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Abstract

Background: Lymphatic filariasis is a globally neglected tropical parasitic disease which affects individuals of all ages
and leads to an altered lymphatic system and abnormal enlargement of body parts.

Methods: A mathematical model of lymphatic filariaris with intervention strategies is developed and analyzed.
Control of infections is analyzed within the model through medical treatment of infected-acute individuals and

quarantine of infected-chronic individuals.

Results: We derive the effective reproduction number, R, and its interpretation/investigation suggests that
treatment contributes to a reduction in lymphatic filariasis cases faster than quarantine. However, this reduction is
greater when the two intervention approaches are applied concurrently.

Conclusions: Numerical simulations are carried out to monitor the dynamics of the filariasis model sub-populations
for various parameter values of the associated reproduction threshold. Lastly, sensitivity analysis on key parameters
that drive the disease dynamics is performed in order to identify their relative importance on the disease transmission.
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Background

Lymphatic Filariasis commonly known as elephantiasis is
a globally neglected tropical parasitic disease caused by
a thread-like worms of the Filarioidea type (Wuchere-
ria bancrofti, Brugia malayi and Brugia timori) [1]. The
most common of these, Wuchereria bancrofti, is a round
worm that mainly infects the lymphatic system. Lym-
phatic filariasis involves asymptomatic, acute and chronic
conditions with the majority of infections being asymp-
tomatic [2]. Nearly 1.4 billion people in 73 countries
worldwide are threatened by the disease of which over
120 million individuals are currently infected [3]. The
round worm (nematode) is spread from person to person
via a mosquito vector and infected individuals can suffer
from chronic conditions such as lymphedema, elephanti-
asis and, in men, swelling of the scrotum called hydrocele
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[1, 2]. A description of the microfilariae life cycle is
depicted in Fig. 1.

Lymphatic filariasis is still a major public health prob-
lem in Africa, South America and Asia despite existing
knowledge of the disease pathology and global treatment
campaign [3] with drugs such as Diethylcarbamazine plus
Albendazole and Ivermectin plus Albendazole that kill the
microfilariae and some of the adult worms. There is not
enough evidence on effectiveness of the drug Albenda-
zole, alone or in combination, for killing or interrupting
transmission of threadlike worms that cause lymphatic
filariasis [4]. Some studies have shown that treatment with
Doxycycline could completely kill microfilariae [2].

Eradication of this disease has been a great challenge
[3, 5]. Thus, investigating the impact of combined inter-
vention strategies of treatment and quarantine of chron-
ically infected persons is viable. Chronically infected
individuals may not transmit infection when quarantined
from the rest of the population [6, 7]. Insecticide treated-
bed nets (ITNs) and sleeping in indoor residual sprayed
houses (IRS) could reduce contact between humans (espe-
cially microfilariae carriers) and mosquito vectors [8].
Treatment still remains the first line of defense to combat
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the disease, despite uncertainty about the microfilar-
ial prevalence threshold level below which transmis-
sion cannot be sustained even in the absence of any
treatments [3, 9].

Compartmental mathematical models of lymphatic
filariasis abound in the literature [6, 9-11]. Two general
simulation models of lymphatic filariasis transmission
and control used to support decision-making are -
the population-based deterministic model (EPIFIL)
[12, 13] and - the individual-based stochastic model
(LYMFASIM) [14]. However these models have some lim-
itations as they do not account for intervention measures
such as quarantine. While EPIFIL uses a constant force-
of-infection and accounts for the impact of age structure
of the human community [13], LYMFASIM accounts
for the role of the immune system in regulating parasite
numbers [15]. Luz et al, [16] noted that mathematical
modeling of transmission dynamics and cost-effectiveness
of neglected diseases can help to maximize the utility of
the limited available resources. Bhunu and Mushayabasa
[10] considered treatment as the only intervention strat-
egy in their model, while Ottesen et al. [8] presented
strategies and tools to control transmission and morbidity
of lymphatic filariasis. Although various transmission
and control mathematical models of lymphatic filariasis
abound in the literature, our proposed model is seemingly
new as it includes latent stage, treatment and quarantine
of chronically infected persons [8, 17]. The latent stage is
included in the model because of different developmental
stages the worm undergoes in human and mosquito
populations.

The proposed compartmental model is not exhaustive,
and here are some limitations: no density dependent and
species-specific parasite prevalence [18], additional mor-
tality experienced by infected mosquitoes as a result of
carrying filarial infection [19]. Pichon [20] noted that
mosquito density-dependent mortality may be associated
with increased infection intensity within the mosquito
and mass drug administration may lead to an increase
in survival of the mosquito population and hence to an
increase in transmission in the long-term [20].

In the following sections, we formulate and analyse
a deterministic model with two key control measures:
quarantine and treatment. Key parameters that influence
transmission are identified via sensitivity analysis of the
model. Finally, some parameter values are assumed within
realistic ranges to support the analytical results, but with
one caveat that the model outcomes are not compared
with real data.

Methods: model formulation and description
Human and mosquito populations are divided based on
their lymphatic filariasis status. Human sub-populations
are susceptible humans Sy (¢), latent stage (not showing
signs of lymphatic filariasis) Ej(¢), infected-acute stage
I, (t) and infected-chronic stage Ij.(t), with the total
human population given by

Ny () = Sp(®) + Ep(t) + Ina(t) + Ic(2). (1)

The model is formulated with the assumption that no
infection exists at the initial stage, and there is no verti-
cal transmission in both human and mosquito populations
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[17, 21]. In addition, the model considers one species
of worm and one species of mosquito. We also assume
that the transmission to mosquito population is from
infected-acute and infected-chronic individuals despite
the quarantine of some infected-chronic individuals.

The mosquito population is divided into three sub-
groups: susceptible S, (¢), exposed E, (¢) and infected I, (¢),
with the total mosquito population given by

Ny (t) = Sy() + Ev(t) + 1,(2). ()

The recruitment rate of human population is Ay, while
Ay is the recruitment rate of the mosquito population.
The natural death rates of human and mosquito pop-
ulations are pj; and p, respectively. These death rates
are proportional to the number of each individual or
mosquito class. The biting rate of the mosquitoes to
humans is 8. The microfilariae which are found in lym-
phatic vessels and lymphatic nodes infect susceptible
mosquitoes when a mosquito bites infected-acute and
infected-chronic individuals at a rate

A(t) = ﬂﬁv(lha(t) + thc(t)),
Ny ()

where ¥, is the success rate of microfilariae transmission
from human to susceptible mosquitoes and 6 € (0,1)
accounts for the reduced number of adult microfilariae in
humans due to treatment and quarantine of the infected-
chronic individuals. The vector will ingest microfilarial
differently when it bites humans in the I, and [, stages.
The rate of release 9,6 of microfilarial by 7;.(¢) into the
vector is different from the rate of release of microfilarial
by Ij,(¢). Therefore the microfilariae ingested by vectors
during a blood meal depend on the density of microfi-
lariae in humans [11]. Thereafter, susceptible mosquitoes
enter the exposed class E, (¢). During this stage, the micro-
filariae develop into infective filariform larvae to become
infectious, and hence these mosquitoes move into the
infected class I, (¢) at rate «,. The larvae infect the suscep-
tible human host during a subsequent blood meal by the
infected mosquitoes at a rate

PRl (2)

Nu(®)
where ¥, is the success rate of transmission of infec-
tive filariform larvae from infected mosquitoes I, (¢) biting
susceptible individuals during a blood meal. Individuals
during the exposed stage have infective filariform lar-
vae which migrate to lymphatic vessels and lymphatic
nodes, and develop into adult worms. The latent individu-
als progress to infected-acute individuals at a rate o, when
the microfilariae develop into adults which remain in the
lymphatic vessels and lymphatic nodes. Furthermore, the
infected-acute individuals who progress to chronic con-
dition are quarantined at symptomatic rate « to join the
infected-chronic class. Individuals in the infected-acute

An(t) =

Page30f13

class, Iy, are screened by health personnel at the rate n
and treated at the rate ¢. Treated infected-acute individu-
als join the susceptible class due to temporary immunity at
arate w = ¢n. Figure 2 provides a graphical interpretation
of the lymphatic compartmental model (3).

Based on our model description, assumptions, defini-
tions of the state variables and parameters in Table 1,
the proposed SEIS lymphatic filariasis model satisfies
the following system of nonlinear ordinary differential
equations:

dsy, BInLySh
=R A Tna — 7 S,
it h+only, N, HhSh
dEj, By, Sy
=n _ BrwveR E
It N, (ap + wn)Ep
daly,
Pl apEp — only, — (k + up)ly,
dI,
dtc = klpg — pidpe 3)
@ — A — By Una + 01nc)Sy LS
4 Y N, HyOy
dE B + 014)S
dtv = - aNh e - (ay + wy)E,
dl, £ I
Y L E —
dr vEy — Uyly
Results

Invariant region

Both the model state variables and parameters are
assumed non-negative for all time ¢ > 0. Let
(Sns Ens Ina» Ine» Svs Ev, 1) € R7 be any solution of the
system with non-negative initial conditions. Applying

nlha
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Fig. 2 Flowchart for lymphatic filariasis with control strategy and
quarantined infected-chronic individuals. The dash lines show that the
infected mosquitoes (/,) infect the susceptible individuals (Sp), the
infected-acute individuals (/n4) infect the susceptible mosquitoes (Sy)
and the infected-chronic individuals (/5¢) infect the susecptible
mosquitoes (S,)
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Table 1 The parameters and description for lymphatic filariasis

model

Parameter Description

Ap Recruitment rate of human population

Ay Recruitment rate of mosquito population

h Natural death rate of human population

oy Natural death rate of mosquito population

B Biting rate of the mosquito to humans

% Success rate of transmission of infective filariform
larvae from mosquitoes to humans

Dy Success rate of microfilariae transmission from
infected-acute and infected-chronic
humans to susceptible mosquitoes

0 Accounts for reduced number of adult microfilariae in
humans due to treatment and
quarantine of the infected chronic individuals

ap Progression rate of latent individuals to infected-acute
individuals

oy Progression rate from exposed mosquitoes to
infected mosquitoes

K Symptomatic rate of infected-acute individuals
progressed to infected-chronic individuals

n Number of screened infected-acute individuals by
health personnel

[ Treatment/prevention chemotherapy rate of the

infected-acute individuals

Birkhoff and Rota’s Theorem [22] on differential inequal-
ity, from Eq. (1), we have N;’(t) < Ap—upNy(t) ast — o0,

A
and thus, 0 < Nj(¢) < —h. Hence the feasible solutions

on the human population enter the region

Ap
vy, = {(Sh,Eh,IhaJhc) eRLy Ny < Mh}' (4)

Similarly, it can be shown that the feasible solutions on
the mosquito population given by Eq. (2) enter the region

2%

Therefore, from (4) and (5), the possible solutions of
model (3) will enter the the positively invariant region
U=, x U,

Ay
v, = {(SV’EV)[V) € Rgzo Ny (f) < } . (5)

Positivity of the state variables

Since W is a positively invariant set under the flow induced
by model (3), we now show that every solution with initial
condition in R’ remains in that region for ¢ > 0.

Theorem 1 The solution set {Sy, Ej, 11,4, Inc, Sy, Ey, 1)} ()
of the lymphatic filariasis model (3) with the initial
condition {Sy, Ey, Ing, Inc, Sy, Ey, 1} (0) is positive for all
t>0.
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ProofLet £ = sup{t>0:S,>0,E, > 0,1, >0,
Inc > 0,S,>0,E>0,I, > 0} € [0,¢], gives £ > 0. The
first equation of model (3) gives

as,
= At onlg —

IB ﬁhleh .
dt N;

Sy = —Ap + wp)Sy.

Intergrating with respect to ¢ gives

t

¢
d / Ap(s)ds + ppt / Ap(s)ds + ppt
— | Sp(t)elo > e/0 .

Therefore,

t
7/Mmewﬁ
Su(t)e’o —S1(0) >

’

t*
?f rp(w)dw + uyt*
/ e/0 dt*
0

so that

t
—(/ Ap(s)ds + Mht)
Sp(@) > Sp(0)e \’°

I3
(/ Au(s)ds + Mht)
+e 0

t*
E/ Ap(wWydw + pyt*
X /eO "} > 0.
0

Hence Sy, is always positive for ¢ > 0.
The second equation of model (3) gives

dEy, B, Sy,
R el o et E
0t N, (oep + mn)Ep
1
—dE, > —/(Oth + jup)dt
Ej

= Ej(t) > E,(0)e" @ttt 5 .

Similarly it can be shown that [, > 0,I, > 0,5, >
0,E, > 0,1, >0fort > 0. O

Existence and stability of steady-state solutions
The disease-free equilibrium (DFE) of the lymphatic filar-
iasis model (3) denoted by Ey is given by

A A
Eo = (S}, EfL 110 0 S5 ELLT) = (J’O' 0,0 o, o) .

v
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The effective reproduction number is obtained by using
the next generation matrix [23]. Let

r BIwLySy T
Ny,
0
F= 0
ﬂﬂv([ha + elhc)sv
Nj,
L 0 _
and
a4 0 0 0 0]
—ap en+k+uy O 0 0
V= 0 —K Un 0 0
0 0 0 ay+uy O
0 0 0 —av |

The effective reproduction number is the spectral radius
o (FV™1) and the resulting expression is given by

_ Baptpoy Ay (Ok + (1)
oo A Ono Ay G + ) (@ + i) Ok + ) (g + € + 1)’

(6)

Ro

which is the number of secondary lymphatic filariasis
infections caused by one infectious individual/mosquito
during the infectious period in a completely suscepti-
ble population. The effective reproduction number is not
only important for describing how fast the disease could
spread, but can also provide information for controlling
and preventing the spread of the disease [24].

Local stability of the disease-free equilibrium
Local stability of the DFE can be established from
Theorem 2 in [23].

Lemma 2 The DFE for the lymphatic filariasis model (3)
is locally asymptotically stable if Ro < 1 and unstable
when Ry > 1.

Global stability of the disease-free equilibrium

The system of Eq. (3) is broken into subsystems such
that X1 = (Sp,, Sy) which denotes the number of suscep-
tible individuals and susceptible mosquitoes, and Y7 =
(En» Ing, Ine, Ey, I,) which denotes the number of exposed
and infected individuals and mosquitoes. Hence the
model system (3) now reduces to
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dx,

7 F(X1, Y1)

Ay where X; € Rf_, Y1 € Ri.
1

— = G(X3, Y]

It (X1, 1)

This could further be simplified by identifying X; with
(X1,0) and Y; with (0, Y1) in R2 x R%. Hence we obtain

ax
the reduced system d—tl = F(X1,0) as

dsy,
= D 1nS
t
7)
By _ A S
ar HyOy
Ay A
Therefore X; = (S,S)) = h,v) is a global
Mh

asymptotically stable equilibrium for the reduced system
dax
=21 = F(X1,0). This is verified by integrating the first
equation of the reduced system (7) with respect to t.

A A
We obtain Sj,(t) = Zhey (Sh(O) — h) e~ Mt which
MHh Mn

approaches “hast — co. Similarly integrating the sec-
ond equation of the reduced system (7) with respect to ¢,

A A
gives S, (t) = 24 (SV ) — V) e~ which approaches
"

v v
Y ast— oo.
My
Further G(Xj, Y1) satisfies the two conditions given as
assumptions H3 and H4 in [25] namely: G(X3,0) = 0 and
G(X1, Y1) = A*Y; — G(X3, Y1), where G(X1,Y1) > 0 e W
such that

A* = DyG(X1,0)

[ G+ n) 0 0 0 By
ay —(pn+« + pup) 0 0 0
= 0 K — Uy 0 0
By Aviuy BOA,
O - v + v 0
Appry Appry (@ o)
L 0 0 0 oy —Hv |
and
_ s, _
Y, |1 — —
,3 /2% ( Nh)
0
GO, 1) = 0

BYy (Una + O1nc) (
0

Ayuy _ SV)
myNp Ny

Here we assume a steady-state value of the total human

. Ap . .
population N, = — and total mosquito population N, =
Hh
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ﬂ. Therefore the term 89, (I, + 01) [A"Mh — S"] €
iy My Ny
G(X31,Y1) is non-negative. Thus the DFE is globally
asymptotically stable since G(X1, Y1) is non-negative. The
global stability of Ey excludes any possibility of the phe-
nomenon of backward bifurcation, that is the co-existence
of a stable disease-free equilibrium with a stable endemic
equilibrium [26].

Existence of endemic equilibria

To determine the existence of an equilibrium for which
filariasis is endemic in the population defined by £ =
Sy Ep Iy o 15, Sy, By, 1), the system (3) is solved in terms
of the force of infection at steady-state (1}), given by

ﬂﬂhlj(t)

N;:(t)

W0 = ()

Solving the system at an arbitrary equilibrium, we have

0 = Ap+only —A;S; — S,
0 = A}S; — (ap + un)Ej

0 = apk;, —onl; — (k + pup)l;,
0 = iy, — pnlp, . 9)
0= Ay—A;S — Sy
0 = A;S) — (o + uy)E}
0 = oEf — ol

Thus

o Ap (otp + ) (W + & + ngp)
M G ) (W ) G+ + ng) — npay
A (g + K + ngp)

*
b= ap (A% (i + ) + i (i + &+ 19)) + i (AF + 1) (i + € + 1)’
- O‘h)\ZAh

ha = (W (i + 1) + o (1 + 1)) + gy (M + ) (g + & + ng)”
= KO(;,)»ZA;,,

ke ™ (otn (M (e + 50 + i i + 5+ 19)) + i (K + i) (i + & + 1))’
St = A*[:u ,

v v

. _ A Ay

YT (e ) (A )

I ayAs Ay,

YT @t ) (0 )

[*
and A = B, ot
="~ h S B+ 4T,

solutions into the expression for A%, we have
_ ,Bluh ﬂhavkil\v
Appy (ay + 1y) ()‘ﬁ + /'Lv)

This can be written as

. Substituting /; and the above

Ay

AZ(AAZ + B) =0,
where

A = Appy (@y + wy) (Upity (Up + K + 1)
+ay (BOy (O + wp) + wy (g + 1)),
B = pupAp(pn + & + no) (o + i) ey + py) (R — 1).
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The root A; = 0 corresponds to the DFE and its sta-
bility has already been established in Lemma 2. It is clear
that A > 0, and B > 0 if and only if Ry > 1. Thus the
linear system would have a unique positive solution given
by A; = B/A. The components of the endemic equilib-
rium, £, are then determined by substituting A} = B/A.
For Ro < 1, B < 1. Thus, the force of infection (1))
at steady-state is negative (which is biologically meaning-
less). Hence, the model system has no positive equilibria
in this case i.e when A} < 0. This result is summarized in
the following Lemma.

Lemma 3 The lymphatic filariasis model has a unique
endemic equilibrium whenever Ro > 1, and no endemic
equilibrium otherwise.

Sensitivity analysis and model simulations

The following local sensitivity analysis is closely related to
that in [27]. Expressions for the sensitivity indices of the
endemic equilibrium are complex, and since our focus is
on disease transmission and not prevalence, we neither
derive expressions nor numerically calculate sensitivity
indices of the endemic equilibrium.

Sensitive indices of R

The sensitivity indices allow us to measure the relative
change in a state variable when a parameter changes [27].
The normalized forward sensitivity index [27] of a vari-
able, v, that depends differentiably on a parameter, p, is
defined as:

e
p ¥

Next, we evaluate the sensitivity indices at the parame-
ter values given in Table 2. The resulting sensitivity indices
are shown in Table 3.

The most sensitive parameter to R is the mosquitoes
natural death rate, u, (T,EO = —1.360). This is followed
by the mosquito per capita biting rate, (T;zo = 1).
Reducing this parameter would have a huge effect on filar-
isis transmission regardless of other parameter values. We
have that T?O = 1, then decreasing (or increasing) 8 by
10% decreases (or increases) R by 10%.

(11)

Table 2 Values and ranges for parameters for the lymphatic
filariasis model (3)

Parameter  Value Source Parameter  Value Source
h 0.000039  [28,29] Ap 2500 [6,30]

Ky 0.1429 [29,30] Ay 1000 [30]

K 10 Assumed B 250 [6]

7 0.7 Assumed  n 200 [6]

O 0.01 [6] % 0.1 [6]

ap 0.0238 Assumed  ay 0.0555  Assumed
0 0.0555 [30]
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Table 3 Sensitivity indices of R to parameters for the lymphatic
filariasis model, evaluated at the parameter values given in Table 2

Ro

Parameter ng Sensitivity index
An -3 05

“ V.
Hv (e -3) -1.36013
Av 3 05

1 [ 1
P S (et — m) 0462806

1 1

ne ~
T 0466545
ne ~
" RErTET==) 0466545
Oh 3 05
o 3 05
Hh
%h et 0.0000819193
v bcETm 0360131
6,

0 brasm 049613

The parameters are ordered from most to least sensitive for each R

Other key parameters include the success rate of
microfilariae transmission from humans to susceptible
mosquitoes, ¥, as well as the success rate of transmis-
sion of infective larvae from infected biting mosquitoes
to susceptible individuals during a blood meal, ¥;. The
sensitivity indices of these two parameters are equal and
independent of other system parameters. With T;io =
8.19x107°, the progression rate of mosquitoes from
exposed to infectious state, o, is the least sensitive param-
eter. For ethical reasons, one should only attempt to
decrease human death rate and for this reason, we do
not calculate the sensitivity index related to individuals
natural death.

For the mosquito recruitment rate A,, the filariasis
reproduction number, Ry, increases as A, increases. If
the mosquito recruitment increases, so does the mosquito
death rate because the environment can only support
a certain number of mosquitoes. Further, when the
mosquito recruitment rate A, is equal to the death rate
Wy, the mosquito population is at equilibrium. If 1/A,
is the life span of the mosquitoes, then increasing A,
reduces their life span. Reducing the life span of the vector
population reduces Ry, as more infected mosquitoes die
before they become infectious.

Analysis of R

The objective here is to determine, using the thresh-
old quantity Ro, whether or not activities provided to
quarantined infected-chronic individuals (modelled by «)
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and treatment (modelled by ¢) of infected-acute individu-
als can lead to the elimination of lymphatic filariasis in the
community. It is evident from (6) that

lim Ry

Kk—>1

_ Bap o, Ayt (1 + 0)
oo ATty Ay By (g + i) (i + 0) (@ + i) (e + g + 1)
(12)

lim Ro
p—1

_ BaOpaty Aydy (Ok + )
Mo/an Apdpe Aydy (o + 1an) (o + ) Ok + pp) (i +k + 1)
(13)

Thus, a sufficient effective quarantine programme
(morbidity management and disability prevention activi-
ties) that focuses on quarantining infected individuals in
the I, stage (at a high rate, k — 1) can lead to effective
disease control if it results in the right hand side of (12)
being less than unity. Likewise, for an effective treatment
program, the right hand side of (13) should be less than
unity. The profiles of R as a function of the quarantine
rate, k, and treatment rate, ¢, are depicted in Fig. 3a and
3b.

For the set of parameter values used, the strategy that
focuses on treating the infected-acute individuals alone
can dramatically reduce Ro from around Ry = 0.264 to
Ro = 0.077. The quarantine strategy increases Ro =
9.795x 1073 to Ro = 0.329. Thus, lymphatic filariasis
in the community could be reduced more slowly in the
latter case, but will be eliminated faster in the former
case.

Figure 4a shows that the combined strategy of activi-
ties provided to quarantined infected-chronic individuals
with an effective treatment of infected-acute individuals
reduces Ry to values far below unity than when each
strategy is applied singly. Figure 4b shows that with an
effective treatment strategy, increasing the quarantine rate
does not necessary reduce the burden of filariasis in the
community.

Ry as a function k and ¢

The lymphatic filariasis burden in the community is eval-
uated by computing the partial derivatives of Ry with
respect to the quarantine and treatment parameters («x
and ¢ respectively). This gives

IRo BopOpay AyDy (0 — Dy, + Ong) (14)
a2y (up + K + 19) N Ao Ny Dy (g + ) (o + 1) Ok + i) (o + & + 1)’
0Ro i BnapBpoy Ay (Ok + [p) (15)

dp 2y (1 + k + 19) KDoAy Dy (a + ) @y + 11y) Ok + ) oy + & + ng)



Mwamtobe et al. BVIC Public Health (2017) 17:265 Page 8 of 13
a T T T T ]
0.30 B
0.25F B
o
0.20 - B
0.15 B
0.10 B
0 oz or e os 1o
K (3
K k=0.05 — k=0.025 — «x=0.01 — «=0.075
b ! b 035FT T S T M ——
0.25 —
0.30 —
0.20 B
025 ]
0.15 j 020 ]
< <
0.15F B
0.10 ]
0.10 B
0.05 —
0.0sF ]
0.00 £, ‘ ‘ ‘ ‘ g 0.00 L w w w w J
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
@ K
%) ¢=0.5 — =025 — ¢=0.1 — ¢=0.75
Fig. 3 Quarantine and treatment of individuals. The lymphatic Fig. 4 Reproduction number R . The lymphatic filariasis effective
filariasis reproduction number R as a function of the a quarantine reproduction number as a function of the (a) quarantine rate « for
(morbidity control) rate «, and b function of the treatment rate ¢ different values of treatment rate ¢, and b treatment rate ¢ for
different values of quarantine (morbidity control) rate «

Consider the case when ¢ = 0 (there is no treatment but

IR
only quarantine). It follows that a—o < 0if
K

Baytyay Ay, (0 — Dy + Ong)
2uy (Up + K + ne) \/ahAhﬂhavAvl?v (ap +mun)é

@ —Dup+6np <0

_Hn
Uy + ne
(16)

9<A1=

where § = (ay + ) Ok + pp) (n + k + ng).

Lemma 4 The targeted quarantine strategy of infected-
acute individuals will have a positive impact if 0 < A,
no impact if 0 = Aj, and will have detrimental impact in
0> Aq

0
Similarly, & < 0if
dp

0>Ap =1 17)
K

Thus, we have

Lemma 5 The targeted treatment of infected-acute indi-
viduals will have positive impact if 6 > Ar, no impact if
0 = At and negative impact if 6 < Ar.

Note that if conditions (16) and (17) are invalid,
then application of the activities provided to quaran-
tined infected-chronic individuals and treatment strate-
gies would increase the burden of filariasis in the commu-
nity (since it increases Ry). Treatment would increase the
disease burden if it fails to reduce the infectiousness of
those treated below a certain threshold (0 > Ar if treat-
ment of infected-acute individuals is targeted or 6 < Ay if
quarantine is targeted).

Model simulations

Numerical simulations of the model system (3) are carried
out using Wolfram Mathematica 9.0 to illustrate some of
the analytical results. Parameter values used for the model
simulations are provided in Table 2, some of these were
obtained from the literature [27-30] while others were
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assumed (within realistic range) for the purpose of simula-
tions. The dynamics of the human and mosquito popula-
tions when both treatment and quarantine are employed,
are depicted in Fig. 5a and 5b, respectively. The effects
of increasing the infected-acute individuals quarantine
rate as well as scaling up the treatment of acute-infected
individuals on the dynamics of the whole population are
explored. Two scenarios are investigated: (1) we assume
that a population is invaded by infected mosquitoes, and
(2) we assume that a population is invaded by acute-
infected humans.

Case 1. Assume that a population is initially disease-free
and stays at equilibrium. This population is then infil-
trated by 10 infected individuals in the latent state. At
this point we assume that all the mosquitoes are also
disease-free. Using the parameters in Table 2, Fig. 6a and
6b show the dynamics of the human and vector popula-
tions when there is no treatment or quarantine (selective
treatment) (¢ = « = 0). The basic reproduction num-
ber is 0.482, which means that the disease will eventually
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Fig. 5 Parameter values simulations. Simulations of model (3) for the
parameter values in Table 2 for a the human, b the vector
sub-populations over time
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Fig. 6 Population without any intervention strategy. The dynamics of
the a human, and b vector sub-populations when there is no medical
treatment (prevention chemotherapy) and no quarantine (morbidity
management and disability prevention) after the invasion of 10
infected individuals

die out even if there is no intervention. Fig. 7a and 7b
show the same dynamics as Fig. 5a and 5b when there
is treatment of infected-acute individuals but no quaran-
tine. Figure 8a and 8b show the effects of using quarantine
of infected-chronic individuals as the only control mea-
sure. A strategy that uses both treatment and quarantine
(selective treatment) is better than using only treatment
or quarantine).

The cases in Figs. 6a, 7 and 8b assume that the treatment
given to acute-infected individuals does not affect the
transmission parameters other than the screening param-
eter n and treatment parameter ¢. The basic reproduction
number depends on these two parameters and so they do
affect initial disease transmission and consequently the
endemic status of the disease. If patients are given med-
ication that reduces the microfilariae in the lymphatic
vessels and nodes, then the success rate of microfilariae
transmission from humans to susceptible mosquitoes will
decrease. Effective treatment is expected to decrease the
number of microfilariae, and thus its transmission success
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Fig. 8 Quarantine only in the population. The dynamics of the a
human, b vector sub-populations when there is quarantine
(morbidity management and disability prevention) is the only
strategy (x = 0.1) after the invasion of 10 infected individuals

rate from humans to susceptible mosquitoes could greatly
be be altered. Assuming that individuals are further
protected by some insect repellent, then the mosquito
biting rate 8 could also be impacted. Consider a medica-
tion that could decrease the success rate of microfilariae
transmission from humans to susceptible mosquitoes by
50% of its current level (¢, = 0.05). Figure 9a and
9b show the dynamics when this effective treatment
exists.

Assume that insect repellent could decrease the insect
biting rate 8 by 50% of its current level. Figure 10a and
10b show the dynamics when such a repellent is available
and appropriately used. Figure 10a shows the case when
the repellent is used in the absence of medical treatment
(¢ = 0) and Fig. 10b shows the same scenario but in the
presence of medical treatment (¢ = 0.3) administered at
the same time as the provided insect repellent. Compared
to the case when the repellent is used alone (Fig. 10a),
coupling treatment with the use of a repellent spray sig-
nificantly reduces the disease outbreak (Fig. 10b) and at

the same time reduces the endemic level of the disease
(changing Ro = 0.128 to R = 0.094).

Other intervention strategies such as using insecticide
treated bed nets, indoor residual spraying (which both
can be built into the parameters ¢ and 8) and shorten-
ing the mosquitoes life span (increasing u,) can also be
considered. Consider a situation where the life span of the
mosquitoes is reduced by 25% of the existing level with
both treatment and effective repellent. The population
dynamics of humans after reducing the mosquito life span
is the same as the dynamics in Fig. 10a and 10b. However,
the dynamics of the mosquito population will differ signif-
icantly for the two cases. If we decrease both values of the
mosquito biting rate and the life expectancy, then there
is a 50% reduction of the reproduction number (decrease
from Ry = 0.105 to Ry = 0.052). For these parame-
ter values, the eradication of the disease is guaranteed.
In the absence of medical treatment, the basic reproduc-
tion number is slightly greater (Ro = 0.072) but still less
than unity. This implies that if the strategy of shortening
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the mosquito lifespan before a certain period of time has
elapsed is applied, then the lymphatic filariasis disease is
potentially bound to die out.

Case 2. In the previous section we assumed that a
disease-free population is invaded by acute-infected
humans. We now consider the case where a virgin popula-
tion is invaded by 70 exposed and 30 infected mosquitoes
from an endemic area. Figure 1la and 11b show the
dynamics of both the human and vector populations after
the invasion of the infected mosquitoes with no medi-
cation or quarantine. Employing the same intervention
strategies as before, treating acute-infected and isolating
some, Fig. 12a and 12b depict the human and mosquito
populations dynamics. Any of these strategies signifi-
cantly reduces the basic reproduction number.

Discussion and conclusions
A mathematical model of the transmission dynamics of
lymphatic filariasis incorporating both the human and
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Fig. 10 Other intervention strategies. The dynamics of the human
sub-population when the a repellent is used in the absence of
treatment, b repellent is used with treatment

mosquito vector was formulated and stability of equilibria
and sensitivity analysis were investigated. Numerical sim-
ulations were provided to support the theoretical results.
Control of infections was analyzed through two inter-
vention strategies, namely medical treatment (prevention
chemotherapy) and quarantine (selective treatment for
morbidity control). The model system was globally stable
and thus the phenomenon of backward bifurcation was
never observed [26].

By evaluating the sensitivity indices of the reproduc-
tion numbers, we were able to identify parameters for
which the model system was most sensitive. We found
that the mosquito death rate was the most sensitive
parameter. By also analyzing the basic reproduction num-
ber, it was shown that combined intervention strate-
gies could lead to lymphatic filariasis elimination in the
community.

The proposed model is not exhaustive and can be
refined and/or extended in various ways. For instance,
the emergence of drug-resistant strains of pathogens is
an increasing threat to eradication of infectious diseases.
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Aggressive treatment might lead to drug resistance and
it is worth exploring how this could affect the transmis-
sion dynamics of the disease. Also, patients’ compliance
could be incorporated into the model system by assuming
that only a small portion of individuals in the treatment
class adhere to complete treatment, while a small propor-
tion that do not adhere move quickly to the drug resistant
class. Model extension could also address climate change
since it is considered as a contributor to re-emergence
of vector-borne diseases. Heavy rains and global temper-
ature rising provide a conducive habitat for mosquitoes.
Future studies could include these external factors and
also consider co-infections of individuals with two types
of worms.

For mathematical tractability we made several assump-
tions. Therefore our results are based on the formulation
of the model. However, However the research undertaken
enables us to gain valuable insights into lymphatic filari-
asis and the effectiveness of intervention strategies being
implemented.
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