure to the fracture half-width.
The stress intensity condition given by (4.6.13) is then imposed at the
fracture tip.

Using similarity transformation, the system of partial differential equa-
tions was reduced to a system ordinary differential equations. The
boundary conditions were also expressed in terms of the similarity vari-
ables. The integro-differential system has two equations but three un-
known dependent variables f (ξ), P(ξ) and g(ξ) to solve for. The sys-
tem also has two parameters c2 and c3 to determine. In Chapter 5 and
6, a form of g(ξ) will be specified in terms of f (ξ) and f ′(ξ) respec-
tively, in order to fully solve the integro-differential system. Because
the similarity transformation had to satisfy the stress intensity condi-
tion (4.6.13), the similarity solution of exponential time dependence
was not possible, as previously reported in literature. With the aid of
the initial condition L(0) = 1, pre-existing solutions are obtained for
L(t), h(t, x), V(t) and p(t, x).
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5
L E A K- O F F F L U I D V E L O C I T Y P R O P O RT I O N A L T O
F R A C T U R E H A L F-W I D T H

5.1 I N T R O D U C T I O N

In Chapter 3, we introduced a number of numerical techniques that
can be used to solve equations containing Cauchy-type singular inte-
grals. The finite difference method and the spline method gave a better
accuracy than the other numerical techniques considered for solving
the simple singular integral equation that was used to discuss the nu-
merical methods. Moreover, we observed rapid convergence when us-
ing the conventional finite difference approach and the spline method.
In this chapter, we will use the finite difference method and the spline
method to solve the boundary value problem for the system of integral
equations (4.6.36)-(4.6.43). However, in order to solve this system of
equations we need to either specify g(ξ) or state a relation between
g(ξ) and f (ξ). In this chapter, we begin by specifying a form for g(ξ)
which is in direct proportion to f (ξ).

5.2 L E A K - O F F F L U I D V E L O C I T Y P R O P O RT I O N A L T O F R A C T U R E

H A L F -W I D T H

Consider a relationship between g(ξ) and f (ξ) of the form

g(ξ) = β̄1 f (ξ) where β̄1 =
1
c3

β1, β̄1 ∈ R. (5.2.1)

It follows directly from (4.6.41) and (4.6.42) that

vn(t, x) = β1
h(t, x)

L
3
2 (t)

. (5.2.2)

This means that the leak-off velocity is proportional to the fracture
half-width, for which β1 > 0. When β1 > 0, there is fluid leak-off
into the surrounding rock formation. When β1 = 0, the rock mass is
impermeable and no fluid leaks into the surrounding rock formation.
The differential equation (4.6.36) becomes

(c2 + β1) f (ξ)− 2c2ξ
d f
dξ
− 1

3
d
dξ

(
f 3 dP

dξ

)
= 0, (5.2.3)

where pressure P is given by equation (4.6.37) and the leak-off fluid
velocity in terms of ξ is

vn(t, x) = β1
f (ξ)
L(t)

. (5.2.4)

76
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Using (5.2.1), the mass balance equation (4.6.50) becomes

(12c2 + 4β1)
∫ 1

0
f (ξ)dξ = −4

3
f 3(0)

dP(0)
dξ

. (5.2.5)

The expression for the fluid flux at the fracture entry, Q0, given by
(4.6.48), can be derived in terms of c2, β1 and f (ξ). Integrating (5.2.3)
with respect to η from ξ to 1, we obtain

− f 3(ξ)
dP
dξ

= (9c2 + 3β1)
∫ 1

ξ
f (η)dη + 6c2ξ f (ξ). (5.2.6)

When ξ = 0,

− f 3(0)
dP(0)

dξ
= (9c2 + 3β1)

∫ 1

0
f (ξ)dξ. (5.2.7)

Multiplying (5.2.7) by 4/3 and using (4.6.48), the fluid flux at the
fracture entry in terms of c2 and β1 is given by

Q0 = (12c2 + 4β1)
∫ 1

0
f (ξ)dξ. (5.2.8)

Since we know that f (0) = 1 and f (1) = 0 and that f (ξ) decreases
monotonically, we have that∫ 1

0
f (ξ)dξ < 1, (5.2.9)

which implies that

Q0 < 12c2 + 4β1. (5.2.10)

Thus, Q0, the fluid flux at x = 0 is bounded. From (5.2.6), the gradient
of the net pressure is given by

−dP
dξ

=
1

f 3(ξ)

[
(9c2 + 3β1)

∫ 1

ξ
f (η)dη + 6c2ξ f (ξ)

]
. (5.2.11)

Now, the problem is to solve for f (ξ) and P(ξ), the integro-differential
system of equations

(c2 + β1) f (ξ)− 2c2ξ
d f
dξ
− 1

3
d
dξ

(
f 3 dP

dξ

)
= 0, (5.2.12)

P(ξ) = − 2
π
−
∫ 1

0

d f
dη

η

η2 − ξ2 dη, (5.2.13)

subject to

f (0) = 1, f ′(0) = 0, f (1) = 0, (5.2.14a-c)

where

P(ξ)→ − γ√
2(ξ − 1)

as ξ → 1+. (5.2.15)
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Once f (ξ) and P(ξ) are obtained, L(t), V(t), h(t, x), vn(t, x) and p(t, x)
take the form

L(t) = (3c2t + 1)
2
3 , (5.2.16)

V(t) = V0(3c2t + 1), V0 = 4
∫ 1

0
f (ξ)dξ, (5.2.17)

h(t, x) = L
1
2 (t) f (ξ), (5.2.18)

vn(t, x) = β1L−1(t) f (ξ), (5.2.19)

p(t, x) = L−
1
2 (t)P(ξ). (5.2.20)

The solutions of the integro-differential system depend on the leak-
off parameter β1, the constant c2, the dimensionless stress intensity
factor γ and the fluid flux specified at the fracture entry, Q0. The values
of β1, γ and Q0 will be specified prior to the numerical computations
while c2 will be obtained as part of the solution such that equation
(5.2.8) is satisfied. It is important to note that for the fracture to grow,
it is required that c2 > 0. Then, by rearranging (5.2.8) we have that

c2 =
1
12

[
Q0

[∫ 1

0
f (ξ)dξ

]−1

− 4β1

]
> 0. (5.2.21)

That is,

4β1 < Q0

[∫ 1

0
f (ξ)dξ

]−1

. (5.2.22)

Since f ′(0) = 0, we have that

1
2
<
∫ 1

0
f (ξ)dξ < 1. (5.2.23)

It follows directly that

1 <

[∫ 1

0
f (ξ)dξ

]−1

< 2. (5.2.24)

Hence,

4β1 < Q0

[∫ 1

0
f (ξ)dξ

]−1

< 2Q0, (5.2.25)

which implies that

β1 �
Q0

2
. (5.2.26)
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5.3 T I P A S Y M P T O T I C S A N D T H E V E L O C I T Y R AT I O

In [20], Fareo and Mason considered the velocity ratio υ∗x(t, x)/L′(t)
for a fluid-driven fracture in PKN theory. They found that the veloc-
ity ratio function behaves approximately linearly along the fracture,
and proceeded to obtaining approximate analytical solution. We will
investigate the asymptotic solutions at the fracture tip as well as the
behaviour of the velocity ratio at the fracture tip. Later in the chapter,
the behaviour of the velocity ratio across the fracture will also be inves-
tigated as was done in PKN theory [20]. The velocity ratio is given by

υ∗x(t, x)
L′(t)

= − 1
6c2

f 2(ξ)P′(ξ). (5.3.1)

At the tip, we have

υ∗x(t, L(t))
L′(t)

= − 1
6c2

f 2(1)P′(1). (5.3.2)

We now seek to determine f 2(1)P′(1).
In Spence and Sharp [82], the asymptotic behaviour for f (ξ) and

P(ξ) near the fracture tip were derived for the case γ = 0 and γ > 0
for a fracture evolving from a point source. We will determine the
asymptotic behaviour for f (ξ), g(ξ) and P(ξ) as ξ → 1 for the case
γ = 0 and γ > 0 for a pre-existing fracture. When γ > 0, the evo-
lution of the fracture is analysed in the framework of linear elastic
fracture mechanics and it corresponds to toughness driven regime of
the KGD model. When γ = 0, the fracture is said to propagate in the
viscosity-dominated regime which corresponds to the PKN and the vis-
cosity driven variant of KGD.
Case: γ = 0
The asymptotic behaviour of f (ξ) as ξ → 1 is given by

f (ξ) ∼ α(1− ξ)r, (5.3.3)

where α and r are constants. This asymptotic behaviour satisfies the
boundary condition f (1) = 0. We now rewrite (5.2.13) as

P(ξ) = − 1
π
−
∫ 1

−1

d f
dη

dη

η − ξ
. (5.3.4)

for simplicity. Differentiating f (ξ) and substituting into (5.3.4), we ob-
tain

P(ξ) ∼ −αr
π

∫ 1

−1

(1− η)r−1dη

η − ξ
as ξ → 1. (5.3.5)

On setting η = 1− (1− ξ)u, equation (5.3.5) becomes

P(ξ) ∼ −αr
π
(1− ξ)r−1

∫ ∞

0

urdu
u2 − u

= αr cot(πr)(1− ξ)r−1, (5.3.6)
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as ξ → 1. The values for α and γ will be derived from equation (5.2.12).
Substituting (5.3.3) and (5.3.6) into (5.2.12), we obtain

α(c2 + β1)(1− ξ)r + 2αrc2(1− ξ)r−1 − 2αrc2(1− ξ)r

−1
3

α4r(r− 1)(4r− 2) cot(πr)(1− ξ)4r−3 ∼ 0,
(5.3.7)

as ξ → 1. The balance of dominant terms in (5.3.7) requires that

4r− 3 = r− 1, (5.3.8)

which after solving yields r = 2/3. Substituting the value of r into
(5.3.7) and solving for α, we find

α = 3
(√

3c2

) 1
3

.

Then the limiting behaviour of f (ξ), g(ξ) and P(ξ) as ξ → 1 are

f (ξ) ∼ 3
(√

3c2

) 1
3
(1− ξ)

2
3 , (5.3.9)

g(ξ) ∼ 3
(√

3c2

) 1
3

β̄1(1− ξ)
2
3 , (5.3.10)

P(ξ) ∼ −
(

8c2

3

) 1
3

(1− ξ)−
1
3 . (5.3.11)

The asymptotic solution for f (ξ) and P(ξ) near ξ = 1 depends on the
parameter c2, while the asymptotic behaviour for g(ξ) depends on c2

and the leak-odd parameter β̄1. The parameter c2 is a measure of the
rate of change of fracture volume as given in (5.2.17). From (5.3.9)
and (5.3.11), we obtain f 2(1)P′(1) = −6c2. Hence, the velocity ratio
at the fracture tip is

υ∗x(t, L(t))
L′(t)

= 1. (5.3.12)

Therefore, the fluid velocity equals the speed of fracture propagation
at the fracture tip.
Case: γ > 0
We seek asymptotic solutions for f (ξ) and P(ξ) as ξ → 1 when the
stress intensity factor γ > 0. The limiting behavior of f (ξ) as ξ → 1
when γ > 0 is given by the first term of (B.1.21)

f (ξ) ∼ γ(1− ξ2)
1
2 . (5.3.13)

From (5.2.11), it can be seen that as ξ → 1

P′(ξ) ∼ − 6c2

f 2(ξ)
. (5.3.14)
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Substituting (5.3.13) into (5.3.14), we find that the pressure gradient
as ξ → 1 exhibits the following behaviour

P′(ξ) ∼ −Λ1(1− ξ2)−1, (5.3.15)

where

Λ1 =
6c2

γ2 . (5.3.16)

Thus, the asymptotic solutions for f (ξ) and P(ξ) as ξ → 1, which are
true for γ > 0 are

f (ξ) ∼ γ(1− ξ2)
1
2 , (5.3.17)

g(ξ) ∼ γβ̄1(1− ξ2)
1
2 , (5.3.18)

P(ξ) ∼ 1
2

Λ1 ln
∣∣∣∣1− ξ

1 + ξ

∣∣∣∣ . (5.3.19)

Similarly, when γ > 0 we get that f 2(1)P′(1) = −6c2 and the velocity
ratio at the tip is again given by (5.3.12).

Thus for γ > 0, the fluid velocity equals the fracture propagation
speed at the fracture tip. There is therefore no fluid leak-off and no
fluid lag at the fracture tip. Fluid lag is a condition in which the fluid
front lags behind the fracture tip as the fracture propagates.

It is important to note that equation (5.3.12) holds for γ > 0 since
the fluid leak-off vanishes at the fracture tip, for vn ∝ h and at x = L(t),
h = 0 for which vn = 0. Using (5.3.9) and (5.3.11) for the case γ = 0
and (5.3.17) and (5.3.19) for γ > 0, it can be shown that

f 3 dP
dξ
∼ 2c2(3

√
3)

2
3 f (ξ)→ 0, (5.3.20)

and

f 3 dP
dξ
∼ −Λ1γ2 f (ξ)→ 0, (5.3.21)

as ξ → 1, respectively. The flux of fluid given by (4.6.47) therefore
vanishes at the fracture tip. That is

Q(t, L(t)) = −4
3

f 3(1)
dP(1)

dξ
= 0. (5.3.22)

Equation (5.3.20) and (5.3.21) above can also be verified using (5.2.6).
The lubrication approximation however, breaks down at the tip of the
fracture for γ > 0 since as ξ → 1,

d f
dξ

=

 −(8
√

3c2)
1
3 (1− ξ)−

1
3 , γ = 0,

−γξ

(1−ξ2)
1
2

, γ > 0,
(5.3.23)
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and hence from

∂h
∂x

= L−
1
2 (t)

d f
dξ
→ −∞ as x → L(t). (5.3.24)

The lubrication theory (4.3.2) given by

ε =
H
L0
� 1, ε2Re� 1, (5.3.25a-b)

therefore does not hold near the fracture tip.

5.4 F I N I T E D I F F E R E N C E M E T H O D

The integro-differential system (5.2.12)-(5.2.13) cannot be solved to
obtain exact analytical solutions. The finite difference method is first
employed to solve the integro-differential system (5.2.12)-(5.2.13) sub-
ject to the boundary conditions (5.2.14a-c) where as ξ → 1+ the fluid
pressure satisfies (5.2.15). The parameters c2 and β1 in (5.2.12) are
such that a value for β1 > 0 will be chosen, while c2 will be solved for
as part of the solution using a shooting method. As will be seen, the
finite difference method appears to fail to produce a smooth function
f (ξ), the reason of which is attributed to the slope of f (ξ) at the tip. To
solve, we partition the domain [0, 1] into n-equal sub-intervals given
by [ξ j, ξ j+1], where ξ j = j/n are the mesh points and 0 6 j 6 n − 1.
Here, j specifies the jth interval. We use the finite differences to ap-
proximate dP/dξ and d2P/dξ2 such that the points for P are at the
midpoints of the underlying mesh points ξ j. Thus,

dP
dξ

=
Pi+ 1

2
− Pi− 1

2

ξi+ 1
2
− ξi− 1

2

(5.4.1)

and

d2P
dξ2 =

Pi− 3
2
− Pi− 1

2
− Pi+ 1

2
+ Pi+ 3

2

2
[
ξi+ 1

2
− ξi− 1

2

]2 . (5.4.2)

As can be seen in (5.2.13), we position the pressure P at mid-mesh
points in order to avoid the singularity at the mesh points. Discretising
(5.2.12), we obtain

(c2 + β) fi − 2c2i( fi+1 − fi)− n f 2
i ( fi+1 − fi)

[
Pi+ 1

2
− Pi− 1

2

ξi+ 1
2
− ξi− 1

2

]

− 1
3

f 3
i

Pi− 3
2
− Pi− 1

2
− Pi+ 1

2
+ Pi+ 3

2

2
[
ξi+ 1

2
− ξi− 1

2

]2

 = 0,

(5.4.3)
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where the pressure P(ξ) is descritised as

Pi±α = P(ξi±α) = −
2
π
−
∫ 1

0

d f
dη

η

η2 − ξ2
i±α

dη, α = ±1
2

,±3
2

. (5.4.4)

By approximating the integral in (5.4.4) to be the sum of integrals in
each sub-interval [ξ j, ξ j+1] yields

Pi±α = − 2
π

n−1

∑
j=0
−
∫ ξ j+1

ξ j

d f
dη

η

η2 − ξ2
i±α

dη. (5.4.5)

Assuming that d f /dη is constant in each sub-interval [ξ j, ξ j+1] and us-
ing forward difference to approximate d f /dη yields

Pi±α = − 1
π

n−1

∑
j=0

(
f j+1 − f j

ηj+1 − ηj

)
−
∫ ξ j+1

ξ j

2η

η2 − ξ2
i±α

dη. (5.4.6)

The Cauchy principal value integral in (5.4.6) when evaluated gives

−
∫ ξ j+1

ξ j

2ηdη

η2 − ξ2
i±α

= ln

∣∣∣∣∣ ξ
2
j+1 − ξ2

i±α

ξ2
j − ξ2

i±α

∣∣∣∣∣ , (5.4.7)

hence,

Pi±α = − n
π

n−1

∑
j=0

( f j+1 − f j) ln

∣∣∣∣∣ ξ
2
j+1 − ξ2

i±α

ξ2
j − ξ2

i±α

∣∣∣∣∣ . (5.4.8)

Using (5.4.8), the first and second derivatives of the pressure become

dP
dξ

=
Pi+ 1

2
− Pi− 1

2

ξi+ 1
2
− ξi− 1

2

=
n2

π

n−1

∑
j=0

( f j+1 − f j)ri,j , (5.4.9)

d2P
dξ2 =

Pi− 3
2
− Pi− 1

2
− Pi+ 1

2
+ Pi+ 3

2

2
[
ξi+ 1

2
− ξi− 1

2

]2 =
n3

2π

n−1

∑
j=0

( f j+1 − f j)si,j ,

(5.4.10)

where

ri,j = ln
∣∣∣∣ (2j− 2i + 3)(2j + 2i + 1)2(2j− 2i− 1)
(2j + 2i− 1)(2j− 2i + 1)2(2j + 2i + 3)

∣∣∣∣ , (5.4.11)

and

si,j = ln
∣∣∣∣ (2j + 2i + 3)2(2j− 2i + 3)2(2j− 2i− 3)(2j + 2i− 3)
(2j− 2i− 1)2(2j + 2i− 1)2(2j + 2i + 5)(2j− 2i + 5)

∣∣∣∣ .

(5.4.12)

Equation (5.4.3) then becomes

(c2 + β) fi − 2c2i( fi+1 − fi)−
n3

π
f 2
i ( fi+1 − fi)

n−1

∑
j=0

( f j+1 − f j)ri,j

− n3

6π
f 3
i

n−1

∑
j=0

( f j+1 − f j)si,j = 0.

(5.4.13)
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Equation (5.4.13) is only valid for 2 6 i 6 n − 2 for which we have
n − 3 equations. After imposing boundary conditions, there will be
n− 2 unknowns to solve for. An extra equation is needed to uniquely
determine the solutions and this equation is obtained at the (n− 1)th

node. When i = n− 1, the second derivative of the pressure is given by

d2P
dξ2 =

Pn− 5
2
− Pn− 3

2
− Pn− 1

2
+ Pn+ 1

2

2
(

ξn− 1
2
− ξn− 3

2

)2 . (5.4.14)

It can be seen that the node ξn+1/2 lies outside the interval [0, 1]. As
a remedy, we impose the pressure condition just outside the crack tip
given by

−P
(

ξn+ 1
2

)
∼ γ[

2
(

ξn+ 1
2
− 1
)] 1

2
= γ
√

n , (5.4.15)

since ξn+1/2 = 1 + 1/2n, where γ is the dimensionless stress intensity
factor. Equation (5.2.12) for n− 1 becomes

(c2 + β1) fn−1 − 2c2(n− 1)( fn − fn−1)−
n3 f 2

n−1( fn − fn−1)

π

n−1

∑
j=0

( f j+1 − f j)rn−1,j

−
f 3
n−1

3

[
n3

2π

n−1

∑
j=0

( f j+1 − f j)cn−1,j −
γn

1
2

2

]
= 0,

(5.4.16)

where

ci,j = ln
∣∣∣∣ (2j− 2i + 3)2(2j + 2i− 3)(2j + 2i + 3)
(2j + 2i− 1)2(2j− 2i− 1)(2j− 2i + 5)

∣∣∣∣ . (5.4.17)

Now, for any choice of n > 4, we will have the following system of
nonlinear equations

i = 2 : (c2 + β1) f2 − 4c2( f3 − f2)

− n3

π
f 2
2 ( f3 − f2)

n−1

∑
j=1

( f j+1 − f j)r2,j

− n3

6π
f 3
2

n−1

∑
j=1

( f j+1 − f j)s2,j = 0,

(5.4.18)

i = 3 : (c2 + β1) f3 − 6c2( f4 − f3)

− n3

π
f 2
3 ( f4 − f3)

n−1

∑
j=1

( f j+1 − f j)r3,j

− n3

6π
f 3
3

n−1

∑
j=1

( f j+1 − f j)s3,j = 0,

(5.4.19)



5.5 T H E N E W T O N - R A P H S O N M E T H O D F O R A S Y S T E M O F E Q UAT I O N S 85

...
...

...

i = n− 2 : (c2 + β1) fn−2 − 2c2(n− 2)( fn−1 − fn−2)

−
n3 f 2

n−2( fn−1 − fn−2)

π

n−1

∑
j=0

( f j+1 − f j)rn−2,j

− n3

6π
f 3
n−2

n−1

∑
j=1

( f j+1 − f j)sn−2,j = 0,

(5.4.20)

i = n− 1 : (c2 + β1) fn−1 − 2c2(n− 1)( fn − fn−1)

−
n3 f 2

n−1( fn − fn−1)

π

n−1

∑
j=0

( f j+1 − f j)rn−1,j

−
f 3
n−1

3

[
n3

2π

n−1

∑
j=0

( f j+1 − f j)cn−1,j −
γn

1
2

2

]
= 0.

(5.4.21)

To this point, we have managed to set up the system of nonlinear equa-
tions that will be solved for fi, i = 2, 3, . . . , n− 1. In the next section, we
outline and discuss the Newton-Raphson method for solving a system
of nonlinear equations.

5.5 T H E N E W T O N - R A P H S O N M E T H O D F O R A S Y S T E M O F E Q UA -
T I O N S

The Newton-Raphson formula for a single-equation can be easily de-
rived from the first-order Taylor series expansion of f (x) about x:

f (xi+1) = f (xi) + (xi+1 − xi) f ′(xi) (5.5.1)

where xi is the initial guess of the solution or root and xi+1 is the im-
proved solution. If xi+1 is the root of f (x) = 0, then equation (5.5.1)
becomes

0 = f (xi) + (xi+1 − xi) f ′(xi), (5.5.2)

which after solving for xi+1 gives

xi+1 = xi −
f (xi)

f ′(xi)
. (5.5.3)

Equation (5.5.3) is the Newton-Raphson formula for a single-equation.
We will now derive the Newton-Raphson formula for a system of equa-
tions in the same fashion to the single-equation form.

Let us consider an n-dimensional problem given by

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,
...

...

fn(x1, x2, . . . , xn) = 0.

(5.5.4)
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The solution of (5.5.4) are the values of the x’s that makes the system
of equations equal to zero. Determining the values of these x’s for the
n simultaneous equations is a much more difficult task than that of
finding the root of a single-equation problem. The most effective yet
simple technique for determining the solution vector x is the Newton-
Raphson method. In order to derive the multiple-equation form of the
Newton-Raphson method, we first start by writing the first-order Taylor
series expansion for each of the equations as

f1,i+1 = f1,i + (x1,i+1−x1,i)
∂ f1,i

∂x1
+ (x2,i+1 − x2,i)

∂ f1,i

∂x2

+ · · ·+ (xn,i+1 − xn,i)
∂ f1,i

∂xn

(5.5.5)

f2,i+1 = f2,i + (x1,i+1−x1,i)
∂ f2,i

∂x1
+ (x2,i+1 − x2,i)

∂ f2,i

∂x2

+ · · ·+ (xn,i+1 − xn,i)
∂ f2,i

∂xn

(5.5.6)

...
...

fn,i+1 = fn,i + (x1,i+1−x1,i)
∂ fn,i

∂x1
+ (x2,i+1 − x2,i)

∂ fn,i

∂x2

+ · · ·+ (xn,i+1 − xn,i)
∂ fn,i

∂xn

(5.5.7)

where

[ f1,i, . . . , fn,i] = [ f1(x1,i, x2,i, . . . , xn,i), . . . , fn(x1,i, x2,i, . . . , xn,i)]. (5.5.8)

If

xi+1 = [x1,i+1, x2,i+1, . . . , xn,i+1]
T (5.5.9)

is the solution vector then

f i+1 = [ f1,i+1, f2,i+1, . . . , fn,i+1]
T (5.5.10)

will be equal to zero. In this case, the system of equations (5.5.5)-
(5.5.7) becomes, after rearranging,

∂ f1,i

∂x1
x1,i+1 +

∂ f1,i

∂x2
x2,i+1 + · · ·+

∂ f1,i

∂xn
xn,i+1 = − f1,i

+ x1,i
∂ f1,i

∂x1
+ x2,i

∂ f1,i

∂x2
+ · · ·+ xn,i

∂ f1,i

∂xn

(5.5.11)

∂ f2,i

∂x1
x1,i+1 +

∂ f2,i

∂x2
x2,i+1 + · · ·+

∂ f2,i

∂xn
xn,i+1 = − f2,i

+ x1,i
∂ f2,i

∂x1
+ x2,i

∂ f2,i

∂x2
+ · · ·+ xn,i

∂ f2,i

∂xn

(5.5.12)
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...
...

∂ fn,i

∂x1
x1,i+1 +

∂ fn,i

∂x2
x2,i+1 + · · ·+

∂ fn,i

∂xn
xn,i+1 = − fn,i

+ x1,i
∂ fn,i

∂x1
+ x2,i

∂ fn,i

∂x2
+ · · ·+ xn,i

∂ fn,i

∂xn

(5.5.13)

The system of equations (5.5.11)-(5.5.13) can be expressed in terms of
matrix notation as

J(x)xi+1 = − f (x) + J(x)xi, (5.5.14)

or more compactly

J(x)∆x = − f (x), (5.5.15)

where ∆x = xi+1 − xi and J(x) is the Jacobian matrix consisting of the

partial derivatives, i.e.,

J(x) =


∂ f1,i
∂x1

∂ f1,i
∂x2
· · · ∂ f1,i

∂xn
∂ f2,i
∂x1

∂ f2,i
∂x2
· · · ∂ f2,i

∂xn
... ... . . . ...

∂ fn,i
∂x1

∂ fn,i
∂x2
· · · ∂ fn,i

∂xn

 .

Equation (5.5.15) can be solved using the Gaussian elimination method.
Alternatively, we can solve (5.5.14) by multiplying both sides of (5.5.14)
with the inverse of the Jacobian to obtain

xi+1 = xi − J−1(x) f (x). (5.5.16)

The algorithm below outlines the steps for the Newton-Raphson method
for simultaneous equations:

Algorithm 1 Algorithm to compute the Newton-Raphson method.

Step 1 Initialize the solution vector x

Step 2 Evaluate f (x)

Step 3 Compute the Jacobian matrix J(x)

Step 4 Set up the simultaneous equations in (5.5.15) and solve for ∆x

Step 5 Let x← x + ∆x and repeat step 2 to 5.

The process should be continued until a stopping criteria is satisfied,
e.g, ||xi+1 − xi||∞/||xi+1||∞ < ε, where ε is the error tolerance. It must
be noted that the success of the Newton-Raphson method depends
mostly on the starting point, that is, a good initial estimate of x will
converge to the root rapidly.
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5.6 D I S C U S S I O N O N N U M E R I C A L M E T H O D

The boundary value problem for an integro-differential system, given
by (5.2.12)-(5.2.14a-c) may now be solved numerically. The problem
was discretised in Section 5.4. We partitioned domain [0, 1] into n
equal sub-intervals given by [ξ j, ξ j+1] for 0 6 j 6 n − 1 on the inter-
val [0, 1], where n is taken to be the number of sub-intervals. We then
assumed that f ′(ξ) is constant in each sub-interval [ξ j, ξ j+1] and can
be approximated by finite differences. The first and second derivatives
of P(ξ) were also approximated by finite differences and positioned at
the mid-grid points because of the singularity of the pressure at the
grid points. It was noticed that when i = n− 1, it was not possible to
determine the second derivative of P(ξ) using (5.4.8) since the node
ξn+1/2 lies outside the interval [0, 1]. We imposed the stress intensity
factor condition given by (5.2.15) to overcome this challenge.

The problem was then to solve the system of nonlinear algebraic
equations (5.4.13) for 2 6 i 6 n− 2 and (5.4.21) subject to the bound-
ary conditions (5.2.14a-c). The system was solved iteratively for values
of f at the nodes using the Newton-Raphson method with some spec-
ified tolerance. The accuracy of the results obtained were confirmed
using a Matlab built-in nonlinear system solver fsolve. The Levenberg-
Marquardt algorithm was specified within the fsolve optimization op-
tions. The Levenberg-Marquardt algorithm is a hybrid technique that
uses both the steepest descent and the Gauss-Newton method to find
the minimum of a function. The two numerical results showed close
agreement. The initial solution was taken to be the function f (ξ) =

3
√

1− ξ, for ξ ∈ [0, 1]. The leak-off parameter β1, the fluid flux at the
fracture entry Q0 and the dimensionless stress intensity factor γ were
prescribed such that β1 < Q0/2. The parameter c2 is to be solved for
as part of the solution. We iterate based on the bisection method by
solving the nonlinear system with varying values of c2 until a value of
c2 is obtained for which the condition (5.2.8) given by

Q0 = (12c2 + 4β1)
∫ 1

0
f (ξ)dξ (5.6.1)

is satisfied. Thus, the value of c2 is obtained directly from the numerical
solution. In order to check accuracy of the numerical results, Q0, f (ξ)
and dP(ξ)

dξ at ξ = 0 satisfies

Q0 = −4
3

f 3(0)
dP(0)

dξ
. (5.6.2)

It was not possible to determine P′(0) using (5.2.13) since the points
for P(ξ) are at the midpoints of the underlying mesh points and P(0)
could not be evaluated. The pressure gradient at ξ = 0 on the right
hand side of (5.6.2) was obtained using (5.2.11) and the value of f (0)
from the solution of f (ξ). It is worth mentioning that an attempt was
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made to determine the pressure gradient at ξ = 0 by first obtaining the
solution of P(ξ) using equation (5.2.13). To do this, we first numeri-
cally differentiated f (ξ) and then substituted into (5.2.13) to obtain
the mid-point values of the pressure. Afterwards, we calculated the
values of P(ξ) at the grid points using a Matlab built-in interpolation
function interp1. The values of P(ξ) at the grid points can alternatively
be obtained using the following finite difference approximation

Pi =
Pi+ 1

2
+ Pi− 1

2

2
. (5.6.3)

Once we obtained the grid points for P(ξ), we then numerically dif-
ferentiated P(ξ) to obtain the pressure gradient. It was found that the
value of the pressure gradient at ξ = 0 changed as we changed the in-
terpolation method, i.e., P′(0) obtained using linear interpolation was
different from P′(0) obtained using spline interpolation. As a result,
this approach was only used for determining P(ξ) and not the pressure
gradient.

Once (5.6.2) was also satisfied, the solution of f (ξ) was substituted
into (5.2.18) and (5.2.19) to obtain functions h(t, x) and vn(t, x), and
the solution of P(ξ) substituted into (5.2.20) to obtain p(t, x).

Here, we illustrates the behaviour of f (ξ) when plotted against ξ

for a range of values of n given by n = 50, 80, 100 for the case where
β1 = 0.01, Q0 = 0.2 and γ = 0.5. A variation in the value of any of
these parameters did not affect the behaviour of f (ξ). The solutions ob-
tained are illustrated in Figure 17, in which the graph of f (ξ) against
ξ does not produce a smooth curve, for the values n = 50, 80, 100. This
behaviour is however not surprising since from (5.3.9) and (5.3.17),
the problem possesses a singularity in the slope of f (ξ) as f ′(ξ)→ −∞
near ξ = 1. It is this singularity in f ′(ξ) at ξ = 1 which disrupts the fi-
nite difference method. We encountered a similar problem in Chapter 3
when solving a simple singular integral equation.

5.7 S P L I N E M E T H O D

It is obvious from the asymptotic solutions (5.3.9) and (5.3.17) that
there is a singularity in the slope of f (ξ) as f ′(ξ)→ −∞ near ξ = 1. It
is this singularity that led to non-smooth curves when using the finite
difference method. As a remedy, we extract the tip behaviour of the
similarity function f (ξ), and then use a linear spline to represent the
remaining part of f (ξ). To do this, we partition [0, 1] into n equal
sub-intervals and take f (ξ) in each sub-interval to be of the form

fi(ξ) = (1− ξ2)
1
2 Πi(ξ), (5.7.1)

where Πi(ξ) is a piece-wise linear function given by

Πi(ξ) = aiξ + bi. (5.7.2)
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Figure 17: Graph of f (ξ) plotted against ξ for β1 = 0.01, Q0 = 0.2, γ = 0.5
when (i) n = 50, (ii) n = 80 and (iii) n = 100.
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Dividing the interval [0,1] into n sub-intervals [ηj, ηj+1], j = 0, 1, . . . , n−
1 and after substituting (5.7.1) into (5.2.13), we obtain

Pi±α = − 2
π

n−1

∑
j=0

[
−
∫ ηj+1

ηj

η(1− 2η2)ajdη

(η2 − ξ2
i±α)

√
1− η2

−−
∫ ηj+1

ηj

η2bjdη

(η2 − ξ2
i±α)

√
1− η2

]
,

(5.7.3)

where α = ±1/2, ±3/2.
We now show how the Cauchy principal value integrals in (5.7.3)

will be evaluated. Consider the first integral on the right hand side of
(5.7.3). If we set

f1 (η, τ) =
η(1− 2η2)

(η + τ)
, (5.7.4)

where τ = ξ j±α, then

−
∫ ηj+1

ηj

η(1− 2η2)dη

(η + τ)(η − τ)
√

1− η2
= −
∫ ηj+1

ηj

f1 (η, τ)dη

(η − τ)
√

1− η2
. (5.7.5)

We want to integrate

I = −
∫ ηj+1

ηj

f1 (η, τ)dη

(η − τ)
√

1− η2
= I− + I+

= lim
ε→0+

[∫ τ−ε

ηj

f1 (η, τ)dη

(η − τ)
√

1− η2
+
∫ ηj+1

τ+ε

f1 (η, τ)dη

(η − τ)
√

1− η2

]
.

(5.7.6)

To do so, we subtract the singularity so that we are left with some
integral we can integrate numerically. We do so in the following way:

I− =
∫ τ−ε

ηj

f1 (η, τ)− f1 (τ, τ)

(η − τ)
√

1− η2
dη + f1 (τ, τ)

∫ τ−ε

ηj

dη

(η − τ)
√

1− η2

≈
∫ τ−ε

ηj

f ′1 (η, τ)dη√
1− η2

+ f1 (τ, τ)
∫ τ−ε

ηj

dη

(η − τ)
√

1− η2
.

(5.7.7)

In a similar fashion, we get

I+ =
∫ ηj+1

τ+ε

f1 (η, τ)− f1 (τ, τ)

(η − τ)
√

1− η2
dη + f1 (τ, τ)

∫ ηj+1

τ+ε

dη

(η − τ)
√

1− η2

≈
∫ ηj+1

τ+ε

f ′1 (η, τ)dη√
1− η2

+ f1 (τ, τ)
∫ ηj+1

τ+ε

dη

(η − τ)
√

1− η2
.

(5.7.8)

The whole integral is then given by

I =
∫ τ

ηj

f ′1 (η, τ)dη√
1− η2

+
∫ ηj+1

τ

f ′1 (η, τ)dη√
1− η2

+ f1 (τ, τ)−
∫ ηj+1

ηj

dη

(η − τ)
√

1− η2
.
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(5.7.9)

When evaluated, the last integral in (5.7.9) gives

−
∫ ηj+1

ηj

dη

(η − τ)
√

1− η2
=

1√
1− τ2

ln

∣∣∣∣∣∣
1 +
√

1− τ2
√

1− η2
j − τηj

1 +
√

1− τ2
√

1− η2
j+1 − τηj+1

∣∣∣∣∣∣ .

(5.7.10)

Applying the above analysis on the second integral in (5.7.3), we get

−
∫ ηj+1

ηj

f2(η, τ)dη

(η − τ)
√

1− η2
=
∫ τ

ηj

f ′2 (η, τ)dη√
1− η2

+
∫ ηj+1

τ

f ′2 (η, τ)dη√
1− η2

+ f2 (τ, τ)−
∫ ηj+1

ηj

dη

(η − τ)
√

1− η2
,

(5.7.11)

where

f2(η, ξ) =
η2

η + ξ
. (5.7.12)

We will apply this analysis to the pressure expression given in (5.7.3)
when evaluated at each value of α, that is, when the pressure is

Pi− 1
2
=− 2

π

n−1

∑
j=0

j 6=i−1

∫ ηj+1

ηj

η(1− 2η2)ajdη(
η2 − ξ2

i− 1
2

)√
1− η2

−
∫ ηj+1

ηj

η2bjdη(
η2 − ξ2

i− 1
2

)√
1− η2



− 2
π

−∫ ηi

ηi−1

η(1− 2η2)ajdη(
η2 − ξ2

i− 1
2

)√
1− η2

−−
∫ ηi

ηi−1

η2bjdη(
η2 − ξ2

i− 1
2

)√
1− η2

 ,

(5.7.13)

Pi+ 1
2
=− 2

π

n−1

∑
j=0
j 6=i

∫ ηj+1

ηj

η(1− 2η2)ajdη(
η2 − ξ2

i+ 1
2

)√
1− η2

−
∫ ηj+1

ηj

η2bjdη(
η2 − ξ2

i+ 1
2

)√
1− η2



− 2
π

−∫ ηi+1

ηi

η(1− 2η2)ajdη(
η2 − ξ2

i+ 1
2

)√
1− η2

−−
∫ ηi+1

ηi

η2bjdη(
η2 − ξ2

i+ 1
2

)√
1− η2

 ,

(5.7.14)
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Pi− 3
2
=− 2

π

n−1

∑
j=0

j 6=i−2

∫ ηj+1

ηj

η(1− 2η2)ajdη(
η2 − ξ2

i− 3
2

)√
1− η2

−
∫ ηj+1

ηj

η2bjdη(
η2 − ξ2

i− 3
2

)√
1− η2



− 2
π

−∫ ηi−1

ηi−2

η(1− 2η2)ajdη(
η2 − ξ2

i− 3
2

)√
1− η2

−−
∫ ηi−1

ηi−2

η2bjdη(
η2 − ξ2

i− 3
2

)√
1− η2

 ,

(5.7.15)

Pi+ 3
2
=− 2

π

n−1

∑
j=0

j 6=i+1

∫ ηj+1

ηj

η(1− 2η2)ajdη(
η2 − ξ2

i+ 3
2

)√
1− η2

−
∫ ηj+1

ηj

η2bjdη(
η2 − ξ2

i+ 3
2

)√
1− η2



− 2
π

−∫ ηi+2

ηi+1

η(1− 2η2)ajdη(
η2 − ξ2

i+ 3
2

)√
1− η2

−−
∫ ηi+2

ηi+1

η2bjdη(
η2 − ξ2

i+ 3
2

)√
1− η2

 .

(5.7.16)

Discretising (5.2.12) and approximating the pressure terms using
central difference, we obtain

(c2 + β1)
(
1− ξ2) 1

2 (aiξ + bi)−
2c2ξ

[
(1− 2ξ2)ai − ξbi

]√
1− ξ2

− (1− ξ2)(aiξ + bi)
2

[
(1− 2ξ2)ai − ξbi√

1− ξ2

] [
Pi+ 1

2
− Pi− 1

2

ξi+ 1
2
− ξi− 1

2

]

− 1
3
(1− ξ2)

3
2 (aiξ + bi)

3

Pi− 3
2
− Pi− 1

2
− Pi+ 1

2
+ Pi+ 3

2

2
(

ξi+ 1
2
− ξi− 1

2

)2

 = 0,

(5.7.17)

where 1 6 i 6 n − 1. The current task is to solve for {ai, bi}, i =

1, 2, . . . , n− 1 in each sub-interval. There are n sub-intervals and n + 1
grid points hence we have 2n unknowns in total. Equation (5.7.17) will
generate a system of n− 1 nonlinear equations.

Now, in each sub-interval there exist a linear spline of the form

Πi(ξ) = aiξ + bi, (5.7.18)

and by the continuity condition two successive linear splines are con-
tinuous at their common interior points, that is

Πi(ξi) = Πi−1(ξi), i = 1, 2, 3, . . . , n− 1. (5.7.19)

The continuity condition (5.7.19) gives an additional n− 1 equations.
We now have a total of 2n− 2 equations. We use the slope and bound-
ary conditions to determine the values a0 and b0. As a result, the 2n− 2
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equations are sufficient to solve the underlying system of nonlinear
equations. We use an example to outline the procedure of solving the
problem. For any choice of n > 2, we have n splines with 2n unknowns.
The slope condition f ′(0) = 0 implies that a0 = 0 and the boundary
condition at the fracture entry gives b0 = 1, hence f0(ξ) =

√
1− ξ2.

We now have a total of 2n− 2 unknowns. Equation (5.7.17) gives n− 1
equations, for example

i = 1 : (c2 + β1)
(
1− ξ2) 1

2 (a1ξ + b1)−
2c2ξ

[
(1− 2ξ2)a1 − ξb1

]√
1− ξ2

− n(1− ξ2)(a1ξ + b1)
2(P3

2
− P1

2
)

[
(1− 2ξ2)a1 − ξb1√

1− ξ2

]

− n2

6
(1− ξ2)

3
2 (a1ξ + b1)

3(P− 1
2
− P1

2
− P3

2
+ P5

2
) = 0,

(5.7.20)

i = 2 : (c2 + β1)
(
1− ξ2) 1

2 (a2ξ + b2)−
2c2ξ

[
(1− 2ξ2)a2 − ξb2

]√
1− ξ2

− n(1− ξ2)(a2ξ + b2)
2(P5

2
− P3

2
)

[
(1− 2ξ2)a2 − ξb2√

1− ξ2

]

− n2

6
(1− ξ2)

3
2 (a2ξ + b2)

3(P1
2
− P3

2
− P5

2
+ P7

2
) = 0,

(5.7.21)

...
...

i = n− 1 : (c2 + β1)
(
1− ξ2) 1

2 (an−1ξ + bn−1)−
2c2ξ

[
(1− 2ξ2)an−1 − ξbn−1

]√
1− ξ2

− n(1− ξ2)(an−1ξ + bn−1)
2
(

Pn− 1
2
− Pn− 3

2

) [ (1− 2ξ2)an−1 − ξbn−1√
1− ξ2

]

− n2

6
(1− ξ2)

3
2 (an−1ξ + bn−1)

3
(

Pn− 5
2
− Pn− 3

2
− Pn− 1

2
+ Pn+ 1

2

)
= 0.

(5.7.22)

Similarly, we get n− 1 equations from the continuity condition

i = 1 : a1ξ1 + b1 − b0 = 0, (5.7.23)

i = 2 : (a2 − a1)ξ2 + b2 − b1 = 0, (5.7.24)

...
...

i = n− 1 : (an−1 − an−2)ξn−1 + bn−1 − bn−2 = 0. (5.7.25)
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Equations (5.7.20) and (5.7.22) contains two pressure terms P−1/2 and
Pn+1/2 which lie outside the interval [0, 1]. By symmetry, we have that
P−1/2 = P1/2. Consequently, (5.7.20) becomes

(c2 + β1)
(
1− ξ2) 1

2 (a1ξ + b1)−
2c2ξ

[
(1− 2ξ2)a1 − ξb1

]√
1− ξ2

− n(1− ξ2)(a1ξ + b1)
2(P3

2
− P1

2
)

[
(1− 2ξ2)a1 − ξb1√

1− ξ2

]

− n2

6
(1− ξ2)

3
2 (a1ξ + b1)

3
(

P5
2
− P3

2

)
= 0.

(5.7.26)

As shown previously, we approximate the term Pn+1/2 using the pres-
sure condition which describes the behaviour of pressure near but just
outside the fracture tip. Equation (5.7.22) then becomes

(c2 + β1)
(
1− ξ2) 1

2 (an−1ξ + bn−1)−
2c2ξ

[
(1− 2ξ2)an−1 − ξbn−1

]√
1− ξ2

− n(1− ξ2)(an−1ξ + bn−1)
2
(

Pn− 1
2
− Pn− 3

2

) [ (1− 2ξ2)an−1 − ξbn−1√
1− ξ2

]

− n2

6
(1− ξ2)

3
2 (an−1ξ + bn−1)

3
(

Pn− 5
2
− Pn− 3

2
− Pn− 1

2
− γn

1
2

)
= 0.

(5.7.27)

In the next section, we discuss the approaches employed for solving
the resulting system of nonlinear equations.

5.8 D I S C U S S I O N O N N U M E R I C A L M E T H O D

The numerical scheme used to accurately solve the boundary value
problem for the integro-differential system (5.2.12)-(5.2.14a-c) was
based on the spline method. The discretisation and set up of the prob-
lem is outlined in the previous section. As shown, the remedy to the
singularity challenge at the fracture tip was to extract the fracture tip
behaviour and represent the remaining part of f (ξ) as a piece-wise
linear function, i.e., linear in each sub-interval [ξi, ξi+1].

The resulting set of nonlinear algebraic equations were solved for the
unknown coefficients a = [a1, a2, . . . , an−1] and b = [b1, b2, . . . , bn−1]

using the Matlab nonlinear system solver fsolve. The fsolve was pre-
ferred due to its implementation of an optimization procedure to deter-
mine the unknown coefficients. We used the Matlab function rand to
obtain the initial guess for the unknown coefficients. The rand function
generates uniformly distributed random numbers in the interval (0,1).
The system was solved iteratively subject to the boundary conditions
(5.2.14a-c). The parameters β1, Q0 and γ are prescribed. For fixed β1,
Q0 and γ, we iterated based on the bisection method with varying val-
ues of c2 until the condition (5.2.8) was satisfied. The value of c2 was
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obtained as part of the solution. Similarly, the accuracy of the numer-
ical results was verified using equation (5.6.2). Once the solution for
f (ξ) and the value of c2 are obtained, L(t), V(t), h(t, x) and vn(t, x)
are obtained from (5.2.16), (5.2.17), (5.2.18) and (5.2.19). Here, the
mid-grid values for P(ξ) were calculated using (5.7.3) and the Mat-
lab function interp1 was used to obtain grid points values of P(ξ). The
pressure gradient at ξ = 0 was obtained directly from (5.2.11).

We now illustrate the behaviour of f (ξ) when plotted against ξ for
the case where β1 = 0.01, Q0 = 0.2 and γ = 0.5. The solution for f (ξ)
obtained using the spline method is compared to the solution obtained
in Section 5.6 using finite difference method. It is clear in Figure 18 that
the solutions overlap and that the spline method produces a smooth
curve.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 18: Comparison of the solution for the similarity function f (ξ) ob-
tained using the finite difference method and the spline method
when n = 100.

5.9 N U M E R I C A L R E S U LT S A N D D I S C U S S I O N S

This section will illustrate the behaviour of the fracture length, frac-
ture volume, fracture half-width, leak-off fluid velocity and the fluid
pressure for varied parameter values. We will also illustrate the rela-
tionship between the parameters c2, β1, Q0, γ in the model.

In Figure 19, h(t, x) is plotted against x at t = 0, 10, 20 and 50 when
β1 = 0, 0.01, 0.04. As expected, h(t, x) increases with time, and as β1

increases, indicating increase in leak-off, the rate of increase of h(t, x)
is seen to decrease.
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In Figure 20, the fracture half-width, h(t, x), leak-off velocity, vn(t, x),
and the net pressure, p(t, x), are plotted against x for β1 = 0, 0.005,
0.01, 0.04 when γ = 0.5 and Q0 = 0.2. In Figure 20(i), the half-width
of the fracture evolved the greatest when β1 = 0 and the least when
β1 = 0.04. In Figure 20(ii), the graph of vn(t, x) reflects the assumption
that the leak-off velocity is proportional to the fracture half-width. In
Figure 20(iii), the fluid pressure is positive across fracture except near
the fracture tip in agreement with (5.3.19).

In Figure 21, h(t, x), vn(t, x) and p(t, x) are plotted at time t = 50
for Q0 = 0.1, 0.15, 0.2 and 0.25 when γ = 0.5 and β1 = 0.01. It can
be seen in Figure 21(i) that as Q0 increases, the fracture half-width
increases as expected, despite leak-off of fluid into the rock mass. The
fracture half-width evolved the least when Q0 = 0.1 and the greatest
when Q0 = 0.25.

In Figure 22, h(t, x), vn(t, x) and p(t, x) are plotted at time t = 50
for γ = 0, 2, 4 and 10 when Q0 = 0.2 and β1 = 0.01. When γ = 0,
the pressure near but just outside the fracture tip is zero and equation
(5.2.15) is satisfied. When γ > 0, the net pressure is negative and
equation (5.2.15) is satisfied. Expectedly, an increase in γ did not lead
to growth in the fracture half-width.

In Figure 23(i-iii), graphs of L(t) are plotted against t for varied
values of β1, Q0 and γ. The length of the fracture L(t) is an increasing
function of time and L(t) → ∞ as t → ∞. In Figure 23(i), L(t) is
plotted for β1 = 0, 0.005, 0.01 and 0.04 when γ = 0.5 and Q0 = 0.2.
Fluid leak-off at the fluid-rock interface reduces the rate of growth of
fracture length impacting on the extent of propagation of the fracture.
The length of the fracture grew the strongest when β1 = 0, as would
intuitively be expected, and it grew the weakest when β1 = 0.04. In
Figure 23(ii), L(t) is plotted for Q0 = 0.1, 0.15, 0.2 and 0.25 when γ =

0.5 and β1 = 0.01. The rate of growth of the fracture length was the
weakest when Q0 = 0.1 and the strongest when Q0 = 0.25. In Figure
23(iii), L(t) is plotted for γ = 0, 2, 4 and 10 when β1 = 0.01 and
Q0 = 0.2. The graphs for the fracture length are indistinguishable for
the different values of γ. It is can seen that γ has a slight effect on the
rate of growth of the fracture length.

Figure 24(i-iii) shows the fracture volume evolution over time, as
well as the plot of the velocity ratio and the dimensionless pressure
gradient. In Figure 24(i), V(t) is plotted for β1 = 0, 0.005, 0.01 and
0.04 when γ = 0.5 and Q0 = 0.2. The value of the initial fracture
volume, V0, was determined to be approximately 2.97. The fracture
volume increases linearly with time. Therefore, V ′(t) > 0 for all t and
V(t) → ∞ as t → ∞. The fracture volume grew the least when β1 =

0.04, for which fluid leak-off is highest, and the greatest when β1 = 0.
Figure 24(ii), illustrates the velocity ratio for different values of β1.
The graphs of the velocity ratio for the values of β1 considered are not
approximately straight lines as anticipated. Fareo and Mason [20]



5.9 N U M E R I C A L R E S U LT S A N D D I S C U S S I O N S 98

(i)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(ii)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(iii)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 19: Graph of h(t, x) plotted against x at times t = 0, 10, 20, 50 for Q0 =
0.2, γ = 0.5 and for (i) β1 = 0 and c2 = 0.022453, (ii) β1 = 0.01
and c2 = 0.019100 and (iii) β1 = 0.04 and c2 = 0.009068.
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Figure 20: Graphs of (i) the fracture half-width h(t, x), (ii) leak-off fluid veloc-
ity vn(t, x) and (iii) the net pressure p(t, x), plotted against x for
β1 = 0, 0.005, 0.01, 0.04 when Q0 = 0.2 and γ = 0.5 at t = 50.
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Figure 21: Graphs of (i) the fracture half-width h(t, x), (ii) leak-off fluid veloc-
ity vn(t, x) and (iii) the net pressure p(t, x), plotted against x for
Q0 = 0.1, 0.15, 0.2, 0.25 when γ = 0.5 and β1 = 0.01 at t = 50.



5.9 N U M E R I C A L R E S U LT S A N D D I S C U S S I O N S 101

(i)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(ii)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
10-3

(iii)

0 0.5 1 1.5 2 2.5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 22: Graphs of (i) the fracture half-width h(t, x), (ii) leak-off fluid ve-
locity vn(t, x) and (iii) the net pressure p(t, x), plotted against x
for γ = 0, 2, 4, 10 when Q0 = 0.2 and β1 = 0.01 at t = 50.
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Figure 23: Fracture length plotted for various values of (i) β1, (ii) Q0, (iii) γ.
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Figure 24: Graphs illustrating (i) fracture volume plotted against t for β1 =
0, 0.005, 0.01, 0.04 when Q0 = 0.2 and γ = 0.5, (ii) velocity ratio
υ∗x(t, x)/L′(t) plotted against ξ for β1 = 0, 0.005, 0.01, 0.04 when
Q0 = 0.2 and γ = 0.5, (iii) dimensionless pressure gradient plotted
against ξ for Q0 = 0.2, γ = 0.5 and β1 = 0.01.
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Figure 25: The constant c2 plotted against (i) β1, (ii) Q0, (iii) γ.
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investigated the behaviour of the velocity ratio υ∗x(t, x)/L′(t) across
the fracture in PKN theory. They found that the ratio behaves approxi-
mately linearly across the fracture which led to the obtaining of approx-
imate solutions. In Figure 24(iii) the non-dimensional pressure gradi-
ent P′(ξ) is plotted against ξ and the limiting behaviour of P′(ξ) as
ξ → 1 proportional to 1/(1− ξ)−1 is displayed in the plot.

Figure 25 shows the relationship between c2, β1, Q0 and γ in the
model. In Figure 25(i), c2 is plotted against the leak-off parameter β1. It
can be seen that c2 is inversely proportional to β1. In Figure 25(ii), c2 is
plotted against fluid flux at the fracture entry Q0. It can be seen that c2

increases as linear function of Q0. In Figure 25(iii), c2 is plotted against
the dimensionless stress intensity factor γ. There is a rapid increase in
the value of c2 between 0 6 γ 6 3 followed by a gradual increase and
finally the graph seems to reach a plateau.

5.10 C O N C L U S I O N

In this chapter, we investigated a two-dimensional pre-existing fracture
propagating in a permeable rock when fracturing fluid of Newtonian
rheology is injected under high pressure into the fracture. The govern-
ing equations which is the boundary value problem for the integro-
differential system was derived in Chapter 4. It contains three depen-
dent variables f (ξ), g(ξ) and P(ξ) to solve for, but two equations. In
order to close the system, a linear relation between g(ξ) and f (ξ) of
the form g(ξ) = β̄1 f (ξ) had to be specified. The non-linear system con-
tains four parameters c2, β1, Q0 and γ, which all have to be specified
except c2. The constant c2 was obtained as part of the solution. Nu-
merical solutions to the system were obtained using the linear spline
method. The finite difference method gave quite a similar solution, but
the singularity in the slope of f (ξ) at the tip made solutions for h(x, t)
to exhibit oscillations along x. The results obtained were as expected.
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L E A K- O F F F L U I D V E L O C I T Y P R O P O RT I O N A L T O
G R A D I E N T O F F L U I D - R O C K I N T E R FA C E

6.1 I N T R O D U C T I O N

In this chapter, we consider the case in which g(ξ) is proportional to
f ′(ξ). This results in the leak-off velocity being proportional to the gra-
dient of the fluid-rock interface. The resulting integro-differential sys-
tem is then solved numerically using the linear spline method. A discus-
sion of the numerical results is then provided. The numerical approach
outlined in Section 5.8 also applies in this chapter.

6.2 L E A K - O F F F L U I D V E L O C I T Y P R O P O RT I O N A L T O G R A D I E N T

O F F L U I D - R O C K I N T E R F A C E

Consider the case where

g(ξ) = −β̄2ξ
d f
dξ

where β̄2 =
1
c3

β2, β̄2 ∈ R. (6.2.1)

It follows from the similarity solution (4.6.42), given ξ = x/L(t), that

vn(t, x) = −β2
x ∂h

∂x

L
3
2 (t)

. (6.2.2)

Hence, the leak-off velocity vn(t, x) is proportional to the gradient of
the half-width of the fracture. The differential equation (4.6.36) be-
comes

c2 f (ξ)− (2c2 + β2)ξ
d f
dξ
− 1

3
d
dξ

(
f 3 dP

dξ

)
= 0. (6.2.3)

Using (6.2.1), the mass balance equation (4.6.50) becomes

12c2

∫ 1

0
f (ξ)dξ = −4

3
f 3(0)

dP(0)
dξ

+ 4β2

∫ 1

0
ξ

d f
dξ

dξ. (6.2.4)

By integrating by parts using the boundary condition f (1) = 0, we
obtain∫ 1

0
ξ

d f
dξ

dξ = −
∫ 1

0
f (ξ)dξ. (6.2.5)

Equation (6.2.4) becomes

(12c2 + 4β2)
∫ 1

0
f (ξ)dξ = −4

3
f 3(0)

dP(0)
dξ

. (6.2.6)
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The expression for the fluid flux at the fracture entry, Q0(t), can be
derived in terms of c2, β2 and f (ξ). Integrating (6.2.3) with respect to
η from ξ to 1, we obtain

− f 3 dP
dξ

= (9c2 + 3β2)
∫ 1

ξ
f (η)dη + (6c2 + 3β2)ξ f (ξ). (6.2.7)

Evaluating (6.2.7) at ξ = 0, we find that

− f 3(0)
dP(0)

dξ
= (9c2 + 3β2)

∫ 1

0
f (ξ)dξ. (6.2.8)

Multiplying (6.2.8) by 4/3 and using (4.6.48), the fluid flux at the
fracture entry can be expressed as

Q0 = (12c2 + 4β2)
∫ 1

0
f (ξ)dξ. (6.2.9)

From (6.2.7), we obtain the pressure gradient as

−dP
dξ

=
1

f 3(ξ)

[
(9c2 + 3β2)

∫ 1

ξ
f (η)dη + (6c2 + 3β2)ξ f (ξ)

]
. (6.2.10)

The problem is to solve for f (ξ) and P(ξ), the system of differential
equations

c2 f (ξ)− 2c2

(
1 +

β2

2c2

)
ξ

d f
dξ
− 1

3
d
dξ

(
f 3 dP

dξ

)
= 0, (6.2.11)

P(ξ) = − 2
π
−
∫ 1

0

d f
dη

η

η2 − ξ2 dη, (6.2.12)

subject to

f (0) = 1, f ′(0) = 0, f (1) = 0, (6.2.13a-d)

where

P(ξ)→ − γ√
2(ξ − 1)

as ξ → 1+. (6.2.14)

Once f (ξ) and P(ξ) are obtained, L(t), V(t), h(t, x), vn(t, x) and p(t, x)
take the form

L(t) = (3c2t + 1)
2
3 , (6.2.15)

V(t) = V0(3c2t + 1), V0 = 4
∫ 1

0
f (ξ)dξ, (6.2.16)

h(t, x) = L
1
2 (t) f (ξ), (6.2.17)

vn(t, x) = −β2ξL−1(t) f ′(ξ), (6.2.18)

p(t, x) = L−
1
2 (t)P(ξ). (6.2.19)
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The solutions of the system of differential equation depends on the
constant c2, the dimensionless stress intensity factor γ and the fluid
flux specified at the fracture entry, Q0. The values of γ and Q0 will
be specified before commencing the numerical computations and the
constant c2 will be obtained as part of the solution such that equation
(6.2.9) is satisfied. Since, it is required that c2 > 0 and (6.2.9) has the
same form as (5.2.8), then we have that

β2 �
Q0

2
. (6.2.20)

6.3 T I P A S Y M P T O T I C S A N D T H E V E L O C I T Y R AT I O

In this section, we will investigate the limiting behaviour of f (ξ), g(ξ)
and P(ξ) at the fracture tip as well as the behaviour of the velocity
ratio at the fracture tip.
Case: γ = 0
We seek the asymptotic behaviour for f (ξ) and P(ξ) as ξ → 1. The
asymptotic solutions are of the form

f (ξ) ∼ σ(1− ξ)ρ as ξ → 1, (6.3.1)

P(ξ) ∼ σρ cot(πρ)(1− ξ)ρ−1 as ξ → 1, (6.3.2)

where σ and ρ are constants and since (6.3.1) has the same form as
(5.3.3), (6.3.2) is then same as (5.3.6). Substituting (6.3.1) and (6.3.2)
into (6.2.11), we obtain

σc2(1− ξ)ρ + (2c2 + β2)σρξ(1− ξ)ρ−1

− 1
3

σ4ρ(ρ− 1)(4ρ− 2) cot(πρ)(1− ξ)4ρ−3 ∼ 0,
(6.3.3)

as ξ → 1. The dominant terms in (6.3.3) balance each other when

4ρ− 3 = ρ− 1, (6.3.4)

which gives ρ = 2/3. Substituting the value of ρ into (6.3.3) we find
that

σ = (27
√

3c2)
1
3

[
1 +

β2

2c2

] 1
3

. (6.3.5)

Therefore, the asymptotic solutions for f (ξ), g(ξ) and P(ξ) as ξ → 1
are

f (ξ) ∼ (27
√

3c2)
1
3

[
1 +

β2

2c2

] 1
3

(1− ξ)
2
3 , (6.3.6)

g(ξ) ∼ (8
√

3c2)
1
3

[
1 +

β2

2c2

] 1
3

β̄2ξ(1− ξ)−
1
3 , (6.3.7)

P(ξ) ∼ −
(

8c2

3

) 1
3
[

1 +
β2

2c2

] 1
3

(1− ξ)−
1
3 . (6.3.8)
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The asymptotic solutions for f (ξ), g(ξ) and P(ξ) near ξ = 1 depend on
parameter c2 and the leak-off parameter β. The velocity ratio is given
by

υ∗x(t, x, z)
L′(t)

= − 1
6c2

f 2(ξ)P′(ξ), (6.3.9)

and at the fracture tip, we have

υ∗x(t, L(t))
L′(t)

= − 1
6c2

f 2(1)P′(1) = 1 +
β2

2c2
. (6.3.10)

Therefore, due to leak-off, the fluid velocity is greater than the speed
of fracture propagation at the fracture tip, for β2 > 0 and c2 > 0.
Case: γ > 0
Similarly, we seek the asymptotic behaviour for f (ξ), g(ξ) and P(ξ) as
ξ → 1 when the dimensionless stress intensity factor γ > 0. When
γ > 0, the asymptotic behaviour of f (ξ) as ξ → 1 is given by the first
term of (B.1.21)

f (ξ) ∼ γ(1− ξ2)
1
2 . (6.3.11)

It is clear that when ξ → 1, the first term of equation (6.2.10) tends to
zero so that

P′(ξ) ∼ −Λ2(1− ξ2)−1, (6.3.12)

where

Λ2 =
(6c2 + 3β2)

γ2 .

Hence, the asymptotic solutions of (6.2.11) as ξ → 1, which are true
for γ > 0 are

f (ξ) ∼ γ(1− ξ2)
1
2 , (6.3.13)

g(ξ) ∼ γβ2ξ2

(1− ξ2)
1
2

, (6.3.14)

P(ξ) ∼ 1
2

Λ2 ln
∣∣∣∣1− ξ

1 + ξ

∣∣∣∣ , (6.3.15)

where (6.3.15) is obtained by integrating (6.3.12). The velocity ratio
is given by

υ∗x(t, x, z)
L′(t)

= − 1
6c2

f 2(ξ)P′(ξ), (6.3.16)

and at the fracture tip, we have

υ∗x(t, L(t))
L′(t)

= − 1
6c2

f 2(1)P′(1) = 1 +
β2

2c2
. (6.3.17)
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Thus, for γ > 0, the fluid velocity is greater than the speed of fracture
propagation at the fracture tip when β2 > 0. For β2 = 0, there is no
fluid leak-off at the fracture tip and therefore, the fluid velocity at the
tip equals the fracture propagation speed.

Equation (6.3.10) and (6.3.17) can be written as

υ∗x(t, L(t)) = L′(t) +
β2

2c2
L′(t), (6.3.18)

for which the velocity of the fluid at the fracture tip equals the velocity
of the fracture tip plus velocity of fluid leak-off relative to the tip. The
velocity of leak-off at the fracture tip is then β2L′(t)/2c2, for 0 6 β2 <

∞.
Even though vn ∝ hx(t, x), it appears that the leak-off condition

given by υz(t, x) = ±ht(t, x)± vn breaks down at the fracture tip since
fluid flow is horizontal there.

6.4 S P L I N E M E T H O D

Similar to the preceding problem, we extract the tip behaviour of the
similarity function f (ξ) and then represent the remaining part of f (ξ)
using a linear spline. We divide the interval [0, 1] into n equally-spaced
sub-intervals and then take f (ξ) in each sub-interval to be of the form

fi(ξ) = (1− ξ2)
1
2 Yi(ξ), (6.4.1)

where Yi(ξ) is a piece-wise linear function given by

Yi(ξ) = aiξ + bi. (6.4.2)

Dividing the interval [0,1] into n sub-intervals [ηj, ηj+1], j = 0, 1, . . . , n−
1 and after substituting (6.4.1) into (6.2.12), we obtain

Pi±α = − 2
π

n−1

∑
j=0

[
−
∫ ηj+1

ηj

η(1− 2η2)ajdη

(η2 − ξ2
i±α)

√
1− η2

−−
∫ ηj+1

ηj

η2bjdη

(η2 − ξ2
i±α)

√
1− η2

]
.

(6.4.3)

where α = ±1/2, ±3/2. Discretising (6.2.11) and approximating the
pressure terms using central difference, we obtain

c2
(
1− ξ2) 1

2 (aiξ + bi)− (2c2 + β2)ξ

[
(1− 2ξ2)ai − ξbi√

1− ξ2

]

− (1− ξ2)(aiξ + bi)
2

[
(1− 2ξ2)ai − ξbi√

1− ξ2

] [
Pi+ 1

2
− Pi− 1

2

ξi+ 1
2
− ξi− 1

2

]

− 1
3
(1− ξ2)

3
2 (aiξ + bi)

3

Pi− 3
2
− Pi− 1

2
− Pi+ 1

2
+ Pi+ 3

2

2
(

ξi+ 1
2
− ξi− 1

2

)2

 = 0,

(6.4.4)
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where 1 6 i 6 n − 1. Since there are n sub-intervals, we will have
2n unknowns. The boundary condition (6.2.13a) and the slope con-
dition (6.2.13b) are used to determine b0 and a0, respectively. As a
result, there will be 2n− 2 unknowns remaining to be determined. We
will obtain n− 1 equations from (6.4.4) and an additional n− 1 equa-
tions from the continuity condition. The continuity condition states that
two successive linear splines are continuous at their common interior
points, that is

Yi(ξi) = Yi−1(ξi), i = 1, 2, 3, . . . , n− 1. (6.4.5)

Thus, for n > 2 we have

i = 1 : c2
(
1− ξ2) 1

2 (a1ξ + b1)− (2c2 + β2)ξ

[
(1− 2ξ2)a1 − ξb1√

1− ξ2

]

− n(1− ξ2)(a1ξ + b1)
2(P3

2
− P1

2
)

[
(1− 2ξ2)a1 − ξb1√

1− ξ2

]

− n2

6
(1− ξ2)

3
2 (a1ξ + b1)

3(P5
2
− P3

2
) = 0,

(6.4.6)

i = 2 : c2
(
1− ξ2) 1

2 (a2ξ + b2)− (2c2 + β2)ξ

[
(1− 2ξ2)a2 − ξb2√

1− ξ2

]

− n(1− ξ2)(a2ξ + b2)
2(P5

2
− P3

2
)

[
(1− 2ξ2)a2 − ξb2√

1− ξ2

]

− n2

6
(1− ξ2)

3
2 (a2ξ + b2)

3(P1
2
− P3

2
− P5

2
+ P7

2
) = 0,

(6.4.7)

...
...

i = n− 1 : c2
(
1− ξ2) 1

2 (an−1ξ + bn−1)− (2c2 + β2)ξ

[
(1− 2ξ2)an−1 − ξbn−1√

1− ξ2

]

− n(1− ξ2)(an−1ξ + bn−1)
2
(

Pn− 1
2
− Pn− 3

2

) [ (1− 2ξ2)an−1 − ξbn−1√
1− ξ2

]

− n2

6
(1− ξ2)

3
2 (an−1ξ + bn−1)

3
(

Pn− 5
2
− Pn− 3

2
− Pn− 1

2
− γn

1
2

)
= 0.

(6.4.8)

Similarly, from the continuity condition we obtain

i = 1 : a1ξ1 + b1 − b0 = 0, (6.4.9)

i = 2 : (a2 − a1)ξ2 + b2 − b1 = 0, (6.4.10)
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...
...

i = n− 1 : (an−1 − an−2)ξn−1 + bn−1 − bn−2 = 0. (6.4.11)

The resulting system of equations is solved for the unknown coefficients
using a Matlab built-in function fsolve.

6.5 N U M E R I C A L R E S U LT S A N D D I S C U S S I O N S

In this section, the numerical results for the fracture half-width, vol-
ume and length are shown, as well as the results for the leak-off fluid
velocity and pressure. We also show the relationship between the pa-
rameters c2, β2, Q0, γ in the model.

Figure 26 illustrates the evolution of the fracture half-width, h(t, x),
over time for β2 = 0, 0.01, 0.04 when γ = 0.5 and Q0 = 0.2. When
β2 = 0, the rock is impermeable, while for β2 > 0 there is fluid leak-off
at the interface. The rate of growth for the fracture half-width can be
seen to decrease with time, as β2 increases.

In Figure 27, h(t, x), vn(t, x) and p(t, x) are plotted for β2 = 0, 0.005,
0.01 and 0.04 when γ = 0.5 and Q0 = 0.2. As the parameter β2 in-
creases in Figure 27(i), the rate at which the fracture half-width evolves
decreases. The half-width of the fracture evolves the least extent when
β2 = 0.04 , for which the leak-off is highest and evolves the greatest
when β2 = 0, for which the rock is impermeable. In Figure 27 (ii),
vn(t, x) is approximately zero at the interface near the fracture entry
and vn → ∞ at the fracture tip for β2 > 0. Therefore, there is fluid
leak-off at the interface in the region 0 6 x 6 L(t). In Figure 27(iii),
p(t, x) is positive along x except in the neighbourhood of the fracture
tip where it drops off at a faster rate to negative values.

In Figure 28, h(t, x), vn(t, x) and p(t, x) are plotted for Q0 = 0.1, 0.15,
0.2 and 0.23 when γ = 0.5 and β2 = 0.01. As the parameter Q0 in-
creases in Figure 28(i), the rate at which the half-width of the frac-
ture evolves increases. The fracture half-width evolved the least when
Q0 = 0.1, for which the rate of fluid injection into the fracture at the
fracture entry is low and evolved the greatest when Q0 = 0.23, for
which the rate of fluid injection at the fracture entry is high. In the
neighbourhood of the fracture entry in Figure 28(ii), vn(t, x) is approx-
imately zero and at the fracture tip, vn(t, L(t)) = ∞. In Figure 28(iii),
p(t, x) > 0 across the fracture except in the neighbourhood of the frac-
ture tip.

In Figure 29, h(t, x), vn(t, x) and p(t, x) are plotted for γ = 0, 0.5, 1
and 2 when Q0 = 0.2 and β2 = 0.01. The half-width of the fracture and
the velocity of fluid leak-off were slightly affected by the increase in γ

as shown in Figure 29(i) and Figure 29(ii), respectively. When γ = 0,
the pressure remained positive across the fracture and when γ > 0, the
pressure is positive across the fracture except at the fracture tip where
it tends to negative infinity.
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Figure 26: Graph of h(t, x) plotted against x at times t = 0, 10, 20, 50 for Q0 =
0.2, γ = 0.5 and for (i) β2 = 0 and c2 = 0.022433, (ii) β2 = 0.01
and c2 = 0.019125 and (iii) β2 = 0.04 and c2 = 0.009200.
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Figure 27: Graphs of (i) the fracture half-width h(t, x), (ii) leak-off fluid veloc-
ity vn(t, x) and (iii) the fluid pressure p(t, x), plotted against x for
β2 = 0, 0.005, 0.01, 0.04 when Q0 = 0.2 and γ = 0.5 at t = 50.
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Figure 28: Graphs of (i) the fracture half-width h(t, x), (ii) leak-off fluid veloc-
ity vn(t, x) and (iii) the fluid pressure p(t, x), plotted against x for
Q0 = 0.1, 0.15, 0.2, 0.23 when γ = 0.5 and β2 = 0.01 at t = 50.
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Figure 29: Graphs of (i) the fracture half-width h(t, x), (ii) leak-off fluid ve-
locity vn(t, x) and (iii) the fluid pressure p(t, x), plotted against x
for γ = 0, 0.5, 1, 2 when Q0 = 0.2 and β2 = 0.01 at t = 50.
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Figure 30: Fracture length plotted for various values of (i) β2, (ii) Q0, (iii) γ.
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Figure 31: Graphs illustrating (i) fracture volume plotted against t for β2 =
0, 0.005, 0.01, 0.04 when Q0 = 0.2 and γ = 0.5 (ii) velocity ratio
υ∗x(t, x)/L′(t)) plotted against ξ for β2 = 0, 0.005, 0.01, 0.04 when
Q0 = 0.2 and γ = 0.5, (iii) dimensionless pressure gradient for
Q0 = 0.2, γ = 0.5 and β2 = 0.01.
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Figure 32: The constant c2 plotted against (i) β2, (ii) Q0, (iii) γ.



6.6 C O N C L U S I O N 120

In Figure 30(i-iii), the fracture length L(t) is plotted against t for
varied values of β2, Q0 and γ. The length of the fracture is an increasing
function and L(t) → ∞ as t → ∞. In Figure 30(i), L(t) is plotted
against time t for β2 = 0, 0.005, 0.01 and 0.4. It can be seen that the
length of the fracture grows strongly when β2 = 0, for which there is no
fluid leak-off at the interface and it grows the weakest when β2 = 0, 04,
fro which leak-off is the highest. Figure 30(ii) illustrates the graphs of
the fracture length over time for Q0 = 0.1, 0.15, 0.2 and 0.23 when
γ = 0.5 and β2 = 0.01. As expected, the fracture length L(t) increases
as Q0 increases. In Figure 30(iii), L(t) is plotted for γ = 0, 0.5, 1 and
2 when Q0 = 0.2 and β2 = 0.01. An increase in γ resulted in a slight
increase in the rate of growth of the fracture length. The growth of L(t)
was stronger when γ = 2 and weaker when γ = 0.

Figure 31, illustrates the fracture volume over time, the velocity ra-
tio and the non-dimensional pressure gradient. Figure 31 (i) shows that
larger β2 values imply smaller fracture volumes. In Figure 31(ii), the
velocity ratio along the fracture is plotted against ξ for various values
of β2. For smaller β2 values, the width-averaged velocity was slightly
greater than the propagation speed of the fracture while for larger val-
ues of β2 the width-averaged velocity was significantly greater than the
propagation speed of the fracture. In Figure 31(iii), the dimensionless
pressure gradient is plotted against ξ for β2 = 0.01, Q0 = 0.2 and
γ = 0.5.

Figure 32 depicts the relationship between the parameters c2, β2, Q0

and γ. In Figure 32(i-ii), it can be seen that c2 decreases as a linear
function of β2 while the fluid flux at the fracture entry Q0 is directly
proportional to c2. In Figure 32(iii), c2 is plotted against the dimension-
less stress intensity factor γ. For the values of γ considered, c2 increases
as a function of γ.

6.6 C O N C L U S I O N

Numerical solutions have been presented to the boundary value prob-
lem for the integro-differential system derived in Chapter 4 when the
permeability of the fluid-rock interface is such that the leak-off velocity
is proportional to the gradient of the fluid-rock interface. The integro-
differential system contained four parameters c2, β2, Q0 and γ, which
all had to be specified except c2. The constant c2 was obtained as part
of the solution using a flux boundary condition.

Numerical solutions were found for the fracture volume, V(t), frac-
ture length, L(t), fracture half-width, h(t, x), leak-off velocity, vn(t, x)
and fluid pressure, p(t, x) for various values of the parameters.

For all the solutions obtained, hx(t, x)→ ±∞, as x → ∓L(t), and as
a result, the lubrication approximation breaks down near x = L(t).

Finally, the velocity ratio at the fracture tip satisfies υ∗x(t, x)/L′(t) >
0, suggesting that the fluid velocity at the fracture tip is greater than



6.6 C O N C L U S I O N 121

the speed of fracture propagation. This results is largely attributed to
the fluid leak-off at the fracture tip, in the horizontal direction.



7
T W O - D I M E N S I O N A L F L U I D - D R I V E N F R A C T U R E W I T H
D A R C Y F L O W I N P E R M E A B L E R O C K F O R M AT I O N

7.1 I N T R O D U C T I O N

In Chapter 5 and 6, a model for fluid leak-off was not prescribed. In-
stead, a relationship between the leak-off function g(ξ) and the half-
width function f (ξ) was stated. This relationship involved a constant
of proportionality β which played an important role in quantifying the
leak-off extent. The higher β was, the more the fluid leak-off through
the fluid-rock interface, which impacts on the growth rate of the frac-
ture half-width. Darcy model will now be employed to model the fluid
leak-off through the interface into the porous rock formation. In [60],
a mathematical model was derived for a two-dimensional fracture in
PKN theory, with fluid leak-off through the interface into the porous
rock formation modelled using Darcy ’s law.

7.2 F L U I D L E A K - O F F I N T O T H E P E R M E A B L E M E D I U M

The flow of fluid through the fluid-rock interface into the porous rock
matrix is taken to be one-dimensional, in the direction normal to the
fracture interface z = h(x, t) and obeys Darcy’s law given by equation
(1.4.3). Equation (1.4.3) in the z-direction, given that Q/A = bt(t, x),
becomes

∂pd

∂z
= −µ

κ

∂b
∂t

, (7.2.1)

where b(t, x) is the leak-off depth measured relative to the fracture
interface and bt(t, x) is taken to be the velocity of the fluid that has
leaked-off at the fracture interface. The leak-off velocity bt(t, x) is mea-
sured relative to the interface in the normal direction. Integrating (7.2.1)
with respect to z from h to h + b, we get

pd(t, x, h + b)− pd(t, x, h) = −µ

κ
b

∂b
∂t

. (7.2.2)

Using the pressure condition at the boundary given by

pd(t, x, h + b) = 0 and pd(t, x, h) = p(t, x), (7.2.3)

equation (7.2.2) becomes

∂b
∂t

=
κ

µ

p
b

. (7.2.4)

122



7.3 T W O - D I M E N S I O N A L F L U I D - D R I V E N F R A C T U R E W I T H D A R C Y F L O W M O D E L 123

Substituting the non-dimensional variables in (4.3.12) into (7.2.4), and
using the fact that P = µUL0/H2, we find

∂b̄
∂t̄

= κ
UTL0

H2B2
p̄
b̄

. (7.2.5)

Thus, (7.2.5) in dimensionless form, after dropping the overhead bars,
becomes

∂b
∂t

=
p
b

, (7.2.6)

where

B =

[
κUTL0

H2

] 1
2

.

7.3 T W O - D I M E N S I O N A L F L U I D - D R I V E N F R A C T U R E W I T H D A R C Y

F L O W M O D E L

By writing vn = bt(t, x), the nonlinear diffusion equation, in dimen-
sionless form, is now given by

∂h
∂t
− 1

3
∂

∂x

(
h3 ∂p

∂x

)
+

∂b
∂t

= 0. (7.3.1)

Consider now the boundary conditions for the problem. The rock has a
pre-existing fracture, hence

t = 0 : h(0, x) = h0(x), b(0, x) = b0(x), 0 6 x 6 L(t). (7.3.2)

The initial conditions are

t = 0 : L(0) = 1, h(0, 0) = 1. (7.3.3)

We assume that the slope of the fracture and the slope of the leak-off
depth are zero at x = 0 since we assume the fracture is symmetric with
respect to x = 0 and smooth [26]

∂h
∂x

∣∣∣∣
x=0

= 0, and
∂b
∂x

∣∣∣∣
x=0

= 0. (7.3.4)

At the fracture tip

x = L(t) : h(t, L(t)) = 0, b(t, L(t)) = 0. (7.3.5)

The fracture half-width together with the leak-off depth vanishes at the
fracture tip.
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The mathematical formulation for the two-dimensional hydraulic
fracture with Darcy flow is summarized as follows:

∂h
∂t
− 1

3
∂

∂x

(
h3 ∂p

∂x

)
+

∂b
∂t

= 0, (7.3.6)

∂b
∂t

=
p
b

, (7.3.7)

p(t, x) = − 2
π
−
∫ L

0

∂h
∂s

s
s2 − x2 ds, (7.3.8)

h(0, 0) = 1, hx(t, 0) = 0, bx(t, 0) = 0, h(t, L(t)) = 0, b(t, L(t)) = 0,
(7.3.9a-e)

where

−p(t, x)→ γ

[2(x− L(t))]
1
2

as x → L+. (7.3.10)

The flux of fluid leaving the fracture at the interface becomes

Q` = 4
∫ L(t)

0

∂b(t, x)
∂t

dx. (7.3.11)

The global mass balance equation (4.6.21) becomes

dV
dt

= 4h(t, 0)υ∗x(t, 0)− 4
∫ L(t)

0

∂b
∂t

dx. (7.3.12)

Similarity Solution

We now reduce the system of partial differential equations (7.3.6)-
(7.3.10) into a system of ordinary differential equations.

First, we introduce the similarity variable ξ = x/L(t) and seek the
solution of the system in the form

h(t, x) = a(t) f (ξ), b(t, x) = r(t)g(ξ), (7.3.13a-b)

where a(t), r(t) and L(t) have to be determined. The similarity form of
pressure derived in Section 4.6 is given by

p(t, x) =
a(t)
L(t)

P(ξ), (7.3.14)

where

p(ξ) = − 2
π
−
∫ 1

0

d f
dη

η

η2 − ξ2 dη. (7.3.15)

Substituting (7.3.13a-b) and (7.3.14) into (7.3.6) and (7.3.7) gives[
− a(t)

L(t)
dL
dt

ξ
d f
dξ

+
da
dt

f (ξ)
]
−1

3
a4(t)
L3(t)

d
dξ

(
f 3 dP

dξ

)
+

a(t)
r(t)L(t)

P(ξ)
g(ξ)

= 0,
(7.3.16)
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− r(t)
L(t)

dL
dt

ξ
dg
dξ

+
dr
dt

g(ξ) =
a(t)

r(t)L(t)
P(ξ)
g(ξ)

. (7.3.17)

With further simplification, we obtain[
−L2(t)

a3(t)
dL
dt

ξ
d f
dξ

+
L3(t)
a4(t)

da
dt

f (ξ)
]
−1

3
d

dξ

(
f 3 dP

dξ

)
+

L2(t)
a3(t)r(t)

P(ξ)
g(ξ)

= 0.
(7.3.18)

−ξ
dg
dξ

+
L(t)
r(t)

(
dL
dt

)−1 dr
dt

g(ξ) =
a(t)
r2(t)

(
dL
dt

)−1 P(ξ)
g(ξ)

. (7.3.19)

For a similarity solution to exists it is necessary that we set

L2(t)
a3(t)

dL
dt

= c1,
L3(t)
a4(t)

da
dt

= c2,
L2(t)

a3(t)r(t)
= c3,

L(t)
r(t)

dr
dt

(
dL
dt

)−1

= c4,
a(t)
r2(t)

(
dL
dt

)−1

= c5,

(7.3.20a-e)

so that the system depends on the variable ξ only. Here c1, c2, c3, c4

and c5 are constants. Then, we have that[
c2 f (ξ)− c1ξ

d f
dξ

]
− 1

3
d

dξ

(
f 3 dP

dξ

)
+ c3

P(ξ)
g(ξ)

= 0, (7.3.21)

c4g(ξ)− ξ
dg
dξ

= c5
P(ξ)
g(ξ)

. (7.3.22)

In order to proceed from here, we first solve for the functions L(t),
a(t), and r(t). We begin by rearranging the equations in (7.3.20a-e) as
follows

dL
dt

= c1
a3(t)
L2(t)

,
da
dt

= c2
a4(t)
L3(t)

, r(t) =
1
c3

L2(t)
a3(t)

,

dr
dt

= c4
r(t)
L(t)

dL
dt

, r2(t) =
a(t)
c5

(
dL
dt

)−1

.

(7.3.23a-e)

Now, consider the pressure near but just outside the fracture tip. In
terms of similarity variables, (4.5.16) is expressed as

−P(ξ)→ γ

[2(ξ − 1)]
1
2

L
1
2 (t)

a(t)
as ξ → 1+. (7.3.24)

That is,

−P(ξ)→ γ

[2(ξ − 1)]
1
2

as ξ → 1+, (7.3.25)
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where

a(t) = L
1
2 (t). (7.3.26)

Substituting (7.3.26) into (7.3.23a) and solving for L(t) subject to the
initial condition L(0) = 1 yields

L(t) =
(

3
2

c1t + 1
) 2

3

. (7.3.27)

Solving for a(t) using (7.3.23b) gives

a(t) = (3c2t + k2)
1
3 . (7.3.28)

Using (7.3.26) and (7.3.28), the length can be equivalently expressed
as

L(t) = (3c2t + k2)
2
3 . (7.3.29)

Equating (7.3.27) and (7.3.29) yields

c1 = 2c2 and k2 = 1. (7.3.30)

Therefore,

L(t) = (3c2t + 1)
2
3 (7.3.31)

a(t) = (3c2t + 1)
1
3 . (7.3.32)

The function r(t) can be easily obtained as

r(t) =
1
c3

(3c2t + 1)
4
3

(3c2t + 1)
=

1
c3
(3c2t + 1)

1
3 =

1
c3

a(t). (7.3.33)

Taking the first derivative of both L(t) and r(t), we obtain

dL
dt

=
2c2

a(t)
,

dr
dt

=
c2

c3a2(t)
. (7.3.34a-b)

Using the functions L(t), r(t) and their derivatives given in (7.3.34a-b),
equation (7.3.23d) gives

c4 =
1
2

. (7.3.35)

Substituting (7.3.33) and (7.3.34a) into (7.3.23e) yields

c2
3 = 2c2c5. (7.3.36)

The mathematical formulation of the problem is summarized as follows

c2

[
f (ξ)− 2ξ

d f
dξ

]
− 1

3
d

dξ

(
f 3 dP

dξ

)
+ c3

P(ξ)
g(ξ)

= 0, (7.3.37)

g(ξ)− 2ξ
dg
dξ

= 2c5
P(ξ)
g(ξ)

, (7.3.38)

P(ξ) = − 2
π
−
∫ 1

0

d f
dη

η

η2 − ξ2 dη, (7.3.39)

f (0) = 1, f ′(0) = 0, g′(0) = 0, f (1) = 0, g(1) = 0, (7.3.40a-e)
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where

−P(ξ)→ γ

[2(ξ − 1)]
1
2

as ξ → 1+. (7.3.41)

The similarity solutions are given by

L(t) = (3c2t + 1)
2
3 , (7.3.42)

h(t, x) = L
1
2 (t) f (ξ), (7.3.43)

b(t, x) = c−1
3 L

1
2 (t)g(ξ), (7.3.44)

vn(t, x) =
c2

c3L(t)
[
g(ξ)− 2ξg′(ξ)

]
, (7.3.45)

p(t, x) = L−
1
2 (t)P(ξ), (7.3.46)

c1 = 2c2, c1c5 = c2
3. (7.3.47a-b)

Equation c1c5 = c2
3 is satisfied when

c1 =
c3

α
and c5 = αc3, α 6= 0 ∈ R. (7.3.48a-b)

Using (7.3.48a-b), (7.3.37) and (7.3.38) can be expressed equivalently
as

c2

[
f (ξ)− 2ξ

d f
dξ

]
− 1

3
d

dξ

(
f 3 dP

dξ

)
+ 2αc2

P(ξ)
g(ξ)

= 0, (7.3.49)

g(ξ)− 2ξ
dg
dξ
− 4α2c2

P(ξ)
g(ξ)

= 0. (7.3.50)

Differentiating (7.3.44) with respect to t and substituting into (7.3.11),
we obtain

Q` = 4
c2

c3

∫ 1

0

[
g(ξ)− 2ξ

dg
dξ

]
dξ. (7.3.51)

Integrating by parts and using the fact that c3 = 2αc2, we obtain

Q` = 6α−1
∫ 1

0
g(ξ)dξ. (7.3.52)

The global mass balance equation is then given by

12c2

∫ 1

0
f (ξ)dξ = −4

3
f 3(0)

∂P(0)
∂ξ
− 6α−1

∫ 1

0
g(ξ)dξ. (7.3.53)

Before we state the complete mathematical formulation of the problem,
let us first derive the expression for the pressure gradient. Equation
(7.3.49) can be rewritten as

d
dξ

(
f 3 dP

dξ

)
= 9c2 f (ξ)− 6c2(ξ f (ξ))ξ +

9g(ξ)
2α
− 3

α
(ξg(ξ))ξ . (7.3.54)
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Integrating (7.3.54) with respect to ξ from ξ to 1 gives

− f 3 dP
dξ

= 9c2

∫ 1

ξ
f (η)dη +

9
2α

∫ 1

ξ
g(η)dη + 6c2ξ f (ξ) +

3
α

ξg(ξ).

(7.3.55)

Thus,

−dP
dξ

=
1

f 3(ξ)

[
9c2

∫ 1

ξ
f (η)dη +

9
2α

∫ 1

ξ
g(η)dη + 6c2ξ f (ξ) +

3
α

ξg(ξ)
]

.

(7.3.56)

The pressure gradient at ξ = 0 is

−dP
dξ

∣∣∣∣
ξ=0

=
1

f 3(0)

[
9c2

∫ 1

0
f (ξ)dξ +

9
2α

∫ 1

0
g(ξ)dξ

]
. (7.3.57)

Using (7.3.57), the fluid flux at the fracture entry can be expressed as

Q0 = −4
3

f 3(0)
dP(0)

dξ
= 12c2

∫ 1

0
f (ξ)dξ + 6α−1

∫ 1

0
g(ξ)dξ. (7.3.58)

The problem is to solve the integro-differential system:

c2

[
f (ξ)− 2ξ

d f
dξ

]
− 1

3
d

dξ

(
f 3 dP

dξ

)
+ 2αc2

P(ξ)
g(ξ)

= 0, (7.3.59)

g(ξ)− 2ξ
dg
dξ
− 4α2c2

P(ξ)
g(ξ)

= 0, (7.3.60)

P(ξ) = − 2
π
−
∫ 1

0

d f
dη

η

η2 − ξ2 dη, (7.3.61)

subject to

f (0) = 1, f ′(0) = 0, g′(0) = 0, f (1) = 0, g(1) = 0, (7.3.62a-e)

where

P(ξ)→ − γ

[2(ξ − 1)]
1
2

as ξ → 1+. (7.3.63)

The fluid flux at the fracture entry satisfies

Q0 = 12c2

∫ 1

0
f (ξ)dξ + 6α−1

∫ 1

0
g(ξ)dξ. (7.3.64)

Once f (ξ), g(ξ) and P(ξ) are obtained, L(t), V(t), h(t, x), b(t, x), vn(t, x)
and p(t, x) take the form

L(t) = (3c2t + 1)
2
3 , (7.3.65)

V(t) = V0(3c2t + 1), V0 = 4
∫ 1

0
f (ξ)dξ, (7.3.66)
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h(t, x) = L
1
2 (t) f (ξ), (7.3.67)

b(t, x) =
1

2αc2
L

1
2 (t)g(ξ), (7.3.68)

vn(t, x) =
g(ξ)− 2ξg′(ξ)

2αL(t)
, (7.3.69)

p(t, x) = L−
1
2 (t)P(ξ). (7.3.70)

We have now completed the mathematical formulation for a fluid-driven
fracture in a permeable rock where the fluid flow inside the rock is de-
scribed by Darcy’s flow model. The solution here depends on α, c2, γ

and Q0. The values of α, γ and Q0 will be specified prior to the numeri-
cal computations while c2 will be obtained as part of the solution using
equation (7.3.64).

7.4 T I P A S Y M P T O T I C S A N D T H E V E L O C I T Y R AT I O

It was difficult to determine the asymptotic solutions for f (ξ), g(ξ) and
P(ξ) that satisfies the system of equations (7.3.59)-(7.3.61). As a re-
sult, we cannot determine the value of f 2(1)P′(1) using the near tip
asymptotics.

7.5 S P L I N E M E T H O D

Since we cannot integrate (7.3.59)-(7.3.61) to obtain exact solutions,
numerical solutions will be sought. As shown in Chapter 5 and 6, the
remedy to the challenge presented by the singularity in the slope of
f (ξ) near ξ = 1 is to extract the tip behaviour of the function f (ξ)
and then represent the remaining part of f (ξ) using a linear spline. In
this chapter, we will adopt this idea for both the half-width function
f (ξ) and the leak-off depth function g(ξ). To do this, we divide the
interval [0, 1] into n equal sub-intervals and take f (ξ) and g(ξ) in each
sub-interval to be of the form

fi(ξ) = (1− ξ2)
1
2 Mi(ξ) and gi(ξ) = (1− ξ2)

1
2 Ni(ξ), (7.5.1a-b)

where Mi(ξ) and Ni(ξ) are piece-wise linear functions given by

Mi(ξ) = aiξ + bi and Ni(ξ) = riξ + si. (7.5.2a-b)

Dividing the interval [0, 1] into n sub-intervals [ηj, ηj+1], j = 0, 1, . . . , n−
1 and after substituting (7.5.1a) into (7.3.61), we obtain

Pi±α = − 2
π

n−1

∑
j=0

[
−
∫ ηj+1

ηj

η(1− 2η2)ajdη

(η2 − ξ2
i±α)

√
1− η2

−−
∫ ηj+1

ηj

η2bjdη

(η2 − ξ2
i±α)

√
1− η2

]
.

(7.5.3)
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where α = ±1/2, ±3/2. The pressure at the grid points is given by

Pi =
Pi+ 1

2
+ Pi− 1

2

2
, (7.5.4)

where Pi±1/2 is given by (7.5.3). Discretising (7.3.59) and (7.3.60),
and approximating the pressure terms using the central difference, we
obtain

c2

[(
1− ξ2) 1

2 (aiξ + bi)−
2ξ
(
(1− 2ξ2)ai − ξbi

)√
1− ξ2

]

− (1− ξ2)(aiξ + bi)
2

[
(1− 2ξ2)ai − ξbi√

1− ξ2

] [
Pi+ 1

2
− Pi− 1

2

ξi+ 1
2
− ξi− 1

2

]

− 1
3
(1− ξ2)

3
2 (aiξ + bi)

3

Pi− 3
2
− Pi− 1

2
− Pi+ 1

2
+ Pi+ 3

2

2
(

ξi+ 1
2
− ξi− 1

2

)2


+ αc2

[
Pi+ 1

2
+ Pi− 1

2√
1− ξ2 (riξ + si)

]
= 0,

(7.5.5)

(
1− ξ2) 1

2 (riξ + si)−
2ξ
[
(1− 2ξ2)ri − ξsi

]√
1− ξ2

− 2α2c2

[
Pi+ 1

2
+ Pi− 1

2√
1− ξ2 (riξ + si)

]
= 0,

(7.5.6)

where 1 6 i 6 n− 1. The current problem is to solve for {ai, bi, ri, si},
i = 1, 2, . . . , n − 1 in each sub-interval. There are n sub-intervals and
n + 1 mesh points hence we have 4n unknowns in total. Equation
(7.5.5) and (7.5.6) will generate a system of 2n − 2 nonlinear equa-
tions. We obtain additional equations to solve for the unknowns from
the continuity condition of two successive linear splines. That is,

Mi(ξi) = Mi−1(ξi), (7.5.7)

Ni(ξi) = Ni−1(ξi), (7.5.8)

where i = 1, 2, 3, . . . , n− 1. The continuity conditions (7.5.7) and (7.5.8)
give an additional 2n− 2 equations. From equation (7.5.5)-(7.5.8), we
obtain a total of 4n− 4 equations. Using the slope and boundary condi-
tions at the fracture entry, we are able to determine the values of a0, b0

and r0. We specified an initial value for s0 and allowed its value to be
updated through the calculations so that it is determined as part of the
solution. Consequently, the system of 4n − 4 equations are sufficient
to solve for the unknowns. We now outline the procedure for solving
the underlying system of nonlinear equations. For any choice of n > 2,
we have 2n splines with 4n unknowns. Applying the slope conditions
f ′(0) = 0 and g′(0) = 0 implies that a0 = 0 and r0 = 0. The boundary
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condition at the fracture entry gives b0 = 1, hence f0(ξ) =
√

1− ξ2

and g0(ξ) = s0
√

1− ξ2. We now have a total of 4n− 4 unknowns and
a system of 4n − 4 nonlinear equations. Evaluating (7.5.5)-(7.5.8) at
1 6 i 6 n− 1, we obtain

i = 1 : c2

[(
1− ξ2) 1

2 (a1ξ + b1)−
2ξ
(
(1− 2ξ2)a1 − ξb1

)√
1− ξ2

]

− n(1− ξ2)(a1ξ + b1)
2

[
(1− 2ξ2)a1 − ξb1√

1− ξ2

] [
P3

2
− P1

2

]
− n2

6
(1− ξ2)

3
2 (a1ξ + b1)

3
[

P5
2
− P3

2

]
+ αc2

[
P3

2
− P1

2√
1− ξ2 (r1ξ + s1)

]
= 0,

(7.5.9)

(
1− ξ2) 1

2 (r1ξ + s1)−
2ξ
[
(1− 2ξ2)r1 − ξs1

]√
1− ξ2

− 2α2c2

[
Pi+ 1

2
+ Pi− 1

2√
1− ξ2 (r1ξ + s1)

]
= 0,

(7.5.10)

i = 2 : c2

[(
1− ξ2) 1

2 (a2ξ + b2)−
2ξ
(
(1− 2ξ2)a2 − ξb2

)√
1− ξ2

]

− n(1− ξ2)(a2ξ + b2)
2

[
(1− 2ξ2)a2 − ξb2√

1− ξ2

] [
P5

2
− P3

2

]
− n2

6
(1− ξ2)

3
2 (a2ξ + b2)

3
[

P1
2
− P3

2
− P5

2
− P7

2

]
+ αc2

[
P5

2
− P3

2√
1− ξ2 (r2ξ + s2)

]
= 0,

(7.5.11)

(
1− ξ2) 1

2 (r2ξ + s2)−
2ξ
[
(1− 2ξ2)r2 − ξs2

]√
1− ξ2

− 2α2c2

[
P5

2
+ P3

2√
1− ξ2 (r2ξ + s2)

]
= 0,

(7.5.12)

...
...
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i = n− 1 : c2

[(
1− ξ2) 1

2 (an−1ξ + bn−1)−
2ξ
(
(1− 2ξ2)an−1 − ξbn−1

)√
1− ξ2

]

− n(1− ξ2)(an−1ξ + bn−1)
2

[
(1− 2ξ2)an−1 − ξbn−1√

1− ξ2

] [
Pn− 1

2
− Pn− 3

2

]
− n2

6
(1− ξ2)

3
2 (an−1ξ + bn−1)

3
[

Pn− 5
2
− Pn− 3

2
− Pn− 1

2
− γn

1
2

]
+ αc2

[
Pn− 1

2
+ Pn− 3

2√
1− ξ2 (rn−1ξ + sn−1)

]
= 0,

(7.5.13)

(
1− ξ2) 1

2 (rn−1ξ + sn−1)−
2ξ
[
(1− 2ξ2)rn−1 − ξsn−1

]√
1− ξ2

− 2α2c2

[
Pn− 1

2
+ Pn− 3

2√
1− ξ2 (rn−1ξ + sn−1)

]
= 0.

(7.5.14)

Similarly, we obtain 2n− 2 equations from the continuity conditions

i = 1 : a1ξ1 + b1 − b0 = 0, (7.5.15)

r1ξ1 + s1 − s0 = 0, (7.5.16)

i = 2 : (a2 − a1)ξ2 + b2 − b1 = 0, (7.5.17)

(r2 − r1)ξ2 + s2 − s1 = 0, (7.5.18)

...
...

i = n− 1 : (an−1 − an−2)ξn−1 + bn−1 − bn−2 = 0, (7.5.19)

(rn−1 − rn−2)ξn−1 + sn−1 − sn−2 = 0. (7.5.20)

The resulting system of nonlinear equations is solved for the unknown
coefficients using Matlab function fsolve.

7.6 D I S C U S S I O N O N N U M E R I C A L M E T H O D

We will follow the same numerical scheme outlined in Section 5.8 to
derive the solution for the system of equations (7.3.59) to (7.3.61)
subject to the boundary conditions (7.3.62a-e). The underlying bound-
ary value problem was solved for certain limiting values of α, γ and
Q0. The unknown constant c2 was determined using the mass balance
law given by (7.3.64). The initial guesses for a = [a1, a2, . . . , an−1] and
b = [b1, b2, . . . , bn−1] were obtained using the Matlab function rand. It
must be noted that we did not enforce any boundary condition on s0
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while doing the calculations. The value of s0 was obtained from the
numerical computations.

A check of accuracy was made using equation (5.6.2). Once (5.6.2)
was satisfied, the corresponding solutions of f (ξ), g(ξ) and the value c2

were substituted into (7.3.65) to (7.3.70) in order to obtain L(t), V(t),
h(t, x), b(t, x), vn(t, x) and p(t, x).

7.7 N U M E R I C A L R E S U LT S A N D D I S C U S S I O N S

In Figure 33, h(t, x) is plotted against x at t = 0, 20, 50 and 200 when
α = 6, 18, 50. As anticipated, h(t, x) increases with time, and as α in-
creases the rate of increase of h(t, x) is seen to increase.

In Figure 34(i-iii), graphs of fracture half-width, h(t, x), leak-off depth,
b(t, x), and the fluid pressure, p(t, x), are plotted against x at time
t = 200 for various values of α when Q0 = 0.25 and γ = 0.01. An
increase in the parameter α led to an increase in the growth of the frac-
ture half-width as can be seen in Figure 34(i). In Figure 34(ii), it can
be seen that the leak-off depth near the fracture entry decreases with
increasing α. In Figure 34(iii), the graphs of p(t, x) are indistinguish-
able.

Figure 35(i-iii) illustrates the effect of Q0 on the h(t, x), b(t, x) and
p(t, x). As Q0 is increased, corresponding to stronger fluid injection
at the fracture entry, the extent of growth of the fracture half-width
increased. The shape of leak-off depth and the fluid pressure are as
expected.

In Figure 36(i-iii), graphs of h(t, x), b(t, x) and p(t, x) are plotted at
time t = 200 for different values of γ when Q0 = 0.25 and α = 8.
An increase in γ did not significantly affect h(t, x) and b(t, x). When
analysing the graphs of p(t, x) in Figure 36(iii), it can be seen that the
average value of the pressure p(t, x) is growing with an increase in γ.

In Figure 37(i-iii), vn(t, x) is plotted against x at time t = 200 for
different values of α, Q0 and γ. In Figure 37(i) it can be seen that an
increase in α led to a slight increase in the leak-off velocity. An increase
in the parameter Q0 led to an increase in the leak-off velocity as can
be seen in Figure 37(ii). In Figure 37(iii), the graphs of vn(t, x) are
indistinguishable.

In Figure 38(i-iii), the fracture length L(t) is plotted against t for
varied values of α, Q0 and γ. In Figure 38(i), the fracture length is
plotted for various values of α. The fracture length grew the strongest
when α = 50 and the least when α = 6. Figure 38(ii) shows how the
fracture length evolved over time for different values Q0. The fracture
length increased with an increase in Q0 and it was the highest when
Q0 = 0.27 and lowest when Q0 = 0.21. Figure 38(iii) shows how the
fracture length evolves over time for varied values of γ. The fracture
lengths are indistinguishable.
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Figure 33: Graph of h(t, x) plotted against x at times t = 0, 20, 50, 200 for
Q0 = 0.25, γ = 0.01 and for (i) α = 6 and c2 = 0.003277, (ii)
α = 18 and c2 = 0.0034975 and (iii) α = 50 and c2 = 0.003600.
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Figure 34: Graphs of (i) the fracture half-width h(t, x), (ii) leak-off depth
b(t, x) and (iii) the fluid pressure p(t, x), plotted against x for
α = 6, 18, 30, 50 when Q0 = 0.25 and γ = 0.5 at t = 200.
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Figure 35: Graphs of (i) the fracture half-width h(t, x), (ii) leak-off depth
b(t, x) and (iii) the fluid pressure p(t, x), plotted against x for Q0 =
0.21, 0.23, 0.25, 0.27 when γ = 0.5 and α = 8 at t = 200.
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Figure 36: Graphs of (i) the fracture half-width h(t, x), (ii) leak-off depth
b(t, x) and (iii) the fluid pressure p(t, x), plotted against x for γ =
0, 0.005, 0.01, 0.03 when Q0 = 0.25 and α = 8 at t = 200.
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Figure 37: Leak-off velocity vn(t, x) plotted for various values of (i) α, (ii) Q0,
(iii) γ, at t = 200.
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Figure 38: Fracture length plotted for various values of (i) α, (ii) Q0, (iii) γ.
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Figure 39: Graphs illustrating (i) the fracture volume plotted against t for α =
6, 18,30, 50 when Q0 = 0.25, and γ = 0.01, (ii) the dimensionless
pressure gradient plotted against ξ for α = 8, Q0 = 0.25, and
γ = 0.01.
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Figure 40: The constant c2 plotted against (i) α, (ii) Q0, (iii) γ.
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Figure 39(i-iii) shows the fracture volume over time and the non-
dimensional pressure gradient. In Figure 39(i), the volume of the frac-
ture is plotted for α = 6, 18, 30 and 50. It can be seen that an increase
in α did not yield any significant changes in the volume of the fracture.
Figure 39(ii), illustrates the velocity ratio υ∗x/L′(t) for different values
of α. The graphs of υ∗x/L′(t) are not approximately straight lines as
anticipated. In Figure 39(iii), the non-dimensional pressure gradient is
plotted against ξ for α = 8, Q0 = 0.25 and γ = 0.01. The graph of the
pressure gradient is taking the expected shape.

Figure 40 depicts the relationship between the parameters c2, α, Q0

and γ. In Figure 40(i) c2 is plotted against α. It can be seen that c2 is an
increasing function of α. In Figure 40(ii) c2 is plotted against Q0. Again,
c2 is an increasing function Q0. In Figure 40(iii) c2 is plotted against γ.
The graph exhibits an oscillatory behaviour.

7.8 C O N C L U S I O N

In this Chapter, a two-dimensional, pre-existing, fluid-driven fracture
propagating in a permeable rock was considered in which fluid seepage
into the porous rock matrix is modelled using Darcy’s law. We started
the chapter by stating Darcy’s flow model which relates the leak-off
depth to the pressure gradient and non-dimesionalising it. By relating
the rate of change of the leak-off depth b(t, x) to the leak-off veloc-
ity vn(t, x), the integro-differential equation (4.6.36) derived in Chap-
ter 4 for describing the evolution of the fracture half-width became
(7.3.1). Equation (7.3.1) was then coupled with a first-order partial dif-
ferential equation governing the leak-off depth b(t, x) and the Cauchy
principal value integral for the pressure. The boundary value problem
for the integro-differential system contained three dependent variables
h(t, x), b(t, x) and p(t, x) to solve for and three equations. Similarity
solutions were derived for the integro-differential system. The result-
ing system of equations governing the physical mechanisms after the
similarity transformation contained the constants c2, c3 and c5. A pro-
portionality constant α was introduced and used to relate c2 to c3 and
c5. The resulting integro-differential system then dependent on two pa-
rameters, namely, α and c2. For this case, it was difficult to determine
the near tip asymptotics that satisfies the system of equations (7.3.59)-
(7.3.61). The spline method was used to solve the integro-differential
system. It was found that larger values of α are associated with larger
fracture lengths, volumes and half-widths. It was also found that the
leak-off depth in the neighbourhood of the fracture entry decreased
with increasing α and that the fluid pressure is not significantly af-
fected by the change in α. Expectedly, large values of Q0 resulted in
an increase in the propagation rate of the fracture half-width and frac-
ture length. An increase in γ did not have much effect on the fracture
length and leak-off depth. A positive linear relationship between c2 and
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the parameters α and Q0 was noted. No clear relationship was drawn
between c2 and γ.



8
C O N C L U S I O N

The aim of this research was to study a two-dimensional fluid-driven
fracture propagating in a permeable rock. The two-dimensional frac-
ture is pre-existing and it is propagated by the injection of a high pres-
sured viscous incompressible Newtonian fluid into it. Some proportion
of the fracturing fluid infiltrates the encompassing rock-mass forma-
tion through the fracture walls. The mathematical model governing the
propagation of the fracture was based on two main important assump-
tions. The first assumption is the lubrication approximation which was
used to simplify the Navier-Stokes equation. The other assumption is
that the elasticity theory is applied hence the rock elasticity is modelled
using the Cauchy principal integral derived from linear elastic fracture
mechanics. The presence of the Cauchy-type singular integral equation
in the mathematical model necessitated a study of integral equations,
in particular, singular integral equations and their method of solutions.
In Chapter 2, we studied integral equations and gave a detailed review
and discussion.

In Chapter 3, we studied the method of solution for Cauchy-type in-
tegral equations. We started the chapter by reviewing Cauchy-type inte-
gral equations and demonstrating the procedure of inverting a Cauchy
integral equation of the first kind. A simple Cauchy-type singular in-
tegral equation over a finite interval was introduced and analytical,
approximate and numerical techniques for solving the integral equa-
tion were investigated. The analytical solution for the integral equa-
tion was used as a benchmark solution against the numerical solutions.
We achieved rapid convergence and high accuracy when using the con-
ventional finite difference approach and the linear spline method. As
a result, the linear spline method was preferred for solving the bound-
ary value problem for the hydraulic fracture problem that was to be
considered in this thesis.

In Chapter 4, we considered the problem of a two-dimensional, pre-
existing, fluid-driven fracture propagating in a permeable rock in which
fluid leak-off through the interface into the surrounding rock formation
was described by a leak-off velocity term, vn(t, x). The mathematical
formulation resulted in a system of partial differential equations relat-
ing the fracture half-width, leak-off velocity and the fluid pressure. Us-
ing a similarity transformation, the integro-differential system of equa-
tions was reduced to a system of ordinary differential equations. The
resulting integro-differential system contained three dependent vari-
ables f (ξ), g(ξ) and P(ξ) to solve for, but two equations. The system
also had two parameters c2 and c3 to determine.

144
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In Chapter 5, we investigated the problem formulated in Chapter 4
for the case in which the leak-off velocity is proportional to the half-
width of the fracture. The parameter β1 was used as a proportionality
constant and the resulting integro-differential system was then depen-
dent on the parameters c2 and β1. The parameter β1 was prescribed
while c2 was determined as part of the solution. When β1 = 0, there is
no leak-off at the interface and the rock is impermeable. When β1 > 0,
there is leak-off at the interface into the porous rock-matrix. It was
found that small values of β1 leads to higher rate of growth of the
fracture half-width, fracture length and fracture volume while large β1

values results in low rate of fracture propagation. We also saw from
Figure 21(i) and Figure 23(ii) that an increase in the parameter Q0

is associated with an increase in the propagation rate of the fracture
half-width and length. An increase in γ led to marginal changes in the
fracture half-width, length, leak-off velocity, and the fluid pressure. We
also noted that c2 is a decreasing linear function of β1 and an increasing
linear function of Q0.

In Chapter 6, we investigated the problem formulated in Chapter 4
for the case in which the leak-off velocity is proportional to the gradient
of the fracture interface. For this case, we used the parameter β2 as the
proportionality constant and the resulting integro-differential system
was then dependent on the parameters c2 and β2. Similar to Chapter 5,
the parameter β2 was prescribed while c2 was determined as part of the
solution. It was found that small values of β2 resulted in high growth
rate of the fracture half-width, fracture length and fracture volume, as
was expected, while large β2 values resulted in low fracture propaga-
tion rate. It was also noted that an increase in the parameter Q0 was
associated with a high propagation rate of the fracture half-width and
fracture length. Expectedly, an increase in γ led to marginal changes
in fracture half-width, length, leak-off velocity, and the fluid pressure.
Lastly, we noted that c2 is a decreasing linear function of β2 and an
increasing linear function of Q0.

In Chapter 7, we considered a fluid-driven fracture propagating in
a permeable rock with Darcy fluid flow in the rock-mass formation.
A mathematical model which is the boundary value problem for the
integro-differential system of equations governing the evolution of the
fracture was formulated. Using a similarity transformation, the system
of partial differential equations was reduced to a system of ordinary
differential equations and similarity solutions were obtained. The re-
sulting integro-differential system contained three dependent variables
f (ξ), g(ξ) and P(ξ) to solve for and three unknown constants c2, c3

and c5. The constants were linked to each other by a proportionality
constant α, .i.e., c3 = αc1 and c5 = αc3. As a result, the system then
dependent on the parameters α and c2. The parameter α was chosen to
obtain different mathematical models which were solved numerically
and the parameter c2 was obtained as part of the solution. Numeri-
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cal solutions were obtained for the fracture length, volume, half-width,
leak-off depth and the fluid pressure. An increase in α led to marginal
increase in the fracture length, volume, half-width, leak-off depth and
the fluid pressure while an increase in the parameter Q0 led to signifi-
cant increase in the same variables. Marginal effects were also observed
with an increase in γ. It was also found that the values c2 for which the
mass balance was satisfied in this problem were smaller compared to
c2 values obtained in Chapter 5 and Chapter 6.

This work gave an insight into understanding how fluid-driven frac-
tures evolve over time when the elasticity of the rock is modeled using
the Cauchy principal integral derived from linear elastic fracture me-
chanics and when the fluid inside the rock formation is modelled us-
ing either a leak-off velocity term or Darcy’s flow model. Darcy model
employed is based on moderate flow through porous media. As a re-
sult, future work could include a case in which there is high velocity
flow through the fluid-rock interface in which case, a non-Darcy model
such as the Forchheimer model is employed to describe fluid leak-off
through the fluid-rock interface into the surrounding rock mass.
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A
A P P E N D I X A

A.1 I N V E R S I O N O F A C AU C H Y I N T E G R A L E Q UAT I O N

There are many physical problems which can be reduced to the solution
of the equation

−
∫ b

a

Φ(t)dt
t− σ

= F(σ), a < σ < b, (A.1.1)

where F(τ) is a known real function. Here, we seek a solution of a
Cauchy-type singular integral equation of the first kind in the interval
(0,1). To obtain the solution, we start by making the following transla-
tions

t = a + (b− a)ξ, t ∈ (a, b)⇒ ξ ∈ (0, 1), (A.1.2)

σ = a + (b− a)x, σ ∈ (a, b)⇒ x ∈ (0, 1). (A.1.3)

We also have that t − σ = (b − a)(ξ − x). Using these translations,
equation (A.1.1) becomes

−
∫ 1

0

ψ(ξ)dξ

ξ − x
= f (x), 0 < x < 1, (A.1.4)

where

ψ(ξ) = Φ(a + (b− a)ξ), f (x) = F(a + (b− a)x). (A.1.5)

The integral term in (A.1.4) can be written in the form

−
∫ 1

0

ψ(ξ)dξ

ξ − x
= −
∫ 1

0

(
1− ξ + x + ξ − x

ξ − x

)
ψ(ξ)dξ,

= −
∫ 1

0

ψ(ξ)dξ

ξ − x
−−
∫ 1

0

ξψ(ξ)dξ

ξ − x
+ x−

∫ 1

0

ψ(ξ)dξ

ξ − x
+
∫ 1

0
ψ(ξ)dξ,

= f (x)−−
∫ 1

0

ξψ(ξ)dξ

ξ − x
+ x f (x) +

∫ 1

0
ψ(ξ)dξ,

(A.1.6)

Hence, equation (A.1.4) becomes

−
∫ 1

0

ξψ(ξ)dξ

ξ − x
= x f (x) + c (A.1.7)

where

c =
∫ 1

0
ψ(ξ)dξ. (A.1.8)
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Multiplying (A.1.7) with 1√
x and integrating with respect to x gives

∫ 1

0

(∫ x

0

dx
(ξ − x)

√
x

)
ξψ(ξ)dξ =

∫ x

0

√
λ f (λ)dλ + 2c

√
x. (A.1.9)

Consider now the inner integral on the left hand side of (A.1.9) without
the interval of integration

Let u =
√

x =⇒ u2 = x. Then the inner integral can be written
equivalently as∫ dx

(ξ − x)
√

x
= 2

∫ du
ξ − u2 , (A.1.10)

= −2
∫ du

(u−
√

ξ)(u +
√

ξ)
, (A.1.11)

= − 1√
ξ

[∫ du
u−
√

ξ
−
∫ du

u +
√

ξ

]
. (A.1.12)

Now, set v1 = u−
√

ξ =⇒ du = dv1. Then∫ du
u−
√

ξ
=
∫ dv1

v1
. (A.1.13)

This is a standard integral∫ dv1

v1
= ln(v1) = ln(u−

√
ξ). (A.1.14)

Similarly, set v2 = u +
√

ξ =⇒ du = dv2. Then∫ du
u +
√

ξ
=
∫ dv2

v2
= ln(v2) = ln(u +

√
ξ). (A.1.15)

Substituting back into equation (A.1.12), we obtain

− 1√
ξ

[∫ du
u−
√

ξ
−
∫ du

u +
√

ξ

]
= − 1√

ξ
ln
(√

x−
√

ξ√
x +
√

ξ

)
.

(A.1.16)

Using (A.1.16), (A.1.9) becomes

−
∫ 1

0
ln
∣∣∣∣√ξ −

√
x√

ξ +
√

x

∣∣∣∣√ξψ(ξ)dξ =
∫ x

0

√
λ f (λ)dλ + 2c

√
x. (A.1.17)

Another result that we need is

−ln
∣∣∣∣√ξ −

√
x√

ξ +
√

x

∣∣∣∣ =

∫ ξ

0
ds√

ξ−s
√

x−s , x > ξ,∫ x
0

ds√
ξ−s
√

x−s , x < ξ,
(A.1.18)

which is proved as follows. Let u = x− s =⇒ ds = −du, then we have

∫ ds√
ξ − s

√
x− s

= −
∫ du√

u
√

u− x + ξ
. (A.1.19)
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Again, let v =
√

u√
x−ξ

=⇒ du = 2
√

x− ξ
√

udv. Then

−
∫ du√

u
√

u− x + ξ
= −2

∫ √
x− ξ

√
udv

√
u
√
(x− ξ)v2 − (x− ξ)

,

(A.1.20)

= −2
∫ dv√

v2 − 1
. (A.1.21)

We now introduce the following trigonometric substitution, v = secθ =⇒
dv = secθtanθdθ and θ = arcsecv. Then (A.1.21) becomes

−2
∫ dv√

v2 − 1
= −2

∫ secθtanθdθ√
sec2θ − 1

,

= −2
∫

secθdθ,

= −2
∫ sec2θ + secθtanθ

secθ + tanθ
dθ.

(A.1.22)

Setting

ψ = secθ + tanθ =⇒ dθ =
dψ

sec2θ + secθtanθ
, (A.1.23)

we find∫ sec2θ + secθtanθ

secθ + tanθ
dθ =

∫ dψ

ψ
= In(ψ). (A.1.24)

Now,

In(ψ) = In(secθ + tanθ),

= In(sec(arcsecv) + tan(arcsecv)),

= In(
√

v2 − 1 + v),

= In
(√

u
x− ξ

− 1 +
√

u√
x− ξ

)
,

= In
(√

ξ − s +
√

x− s√
x− ξ

)
.

(A.1.25)

Substituting back, we get∫ ds√
ξ − s

√
x− s

= −2In
(√

ξ − s +
√

x− s√
x− ξ

)
+ c1. (A.1.26)

where c1 is a constant. Putting the intervals of integration, we get

∫ ξ

0

ds√
ξ − s

√
x− s

= −2 In
(√

ξ − s +
√

x− s√
x− ξ

)
+ c1

∣∣∣∣ξ
0

,

= In
(√

x +
√

ξ√
x−
√

ξ

)
,

(A.1.27)
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for x > ξ. Similarly, when x < ξ we have∫ x

0

ds√
ξ − s

√
x− s

= In
(√

ξ +
√

x√
ξ −
√

x

)
. (A.1.28)

If the representation in (A.1.18) is substituted in (A.1.17), we find∫ x

0

√
ξψ(ξ)

∫ ξ

0

ds√
ξ − s

√
x− s

dξ +
∫ 1

x

√
ξψ(ξ)

∫ x

0

ds√
ξ − s

√
x− s

dξ

=
∫ x

0

√
λ f (λ)dλ + 2c

√
x.

(A.1.29)

The double integration terms on the left hand side of (A.1.29) are writ-
ten such that we first integrate with respect to s from 0 to ξ and then
the resulting integrals are integrated with respect to ξ from 0 to x. The
region of integration, therefore, is the triangle lying above the diagonal
ξ = s. (see Figure 41) We now change the order of integration so that
we start by integrating from ξ = s to ξ = x and afterwards in the s
direction from s = 0 to s = x. Equation (A.1.29) then becomes∫ x

0

1√
x− s

∫ x

s

√
ξψ(ξ)dξ√

ξ − s
ds +

∫ x

0

1√
x− s

∫ 1

x

√
ξψ(ξ)dξ√

ξ − s
ds

=
∫ x

0

√
λ f (λ)dλ + 2c

√
x.

(A.1.30)

which yields∫ x

0

1√
x− s

∫ 1

s

√
ξψ(ξ)dξ√

ξ − s
ds =

∫ x

0

√
λ f (λ)dλ + 2c

√
x. (A.1.31)

It is well known that the solution of Abel’s equation

Figure 41: The region of integration (shaded area).

∫ x

0

φ(s)√
x− s

ds = ω(x), (A.1.32)

is

φ(x) =
1
π

d
dx

∫ x

0

ω(s)ds√
x− s

, (A.1.33)
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and if ω(x) is differentiable

φ(x) =
1
π

[
ω(0)√

x
+
∫ x

0

ωs(s)ds√
x− s

]
. (A.1.34)

Equation (A.1.33) can easily be obtained using Laplace transform method
(see [70]). Leibnitz rule of differentiation cannot be used in (A.1.33).
From (A.1.33), we have

φ(x) =
1
π

d
dx

∫ x

0

ω(s)−ω(0) + ω(0)ds√
x− s

,

=
1
π

d
dx

[∫ x

0

ω(x)−ω(0)ds√
x− s

+
∫ x

0

ω(0)ds√
x− s

]
,

=
1
π

d
dx

[
2
∫ x

0

√
x− sωs(s)ds + 2

√
xω(0)

]
,

=
1
π

[
ω(0)√

x
+
∫ x

0

ωs(s)ds√
x− s

]
.

(A.1.35)

We will apply this result on (A.1.31). Let

φ(s) =
∫ 1

s

√
ξψ(ξ)dξ√

ξ − s
and ω(x) =

∫ x

0

√
λ f (λ)dλ+ 2c

√
x, (A.1.36)

then (A.1.31) can be written as∫ x

0

φ(s)ds√
x− s

= ω(x). (A.1.37)

Substituting ω(0) = 0 and ωx(x) = c√
x +
√

x f (x) into (A.1.34), we
obtain

φ(x) =
1
π

[∫ x

0

c√
s +
√

s f (s)
√

x− s
ds

]
,

=
1
π

[
c
∫ x

0

ds√
s
√

x− s
+
∫ x

0

√
s f (s)ds√

x− s

]
,

=
1
π

∫ x

0

√
s f (s)ds√

x− s
+ c.

(A.1.38)

Using (A.1.38), we find∫ 1

s

√
ξψ(ξ)dξ√

ξ − s
=

1
π

∫ s

0

√
x f (x)√
s− x

dx + c (A.1.39)

The solution of the integral equation∫ 1

s

ϕ(ξ)dξ√
ξ − s

= h(s) (A.1.40)

can easily be deduced from Abel’s equation. It is

ϕ(ξ) = − 1
π

d
dξ

∫ 1

ξ

h(s)ds√
s− ξ

. (A.1.41)
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Let

ϕ(ξ) =
√

ξψ(ξ) and h(s) =
1
π

∫ s

0

√
x f (x)√
s− x

dx + c,

then the solution of (A.1.39), using (A.1.41), is

√
ξψ(ξ) = − 1

π2
d
dξ

∫ 1

ξ

1√
s− ξ

(∫ s

0

√
x f (x)√
s− x

dx + c
)

ds

= − 1
π2

d
dξ

∫ 1

ξ

1√
s− ξ

∫ s

0

√
x f (x)dx√

s− x
ds− 1

π

d
dξ

∫ 1

ξ

c√
s− ξ

ds

=
c

π
√

1− ξ
− 1

π2
d
dξ

∫ 1

ξ

1√
s− ξ

∫ s

0

√
x f (x)dx√

s− x
ds

(A.1.42)

Equation (A.1.42) is often taken to be the formula for the solution of
(A.1.4) but it is not the standard one. In order to derive the standard
formula we change the order of integration of the double integral on
the right side of (A.1.42) to get

√
ξψ(ξ) =

c
π
√

1− ξ
− 1

π2
d
dξ

[∫ 1

ξ

√
x f (x)

∫ 1

x

ds√
s− ξ

√
s− x

dx
]

− 1
π2

d
dξ

[∫ ξ

0

√
x f (x)

∫ 1

ξ

ds√
s− ξ

√
s− x

dx
]

.

(A.1.43)

To proceed from here, we need the result

∫ 1

max(ξ,x)

ds√
s− ξ

√
s− x

dx = In

∣∣∣∣∣
√

1− ξ +
√

1− x
√

1− ξ −
√

1− x

∣∣∣∣∣ . (A.1.44)

Consider the integral∫ ds√
s− ξ

√
s− x

. (A.1.45)

To solve (A.1.45), let u = s− x =⇒ ds = du, then we have∫ ds√
s− ξ

√
s− x

=
∫ du√

u
√

u + x− ξ
. (A.1.46)

Again, let v =
√

u√
x−ξ

=⇒ du = 2
√

ξ − x
√

udv. Then,

∫ du√
u
√

u− x + ξ
= 2

∫ dv√
v2 − 1

,

= 2In
(√

v2 − 1 + v
)

,

= 2In
(√

s− ξ +
√

s− x√
ξ − x

)
.

(A.1.47)
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The integral (A.1.45) is given by∫ ds√
s− ξ

√
s− x

= 2In
(√

s− ξ +
√

s− x√
ξ − x

)
+ c1. (A.1.48)

For ξ < x, we have

∫ 1

x

ds√
s− ξ

√
s− x

= 2In
(√

s− ξ +
√

s− x√
ξ − x

)
+ c1

∣∣∣∣1
x

,

= In

(√
1− ξ +

√
1− x

√
1− ξ −

√
1− x

)
.

(A.1.49)

Similarly, for the case ξ > x we find

∫ 1

ξ

ds√
s− ξ

√
s− x

= In

(√
1− ξ +

√
1− x√

1− x−
√

1− ξ

)
. (A.1.50)

These results can be summarized as

ln

∣∣∣∣∣
√

1− ξ +
√

1− x
√

1− ξ −
√

1− x

∣∣∣∣∣ =

∫ 1

x
dσ√

s−ξ
√

s−x , x > ξ,∫ 1
ξ

ds√
s−ξ
√

s−x x < ξ.
(A.1.51)

Using (A.1.51), we find that

√
ξψ(ξ) =

c
π
√

1− ξ
− 1

π2
d
dξ

[∫ 1

0
ln

∣∣∣∣∣
√

1− ξ +
√

1− x
√

1− ξ −
√

1− x

∣∣∣∣∣√x f (x)dx

]
.

(A.1.52)

The second term on the right side of (A.1.52) is integrated as

d
dξ

[∫ 1

0
ln

∣∣∣∣∣
√

1− ξ +
√

1− x
√

1− ξ −
√

1− x

∣∣∣∣∣√x f (x)dx

]
=
∫ 1

0

d
dξ

ln

∣∣∣∣∣
√

1− ξ +
√

1− x
√

1− ξ −
√

1− x

∣∣∣∣∣√x f (x)dx,

=
∫ 1

0

√
1− x√

1− ξ(x− ξ)

√
x f (x)dx.

(A.1.53)

Equation (A.1.52) becomes

ψ(ξ) =
c√

ξ(1− ξ)
− 1

π2
√

ξ(1− ξ)

∫ 1

0

√
x(1− x) f (x)dx

x− ξ
, (A.1.54)

where c is an arbitrary constant arising from inversion of the singular
integral.



B
A P P E N D I X B

B.1 S O L U T I O N O F T H E D I M E N S I O N L E S S F R A C T U R E H A L F -W I D T H

We seek a solution of a Cauchy-type singular integral equation of the
first kind in the interval (−1, 1) given by

P(ξ) =− 1
π
−
∫ 1

−1

f ′(η)dη

η − ξ
, −1 < ξ < 1. (B.1.1)

The inversion of the integral equation (B.1.1) has been obtained in
[82]. We re-derive it here for completeness.

First, set P∗(ξ) = −πP(ξ) for mathematical convenience to obtain

P∗(ξ) = −
∫ 1

−1

f ′(η)dη

η − ξ
, −1 < ξ < 1. (B.1.2)

From here, we move to introduce new variables so that we can repre-
sent equation (B.1.2) in the form of equation (A.1.4). Setting

η = 2t− 1, η ∈ (−1, 1)⇒ t ∈ (0, 1), (B.1.3)

ξ = 2x− 1, ξ ∈ (−1, 1)⇒ x ∈ (0, 1), (B.1.4)

we get η − ξ = 2(t− x). Hence, equation (B.1.2) becomes

P∗(2x− 1) = −
∫ 1

0

f ′(2t− 1)2dt
2(t− x)

, (B.1.5)

or −
∫ 1

0

φ(t)dt
t− x

= q(x), (B.1.6)

where φ(t) = f ′(2t− 1) and q(x) = P∗(2x− 1). The solution of (B.1.6)
can easily be obtain as (see Appendix A)

φ(x) =
c√

x(1− x)
− 1

π2
√

x(1− x)
−
∫ 1

0

√
t(1− t)q(t)dt

t− x
, (B.1.7)

where 0 < x < 1 and c is an arbitrary constant. Now, substituting
t = 1

2 (η + 1), x = 1
2 (ξ + 1), φ(x) = f ′(ξ), q(t) = P∗(η), [t ∈ (0, 1) ⇒

η ∈ (−1, 1), x ∈ (0, 1)⇒ ξ ∈ (−1, 1)], we obtain

f ′(ξ) =
2c√

1− ξ2
− 1

π2
√

1− ξ2
−
∫ 1

−1

√
1− η2P∗(η)dη

η − ξ
, (B.1.8)

=
2c√

1− ξ2
+

1
π
√

1− ξ2
−
∫ 1

−1

√
1− η2P(η)dη

η − ξ
. (B.1.9)
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We now change the limits of integration from (-1,1) to (0,1). To achieve
this, we first prepare the integral by writing it in the form

∫ 1

−1

√
1− η2P(η)dη

η − ξ
=
∫ 0

−1

√
1− r2P(r)dr

r− ξ
+
∫ 1

0

√
1− η2P(η)dη

η − ξ
.

(B.1.10)

Set r = −η =⇒ dr = −dη. Then, the first integral on right of (B.1.10)
becomes∫ 0

−1

√
1− r2P(r)dr

r− ξ
= −

∫ 1

0

√
1− η2P(η)dη

η + ξ
. (B.1.11)

Hence, equation (B.1.10) becomes

∫ 1

−1

√
1− η2P(η)dη

η − ξ
=
∫ 1

0

√
1− η2P(η)dη

η − ξ
−
∫ 1

0

√
1− η2P(η)dη

η + ξ
,

(B.1.12)

= 2ξ
∫ 1

0

√
1− η2P(η)dη

η2 − ξ2 . (B.1.13)

Substituting (B.1.13) into (B.1.9), we obtain

f ′(ξ) =
2c√

1− ξ2
+

2ξ

π
√

1− ξ2

∫ 1

0

√
1− η2P(η)dη

η2 − ξ2 . (B.1.14)

Using the fact that f ′(0) = 0, we find that c = 0. Equation (B.1.14)
becomes

f ′(ξ) =
2ξ

π
√

1− ξ2

∫ 1

0

√
1− η2P(η)dη

η2 − ξ2 . (B.1.15)

Integrating (B.1.15) with respect to ξ from x to 1 and using the bound-
ary condition f (1) = 0 gives

− f (x) =
2
π

∫ 1

x

ξ√
1− ξ2

∫ 1

0

√
1− η2P(η)
η2 − ξ2 dηdξ. (B.1.16)

Changing the order of integration, we obtain

− f (x) =
2
π

∫ 1

0

√
1− η2P(η)

∫ 1

x

ξdξdη√
1− ξ2 (η2 − ξ2)

,

=
1
π

∫ 1

0
Φ(x, η)P(η)dη,

(B.1.17)

where

Φ(x, η) = ln

∣∣∣∣∣
√

1− x2 −
√

1− η2
√

1− x2 +
√

1− η2

∣∣∣∣∣ .
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We now use the integration by parts method to determine the right side
of (B.1.17). Let u = P(η) and dv = Φ(x, η)dη then du = P(η)dη and
v =

∫
Φ(x, η)dη. Thus,

∫ 1

0
Φ(x, η)P(η)dη = P(η)

∫
Φ(x, η)dη

∣∣∣∣1
0
−
∫ 1

0

[∫
Φ(x, η)dη

]
P(η)dη.

(B.1.18)

Again, we use the integration by parts technique to determine the in-
tegral terms appearing on both terms on the right of (B.1.18). Let

u = Φ(x, η) and dv = dη then du = 2η
√

1−x2√
1−η2(η2−x2)

dη and v = η. Thus,

∫
Φ(x, η)dη = ηΦ(x, η)−

∫ 2η
√

1− x2√
1− η2 (η2 − x2)

dη,

= ηΦ(x, η)− 2
√

1− x2 sin−1(η) + x ln

∣∣∣∣∣ x
√

1− η2 − η
√

1− x2

x
√

1− η2 + η
√

1− x2

∣∣∣∣∣ ,

= k(x, η)− 2
√

1− x2 sin−1(η),
(B.1.19)

where

k(x, η) = ηΦ(x, η) + xΨ(x, η),

with

Ψ(x, η) = ln

∣∣∣∣∣ x
√

1− η2 − η
√

1− x2

x
√

1− η2 + η
√

1− x2

∣∣∣∣∣ .

Substituting (B.1.19) into (B.1.18), we find

∫ 1

0
Φ(x, η)P(η)dη = P(η)

[
k(x, η)− 2

√
1− x2 sin−1(η)

]∣∣∣1
0

−
∫ 1

0

[
k(x, s)− 2

√
1− x2 sin−1(s)

]
P′(s)ds,

= −π
√

1− x2P(1) + 2
√

1− x2
∫ 1

0
sin−1(s)P′(s)ds

−
∫ 1

0
k(x, s)P′(s)ds,

= −π
√

1− x2P(1) + 2
√

1− x2

[
π

2
P(1)−

∫ 1

0

P(s)ds√
1− s2

]
−
∫ 1

0
k(x, s)P′(s)ds,

= −2
√

1− x2
∫ 1

0

P(s)ds√
1− s2

−
∫ 1

0
k(x, s)P′(s)ds

(B.1.20)
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Using (B.1.20), (B.1.17) becomes

f (x) = γ
√

1− x2 +
1
π

∫ 1

0
k(x, s)P′(s)ds, (B.1.21)

where γ represents the dimensionless stress intensity factor at the frac-
ture tip and it is given by

γ =
2
π

∫ 1

0

P(s)ds√
1− s2

.



C
A P P E N D I X C

C.1 D I F F E R E N T I AT I O N U N D E R T H E I N T E G R A L S I G N

If f (x, t) is a continuous and continuously differentiable function and
the limits of integration a(x) and b(x) are continuous and continuously
differentiable functions of x, then

d
dx

∫ b(x)

a(x)
f (x, t)dt = f (x, b(x))

d
dx

b(x)− f (x, a(x))
d
dx
· a(x)

+
∫ b(x)

a(x)

∂

∂x
f (x, t)dt.

(C.1.1)

Using (C.1.1) and the fact that υx(t,±h(t, x), z) = 0, we have that

∂

∂x

∫ h(t,x)

−h(t,x)
υx(t, x, z)dz =

∫ h(t,x)

−h(t,x)

∂

∂x
υx(t, x, z)dz. (C.1.2)

In this appendix, we will show using calculus that (C.1.2) holds only
when the no slip boundary condition is applied. First, let

F(t, x, h(t, x)) =
∫ h

−h
υx(t, x, z)dz, (C.1.3)

then

d
dx

F(t, x, h(t, x)) =
∂F
∂x

+
∂F
∂h

∂h
∂x

. (C.1.4)

From the fundamental theorem of calculus and the no slip boundary
condition

∂

∂h
F(t, x, h) = υx(t, x, h(t, x))− υx(t, x,−h(t, x)) = 0. (C.1.5)

Thus,

d
dx

F(t, x, h) =
∂

∂x
F(t, x, h). (C.1.6)

Now,

∂

∂x
F(t, x, h) = lim

∆x→0

F(t, x + ∆x, h)− F(t, x, h)
∆x

. (C.1.7)

That is,

∂F
∂x

= lim
∆x→0

∫ h(t,x+∆x)

−h(t,x+∆x)
υx(t, x + ∆x, z)dz−

∫ h(t,x)

−h(t,x)
υx(t, x, z)dz

∆x
,

= lim
∆x→0

1
∆x

[∫ h(t,x+∆x)

−h(t,x+∆x)
υx(t, x + ∆x, z)dz−

∫ h(t,x)

−h(t,x)
υx(t, x, z)dz

]
.
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(C.1.8)

Now,∫ h(t,x+∆x)

−h(t,x+∆x)
υx(t, x + ∆x, z)dz =

∫ h(t,x+∆x)

−h(t,x)
υx(t, x + ∆x, z)dz

−
∫ −h(t,x+∆x)

−h(t,x)
υx(t, x + ∆x, z)dz,

=

∫ h(t,x)

−h(t,x)
υx(t, x + ∆x, z)dz +

∫ h(t,x+∆x)

h(t,x)
υx(t, x + ∆x, z)dz

−
∫ −h(t,x+∆x)

−h(t,x)
υx(t, x + ∆x, z)dz.

(C.1.9)

Therefore, equation (C.1.8) becomes

∂F
∂x

= lim
∆x→0

1
∆x

[∫ h(t,x)

−h(t,x)
(υx(t, x + ∆x, z)− υx(t, x, z))dz

+

∫ h(t,x+∆x)

h(t,x)
υx(t, x + ∆x, z)dz−

∫ −h(t,x+∆x)

−h(t,x)
υx(t, x + ∆x, z)dz

]
.

(C.1.10)

By the mean value theorem,∫ h(t,x+∆x)

h(t,x)
υx(t, x + ∆x, z)dz = (h(t, x + ∆x)− h(t, x))υx(t, x + ∆x, ξ1),

(C.1.11)∫ −h(t,x+∆x)

−h(t,x)
υx(t, x + ∆x, z)dz = (h(t, x)− h(t, x + ∆x))υx(t, x + ∆x, ξ2),

(C.1.12)

where h(t, x) 6 ξ1 6 h(t, x + ∆x) and −h(t, x) 6 ξ2 6 −h(t, x + ∆x).
Therefore,

lim
∆x→0

(h(t, x + ∆x)− h(t, x))υx(t, x + ∆x, ξ1)

∆x
= 0, and

(C.1.13)

lim
∆x→0

(h(t, x)− h(t, x + ∆x))υx(t, x + ∆x, ξ2)

∆x
= 0. (C.1.14)
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Since ξ1 → h(t, x) and ξ2 → h(t, x) as ∆x → 0 and υx(t, x, h(t, x)) = 0
for any x. Thus,

∂F
∂x

=

∫ h(t,x)

−h(t,x)
lim

∆x→0

[
υx(t, x + ∆x, z)− υx(t, x, z)

∆x

]
dz, (C.1.15)

=

∫ h(t,x)

−h(t,x)

∂

∂x
υx(t, x, z)dz. (C.1.16)

That is,

∂

∂x

∫ h(t,x)

−h(t,x)
υx(t, x, z)dz =

∫ h(t,x)

−h(t,x)

∂

∂x
υx(t, x, z)dz. (C.1.17)
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