CHAPTER 7

CONCLUSIONS
7.1 Choice of Covariance Structure

The consequence of misspecifying the covarianaectsire of a linear mixed effect
model largely impacts on the inference around #tenates of the fixed effects rather
than on the estimates of the fixed effects thenesel\rhis will then impact on the
probability of Type | and Type Il errors. This wdemonstrated by the results of the
simulation study which showed that the coveragdalodity of the 95% confidence
intervals of the fixed effects parameters was $icgmtly lower than 95% in the case
of most covariance specifications. This supporésliierature (e.g Fitzmaurics al.,
2004 p. 163) which states that the covariance mageds to be correctly specified in
order to obtain valid inferences about the meanrrgCb specification of the
covariance also increases the efficiency of thedirffects estimates (Fitzmauriee

al., 2004, Weiss, 2005).

As discussed in Chapter two,tifthe vector containing all the covariance paramsete
Is assumed to be known, then the ML estimatop,@fbtained from maximizing the

marginal likelihood function, conditional an is given by

ﬁ = (ZX;WiXi )_lzX;WiYi

i=1 i=1

and its variance-covariance matrix then equals
~ N N N
var@) = (O XWX, T XIW, varly )W, X )XW, X)) ™ ... (2)
i=1 i=1 i=1

=(ZX§WiXi)_1 -3
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where W; equalsV;*(r) and V. =Z.X7 +o,= varfy) (Verbeke & Molenberghs,

2000). In order forﬁ to be a unbiased estimator ffit is sufficient that the mean

E(yi) be correctly specified aXp. In the case of the covariance matrix, the
equivalence of equations (2) and (3) depends onctmeect specification of the

marginal covariance matrix/, =Z X7 +®,, and therefore inference based on

equation (3) will not be robust if the covariancatnx is misspecified (Verbeke &
Molenberghs, 2000). In cases where there are rgis$ata, valid estimates of the
covariance structure are required in order to impatlues accurately, and therefore
the estimates of the regression parameters malgenwivariant to misspecification of

the covariance structure (Fitzmaurgtal., 2004; Weiss, 2005).

Alternatively, robust standard errors may be ol#divia the sandwich estimator
(Liang & Zeger, 1986, Verbeke & Molenberghs, 20G8wder, 2001), which can be
shown to be consistent as long as the mean is atiyrrepecified (Verbeke &
Molenberghs, 2000). But even in this case, thenedds of the standard errors under
an incorrectly specified covariance will be poomgared to those obtained from the
correct model (Crowder, 2001). In addition, thedsaich estimator is only suitable
for balanced designs where the number of subjeatslatively high and the number
of observations relatively low (Fitzmauri@k al., 2004).From a scientific point of
view, it is important to understand the covarianwdrix operating behind the data, as
this describes the sampling distribution of theadand therefore, for complete
understanding of the data, it is important to mathel covariance as accurately as
possible. Therefore some statisticians (e.g. W@i385) are against the use of robust

standard errors as the only alternative.
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The question then arises as to whether a covariatroeture exists that has the
flexibility to describe most covariance structuriest has sufficiently few parameters
to ensure that model estimates are obtained franfithng procedure. From the
results of both the simulation study and the mditkghg to the ecological data set, it
appears that a model with a TOEP error structuréopas relatively well. In the
simulation study, the TOEP model obtained averatfe @d BIC values very close
to the minimum for all models, and obtained coverggobabilities for 95%
confidence intervals that were not significantlffefient from 95%. When fitted to the
ecological data set, the TOEP model obtained goodehfitting criteria compared to
models with simple covariance structures. The pfotsassessing the fit of the
covariance structure revealed that the TOEP etractsire was able to capture the
basic covariance structure estimated in the b#sigimodel. The data sets used in
this study represent a special case where the nuofilmbservations on each subject
is the same, and the time between observationsacm subject is also the same. An
assumption of the TOEP structure is that the tiraevben measurements on each
subject is the same, and therefore this structuret appropriate in cases where this
assumption does not hold, for example cases whixjects differ in their number of

observations (Fitzmaurica al. 2004).

A second covariance structure which performed weelthe random intercept and
slope model witho; = VC andX = UN. Models with this covariance structure
performed well in the simulation study, obtainingverage probabilities that were
close to 95%, and in forecasting exercise, modeh \his covariance structure
obtained the best MAE and MSE values under bothlittear and quadratic mean

models. When fitting a model with this covariandeusture to the data set, the
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information criteria tended to be lower compareatioer models, such as the TOEP
model, and the covariance plots obtained for tinesdels tended to be slightly worse.
Therefore, although the mean structure was fittesdl, vthe covariance structure

tended not to fit as well compared to other models.

A clear outcome from the results in this studyhiattthe OLS model (i.e. the model
assuming a covariance matrix with the off-diagoel#ments equal to zero and
constant variance) is a very poor choice for regmbaneasurements. This model
consistently obtained the worst model-fitting aisie The coverage probabilities
obtained for the OLS model in the simulation stwadre significantly higher than the
required 95%, indicating that the standard errstemated from this model tend to be
biased upwards. Demidenko (2004) shows that thiearnvee estimated from the OLS
model has systematic positive bias. Thereforefthting is not unexpected. Standard
errors from the OLS model do not necessarily alwage to be larger compared to
those estimated from other models, as this modeirmdd relatively small standard
errors when fit to the ecological data set. Esa#igtithe findings of this study show

that inferences based on the OLS model regarditigh&es of the fixed effects

should not be relied on when the data are longialdi

7.2 Parameter Estimation

One of the biggest problems encountered whilenfittnodels to this data set was the

estimation of non-positive definite random effectssariance matrices. Of the 29

models fitted to the ecological data set, ten teduln random effects covariance

matrices that were not positive definite. This cobé due to the marginal modelling
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approach of obtaining the parameter estimates,easritbed is Section 2.2.3. As
shown by Verbeke and Molenberghs (2000, p. 52)hterarchical model for a linear
mixed model implies that the covariance matricesbfath the errors and the random

effects need to be positive definite, thereby inqgythatV, =Z X7’ + o, is positive
definite as well. The marginal model implies oriwat V, =Z,XZ; + w, is positive

definite, which does not imply that tfxand m; will be positive definite. Therefore
estimates obtained for the covariance parameteysnoiaalways converge to values
in the parameter space implied by the hierarchioadle! (Verbeke & Molenberghs,
2000). Alternatively, this error may also be endeved if a saddle point is reached by

the fitting algorithm (Weiss, 2005).

The problem of non-convergence or obtaining covaeaparameters that were on the
boundary of their parameter spaces was also ernm@ahtThis generally occurred
more frequently the more complex the linear mix#dad model became. Specifying
better starting values for the parameters or bgigpeg a different fitting procedure
these problems can in some cases be avoided (\erde#t Molenberghs, 2000).
Divergence of the fitting procedure can be an iatic of problems with the
parameterisation of the model, or in the assumptioade by the model (Verbeke and
Molenberghs, 2000). Therefore it is the recomm@adeof this study that the user
avoid overly complex covariance structures unldexet are specific reasons for
specifying these structures. It is also importdrdt tusers of linear mixed effects
models carefully scrutinise the estimates of theadance parameters to ensure that
all estimates are valid and that the individual arxtance structures are positive

definite.
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Ways of solving convergence problems include chamgihe fitting procedure,
changing the starting values, or changing the mo@eirently, few options are
available for model fitting procedures in standéngar mixed effects software. In
SAS PROC MIXED (ver. 9.1). there is no alternatite the NR algorithm
implemented by this software. Within the “PARMSa&ment of PROC MIXED
(SAS ver. 9.1) it is possible to specify differestarting values. By changing the
starting values for the fitted models it is alsosgible to check how stable the
estimates are. If the estimates for the fixed ¢ffebange dramatically when different
starting values are used, then there may be prableith the estimates obtained for
these models. By default, this procedure uses M@ estimates as starting values
of the covariance parameters. A reason for theriéhgo not converging may also be
due to too few data points to estimate the coveeaparameters specified in the
model. The observation to parameter ratio for tRedBta set had a minimum value of
close to 1:1, but the ecological data set had ammum ratio of approximately 3:1.
Therefore, for at least the ecological data set,nimber of observations should not
have limited the optimisation procedure, as theeeewsufficient degrees of freedom
available. By specifying a simpler covariance duite in the same family as the
desired covariance structure, the convergence @molbhay also be solved, but at the

cost of reduced complexity in the model.

Alternatives to the NR algorithm include the EM @ithm (Laird & Ware, 1982;
Jennrich & Schluchter, 1986), the Fisher scorirgpathm (Jennrich & Schluchter,
1986), and Bayesian methods (Weiss, 2005). Lindstaand Bates (1988) compare the
EM algorithm to the NR algorithm. They state thia¢ tEM algorithm will always

converge to a local maximum of the likelihood soefabut the number of iterations
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required may be very high, whereas the NR algorithay not always converge. In
the twenty years since this article was publishemmputing power has increased
substantially and therefore a large number of ti@na may pose only a minor
problem compared to lack of convergence. JennmchZchluchter (1986) state that
the Fisher scoring algorithm is more robust to pstarting values compared to the
NR method, and suggest starting off the fitting gedure with Fisher scoring
estimates and then continuing with the NR methodis@/(2005) suggests that more
interest be placed in the implementation of Bayesi@ethods to fit linear mixed
effects models. Bayesian methods are useful sheedo not depend on asymptotics
and can handle complex models, even with small data (Weiss, 2005). These
methods also allow for inference about complex fioms of the parameters and can
easily be extended to new models, and thereforee®ay methods are becoming
more popular in non-linear modelling, especiallyhaeasily available software such
as WIinBUGS and increasing computer power (Weis®5R0Individuals in the R
statistical software community have implementedd#n procedures for fitting the
parameters of a linear mixed effects model throagMonte Carlo Markov Chain
(MCMC) algorithm (Tuchler & Fruhwirth-Schnatter, @®). Therefore alternative
procedures do exist, but may be difficult to impé particularly for individuals not
familiar with statistical software coding, until oras or packages for these
procedures become more readily available. Indivgjulaoth statisticians and non-
statisticians, not experts in linear mixed effeth®ory may have difficulty in

implementing these optimisation procedures tarigdr mixed effects models.

During the simulation study, estimates were often abtained for the models with

more complex covariance structures, even in casemwhe model fitted had the
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same covariance structure specified as during ithelation of the data. Therefore
failure to obtain estimates was due to small sanspe or inability of the fitting
procedure to reach the best parameters subsehcamilie to the non-existence of the
parameter values. This finding indicates that gmeélexibility, in terms of having
different fitting procedures available and beindeato tweak these procedures, is

needed in order to guarantee convergence and adaimates for a model.

7.3  SimpleVersus Complex Covariance Structures

The complexity of the covariance structures coneidehould be based on a number
of factors. Firstly, the hypothesis or hypothesehifd the sampling distribution of
the data should be considered, and covariance tstesc chosen accordingly.
Secondly, the amount of data available should la¢ésconsidered, as this will limit the
maximum complexity of the covariance structure whican be fitted by the
maximisation procedure. Ideally, this considerattiould take place before the data
is collected so that the sample size can be ineceas the experimental design
changed if necessary. The researcher needs to dre aivthe number of data points
available and the number of parameters that wildn® be estimated by the model,
and take this into account when analysing the paranestimates. In cases where the
number of data points does not allow for complexaciance structures, it may be
better to fit a model with a simpler structure tlais study has shown that selection of
a relatively flexible, low parameter covarianceusture, such as the TOEP structure,
can still result in good estimates for both the meaad the covariance, even if the
covariance structure of the data is complex. Lashgught should also be given to

whether or not the covariance structure estimatds need to be interpreted.
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Interpretation of very complex covariance strucsumgay be more difficult compared

to a simpler structure.

In cases where complex covariance structures aparesl, it may be necessary to
change starting values, or even to try differentximéation procedures across
different statistical software, in order to obtgarameter estimates for the desired

model.

In the model fitting exercise it was found thattife mean model structure was
correctly specified, then the covariance structestsnated tended to be simpler, and
therefore covariance structures could be specifigal fewer parameters. On the other
hand, if an over-simplified mean structure was eld, then the estimates for the
estimated covariance matrix became more elaboeatdent in the covariance plots
for the more complex covariance structures. Theeetbe covariance structure can
compensate for misspecified mean structures byngawiflated estimates for certain
covariances, which then results in larger standamars for the fixed effects

estimates.

74  Modd Fit

Model selection requires choosing both the besihditmean structure and the best
fitting covariance structure. These two aspectthefmodel are interrelated, so there
IS no easy answer as to which should be fit firda&e first priority. Fitzmauricet al.

(2004) suggest choosing a maximal mean structuse dnd then determining then

which covariance structure fits best. Once the gaxae structure is chosen, the best

206



fitting mean structure can be selected through inat@gnostics. Verbeke and
Molenberghs (2000) suggest initially fitting an l@deate or saturated mean structure,
and then using the OLS estimates forplot the residuals for the OLS fit, which
should be consistent f@; to explore the dependence between repeated neeasuis
and be used to determine what random effects shmuldcluded in the model. They
then suggest selecting a covariance matrix foretiers conditional on the selected
random effects. In the next step, the need for rimelom effects can be tested,
although this should not be done by means of #&itiood ratio test, as explained in

Section 2.6.4.

The approach used for fitting a model to the edoklglata set was to fit the maximal
mean structure under various covariance structtines, to reduce the mean structure
if an interaction or fixed effect term was congmlg non-significant. This process
was then repeated once a term was removed froomméla@ structure. This procedure
could be quite tedious, but it ensures that nom@emodels are left out. In the
model fitting exercise carried out on the ecolobdata set, this procedure had to be
repeated twice, as closer investigation of thedress fitted to the best linear model
revealed that a simple linear relationship withetimas not sufficient to describe the
mean model, nor were the residual variances honemgen Therefore selecting an
appropriate mean structure and a covariance steufiu a linear mixed effects model

applied to longitudinal data can be a tedious task.

In order to choose the best fitting covariancecitme, the basic texts on linear mixed

effects models (e.g. Verbeke & Molenberghs, 200&nfauriceet al., 2004; Weiss,

2005; Hedeker & Gibbons, 2006) suggest using hiogld ratio tests to choose
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between nested covariance structures, and to teeniation criteria, such as the AIC
and BIC to choose between non-nested covariangetstes. These model selection
criteria can only be used to compare between maéflele fixed effects are held
constant (Verbeke & Molenberghs, 2000; Fitzmaueica., 2004). The BIC will tend
to pick models with fewer covariance parameterspamed to the AIC (McQuarrie &
Tsai, 1998; Fitzmauricet al., 2004;Weiss, 2005). The AIC has been shown to work
poorly in the presence of multicollinearity and have small-sample overfitting
tendencies (McQuarrie & Tsai, 1998; Demidenko, 20MtQuarrie and Tsai (1998)
suggest using the bias corrected AIC (AICc), whielk been shown to outperform the
AIC for small samples. This study showed that thedets selected by these two
criteria are very similar, and generally tendethdwe very similar values for the same
model. Demidenko (2004) proposes a Healthy AIC (EAlwhich is shown to be
more sensitive under multicollinearity and bettbleato distinguish between models
when the number of parameters is the same. Thirion is not readily available in

most statistical software packages.

Recently, Gomez, Schaalje and Fellingham (2005)istuthe performance of the
Kenward-Roger degrees of freedom calculation metioeh useing the AIC and BIC
to choose the best covariance structure, by me&ns simulation study. They
concluded at the end of their study that the Al@ BAC criteria were very poor at
selecting the correct covariance structure. Theegfthese information criteria may
not be suitable for selecting between linear mixdfibcts models with different
covariance structures. They suggested using the Al§tead, but this study showed
that the AIC and AICc tended to select the sameatso@ven for the smaller PR data

set.
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Since there is more than one aspect of the modelnteds to be correctly specified,
once the best fitting covariance structures hawnlselected, it is then necessary to
further investigate model fit through the use @fideal and influence diagnostics, and
plots for the covariance structure such as the sammogram and the plot of the
covariance terms versus the lag in time. The imide@ediagnostics will be used to
determine if there are any observations in the datavhich the model fit is
particularly sensitive (Verbeke & Molenberghs, 20Demidenko, 2004). The
residual diagnostics (based on transformed resdambiscussed in Chapter two) can
be used to assess the adequacy of the fitted maslekell as to identify potential
outliers (Fitzmauriceet al., 2004). In addition, to assess the fit of the azs@nce
matrix, the semi-variogram of the transformed reaid can be plotted against the
time lag between observations as a visual chedkefproposed covariance matrix
(Fitzmauriceet al., 2004). A plot of the estimated covariance teagainst the lag in
time can be plotted as a visual representatiom@fcovariance matrix, which can be
used to visually compare covariance structures eéatvdifferent models (Hedeker &
Gibbons, 2006). By systematically going througts throcess, it should be ensured
that the model finally chosen is the best repredgemt of the data under analysis.
Since the linear mixed effects model is more coogpéid compared to a normal linear
model, these model assessment steps are compbrativee critical to determine any

model perturbations, and should not be ignored.

7.5 Improvement and Further Research

This study did not explicitly consider the effedt different sample sizes on the

robustness of the linear mixed effects model, foeeean improvement on this study
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would be the inclusion of different sample sizesirmy the simulation study. By
comparing the models successfully fit to the ecolalgdata set, which had
approximately twice as many subjects per group @etto the PR data set, to those
successfully fit to the PR data set, it does app®srthe more observations available

the better the more complicated covariance strastperform.

Only data sets where the same number of obsergatvas taken from all individuals
were considered. This study could be extended tiyding a data set where the time
lags between observations differed from subjectsubject, or where a different
number of observations were obtained on each duljewler these circumstances,
covariance structures assuming constant lags ia batween observations, such as
AR(1) or TOEP structures, would not be appropridtewould be interesting to

examine which covariance structures would be slgitabder these conditions.

This study showed that the maximisation proceduss mot always successful, even
when the underlying data had the same covarianeefsgal in the model. Therefore,
an interesting study would be to compare differiting procedures, under data
simulated from known covariance structures, in tewwh whether the model fitting
procedures converge and how close the paramet@rsagss get to their true values.
Examples of different fitting procedures would un¢ the NR algorithm, the Fisher

scoring, and the EM algorithm, as well as hieraxahBayes methods.

In conclusion, the linear mixed effects model igeay useful tool in the analysis of

repeated measurements, but careful consideratiedsn® go into the postulated

mean and covariance structures.
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