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C H A P T E R       7 

CONCLUSIONS 

 

7.1       Choice of Covariance Structure 

 

The consequence of misspecifying the covariance structure of a linear mixed effect 

model largely impacts on the inference around the estimates of the fixed effects rather 

than on the estimates of the fixed effects themselves. This will then impact on the 

probability of Type I and Type II errors. This was demonstrated by the results of the 

simulation study which showed that the coverage probability of the 95% confidence 

intervals of the fixed effects parameters was significantly lower than 95% in the case 

of most covariance specifications. This supports the literature (e.g Fitzmaurice et al., 

2004 p. 163) which states that the covariance matrix needs to be correctly specified in 

order to obtain valid inferences about the mean. Correct specification of the 

covariance also increases the efficiency of the fixed effects estimates (Fitzmaurice et 

al., 2004, Weiss, 2005). 

 

As discussed in Chapter two, if τ, the vector containing all the covariance parameters, 

is assumed to be known, then the ML estimator of β, obtained from maximizing the 

marginal likelihood function, conditional on τ, is given by 
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where Wi equals Vi
-1(τ) and iiii ωZΣZV +′= = var(yi) (Verbeke & Molenberghs, 

2000). In order for β̂  to be a unbiased estimator of β, it is sufficient that the mean 

E(yi) be correctly specified as Xiβ. In the case of the covariance matrix, the 

equivalence of equations (2) and (3) depends on the correct specification of the 

marginal covariance matrix iiii ωZΣZV +′= , and therefore inference based on 

equation (3) will not be robust if the covariance matrix is misspecified (Verbeke & 

Molenberghs, 2000). In cases where there are missing data, valid estimates of the 

covariance structure are required in order to impute values accurately, and therefore 

the estimates of the regression parameters may not be invariant to misspecification of 

the covariance structure (Fitzmaurice et al., 2004; Weiss, 2005). 

 

Alternatively, robust standard errors may be obtained via the sandwich estimator 

(Liang & Zeger, 1986, Verbeke & Molenberghs, 2000, Crowder, 2001), which can be 

shown to be consistent as long as the mean is correctly specified (Verbeke & 

Molenberghs, 2000). But even in this case, the estimates of the standard errors under 

an incorrectly specified covariance will be poor compared to those obtained from the 

correct model (Crowder, 2001). In addition, the sandwich estimator is only suitable 

for balanced designs where the number of subjects is relatively high and the number 

of observations relatively low (Fitzmaurice et al., 2004). From a scientific point of 

view, it is important to understand the covariance matrix operating behind the data, as 

this describes the sampling distribution of the data, and therefore, for complete 

understanding of the data, it is important to model the covariance as accurately as 

possible. Therefore some statisticians (e.g. Weiss, 2005) are against the use of robust 

standard errors as the only alternative. 

 



 200 

The question then arises as to whether a covariance structure exists that has the 

flexibility to describe most covariance structures, but has sufficiently few parameters 

to ensure that model estimates are obtained from the fitting procedure. From the 

results of both the simulation study and the model fitting to the ecological data set, it 

appears that a model with a TOEP error structure performs relatively well. In the 

simulation study, the TOEP model obtained average AIC and BIC values very close 

to the minimum for all models, and obtained coverage probabilities for 95% 

confidence intervals that were not significantly different from 95%. When fitted to the 

ecological data set, the TOEP model obtained good model fitting criteria compared to 

models with simple covariance structures. The plots for assessing the fit of the 

covariance structure revealed that the TOEP error structure was able to capture the 

basic covariance structure estimated in the best fitting model. The data sets used in 

this study represent a special case where the number of observations on each subject 

is the same, and the time between observations on each subject is also the same. An 

assumption of the TOEP structure is that the time between measurements on each 

subject is the same, and therefore this structure is not appropriate in cases where this 

assumption does not hold, for example cases where subjects differ in their number of 

observations (Fitzmaurice et al. 2004).  

 

A second covariance structure which performed well is the random intercept and 

slope model with ωi = VC and Σ = UN. Models with this covariance structure 

performed well in the simulation study, obtaining coverage probabilities that were 

close to 95%, and in forecasting exercise, model with this covariance structure 

obtained the best MAE and MSE values under both the linear and quadratic mean 

models. When fitting a model with this covariance structure to the data set, the 
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information criteria tended to be lower compared to other models, such as the TOEP 

model, and the covariance plots obtained for these models tended to be slightly worse. 

Therefore, although the mean structure was fitted well, the covariance structure 

tended not to fit as well compared to other models. 

 

A clear outcome from the results in this study is that the OLS model (i.e. the model 

assuming a covariance matrix with the off-diagonal elements equal to zero and 

constant variance) is a very poor choice for repeated measurements. This model 

consistently obtained the worst model-fitting criteria. The coverage probabilities 

obtained for the OLS model in the simulation study were significantly higher than the 

required 95%, indicating that the standard errors estimated from this model tend to be 

biased upwards. Demidenko (2004) shows that the variance estimated from the OLS 

model has systematic positive bias. Therefore this finding is not unexpected. Standard 

errors from the OLS model do not necessarily always have to be larger compared to 

those estimated from other models, as this model obtained relatively small standard 

errors when fit to the ecological data set. Essentially, the findings of this study show 

that inferences based on the OLS model regarding estimates of the fixed effects 

should not be relied on when the data are longitudinal.   

 

7.2       Parameter Estimation 

 

One of the biggest problems encountered while fitting models to this data set was the 

estimation of non-positive definite random effects covariance matrices.  Of the 29 

models fitted to the ecological data set, ten resulted in random effects covariance 

matrices that were not positive definite. This could be due to the marginal modelling 
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approach of obtaining the parameter estimates, as described is Section 2.2.3. As 

shown by Verbeke and Molenberghs (2000, p. 52), the hierarchical model for a linear 

mixed model implies that the covariance matrices for both the errors and the random 

effects need to be positive definite, thereby implying that iiii ωZΣZV +′=  is positive 

definite as well. The marginal model implies only that iiii ωZΣZV +′=  is positive 

definite, which does not imply that the Σ and ωi will be positive definite. Therefore 

estimates obtained for the covariance parameters may not always converge to values 

in the parameter space implied by the hierarchical model (Verbeke & Molenberghs, 

2000). Alternatively, this error may also be encountered if a saddle point is reached by 

the fitting algorithm (Weiss, 2005). 

 

The problem of non-convergence or obtaining covariance parameters that were on the 

boundary of their parameter spaces was also encountered. This generally occurred 

more frequently the more complex the linear mixed effect model became. Specifying 

better starting values for the parameters or by specifying a different fitting procedure 

these problems can in some cases be avoided (Verbeke and Molenberghs, 2000). 

Divergence of the fitting procedure can be an indicator of problems with the 

parameterisation of the model, or in the assumptions made by the model (Verbeke and 

Molenberghs, 2000).  Therefore it is the recommendation of this study that the user 

avoid overly complex covariance structures unless there are specific reasons for 

specifying these structures. It is also important that users of linear mixed effects 

models carefully scrutinise the estimates of the covariance parameters to ensure that 

all estimates are valid and that the individual covariance structures are positive 

definite.  

 



 203 

Ways of solving convergence problems include changing the fitting procedure, 

changing the starting values, or changing the model. Currently, few options are 

available for model fitting procedures in standard linear mixed effects software. In 

SAS PROC MIXED (ver. 9.1). there is no alternative to the NR algorithm 

implemented by this software. Within the “PARMS” statement of PROC MIXED 

(SAS ver. 9.1) it is possible to specify different starting values. By changing the 

starting values for the fitted models it is also possible to check how stable the 

estimates are. If the estimates for the fixed effects change dramatically when different 

starting values are used, then there may be problems with the estimates obtained for 

these models. By default, this procedure uses MIVQUE(0) estimates as starting values 

of the covariance parameters. A reason for the algorithm not converging may also be 

due to too few data points to estimate the covariance parameters specified in the 

model. The observation to parameter ratio for the PR data set had a minimum value of 

close to 1:1, but the ecological data set had a minimum ratio of approximately 3:1. 

Therefore, for at least the ecological data set, the number of observations should not 

have limited the optimisation procedure, as there were sufficient degrees of freedom 

available. By specifying a simpler covariance structure in the same family as the 

desired covariance structure, the convergence problem may also be solved, but at the 

cost of reduced complexity in the model. 

 

Alternatives to the NR algorithm include the EM algorithm (Laird & Ware, 1982; 

Jennrich & Schluchter, 1986), the Fisher scoring algorithm (Jennrich & Schluchter, 

1986), and Bayesian methods (Weiss, 2005). Lindstrom and Bates (1988) compare the 

EM algorithm to the NR algorithm. They state that the EM algorithm will always 

converge to a local maximum of the likelihood surface, but the number of iterations 
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required may be very high, whereas the NR algorithm may not always converge. In 

the twenty years since this article was published, computing power has increased 

substantially and therefore a large number of iterations may pose only a minor 

problem compared to lack of convergence. Jennrich and Schluchter (1986) state that 

the Fisher scoring algorithm is more robust to poor starting values compared to the 

NR method, and suggest starting off the fitting procedure with Fisher scoring 

estimates and then continuing with the NR method. Weiss (2005) suggests that more 

interest be placed in the implementation of Bayesian methods to fit linear mixed 

effects models. Bayesian methods are useful since they do not depend on asymptotics 

and can handle complex models, even with small data sets (Weiss, 2005). These 

methods also allow for inference about complex functions of the parameters and can 

easily be extended to new models, and therefore Bayesian methods are becoming 

more popular in non-linear modelling, especially with easily available software such 

as WinBUGS and increasing computer power (Weiss, 2005). Individuals in the R 

statistical software community have implemented Bayesian procedures for fitting the 

parameters of a linear mixed effects model through a Monte Carlo Markov Chain 

(MCMC) algorithm (Tüchler & Frühwirth-Schnatter, 2006). Therefore alternative 

procedures do exist, but may be difficult to implement, particularly for individuals not 

familiar with statistical software coding, until macros or packages for these 

procedures become more readily available. Individuals, both statisticians and non-

statisticians, not experts in linear mixed effects theory may have difficulty in 

implementing these optimisation procedures to fit linear mixed effects models. 

 

During the simulation study, estimates were often not obtained for the models with 

more complex covariance structures, even in cases when the model fitted had the 
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same covariance structure specified as during the simulation of the data. Therefore 

failure to obtain estimates was due to small sample size or inability of the fitting 

procedure to reach the best parameters subset, and not due to the non-existence of the 

parameter values. This finding indicates that greater flexibility, in terms of having 

different fitting procedures available and being able to tweak these procedures, is 

needed in order to guarantee convergence and obtain estimates for a model. 

 

7.3       Simple Versus Complex Covariance Structures 

 

The complexity of the covariance structures considered should be based on a number 

of factors. Firstly, the hypothesis or hypotheses behind the sampling distribution of 

the data should be considered, and covariance structures chosen accordingly. 

Secondly, the amount of data available should also be considered, as this will limit the 

maximum complexity of the covariance structure which can be fitted by the 

maximisation procedure. Ideally, this consideration should take place before the data 

is collected so that the sample size can be increased or the experimental design 

changed if necessary. The researcher needs to be aware of the number of data points 

available and the number of parameters that will need to be estimated by the model, 

and take this into account when analysing the parameter estimates. In cases where the 

number of data points does not allow for complex covariance structures, it may be 

better to fit a model with a simpler structure, as this study has shown that selection of 

a relatively flexible, low parameter covariance structure, such as the TOEP structure, 

can still result in good estimates for both the mean and the covariance, even if the 

covariance structure of the data is complex. Lastly, thought should also be given to 

whether or not the covariance structure estimates will need to be interpreted. 
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Interpretation of very complex covariance structures may be more difficult compared 

to a simpler structure. 

 

In cases where complex covariance structures are required, it may be necessary to 

change starting values, or even to try different maximisation procedures across 

different statistical software, in order to obtain parameter estimates for the desired 

model.  

 

In the model fitting exercise it was found that if the mean model structure was 

correctly specified, then the covariance structures estimated tended to be simpler, and 

therefore covariance structures could be specified with fewer parameters. On the other 

hand, if an over-simplified mean structure was selected, then the estimates for the 

estimated covariance matrix became more elaborate, evident in the covariance plots 

for the more complex covariance structures. Therefore the covariance structure can 

compensate for misspecified mean structures by having inflated estimates for certain 

covariances, which then results in larger standard errors for the fixed effects 

estimates. 

 

7.4       Model Fit 

 

Model selection requires choosing both the best fitting mean structure and the best 

fitting covariance structure. These two aspects of the model are interrelated, so there 

is no easy answer as to which should be fit first or take first priority. Fitzmaurice et al. 

(2004) suggest choosing a maximal mean structure first and then determining then 

which covariance structure fits best. Once the covariance structure is chosen, the best 
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fitting mean structure can be selected through model diagnostics. Verbeke and 

Molenberghs (2000) suggest initially fitting an elaborate or saturated mean structure, 

and then using the OLS estimates for β, plot the residuals for the OLS fit, which 

should be consistent for β, to explore the dependence between repeated measurements 

and be used to determine what random effects should be included in the model. They 

then suggest selecting a covariance matrix for the errors conditional on the selected 

random effects. In the next step, the need for the random effects can be tested, 

although this should not be done by means of the likelihood ratio test, as explained in 

Section 2.6.4. 

 

The approach used for fitting a model to the ecological data set was to fit the maximal 

mean structure under various covariance structures, then to reduce the mean structure 

if an interaction or fixed effect term was consistently non-significant. This process 

was then repeated once a term was removed from the mean structure. This procedure 

could be quite tedious, but it ensures that no potential models are left out. In the 

model fitting exercise carried out on the ecological data set, this procedure had to be 

repeated twice, as closer investigation of the residuals fitted to the best linear model 

revealed that a simple linear relationship with time was not sufficient to describe the 

mean model, nor were the residual variances homogeneous. Therefore selecting an 

appropriate mean structure and a covariance structure for a linear mixed effects model 

applied to longitudinal data can be a tedious task. 

 

In order to choose the best fitting covariance structure, the basic texts on linear mixed 

effects models (e.g. Verbeke & Molenberghs, 2000; Fitzmaurice et al., 2004; Weiss, 

2005; Hedeker & Gibbons, 2006) suggest using likelihood ratio tests to choose 
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between nested covariance structures, and to use information criteria, such as the AIC 

and BIC to choose between non-nested covariance structures. These model selection 

criteria can only be used to compare between models if the fixed effects are held 

constant (Verbeke & Molenberghs, 2000; Fitzmaurice et al., 2004). The BIC will tend 

to pick models with fewer covariance parameters compared to the AIC (McQuarrie & 

Tsai, 1998; Fitzmaurice et al., 2004; Weiss, 2005). The AIC has been shown to work 

poorly in the presence of multicollinearity and to have small-sample overfitting 

tendencies (McQuarrie & Tsai, 1998; Demidenko, 2004). McQuarrie and Tsai (1998) 

suggest using the bias corrected AIC (AICc), which has been shown to outperform the 

AIC for small samples. This study showed that the models selected by these two 

criteria are very similar, and generally tended to have very similar values for the same 

model. Demidenko (2004) proposes a Healthy AIC (HAIC), which is shown to be 

more sensitive under multicollinearity and better able to distinguish between models 

when the number of parameters is the same. This criterion is not readily available in 

most statistical software packages. 

 

Recently, Gomez, Schaalje and Fellingham (2005) studied the performance of the 

Kenward-Roger degrees of freedom calculation method when useing the AIC and BIC 

to choose the best covariance structure, by means of a simulation study. They 

concluded at the end of their study that the AIC and BIC criteria were very poor at 

selecting the correct covariance structure. Therefore, these information criteria may 

not be suitable for selecting between linear mixed effects models with different 

covariance structures. They suggested using the AICc instead, but this study showed 

that the AIC and AICc tended to select the same models, even for the smaller PR data 

set. 
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Since there is more than one aspect of the model that needs to be correctly specified, 

once the best fitting covariance structures have been selected, it is then necessary to 

further investigate model fit through the use of residual and influence diagnostics, and 

plots for the covariance structure such as the semi-variogram and the plot of the 

covariance terms versus the lag in time. The influence diagnostics will be used to 

determine if there are any observations in the data to which the model fit is 

particularly sensitive (Verbeke & Molenberghs, 2000; Demidenko, 2004). The 

residual diagnostics (based on transformed residuals as discussed in Chapter two) can 

be used to assess the adequacy of the fitted model, as well as to identify potential 

outliers (Fitzmaurice et al., 2004). In addition, to assess the fit of the covariance 

matrix, the semi-variogram of the transformed residuals can be plotted against the 

time lag between observations as a visual check of the proposed covariance matrix 

(Fitzmaurice et al., 2004). A plot of the estimated covariance terms against the lag in 

time can be plotted as a visual representation of the covariance matrix, which can be 

used to visually compare covariance structures between different models (Hedeker & 

Gibbons, 2006). By systematically going through this process, it should be ensured 

that the model finally chosen is the best representation of the data under analysis. 

Since the linear mixed effects model is more complicated compared to a normal linear 

model, these model assessment steps are comparatively more critical to determine any 

model perturbations, and should not be ignored.  

 

7.5 Improvement and Further Research 

 

This study did not explicitly consider the effect of different sample sizes on the 

robustness of the linear mixed effects model, therefore an improvement on this study 
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would be the inclusion of different sample sizes during the simulation study. By 

comparing the models successfully fit to the ecological data set, which had 

approximately twice as many subjects per group compared to the PR data set, to those 

successfully fit to the PR data set, it does appear that the more observations available 

the better the more complicated covariance structures perform. 

 

Only data sets where the same number of observations was taken from all individuals 

were considered. This study could be extended by including a data set where the time 

lags between observations differed from subject to subject, or where a different 

number of observations were obtained on each subject. Under these circumstances, 

covariance structures assuming constant lags in time between observations, such as 

AR(1) or TOEP structures, would not be appropriate. It would be interesting to 

examine which covariance structures would be suitable under these conditions. 

 

This study showed that the maximisation procedure was not always successful, even 

when the underlying data had the same covariance specified in the model. Therefore, 

an interesting study would be to compare different fitting procedures, under data 

simulated from known covariance structures, in terms of whether the model fitting 

procedures converge and how close the parameters estimates get to their true values. 

Examples of different fitting procedures would include the NR algorithm, the Fisher 

scoring, and the EM algorithm, as well as hierarchical Bayes methods. 

 

In conclusion, the linear mixed effects model is a very useful tool in the analysis of 

repeated measurements, but careful consideration needs to go into the postulated 

mean and covariance structures. 


