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ABSTRACT  

 

Excessive vibration of pipes, structures or components has been determined as 

one of the main causes of Nuclear Power Plant degradation. These vibrations can 

lead to potential damage of plant systems, structures and components, which can 

negatively impact the plant performance and safety integrity of an operational 

unit. Should resonance conditions be experienced due to the vibrations, the 

vibration can be further amplified and when this exceeds a permissible limit, 

potential failure of the structure can occur.  In the nuclear environment being able 

to predict such phenomena is highly important.  Specialised analysis provides a 

proactive risk management process to predict such phenomena before they occur. 

This approach is becoming more necessary and important during the design of 

new generation Nuclear Power Plants. This Research Report taps into this 

requirement and aims to provide a method in determining the acoustic pressure 

distribution for predicting high fluid vibrational areas or possible resonance 

conditions. Various methods have been employed by specialists to produce 

adequate acoustic solutions. In various papers by Cepkauskas, he introduces a 

transformation technique used to change the form of the problem to a non-

homogenous differential equation with homogenous boundary conditions by 

utilising an auxiliary function. Cepkauskas also demonstrated that, unlike other 

solutions produced, an auxiliary function defined on the interior of the media is 

unnecessary.   

 

In this Research Report, we investigate the Cepkauskas methodology and adapt it 

further by using a one dimensional wave equation and non-homogenous boundary 

conditions and through the transformation technique to produce four forced-

vibration acoustic solutions with different boundary conditions existing in a pipe-

loop configuration. Specific Jolley series have been selected that ensure a proper 

representation of each of the four forced-vibration acoustic solutions.  The Jolley 

series have been applied to determine the acoustic pressure distribution within a 

pipe over a series of incremental lengths and time. It is demonstrated that these 

acoustic forced-vibration solutions can be used to properly couple various 
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individual pipes, while still maintaining the physical acoustic behaviour within the 

pipe-loop or a pipe system. A general acoustic subroutine is developed using the 

selected Jolley series and applied to specific conditions in two pipe-loop systems 

(general pipe-loop and a simplistic HTGR pipe-loop). For the HTGR pipe-loop, 

pipe geometries and fluid temperatures from a Computation Fluid Dynamic 

(CFD) software computer code, Flownex is used to calculated these conditions 

and provides the input for the acoustic loop subroutine model for steady state 

conditions. The series of unknown constants required at the pipe to pipe interface 

that are necessary to maintain pressure distribution and pressure gradient 

continuity, are solved via matrix operations and applying Kramers rule. In order to 

verify accuracy and gain confidence in the mathematics of this methodology, the 

subroutine is applied to two case studies, a general pipe-loop model and a model 

representing a simplified HTGR environment. This methodology can also be used 

to determine the natural and forced frequencies in a system to predict potential 

flow-induced vibrations or resonant conditions. It can also be used for other 

various applications that will be further elaborated on in this Research Report.  

 

The results of this study has led to the publication of this work at the 20th 

International Conference on Structural Mechanics in Reactor Technology, 

(SMiRT-20) in Finland on August 2009, Division V, Paper 1577, where it was 

open for judgement and no significant findings on this methodology were found, 

but received well by the conference.   
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CHAPTER 1 

INTRODUCTION AND CONTEXT 
 

In an operational nuclear environment, processes such as the selection of process 

control, expert supervision, optimisation and maintenance methodologies are 

gaining fast in importance. It is beneficial that these areas should operate together 

to provide the best technical solution to ensure safe plant operation. If any of these 

processes are found to be ineffective, it can negatively influence the performance 

and safety integrity of the plant, caused by sudden failures of key plant 

components like turbines, pipe structures etc. These failures can culminate in 

unscheduled outages of electricity producing power plants, manifesting in negative 

economic, social and environmental implications. The operation of a Nuclear 

Power Plant (NPP) is rigidly regulated to ensure public and worker safety, 

therefore, maintaining the integrity of components is vital in preventing any 

accident condition caused by structural degradation. Excessive flow induced-

vibration of key plant components is one type of phenomenon that has caused 

significant plant degradation. Over the years, NPPs have experienced vibration 

induced degradation of plant equipment during operation at the original licensed 

power and under up-scaled conditions. “Up-scaled” is an operational mode that is 

beyond its original operational condition that has resulted from optimisation or 

upgrading to achieve an increased output. In such environments, it may cause 

vibrations in the plant due to components operating beyond its designed capability.  

 

Vibration studies are being conducted internationally in an attempt to predict these 

occurrences within a plant system as accurately as possible. There are three major 

approaches when examining vibration and acoustic phenomena, consisting of 

analytical, experimental, and numerical methods. However, a total understanding 

of some characteristics of fluid-structure interaction problems has not been 

attained. The significance of the analytical approach is important to assess the 

effect of these phenomena on the system response and is the foundation of this 

Research Report. 
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In this section, vibration and its applicability in the engineering industry are 

explored. Several industrial cases are presented to reinforce the importance of 

being able to predict the pressure behaviour of fluids that produce vibrations. 

Internationally, there have been several instances of valve failures and system 

inoperability occurring as a result of normal and transient operational vibration. It 

will be mentioned that the consequences of such damage (arising from excessive 

vibrations) can cost companies investment, capital and production loss and in 

some cases hamper safety.  

1.1 Vibration in Nuclear Power Plant Environments 

1.1.1 Vibrations at Loviisa NPP under up-scaled conditions 

This case study is obtained from the operational experience of a NPP in Finland, 

the Loviisa Power Plant. It is classified as a Pressurised Water Reactor (PWR) and 

started its operation in February 1977. The present electrical power capacity of the 

Loviisa NPP is approximately 10% larger than what it was originally designed for. 

The power upgrading of these units has been achieved by increasing the reactor, 

steam generator and other plant systems capacities in steam and feedwater mass-

flow generation. This resulted in an increase in the flow velocity within the feed 

and steam piping, causing flow-induced vibrations resulting in extensive vibrations 

of the pipe lines. Figures 1.1 and 1.2 are illustrations of the type of damage caused 

by the vibration fatigue experienced at the Loviisa NPP.  

 

The engineers, in some cases, attempted redesigning the piping support system 

consisting of strengthening and installation of additional elastic supports, as such 

done traditionally. All the measures that were employed did not provide positive 

effects in shifting the system’s vibration and did not influence the vibration level 

very much. At the same time the transferring of vibration to environmental 

structures had been increased. NPP operational experience shows a correlation 

between piping operation reliability and service life limit from one side and the 

level of piping operational vibration from another [KO02].  
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Figure 1.1: Wear of rod hanger at Loviisa NPP. 

 

 

Figure 1.2: Fatigue collapse of elastic vibration support. 
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1.1.2 Failure of a steam dryer cover plate after a recent power up-scale 

In March 2002, Quad Cities Unit 2, a Boiling Water Reactor (BWR), completed a 

refuelling outage that included a modification to add baffle plates to the steam 

dryer. It was done to reduce excessive moisture carry over expected as a result of 

an extended power up-scale increase of 17.8%. In June 2002, the unit began 

experiencing fluctuations in steam flow, reactor pressure and level, and carry over 

in the main steam lines. An engineering evaluation of one of the fluctuations, 

determined that the possible cause of the steam flow irregularities could be from 

loose parts in the steam line impairing the proper functioning of the safety 

systems. A small scale test was developed and produced results indicating that the 

dryer cover plate had failed due to high cycle fatigue. On the basis of the test 

results, it was concluded that the fatigue resulted from excessive vibration caused 

by the synchronisation of the cover plate resonance frequency, the nozzle 

chambers’ standing wave frequency, and the vortex shedding frequency. All three 

of these frequencies synchronised in a very narrow band of steam flow at or near 

the steam flow required to reach full power under up-scaled conditions. The 

lessons learnt from this operational experience stated that resonance frequencies in 

upgrades may cause degradation as a result of high cycle fatigue [DO03].  

 

1.2  Vibration in commercial engineering industries  

Vibration problems are also common in commercial engineering industries. In one 

example, a damaged cooler nozzle in a production plant in the United States of 

America was found to be cracked due to excessive vibrations caused by pressure 

pulsations. The crack resulted in a shut down of the failed unit and the back-up 

unit. The loss of production amounted to over US$10 000 per day. In this case, ad- 

hoc approaches such as orifice plates, braces, added pipe supports were used to 

attempt to control the vibrations in the field, but the end result was that the unit 

could only be safely run at one speed in the range of 700 to 1200 rpm. 

Computational analysis of this system indicated very high shaking forces present 

throughout the system, providing a clear indication that the system was not 

designed to handle the conditions it endured. Had the necessary analysis been 
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conducted prior to implementing any changes for the increase in production, the 

problem would have been identified and possibly prevented [HO01]. 

 

In another example, a broken compressor frame was caused by excessive 

vibrations. The unit where this compressor was located experienced no problems 

while it was operating at lower speeds. The demand for gas increased and the 

decision was made to increase the speed of the compressor to handle the additional 

load. This caused the mechanical natural frequency of the pipe to be excited by the 

motion of the cylinder assembly. The large vibrations resulted in stresses that 

cracked the frame of the compressor. Although this was not an acoustic pulsation 

problem, the gas forces inside the cylinder created an environment which made the 

cylinder assembly get longer and shorter. With proper analysis during the design 

phase that could predict the mechanical natural frequency of the free standing 

elbows, this problem could have been avoided [HO01]. 

 
Problems that are created by excessive vibration in machinery can have serious 

economic impact. Frequently these problems are caused by large pressure fluid 

pulsation in the associated piping. An increasing concern in the engineering 

society regarding high-cycle piping vibration fatigue has been explained in the 

trend to revise the existing American Society of Mechanical Engineers (ASME) 

fatigue curves extending the cycle range together with considering of negative 

environmental effects [KO02]. As the engineering field advances, innovating 

engineering turbo-machinery designs are developed to achieve higher plant 

thermal efficiencies and hence to have a higher electrical output. Such an example 

is high-speed and high temperature turbines that are becoming more advanced. 

However, together with great engineering advances, problems have arisen which 

require more sophisticated analytical methods to predict them.  

 

Only a few national recommendations and guidelines were developed based on 

operational experience of safety related piping subjected to vibration loads, this is 

also shown in NRC Regulation Guide 1.20 [US07]. This is why a practical and 

traditional solution for the resolving piping vibration often consists of a piping 

support system upgrade, such as tuning or changing parameters of the existing 
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system, using new supports or special devices [KO02], but as technology advances 

these types of solutions will become limited.  

 

1.3  Fluid pulsation and dynamic modelling   

Fluid pulsations in piping and vessels are a very common source of excessive 

vibration. Pumps, compressors and turbines are common sources of pressure 

pulsations that can cause fluctuations in the flow medium. This leads to metering 

errors, increased system pressure drops, and distortion of the pressure-volume 

curve of the system (pump, compressors etc), adding to operating costs and lost 

production. With high rotational-speed machines as an example, the increased 

speeds create shorter pressure-pulsation wave-lengths in the fluid that propagate 

through it. The mechanical natural frequencies of the machine need to be 

significantly high to avoid the higher frequencies of the unbalanced forces and 

moments inherent in reciprocating machines [HO01]. In particular, if the half 

wave-length coincides with a length of pipe, induced forces can be enormous. 

Also, fluid pulsation can lead to very high forces in the vertical direction on 

cylinders, which may be damaging. Vibration damage from rotating equipment 

caused by resonance is also a recognised phenomenon. However, the resonant 

conditions leading to equipment failure are frequently difficult to identify [LE07]. 

The phenomenon that drives this can be complex and is at present little understood 

by engineers. 

 

Performing specialised analysis techniques can be used to highlight potentially at 

risk locations of a plant and provide adequate information in advance to establish 

the mitigating engineering actions for reducing the risk of the vibration related 

problem. Making proper use of specialised dynamic modelling in the design phase 

of a project is a proactive risk management approach. Of particular concern in the 

present investigation is the licensing of a new generation Nuclear Power Plants, 

where it is essential that measures are taken to predict the behaviour of all piping 

and vessel components under any postulated plant condition to ensure that the 

consequences of pulsations do not lead to significant damage that would 
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compromise nuclear safety. If a standard or an experienced-based design is 

implemented it may work well, but there will be a substantial risk that there will be 

problems that can impact on reliability, performance, safety and profitability. In 

some cases, the cost of correcting the problems is frequently large. Design 

optimisation will reduce risk but this should be done through analysis of various 

factors such as: criticality of the component, cost of loss of production, safety 

risks, newness of design, location and accessibility. Dynamic modelling and 

analysis as a component of design will contribute to the above benefits. During 

start-up, field analysis of vibration, pulsation and performance will further 

contribute to assuring economic success.  

 

In the nuclear environment being able to predict flow induced vibrations is very 

important. For example, the existence of coolant flow in Pressurised Water 

Reactors (PWRs) may cause vibrations of the core barrel. Indeed, the effect of 

protracted vibration may cause fatigue of the barrel, wear away the connections, 

and even bring about an accident scenario or plant shutdown [YA02]. Flow 

induced vibrations have led to many problems in reactor internal components. 

Here, the pressure fluctuations of the reactor coolant generated at the pump 

discharge can interact with the internal components producing damaging 

vibrations [LE91]. This particular scenario has led to many specialists studying 

these phenomena to predict these conditions, which are investigated further on in 

this Research Report.  

 

Having pipe breaks or boundary breeches could potentially lead to radiological 

exposures that exceed National Nuclear Regulator (NNR) limits for the public and 

workers.  The most common cause for pipe breaks or system boundary breeches is 

excessive stresses in the system that occur from vibrations of the structures 

produced by excessive fluid pulsations impacting on them. In order to assess a 

plant design before construction, it is essential to model these phenomena and 

provide a confident prediction of how a structure will behave under various 

conditions and justify that should any breaks or damage occur, no compromise of 
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nuclear safety will result. Generally, vibration analysis attempts to optimise 

engineering design in two ways:  

1) To ensure that the dynamic excitation forces are acceptably low, such an 

example is the forces produced from pulsations in piping systems. 

2) To limit the response from vibration and dynamic stress of the mechanical 

components to prevent resonance by eliminating the coincidence between the 

natural frequencies of the system and the excitation frequencies.  

 

There are various ways in the engineering field where engineers design structures, 

systems and components to suppress vibration. Passive damping is presently the 

major mechanisms of suppressing unwanted vibrations. The theory of damping 

will be discussed in Section 2.3. The primary effect of having increased damping 

in a structure is a reduction of vibration of amplitudes at resonances, with 

corresponding decreases in stresses, displacements, fatigue and sound radiation. 

Passive damping is separated into two classes: inherent and designed-in. Inherent 

damping is damping that exists in a structure due to the friction in joints, material 

damping, rubbing of cables, etc. Designed-in damping refers to passive damping 

that is added to a structure by design. This built-in damping supplements the 

structures’ inherent damping, and it can increase the passive damping of a 

structure by substantial amounts. All passive damping treatments share a common 

goal: to absorb significant amounts of strain energy in the modes of interest and 

dissipate this energy through some energy-dissipation mechanism. The 

effectiveness of all passive damping methods varies with frequency and 

temperature [JO09].  

 

In flow systems, wide band flow-induced excitation as well as structural 

interaction form part of excitation forces. Research is on going to understand the 

mechanisms of flow induced vibration. For example, the core barrel of a PWR is 

one of the key components of the reactor internals. The coolant flow may cause 

vibration of the barrel; the effect of protracted vibration may cause fatigue of the 

barrel, wear away the connection, and even bring about an accident or a shut 

down. Theoretically, it is very difficult to obtain the flow-induced pulse pressure 



 9 

acting on barrel structure because of the complexity of fluid flow in the reactor. In 

reactor structural mechanics, problems are encountered with flow-induced 

vibration and the engineering relies entirely on a theoretical base to solve pulse 

pressure loading on the barrel by the fluid [YA02]. In new generation High 

Temperature Gas Reactors, (HTGRs), performing these analyses is of paramount 

importance, due to the fluid medium being a high temperature gas, and indeed 

necessary to demonstrate that flow-induced vibrations, resonance from standing 

pressure waves or structural will have no adverse effect on the safety of the plant 

when in operation, start-up and importantly during plant transients.  In addition, 

flow analysis provides an opportunity to expertly understand the fluid behaviour of 

the system by predicting a plants’ behaviour under different operational 

conditions.  

 

1.4  Research methodology and scope of the investigation 

Many experts in the field have attempted to derive adequate forced-vibration 

acoustic solutions that can properly estimate or predict the pressure distribution of 

a fluid medium in vessels and piping. Simulation tools are available; however, 

each method has its own limitations in ranges of applicability and with the 

mathematical modelling itself. This Research Report will discuss the simple one-

dimensional acoustic wave-equation, the foundation for acoustic pulsation 

modelling performed. The investigation will explore different specialists’ solutions 

and approaches to the modelling of acoustic waves and select the most appropriate 

method to expand on.  The results of this study will provide a mechanism to assist 

others by providing a methodology that can aid the determination of the behaviour 

of the piping structures subjected to acoustic waves in a system, by accentuating 

possible areas of stress and vibrational fatigue within power conversion units of 

HTGRs. An earlier paper published by Cepkauskas [CE79], introduced a simple 

one-dimensional acoustic wave equation for a Pressurized Water Reactor (PWR) 

inlet pipe and pump, will be re-evaluated and used to establish new analytical 

models for different scenarios. This will be done by covering the following areas 

in this Research Report:  
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• Investigating different acoustic wave solution approaches of three 

specialists in the field and selecting the most appropriate approach.  

• The selected methodology will be expanded through the determination of a 

simple one-dimensional analytical pipe solution consisting of an acoustic 

wave equation with non-homogeneous boundary conditions.  

• Different acoustic forced-vibration solutions will be formulated by 

considering the various boundary conditions existing for pipes in a pipe-

loop model.  

• It will be shown that each case is solved using a transformation technique 

that transforms the homogeneous differential equations with time- 

dependent boundary conditions to non-homogenous differential equations 

with homogenous boundary conditions.  

• The formulated solutions will be analytically proven to be adequate for 

application to real case scenario modelling and will further substantiate that 

the selected methodology is analytically correct.  

• It will also be demonstrated by applying the cases to a pipe-loop model, 

that these acoustic solutions can be used to properly couple various 

individual pipes, while still maintaining the correct physical acoustic 

behaviour within the system. 

 

Areas for future work and application of these analytical models will also be 

discussed. The methodology of this study can also be adapted further to be coupled 

with CFD and Finite Element Models (FEM) to determine the fluid behaviour 

during transients and the stress loads on components where significant acoustic or 

vibration effects are present. 

 

1.5  Research Report structure and chapter outline  

This Research Report will cover the basics of vibrations, waves and acoustics to 

provide a better foundation to understand the derivation of the one-dimensional 

acoustic wave equation.  Acoustic forced-vibration solutions, CASES 1 to 4, will 

be derived for application in a pipe model consisting of pipes with different 
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boundary conditions. The present study will provide a method to determine the 

acoustic pressure waves and pressure distribution caused by compressor or pump 

operations for application in a High Temperature Gas Reactor (HTGR) 

environment. The Research Report is structured as follows:   

• Chapter 2 provides a comprehensive background into the fundamentals of 

vibration, acoustics and waves. Information will be provided to describe 

how these phenomena interact to produce flow induced vibrations and 

acoustic waves in fluids. Other specialist authors’ solutions for acoustic 

waves are introduced and the basis for selecting the most appropriate 

analytical approach will be discussed. 

• Chapter 3 provides the approach adopted to derive an analytical model 

that would represent the pressure distribution in a pipe. It is demonstrated 

this approach will be applied to four scenarios with different boundary 

conditions to formulate different forced-vibration acoustic solutions 

(CASES 1 to 4). These solutions will be verified analytically and tested 

with applications to a general pipe-loop system and a simple HTGR pipe-

loop. The results of the methodology adopted and its application will be 

presented in this section. 

• Chapter 4 presents the conclusions of the investigation for the formulation 

and verification of the four acoustic forced-vibration wave-solutions. It will 

also present the results of the application to a general pipe-loop model and 

to a simplified HTGR pipe model and will also discuss potential future 

areas of work to improve the methodologies used.  
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CHAPTER 2 

THEORY OF VIBRATION, WAVES AND 

ACOUSTICS 
 

2.1  Introduction 

To understand the phenomena of fluid pulsations, acoustic vibrations, flow 

induced vibrations, resonance etc. it will require insight into the fundamental 

physics that govern these phenomena. In classical physics and mechanics, the 

acoustic wave-equation governs the propagation of acoustic waves through a 

material medium. Vibration of structures and components often give rise or 

generate pressure waves in the fluid medium, which propagate in the systems 

impacting on its interfacing structures, this process of impact is termed as fluid-

structure interaction. Among the sources of vibration are pump-induced pulsations, 

flow turbulence, cavitation, vortex shedding, etc. In consideration that fluid 

damping is typically very low, a large amplification is usually observed at 

resonance frequencies [VA03]. There are many types of acoustic resonances and 

most are difficult to predict, the most common type results from longitudinal 

standing wave patterns [OE89]. Vibrations, waves and acoustics are specific 

phenomena and are discussed in detail in this section to elucidate how they are 

integrated to produce acoustic waves, flow induced vibrations and resonance. 

After establish these concepts, the one-dimensional wave-equation will be 

discussed. It will also be shown how various technical specialists applied the one-

dimensional wave equation to produce different forced-vibration acoustic solutions 

 

2.2  Principles of waves 

 
2.2.1 Theory of waves 

One of the properties of matter is that it can support the transfer of mechanical 

energy, whether the matter is solid, gas or liquid, without any net movement of the 

molecules involved. Such transfers are referred to as wave motion or transitory 
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displacement of atoms within the matter that passes on kinetic energy. Wave 

motion is formulated by disturbances or variations (vibrations) in a fluid medium 

thereby progressively transferring energy from one point to another. This 

occurrence may take the form of an elastic deformation or of a variation in 

pressure, electric or magnetic intensity, electric potential, or temperature. As 

mentioned previously, waves travel and transfer energy from one point to another, 

often with little or no permanent displacement of the particles of the medium (i.e 

with little or no associated mass transport). Instead, they oscillate around almost 

fixed positions in the form of vibrations. The energy of a vibration is moving away 

from the source in the form of a disturbance within the surrounding medium 

[HA80] in the form of waves. The disturbance may take a number of shapes in the 

manner it propagates, from a finite width pulse to an infinitely-long sine wave. The 

magnitude of a waves’ velocity depends on the properties of the medium (and for 

certain waves, the shape of the wave). Once a wave is produced, the only reason 

for its speed changing is if it enters a different medium or if the properties of the 

medium changes. Putting more energy into the wave makes it more intense, not 

faster [CR09].  

 

Waves can also spread out in all directions from every point on the disturbance 

that has created them. Infinitely many patterns are possible, but linear or plane 

waves are the simplest to analyse. In the physics of wave propagation, a plane 

wave it is at a constant frequency whose wave-fronts (surfaces of constant waves) 

are infinite parallel plane on constant amplitude normal to the phase velocity 

vector. A plane wave satisfies the one-dimensional wave equation in Cartesian 

coordinates [CR09].   

 

There are two kinds of waves: transverse, and compression or longitudinal waves. 

The difference in these types of waves is explained in Section 2.2.1.1. Waves have 

a specific speed of propagation that depends on the matter transmitting the wave 

and the environmental conditions. In cases of high temperature, the molecules are 

moving more quickly and can transmit energy faster. Depending on the origin of 

the waves, it can introduce certain wave characteristics particular to the properties 



 14 

of the medium involved. For example, in solids the disturbance is carried by 

mechanical waves, in various forms including longitudinal, transverse and surface 

waves. Waves with different amplitudes are variations in magnitude between the 

peaks and troughs of the wave, with the power of the wave increasing with 

amplitude (A). The amplitude is thus a measure of the magnitude of the wave or 

vibration [CR09]. Waves have different wavelengths, λ , or spacings between 

successive regions of maximum density (for a compression wave) or peaks (for a 

transverse wave). The distance spanned by one repetition is referred to as one 

wavelength. The wavelength is related to the frequency, f, of the wave, or number 

of times it oscillates in a second while passing through a fixed location (number of 

vibrations). The rapidity of a vibration, in terms of vibrations per second is called 

the frequency. The period of the waves, T, is the time between the pulses of the 

waves i.e. the time between passages of consecutive crest troughs of the wave. 

Waves have a phase, ϕ , in that the peaks of one wave may not coincide in time 

with the peaks of another wave of the same frequency. When two waves are in 

phase, they have a phase difference of 0 degrees.  In summary waves are 

characterised by:  

 

• Frequency (f): rate or number of cycles per unit time (also is taken as the 

inverse of the period); 

• Phase (ϕ ): starting position of the wave; 

• Amplitude (A): magnitude of the vibration or the amount of vibration. In 

general, amplitude can be expressed equivalently in terms of maximum 

displacement, velocity, or pressure relative to a reference value [VA01]. 

 

Any wave that is periodic will also display a repeating pattern when graphed as a 

function of position. Sinusoidal waves are the most important case of periodic 

waves. Fourier showed that any periodic wave with a frequency can be constructed 

as a superposition of sine waves with different frequencies. In this sense, sine 

waves are the basic, pure building blocks of all waves [CR09]. Therefore, the most 

recognisable and for purposes of mathematical analysis fundamental, form of a 

wave is a sine wave, which is produced by the trigonometric sine function. Refer 
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to Section 2.3.4, Fig. 2.9 for a graphical representation of these wave 

characteristics.   

 

2.2.1.1 Transverse and Longitudinal waves 

Transverse waves are formed from vibrations that are perpendicular to the 

direction of the propagation of the wave, as illustrated in Fig 2.1. Transverse 

waves can only arise in a solid medium or at the interface between a liquid and 

gaseous medium. Longitudinal waves are similar, but the vibrations are parallel to 

the direction of the propagation of the waves, as illustrated in Fig 2.2. Such an 

example includes most sound waves.  

 

 

Figure 2.1: Illustration of a transverse wave. 

 

Figure 2.2: Illustration of a longitudinal wave. 

 

2.2.1.2 Standing waves 

Normal modes in an oscillating system are special solutions where all the parts of 

the system are oscillating with the same frequency; standing waves are a 

continuous form of a normal mode. This phenomenon can arise in a stationery 

medium as a result of interference between two waves travelling in opposite 

direction. If two waves of the same wave length and amplitude are travelling 

through the same medium at the same velocity but in opposite directions.  When 
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these two waves collide, they create a standing wave. In a standing wave, all the 

space elements (x, y, z coordinates) are oscillating with the same frequency and are 

in phase with different amplitudes, as illustrated in Fig 2.3.  

 

 

Figure 2.3: Characteristics of a Standing Wave Pattern. 

 

As displayed in Fig 2.3, each wave reaches the equilibrium point together, the 

stationery points on the wave are referred to as nodes. Unlike travelling waves, 

standing waves appear to vibrate in place [CR09, RA45]. One form of standing 

wave is resonance. The term standing wave is often applied to a resonant mode of 

an extended vibrating object. Normally, if an object is excited to vibrate, the 

vibration will fade away due to damping. However, all objects have a preferred 

natural vibration frequency, nω  called the natural resonance frequency. These 

vibrations are reinforced as standing waves within the object. If not excited 

continuously, an object vibrating at resonance will eventually calm down, due to 

damping, but over a relatively longer period of time [CR09].  

 

2.2.1.3 Acoustic pressure waves 

Acoustic or sound pressure is the local deviation from ambient (average or 

equilibrium) atmospheric pressure caused by a sound wave. Sound or acoustic 

refers to small amplitude, propagating pressure perturbations in a compressible 
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medium. These pressure disturbances are related to the corresponding density 

perturbation via material equation of state. The manner in which these 

disturbances propagate, are governed by a wave equation. This is further discussed 

in Section 2.4. Acoustic pressure waves consist of compressions and expansions, 

rather than side ways vibrations. They are typically considered longitudinal waves, 

since the molecules transmitting the waves move back and forth along the 

direction of propagation of the motion, as described in Section 2.3.1.1 [CR09].  

 

Acoustic pressure waves are produced from acoustic pressures, particle 

displacements, density changes etc., having common phases and amplitudes at all 

points on any given plane perpendicular to the direction of the wave propagation.  

The energy involved in the propagation of acoustic waves through a fluid medium 

is of two forms, the kinetic energy of the moving particles and the potential energy 

inherent in a compressed fluid. They are readily produced within a rigid pipe, 

through the action of a vibrating piston located at the end of the pipe. In actual 

situations acoustic energy within a system is always irreversibly transmitted into 

the walls and, therefore, lost from the fluid [FR62]. The acoustic resonance of the 

fluid medium (steam or water) is considered the most probable source of flow-

induced vibration [VA01]. 

 

Acoustic waves differ from other types of waves, such as in optics, since sound 

waves are related to a mechanical rather than an electromagnetic wave-like 

transfer or transformation of vibratory energy [VA01]. Three dimensional acoustic 

waves are more complicated than waves that are travelling in one or two 

dimensions. Based on the mechanical origin of the acoustic wave there can be a 

moving disturbance in space-time if and only if the medium involved is neither 

infinitely stiff nor infinitely pliable. If all the parts making up a medium were 

rigidly bound, then they would all vibrate as one, with no delay in the transmission 

of the vibration resulting in no wave motion (or rather infinitely-fast wave 

motion). On the other hand, if all the parts were independent then there would not 

be any transmission of the vibration and again, no wave motion (or rather 

infinitely slow wave motion). Acoustic wave characteristics are strongly 
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dependent on the properties of the medium involved, therefore, concepts such as 

mass, density, temperature, momentum, inertia, or elasticity become crucial in 

describing acoustic wave processes [VA01].  

 

2.3  Fundamentals of vibration  

 

Vibration is more narrowly used to describe a mechanical oscillation, where an 

oscillation is the repetitive variation, typically in time, of some measure about a 

central value, often a point of equilibrium, or between two or more different states 

[CA87]. For a mechanical oscillation to occur a system must posses two quantities, 

elasticity and inertia and when this system is displaced from its equilibrium 

position, the elasticity provides a restoring force such that the system tries to return 

to its equilibrium position. Vibration is usually divided into two characteristic 

types:  

• steady-state and  

• dynamic transient vibration. 

 
2.3.1 Simplified vibration theory 

The simplest mechanical oscillating system is a spring-mass system, as illustrated 

in Fig. 2.4. In Fig. 2.4, a mass, m, is attached to a linear spring with a stiffness, k, 

and is subjected to no other external forces. The system is in an equilibrium state 

when the spring is static. If force is applied to the spring, in the vertical direction, 

the system is displaced by a distance of x. There is a net restoring force on the 

mass, tending to bring it back to equilibrium. If a constant force, such as gravity, 

acts on the system the point of equilibrium will be shifted [CR09]. In the spring-

mass system, oscillations occur as a result of the static equilibrium displacement, 

the mass has kinetic energy that is converted into potential energy that is stored in 

the spring at the extremes of its path. The time taken for an oscillation to occur is 

referred to as the oscillatory period (T). Mechanical oscillations are, therefore, 

periodic conversions of energy from potential energy to kinetic energy to potential 

energy, causing continuous mechanical oscillations about an equilibrium point, 

giving rise to vibration. In the spring-mass system, when the motion is measured 
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accurately, its x-t graph is nearly a perfect sine-wave shape. A sinusoidal vibration 

is known as simple harmonic motion [CR09].  

 

 

 

Figure 2.4: Basic components of a Spring-mass System. 

 

Vibration has two common modes of operation, free and forced-vibration. Free 

vibration occurs when a mechanical system is subjected to an initial input and 

then allowed to vibrate freely. ‘Free vibration’ is used for the study of natural 

vibration modes in the absence of external loading [CR09]. The mechanical 

system will then vibrate at one or more of its natural frequencies and then damp 

down to zero, as depicted in Fig 2.5. If there is force consistently applied to the 

system, it will continue to vibrate or oscillate. The oscillation of the simple 

pendulum is an example of free vibration [RA09].  Forced-vibration occurs when 

an alternating force or motion is applied to a mechanical system. The frequency of 

the vibration is dependent on the frequency of the force applied, but the magnitude 

of the vibration is strongly dependent on the properties of the mechanical system 

itself, such as inertia, mass etc. [CR09]. This is depicted in Fig. 2.6. The vibrations 

caused by the movement of a compressor (compressor driven vibration) and/or 

discharge gas pulsations (pulsation driven vibration) emitted from the compressor, 
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are perfect examples of forced-vibration systems. Gas- pulsation driven vibration 

is the most common cause of forced-vibration. The term ‘forced-vibration’ 

excludes vibration due to any piping system resonances [OE89]. 

 

All reciprocating compressors emit discharge pulsations (a reciprocating 

compressor generates a constant stream of pulsating flow). When discharge gas 

pulsations react with the piping system geometry in such a way that an oscillatory 

force is created, discharge vibration may occur. An oscillation in the gas, when it 

hits an elbow in the piping geometry, may increase in the oscillation creating a 

significant amount of line vibration. The pressure pulsations can occur at multiples 

of the pump or compressor rotor and blade passing frequencies. Although all these 

exciting frequencies are deterministic, the magnitude of the pressure fluctuations 

in the pumps become a very complicated problem and usually can only be solved 

by an experimental determination [PE73]. The magnitude and spatial distribution 

of these pressures are dependent on the pump/compressor, geometry of the flow 

path and temperature of the fluid medium [YA02]. 

 

x(t)

t(s)

 

 
Figure 2.5: Free vibration response signal. 
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Figure 2.6: Forced vibration response signal. 
 
 
2.3.2 Vibrational resonances  

Energy is lost from a vibrating system for various reasons such as the conversion 

of heat via friction or emission of sound. This effect is called damping and will 

cause the vibrations to decay exponentially unless energy is applied to the system 

to replace the loss [CR09]. If energy is applied to a spring-mass system, it is set 

into oscillation and with no external friction acting on the system to dissipate its 

energy it will vibrate continuously at its natural frequency. As dissipative 

(frictional) forces arise (damping), it decreases the amplitude of the free 

oscillations with time [FR62]. A driving force that pumps energy into the system 

may drive the system at its own natural frequency or at some other frequency. A 

lightly damped system exists when the forcing frequency nears the natural 

frequency of the system. In such a system the amplitude of the vibration can get 

extremely high. This phenomenon is called resonance (the natural frequency of a 

system is also often referred to as the resonant frequency) [CR09]. More 

information for resonance can be found in Section 2.2.1.2.   
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Resonance is the tendency of a system to oscillate at larger amplitude at some 

frequencies than at others, termed as resonant frequencies. It can create excessive 

vibrations when the natural frequency of a structure or fluid coincides with 

excitation frequency [LE07]. At these frequencies, even small periodic driving 

forces can produce large amplitude vibration, because the system stores vibrational 

energy. When the damping is small the resonant frequency is approximately 

equated to the natural frequency of the system, which is the frequency of free 

vibrations. Figure 2.7 illustrates the increasing amplitude of damped simple 

harmonic oscillator; it shows that as damping decreases the input (excitation) 

frequency, Aω  or pω , approaches resonance or natural frequency, nω  or 0ω . Figure 

2.7 displays the damping coefficient,δ , which is a representation of the amount of 

damping existing in the system, refer to Section 2.3.4.2. The coincidence of these 

frequencies defines resonance. A physical system can have as many resonance 

frequencies as it has degrees of freedom; each degree of freedom can vibrate as a 

simple harmonic oscillator. As the number of coupled harmonic oscillators grows, 

the time it takes to transfer energy from one to the next becomes significant. The 

vibrations in them begin to travel through the coupled harmonic oscillators in 

waves, from one oscillator to the next [CR09]. This process allows one to 

construct complex acoustic models, based on the coupling of simple harmonic 

oscillators.  

 

In a fluid-structure system, the forced-vibration of the system depends on the 

magnitude and frequency of the exciting forces, and in the dynamic characteristics 

of the structure. The vibration can become larger if the frequency on an important 

force component coincides with a main natural frequency of the structure. The 

system would then resonate [YA02].  
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Figure 2.7: Resonance in a simple damped harmonic system [CR09]. 

 

2.3.2.1 Acoustic and Structural resonances  

Pressure waves propagate at the speed of sound in the medium and the length of 

pipe and pipe design, (i.e. narrowing or bends in the line that may define reflection 

points) as well as the speed of the pressure wave in the medium (determined by the 

temperature and density of the medium) determine whether a standing wave will 

exist. Acoustic resonances may occur as a result of the propagation of longitudinal 

standing-wave patterns [OE89]. There are many types of acoustic resonance but 

most are very difficult to predict. Acoustical resonances amplify the gas pulsations 

at the specific locations in such a magnitude as to cause significant vibration, also 

known as flow induced vibrations. The acoustic resonance of the fluid medium 

(steam or water) is considered as most probable source of flow-induced vibration 

[VA03].  



 24 

This pressure pulsation affects structures by causing unbalanced forces at locations 

where direction of flow or velocity is changed (elbows, tees, local orifices etc.). 

Every structure having a mass and elasticity has the capacity to vibrate. Structures 

will tend to oscillate at certain specific frequencies when subjected to forces. 

When the amplitude of these vibrations exceeds the permissible limit, resonance 

occurs which may lead to possible failure of the structure [RA09]. One mechanism 

that can produce structural resonance is having an excitation force in its system 

with a frequency component that coincides with the structures’ natural frequency. 

For example, in piping systems, the vibration of the piping can become greatly 

amplified at the point where the exciting frequency matches the frequency of the 

piping. The resonant frequency of this system is a function of the mass and 

stiffness of the pipe line [OE89]. Structural resonances are very hard to predict and 

extensively testing a pipe design in a laboratory environment, is at present the best 

method of avoiding structural resonances. Another important method of 

determining or predicting if these resonance factors will occur, is by performing 

specialised acoustic, vibrational analysis coupled with stress analysis with the use 

of appropriate analytical models. 

 

2.3.3 Vibration analysis  

In analysing vibrations, the key to understanding how an object will vibrate is to 

know how the force acting on the object depends on the objects position [CR09]. 

The simplest example is the mass on the spring (simple-harmonic oscillator). Once 

the mass is set into motion, a mathematical model can be produced that can takes 

into account known laws of physics. Certain assumptions are taken to simplify the 

problem to such an extent that the known laws of physics can be applied.  In a 

general case, the motion of a vibrating system is due to both the initial conditions 

and the exciting forces. The mathematical model of this system would be a linear 

non-homogenous differential equation of the second order. To produce the 

particular solution of a non-homogenous equation, it is assumed that the excitation 

can be approximated by a harmonic function. Such a case can be referred to as the 

harmonic excitation, and is best described by a simple-harmonic oscillator system.  
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2.3.4 Simple-harmonic oscillator  

A simple-harmonic oscillator is commonly used to describe the mechanics of 

vibration. The simple harmonic oscillator consists of an ordinary spring that is 

suspended vertically from a fixed support, as displayed in Fig. 2.8. At the lower 

end of the spring, a body with mass, m, is attached. If the body is pulled down a 

certain distance and then released, it will undergo motion. This motion, assuming 

the motion is in the vertical direction is the displacement which will be determined 

as a function of time. If this system behaves linearly, the vibration is known as 

linear vibration, if not, it is considered non-linear vibration [RA09].  

 

Figure 2.8: Simple-harmonic oscillator diagram 

 

The simple-harmonic oscillator is neither driven nor damped. This solution will 

oscillate with simple-harmonic motion that has amplitude of, A (a constant) and a 

frequency, f. The frequency (f) is one of the most important quantities in vibration 

analysis and is called the undamped natural frequency. Measurement shows that 

the frequency of the vibration is constant and that the displacement of the mass 

from its rest position is a sinusoidal function of time (t), with constant amplitude, 

A. Sinusoidal vibrations of this type are called simple-harmonic vibrations. Any 

single-frequency travelling wave will take the form of a sine wave:  

 

( ) sinf t A tω=              (2.1) 
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The angular frequency,ω , is a scalar measure of rotation rate or frequency with 

which phase changes and is given by:  

 

2 fω π= .                (2.2) 

In addition to its amplitude, the motion is characterised by its period, T, the time 

for a single oscillation, its frequency, f, the reciprocal of the period f =1/T (which 

is the number of cycles per unit time), and its phase,φ , which determines the 

starting point on the sine wave. The period and frequency are constants which are 

determined by the overall system, while the amplitude and the phase are 

determined by the initial conditions (position and velocity) of that system. This is 

illustrated in Fig. 2.9.  

 

 

Figure 2.9: Simple-harmonic function as a sine-wave 

 

It can be shown, both experimentally and theoretically, that the mass will vibrate 

with simple-harmonic motion whenever the restoring force resulting from the 

stiffness of the spring is directly proportional to the displacement of the mass from 

its rest position [FR62]. In deriving the solution of the vibration, all forces must be 

accounted for. The main forces acting on the mass are: 

• attraction of gravity,  
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• spring force exerted by spring in the system and  

• Newtons’ second law of motion, where force is equal to mass times 

acceleration.  

2.3.4.1 Undamped harmonic oscillator, free vibration without damping 

If no energy is lost or dissipated in friction or other resistance during an oscillation 

in the system, the vibration is known as undamped vibration. In one dimension, the 

direction of the force can be represented by a positive or negative sign from the 

equilibrium point, where the force is zero (at rest). The force on the mass is given 

by Hooke’s law, which states that the stiffness of the spring, k is directly 

proportional to the displacement of the mass from its central position by a 

stretching force, F: 

 

,F kx=               (2.3) 

where F is the force of the spring, k is the stiffness of the spring (spring-modulus) 

and x is the displacement of mass, m. If the spring force, F is the only force acting 

on the system, the system is called a simple-harmonic oscillator. The equation of 

the motion for this contains a complete description of the motion and other 

parameters that can be calculated from it. As mentioned previously, the position of 

an object vibrating will trace out a sine wave as a function of time (or if a mass on 

a spring is carried at constant speed, it will trace out a sine wave), and is 

represented by Eq. (2.1), where ( ).k mω =  This is represented in Fig. 2.10. 

 

 In an undamped harmonic oscillator, the damping is assumed to be negligible and 

no external force is applied to the mass, i.e no forced-vibration is induced. 

Utilising all the forces acting on the mass, the system attains a linear equation with 

constant coefficients that depict the motion of the mechanical system. As such,  

• from Hooke’s Law, Eq. (2.3), the restoring force tends to restore the mass 

to the equilibrium position and is then expressed as F kx= −  and,   

• from Newtons second law of motion, the force generated by the mass is 

proportional to the acceleration of the mass, the general equation of linear 

motion is used as follows: 22 / dtmdxxmmaF ===∑ && . 
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Combining all forces on the mass produces: 

2

2

0.

x
m kx

t

mx kx

∂
= −

∂

+ =&&

              (2.4)  

         

The solution to this differential equation is sinusoidal, as described in Section 2.4.2 

and the acceleration, velocity and displacement is also depicted in Fig. 2.11 as 

function of time. It is also assumed that the spring is stretched by a distance of A, 

and is released, the solution that expresses the motion of the mass becomes:  

 

( )( ) sin 2x t a ftπ φ= +  

   

         (2.5) 

where φ  is the phase shift. Equation (2.5) indicates that the mass will oscillate 

with simple-harmonic motion, having an amplitude of A and a frequency, ω  , also 

called the undamped natural frequency. Here, A, ω , and φ  are constants and each 

represents an important physical property of the motion. The velocity, v, and the 

acceleration, a, of the mass are given by: 

 

( )

( )
2

2

2

( ) sin

cos .

dx
v t A t

dt

d x
a A t

dt

ω ω φ

ω ω φ

= = − +

= = − +               (2.6) 

 

The acceleration can also be expressed as a function of displacement, xxa
2)( ω−=  

and considering, kxxmma −=−= 2ω , therefore mk /2 =ω , producing ( )mk /=ω . 

In addition 2 fω π= , thus the frequency of vibration can be expressed as:  

 

1
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2

k
f

mπ

 
=  

 
             (2.7) 
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Figure 2.10: Simple-harmonic motion (undamped). 

 

 

Figure 2.11: Displacement, velocity and acceleration vs time for a typical 

vibrating system.  
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2.3.4.2 Damped harmonic oscillator, free oscillations with damping 

If the system has energy lost or dissipated by friction or from other resistances 

during oscillation, it is called damped vibration. In many physical systems, the 

amount of damping is so small that it is considered negligible for most engineering 

purposes. However, the consideration of damping becomes extremely important in 

analysing vibratory systems near resonance [RA09]. A damper added to the model 

(as seen in Fig. 2.8) produces a force, dF , that is proportional to the velocity of the 

mass. It is called a viscous damper since it models the effect of an object within a 

fluid. The proportionality constant, c, is the damping coefficient, also termed as δ  

in Section 2.3.2 with units Ns/m and dF  is given by,  

 

d .
dx

F cv cv c
dt

= − − = −&&             (2.8)

       

The damping coefficient represents the inefficiencies of the material due to energy 

loss at a molecular level or of the system due to component interaction. As done 

previously, the forces around the mass are summed to obtain the following 

ordinary differential equation, 0.mx cx kx+ + =&& &  The damping coefficient 

significantly affects the motion of the mass. If the damping is small enough, the 

system will vibrate but eventually over time it with cease to vibrate and is called 

underdamping.  If the damping is large enough, to the point where the system 

does not oscillate, this is referred to as critical damping. If the damping exceeds 

this point, the system becomes overdamped.  

 

The amount of damping in a system, is expressed as the damping ratio/factor, ξ . 

The formula to calculated this ratio/factor is ( )2c kmξ = . The damping ratio is 

introduced as a measure of the severity of the damping. In summary the three 

distinct ratio values that characterise system behaviour can be categorised as 

follows: 



 31 

• ζ
 > 1: Overdamped. The system is so well damped that it will return to 

its equilibrium point without a single oscillation (see right hand side Fig. 

2.12).  

• ζ
 = 1: Critically damped. The system is on the verge of oscillating. It 

will return to its equilibrium point the fastest (see right hand side of Fig. 

2.12). 

• ζ < 1: Underdamped. The system exhibits a decaying oscillatory motion 

(see left hand side of Fig. 2.12).  

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.12: Left hand side: underdamped and right hand side: overdamped and 

critically damped systems.  

 

For the mass-spring damper, the solution for an underdamped system is the 

following:  

 

( )n 2

n( ) cos 1 .t
x t Xe t

ξω ξ ω φ−= − −          (2.9) 

 

The value of the initial magnitude (X) and the phase shift (φ ) are determined by 

the amount the spring is stretched and the exponential term defines how quickly 

the system damps down to zero. The larger the damping ratio, the quicker it damps 
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down. The cosine is the oscillatory part, but the frequencies are different from the 

undamped case. The damped natural frequency, nf , is related to the undamped 

natural frequency by 2

d n1f fξ= − . This is illustrated in Fig. 2.13 for values of  

ξ  = 0.1.   

  

 

 
Figure 2.13: Free vibration illustration. 
 

2.3.4.3 Forced oscillations with damping 

In this system, a harmonic force is added to the spring-mass damper. It is often 

maintained in a condition of vibration by the application of a sinusoidal driving 

force. The source of this force, described in Section 2.2.1, is also referred to as a 

body force in later parts of this Report. By summation of the all the forces on the 

body, the differential equation for the motion of the damped oscillator becomes:  

 

( )
2

02
cos 2 .

x dx
m c kx F ft

t dt
π

∂
+ + =

∂                     (2.10) 

 

where the driving force is expressed as ( )0 cos 2F F f tπ= .  
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The steady-state solution becomes ( )φπ −= ftXtx 2cos)(  and the amplitude of the 

vibration is defined as, 

 

( ) ( ) 



 +−=

222

0 211/ rrkFX ζ .         (2.11) 

 

 where ( )2arctan 2 1 ,r rφ ζ= −  and the ratio, r, of the harmonic force frequency 

over the damped natural frequency of the mass-spring damper model and the phase 

shift is defined as n/r f f= .   

     

2.4  One dimensional acoustic wave equation 

 

Most vibrating systems in nature are not as simple as explained above, the systems 

discussed were of single degree-of-freedom models and it was assumed that the 

mass moves up and down only. In the case of more complex systems we need to 

discretize the system into more masses and allow them to move in more than one 

direction, thereby adding more degrees of freedom. It, therefore, becomes 

necessary when specifying the motion completely to give the displacement, x, of 

each point as a function of time, t.  This is illustrated in Fig 2.14. Fluids exhibit 

fewer types of constraints relative to possible deformations than with solids.  As a 

result, the restoring force responsible for propagating a wave is the non-directional 

elastic opposition that arises when a fluid is compressed. The fundamental wave, 

as explained earlier, is a sinusoidal (harmonic) wave form.  

 

The wave-equation is a differential equation that describes the evolution of a 

harmonic wave over time. In physics, the general wave-equation governs the 

propagation of acoustic waves through a material medium. This equation has 

slightly different forms depending on how the wave is transmitted and the type of 

fluid medium it is travelling through. To properly utilize the wave-equation, it is 

important to understand its derivation. This equation will be the foundation for 

deriving the various acoustic equations later in Chapter 3. 
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Figure 2.14: Frequency of fluid versus displacement. 

 

The derivation of the general wave-equation is based on incorporating the 

following into the formulation of the solution [RA45]: 

 

• Eulers Force equation (conservation of momentum) for a fluid medium: 

0/ =∇+ PdtVd
r

ρ  and 0// =∂∂+ xPdtdvρ , 

• Continuity equation (conservation of mass) of the particles of the fluid in 

one dimension: ( )/ 0t Vρ ρ∂ ∂ + ∇ =
r

�  and   

• Equation of state (ideal gas law): .PV nRT=  

 

It is to be noted that in an adiabatic process, pressure is a function of density, ρ , 

which can be linearised to ( ).P C fρ ρ= =  For incompressible fluids, the pressure 

of the fluid does not vary significantly over time, thus / 0dP dt =  and 

( ) ( )21 PVAPVA =
 

remains constant as the wave propagates through the fluid. 

However, for compressible fluids, the pressure differs significantly and the 

movement and the conservation of momentum can be expressed as: 

 

0/// =∂+∂+∂ dxvdxPdtP ρν .         (2.12) 
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 The following assumptions are used: 
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where, P is the local deviation from the ambient pressure, Po is the ambient 

pressure, P
~

 is the fluctuating pressure around Po as illustrated in Fig 2.15, ρ%  is 

the fluctuating density, ν~  is the fluctuating velocity and vo, is the minimum 

velocity. 
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Figure 2.15: Schematic of fluctuating pressure in a pipe length. 

 

Since the velocity is small and the fluctuating velocity is much less, the fluctuating 

velocity can be assumed to be negligible. Perturbation Theory is used to find an 

approximate solution to the problem [SC82]. It is applied using the assumptions 

made in Eq. (2.13) and substituted into Eq. (2.12). This is reduced further by 

neglecting the velocity terms, resulting in 0/~/)
~

( =+ dtvddxPd oρ . A Taylor 

series is applied to the equation in the form of: 

 

( )0 0( ) ( )P P dP dρ ρ ρ ρ ρ+ = + % .          (2.14) 
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In the case of the fluid medium being a gas, as in this Research Report, the second 

order of speed of sound with respect to the fluids’ density and pressure is used as 

the representation of the fluid’s properties, instead of its density, as such:   

 

2

0dP d cρ = ,            (2.15) 

 

where c0 is the speed of sound in the fluid (later on to be applied to helium). The 

ideal gas law is used to calculate the speed of sound in the medium or gas (helium) 

using: 

 

He0 / ,c RT Mγ=            (2.16) 

      
where, γ is the expansion coefficient for helium, R is the universal constant for 

gases, M is the Mach number, and T is the temperature of the gas in degrees 

Kelvin [SC82]. Equation (2.12), Eq. (2.14) and the assumptions made, are 

combined and the time derivative of the continuity equation and the spatial 

derivative of the force equation are taken to yield: 

 
2 2

2 2
0.

P

x t

ρ∂ ∂
+ =

∂ ∂

% %

           (2.17) 

 

The fluctuating symbols are omitted, Eq. (2.15) and (2.16) are incorporated and 

the higher- order terms are ignored to produce a homogeneous second-order partial 

differential equation, the one-dimensional general wave-equation:   

 

2 2

2 2 2

0

( , ) 1 ( , )
0.

P x t P x t

x c t

∂ ∂
− =

∂ ∂
                     (2.18) 

 

Equation (2.18) describes an acoustic pressure wave as a function of space and 

time. The actual pressure in Eq. (2.18) is a fluctuating pressure deviating from 

ambient pressure, if one has a mathematical solution which produces large values 

of P
~

, it will violate the original perturbation assumptions thereby providing 

inaccurate results. Thus some of the non-linear terms discarded in the development 
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of the wave equation needs to be further examined. The one-dimensional wave-

equation can be readapted to suite various types of applications. Below are 

examples of the type of variations that can be produced [SC82]:   

• Navier Stokes equation leads to a viscous damping term. 

• Non-zero velocity leads to a Mach number term in the wave-equation. 

• If the fluid is replaced with an elastic material longitudinal and shear wave 

equations are produced. 

• Incorporating electromagnetism produces a vector wave-equation.  

 

2.5  Acoustic wave prediction solutions  

In this section, it is explored how the general acoustic wave-equation has been 

utilised by various experts in this field to derive their own solutions for cases of 

flow-induced vibrations. It has mostly been investigated and applied in Pressurised 

Water Reactors (PWRs) as part of solving flow-induced vibrations experienced in 

industry, especially in reactor core internals. It is also found that the most probable 

and widely observed mechanism of piping steady-state vibrations is from flow-

induced vibration. Refer to Sections 2.2.1.2, 2.2.1.3 and 2.3.2.1 for more 

information.   

 

2.5.1 Historical account  

Pressure pulsations in PWRs were first studied by Penzes [PE73] and later by 

Bowers and Horvay [BO75] and Cepkauskas [CE79]. The acoustic response of 

reactor piping and reactor core support structures has also been a subject at the 

International Conference in Structural Mechanics in Reactor Technology (SMiRT) 

conferences since Penzes introduced his Cleaver model in 1973 [PE73].  

 

Most of the derived acoustic wave solutions by specialists use the Penzes 

mathematical approach as the basis. Three different specialists’ methodologies 

were selected for this Research Report for investigation. All three specialists have 

formulated their forced-vibration acoustic solutions in accordance with the 

Linearised Navier-Stokes equations by assuming a compressible, inviscid liquid. 
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Penzes and Lee and Im [LE92] have utilised an equivalent body force to represent 

the source of the pump pulsations. Lee and Im in their publications stated: 

 

“Penzes, Bowers and Horvay and Cepkauskas, treated the problem of pulsations 

by introducing a body force concept, but they neglected to recognise the 

restrictions on the body force to make the boundary conditions 

homogenous”[LE92]. 

 

Cepkauskas, sought to resolve this by demonstrating that the auxiliary terms need 

not be defined to determine the pressure distribution of the acoustic wave. This 

theory made by Cepkauskas will also be investigated or proved in Chapter3.  

Many authors have published detailed accounts of their solutions, but as with most 

mathematical solutions, it has its limitations on how it is applied. Three main 

specialists were selected to investigate their approaches, the reasons for these are:  

 

1) Penzes and Horvay 

 Penzes was one of the first known published authors to produce acoustic 

wave solutions in forced-vibration systems for LWRs. Much work 

subsequently produced has been based on expansion of the work 

conducted by Penzes and Horvay.  

2) Kye Bock Lee and In Young Im 

 Kye Bock Lee and In Young Im stated in their publications [LE92, 

LE94] that they have developed an improved analytical model which 

satisfies all boundary conditions having also considered all these missing 

constraints on the auxiliary functions. In addition, it was mentioned that 

other specialists (in this field), neglected to recognise the restrictions on 

the body force necessary to make the boundary conditions homogenous 

while determining their acoustic solutions. Also stated was that Lee and 

Chandra (other specialists in the field) analysed the pump induced 

pulsating pressure in a reactor coolant pipe but missed the constraints on 

the auxiliary function to make the boundary conditions homogenous 
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[LE80]. Thus, the solution cannot satisfy the boundary conditions at the 

pipe end for the piston-spring supported end case.  

3) M. Cepkauskas 

 Cepkauskas utilised a technique that transformed the homogeneous 

differential equation with time-dependent boundary conditions to one of 

a non-homogeneous differential equation with homogeneous boundary 

conditions. This technique was unique in that the previous authors chose 

auxiliary functions to make the boundary conditions homogeneous, and 

in his methodology, this was not needed [CE79, CE81 and CE08].  

 

2.5.2 Penzes methodology 

Penzes utilized his methodology to calculate the pressure distribution that predicts 

the dynamic responses of the reactor internal components. The mathematical 

formulation used by Penzes was in accordance with the linearised Navier-Stokes 

equation and assumed a compressible, inviscid liquid and the concept time-

dependent “body forces” as forcing functions. In Penzes case, the time-dependent 

mixed valued boundary value problem is replaced by a forced-vibration problem 

approximation with homogenous boundary conditions. The boundary conditions 

selected are two concentric rigid walls in the radial direction. Penzes formulation 

determines a time-dependent, mixed boundary-value problem, where for this case 

the separation of variables technique cannot be applied and a solution of this 

problem would require an extremely lengthy application of numerical analysis 

techniques. Penzes extended his research from the one-dimensional application to 

the three-dimensional one to incorporate the geometry of a PWR annulus. Only the 

approach Penzes utilised for the one-dimensional application will be covered. 

 

2.5.2.1 Penzes and Horvay mathematical approach 

The time-dependent mixed boundary-value problem is solved approximately by 

using the concept of forced-vibration. Penzes solution for obtaining the unknown 

pressure distribution was developed by using two steps in his method: 

1) determining the free vibration in terms of the liquid frequencies and 

pressure mode shapes and, 
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2) obtaining the pressure distribution using the free vibration solution as the 

solution of the forced-vibration equation. 

 

Both Penzes’ and Horvay’s solution are based on the assumption that the pressure 

pulsations are due to excitations at the inlet nozzles of a PWR reactor core 

annulus.  The pressures in the annulus are calculated based on prescribing the 

pressure at the inlet nozzles and on the concept of the time-dependent forcing 

function (also referred to in his literature as a body force) in the governing 

differential equations [PE10].  Penzes expresses the equation of compressibility in 

terms of fluctuating dynamic pressure as:  

 

( )2

0 0 0q P P c ρ ρ= − = − , 

 

where 
0P  is the reference pressure, 

0c  is the reference sound velocity and q is the 

dynamic fluctuating pressure. The equation of continuity follows from Berry and 

Reissners’ equation: 

 

0div 0.
P

V
t

ρ
∂

+ =
∂            (2.19)

         

Equation (2.19) is differentiated with respect to time and substituted with the 

density, (from equation of compressibility) and expressions for velocity 

components, resulting in the governing differential equation (expressed in terms of 

the unknown fluctuation pressure), 

 

2
2

2 2

0

1
div 0,

q
q P

c t

∂
∇ = + =

∂
          (2.20) 

 

where P  is the forcing function. Equation (2.20) is also a representation of the 

induced forced-vibration in the liquid. When the forcing function is eliminated, the 

governing differential equation is reduced to the well-known damped wave-

equation in terms of the fluctuating pressure,  
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2
2

2 2

0

1 q
q

c t

∂
∇ =

∂  .           (2.21) 

        

The above is an idealised hydrodynamic model that provides a basic understanding 

of the relationships between the pulsating forcing function and the periodic 

pressure fluctuations at any location of the liquid, including the inner and outer 

surfaces with the pump inlet of the reactor [FR73]. It is also assumed that the well-

known damped wave-equation is represented by the phenomenon of standing 

waves. Penzes makes use of this assumption by applying the separation of 

variables technique to produce:  

 

1

2

2 1 sin sin ,

t
q Ae

q B z B z

ω

α α

=

= +
 

 

where A and B are arbitrary constants, z is the axial co-ordinates and ω, α are 

separation constants. It is mentioned that the separation and integration constants 

can be determined up to a single set of arbitrary constants by specifying the 

boundary conditions.  

The following types of boundary conditions are considered: open, closed and 

piston-spring supported for the axial direction. They are mathematically expressed 

as: 

• Open ended:
1

2 0
z z

q
=

=   

• Closed ended: 0/
1

2 =
=zz

dzq  

• Piston-spring supported: ( )
11

// 2

2

02 zzzz
zqAkq ==

∂∂= ωρ  , 

where ω is the natural frequency of the liquid, A is the area of the piston and k is 

the spring constant. The forced-vibration system is created by the pulsating forcing 

function placed near to the location of the pulsating surface pressure. A periodic 

pump pulsation is assumed and the driving force of the liquid in the radial 

component rP  is described as: 

 

r 0 pcos ,P P tω=             (2.22) 
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where ωp is the driving frequency and P0 is the constant pressure at volume 1. The 

pressure is also known as the reference pressure. The driving force, Eq. (2.22), is 

incorporated into Eq. (2.21) yielding Penzes solution for a forced-vibration system 

as:  

 

( ) ( )
2

2 2

p2
1 / cos .

q
q c P r t

t
ω

∂
∇ = +

∂          
(2.23)

 

 

2.5.3 Kye Bock Lee and In Young Im 

Lee and Im derived a method of estimating the amplitude of the acoustic pressures 

induced by the external coolant pump in the inlet pipe and the annulus of a PWR. 

Only the methodology employed at the inlet pipe is explained in this section, and 

not that of the annulus. The separation of variables technique is not used as it is 

stated that it would prove too complex to solve using numerical analysis 

techniques [LE92, LE94].  

 

2.5.3.1 Kye Bock Lee and In Young Im Mathematical Approach 

The Lee et al. [LE92] hydrodynamic differential equations of the analytical model 

are applied to a fluid that is assumed to be compressible and inviscid. The 

mathematical analysis is formulated in accordance with the linearised Navier 

Stokes equations. The pressure pulsations considered are smaller than the static 

pressure and the small pressure perturbation method is used to reduce the Navier-

Stokes equations to the following wave-equation as such,   

2
2

2 2

1
0.P

c t

 ∂
∇ − = 

∂ 
 

 

The variation of the pressure pulsations in the radial and circumferential direction 

is ignored and the equation reduces to, 

 

2 2

12 2 2

1
0.P

x c t

 ∂ ∂
− = 
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              (2.24) 

              



 43 

The excitation, or forcing function of the system, is taken to occur at the pump 

discharge at x = 0, making the boundary condition:  

 

1 D pcos ,
x L

P P tω
=

=
 

          (2.25) 

 

where PD is the pressure wave at the pump discharge, pω  is the pump frequency  

and x is the pipe length. The pressure wave at the pump discharge can be obtained 

through analytical means. The boundary conditions at x = L (total length of the 

pipe) considered are: 

• open end: 0=
=Lx

P  

• closed end: 0/ =∂∂
=Lx

xP  

• piston-spring supported end:
 ( )[ ] 0/// 22 =∂∂−∂∂ = LxtPkAxP ρ  .  

 

The boundary conditions along with Eq. (2.24) and Eq. (2.25) describe the 

boundary-value problem with time-dependent non-homogeneous boundary 

conditions. The boundary condition is rendered homogeneous through 

transformation technique, in assuming the form of:  

 

)()()()(),(),( 221111 tfxgtfxgtxQtxP ++= , 

 

where g1(x) and g2(x) are auxiliary functions and Q is the transform equation. 

Restrictions are placed on the auxiliary functions, they are arbitrary within 0 < x < 

L. The frequency equation and normal modes were determined to be: 

 

( ) ( )

( )
n 1 1 1 n

n n 1

tan / / 0,

sin / .

L C K AC

X C x

ω ρ ω

ω

+ =

=  

 

More details on the formulation of the solution can be found in [LE93]. The 

pressure distribution in the pipe region is then determined to be: 
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(2.26) 

 

The resultant solutions for open-end and closed-end boundary conditions are 

displayed in Ref. [LE93]. 

 

2.5.4 Cepkauskas methodology 

Cepkauskas utilized a technique that transformed a homogeneous differential 

equation with time dependent boundary conditions to one of a non-homogeneous 

differential equation with homogeneous boundary conditions. This technique was 

unique, in that the previous authors chose auxiliary functions to make the 

boundary conditions homogeneous [CE79, CE08, CE82]. For the simple pipe 

acoustics, Lee and Chandra [LE80] choose unique auxiliary functions to formulate 

the problem. This was shown to be unnecessary and was expounded upon in a 

paper with Fisher and Chandra [FI79]. Cepkauskas in his studies aimed at 

demonstrating that the use of a body force to derive the axial pressure distribution 

is not required. He derived a technique based on the above methodology, and 

published it at the 5th International conference on Structural Mechanics in Reactor 

Technology (SMiRT), where he termed his solution as SMiRT5 [CE79].   

 

2.5.4.1 Cepkauskas mathematical approach 

Cepkauskas formulation consists of applying a transformation technique that 

changed the form of the problem to a non-homogenous differential equation with 

homogenous boundary conditions by utilising an auxiliary function. Cepkauskas 

also demonstrated that unlike other solutions an auxiliary function defined on the 

interior of the media is unnecessary. Cepkauskas demonstrated that SMiRT5 is a 

valid solution and can be used to determine the acoustics for a pipe with a steady-

state driving frequency, time-dependent boundary conditions. It is also noted that 

this solution may have an advantage in that it can be applied to a loop 

configuration since the frequencies do not require a transcendental equation. 

Cepkauskas studied other previously published solutions involving a coolant 

annulus that were formulated by the use of an equivalent forcing function to 
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circumvent the complexities of a time-dependent mixed-value boundary condition 

problem. Cepkauskas found that due to physical arguments concerning the correct 

form of the body force, different solutions were obtained. Cepkauskas 

mathematical approach in deriving SMiRT5 will be explored in Section 3.3.2, 

where SMiRT5 is used as the basis and is termed as the Forced Vibration Acoustic 

CASE 2 in Chapter 3.   

 

Both Penzes and Bowers treated the problem of pulsations in the coolant annulus 

by introducing a time-dependent boundary condition at the inlet of the pipe 

annulus interface. The correct form of this boundary was questioned by Bowers 

and Horvay, which resulted in an alternate solution. Two problems were identified 

from the other methodologies (see Sections 2.5.2 and 2.5.3), these are:  

1) derivation of a theoretical solution that resolves discrepancies between 

varying physical arguments, and  

2) analytical determination of the inlet pressure.  

 

The Cepkauskas approach attempts to resolves these issues, by utilising a 

transformation technique to reduce each region of study to non-homogenous 

differential equations with homogenous boundary conditions. Standard normal 

mode superposition method is used to derive the transformed forced-vibration 

response of both regions. The inverse transformation solutions are derived and the 

complete description of the system is obtained by mathematically requiring 

pressure continuity at the inlet pipe interface. The time-dependent boundary 

condition concept is demonstrated to be analogous to the transformation used by 

Cepkauskas, both Penzes and Bowers did not recognise the restrictions necessary 

to make the boundary conditions homogenous [CE81].  

 

2.5.5 Rationale for the approach selected 

Lee et al. [LE92] stated that Lee and Chandra did not meet the boundary 

conditions with their chosen auxiliary functions and proceeded to formulate 

solutions using different auxiliary functions; therefore, their solution cannot satisfy 

the boundary conditions for the piston-spring supported end case. They further 
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stated that they neglected the constraints on the auxiliary functions to make the 

boundary conditions homogenous. Cepkauskas addressed the same simple pipe but 

coupled the solution with the reactor-core annulus solution, as mentioned earlier, 

using a transformation technique that changed the form of the problem to a non-

homogenous differential equation with homogenous boundary conditions by 

utilising an auxiliary function. Lee et al. [LE92, LE93] and Cheong et al. [CH99] 

questioned Cepkauskas' methodology and stated:  

 

”Lee and Chandra, Bowers and Horvay and Cepkauskas “missed the constraints 

on the auxiliary functions to make the boundary conditions homogeneous” [LE92, 

LE93]. 

 

Cepkauskus produced SMIRT5 where he demonstrated his solution to resolve any 

discrepancies regarding the proper acoustic models used in these scenarios. The 

work of Cepkauskas has thus been selected to re-emphasise the methodology 

employed and verify its applicability. In addition, the methodology is found to 

have an advantage in loop configuration due to the fact that the frequencies do not 

require a transcendental equation, this statement will be further tested in Chapter 3. 

In doing this, SMiRT5 is used as the basis and is applied in a simple acoustic 

vibration model that can be used for an HTGR application. The method of solving 

this type of problem is also found in the work of Fisher et al. [FI79] and is 

illustrated in several papers by Cepkauskas [CE79, CE81 and CE08].  
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CHAPTER 3 

ACOUSTIC WAVE MATHEMATICAL 

FORMULATIONS  
 
The approach to produce complex acoustic models, is first to understand the 

acoustic wave phenomena by applying simple models and then to build more 

complex models to quantify the results. The basic spring-mass model approach is 

used to construct the complex and sophisticated models that can represent a fluid 

system having a pressure force at one boundary.  The mathematical formulation 

used is in accordance with the linearised Navier-Stokes equation and assumes 

helium as the fluid medium as compressible and inviscid. 

 
The analytical model presented in this chapter consists essentially of a one 

dimensional wave-equation with time dependent non-homogenous boundary 

conditions. Different boundary conditions are selected depending on the 

conditions present in a system. SMiRT5 [CE79] is the closed-form solution for a 

problem that has been derived using a linear transformation technique that 

reduced the problem to one involving a non-homogenous differential equation 

with homogenous boundary conditions. This same approach is used to produce 

four acoustic forced-vibration solutions for integration in a pipe-loop model.  

 

The SMiRT5 pressure distribution acoustic model will be referred to as Acoustic 

Forced Vibration CASE 2 due its specific boundary conditions and application. 

The same derivation process is applied to other pipes within the pipe-loop 

configuration with different boundary conditions. The formulation of these 

solutions plays a major part in this Research Report, the foundation for the 

derivation is physics based, and information presented in Chapter 2 will be used to 

construct the basic physical expression of the solutions. To complete the 

derivations, it will be predominately mathematical and in some cases, quite 

complex. All four acoustic forced-vibration solution cases, along with their 

derivations and verifications of accuracy will be presented. The solutions will be 

applied to a simple pipe-loop model to obtain the proper response and to test the 
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solutions. It will then be applied to a typical HTGR pipe-loop model to determine 

the applicability for those operating conditions.   

 

3.1 Delineation of the acoustic simple pipe model 

 
The source of pressure pulsations or time-dependent boundary occurs at pipe one 

or at the first entry of the system. It has been assumed that the inlet pipe of length 

L1 can be represented as being straight and rigid with the wave propagation in the 

x-direction at the speed of sound in the fluid, co. Four different cases with 

corresponding boundary conditions are considered:  

 

• CASE 1: Represents the entry in a pipe of length, L1, with a pump at the 

left hand side and is specified to be open end at the right, this is considered 

a more general case of demonstrating the methodology and is not applied 

to the pipe-loop model.  

• CASE 2: Represents the entry into a pipe with an arbitrary pressure 

gradient at the right.  

• CASE 3: Represents the entry into a pipe with an arbitrary pressure 

gradient at the left with an open end at the right.  

• CASE 4: Represents the entry into a pipe, also is the more general case, 

with a pressure gradient at both sides.  

 

A basic illustration of the four pipes in the loop system with the applicable 

boundary conditions in represented in Fig. 3.1. These four models consist of the 

interior being described by a simple one-dimensional wave equation with the 

boundary conditions as indicated in Fig. 3.1. The applicable boundary conditions 

for each acoustic case can also be found in Table 3.1. 
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Figure 3.1: Four different acoustic cases with applicable boundary conditions. 

 
 
3.1.1 Mathematical formulation for different acoustic solutions 

The solution outline for the four models in order to develop the acoustic loading is 

dependent on applying mathematical models. These solutions are termed as 

forced-vibration acoustic solutions with different boundary conditions unique to 

the application. The solution outline for the four models consists of: 

 

1) Utilising Eq. (2.18) as the basis of the acoustic formulations. 
 

 
2) The boundary conditions selected with a choice of two of the following four: 

• At x = 0: )(),0( tftP = and 0( , ) / ( ).xP x t x f t=∂ ∂ 〉 =         

• At x = L: )(),( tgtLP = and ( , ) / ( ).x LP x t x g t=∂ ∂ 〉 =       

 

3) The transformation equation is assumed in the form of:  

 

)()()()(),(),( tgxitfxhtxQtxP ++=                (3.1)     

        

4) The boundary conditions thus become: 
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( ) [ ( ) ( ) ( ) ( )]
x L x L

P x t
g t h x f t i x g t

x x= =

∂ ∂ 
= − + 

∂ ∂ 
   

 

5) Phase shift, φ , is assumed as zero.    

6) The forcing frequency, pω , is calculated using Eq. (2.2).  

3.1.1.1 Acoustic wave CASE 1 formulation 

The acoustic wave CASE 1 formulation is based on a pipe model where the pipe 

has an open ended boundary. This is considered to be the general acoustic solution 

case. As mentioned in Section 2.4.1, the frequency of the vibration is constant and 

the displacement of the mass from its rest position is a sinusoidal function of time.  

 

The corresponding boundary conditions for CASE 1, as presented in Fig. 3.1 are 

taken as: 

•   non-homogenous boundary conditions at x =0: 0 p(0, ) cosP t P tω=     

This boundary represents a pump (time dependent function) as its acoustic 

excitation source. This was selected to represent a body force which 

produces a periodic frequency.
 

 

• homogenous boundary conditions at x = L: ( , ) 0P L t = .  

This boundary is open ended with no restrictions in the pressure at its exit. 

This condition is selected to determine the internal pipe flow conditions 

with a pipe open to ambient pressure.  

 

For CASE 1, Eq. (2.18) is tranformed by adapting Eq. (3.1) to be suitable for this 

case in the form of:   

 

0 p( , ) ( , ) ( ) cos .P x t Q x t g x P tω= +
 

             (3.2) 
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The boundary conditions are transformed by applying Eq. (3.2) 

• at x = 0: 

0 p

0 p 0 p

(0, ) cos ,

(0, ) cos (0) cos .

P t P t

Q t P t g P t

ω

ω ω

=

= −
 

• at x = L: 

0 p

( , ) 0,

( , ) ( ) cos 0.

P L t

Q L t g L P tω

=

= − =
 

 

To make the above set of equations homogenous, restrictions are imposed on the 

auxiliary functions. The transformed equations are placed in the form of a non- 

homogenous equation with homogenous boundary conditions by requiring g(0) = 

1 and g(L) = 0 and applying to Eq. (3.2), then making Q(0,t) and Q(L,t) = 0. The 

free vibration solution is used to guess the initial solution of Q(x), in the form of: 

 

( )( ) sin ,i iQ x C i x Lπ=
                  

(3.3)  

 
and the forced vibration solution is assumed to be of the form: 

 

( )p

1,..

( , ) cos sini

i

Q x t t C i x Lω π
∞

=

= ∑ .          (3.4) 

 

Here, the angular natural frequency, iω  of the wave is described with i 0 /i c Lω π=  

( rad/s) and the mode shape by ( )sin .i x Lπ  

    

The wave Eq. (2.18) is transformed using Eq. (3.2) as follows:  

 

2

0 p2

2

0 p2 2

0

( , ) ( )cos

1
( , ) ( )cos 0.

Q x t P g x t
x

Q x t P g x t
c t

ω

ω

∂
 + ∂

∂
 − + = ∂

          (3.5) 

 



 52 

The forced vibration solution, Eq. (3.4) and Eq. (3.2), is incorporated into Eq. 

(3.5) and is differentiated as follows: 

 

( )

( )

2

p 0 p2
1,..

2

p 0 p2 2
1,..0

cos sin ( )cos

1
cos sin ( ) cos 0,

i

i

i

i

t C i x L P g x t
x

t C i x L P g x t
c t

ω π ω

ω π ω

∞

=

∞

=

 ∂
+ 

∂  

 ∂
− + = 

∂  

∑

∑
 

( ) ( )

( ) ( )

2 2

0 p p

0 p p p2 2
1,20 0

2

p

1,2

cos ''( ) ( ) cos cos sin

cos sin .

i

i

i

i

P
P t g x g x t t C i x L

c c

t C i L i x L

ω ω
ω ω ω π

ω π π

∞

=

∞

=

+ = −

+

∑

∑
 

 

The factor of pcos tω  is eliminated and is multiplied by ( )sin j x Lπ :  

( ) ( )

( ) ( ) ( )

2

0 p

0 2

0

2
2 p

2
1,2 0

''( ) sin ( )sin

sin sin .i

i

P
P g x j x L g x j x L

c

C i L i x L j x L
c

ω
π π

ω
π π π

∞

=

+ =

 
− 

  
∑

 

 
 

The solution is integrated over the entire length of the pipe from x = 0 to x = L:  

( ) ( )

( ) ( ) ( )

2

0 p

0 2

00 0

2
2 p

2
1,2 0 0

''( )sin ( )sin

sin sin .

L L

L

i

i

P
P g x j x L dx g x j x L dx

c

C i L i x L j x L dx
c

ω
π π

ω
π π π

∞

=

+ =

 
− 

  

∫ ∫

∑ ∫
       (3.6) 

 

Equation (3.6) is too large to be integrated in one step, therefore Integral 1, I1 is 

created and treated separately by applying integration by parts [KR67]: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 0 0 00
0 0

2

1 0 0 0
0

''( )sin sin '( ) '( )cos ,

sin '( ) ( )cos ( )sin .

L L
L

L
L L

I P g x j x L dx P j x L g x P j x L g x j x L dx

I P j x L g x j L g x j x L j L g x j x L dx

π π π π

π π π π π

= = −

 
= − − 

 

∫ ∫

∫
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Auxiliary function restrictions, g(0) = 1 and g(L) = 0, and  Q(L,t) = 0 are applied  

on I1. This further yields: 

 

( ) ( ) ( )
( )

( )

( ) ( )

( ) ( ) ( )

1 0

2

0

2

1 0 0

0

( )cos
'( )sin '(0)sin 0

(0)cos 0

( )sin ,

( )sin .

L

L

g L j L L
g L j L L g j L j L

g j L
I P

j L g x j x L dx

I P j L P j L g x j x L dx

π
π π π

π

π π

π π π

  
 − −   

+   =  
 

− 
 

= −

∫

∫

 

 

It is to be noted that the orthagonality for the differential equation on the right- 

hand side of Eq. (3.6) is applied; thereby eliminating the summation sign from the 

solution [KR67], as displayed below:  

 

( ) ( )
0

/2
sin sin 0

1

L

L
i x L j x L dx

if i j
if i j

π π





= ≠
= ≥∫ . 

 

The  completed I1 is incoporated back into Eq. (3.6) and the orthogonality is 

employed. The solution is further rearranged to obtain Ci as follows: 

 

( ) ( ) ( ) ( )
2 2

2 2

0 2 2

0 00

( ) sin ,
2

L
p p

i

L
P j L j L g x j x L dx C i L

c c

ω ω
π π π π

   
− − = −   

      
∫  

( ) ( ) ( ) ( )
2 2

2 2

0 2 2

0 00

2 ( )sin .
L

p p

iC P j L j L g x j x L dx L i L
c c

ω ω
π π π π

     
= − − −    

        
∫      (3.7) 

 

Equation (3.7) is multiplied by 2

0c  and is simplified: 

 

( ) ( ) ( )2 2 2 2

0 0 p 0

0

2 2 ( )sin .
L

i iC P c j L P L g x j x L dxπ ω ω π = − −  ∫  
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The unknown constant, Ci , from the above equation is placed back into Eq. (3.4),  

 

( )

( ) ( )
( )

2 2 2 2

0 0 p

p

1,2,
0

0

2

( , ) cos sin .
2 ( ) sin

i

L

j

P c j L

Q x t t i x L
P L g x j x L dx

π ω ω

ω π
π

∞

=

  −   
=  

− 
  

∑
∫

 

 

The solution of Q(x,t) is then placed back into Eq. (3.2) to further yield: 

 

( )
( ) ( )

( ) ( )

2

0 0
p 0 p2 2 2

1,2p

0 p

1,.. 0

2
( , ) cos sin 2 cos

( )sin sin ( )cos .

ii

L

i

j P c
P x t t i x L P L t

L

g x i x L dx i x L P g x t

π
ω π ω

ω ω

π π ω

∞

=

∞

=

= −
−

  
+ 

  

∑

∑ ∫
      (3.8) 

 

The second and third terms of Eq. (3.8) cancel since the second term is the 

negative Fourier series of the third term. This is proved by:  

 

( ) ( )0
p 0 p

1,2.. 0

2
cos ( )sin / sin / ( ) cos .

L

i

P
t g x i x L dx i x L P g x t

L
ω π π ω

∞

=

  
= 

  
∑ ∫       (3.9) 

 

The term 
0 cos pP tω

 
is cancelled from Eq. (3.9) and is multiplied by 

( )sin j x Lπ and is integrated over the entire length of the pipe from x = 0 to x = L 

as follows:  

 

i 1,2,3 i 1,2,30

i 1,2,3 i 1,2,30 0 0

2
( )sin sin sin ( )sin

2
( )sin sin sin ( )sin

2
( )si

L

L L L

j x i x j x j x
g x dx g x

L L L L L

j x i x j x j x
g x dx g x dx

L L L L L

g x
L

π π π π

π π π π

∞ ∞

= =

∞ ∞

= =

        
=        

        

        
=        

        

∑ ∑∫

∑ ∑∫ ∫ ∫

i 1,2,3 i 1,2,30 0

n ( )sin
2

1 1.

L L
j x L j x

dx g x dx
L L

π π∞ ∞

= =

    
=    

    
=

∑ ∑∫ ∫
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Equation (3.8) is then reduced and arranged to formulate the final solution of the 

forced vibration acoustic solution of CASE 1: 

 

( )
( )0 0 i

p2 2
j 1,2,3 i p

2
( , ) sin cos .

P c
P x t j x L t

L

ω
π ω

ω ω

∞

=

=
−

∑       (3.10) 

 

The initial conditions represented by Eq. (3.10) are: 

• The natural frequency, iω , of the fluid medium is represented by 

i 0 /j c Lω π=  (measured in radians/sec). 

• The mode shape is characterised by ( )sin /j x Lπ . 

 

3.1.1.2 Acoustic wave CASE 2 formulation 

The CASE 2 approach is aimed at producing a homogenous one dimensional 

acoustic wave-equation with non-homogenous time-dependent boundary 

conditions. The details of this case can be found in references [CE08, CE80] and 

will not be reproduced in detail in this section. Only the important aspects of the 

solution will be provided. The applicable boundary conditions are illustrated in 

Fig. 3.1. It is also strongly emphasised that the same mathematical methodology 

as used for CASE 1 is applied to CASE 2 to determine P(x,t).  

 

For CASE 2, Eq. (2.18) is tranformed by adapting Eq. (3.1) to be suitable for this 

case in the form of:   

 

0 1 p 2 p( , ) ( , ) ( , ) cos ( , ) cos .P x t Q x t P f x t t f x t tω ω= + +       (3.11) 

Restrictions are imposed on the auxiliary functions, f1(x) and f2(x), in order to 

make the above set of equations homogenous.  These restrictions are:  

 

1

1

(0) 1

( )
0.

x L

f

f x

x =

=

∂
=

∂
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The description of CASE 2 becomes a non-homogenous differential equation, 

with boundary conditions becoming homogenous by requiring the restrictions 

given above. This is applied to the auxiliary functions f1 and f2. Following the 

same mathematical procedure as for CASE 1, this will result in the final forced 

vibration acoustic solution for CASE 2: 

 

( )( )
( )

( )
0 0 0

p2 2
1,3,5 p

2 sin 2
( , ) sin 2 cos .

j

j j

c P Bc j
P x t j x L t

L

ω π
π ω

ω ω

∞

=

+
= −

−
∑     (3.12) 

 

The following conditions are represented by Eq. (3.12):  

• The natural frequency, iω , of the fluid medium is represented by 

i 0 / 2j c Lω π=  (measured in radians/sec).  

• The mode shape of the wave is described by: ( )( ) sin 2Q x j x Lπ= .   

  

3.1.1.3 Acoustic wave CASE 3 formulation 

Acoustic wave CASE 3 is commonly applicable for pipes that are not located 

adjacent to a time-dependent boundary condition. This case is applied, for 

example to interconnecting pipes. The boundary conditions contain two constants 

that can represent some resistance and amplitude at that boundary. The same 

mathematical methodology used in CASES 1 and 2 are applied to this case. The 

formulation basis of the solution uses Eq. (2.18). The boundary conditions 

applicable are illustrated in Fig. 3.1. For CASE 3, Eq. (2.18) is transformed by 

adapting Eq. (3.1) and thus is assumed in the form of:  

 

p p( , ) ( , ) ( ) cos ( ) cos .P x t Q x t Ag x t Bh x tω ω= + +       (3.13) 

 

The corresponding boundary conditions for CASE 3, as presented in Fig. 3.1 are 

taken as: 

•   non-homogenous boundary conditions at x =0: p

( , )
cos .

P x t
A t

x
ω

∂
=

∂
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This boundary represents a resistance at its’ interface where is connected 

with another pipe, with no time-dependent forcing function present. It is 

reasonable to assume the pressure gradient at this interface is an unknown 

constant times the same time dependency from the pressure exiting its 

connecting pipe.  

 

• homogenous boundary conditions at x = L: p

( , )
cos .

P x t
B t

x
ω

∂
=

∂
 

This boundary represents a resistance at its’ interface where is connected 

with another pipe, with no time-dependent forcing function present. It is 

reasonable to assume the pressure gradient at this interface is an unknown 

constant times the same time dependency from the pressure exiting its 

connecting pipe.  

 

The boundary conditions specified above are incorporated into Eq. (3.13) as such:  

• at x = 0: 

p p p

0 0

cos ( )cos ( )cos ,
x x

P
A t Ag x t B h x t

x x
ω ω ω

= =

∂ ∂ 
= − Ψ + ∂ ∂ 

   

• at x = L: 

p p p

0

cos ( )cos ( )cos ,
x x L

Q
B t A g x t B h x t

x x x
ω ω ω

= =

∂ ∂ ∂ 
= − Ψ + ∂ ∂ ∂   

 

where the operator is given by 
2 2

2 2 2

0

1

x c t

∂ ∂
Ψ ≡ −

∂ ∂
. The auxiliary functions for 

CASE 3 are defined as:  

 

• at x = 0: 1/)(
0

=
=x

dxxdg  and 0/)(
0

=
=x

dxxdh .
 
 

• at x = L: 0/)( ==Lxdxxdg  and 1/)( ==Lxdxxdh .     

 

The free vibration solution used to guess the initial solution is in the form of: 

( ) ( )0 0( ) cos sin .Q x C c x D cω ω= +            (3.14) 
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This is differentiated to xcDcxcCcdxxQ )/cos()/()/sin()/(/)( ωωωω +−=  and 

the following restrictions are imposed on the auxiliary functions to make the 

solution homogenous:  

• at x = 0, 0)0)(/cos()/()0)(/sin()/(/)( =+−= cDccCcdxxQ ωωωω  

• at x = L, )/cos()( 0 LciCxQ π= .   

 

The forced vibration solution, from Eq. (3.4), is assumed to be of the form:   

 

( ) p

1,2,3

( , ) cos cos .
j

Q x t j x L tπ ω
∞

=

= ∑          (3.15) 

          

The wave Eq. (2.18) is combined with Eq. (3.13) and transformed accordingly: 

 

2 2
p

p2 2 2

p0

( , ) ( ) cos1
( , ) ( ) cos ( ) 0.

( )cos

Q x t Ag x t
Q x t Ag x t Bh x

Bh x tx c t

ω
ω

ω

 + ∂ ∂
 + + − =     +∂ ∂    

 

 

The forced vibration solution, Eq. (3.15) is incorporated into the solution above 

and is differentiated as follows:  

 

( )

( )

( ) ( )

2

p p p2
1,3,5

2

p p p2 2
1,3,50

2 2

p p2 2 2
1,3,5 1,3,50

cos cos ( )cos ( )cos

1
cos cos ( )cos ( )cos 0,

1
cos cos cos cos

j

j

j

j

j j

j j

C j x L t Ag x t Bh x t
x

C j x L t Ag x t Bh x t
c t

C j x L t C j x L t
x c t

A

π ω ω ω

π ω ω ω

π ω π ω

∞

=

∞

=

∞ ∞

= =

 ∂
+ + 

∂  

  ∂
− + + =  

∂    

∂ ∂
− =

∂ ∂

+

∑

∑

∑ ∑
2 2 2 2

p p p p2 2 2 2 2 2

0 0

( )cos ( )cos ( )cos ( )cos ,
B

g x t h x t A g x t B h x t
c t c t x x

ω ω ω ω
∂ ∂ ∂ ∂

+ − −
∂ ∂ ∂ ∂
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( ) ( ) ( )
2

2 p

p p2
1,3,5 1,3,50

2 2

p p

p p p p2 2

0 0

cos ( ) cos cos cos

cos ''( ) cos ''( ) ( ) cos ( ) cos .

j j

j j

j L t C g x j x L t C j x L
c

A t g x B t h x A g x t B h x t
c c

ω
π ω π ω π

ω ω
ω ω ω ω

∞ ∞

= =

− + =

− − − −

∑ ∑

 

 

The factor of cos ptω  is eliminated (it is constant on both sides of the solution), is 

multiplied by ( )cos j x Lπ  and integrated over the entire length of the pipe from x 

= 0 to x = L: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
2p

2
1,3,5 0 0 0

2 2

p p

2 2

0 00 0 0

cos cos ''( )cos

''( )cos ( )cos ( )cos .

L L

j

j

L L L

C j L j x L j x L dx A g x j x L dx
c

B h x j x L dx A g x j x L dx B h x j x L dx
c c

ω
π π π π

ω ω
π π π

∞

=

 
− = − 

  

− − −

∑ ∫ ∫

∫ ∫ ∫
        

(3.16)

 

 

Two integrals, I1 and I2 are formed in order to perform the integration:  

 

( )1

0

''( ) cos ,
L

I A g x j x L dxπ= ∫
 

and ( )2

0

''( ) cos .
L

I B h x j x L dxπ= ∫  

 

The solutions of the integrals are obtained and the auxiliary function restrictions 

are applied: 

• at x = 0,  h(0) = 0 and g(0) = 1, 

• at x = L, h (L) = 1 and g(L) = 0. 

 

This reduces the integrals solutions to:  

( ) ( )

( ) ( )

2

1

0

2

2

0

1 ( )cos .

cos ( )cos .

L

L

I j L g x j x L dx

I j j L h x j x L dx

π π

π π π

= − −

= −

∫

∫
 

The completed I1 and I2 are incoporated back into Eq. (3.16) and the orthagonality 

for the differential equation on the right hand side of equation is applied, this 
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eliminates the summation sign from the solution. The solution is further 

rearranged to obtain, Cj as follows: 

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

2
2 2p

2
1,3,5 0 0

2
2 p

2

00 0

2

p

2

0 0

2 2
2 2p p

2 2

0 0 0

( ) cos cos
2

( ) cos ( ) cos

( ) cos ,

( ) cos
2

L

j

i

L L

L

L

j

L
C j L A A j L g x j x L dx B j

c

B j L h x j x L dx A g x j x L dx
c

B h x j x L dx
c

L
C j L A j L g x j x L dx

c c

B j

ω
π π π π

ω
π π π

ω
π

ω ω
π π π

π

∞

=

 
− − = + − 

  

+ −

−

   
− − = −   

      

+

∑ ∫

∫ ∫

∫

∫

( ) ( )
2

2 p

2

0 0

( ) cos cos ,
L

L h x j x L dx A B j
c

ω
π π

 
− + − 

  
∫

 

( ) ( )
( )

( )
2

20 0 p

2

0

2 cos2 2
( )cos ( )cos .

L L

j

A B jA B
C g x j x L dx h x j x L dx

L L
L j L

c

π
π π

ω
π

 
 

− 
= − − −  

  −  
   

∫ ∫

   (3.17) 

 

Equation (3.17) is multiplied by 2 2

0 0/c c  and is simplified to: 

 

( ) ( )
( )2

0

2 2
0 0 p

2 cos2 2
( )cos ( )cos .

L L

j

j

c A B jA B
C g x j x L dx h x j x L dx
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π
π π

ω ω

 −
 = − − −
  −  

∫ ∫  

 

The unknown constant, Cj, from the above equation is placed back into Eq. (3.15) 

as such,

 

 

( ) ( )
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2 2

p

2 2
( )cos ( )cos

( , ) cos cos .
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=
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=   −  −   −   

∫ ∫
∑  
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The solution of Q(x,t) is placed back into Eq.  (3.13) to further yield: 

( ) ( )

( )
( )

0 0

p 2
0,1,2 0

2 2

p

p p

2
( ) cos ( ) cos

( , ) cos cos
2 cos

( ) cos ( ) cos .

L L

i

j

A
g x j x L dx h x j x L dx

L

P x t t j x L
c A B j

L

g x A t h x t

π π

ω π
π

ω ω

ω ω

∞

=

 
− − 
 

=   −  −   −   
+ +

∫ ∫
∑

  

 
 
Thus,  
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( )

( ) ( )

( ) ( )

2

0

p2 2
0,1,2 p

p p

0,1,2 0

p p
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2 cos
( , ) cos cos

2
( )cos cos cos ( ) cos

2
( ) cos cos cos ( ) cos .

i i

L

j

L

j

c A B j
P x t j x L t

L

A
g x j x L dx j x L t Ag x t

L

B
h x j x L dx j x L t Bh x t

L

π
π ω

ω ω

π π ω ω

π π ω ω

∞

=

∞

=

∞

=

 −
 =
  −  

 
− + 

 

+ +

∑

∑ ∫

∑ ∫
   (3.18) 

 

The second and third terms of Eq. (3.18) cancel since the second term is the 

negative Fourier series of the third term; the same will apply to the third and 

fourth terms. Refer to CASE 1 and CASE 4 for the justification. This reduces 

P(x,t) to:  

 

( )
( )

2

0

p2 2
0,1,2 p

2 cos
( , ) cos cos .

j i

c A B j
P x t j x L t

L

π
π ω

ω ω

∞

=

 −
 =
  −  

∑

     

(3.19)

 

 

Equation (3.19) is then arranged to formulate the final solution, Eq. (3.20) for the 

forced vibration acoustic solution of CASE 3.  
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∑
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The following conditions are represented by Eq. (3.20):  

• The natural frequency, iω , of the fluid medium is represented by 

i 0 /j c Lω π=  (measured in radians/sec). 

• The mode shape of the wave is described by: cos( / ).j x Lπ    

 

3.1.1.4 Acoustic wave CASE 4 formulation 

Acoustic wave CASE 4 has been derived to represent a pipe that is entering a 

system such as a pump or vessel. The left boundary condition for this case 

contains a constant that is representative of a resistance or amplitude at that 

boundary and the right boundary condition is open ended. An example of this is a 

pipe that enters the compressor/pump. The boundary conditions applicable are 

further illustrated in Fig. 3.1. For CASE 4, the wave Eq. (2.18) is tranformed by 

adapting Eq. (3.1) to be suitable in the form of:   

 

p( , ) ( , ) ( ) cos .P x t Q x t Ag x tω= +    (3.21) 

 

Boundary conditions for CASE 4 are: 

• at x =0, 
( , )

cos .
p

P x t
A t

x
ω

∂
=

∂
  

This boundary represents a resistance at its’ interface where is connected with 

another pipe, with no time-dependent forcing function present. It is reasonable 

to assume the pressure gradient at this interface is an unknown constant times 

the same time dependency from the pressure exiting its connecting pipe.  

 

• at x=L, ( , ) 0.P x t =  

This boundary is open ended with no restrictions in the pressure at its exit. 

This condition is selected to determine the internal pipe flow conditions with a 

pipe exiting into a vessel or opening.  

 

The auxiliary functions defined for this case are:  

• at x =0: 1/)(
0

=
=x

dxxdg  and 0/)(
0

=
=x

dxxdh  
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• at x=L: 0/)( ==Lxdxxdg  and 1/)( ==Lxdxxdh       

 

Restrictions are imposed on the auxiliary functions and applied to the free- 

vibration solution, Eq. (3.14), and by applying the boundary conditions gives: 

 

• boundary condition where x = 0:  

( ) ( ) ( )[ ] 0/cos/sin// 0000
=+−=∂

=
xcBxcAcdxQ iii

L

x
ωωω ,  

where constant B equates to 0, reducing the equation to: 

( )xcAxQ i 0/cos)( ω=
 

 

• boundary condition where x = L: 

 ( ) 0/cos)( 0 == LcAxQ iω
,
 

 but A ≠ 0, therefore the solution becomes: 

( ) 2/0/cos 0 πω jLci == , where j =1, 3, 5. 

 

The formulated free-vibration solution is incorporated for the non-homogeneous 

solution and the forced-vibration for CASE 4 is assumed to be in the form of: 

 

( ) p

1,3,5

( , ) cos 2 cos ,j

j

Q x t C j x L tπ ω
∞

=

= ∑           (3.22)

 

 

 

where, 

• The natural frequency, iω , of the fluid medium is represented by 

0 2 .j j c Lω π=  (measured in radians/sec). 

• The mode shape is described by ( )( ) cos 2Q x A j x Lπ= .  

 

The wave Eq. (2.18) is transformed by Eq. (3.21) as follows: 

 

2 2

p p2 2 2

0

1
( , ) ( )cos ( , ) ( ) cos 0.Q x t Ag x t Q x t Ag x t

x c t
ω ω

∂ ∂
   + − + =   ∂ ∂

     (3.23) 
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Equation (3.22) is incorporated into Eq. (3.23), rearranged and differentiated, 

yielding:   

 

( )

( )

2

p p2
1,2,3

2

p p2 2
1,2,30

cos cos ( )cos

1
cos cos ( )cos 0,

j

j
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∑
 

 
which further yields, 
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i p p
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2
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2
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∞

=

∞

=
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+ +

∑

∑
 

 

The factor of cos p tω  can be eliminated and the solution rearranged: 

 

[ ] [ ]
22 2

p p

2 2
1,2,3 1,2,30 0

''( ) ( ) cos 2 cos 2 .
2

j j

j j

A j
Ag x g x C j x L C j x L

c L c

ω ωπ
π π

∞ ∞

= =

 
+ = + 

 
∑ ∑  

 

The solution is multiplied by ( )cos 2j x Lπ  and integrated over the entire length 

from x = 0 to x = L, producing: 

 

( ) ( )

[ ] ( )

2

p

2

00 0

2 2

p

2
1,3.. 0 0

''( ) cos 2 ( ) cos 2

cos 2 cos 2 .
2
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j
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c
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π π
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π π
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  
−  
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∫ ∫

∑ ∫          (3.24) 

   

 

Integral 1 (I1) is extracted from Eq. (3.24) and treated separately by applying the 

integration by parts technique [KR67], where I1 is: 
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( )
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Auxiliary function restrictions, g (0) = 1 and g (L) = 0, are applied on I1, yielding: 

( ) ( ) ( )
( )

( )

( ) ( )

1

2

0

'( )sin 2
'( )cos 2 '(0)cos 0 2 2
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after further simplification gives, ( ) ( )
2

1

0

2 ( )cos 2 .
L

I A A j L g x j x L dxπ π= − ∫
 

The orthagonality for the integration of equation [ ] ( )
0

cos 2 cos 2
L

j x L j x L dxπ π∫  is 

applied [KR67], where: ( ) ( ) {
0

0
/2 1

cos cos
L

if i j
L if i j

i x L j x L dxπ π ≠
= ≥

=∫ . 

 

Integral I1 is incorporated into Eq. (3.24)and rearranged to produce: 
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∫
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       (3.25)

 

 

The unknown constant, Ci from Eq. (3.25) is placed back into Eq. (3.22) and is 

substituted into Eq. (3.21): 
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   (3.26) 

 

The second and third terms of Eq. (3.26) cancel since the second term is the 

negative Fourier series of the third term. This is proved by: 
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The term 0 pcosP tω  is cancelled from the above solution, multiplied by 

( )cos 2j x Lπ and integrated over the entire length of the pipe from x = 0 to x = L, 

yielding: 
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Eq. (3.26) is reduced and rearranged to formulate the final forced vibration 

acoustic solution for CASE 4: 
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The following conditions are represented by Eq. (3.27):  

• The natural frequency, iω , of the fluid medium is represented by 

i 0 / 2j c Lω π=  (measured in radians/sec).  

• The mode shape of the wave is described by: ( )cos 2j x Lπ .   

    

A summary of CASES 1 to 4 can be found in Table 3.1.  
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Table 3.1: Summary of forced vibration responses and Boundary conditions 

C
a
se

 Forced 

Response 

Left Boundary 
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0@ =x  
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3.2 Mathematical evaluation of the acoustic wave solutions 

 

The acoustic solutions are tested to ensure that they are mathematically correct 

and can be applied to ensure pressure continuity at the interfaces. Each solution 

for the different cases is applied in a series of matrix operators to determine the 

constants. These values are to be determined in order to solve the pressure 

distribution continuously from interface 1 to the end (entry back to interface 1). 

Specific Jolley series are selected and applied for the prediction of the forced 

response within the pipes and to demonstrate the continuity of the pressure 

gradient at the interfaces.  

 

3.2.1 Jolley series equivalent to the forced response solutions 

The Jolley series [JO05] is investigated to determine if it can be used to simplify 

the complexity of the solutions produced by reducing them to simple equations. 

Specific Jolley series that is applicable for each case is selected and applied to a 

arbitrary case study to test for the accuracy of the acoustic solutions produced and 

the suitability of the Jolley series to represent the acoustic solutions. The four 

solutions and the corresponding Jolley series are plotted and compared by using 

arbitrary values for Po, ωp, co. The correlations between the results of these two 

equations are observed to determine the accuracy of the Jolley series in 

representing the acoustic solutions. The corresponding Jolley series found for 

each forced vibration solution determined for CASES 1, 2, 3 and 4 are as follows: 

 

• CASE 1 forced vibration response solution corresponds to Jolley 

series # 560 [JO05]: 
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where x x L∗ =  (the incremental distance of x over the total pipe length of 

L) and 
p 0L cα ω= . For comparison purposes both these functions are 

plotted in Fig. 3.2. 

 

• CASE 2 forced vibration response solution corresponds to Jolley 

series # 556 and 558 [JO05]: 
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where x x L∗ =  (the incremental distance of x over the total pipe length of 

L) and 
p 0L cα ω= . For comparison purposes the first term, 

( )0 cos 1 / cosP xα α∗−  is plotted in the upper part of Fig. 3.3 and the 

second term, 0 psin ( ) / cosBc xα ω α∗  in the lower part of Fig. 3.3 for both 

these functions since the second term of the forced response solution of 

CASE 2 is multiplied by the constant B.   

 

• CASE 3 forced vibration response solution corresponds to Jolley 

series # 559 and 558 [JO05]:  
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where x x L∗ =  (the incremental distance of x over the total pipe length of 

L) and 
p 0L cα ω= . For comparison purposes both these functions are 

plotted in Fig. 3.4. 

 

• CASE 4 forced vibration response solution corresponds to Jolley 

series # 555 [JO05]:  
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where x x L∗ =  (the incremental distance of x over the total pipe length of 

L) and 
p 0L cα ω= . For comparison purposes both these functions are 

plotted in Fig. 3.5. 
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Figure 3.2: Acoustic forced response CASE 1 and corresponding Jolley series # 
560. 
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Figure 3.3: Acoustic wave CASE 2 forced response solution and the 

corresponding Jolley series # 556 & 559 for the first term (upper part) and the 

second term (lower part). 
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Figure 3.4: Acoustic wave CASE 3 forced response solution and the 

corresponding Jolley series # 558 & 559. 
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Figure 3.5: Acoustic wave CASE 4 forced response solution and the 

corresponding Jolley series # 555.  
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As seen in all the cases (Fig 3.2 to 3.5) the acoustic wave solutions and the 

corresponding Jolley series are in excellent agreement with each other. This 

provides confidence that the Jolley series selected is a good representation of its 

respective force vibration acoustic case. The Jolley series can thus be used as a 

simpler equation for further applications.  

 

3.2.2 Satisfying the boundary conditions of the differential equations 

The boundary conditions of the differential equations have to be satisfied to 

ensure that the assumptions made for those conditions are justified. MathCad was 

selected to perform a solution check. The Jolley series is substituted into the wave 

equation, Eq. (2.18) to ensure that it is homogenous. In all cases, it tends to zero 

proving that the wave equation is satisfied [KR67]. The solutions are then solved 

by taking the first derivatives of the solution for each case with respect to x and 

the second derivatives with respect to time and x. This results in:  

 

• CASE 1 at x = 0 and x = L  

at x =  0 

( ) ( )0 psin 1 0 / cos / sinP L tα ω α −   = ( )tP pωcos0
 

at x = L 

 ( ) ( )0 psin 1 / cos / sinP L L tα ω α −   = 0  

• CASE 2 at x = 0 and x = L 

at x = 0 

( ) ( ) ( ) ( ){ }0 p p pcos 1 0 / cos / sin (0 / )cos / cosP L t Ac A L tα ω ω ω α − +    = 

0 pcosP tω  

at x = L 

( ) ( ) ( ) ( )

( )

0 p

p 0 p p 0 p

0

p 0

cos / cos sin ( / 1) / cos

cos /

P
A L c t L L L c t

c

L c

ω
ω ω ω ω

ω

    − −        = 

tA pωcos
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• CASE 3 at x = 0 and x = L: 

at x = 0 

( ) ( ) ( ) ( ){ } ( )p 0 p p 0 p p 0sin 0 / 1 / cos sin / cos / cos / .A L L c t B c t L cω ω ω ω ω − −   

= tA pωcos  

at x = L 

( ) ( ) ( )( ){ } ( )p p p psin (( / ) / cos sin / cos sin /pA L L L c t B L c t L cω ω ω ω ω −  

→ tB pωcos  

• CASE 4 pump at x = 0 and x = L: 

at x = 0 

 ( ) ( ) ( )0 p 0 p p 0sin 0 / 1 / cos / cos /Ac L L c t L cω ω ω −   =  pcosA tω  

at x = L 

( ) ( )0 p 0 p p p 0sin ( / 1) / cos cos /Ac L L L c t L cω ω ω ω −   =  0 

 

In all the acoustic solution cases, when the differentiation is performed, the results 

indicate that the assumptions made on the initial selection of the boundary 

conditions are met. This proves that the formulated acoustic-wave solution 

differential equations are indeed satisfied and further reaffirms that the solutions 

are mathematically correct and are valid for further application. 

 

3.2.3 Methodology for determining the constants  

The conditions at the interfaces of the pipes in the loop are important in 

determining the constants of the acoustic forced vibration solutions. It is assumed 

that pressure gradient is the same at each interface, as such:  

 

1 2

2 3

3 4

( ) ( 0 )

( ) ( 0 )

( ) ( 0 ).

P x L P x

P x L P x

P x L P x

= = =

= = =

= = =            (3.32)

 

 

The first step is to apply this pressure continuity assumption at the pipe-pipe 

interfaces. Figure 3.6 displays the location of these interfaces.  This results in the 
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constants existing at the pipe-pipe interfaces being equal (due to the continuity of 

the pressure gradients).  Thus, only three unknown constants are to be determined.  

These bounding conditions are applied to each case applicable for the four pipes 

at the interfaces, producing a linear set of three equations with constants of the 

form: 

  

11 1 12 2 13 3 1

21 1 22 2 23 3 2

311 1 32 2 33 3 1,

a B a B a B b

a B a B a B b

a B a B a B b

+ + =

+ + =

+ + =  

 

where an, Bn and bn are the parameters that form the matrix. Using the selected 

Jolley series for CASES 1 to 4, the applicable case for each pipe is utilised. This 

creates unknown constants in each equation that exist at the boundaries of the 

pipes. The a–values in the matrix can be determined with known values ofα , 
0c  

and x* of the Jolley series and assuming the pressure gradients are the same at the 

interfaces. The an values are applied in a matrix and solved utilising Kramer’s 

Rule [KR67] for determining the values of the constants. Two computer codes, 

Matlab and MathCad, were used to model this approach. Two independent codes 

are used as a benchmarking exercise to ensure the methodology employed is 

consistent and accurate and verify that the results are correct. 

 

 



 77 

 

Figure 3.6: Location of constants existing at the pipe-pipe interfaces. 

 
3.2.4 Pressure gradient at the interfaces 

To ensure pressure continuity at the interfaces, the gradients of pressure 

distribution at the interfaces need to be determined. The first order derivative of 

the acoustic wave solutions is taken and applied to the acoustic cases applicable 

for the pipe-loop model. The following set of equations with the unknown 

constants, B1, B2 and B3 are produced: 

   

• Pipe 1: ( ) ( ){ }( )0 1 0sin 1 / cos / cos /
p

P x B c x Lα α ω α α∗ ∗ − +   

• Pipe 2: 
1 0 p

2 0 p

( / )[sin( (1 )) / sin ]
/

( / )[sin( ) / sin ]

B c x
L

B c x

ω α α

ω α α

∗

∗

  − 
 

 +   

 

• Pipe 3: 
2 0 p

3 0 p

( / )[sin( (1 )) / sin ]
/

( / )[sin( ) / sin ]

B c x
L

B c x

ω α α

ω α α

∗

∗

  − +  
 

    

 

• Pipe 4: ( )3 0 p( / ) ( / ) cos 1 / cos )L B c xα ω α α∗ −  . 

 

If the pressure is continuous from pipe to pipe and no significant variations in 

pressure exist, it can be concluded that the interface conditions (boundary 

conditions) is consistent from pipe to pipe and no numerical problems are present 
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with the mathematical modelling used. This will be tested by applying this 

methodology to a general pipe-loop model, as done in the Section 3.3.  

 

3.3 Application for verification of the acoustic solutions 

An important objective for selecting Cepkauskas methodology is the possibility 

that the acoustic forced vibration solutions can be coupled in a loop configuration. 

To prove this possibility two case studies are looked at. The first study is a general 

pipe-loop system, with a compressor as the source of the forced pulsations and the 

fluid medium being helium gas. This case will test the suitability of the solutions 

to be coupled. The second case study emulates a typical HTGR environment. This 

case study is selected to test the suitability of the solutions for a known HTGR 

scenario.  

 
 
3.3.1 Application to general pipe loop system 

A general case study is used to test the methodology employed from Sections 3.1 

and 3.2. Arbitrary pressures and temperatures that are averaged over the pipe 

length were selected for the four pipes in the general pipe-loop model in Fig 3.6.  

 

The inputs used were:  

P0  =  0.01 kPa 

f  =  100 Hz (taken as general frequency of a pump/compressor) 

T  =  273.15 K. 

 

Pipes 1 to 4 temperatures are taken as averaged over the pipe length which is 

displayed in Table 3.2. Using the temperatures, the respective values of 0c  are 

calculated using Eq. (2.16).   

 

Using Eq. (2.2), the angular forcing frequency is calculated to be: 

pω   = 628.32 radians s-1.  
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Table 3.2: Input values for the pipes in the general pipe-loop system. 

 

Pipe Number Pipe Length 

(m) 

Temperature 

(ºC) 

1 10 100 

2 15 200 

3 20 300 

4 25 400 

 

The applicable acoustics solutions for each pipe are determined as: 

• Pipe #1 is represented by forced-vibration acoustic CASE 2, and 

incorporating the applicable conditions in Eq. (3.29), results in the 

pressure distribution being: 

( ) ( )1 0,1

0 1 1

p

1 1

1

cos 1 sin

( , ) .
cos

B c
P x x

P x t

α α
ω

α

∗ ∗

∗

 − + 
=  

 

• Pipe #2 and Pipe #3 can be described with forced-vibration acoustic 

CASE 3, Eq. (3.30) is used and the pressure distribution for both pipes 

becomes: 

( ) ( )

( ) ( )

2 2 2 20,2 2 0,2

2 2 2

p 2 p 2

3 3 3 30,3 3 0,3

3 3 3

p 3 p 3

cos 1 cos
( , ) .

sin sin

cos 1 cos
( , ) .

sin sin

x xc B c
P x t A

x xc B c
P x t A

α α

ω α ω α

α α

ω α ω α

∗ ∗

∗

∗ ∗

∗

      −      = −   
      

      −      = −   
      

 

 

• Pipe #4 is represented by forced vibration acoustic CASE 4, Eq. (3.31) is 

used and the pressure distribution becomes:  

( )
( )4 44 0,4

4 4

p 4

sin 1
, .

cos

xA c
P x t

α

ω α

∗

∗
 − = −  
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From Section 3.2.3, the constants at the interfaces are determined by 

programming this methodology to produce an acoustic subroutine. It is to be 

noted that B1 = A2, B2 = A3 and B3 = A1, due to the continuity of the pressure 

gradients at the pipe-pipe interfaces. These constants are determined by adapting 

Eq. (3.32) to produce: 

 

1 1 2 2 1

2 1 3 2 1

3 1 4 2 1

( 1, ) ( 0 , )

( 1, ) ( 0 , )

( 1, ) ( 0 , ).

P x t P x t

P x t P x t

P x t P x t

∗ ∗

∗ ∗

∗ ∗

= = =

= = =

= = =

 

 

The constants determined are given in Table 3.3. A reverse calculation was 

performed by inserting these constants back into the original equations of the 

matrix to determine if the matrix conditions are met. It was found that the matrix 

equations equated zero, with the exception of matrix indicator b1 of a0P0 = 0.0137, 

which should be the result. This indicates that the matrix conditions are indeed 

satisfied and the process selected to determine the constants are accurate for this 

application. To ensure that the pressure gradient is continuous at the interfaces, 

the first order derivation to produce the pressure gradient of the acoustic wave 

solution for each pipe, as explained in Section 3.2.4. This is calculated from the 

acoustic subroutine and plotted, as illustrated in Fig. 3.7. 

 
The entire acoustic pressure distribution in the pipe-loop is calculated using the 

acoustic sub routine and is displayed in Fig. 3.7. The individual pipe pressure 

distribution for each of the four pipes can be found in Fig. 3.8. The code for 

general acoustic subroutine and results can be found in Appendix B1-1. 

 

Table 3.3: Values of the constants determined for general pipe-loop system. 

Constants Matlab MsExcel 

B1 -0.00046 -0.00042 

B2 -0.00651 -0.00645 

B3 0.00438 0.00434 
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Figure 3. 7: Continuous acoustic pressure distribution and pressure gradient for general pipe-loop system 
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Figure 3. 8: General acoustic pressure distribution for individual pipes in the general pipe system 
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3.3.1.1 Simulation of HTGR case study 

To determine whether the acoustic solutions can be applied to a real system, a 

HTGR design is selected. The HTGR contains helium as the working fluid and 

consists of turbomachinery for extracting energy from the fluid and maintaining 

the necessary flow in the loop. The acoustic solutions cannot at this stage be 

applied to the flow in the complex geometries of the turbomachinery and heat 

exchangers due to the geometrical difference in these components.  Although this 

can be achieved, the present study is only aimed at demonstrating generally that 

these acoustic equations can be applied to an HTGR pipe network for testing the 

pipe-loop configuration compatibility. 

 
3.3.1.2 HTGR plant model configuration  

A simplified model of and HTGR was formulated in a computation fluid dynamic 

code Flownex® [FL06]. The Flownex model consists of a simplified reactor and 

primary loop comprising of the main turbomachinery components, such as a 

compressor to emulate the time dependent boundary, turbine, and heat exchangers 

to produce the temperature variations in the pipe-loop. This model can be found in 

Appendix A1-1, Fig. A.1. The Flownex HTGR model is used to simulate the 

steady state conditions such as temperatures, pressures and pipe lengths at each 

pipe interface. The pressure and temperature results of the model are represented 

in Appendix A1-1, Fig. A.2.  

 

3.3.1.3 Inputs for simplified HTGR pipe loop model 

The Flowex HTGR model is further reduced to a simplified four pipe-loop model 

by averaging the pipe lengths and temperatures. This simplifies the application of 

the acoustics solution and restricts it only to four pipes, as done in Section 3.3.1. 

This simplified pipe-loop is represented in Fig 3.9 and the averaged values of pipe 

length and temperatures are given in Table 3.4. An acoustics HTGR subroutine 

was produced, similar to the general pipe-loop acoustic subroutine. These values 

are used in this code and run to observe the pressure distributions in the primary 

loop. 
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Figure 3.9: Conditions applicable to the HTGR simplified pipe-loop. 

 

 

 Table 3.4: Input values of the HTGR simplified pipe model. 

  

 

 

 

 

 

As per the general pipe-loop study the acoustic solution cases applied to the four 

pipes are:  

 

• Pipe #1 is represented by forced-vibration acoustic CASE 2, and 

incorporating the applicable conditions in Eq. (3.29), results in the 

pressure distribution being: 

( ) ( )1 0,1

0 1 1

p

1 1

1

cos 1 sin

( , ) .
cos

B c
P x x

P x t

α α
ω

α

∗ ∗

∗

 − + 
=  

 

Pipe No Pipe Length 
(m) 

Average Temperature 
(oC) 

1 6.74 108 

2 33.4 (492 + 900) / 2 = 696 

3 25 (900 + 520) / 2 = 710 

4 37 (138 + 21.4) / 2 = 79.7 
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• Pipe #2 and Pipe #3 can be described with forced-vibration acoustic 

CASE 3, Eq. (3.30) is used and the pressure distribution for both pipes 

becomes: 

  

( ) ( )

( ) ( )

2 2 2 20,2 2 0,2

2 2 2

p 2 p 2

3 3 3 30,3 3 0,3

3 3 3

p 3 p 3

cos 1 cos
( , ) ,

sin sin

cos 1 cos
( , ) .

sin sin

x xc B c
P x t A

x xc B c
P x t A

α α

ω α ω α

α α

ω α ω α

∗ ∗

∗

∗ ∗

∗

      −      = −   
      

      −      = −   
      

 

 

• Pipe #4 is represented by forced vibration acoustic CASE 4, Eq. (3.31) is 

used and the pressure distribution becomes:  

( )
( )4 44 0,4

4 4

p 4

sin 1
, .

cos

xA c
P x t

α

ω α

∗

∗
 − = −  

 

The subroutine and the results can be seen in Appendix B1-2.  
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Figure 3. 10: Simplified HTGR individual pipe-loop acoustic pressure distribution. 
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Figure 3.11: Continuous acoustic pressure gradient and pressure distribution for HTGR pipe-loop system. 
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3.4 General acoustic results and discussion 

 
3.4.1 Acoustic solution formulations 

The Cepkauskas SMiRT 5 approach has been successfully adapted to produce 

four acoustic cases with different boundary conditions. The boundary conditions 

existing for each pipe in the pipe network were determined as:  

• CASE 1 considered a general acoustic case, depicted a pipe with boundary 

conditions of pump or compressor at the one end and the other end as open 

ended. This is considered a more general case (refer to Eq. (3.10)). 

• CASE 2 depicted a pipe representing a pump/compressor at one end and a 

general boundary condition at the other end (refer to Eq. (3.12)).  

• CASE 3 depicts a pipe with the boundary conditions containing constants 

that represented some resistance or amplitude at both ends (refer to Eq. 

(3.19)).  

• CASE 4 depicted a pipe entering a vessel or compressor, with boundary 

condition containing a constant (representing a resistance or amplitude) at 

one end and open ended at the other end (refer to Eq. (3.27)). 

 

It was shown in Section 3.1 and in Refs. [CE79, CE08] that when restrictions are 

placed on the auxiliary functions and their derivatives at the boundaries, the 

boundary conditions are made homogeneous. Utilising the transformation 

technique enables a more manageable method of solving of the acoustic equations 

that is less complicated than it otherwise would be. Therefore, there is no need to 

define the auxiliary functions in the interior for the specific problem, thereby 

reaffirming the Cepkauskas methodology as correct. This has been achieved by 

solving the problem in the transformed space, and after substituting back into the 

untransformed equation, terms appear that are negative Fourier series expansions 

of the auxiliary functions and thus the auxiliary functions terms cancel. It thus 

shows that the auxiliary terms need not be defined in order to determine the 

pressure distribution within the pipe. This approach was successfully adopted and 

applied to the four pipe cases. Using the same mathematical approach of SMiRT5, 

it is shown in Section 3.1 that four solutions are produced that are representative 



 89 

of the pressure distribution in a pipe length; these results are found in Table 3.1. 

The series term in the solutions allows the solution to be applied for many time 

steps therefore the solution can be applied in transient and steady state situations. 

This in turn indicates a possibility of coupling to CFD codes that can run plant 

transients to determine the acoustic behaviour of the fluid.  

 

3.4.2 Jolley series application 

From Section 3.2.1, it is found that the plots of the Jolley series and acoustic 

CASES 1 to 4, Fig. 3.2 to 3.5, and the selection of specific Jolley series for each 

forced vibration acoustic solution correlated with each other and no significant 

deviations were found.  This proves that the Jolley series selected is valid in 

representing its respective acoustic solutions and enables one to reduce the 

acoustic solutions to a more convenient and simpler form. It is then appropriate to 

conclude that the Jolley series selected can be used to represent the more complex 

form of the four acoustic solutions.  It should be noted that Fisher et al., showed a 

numerical convergence difficulty at the boundaries. The use of the Jolley Series 

provides an exact solution at the interior and at the boundaries.  

 

3.4.3 Validity of the acoustic solutions 

The results of the differentiation for each case with respect to x and the second 

derivatives with respect to time and x performed in MathCad, Section 3.2.2 shows 

that the assumptions made on the initial selection of the boundary conditions are 

met and that the assumptions made on the formulated acoustic-wave solution 

differential equations are indeed satisfied. This reaffirms that the solutions are 

mathematically correct and are valid for application.  

 

To test the validity of the derived forced-vibration acoustic solutions, each 

applicable solution were applied to the four pipes in a general pipe-loop model, 

with helium as a fluid medium and a compressor as the time-dependent boundary 

condition. Kramer’s Rule was applied to determine the constants. This 

methodology and acoustic case were programmed in a Matlab acoustic subroutine 

for the general pipe-loop, Appendix B1-1. The generalised input parameters 
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representing the system conditions were inputted into the subroutine. The results 

provided values for the solution constants’ and satisfied the conditions of the 

matrix (refer to Sections 3.2.2 and 3.2.3).  The acoustic pressure distribution as 

described in Fig. 3.7 in the pipe-loop, shows smooth pressure wave transitions at 

all pipe interfaces. The pressure gradients at the interfaces are continuous and in 

agreement with the pressure distribution curves. This affirms that the acoustic 

cases produced can be applied to individual pipes and can be coupled together for 

a pipe-loop to adequately represent to total pressure distribution in a system. 

Figure 3.8 represents the individual acoustics in a pipe. From this plot, one can 

isolate the localised fluid behaviour in an area of a pipe-loop.  

 

The acoustic subroutine generated values for 0c , iω  and pω , (the acoustic 

behaviour and the frequencies of the fluid). In flow systems, wide band flow-

induced excitation as well as structural interaction form part of excitation forces. 

Thereby knowing these values will enable one to simulate if acoustic resonances 

or wide band flow-induced excitation are present. Should one know the systems’ 

structural natural frequencies transporting this fluid, it can be predicted if the 

fluids’ pressure wave excitation frequency produced from an excitation force (e.g. 

compressor or pump) approaches the structures’ natural frequency. 

 

Since the solutions contain time dependent functions, it can be applied to a system 

transient. Hence, it can be applied to a system consisting of compressors and 

pumps starting up from zero conditions or deviating from a steady state plant 

condition. During the plant transients, the fluid properties such as temperatures, 

densities and pressures are changing continuously. The solutions should be able to 

calculate the acoustic forcing and natural frequencies of the fluid and the pressure 

distribution as the fluid medium properties changes at different time steps. If one 

has known values for the natural frequencies of the structural components 

supporting the flow of the fluid, it can be monitored if the fluids’ natural 

frequencies coincide with the structural natural frequencies. In knowing when 

these conditions exist, it can avoid a potential resonant condition or excessive 

structural vibration. Ideally, one would prevent the system from being at this 
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condition for prolonged periods of time, and one would rather want to transitional 

quickly through these regions.  

The acoustic cases can also be applied to systems used during optimisation of 

process flow, since the flow parameters (pressures, temperatures, fluid mediums) 

can be changed and the natural and forcing frequencies can be observed and 

possibly used to predict potential resonant conditions or forced vibration 

problems. As explained in Section 2, this is a condition that is to be avoided due 

to the possibility of mechanical failure. 

 

3.4.4 HTGR pipe loop application  

To test the suitability of the acoustic force-vibration solutions in a simplified 

HTGR environment, the general acoustic subroutine is used. The input values are 

changed according to the HTGR conditions to produce an HTGR acoustic 

subroutine, Appendix B1-2. The input to the subroutine requires only temperature 

and pressures, which was obtained from results of a simplified HTGR Flownex 

model produced (refer to Appendix A1-1 for the Flownex HTGR model and 

Appendix A1-2 for the steady state parameters). The unknown constants 

determined for the acoustic solutions used for this steady state simplified model 

can be found Appendix B1-2. The acoustic behaviour of the helium in each pipe 

and acoustic pressure distributions and pressure gradients for each pipe and in the 

overall loop in the simplified network were thus found. 

 

The HTGR acoustic subroutine produced good acoustic responses in each 

individual pipe as seen in Fig. 3.10. No significant inconsistencies were found 

thereby concluding that the solutions are compatible to the conditions of the pipes.  

 

From the pressure gradient results (Fig 3.10), the graph is in general a continuous 

acoustic wave, demonstrating that the interface or boundary conditions are largely 

consistent from pipe to pipe.  However, the pressure gradient results revealed 

slight deviations in the pressure continuity when compared to the results of the 

general pipe model. This is due to the large temperature gradients existing in the 

pipe-loop model.  The temperature gradients, seen in the HTGR Flownex 
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simulation (Appendices A1-1 and A1-2) indicate large temperature gradients 

located at the heat exchangers and turbomachinery (interfaces of pipe 4 to pipe 1, 

pipe 1 to pipe 2, pipe 3 to pipe 4). In the acoustic subroutine, these temperatures 

are averaged for input into the code. The approach taken is quite simplistic, but in 

reality, this is not a true representation of these components. Having said this, the 

continuous pressure distribution and gradient in the entire loop, especially at the 

pipe interfaces where complex machinery exists, cannot be realistically 

demonstrated in this case, as it is not a true representation of its conditions. For 

this reason, these components have to be discretised into smaller sections (to 

represent many channels or pipes) to take into account the influences of the 

geometry on the wave propagation, such as reflections. The acoustic force-

vibration solutions are applied with the appropriate boundary conditions. It then 

can be acoustically modelled and coupled to the main pipe network. Having 

achieved this, it will definitely be possible to demonstrate a continuous pressure-

distribution and gradient along the entire HTGR pipe-network. The process is 

simple in principle but complex analytically due to the geometries of these 

components. It is an area of future work and investigation that is currently 

underway.  

 

Since the inputs to both acoustic subroutines only require pipe geometries, fluid 

temperatures at various points in the system, and the acoustic solutions is solvable 

for many time steps. It was found that a code such as Flownex can readily produce 

these parameters at different time steps. This supported the possibility of 

integrating these two codes for transient application. This has been proved for a 

steady state run and provides a high probability that the acoustic solutions can be 

coupled to a CFD code to produce complete acoustic simulations for transients of 

any pipe network system with time dependent boundary conditions. Although 

there are no experimental data from the an operating HTGR plant that can validate 

the results of this HTGR case study, the main objective was to verify the 

mathematics for the acoustic solutions and to demonstrate it can be coupled for a 

pipe-loop system. This objective has thus been demonstrated by the justification 
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provided. The next step in validating these results should be through experimental 

means.  
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CHAPTER 4  

SUMMARY AND CONCLUSIONS 
 

Pressure disturbances produced by longitudinal waves propagate through the 

compressible fluids in some cases as acoustic waves. These waves always produce 

excitation (wide band) and when these waves resonate (i.e. when standing 

pressure waves are produced). When these resonances coincide with any natural 

frequencies in the system, the resulting vibration of the components is amplified. 

Such vibrations can impact on the piping structures, known as fluid-structure 

interaction, and over time cause failure from material fatigue. If the vibrations are 

excessive it can be very damaging having financial, economic and productive 

impact. This condition must be avoided and therefore, being able to predict these 

conditions is extremely important. At present, one of the most useful tools 

available is to perform specialised analyses to predict this phenomenon and as 

such is a proactive risk management process. This is commonly known as 

acoustic vibrational analysis.   

 

The fundamentals of vibration and waves have been explored. This has been 

expanded to the simplest mechanical system, a spring-mass system, which is used 

to describe a typical vibrating system. The system is mathematically described as 

a linear non-homogeneous differential equation of the second order. This 

mathematical model incorporated the laws of physics that govern vibration. For 

complex systems, modelling such as system is complex, breaking down the 

complex system into smaller systems is the best approach to use. When a simple-

harmonic system is coupled to form a series of similar systems (smaller harmonic 

oscillators) as a complex acoustic model, it can be used to determining the overall 

vibration behaviour of that system. This Research Report investigated a forced 

vibration system. The forced vibration is produced by an excitation force, 

approximated by a harmonic function arising from forces produced by the 

compressor pulsating in the fluid medium (helium gas).  
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The well-known one-dimensional wave equation, described as a linear 

homogeneous differential equation, has been explored and selected to best 

describe the system of study. The wave-equation provides an estimation of the 

displacement of mass at each point as a function of time in order to completely 

describe the motion of an acoustic wave. The derivation of the wave equation has 

been explored and broken down into its fundamental properties that define it. It is 

discussed how it can be adapted to describe waves in a compressible and inviscid 

(with no phase change) fluid and can be modified to various other types of 

applications.  

 

An extensive study has been performed of the results of specialists who 

investigated flow induced vibrations and acoustic responses of reactor piping and 

reactor core support in PWRs. Notably, the work of Penzes and Horvay, Lee and 

Im and Cepkauskas were looked at more closely. Each investigation produced 

acoustic solutions that aimed at predicting the acoustic behaviour of fluids in a 

system. An assessment of each solution resulted in selecting the Cepkauskas 

SMiRT5 approach because of its unique applications. The Cepkauskas method 

consists of transforming a homogeneous differential equation with time dependent 

boundary conditions to one of a non-homogeneous differential equation with 

homogeneous boundary conditions. The Cepkauskas approach is also unique in 

comparison to the other solutions in that it did not require the use of defined 

auxiliary functions on the interior of the medium and proved to be more 

manageable and mathematically rigorous. In addition, this transformation 

technique was found to be a simpler method of solving these complex differential 

equations in the transformed space. The Cepkauskas approach also in turn had the 

possibility to be integrated into a pipe-loop configuration due to the frequencies 

not requiring a transcendental equation, therefore the possibility of applying it to a 

plant transient makes it more appropriate to use.  

 

The Cepkauskas approach was questioned by Lee and Im, when they stated 

[LE92, LE94]: 
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“Penzes, Bowers and Horvay and Cepkauskas, treated the problem of pulsations 

by introducing a body force concept, but they neglected to recognise the 

restrictions on the body force to make the boundary conditions homogenous”. 

 

 However when investigating the Cepkauskas methodology, it was found that the 

auxiliary terms do indeed cancel thus affirming that the auxiliary terms need not 

be defined to determine the pressure distribution of the acoustic wave.  This has 

been proved by solving the problem in transformed space and, upon substituting 

back into the untransformed equation, terms appear that are the negative Fourier 

series expansions of the auxiliary functions and thus the auxiliary function terms 

cancel. The results produced by the preliminary investigation provided confidence 

that this approach can be applied as the basis for deriving the other acoustic 

solution of the pipe-loop model. This approach has been demonstrated in several 

references [FI79, CE82 and CE08], and published by Cepkauskas as SMiRT5 

[CE79].    

 

In the present study, SMiRT5 has been analysed and the methodology applied to 

four forced-vibration acoustic cases with different boundary conditions. This was 

done to prove that the methodology is correct and to adapt it to various conditions 

existing in a pipe-loop system. Four acoustic cases, CASES 1 to 4, were 

successfully produced based on applying the linear transformation technique, as 

used in Penzes, Horvay and Bowers and Cepkauskas and using a time dependent 

boundary condition as the source of the pressure pulsations.  In all four cases, the 

results demonstrated that when restrictions were placed on the auxiliary functions 

the solutions were made homogenous and that the auxiliary terms do cancel, 

reaffirming that the auxiliary terms need not be defined to determine the pressure 

distribution of the acoustic wave.  

 

All four forced-vibration acoustic solutions were investigated to determine if they 

can be coupled to represent a pipe-loop configuration, containing four pipes and a 

compressor as the source of the pressure pulsations. The boundary conditions 

were found to be satisfied by taking the first and second derivatives of the 
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acoustic solution with respect to distance and time. This confirmed that the 

original assumptions made on the interior of the functions were met. To simplify 

the complexity of the acoustic solution, Jolley series [JO05] were selected that can 

adequately represent the acoustic solutions.  It should be noted that Fisher et al., 

showed a numerical convergence difficulty at the boundaries. The use of the 

Jolley Series provided an exact solution at the interior and at the boundaries.  

 

An acoustic subroutine consisting of the acoustic solutions was created and 

applied to a general pipe-loop model for determining the pressure distribution in 

the system. Specific forced vibration solutions are applied to each pipe dependent 

on its boundaries conditions; this generated a set of linear equations containing 

unknown constants. Kramers Rule [KR67] has been successfully applied to 

generate values of these constants in the solutions. Reverse calculations were 

performed to ensure the matrix conditions have been met. This demonstrated that 

the correct approach has been used for determining unknown constants in the 

acoustic solutions for a pipe network. 

 

In the general pipe-loop model test case, arbitrary values for temperatures and 

geometries were used to determine the overall acoustic pressure distribution. The 

pressure distribution was found to be continuous from pipe to pipe and no 

significant numerical problems were found with the methodology used. The 

overall pressure distribution and gradient results showed a continuous gradient 

through the interfaces, from the exit to the pump/compressor, through the pipes 

and back into the entry of the pipe, affirming that the acoustic solutions are 

mathematically correct and indeed can be coupled into a pipe network or pipe-

loop model to determine the fluid behaviour within a system. The acoustic 

subroutine was applied to an HTGR Flownex model at steady state conditions. 

The temperature and pipe geometries were extracted from the CFD code as inputs 

to the HTGR acoustic subroutine. The results showed that there was good 

representation of the acoustic behaviour of the helium in the individual pipes. The 

pressure gradient and overall pressure distribution in the entire pipe-loop was 

successfully produced, but indicated slight irregularities in its distribution. These 
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irregularities were produced by large temperature gradients existing at the heat 

exchanger and turbomachinery locations. These irregularities can be eliminated by 

discretising these components into many smaller sections, thereby reducing the 

temperature gradient, and applying the appropriate acoustic cases to them.  

 

The application of the acoustic solutions has generated values for forcing 

(excitation) and natural frequencies of the fluid pressure waves within the pipes. It 

also produced information of the resonances due to standing waves. This 

information can be used for identifying various problems such as flow-induced 

vibration or structural resonances. With knowing the excitation and natural 

frequencies of the fluid medium, one can predict if acoustical resonances will 

occur. Acoustical resonances are known to amplify the gas pulsations at the 

specific locations in such a magnitude as to cause significant vibration, flow 

induced vibrations. Should one know the systems’ structural natural frequencies 

transporting this fluid, it can be predicted if the fluids’ pressure wave excitation 

frequency produced from an excitation force (e.g. compressor or pump) 

approaches the structures’ natural frequency. This situation you will want to avoid 

due to resonance conditions it will generate. The search for resonance in the 

piping is to determine pressure that causes the pipes to vibrate. A coupling of 

structural, acoustic and pump frequencies along with a contributing modal 

participation factor is needed for large displacements. 

 

The series term in the acoustic solutions will also enable it to be applied for 

dynamic plant systems, such as plant transients (heat-up, shut down, start-up). In a 

start-up or heat-up plant mode, the parameters such pressures, temperatures and 

densities are continuously changing. The pressure of the fluid plays an important 

role as it influences the speed of sound and hence the speed of pressure waves in 

the fluid medium. These parameters are inputs into the one-dimensional wave 

equation and the four forced-vibration acoustic solutions. It can be obtained from 

a thermal hydraulic code simulating a particular plant transient, generating the 

results of these parameters at different time steps. The acoustic sub-routine can be 

coupled to this CFD code and generate the resonant frequencies, acoustic pressure 
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wave natural frequencies at each time step of the transient. This information can 

be used to predict the stages (or time period) where resonance will occur in the 

plants’ transient and to avoid extended operation at these conditions. The 

resonance can be produced by presence of possible standing waves in the fluid 

and by the excitation natural frequencies of the fluid impacting on structural 

natural frequencies, thereby causing structural resonance. These regions need to 

be determined and either the acoustic energy dissipated through design changes 

(such as designed- in damping) or start up rates accelerated to avoid fatigue 

damage (from excessive vibration). Once you accelerate the transitioning through 

these stages, one can pass quickly through the resonant phases with minimal 

impact. It is only when one is operating for an extended period of time in these 

phases then significant impact is experienced. A reactor coolant pump for a 

Pressurised Water Reactor comes to full speed very rapidly, thus the driving 

frequency starts at zero and arrives at its final frequency, pω . This sweeps 

through any acoustic resonance quick enough to avoid high structural response. 

However, in reality the damping of structures help dissipate the acoustic energy.  

 

The future work that has been identified from this study includes: 

 

1) Transient application  

 The acoustic subroutine is to be adapted to allow for a time-step change 

within transients. The resulting acoustic pressures can be then imported to 

a finite element pipe model to determine pipe vibration response (fluid-

structure interaction).  

 

2) Discretising of complex components  

 Complex components, such as heat exchangers and turbomachinery, 

produce large temperature gradients in a system. These components should 

be discretised to smaller increments to reduce the temperature gradients. 

The acoustic solutions can then be applied and coupled with a pipe 

network model to determine a complete system response.  
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3) Coupling of simulation packages 

 The original acoustic code produced in this Research Report is a 

subroutine. This subroutine can easily be coupled to a CFD code to 

produce an integrated forced vibration acoustic analytical tool. This is 

feasible since the subroutine requires only temperature, pressure and 

geometries for inputs. In the case of transients, the CFD code is ideal to 

produce values that are changing with respect to time, therefore coupling it 

to this subroutine is best.  For determining fluid-structure interaction (pipe 

vibration response) and/or stress analysis, the subroutine can be coupled to 

a Finite Element Model (FEM) code.  

 

4) Validation through experimental methods  

 The final validation of the four forced vibration acoustic solutions 

produced would be needed to be done through experimental methods. A 

real physical model of an acoustic problem should be established and 

comparing the results gathered would assess if the numerical analysis used 

for the acoustic solutions to predict the acoustic pressure distribution is 

accurate.  
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APPENDIX A1-1.  

 
 
 

 

Figure A.1: Simplified HTGR Flownex Model 
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Figure A.2: HTGR Flownex steady state conditions: Left Handside-Pressure in primary loop, Right Handside-Temperature in primary 
loop 
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APPENDIX B1-1. 

General case study acoustic subroutine. 
 

P = [10; 2; 3; 4] 
Lp = [10; 15; 20; 25] 
T = [100;200;300;400] 
</pre><pre class="codeoutput"> 
P = 

  
     1 
     2 
     3 
     4 

  

  
Lp = 

  
    10 
    15 
    20 
    25 

  

  
T = 

  
   100 
   200 
   300 
   400 

  
Constant Variables 

 

kelvin = 273.15; 
Po = 0.01; 
f = 100; 
R = 8.314; 
G = 1.667; 
M = 0.004; 

 
Determination of Constants 

 

Co = sqrt(G*R*(T+kelvin)/M); 
Wp = 2*pi*f; 
A = (Wp*Lp)./(Co); 
 

First Interface boundary at the exit of the compressor to the 

first pipe  

 

Application of Summation of Series(Jolley 

 

% P1(x=l) = P2(x=0) 

 
x11=1; 
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x21 = 0; 
K0 = cos((A(1,1))*(1-x11))/ cos (A(1,1)); 
K1 = (Co(1,1)/Wp)*(sin(A(1,1)*x11)/cos(A(1,1))); 
K2 = (Co(2,1)/Wp)*((cos(A(2,1)*(1-x21))/sin(A(2,1)))); 
K3= (Co(2,1)/Wp)*((cos(A(2,1)*x21)/sin(A(2,1)))); 
 

Second Interface Boundary 

Application of Summation of Jolley Series  

 

P2(x=l) = P3(x=0)</span> 
x22 = 1; 
x32 = 0; 
K4 = (Co(2,1)/Wp)*(((cos(A(2,1)*(1-x22)))/sin(A(2,1)))); 
K5 = (Co(2,1)/Wp)*((cos(A(2,1)*x22)/sin(A(2,1)))); 
K6 = (Co(3,1)/Wp)*(((cos(A(3,1)*(1-x32)))/sin(A(3,1)))); 
K7 = (Co(3,1)/Wp)*((cos(A(3,1)*x32)/sin(A(3,1)))); 
</pre><h2>End Interface Boundary<a name="7"></a></h2><pre 

class="codeinput"> <span class="comment">% Application of 

Summation of Jolley Series</span> 
        <span class="comment">% P3(x=l) = P4(x=0)</span> 
        <span class="comment">% At interface Aj = B(j-1) : A4 = 

B3</span> 
x33 = 1; 
x43= 0; 

  
K8 = (Co(3,1)/Wp)*(((cos(A(3,1)*(1-x33)))/sin(A(3,1)))); 
K9 = (Co(3,1)/Wp)*((cos(A(3,1)*x33)/sin(A(3,1)))); 
K10 = (Co(4,1)/Wp)*(sin(A(4,1)*(1-x43))/cos (A(4,1))); 

  
KValues=[K0;K1;K2;K3;K4;K5;K6;K7;K8;K9;K10]; 
 

Constructing the Matrix 

 

BM1 = [(K2-K1); -K4; 0]; 
BM2 = [(-K3); (K5+K6); -K8]; 
BM3 = [ 0; -K7; (K9-K10)]; 
C = Po*K0; 
Mtx = [BM1,BM2,BM3] 
Con = [C; 0; 0]; 
DeterMatrix = det(Mtx); 
w = Mtx; 
w(1:3,1)=[Con]; 
B1 = det(w)/det(Mtx) 
m = Mtx; 
m(1:3,2) = [Con]; 
B2 = det(m)/det(Mtx) 
n = Mtx; 
n(1:3,3) = [Con]; 
B3 = det (n)/det(Mtx) 
 

Mtx = 

  
   2.80614336231391  -2.31341974181624                  0 
  -2.31341974181624  -2.93829166237818  -4.61504440706338 
                  0  -4.61504440706338  -6.86026247558943 

  

  
B1 =   -4.686216505486100e-004 
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B2 =  -0.00651721854074 

B3 =   0.00438427145945 

  
 

Checking of Matrix 

 

a= B1*(K2-K1) + B2*(-K3)+ B3*(0); 
b= B1*(-K4)+ B2*(K5+K6) + B3*(-K7); 
c = B1*(0) + B2*(-K8)+ B3*(K9-K10); 
 

Application of Forced Responses- Plotting 

xl = 0:0.0125:1; 
xL = [xl']; 

  
All Pipes Pressure Distribution 

 
PipePressDist = [(Po*cos(A(1,1)*(1-

xL))+(B1*Co(1,1)/Wp)*sin(A(1,1)*xL))/cos(A(1,1)),(B1*(Co(2,1)/Wp)*

((1/A(2,1))+<span class="keyword">...</span> 
    ((cos(A(2,1)*(1-xL)))/sin(A(2,1)))))-

(B2*(Co(2,1)/Wp)*(((cos(A(2,1)*xL))/sin(A(2,1))))),(B2*(Co(3,1)/Wp

)*((1/A(3,1))+<span class="keyword">...</span> 
    ((cos(A(3,1)*(1-xL)))/sin(A(3,1)))))-

(B3*(Co(3,1)/Wp)*(((cos(A(3,1)*xL))/sin(A(3,1))))),<span 

class="keyword">...</span> 
    (-B3*Co(4,1)/Wp)* (sin(A(4,1)*(1-xL))/cos(A(4,1)))] 

  
plot(xL,PipePressDist) 

  

 
    a1= Lp(1,1)*xl; 
    b1= Lp(1,1)+ Lp(2,1)*xl; 
    c1= Lp(1,1)+Lp(2,1)+(Lp(3,1)*xl); 
    d1=Lp(1,1)+Lp(2,1)+Lp(3,1)+Lp(4,1)*xl; 
PipePressDist = 

  
   0.01000000000000   0.01443413503533   0.00441377520306  -

0.01239372387376 
   0.00924305377638   0.01428478708848   0.00275027826137  -

0.01092511979585 
   0.00844202634427   0.01401349199929   0.00103230008040  -

0.00927617649231 
   0.00760073789752   0.01362254492964  -0.00071883607206  -

0.00747411280960 
   0.00672320063949   0.01311525329957  -0.00248139537683  -

0.00554867512810 
   0.00581359964839   0.01249590880644  -0.00423350123241  -

0.00353164634330 
   0.00487627291810   0.01176975111708  -0.00595340678382  -

0.00145632123051 
   0.00391569066985   0.01094292354009  -0.00761976484105   

0.00064304314663 
   0.00293643403313   0.01002242105333  -0.00921189283697   

0.00273179291220 
   0.00194317319780   0.00901603112630  -0.01071002953595   

0.00477544940395 
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   0.00094064514138   0.00793226783793  -0.01209558030718   

0.00674027830720 
  -0.00006636896213   0.00678029984736  -0.01335134791820   

0.00859384650181 
  -0.00107306654428   0.00556987282688  -0.01446174598419   

0.01030555743056 
  -0.00207464654611   0.00431122701334  -0.01541299242365   

0.01184715615170 
  -0.00306633231502   0.00301501057554  -0.01619328051935   

0.01319319573882 
  -0.00404339438516   0.00169218953051  -0.01679292546144   

0.01432145732920 
  -0.00500117303283   0.00035395497080  -0.01720448455372   

0.01521331688710 
  -0.00593510049923  -0.00098837161238  -0.01742284959119   

0.01585405262777 
  -0.00684072277463  -0.00232343410927  -0.01744531026227   

0.01623308802761 
  -0.00771372084008  -0.00363993786437  -0.01727158778872   

0.01634416640919 
  -0.00854993126535  -0.00492674522954  -0.01690383838585   

0.01618545421923 
  -0.00934536606473  -0.00617296978868  -0.01634662649986   

0.01575957129474 
  -0.01009623171632  -0.00736806845706  -0.01560686815470   

0.01507354761786 
  -0.01079894725365  -0.00850193067599  -0.01469374511153   

0.01413870727299 
  -0.01145016134386  -0.00956496394838  -0.01361859090611   

0.01297048152193 
  -0.01204676827049  -0.01054817499145  -0.01239475017884   

0.01158815408251 
  -0.01258592274507  -0.01144324582005  -0.01103741304322   

0.01001454281528 
  -0.01306505347664  -0.01224260411707  -0.00956342654862   

0.00827562307270 
  -0.01348187543448  -0.01293948729527  -0.00799108557742   

0.00640009892811 
  -0.01383440074574  -0.01352799970901  -0.00633990577187   

0.00441892936211 
  -0.01412094817584  -0.01400316253148  -0.00463038130912   

0.00236481722760 
  -0.01434015114644  -0.01436095587567  -0.00288373053076   

0.00027166942889 
  -0.01449096425284  -0.01459835280274  -0.00112163258424  -

0.00182596277414 
  -0.01457266824964  -0.01471334492990   0.00063404165523  -

0.00389345409827 
  -0.01458487348089  -0.01470495942148   0.00236150104249  -

0.00589667679101 
  -0.01452752173839  -0.01457326721903   0.00403930463054  -

0.00780256397198 
  -0.01440088653935  -0.01431938244122   0.00564662779214  -

0.00957965546275 
  -0.01420557182190  -0.01394545295837   0.00716352069175  -

0.01119861709496 
  -0.01394250906484  -0.01345464222139   0.00857115589960  -

0.01263272492484 
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  -0.01361295284536  -0.01285110249896   0.00985206207480  -

0.01385830636112 
  -0.01321847485574  -0.01213993974921   0.01099034081670  -

0.01485513092475 
  -0.01276095640783  -0.01132717042326   0.01197186399335  -

0.01560674419021 
  -0.01224257946081  -0.01041967056590   0.01278444909758  -

0.01610073939614 
  -0.01166581621520  -0.00942511764409   0.01341801045426  -

0.01632896224174 
  -0.01103341732261  -0.00835192559550   0.01386468440213  -

0.01628764548858 
  -0.01034839876761  -0.00720917364636   0.01411892689628  -

0.01597747114578 
  -0.00961402748409  -0.00600652950104   0.01417758231992  -

0.01540355921218 
  -0.00883380577492  -0.00475416755313   0.01403992265139  -

0.01457538316136 
  -0.00801145460902  -0.00346268280980   0.01370765650029  -

0.01350661356449 
  -0.00715089587563  -0.00214300125785   0.01318490790043  -

0.01221489243237 
  -0.00625623368037  -0.00080628742965   0.01247816512302  -

0.01072154200157 
  -0.00533173477227   0.00053615004902   0.01159620014530  -

0.00905121277159 
  -0.00438180819515   0.00187295413018   0.01054995977418  -

0.00723147660303 
  -0.00341098426038   0.00319281542454   0.00935242977621  -

0.00529237159320 
  -0.00242389294125   0.00448456787909   0.00801847370036  -

0.00326590624199 
  -0.00142524179215   0.00573728324218   0.00656464839407  -

0.00118553109266 
  -0.00041979349764   0.00694036351674   0.00500899850230   

0.00091441343103 
   0.00058765684135   0.00808363061953   0.00337083250031   

0.00299926387675 
   0.00159230457587   0.00915741248796   0.00167048304003   

0.00503460594772 
   0.00258935842295   0.01015262490591  -0.00007094541559   

0.00698684257409 
   0.00357406331575   0.01106084835638  -0.00183183853774   

0.00882374849442 
   0.00454172308104   0.01187439925077  -0.00359034040530   

0.01051500219305 
   0.00548772283581   0.01258639493222  -0.00532462477703   

0.01203268641248 
   0.00640755099618   0.01319081190300  -0.00701316599534   

0.01335174897920 
   0.00729682079366   0.01368253678342  -0.00863500615925   

0.01445041633590 
   0.00815129119622   0.01405740957115  -0.01017001525052   

0.01531055295418 
   0.00896688713418   0.01431225883487  -0.01159914098416   

0.01591796069484 
   0.00973971893479   0.01444492854473  -0.01290464528231   

0.01626261317431 
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   0.01046610087246   0.01445429631231  -0.01407032443643   

0.01633882126859 
   0.01114256874646   0.01434028288611  -0.01508171022505   

0.01614532702272 
   0.01176589640209   0.01410385282200  -0.01592624949109   

0.01568532441561 
   0.01233311111659   0.01374700632307  -0.01659345994952   

0.01496640663761 
   0.01284150777640   0.01327276231784  -0.01707506029187   

0.01400044075084 
   0.01328866177817   0.01268513292010  -0.01736507297244   

0.01280337180151 
   0.01367244059197   0.01198908948633  -0.01745989840069   

0.01139495961757 
   0.01399101393160   0.01119052055793  -0.01735835961869   

0.00979845263630 
   0.01424286248339   0.01029618204403  -0.01706171690943   

0.00804020414612 
   0.01442678515204   0.00931364006639  -0.01657365215430   

0.00614923727694 
   0.01454190478875   0.00825120694982  -0.01590022313425   

0.00415676591998 
   0.01458767237446   0.00711787089977  -0.01504978834153   

0.00209567948500 
   0.01456386963818   0.00592321996194  -0.01403290323549                  

0 

  
<h2>Continuous Pressure Distribution in Loop<a  

 

TotalPipeLength=[a1,b1,c1,d1]'; 
PipeDist1=[(Po*cos(A(1,1)*(1-

xL))+(B1*Co(1,1)/Wp)*sin(A(1,1)*xL))/cos(A(1,1));(B1*(Co(2,1)/Wp)*

((1/A(2,1))+<span class="keyword">...</span> 
    ((cos(A(2,1)*(1-xL)))/sin(A(2,1)))))-

(B2*(Co(2,1)/Wp)*(((cos(A(2,1)*xL))/sin(A(2,1)))));(B2*(Co(3,1)/Wp

)*((1/A(3,1))+<span class="keyword">...</span> 
    ((cos(A(3,1)*(1-xL)))/sin(A(3,1)))))-

(B3*(Co(3,1)/Wp)*(((cos(A(3,1)*xL))/sin(A(3,1)))));<span 

class="keyword">...</span> 
    (-B3*Co(4,1)/Wp)* (sin(A(4,1)*(1-xL))/cos(A(4,1)))]; 
Pipegrad1= (A(1,1)*((Po*sin(A(1,1)*(1-

xl))+(B1*Co(1,1)/Wp)*cos(A(1,1)*xl))/cos(A(1,1)))/Lp(1,1))'; 
Pipegrad2=(A(2,1)*(((Co(2,1)*B1/Wp)*(sin(A(2,1)*(1-

xl))/sin(A(2,1))))+((B2*Co(2,1)/Wp)*(sin(A(2,1)*xl)/sin(A(2,1)))))

/Lp(2,1))'; 
Pipegrad3=(A(3,1)*(((Co(3,1)*B2/Wp)*(sin(A(3,1)*(1-

xl))/sin(A(3,1))))+((B3*Co(3,1)/Wp)*(sin(A(3,1)*xl)/sin(A(3,1)))))

/Lp(3,1))'; 
Pipegrad4=((A(4,1)/Lp(4,1)*B3*Co(4,1)/Wp)*(cos(A(4,1)*(1-

xl))/cos(A(4,1))))'; 
TotalPipeGrad = [Pipegrad1;Pipegrad2;Pipegrad3;Pipegrad4] 
</pre><pre class="codeoutput"> 
TotalPipeGrad = 

  
-0.0059 
   -0.0062 
   -0.0066 
   -0.0069 

     
   -0.0005 
   -0.0011 
   -0.0018 

     -.0068 
   -0.0065 
   -0.0062 
   -0.0058 

    0.0044 
    0.0050 
    0.0055 
    0.0060 
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   -0.0072 
   -0.0074 
   -0.0076 
   -0.0078 
   -0.0079 
   -0.0080 
   -0.0080 
   -0.0081 
   -0.0080 
   -0.0080 
   -0.0079 
   -0.0077 
   -0.0076 
   -0.0074 
   -0.0071 
   -0.0068 
   -0.0065 
   -0.0062 
   -0.0058 
   -0.0054 
   -0.0050 
   -0.0045 
   -0.0041 
   -0.0036 
   -0.0031 
   -0.0026 
   -0.0020 
   -0.0015 
   -0.0009 
   -0.0004 
    0.0002 
    0.0007 
    0.0013 
    0.0018 
    0.0024 
    0.0029 
    0.0034 
    0.0039 
    0.0044 
    0.0048 
    0.0053 
    0.0057 
    0.0061 
    0.0064 
    0.0067 
    0.0070 
    0.0073 
    0.0075 
    0.0077 
    0.0078 
    0.0079 
    0.0080 
    0.0081 
    0.0081 

0.0080 
    0.0079 
    0.0078 
    0.0077 
    0.0075 

   -0.0024 
   -0.0030 
   -0.0036 
   -0.0041 
   -0.0047 
   -0.0051 
   -0.0056 
   -0.0060 
   -0.0063 
   -0.0066 
   -0.0068 
   -0.0070 
   -0.0071 
   -0.0072 
   -0.0071 
   -0.0071 
   -0.0070 
   -0.0068 
   -0.0065 
   -0.0062 
   -0.0059 
   -0.0055 
   -0.0050 
   -0.0045 
   -0.0040 
   -0.0034 
   -0.0028 
   -0.0022 
   -0.0016 
   -0.0009 
   -0.0003 
    0.0004 
0.0010 
    0.0017 
    0.0023 
    0.0029 
    0.0035 
    0.0041 
    0.0046 
    0.0051 
    0.0055 
    0.0059 
    0.0063 
    0.0066 
    0.0068 
    0.0070 
    0.0071 
    0.0072 
    0.0072 
    0.0071 
    0.0070 
    0.0068 
    0.0066 
    0.0063 
    0.0059 
    0.0055 
    0.0051 
    0.0046 
    0.0041 

 -0.0022 
   -0.0028 
   -0.0034 
   -0.0040 
   -0.0045 
   -0.0050 
   -0.0055 
-0.0053 
   -0.0047 
   -0.0041 
   -0.0035 
   -0.0028 
   -0.0020 
   -0.0013 
   -0.0005 
    0.0003 
    0.0011 
    0.0019 
    0.0026 
    0.0033 
    0.0040 
    0.0046 
    0.0052 
    0.0057 
    0.0061 
    0.0065 
    0.0067 
    0.0069 
    0.0070 
    0.0071 
    0.0070 
    0.0068 
    0.0066 
    0.0063 
    0.0059 
    0.0054 
    0.0048 
    0.0042 
    0.0036 
    0.0029 
    0.0022 
    0.0014 
    0.0006 
   -0.0002 
   -0.0009 
   -0.0017 
   -0.0025 
   -0.0032 
   -0.0039 
   -0.0045 
   -0.0051 
   -0.0056 
   -0.0060 
   -0.0064 
   -0.0067 
   -0.0069 
   -0.0070 
   -0.0071 
   -0.0070 

    0.0063 
    0.0066 
    0.0067 
    0.0067 

-0.0059 

 
    0.0066 
    0.0064 
    0.0061 
    0.0057 
    0.0052 
    0.0046 
    0.0040 
    0.0032 
    0.0025 
    0.0016 
    0.0008 
   -0.0001 
   -0.0009 
   -0.0018 
   -0.0026 
   -0.0034 
   -0.0041 
   -0.0047 
   -0.0053 
   -0.0058 
   -0.0062 
   -0.0065 
   -0.0067 
   -0.0067 
   -0.0067 
   -0.0065 
   -0.0063 
   -0.0059 
   -0.0054 
   -0.0049 
   -0.0043 
   -0.0036 
   -0.0028 
   -0.0020 
   -0.0012 
   -0.0003 
    0.0006 
    0.0014 
    0.0022 
    0.0030 
    0.0038 
    0.0045 
    0.0051 
    0.0056 
    0.0060 
    0.0064 
    0.0066 
    0.0067 
    0.0067 
    0.0066 
    0.0064 
    0.0061 
    0.0057 
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    0.0072 
    0.0070 
    0.0067 
    0.0064 
    0.0060 
    0.0056 
    0.0052 
    0.0048 
    0.0043 
    0.0038 
    0.0033 
    0.0028 
    0.0023 
    0.0017 
    0.0012 
    0.0006 
    0.0001 
   -0.0005 

    0.0035 
    0.0029 
    0.0023 
    0.0017 
    0.0010 
    0.0004 
   -0.0003 
   -0.0009 
   -0.0016 
   -0.0059 
   -0.0062 
   -0.0065 
   -0.0065 
   -0.0068 
   -0.0070 
   -0.0070 
   -0.0070 
   -0.0070 

 

   -0.0069 
   -0.0066 
   -0.0063 

   -0.0055 
   -0.0050 
   -0.0044 
   -0.0037 
   -0.0030 
   -0.0023 
   -0.0015 
   -0.0008 
    0.0000 
    0.0008 
    0.0016 
    0.0023 
    0.0031 
    0.0037 
    0.0044 

 

    0.0051 
    0.0046 
    0.0039 
    0.0031 
    0.0024 
    0.0015 
    0.0007 
   -0.0002 
   -0.0010 
   -0.0019 
   -0.0027 
   -0.0035 
   -0.0042 
   -0.0048 
   -0.0054 
   -0.0059 
   -0.0062 
   -0.0065 
   -0.0067 
   -0.0067 
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APPENDIX B1-2 

 Simplified HTGR Model Acoutic Subroutine  

 
Creation of M-file to be linked with Flownex for the Acoustics Application Input Variables 

Constant Variables Determination of Constants First Interface boundary at the exit of the 

compressor to the first pipe Second Interface Boundary End Interface Boundary 

Constructing the Matrix Checking of Matrix Application of Forced Responses- Plotting 

Continuous Pressure Distribution in Loop  

 

Creation of M-file to be linked with Flownex for the Acoustics Application 

 

Defining of the Global Variables 

global kelvin Po f R G M 

format long 

 

 

Input Variables 

  
 
Piping, Temperature Inputs to coding from Flownex model This would need more detail for a 
proper representation of the PBMR plant  
P = [1;2;3;4] 
Lp = [6.74;33.4;25;37] 
T = [108;696;710;80] 
 
 
P = 
 
     1 
     2 
     3 
     4 
 
 
Lp = 
 
   6.74000000000000 
  33.40000000000000 
  25.00000000000000 
  37.00000000000000 
 
 
T = 
 
   108 
   696 
   710 
    80 
 
 
 
Constant Variables 

 
kelvin = 273.15; 
Po = 0.01; 



 116 

f = 100; 
R = 8.314; 
G = 1.667; 
M = 0.004; 
 
 
Determination of Constants 

 
Co = sqrt(G*R*(T+kelvin)/M); 
Wp = 2*pi*f; 
A = (Wp*Lp)./(Co); 
 
 
First Interface boundary at the exit of the compressor to the first pip 

 

Application of Summation of Series(Jolley) 

                % P1(x=l) = P2(x=0) 
x11=1; 
x21 = 0; 
 
Second Interface Boundary 

  

Application of Summation of Jolley Series 

                % P2(x=l) = P3(x=0) 
x22 = 1; 
x32 = 0; 
 
 
End Interface Boundary 
 
 % Application of Summation of Jolley Series 
        % P3(x=l) = P4(x=0) 
        % At interface Aj = B(j-1) : A4 = B3 
x33 = 1; 
x43= 0; 
 
KValues=[K0;K1;K2;K3;K4;K5;K6;K7;K8;K9;K10]; 
 
 
Constructing the Matrix 
 
BM1 = [(K2-K1); -K4; 0]; 
BM2 = [(-K3); (K5+K6); -K8]; 
BM3 = [ 0; -K7; (K9-K10)]; 
C = Po*K0; 
Mtx = [BM1,BM2,BM3] 
Con = [C; 0; 0]; 
DeterMatrix = det(Mtx); 
w = Mtx; 
w(1:3,1)=[Con]; 
B1 = det(w)/det(Mtx) 
m = Mtx; 
m(1:3,2) = [Con]; 
B2 = det(m)/det(Mtx) 
n = Mtx; 
n(1:3,3) = [Con]; 
B3 = det (n)/det(Mtx) 
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Mtx = 
 
  -2.53772394030833   3.24935333328282                  0 
   3.24935333328282  -3.69719029408620  -3.70902746586376 
                  0  -3.70902746586376   0.33052833115732 
 
 
B1 = 
 
   0.00506936943576 
 
 
B2 = 
 
    3.634790087039232e-004 
 
 
B3 = 
 
   0.00407878387256 
 
 
Checking of Matrix 
 
a= B1*(K2-K1) + B2*(-K3)+ B3*(0) 
b= B1*(-K4)+ B2*(K5+K6) + B3*(-K7) 
c = B1*(0) + B2*(-K8)+ B3*(K9-K10) 
 
a = 
 
  -0.01168358845088 
 
b = 
 
    1.734723475976807e-018 
 
c = 
 
   -2.168404344971009e-019 
 
 
 
Application of Forced Responses- Plotting 
 
xl = 0:0.0125:1; 
xL = [xl']; 
 
% All Pipes 
PipePressDist = [(Po*cos(A(1,1)*(1-
xL))+(B1*Co(1,1)/Wp)*sin(A(1,1)*xL))/cos(A(1,1)),(B1*(Co(2,1)/Wp)*((1/A(2,1))+... 
    ((cos(A(2,1)*(1-xL)))/sin(A(2,1)))))-
(B2*(Co(2,1)/Wp)*(((cos(A(2,1)*xL))/sin(A(2,1))))),(B2*(Co(3,1)/Wp)*((1/A(3,1))+... 
    ((cos(A(3,1)*(1-xL)))/sin(A(3,1)))))-(B3*(Co(3,1)/Wp)*(((cos(A(3,1)*xL))/sin(A(3,1))))),... 
    (-B3*Co(4,1)/Wp)* (sin(A(4,1)*(1-xL))/cos(A(4,1)))] 
 
plot(xL,PipePressDist) 
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grid on 
xlabel('Pipe Increments x/L') 
ylabel('Pipe Acoustic Pressure (kPa)') 
legend('Pipe 1','Pipe 2','Pipe 3','Pipe 4'); 
legend('Orientation','Vertical','Location','NorthEastOutside') 
title('Pipe Acoustic Pressures') 
 
format short 
 
    a1= Lp(1,1)*xl; 
    b1= Lp(1,1)+ Lp(2,1)*xl; 
    c1= Lp(1,1)+Lp(2,1)+(Lp(3,1)*xl); 
    d1=Lp(1,1)+Lp(2,1)+Lp(3,1)+Lp(4,1)*xl; 
 
 
PipePressDist = 
 
   0.01000000000000  -0.00479052575579  -0.01582598301391   0.01058475641071 
   0.00976878989147  -0.00261907863326  -0.01562242906074   0.01208641682495 
   0.00951685538239  -0.00036764087232  -0.01524081488304   0.01275872925276 
   0.00924473094957   0.00191772855548  -0.01468545536588   0.01255556083554 
   0.00895299390256   0.00419027651873  -0.01396262992087   0.01149085262134 
   0.00864226315890   0.00640351218219  -0.01308051148523   0.00963766295545 
   0.00831319793109   0.00851215809684  -0.01204907411102   0.00712315434932 
   0.00796649632809   0.01047307646696  -0.01087998018917   0.00411986781981 
   0.00760289387423   0.01224615164510  -0.00958644858369   0.00083388343781 
   0.00722316194888   0.01379511080126  -0.00818310516683  -0.00250932051224 
   0.00682810614994   0.01508826597722  -0.00668581744539  -0.00568033944301 
   0.00641856458475   0.01609916234552  -0.00511151514794  -0.00846158379066 
   0.00599540609209   0.01680711941129  -0.00347799880149  -0.01066220961584 
   0.00555952839892   0.01719765408514  -0.00180373846223  -0.01213121396842 
   0.00511185621588   0.01726277697214  -0.00010766487583  -0.01276779643589 
   0.00465333927551   0.01700115581552   0.00159104457114  -0.01252827588468 
   0.00418495031740   0.01641814275142   0.00327318268864  -0.01142908778030 
   0.00370768302455   0.01552566481713   0.00491972965750  -0.00954565641552 
   0.00322254991526   0.01434197995276   0.00651206808519  -0.00700721943228 
   0.00273058019509   0.01289130348793   0.00803219351140  -0.00398795976926 
   0.00223281757341   0.01120331275469   0.00946291798325  -0.00069505354477 
   0.00173031804919   0.00931253996109   0.01078806439823   0.00264554599248 
   0.00122414767066   0.00725766574571   0.01199264941763   0.00580461296523 
   0.00071538027378   0.00508072786534   0.01306305288206   0.00856537793132 
   0.00020509520403   0.00282626120417   0.01398717181370   0.01073840220938 
  -0.00030562497336   0.00054038669773   0.01475455726380   0.01217457681737 
  -0.00081569677010  -0.00173013218992   0.01535653245824   0.01277535406024 
  -0.00132403807342  -0.00393884613349   0.01578629090518   0.01249950969397 
  -0.00182957044179  -0.00604057018741   0.01603897335564   0.01136597165834 
  -0.00233122139280  -0.00799230816051   0.01611172274666   0.00945252127603 
  -0.00282792667843  -0.00975413221405   0.01600371650591   0.00689045603950 
  -0.00331863254286  -0.01128999968883   0.01571617585247   0.00385558021529 
  -0.00380229795797  -0.01256849045076   0.01525235198859   0.00055614147434 
  -0.00427789683190  -0.01356344967084   0.01461748933857  -0.00278145868521 
  -0.00474442018589  -0.01425452288971   0.01381876625042  -0.00592820019796 
  -0.00520087829481  -0.01462757242064   0.01286521383078  -0.00866815937244 
  -0.00564630278685  -0.01467496657245   0.01176761383079  -0.01081332518295 
  -0.00607974869792  -0.01439573577540   0.01053837673764  -0.01221650024492 
  -0.00650029647641  -0.01379559241630   0.00919140144997  -0.01278140123226 
  -0.00690705393395  -0.01288681397685   0.00774191812408  -0.01246926566450 
  -0.00729915813822  -0.01168799186606   0.00620631596751  -0.01130151171777 
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  -0.00767577724365  -0.01022365108500   0.00460195792749  -0.00935826854851 
  -0.00803611225618  -0.00852374850460   0.00294698436924  -0.00677287797612 
  -0.00837939872829  -0.00662306002048   0.00126010796414  -0.00372274480937 
  -0.00870490838080  -0.00456046912227  -0.00043959789313  -0.00041716365034 
  -0.00901195064788  -0.00237817143145  -0.00213291474620   0.00291704252125 
  -0.00929987414210  -0.00012081148094  -0.00380069637869   0.00605108652928 
  -0.00956806803635   0.00216543060403  -0.00542408529921   0.00876991596201 
  -0.00981596335966   0.00443378383960  -0.00698472596169   0.01088696967828 
  -0.01004303420433   0.00663784320452  -0.00846497231025   0.01225697929440 
  -0.01024879884159   0.00873251897462  -0.00984808730199   0.01278593723699 
  -0.01043282074358   0.01067495914957  -0.01111843215148   0.01243754737205 
  -0.01059470950950   0.01242542610111  -0.01226164315751   0.01123571557982 
  -0.01073412169376   0.01394810950886  -0.01326479411242   0.00926290937662 
  -0.01085076153467   0.01521185895287  -0.01411654245786   0.00665449914360 
  -0.01094438158183   0.01619082117585  -0.01480725753428   0.00358946925685 
  -0.01101478322117   0.01686496897831  -0.01532912947415   0.00027813650435 
  -0.01106181709623   0.01722051092662  -0.01567625750761  -0.00305228147027 
  -0.01108538342506   0.01725017349238  -0.01584471668203  -0.00617325743011 
  -0.01108543221190   0.01695334985123  -0.01583260224118  -0.00887063566916 
  -0.01106196335326   0.01633611229701  -0.01564005116221  -0.01095932698825 
  -0.01101502663811   0.01541108801731  -0.01526924060684  -0.01229600917990 
  -0.01094472164227   0.01419720077176  -0.01472436330432  -0.01278896153812 
  -0.01085119751716   0.01271928375764  -0.01401158014458  -0.01240435856675 
  -0.01073465267338   0.01100757158277  -0.01313895051742  -0.01116859102367 
  -0.01059533435978   0.00909708173852  -0.01211634118560  -0.00916645503485 
  -0.01043353813891   0.00702689822665  -0.01095531472200  -0.00653533353807 
  -0.01024960726002   0.00483937199514  -0.00966899877241  -0.00345576931514 
  -0.01004393193081   0.00257925454020  -0.00827193762218  -0.00013907647380 
  -0.00981694848967   0.00029278239896  -0.00677992774495   0.00318715954275 
  -0.00956913847993  -0.00197326873834  -0.00520983919307   0.00629469845597 
  -0.00930102762833  -0.00417254094582  -0.00357942484903   0.00897030658563 
  -0.00901318472964  -0.00626004243297  -0.00190711969488   0.01103038855793 
  -0.00870622044001  -0.00819306796793  -0.00021183236916   0.01233358528685 
  -0.00838078598142  -0.00993207252322   0.00148726863177   0.01279047377808 
  -0.00803757176018  -0.01144148027135   0.00317097169059   0.01236970317256 
  -0.00767730590221  -0.01269041238027   0.00482023929344   0.01110014598559 
  -0.00730075270829  -0.01365331871953   0.00641642328577   0.00906891692715 
  -0.00690871103267  -0.01431050055418   0.00794147572575   0.00641539524869 
  -0.00650201258826  -0.01464851353327   0.00937815295109   0.00332166079181 
  -0.00608152018219  -0.01466044272871   0.01071021055190                  0 
 
 
 
Continuous Pressure Distribution in Loop 
 
TotalPipeLength=[a1,b1,c1,d1]'; 
PipeDist1=[(Po*cos(A(1,1)*(1-
xL))+(B1*Co(1,1)/Wp)*sin(A(1,1)*xL))/cos(A(1,1));(B1*(Co(2,1)/Wp)*((1/A(2,1))+... 
    ((cos(A(2,1)*(1-xL)))/sin(A(2,1)))))-
(B2*(Co(2,1)/Wp)*(((cos(A(2,1)*xL))/sin(A(2,1)))));(B2*(Co(3,1)/Wp)*((1/A(3,1))+... 
    ((cos(A(3,1)*(1-xL)))/sin(A(3,1)))))-(B3*(Co(3,1)/Wp)*(((cos(A(3,1)*xL))/sin(A(3,1)))));... 
    (-B3*Co(4,1)/Wp)* (sin(A(4,1)*(1-xL))/cos(A(4,1)))]; 
Pipegrad1= (A(1,1)*((Po*sin(A(1,1)*(1-
xl))+(B1*Co(1,1)/Wp)*cos(A(1,1)*xl))/cos(A(1,1)))/Lp(1,1))'; 
Pipegrad2=(A(2,1)*(((Co(2,1)*B1/Wp)*(sin(A(2,1)*(1-
xl))/sin(A(2,1))))+((B2*Co(2,1)/Wp)*(sin(A(2,1)*xl)/sin(A(2,1)))))/Lp(2,1))'; 
Pipegrad3=(A(3,1)*(((Co(3,1)*B2/Wp)*(sin(A(3,1)*(1-
xl))/sin(A(3,1))))+((B3*Co(3,1)/Wp)*(sin(A(3,1)*xl)/sin(A(3,1)))))/Lp(3,1))'; 
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Pipegrad4=((A(4,1)/Lp(4,1)*B3*Co(4,1)/Wp)*(cos(A(4,1)*(1-xl))/cos(A(4,1))))'; 
TotalPipeGrad = [Pipegrad1;Pipegrad2;Pipegrad3;Pipegrad4] 
 
 
TotalPipeGrad = 
 
 

   -0.0026 
   -0.0029 
   -0.0031 
   -0.0033 
   -0.0036 
   -0.0038 
   -0.0040 
   -0.0042 
   -0.0044 
   -0.0046 
   -0.0048 
   -0.0049 
   -0.0051 
   -0.0052 
   -0.0054 
   -0.0055 
   -0.0056 
   -0.0057 
   -0.0058 
   -0.0059 
   -0.0059 
   -0.0060 
   -0.0060 
   -0.0060 
   -0.0061 
   -0.0061 
   -0.0060 
   -0.0060 
   -0.0060 
   -0.0059 
   -0.0059 
   -0.0058 
   -0.0057 
   -0.0056 
   -0.0055 
   -0.0054 
   -0.0052 
   -0.0051 
   -0.0049 
   -0.0047 
   -0.0046 
   -0.0044 
   -0.0042 
   -0.0040 
   -0.0038 
   -0.0035 
   -0.0033 
   -0.0031 
   -0.0028 
   -0.0026 
   -0.0023 

    0.0055 
    0.0055 
    0.0054 
    0.0052 
    0.0049 
    0.0044 
    0.0039 
    0.0033 
    0.0027 
    0.0020 
    0.0012 
    0.0005 
   -0.0003 
   -0.0011 
   -0.0019 
   -0.0026 
   -0.0032 
   -0.0038 
   -0.0044 
   -0.0048 
   -0.0051 
   -0.0053 
   -0.0055 
   -0.0055 
   -0.0054 
   -0.0052 
   -0.0048 
   -0.0044 
   -0.0039 
   -0.0033 
   -0.0027 
   -0.0019 
   -0.0012 
   -0.0004 
    0.0004 
    0.0004 
    0.0009 
    0.0015 
    0.0020 
    0.0026 
    0.0031 
    0.0035 
    0.0039 
    0.0043 
    0.0046 
    0.0049 
    0.0051 
    0.0053 
    0.0054 
    0.0054 
    0.0054 

    0.0041 
    0.0041 
    0.0024 
    0.0005 
   -0.0014 
   -0.0032 
   -0.0048 
   -0.0060 
   -0.0069 
   -0.0072 
   -0.0071 
   -0.0065 
   -0.0054 
   -0.0040 
   -0.0023 
   -0.0004 
    0.0015 
    0.0033 
    0.0048 
    0.0061 
    0.0069 
    0.0073 
    0.0071 
    0.0065 
    0.0054 
    0.0039 
    0.0022 
    0.0004 
   -0.0015 
   -0.0033 
   -0.0049 
   -0.0061 
   -0.0069 
   -0.0073 
   -0.0071 
   -0.0064 
   -0.0053 
   -0.0039 
   -0.0022 
   -0.0003 
    0.0016 
    0.0034 
    0.0050 
    0.0062 
    0.0070 
    0.0073 
    0.0071 
    0.0064 
    0.0053 
    0.0038 
    0.0021 
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   -0.0021 
   -0.0018 
   -0.0015 
   -0.0012 
   -0.0010 
   -0.0007 
   -0.0004 
   -0.0001 
    0.0001 
    0.0004 
    0.0007 
    0.0010 
    0.0012 
    0.0015 
    0.0018 
    0.0021 
    0.0023 
    0.0026 
    0.0028 
    0.0031 
    0.0033 
    0.0035 
    0.0038 
    0.0040 
    0.0042 
    0.0044 
    0.0046 
    0.0047 
    0.0049 
    0.0051 
    0.0051 
    0.0053 
    0.0055 
    0.0055 
    0.0054 
    0.0052 
    0.0049 
    0.0045 
    0.0040 
    0.0034 
    0.0028 
    0.0021 
    0.0013 
    0.0005 
   -0.0002 
   -0.0010 
   -0.0018 
   -0.0025 
   -0.0032 
   -0.0038 
   -0.0043 
   -0.0047 
   -0.0051 
   -0.0053 
   -0.0055 
   -0.0055 
   -0.0054 
   -0.0052 

    0.0053 
    0.0052 
    0.0050 
    0.0047 
    0.0044 
    0.0041 
    0.0036 
    0.0032 
    0.0027 
    0.0022 
    0.0017 
    0.0011 
    0.0005 
   -0.0001 
   -0.0006 
   -0.0012 
   -0.0018 
   -0.0023 
   -0.0028 
   -0.0033 
   -0.0037 
   -0.0041 
   -0.0045 
   -0.0048 
   -0.0050 
   -0.0052 
   -0.0054 
   -0.0054 
   -0.0054 
   -0.0054 
   -0.0053 
   -0.0051 
   -0.0049 
   -0.0046 
   -0.0043 
   -0.0039 
   -0.0034 
   -0.0030 
   -0.0025 
   -0.0019 
   -0.0014 
   -0.0008 
   -0.0003 
    0.0003 
    0.0009 
    0.0015 
    0.0020 
    0.0025 
    0.0030 
    0.0035 
    0.0039 
    0.0043 
    0.0046 
    0.0049 
    0.0051 
    0.0053 
    0.0054 
    0.0054 

    0.0002 
   -0.0017 
   -0.0035 
   -0.0050 
   -0.0062 
   -0.0070 
   -0.0073 
   -0.0071 
   -0.0064 
   -0.0052 
   -0.0037 
   -0.0020 
   -0.0001 
    0.0018 
    0.0035 
    0.0051 
    0.0062 
    0.0070 
    0.0073 
    0.0070 
    0.0063 
    0.0052 
    0.0037 
    0.0019 
    0.0000 
   -0.0018 
   -0.0036 
   -0.0051 
   -0.0063 
   -0.0070 
   -0.0073 
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   -0.0049 
   -0.0045 
   -0.0040 
   -0.0034 
   -0.0027 
   -0.0020 
   -0.0013 
   -0.0005 
    0.0003 
    0.0011 
    0.0018 
    0.0025 
    0.0032 
    0.0038 
    0.0043 
    0.0048 
    0.0051 
    0.0053 
 

    0.0054 
    0.0053 
    0.0052 
    0.0050 
    0.0047 
    0.0044 
 

 
 
plot(TotalPipeLength,TotalPipeGrad,TotalPipeLength,PipeDist1) 
xlabel('Pipe Length (m)'); 
ylabel('Pipe Pressure Distribution (kPa)'); 
grid on 
title('Pipe Acoustic Pressures') 
h=legend('Total Pipe Gradient','Total Pipe Pressure Distribution'); 
legend('Orientation','Horizontal','Location','NorthEast') 

title('Total Pipe Acoustic Pressure Distribution’    

 


