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Abstract 

The savanna biome covers approximately 20% of the earth’s land surface and more than half 

of the African continent. It is home to millions of people and different fauna and flora species 

but is under pressure due to natural and anthropogenic factors threating the existence of the 

biome. Remote sensing techniques have the capabilities of assessing savanna vegetation by 

mapping and monitoring savanna woody structure. Remote sensing systems are divided into 

passive (e.g., Landsat) and active sensors (e.g., Light Detection and Ranging- LiDAR and 

Synthetic Aperture Radar- SAR), with active sensors better suited for assessing woody 

structure than passive sensors. This is because their signals can penetrate through dense 

vegetation cover.  LiDAR sensors are more accurate than SAR sensors, hence often used to 

train SAR-based models. However, LiDAR data is expensive to collect over large regions. 

Therefore, spaceborne SAR datasets are more useful for vegetation studies as they have a large 

spatial coverage and can capture large images at once.   

Due to the nature of savanna vegetation, monitoring vegetation within this biome is a 

challenging endeavour. This is because savannas are characterised by a mixture of grass and 

sparsely distributed trees mostly in the form of shrubs and woody vegetation. The success of 

monitoring savannas is dependent on the availability of up-to-date, accurate and well-validated 

spatial information. Accessing the information requires users to go through several pre-

processing steps to turn the data into easily analysed formats.  However, the pre-processing 

steps are challenging for users to implement and computationally expensive. Analysis Ready 

Data (ARD) products promise a future where remote sensing data will no longer include 

computationally expensive or have challenging pre-processing steps but instead provides easy-

to-use satellite data mapping and modelling savanna vegetation. 

This study assesses the utility of multi-temporal ‘Analysis Ready’ C-band SAR data to estimate 

woody canopy cover. It seeks to test different regression methods; Linear (LR), Support Vector 

Machine (SVM) and Random Forest (RF) regression models and their effectiveness in 

modelling woody canopy cover. Identify the optimal season for modelling canopy cover using 

different temporal combinations (dry & wet seasons of 2017 & 2018) and polarisations (VV & 

VH) of C-band SAR data, and subsequently mapping canopy cover using the most effective 

regression method and optimal season. The results show that although SVM produced higher 

results regardless of the season, noise or number of images that were analysed, it predicted for 

a smaller range while RF predicted for a larger range and performed better the more data or 
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noise was added to the analysis. LR was not sensitive, or robust, enough to find good 

relationships between the variables as its performance dropped (compared to RF) as more 

images were added to the analysis. A combination of all seasons (dry & wet), years (2017 & 

2018), and all polarisation bands (VV & VH) yielded higher results than when the images were 

analysed individually. Although the ARD products used in this study are still in the 

experimental phase, the results produced here are comparable to other savanna vegetation 

studies that used the operational C-band SAR data.  

Keywords:  Synthetic Aperture Radar, Analysis Ready Data, C-band, Canopy Cover, Savanna, Linear Regression, Support 

Vector Machine, Random Forest  
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CHAPTER 1: Introduction 

1.1. General Introduction 

The savanna biome is a mixture of tree and grass species (Naidoo et al., 2015; Higginbottom 

et al., 2018; Wessels et al., 2019) characterised by essential ecosystem services such as the 

availability of ecological and socioeconomic benefits, natural resources, as well as providing 

habitats for the human population. The biome supports communities by providing crucial 

ecological benefits and socioeconomic opportunities (e.g., tourism, agriculture, conservation; 

Fisher et al., 2015). Natural resources such as fuelwood, medicinal and timber products often 

act as a safety net for alleviating poverty in the surrounding communities (Madonsela et al., 

2018). Due to the extensive use of natural resources, the landscape of savannas has increasingly 

been altered (Mograbi et al., 2015). The alterations may lead to a change in the diversity and 

distribution of wildlife species (Adjorlolo, 2008) through the loss of biodiversity (Fisher et al., 

2015) and thus contribute to fuelwood scarcity (Mograbi et al., 2015). Therefore, knowledge 

about the spatial information of woody vegetation density and canopy cover in the savanna 

biomes is crucial for timely biome assessments and management. 

According to Horning et al. (2010) and Jansen (2014), remote sensing is a powerful tool used 

to map and monitor ecosystems such as the savanna vegetation and document the changes that 

take place over time. Remote sensing tools are divided into passive sensors and active sensors. 

The passive sensors monitor the earth’s resources, using the sun as their source of energy, to 

provide information about the surface of the canopy on vegetation (Horning et al., 2010). 

However, their operational capabilities are limited as they are unable to provide structural 

information beyond the top-of-canopy or when atmospheric conditions are less than ideal (e.g., 

cloud cover, dust, smoke; Srivastava et al., 2008). To acquire subcanopy information and to 

gain a greater understanding of the vegetation structure, active sensors; Synthetic Aperture 

Radar (SAR) and Light Detection and Ranging (LiDAR) are recommended (Fisher et al., 

2015). According to Kumar and Mutanga (2017), active sensors are better at modelling the 

vertical distribution of elements that make up the canopy, by penetrating through the canopy’s 

upper layers.  

Therefore, SAR and LiDAR are, the most effective tools for assessing savanna woody 

vegetation due to their capability to acquire information about the subcanopy or vertical 

structure of the vegetation. Furthermore, a SAR-based approach can map large extents of 

woody vegetation in all types of weather conditions. In contrast, capabilities of mapping large 
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extents of woody vegetation are not easily achieved in a LiDAR-based approached (Naidoo et 

al., 2015). For this reason, this study uses the SAR-based approach (multi-temporal Sentinel-1 

C-band SAR) together with modelling algorithms: Linear Regression (LR), Support Vector 

Machine (SVM) and Random Forest (RF) to model and map woody canopy cover (CC) in 

African savannas. 

Apart from the C-band, the SAR also has the L-band that, according to Mathieu et al. (2013), 

Urbazaev et al. (2015), Naidoo et al. (2015) and Main et al. (2016), has predominantly been 

the most common band of use in the savanna because it penetrates deeper into the canopy and 

produces good results. However, the L-band is not open-source and not routinely available. 

Thus, the C-band was the choice of use in this study. According to Main et al. (2016), the C-

band continues to be the only freely available SAR dataset. Furthermore, the savanna has 

sparsely distributed trees that prevent closed-canopy covers (ESRI, 2019), which means that 

the C-band can perform relatively well under multi-temporal data regardless of its short 

wavelength. This is because the multi-temporal SAR images are used to improve the influence 

of vegetation-related backscatter to reduce the noise coming from other environmental sources 

(Main et al., 2016).  

1.2. Problem Statement 

Approximately 20% of the earth’s land surface is covered by the savanna biome (Shorrocks, 

2007; Jensen, 2014) primarily located at the tropical and subtropical zones of continents such 

as Africa (Graw et al., 2016). The savanna is an essential ecosystem characterized by a balance 

of tree-grass species covering more than half of Africa’s land surface and supports many 

communities within the continent (Main et al., 2016). It provides a habitat to millions of people, 

plants, and animals, and offers ecosystem services such as food, water, and clean air (Fisher et 

al., 2015; Stafford et al., 2017). However, there have been predictions that savannas will 

become severely impacted by climate and land use changes (Sankaran et al., 2005).  

Areas such as Bushbuckridge Local Municipality (BLM), Mpumalanga, for instance, might be 

characterised by unsustainable use of natural resources (Fisher et al., 2015), with Wessels et 

al. (2013) predicting that at the rate which wood is being harvested, it could be depleted by the 

year 2024. Although majority of South African households have access to electricity (Wessels 

et al., 2011), wood is still a primary source of energy for many areas within the BLM 

(Shackleton and Shackleton, 2000; Twine et al., 2003; Wessels et al., 2011; 2013). Over 90% 

of households are dependent on fuelwood for cooking, heating, and other means of thermal 
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energy purposes despite having access to electricity (Wessels et al., 2011; Twine and Holdo, 

2016). Due to this unsustainable harvesting of wood, the savanna woody vegetation structure 

has become severely affected particularly causing a decline in biomass, vegetation height, 

canopy cover, and density of larger stems (Twine and Holdo, 2016).  

Therefore, the savannas need to be monitored to avoid major losses. The success of monitoring 

them is dependent on the availability of up-to-date, accurate and well-validated spatial 

information. However, there is a shortage of detailed and validated woody structure related 

(e.g., woody canopy cover) spatial products in the (southern) African savannas (Naidoo et al., 

2016), and there are no up-to-date spatial products concerning the condition of (southern) 

African savannas (Main et al., 2016). Therefore, this study seeks to assess the utility of multi-

temporal ‘Analysis Ready’ data to model and predict woody canopy cover of an African 

savanna, using the case study of BLM to contribute to the timely assessment and monitoring 

of the savanna vegetation. 

1.3. Aim 

This study aims to assess the utility of multi-temporal ‘Analysis Ready’ C-band SAR data to 

estimate savanna woody canopy cover. 

1.4. Objectives 

• To test different regression methods (LR, SVM and RF) and their effectiveness in 

modelling woody canopy cover. 

• To identify the optimal season for modelling canopy cover using different temporal 

combinations (dry & wet seasons of 2017 and 2018) and polarisation bands (VV & VH) 

of C-band SAR data. 

• To map canopy cover using the most effective regression method and optimal season 

1.5. Outline of the Research Report 

This research consists of five chapters which include: 

• Chapter 1: This chapter provides the background of the research and describes the 

problem statement, aim and objectives. 

• Chapter 2: This chapter reviews the relevant literature related to the savanna biome, 

background on remote sensing, and information on the different remote sensors and 

their capabilities. This chapter also discusses the modelling algorithms used in this 

research and their applications in other savanna vegetation studies. 
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• Chapter 3: This chapter describes the research methodology. This includes the study 

area, the research methods and materials that entail the data acquisition and processing 

and the statistical analysis used in this research. 

• Chapter 4: This chapter presents the study results by answering the research objectives 

using tables, graphs, and maps. 

• Chapter 5: This chapter discusses the findings by linking them to the aim and 

objectives and determining whether the study’s aim and objective were achieved. This 

chapter is also the final chapter which concludes the study and present 

recommendations. 
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CHAPTER 2: Literature Review 

2.1. The Savanna Biome 

Due to the co-dominance of tree and grass species, savannas are generally water limited and 

mostly influenced by natural and anthropogenic processes (e.g., wood-harvesting, overgrazing, 

and fire regimes; Sankaran et al., 2008). The biome has noticeable seasonal variations that 

results in arid, semi-arid and humid savanna types (Ward et al., 2013). During the dry season, 

savannas often have a negative water balance that affects flora and fauna present in the 

ecosystem. During the wet season, the water balance changes (Shorrocks, 2007). If not properly 

monitored, the changes between the dry and wet season may alter the tree-grass balance and 

result in the savanna being converted to a forest or grassland biome (Sankaran et al., 2004). 

There are intensifying concerns all over the world over their health and sustainability 

(Higginbottom et al., 2018). In 1993, Scholes and Walker (1993) documented that savannas 

occupied a fifth (20%) of the earth’s land surface, while in 1997, Scholes and Archer (1997) 

recorded that they covered an eighth (12.5%) of the land surface. Sankaran et al. (2005) and 

Jensen (2014) noted that the savannas covered a fifth (20%) of the earth’s land surface. 

Although savannas are poorly understood (Sankaran et al., 2005; Urbazaev et al., 2015). It is 

certain that they are changing, and these changes have been influenced by water and nutrient 

availability (Frost et al., 1986), livestock production (Sankaran et al., 2005), increasing human 

population (Fischer et al., 2015), changes in air temperature and precipitation (Urbazaev et al., 

2015), amongst others. These change variables need to be thoroughly understood to understand 

the savanna ecosystem thereby providing appropriate management practices.  

The African continent’s land cover is remarkably diverse due to varying climatic and ecological 

conditions (Graw et al., 2016). The continent’s land cover ranges from the dry non-vegetated 

areas of the Sahel desert to the humid area covered by the rainforests of Central Africa. The 

transitional zones between the deserts and rainforests consist of tropical and subtropical zones 

primarily dominated by the savanna ecosystem. The savannas cover more than half of the 

African continent (Scholes and Walker, 1993; Scholes and Archer, 1997; Twine et al., 2003; 

Shackleton and Shackleton, 2004). They are known for their dynamic tree-grass interaction 

and co-dominance (Sankaran et al., 2005; Ward et al., 2013; Urbazeav et al., 2015) that 

supports a large number of communities and contributes greatly to reducing the world’s carbon 

footprint (Naidoo et al., 2015; Naidoo et al., 2016; Main et al., 2016). 
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Apart from Africa, savannas are also found in South America, India (Asia) and Australia as 

shown in the figure below (Figure 1). They cover more than half the area of Australia, 45% of 

South America, and 10% of India (Scholes and Archer, 1997). They mainly occur close to the 

equator where the climate is relatively warm and dry (Shorrocks, 2007; ESRI, 2019). As 

savannas have a dry climate, they tend to experience seasonal drought, with the vegetation 

often affected by rainfall, fire, grazing and soil types. As a result, the biome has adopted a wide 

variety of fauna and flora which has adapted to the ecosystem and its climate (ESRI, 2019). 

However, savanna ecosystems are likely to differ due to the different conditions of the areas 

they are found. For instance, Africa’s savanna trees tend to be deciduous while those of South 

America and Australia tend to be ever green (Shorrocks, 2007).  

 

Figure 1: Location and Geographical Distribution of the Savanna Biome around the World (Source: ESRI, 

2019) 

Wigley et al. (2020) described African savannas as unique due to their diversity of herbivore 

mammals, which differ in sizes ranging from a few kgs to over 6 tonnes. The African savanna 

is vast as shown in Figure 1. It covers more than half the continent ranging from the Northwest 

to the East and down to the South of the continent. As one moves from the wet Congo basin to 

the desert of the Sahara, the savanna changes from densely covered areas to open grassland. 

South of the Congo basin towards the areas of Angola, Namibia and South Africa, the savanna 

becomes semi-arid. The savannas of Kenya and Tanzania join the North and South regions of 

the savanna (Shorrocks, 2007). The African savanna’s vegetation differs substantially due to 

varying climatic conditions (Graw et al, 2016). It is comprised of species that range from the 

Acacia trees to the savanna shrubs, the Terminalia woodland and many more (Shorrocks, 

2007).  
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In South America, the savanna is spread out mostly across the south of the equator and includes 

plant species such as the cerrado, llanos de Moxos, Gran Sabana, savannas of the Rio Branco-

Rupununi and many more (Shorrocks, 2007). They are the 2nd largest type of vegetation after 

the tropical forests of the continent and are a great example of adaptive shift as they have 

contributed significantly to the origination of the diversity of tropical species (Borghetti et al., 

2019). In Australia, the savannas are widespread over the north and include species such as the 

Monsoon tallgrass, Tropical tallgrass, Tussoc and many more. In India, the savanna covers the 

Northeast region of the country as illustrated in Figure 1. The savannas of India are believed to 

be from woodland systems brought by deforestation, abandoned cultivation as well as burning 

and they comprise of species such as the Zizyphus, rubicaulis and Acacia catechu (Shorrocks, 

2007).  

Over the years, there have been inadequate explorations of woody canopy cover mapping using 

SAR images in savannas across the world, mainly in southern Africa (Urbazaev et al., 2015). 

Furthermore, savannas have been susceptible to many negative effects, hence often affected by 

phenomena such as bush encroachment (Kgosikoma and Mogotsi, 2013). Bush encroachment 

may be because of over-grazing, over-harvesting, or an unsustainable fire regime (Fisher et al., 

2015) which may lead to food insecurity since as bush encroachment increases, agricultural 

potential decreases (Kgosikoma and Mogotsi, 2013). Moreover, savannas are important 

ecosystems as the availability of natural resources and disturbance regimes such as fire and 

grazing in the biome play a role in regulating woody cover (Sankaran et al., 2005). Therefore, 

it is of utmost importance that savanna ecosystems always be monitored and managed in order 

to ensure continued provision of ecosystem services not only for human beings but also for the 

wildlife that exists within the biome.  

2.2. Remote Sensing Background 

Remote sensing is the process of acquiring information about the state or condition of an object 

through sensors without physical contact (Chuvieco and Huete (2010). It is the most suitable 

tool for assessing woody structure across large regions (Naidoo et al., 2016). There are a variety 

of sensors available now a days, with some sensors (e.g., LiDAR and RADAR) being better 

suited for assessing woody structure than others. Remote sensing systems are divided into 

passive and active sensors. Passive sensors collect radiation derived from external sources such 

as the sun while active sensors produce their own source of energy to detect reflection of the 

energy from the observed surfaces (Chuvieco and Huete, 2010).  
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2.3. Passive Sensors 

Passive sensors also known as optical sensors are limited to measuring the electromagnetic 

radiation derived from external sources. Their energy is either reflected from solar radiation or 

emitted by the earth’s surface. Passive sensors have been extensively used in remote sensing 

for many decades to map vegetation (Chuvieco and Huete, 2010). These passive sensors 

include systems such as the Landsat satellites which have been used to collect land observation 

satellite data since the year 1972 and have thus been deemed significant for large scale 

monitoring applications and many other land observation applications (Staben et al., 2018). 

The monitoring applications include those such as rangeland monitoring while the other 

applications include tropical forest mapping and natural hazard assessment. 

 However, due to the sensitivity of solar illumination differences, the use of Landsat and many 

other passive sensors tends to be limited by weather conditions and time of the day as they are 

sun dependent and cannot acquire data at night (Campbell and Wynne, 2011). Furthermore, 

using passive sensors for mapping woody cover is challenging due to their inability to 

differentiate between woody and non-woody vegetation layers. Additionally, vegetation in the 

savanna biome shed their leaves during the dry season to preserve water. Due to this season 

often being short-lived, it is usually difficult to target for a reliable woody cover mapping using 

images acquired by passive sensors as there is often a short window to acquire the phenological 

differences in the vegetation which then produces poor results (Urbazaev et al., 2015).  

2.4. Active Sensors  

Active sensors can produce energy pulses and collect them after the surface target reflects them 

back to the sensor and can also penetrate through clouds to ensure continuous data acquisition 

even during harsh weather conditions (Srivastava et al., 2008). They can generate, transmit, 

and acquire electromagnetic energy which can penetrate through thick vegetation canopy 

covers and able to provide data on the 3D distribution of vegetation structures (Wessels et al., 

2019). The major sensors for active remote sensing are LiDAR which stands for Light 

Detection and Ranging, and RADAR which stands for Radio Detection and Ranging.  

2.4.1. LiDAR 

LiDAR is a system that emits pulses of polarised light to the observed surface. The pulses are 

detected after reflecting off the target surface (Chuvieco and Huete, 2010). LiDAR was built 

to transmit energy in a narrow range of frequencies and receive the reflected energy to produce 

an image of the earth’s surface. It can compare the characteristics of the emitted and the 
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returned energy, the timing pulses, the wavelengths, and the angles in order to measure its 

angular position, changes in frequency, the timing of reflected pulses as well as brightness of 

the backscatter (Naidoo et al., 2015). Therefore, such knowledge shows that LiDAR data can 

be used to obtain information that illustrates the structure of objects that cannot be portrayed 

by conventional passive sensors. 

Although LiDAR data is more accurate than SAR data and provides high-resolution geo-

located measurements of vegetation vertical structure and ground elevations beneath thick 

canopy covers, LiDAR data is not often available on a large or regional scale (Naidoo et al., 

2015; Staben et al., 2018). This is because there has been limited availability of space-borne 

satellite LiDAR and because LiDAR is frequently operated from an aerial platform which 

usually result in financial constraints due to the high costs of the LiDAR systems. 

Consequently, its data acquisition is restricted to small spatial coverage and as a result, usually 

restricted to local scale studies. Hence, LiDAR data is utilised to provide reference data for 

SAR-based modelling and upscaling (Urbazaev et al., 2015).  

2.4.2. RADAR 

Radars are the most well-known active sensor systems that work between the 0.1cm to 1m 

range in the electromagnetic spectrum (Chuvieco and Huete, 2010). They emit a microwave 

signal, then receive its reflection as the foundation for creating images of the earth’s surface. 

Their signals can penetrate through dense vegetation cover and hard soil surface. Their 

penetration is associated with frequency, surface roughness and incidence angle (Campbell and 

Wynne, 2011). They receive a backscatter coefficient which increases in value in relation to 

the power of the signal received (Campbell and Wynne, 2011). Due to their ability of acquiring 

images under any weather condition and independent of solar illumination, Radars have been 

shown to be successful at differentiating between land cover features according to their surface 

roughness and their canopy penetrating capabilities (Lechner et al., 2020). Synthetic Aperture 

Radar (SAR) uses a doppler effect (the change in radiation frequency resulting from the relative 

movement between the sensor and the object) to avoid spatial resolution issues by using a 

virtual antenna that is artificially synthesized (Chuvieco and Huete, 2010). 

2.5. SAR Sensors 

SAR sensors function on the notion that features within a scene are illuminated by the radar 

over a time interval, as the sensor platform moves along its flight path. The SAR sensor receives 

backscatter from the land surface during this interval and stores the history of the reflections 
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from each feature (Campbell, 2006). The backscatter is a key parameter of SAR data that 

computes the returned energy from a feature on the ground and is controlled by the geometry 

of the features and dielectric properties, which are often determined by water content. The 

backscatter is dependent on the wavelength, polarisation, and angle of incidence of the emitted 

wave from the SAR system (Srivastava et al., 2008; Mathieu et al., 2013; Urbazaev et al., 

2015). Hence, careful selection of sensor properties is required as they can play a role in 

defining the sensitivity of the signal to the variable being investigated (Srivastava et al., 2008). 

 Using SAR data to map savanna woody cover has been demonstrated by authors such as 

Mathieu et al., 2013, Naidoo et al., 2015, and Main et al., 2016. SAR sensors have been widely 

used for mapping woody structure due in part to the signal’s ability to penetrate the tree canopy 

and their capability of acquiring data in all weather conditions (Naidoo et al., 2016). SAR has 

become a powerful tool for mapping woody vegetation using either airborne or spaceborne 

platforms. The airborne systems allow for local-scale imaging, while spaceborne platforms 

enable regional to national-scale monitoring of woody resources (Martorella et al., 2012). This 

makes the understanding and interpretation of SAR images vital in order to be able to detect 

and map vegetation as well as other features of the environment (Chen and Tzeng, 2012). 

SAR sensors, such as Sentinel-1 (A & B) have become popular due to their ability of cloud 

penetration and being routinely and freely available (Trunckenbrodt et al., 2019). However, 

accessing the information stored within these sensors requires users to go through several pre-

processing steps to turn the data into formats that can be easily analysed.  Although the extent 

of pre-processing required depends on the application, the pre-processing steps can entail 

applying a precise orbit of acquisition, removing thermal and image boarder noise, performing 

radiometric calibration, and applying a range doppler and terrain correction (Filipponi, 2019). 

These steps are in a set of pre-processing levels that can range from Level 0 to Level 3 with 

Level 0 being raw instrument data and Level 3 being data that can be analysed without 

extensive pre-processing (Piwowar, 2001). However, the pre-processing steps are challenging 

and computationally expensive hence there has been a growing need for easy-to-use satellite 

data (Potapov et al., 2020).  

Level 3 data has become the popular easy to use format often referred to as Analysis Ready 

Data. The Committee on Earth Observation Satellites (CEOS) has defined Analysis Ready Data 

as “satellite data that has been processed to a minimum set of requirements and organized into 

a form that allows immediate analysis with a minimum of additional user effort, and 
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interoperability both through time and with other datasets” (http://ceos.org/ard/). Analysis 

Ready Data was introduced to deal with the challenges of scalability, increased data volume 

size, and to allow instant analysis without extensive pre-processing (Trunckenbrodt et al., 

2019). Although there are currently few SAR Analysis Ready Data products available for 

analysis (Potapov et al., 2020). SAR Analysis Ready Data has been used for savanna biomass 

mapping in South Africa (Haarpaintner et al., 2020) and forest land cover mapping in the 

Democratic Republic of Congo (Haartpainter and Hindberg, 2019).  

2.6. SAR Interaction 

SAR sensors operate on a microwave region of 0.1cm to 1m within the electromagnetic 

spectrum which has been divided into numerous sub-regions that may or may not be useful for 

woody vegetation studies. The sub-regions have been assigned a band according to their 

wavelength. There is the K-band which ranges from 0.8cm to 2.4cm, the X-band from 2.4cm 

to 3.8cm, the C-band from 3.8cm to 7.5cm, the S-band from 7.5cm to 15cm, the L-band from 

15cm to 30cm and P-band from 30cm to 100cm (Srivastava et al., 2008). However, the C and 

L bands are the most common for vegetation studies with the L-band often used for vegetation 

with thick canopy covers. The preference of the L-band over the C-band is supported by 

Wessels et al. (2019) who argues that it performs better at retrieving woody cover in savannas 

and woodlands regions.  

According to Urbazaev et al. (2015), the interaction of SAR wavelengths and vegetation 

elements is influenced by their size and shape. For instance, when detecting vegetation, the 

short SAR waves (X- and C- bands), interact mostly with small vegetation parts such as leaves 

and twigs while long waves (L- and P-bands) mostly interact with large vegetation parts such 

as branches and trunks. The short wavelengths then result in canopy level backscattering with 

limited signal penetration while longer wavelengths result in a backscattering that can penetrate 

deeper into the vegetation (Naidoo et al., 2015). As such, studies have shown that short 

wavelengths are more suitable for retrieving canopy biophysical parameters but not effective 

for predicting CC in places such as the savannas (Wu et al., 2011).  

Long SAR wavelengths (L-band) have a stronger relationship with woody structure than short 

wavelengths (C-band). This is because the backscatter of longer wavelengths is mainly due to 

interactions within-canopy (branches, trunks etc.) rather than the top-of-canopy (twigs, leaves 

etc.) which changes through time (Wessels et al., 2019). However, even though C-band is 

purportedly not as sensitive as the L-band, the C-band has less limitations when it comes to 

http://ceos.org/ard/
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mapping woody cover due its regular and operationalised acquisition strategy. The use of L-

band images is affected by data continuity issues, sensors failures, and high data costs of SAR 

systems. Although the different SAR wavelengths may have limitations on their own, merging 

them has also been shown to be beneficial in woody cover studies (Higginbottom et al., 2018). 

Naidoo et al. (2015) documented the benefits by comparing the accuracy of modelling woody 

above ground biomass, canopy cover and total canopy volume using the X, C and L-bands in 

South African Savannas.  

2.7. SAR Polarisation  

Remote sensing systems record polarisation characteristics which are crucial for many earth 

observations studies. Polarisation is the orientation of the emitted and received signal (Naidoo 

et al., 2015) and it is feasible to selectively emit and receive polarised energy using SAR 

systems (Jensen, 2015). Polarisation and frequency of SAR data play a crucial role in detecting 

vegetation structure. Polarised SAR sensors either emit or receive horizontal wave orientation 

or vertical wave orientation which can be referred to as HH, HV, VH or VV (Liu et al., 2005; 

Campbell, 2006; Wu et al., 2011; Urbazaev et al., 2015). The polarisations allow for a more 

comprehensive categorization of the scattering properties of ground targets which then permit 

the extraction of structural information from vegetation.  

For example, HV or VH are more suitable for mapping canopy structures due to the water 

content in canopies, which results in volumetric scattering within the canopy. This often 

changes the polarisation of the produced wave from H to V or from V to H (Naidoo et al., 

2015). Furthermore, the polarisation also affects the backscatter of vegetative features like the 

interaction of V orientated waves which are greater with vertical features such as branches and 

trunks while the interaction of H orientated waves is greater with horizontal features such as 

leaves and twigs (Urbazaev et al., 2015). Therefore, the polarisation of a SAR signal represents 

the field direction of the electromagnetic energy that is produced or received by the antenna 

(Liu et al., 2005; Campbell, 2006).  

2.8. Modelling Algorithms 

Modelling algorithms are data analysis methods that are chosen based on the nature of the 

questions and/or desired outputs in a project (McCue, 2007). The modelling algorithms can 

either be parametric or non-parametric. Parametric modelling algorithms make assumptions 

about the distribution of their input data while non-parametric algorithms do not make 

assumptions about their input data but construct their distribution based on information 
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acquired from its dataset (Garcia et al., 2010). The parametric approaches include LR while 

nom-parametric approaches include the machine learning algorithms of RF, SVM, REPTree, 

Artificial Neural Network (ANN), Decision Tree (DT) and many more.  The Machine learning 

algorithms have been used in different remote sensing studies and have produced results higher 

than parametric approaches (Naidoo et al., 2014, 2015, 2016; Forkuor et al., 2017; Garcia et 

al., 2018). 

According to Naidoo et al. (2014), LR is the simplest algorithm to carry out but is sensitive to 

outliers and not suitable for data that does not have a linear distribution. RF and SVM are 

powerful algorithms for facilitating data analysis and use advanced strategies to enhance the 

probability of reaching the desired goals (Alijani et al., 2018). ANN is a powerful algorithm 

suitable for analysing images due to its ability to extract spatial features (Bayr & Puschmann, 

2019). However, because of their required level of difficulty and customization, ANN and 

SVM are time consuming and computationally intensive (Naidoo et al., 2015). The modelling 

accuracies of LR, SVM and RF were compared in this study due to their simplicity, robustness, 

and powerfulness. 

2.8.1. Linear Regression (LR) 

LR is a common statistical tool for modelling the relationship between dependent and 

independent variables (Shai and Shai, 2014). It is the simplest form of regression analysis used 

when there is only one independent variable. LR is based on the linear relationship between 

two or more variable and can be represented by the equation  𝑦 = 𝑎 + 𝑏𝑥 (Pietersen and Maree, 

2007). The LR model has been used in savanna studies by authors such as Main et al. (2016) 

to describe the relationship between C-band backscatter and LiDAR metrics. Urbazaev et al. 

(2015) also used the LR model to analyse the effects of spatial resolution and seasonality 

between SAR parameters and LiDAR based woody canopy cover.  

2.8.2. Support Vector Machine (SVM) 

According to Ge et al. (2018), SVM is a supervised non-parametric machine learning technique 

for regression and classification analyses. It was presented first by Vapnik (1995) with 

principles based on statistical training theory (Alijani et al., 2018). It is an advanced machine 

learning method that offers exceptional advantages when dealing with small samples, non-

linear dataset and a high dimensional pattern recognition which presents a high correlation with 

predictor variables (Ge et al., 2018). The SVM is without prior assumption to the original 

distribution of data and appealing to remotely sensed data due to its ability to handle small 
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training sample datasets while still producing accurate results (Mountrakis et al., 2011). SVM 

attempts to achieve a balance between overfitting and prediction accuracy which is different 

from traditional linear and non-linear regression methods, such as Maximum Likelihood 

Estimation (Ge et al., 2018).  

Furthermore, SVMs are insensitive to the sample size because they can produce good results 

with a small training sample dataset, unlike DT and ANN which are unable to produce 

comparable accuracies with small sample sizes. This insensitivity in SVM is overcome by 

transmitting data into a higher dimension space which uses non-linear kernels, thereby creating 

a hyper-plane (Alijani et al., 2018). The hyper-plane is created for optimization purpose to 

increase the boundary between two different variables (Mountrakis et al., 2011). Garcia et al. 

(2018) used SVM to estimate forest canopy height by demonstrating the potential of using a 

multi-sensor method for extrapolating LiDAR-based canopy height measures on different 

ecosystems of diverse forest biomes. They discovered that SAR data alone was successful in 

estimating canopy height over temperate broadleaf and mixed forest biomes while in areas 

situated within the conifer biome, SAR data was limited, and multispectral data produced 

higher accuracies. Overall, the combination of SAR and multispectral data yielded higher 

results and improved the retrieval of forest canopy height 

2.8.3. Random Forest (RF) 

RF is an ensemble machine learning algorithm by Breiman (2001) that builds on the 

Classification and Regression Trees (CART) algorithm. It is a collaborative machine learning 

method that integrates a multitude of DTs where each DT is implemented using a training set 

that was constructed by a bootstrap sampling method (Hu et al., 2020). RF generates many DTs 

and combines them using bootstrapping and bagging. Unlike CART, RF is not sensitive to 

small alterations in the training data and is not susceptible to overfitting (Naidoo et al., 2015). 

This is because for RF to avoid overfitting, trees are grown from a random selection of 

predictors at every point and with a random subset of samples (Breiman, 2001). Therefore, the 

RF model is regarded as an improvement of CART due to its ability to use many DTs, bagging, 

and bootstrapping (Naidoo et al., 2016).  

RF is a robust model that can be used either for categorical or continuous data in order perform 

classification or regression analysis (Cutler et al., 2012). In instances where the number of 

available training samples are limited, the RF still performs well due to its dependence on two 

user defined values which are the number of decision trees in the forest and the number of 
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possible features for each node (Waske et al., 2012; Naidoo et al., 2014). Moreover, the RF has 

proven to be a robust model for denoting the complexity of relationships that may not be 

linearly distributed (Naidoo et al., 2014). As a result of its robustness, the model has been 

successfully used to map vegetation structural metrices due to its ability of producing high 

accuracies (Urbazaev et al., 2015). Higginbottom et al. (2018) used RF to map fractional woody 

cover in semi-arid savannas by comparing the accuracies of single season Landsat metrics 

multi-seasonal data, or multi-sensor (Landsat and SAR) data at different spatial resolutions. 

They found that although Landsat can produce accurate maps of woody cover on its own, the 

combination of Landsat and SAR yielded higher results. 

2.9. Application of Modelling Algorithms and SAR Datasets on Savanna Vegetation 

Studies 

Naidoo et al. (2014) compared the modelling accuracies of woody canopy cover in South 

African savannas by using techniques such as LR, SVM, REPTree, Decision Tree (DT), ANN 

and RF using the X-band, C-band, and L-band datasets. Their study used LiDAR data to train 

its models and evaluate the modelling accuracies of the SAR models. The results showed that 

the ANN, REPTree and RF models produced high canopy cover prediction accuracies using 

different combinations of SAR wavelengths. The results also showed that the L-band data 

should be prioritised because a single L-band image produced higher accuracies compared to 

the single images of shorter wavelengths such as the X-band and C-band. Urbazaev et al. (2015) 

demonstrated that the L-band produced promising sensitivity and therefore suggests that the 

band can be used to map and monitor woody cover changes in South African savannas. 

Naidoo et al. (2015) used RF to model and map the accuracies of the structural metrices of 

aboveground biomass (AGB), woody canopy cover (CC) and total canopy volume (TCV) using 

the SAR datasets of X-band, C-band, L-band, and their combinations in South African 

savannas. Although the combination of all bands (X, C, and L-band) produced the best results 

for all three metrices, the L-band was still more effective in modelling all three metrices than 

the X and C-bands whether individually or combined. However, the modelling of C-band alone 

showed promising results which shows that in the absence of L-band datasets, the C-band can 

produce comparable results in similar environments. Hence, Mathieu et al. (2013) concluded 

that the C-band SAR datasets show encouraging results for open, semi-arid savannas for use 

when L-band is not available and makes the implementation of the Sentinel-1 C-band SAR 

sensor viable.  
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Main et al. (2016) assessed the strength of the relationship between savanna woody vegetation 

cover and volume and a time-series of C-band ASAR data using RF and LR models. They used 

LiDAR data to calibrate and validate the predictive SAR models for total woody canopy cover 

and total canopy volume. Their results showed that with enough C-band data, the RF model 

produces accuracies equivalent to studies done using the high-resolution expensive L-band 

SAR data. The study further produced high prediction accuracies for the models even though 

the SAR wavelength used was the C-band with a spatial resolution of 75m and a single HH 

polarisation to estimate woody vegetation structure. This is because according to Haarpaintner 

et al. (2020), when there is enough data (multi-temporal combinations of C-band data), C-band 

images reduce signal noise and improve model sensitivity to woody structural related 

parameters thereby being able to produce results comparable to the L-band.  

2.10. Summary of Literature 

The savanna biome is home to millions of people and different fauna and flora species but is 

under pressure due to natural and anthropogenic factors threating the existence of the biome. 

Remote sensing techniques can assess savanna vegetation by mapping and monitoring savanna 

woody structure. Remote sensing systems are divided into passive and active sensors. Active 

sensors, especially SAR are better suited for assessing woody structure than LiDAR or passive 

sensors due to their capability of penetrating through dense vegetation cover. However, the 

nature of savanna vegetation makes it a challenging endeavour for monitoring vegetation 

within the biome. This is because savannas are characterised by a mixture of grass and sparsely 

distributed trees mostly in the form of shrubs. Analysis Ready Data products promise a future 

where remote sensing data will no longer include computationally expensive or challenging 

pre-processing steps but instead provide easy-to-use satellite data for mapping and modelling 

savanna vegetation. 

 

 

 

CHAPTER 3: Methods and Materials 

3.1. Study Area  

The Bushbuckridge Local Municipality (BLM) is a semi-arid savanna area situated in the 

Lowveld region of South Africa (Mograbi et al., 2015). It is situated in the north-eastern part 
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of Mpumalanga (Figure 2), and as of 2016, the Kruger National Park (KNP) forms part of the 

municipality (Bushbuckridge Local Municipality, 2018). The municipality is made up of two 

former apartheid homelands, namely Gazankulu and Lebowa which were established with the 

Native Land Act (No. 27) of 1913 (Fisher et al., 2015). Although BLM falls under state control, 

in 1994 after the homelands were dismantled, the municipality was divided into communal 

rangelands administered by tribal authorities who zoned the land into residential, arable, and 

communal areas for grazing and collection of timber and non-timber products (Mograbi et al., 

2015; Fisher et al., 2015). Due to its history, the BLM is densely populated with the years 

between 1972 and 2012 seeing an increase in human population in the area to 209 people/km2 

which resulted in an increased land utilization intensity and economic impoverishment (Fisher, 

2013).  

 

Figure 2: Study area map of the Bushbuckridge Local Municipality in Mpumalanga, South Africa, with the spatial 

coverage of the LiDAR boundaries (red rectangles; Source: CSIR; S.A Municipal Demarcation Board)  

 

The study area (BLM) has varying natural vegetation types, comprised of mixed bushveld, 

sweet and sour lowveld, bushveld and clay thorn bush (Mucina and Rutherford, 2006). Woody 

vegetation is prominent in the study area with canopy cover ranging between 5% in the savanna 

area to 60% in woodlands and 80% in riparian zones (Venter et al., 2003; Main et al., 2016), 

and tree height ranging from 2-5m (Naidoo et al., 2015). In combination with the climatic 
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conditions, the vegetation distribution and density are influenced by the geology, fire regimes, 

and grazing and harvesting practices of woody vegetation (Main et al., 2016).  

The study area experiences a hot and humid summer with temperatures averaging 30° C 

(Mograbi et al., 2015), and rainfall that primarily occurs between the months of October and 

May with an average of 250mm/annum in the east and 1000mm/annum in the west (Main et 

al., 2016). Winter is short and dry with an average temperature of 23° C (Mograbi et al., 2015), 

and no frost (Naidoo et al., 2016). The dry season occurs from late May to late September 

(Urbazaev et al., 2015). Figure 3 below shows the total monthly rainfall for BLM, Mpumalanga 

for the years 2017 to 2018. It shows the variation in rainfall between the months and shows 

that 2018 had a relatively lower total rainfall than 2017. This variation is evident on the results 

in section (Chapter 4) where different months responded differently due to variations on the 

amounts of rainfall received. 

 

Figure 3: Total Monthly Rainfall for Bushbuckridge Local municipality, Mpumalanga 2017-2018. (Source: 

Global Precipitation Measurement (GPM)) 

3.2. Remote Sensing Data Acquisition and Pre-processing 

3.2.1. LiDAR Data 

This study used LiDAR-based products as reference data. The products were collected by the 

Council for Scientific and Industrial Research (CSIR) as part of a project titled CSIR TP45 

“National woody vegetation monitoring system for ecosystem and value-added services”. 

Southern Mapping undertook the topographical survey to produce rectified colour images and 

a Digital Terrain Model (DTM) of the surveyed project area. The topographical survey was 

done using an aircraft mounted LiDAR system that scanned the ground below at a high laser 
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frequency rate (150 kHz), resulting in a dense DTM of the ground surface and objects above 

the ground. Digital colour images were also taken from the aircraft and rectified to produce 

colour orthophotos of the surveyed area. The survey was flown at a height of approximately 

700m and ortho images with a 7cm pixel resolution were produced.  

The LiDAR products were acquired in June 2018 using the Patenavia P68B (ZS-OWLand ZS-

BRD) aircraft with Optech ALTM M300(13SEN327) and Optech Gemini (09SEN258) laser 

scanner and a Phase One iXA180 camera. The LiDAR data covered the communal lands of 

Agincourt (A), Ireagh (I), Justicia (J) and Welverdient (W) in BLM, Mpumalanga (Figure 2) 

and are mainly used by residents for farming practices, harvesting of fuelwood, and ranching 

of livestock (Shackleton, 2000). The data had the following acquisition attributes (Table 1):  

Table 1: Average density and spacing of LiDAR returns for the study areas in Bushbuckridge Local Municipality, 

Mpumalanga. (Source: CSIR) 

 Avg Density 

(All Returns) 

Avg Density 

(Last Return) 

Avg Spacing 

(All Returns) 

Avg Spacing 

(Last Returns) 

Angincourt 5.1 4.6 0.4 0.5 

Ireagh 9.2 8.2 0.3 0.4 

Justicia 8.1 6.7 0.4 0.4 

Welverdient 10.8 9.8 0.3 0.3 

 

The pre-processing of LiDAR data is demonstrated by Naidoo et al. (2015, 2016), where they 

showed that to derive CC from LiDAR data, a LiDAR canopy height model (CHM) must be 

generated first. To do this, the digital elevation model (DEM) and top-of-canopy surface model 

(CSM) were produced first. The DEM was subtracted from the CSM to calculate the CHM 

(pixel size of 2m). To create the LiDAR woody CC, a data mask was applied to the CHM to 

generate a spatial arrangement of “no woody canopy cover” vs “woody canopy cover”. In total, 

three woody structural metrics (CHM, CSM & CC) were generated from processing the LiDAR 

data and were all resampled to a 25m spatial resolution. For this study, the acquired LiDAR 

data was resampled to a 100m spatial resolution using the nearest neighbour resampling 

technique in R software. This was done to spatially average the dataset in order to increase the 

chances of obtaining higher accuracies. 
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3.2.2. Sentinel-1 Images 

Sentinel-1 is a constellation of satellite missions launched by the European Space Agency as 

part of the European’s Copernicus Program (Trunckenbrodt et al., 2019). It comprises of two 

satellites namely Sentinel-1A launched in 2014 and Sentinel-1B launched in 2016 (S1A and 

S1B; Haarpaintner and Hindberg, 2019). The satellites provide C-band SAR images of the 

whole world on a 6 to 12 days revisit cycle and are somewhat independent from adverse 

weather (cloud) and solar illumination conditions (Haarpaintner et al., 2020). They carry the 

C-band sensor at a 5.405 GHz frequency, with an incidence angle between 0° and 90° (Zhang 

et al., 2019). The Sentinel-1 products are freely and systematically available for all users for 

public to commercial and scientific uses. The products are distributed in the Sentinel-Standard 

Archive Format for Europe (SAFE) and can be found on  

https://sentinel.esa.int/web/sentinel/sentinel-data-access (Haarpaintner, 2019). Each scene of 

the Sentinel-1 products either has 1 or 2 of 4 polarisation bands: single band VV and HH, or 

dual-band VV+VH and HH + HV (Zhang et al., 2019).  

Table 2 below shows a summary of the Sentinel-1 data acquisitions for the years 2017 and 

2018 by specifying the satellite (S1A or S1B), the path number, number of orbits and the flight 

direction stating whether the satellite was ascending (ASC) or descending (DES). These 

Sentinel-1 products are from the Norwegian Research Centre (NORCE) and were prepared by 

Haarpaintner (2019). They cover a period spanning from 1 January 2017 to 31 December 2018. 

Individual scenes from these products were averaged for each month to produce mean monthly 

composites. The composites comprised of the co-polarised VV, cross-polarised VH and the 

Normalized Difference Index (NDI) SAR bands. For this study, the products were divided into 

two different seasons: the dry and wet seasons. The dry season covered the months from May 

to October while the wet season covered from November to April for both 2017 and 2018.  

 

 

 

 

Table 2: Summary of the Sentinel-1 Data Acquisition. (Source: Haarpaintner, 2019) 

Site 2017 2018 

https://sentinel.esa.int/web/sentinel/sentinel-data-access
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South 

Africa 

Satellite ASC or 

DES 

Path Nr of 

orbits 

Satellite ASC or 

DES 

Path Nr of 

orbits 

S1A ASC 043 31 S1A ASC 043 30 

S1A/S1B DES 079 27A+6B S1A/S1B DES 079 13A+27B 

S1A ASC 145 30 S1A ASC 145 31 

S1B DES 152 7 S1B DES 152 26 

Total S1A/S1B ASC/DES  101 S1A/S1B ASC/DES  127 

 

3.2.3. SAR Pre-processing 

Norut’s (now NORCE) Generic SAR (GSAR) processing system was used for pre-processing 

because it can process big data. The SAR data was geocoded, radiometrically calibrated, and 

radiometric slope correction was applied once all other processing procedures were 

implemented. A 1Arcs SRTM DEM interpolated on a 20m spatial resolution 36s UTM grid 

using a cubic convolution resampling was applied to pre-process the data using a geocoding 

software (Larsen et al., 2005). The 20m spatial resolution of the DEM was defined to ensure 

that all pre-processed single orbits are processed on the same UTM grid (Haarpaintner, 2019). 

Figure 4 below shows the processing done from Level-1 Sentinel-1 GRD data to pre-processed 

georeferenced and slope-corrected single orbit images (Level 2), and lastly, to the complete set 

of ARD products (Level 3). 
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Figure 4: ARD processing chain from GRD (Level 1) to ARD products (Level 3; Source: Haarpaintner, 2019). 

The nearest neighbour resampling technique was used to resample the ARD products to a 100m 

spatial resolution. This was done to ensure that the SAR and LiDAR data products have the 

same resolution and align with each other so values would be extracted within the extent of the 

defined study areas. The ‘rasterToPoint’ function in R was used to convert the LiDAR data to 

sampling points. The points were used to randomly extract SAR data using the ‘raster extract’ 

function in R. This was done to predict canopy cover models using LR, SVM and RF 

algorithms. Literature has established that the dry season is the best period to acquire SAR data 

because SAR sensors are negatively affected by moisture/rainfall during the wet season 

(Archibald and Scholes, 2007; Urbazaev et al., 2015; Naidoo et al., 2016). Therefore, Merged 

satellite-gauge precipitation Final Run (recommended for general use) GPM_3IMERGM_v06 

data was acquired from the Giovanni website accessed through https://giovanni.gsfc.nasa.gov.  

The data was monthly rainfall in mm/month units with a Spatial Resolution of 0.1° (11.1km) 

for the BLM region for 2017-2018. The acquired data was exported to a CSV format to create 
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a monthly rainfall graph (shown in Figure 3) in excel to help understand the results of the SAR 

predictive models. 

3.3. Calibration and Validation Dataset 

The dataset (n=26269) was randomly split into 70% and 30% for calibration and validation. 

18388 (70%) points were used for calibration while 7881 (30%) were used for validation. The 

calibration dataset was used to train the LR, SVM and RF predictive models while the 

validation was used to test the validity and how well the predictive models performed.  

3.4.  Statistical Analysis 

This study adopted a regression analysis approach to assess the utility of multi-temporal 

‘Analysis Ready’ C-band SAR data for woody canopy cover estimation. LR, SVM and RF 

were used in open-source R software (R Core Team, 2018) to model the statistical relationships 

between the LiDAR CC dependent variable and C-band ARD independent variable.   

3.4.1. Linear Regression 

The “lm” function was used to fit the LR (Sugiura, 1978) model in R software (R Core 

Development Team, 2018). LR is the simplest and most used regression model. It is easy to 

calculate and interpret but not suitable for data not linearly distributed (Naidoo et al., 2014). 

LR assumes that there is a linear relationship between the dependent variable and the 

independent variable (Pietersen and Maree, 2007).  

The LR model is expressed by the equation: 

                                                          𝑌 = 𝑎 + 𝑏𝑥  

 Where Y is the dependent variables, 𝑎 is the intercept, b is the regression coefficient and 𝑥 is 

the independent variable. 

3.4.2. Support Vector Machine 

SVM (Vapnik, 1995) implemented in the “e1071” package (Meyer et al., 2019) was carried out 

in R statistical software (R Core Development, 2018) to model canopy cover. SVM was 

originally used for classification but was later extended to include regression. As a result, the 

e1071 package can be used for both classification and regression studies (Meyer et al., 2019). 

The aim for SVM regression is to estimate a function 𝑓(𝑥) that is very close to the target values 

and at the same time as flat as possible to allow for generalizations (Shevade, 2000).  
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A linear function in the feature space is used to express the function 𝑓  represented by the 

equation: 

𝑓(𝑥) = 𝜔 ∙ ∅(𝑥) + 𝑏 

Where  𝑥  is the input vector of the SVM,  𝜔 denotes the weight vector,"∙" represents the inner 

product in the feature space,   ∅(𝑥) is a kernel to transfer the data to a vector feature space and 

b denotes the bias vector. 

SVM relies on the use of kernel functions to plot input data into a new hyperplane where 

separations are performed and aims to reach an optimal hyperspace for fitting and predicting 

data using the 𝜀-insensitive loss function (Forkuor et al., 2017). Vapnik (1995) suggested that 

the 𝜀-insensitive loss function be used if the error produced is less than 𝜀 (Shevade (2000). As 

such, the “caret” package (Kuhn, 2020) in R statistical software was carried out to tune the 

SVM model to determine the best parameters by ignoring errors less than 𝜀.  

3.4.3. Random Forest  

RF is a robust and computationally efficient model capable of denoting the difficulty of 

relationships that may not be linearly distributed and is hardly affected by issues of overfitting 

(Naidoo et al., 2014) even though overfitting could occur when the dataset being modelled is 

noisy (Statnikov et al., 2008). To avoid overfitting, RF grows trees by randomly selecting 

predictors at each node with random subset of samples for each tree (Breiman, 2001). RF 

(Breiman, 2001) was applied using the "randomForest” package (Liaw and Wienner, 2002) in 

R statistical software (R Core Development Team, 2018) as one of the algorithms for modelling 

canopy cover. To model RF, two main user defined parameters are required to tune the model 

(Ismail et al., 2010). These parameters are the number of trees built in the forest (ntree) and the 

number of possible splitting variables for each node (mtry). The default 500 trees were used 

for ntree and the default for mtry which is the square root of the number of predictor variables 

used was 1 for the individual scenes and 2 for the multi-temporal scenes. These are the 

parameters that affect the modelling ability of RF which were set using the “caret” (Kuhn, 

2020) package in R statistical software (R Core Development, 2018).   

During the modelling process, RF combines bootstrapping and bagging in order to grow trees. 

To construct the trees, 2/3 of its samples are selected randomly for the training dataset and a 

matching DT is created based on the random samples (Breiman, 2001). The 1/3 samples that 

were not selected from the Out-of-Bag (OOB) test dataset. The OOB is then used as a sample 



25 
 

for determining errors when processing the RF model (Zhang et al., 2017). For the ntree and 

mtry parameters to be at their most optimal, the value of the OOB error needs to be at its lowest 

and can thus be able to calculate the mean square error (𝑀𝑆𝐸𝑂𝑂𝐵; Liaw and Wienar, 2002) 

The mean square error 𝑀𝑆𝐸𝑂𝑂𝐵 is expressed by the equation: 

                                                          𝑀𝑆𝐸𝑂𝑂𝐵 =  
1

𝑛
∑ (𝑂𝑖

𝑛
𝑖=1 −  𝑃𝑖𝑂𝑂𝐵)2  

Where n is the number of observations, 𝑂𝑖 is the average prediction of the ith observation, 

𝑃𝑖𝑂𝑂𝐵 is the average of all OOB predictions from all trees, 𝑀𝑆𝐸𝑂𝑂𝐵 is normalized as it depends 

on the unit of the response variable and the percentage of explained variance 

The explained variance is expressed by the equation: 

𝑉𝑎𝑟 =  1 −  
𝑀𝑆𝐸𝑂𝑂𝐵

𝑉𝑎𝑟𝑟𝑒𝑠𝑝
 

 

3.4.4. Accuracy Assessment and Modelling 

The accuracy of the models was measured using regression statistics such as the Coefficient of 

Determination (R2), Root-mean-Square Error (RMSE), relative RMSE (rRMSE). R2 assesses 

the strength of the relationship between the SAR and LiDAR canopy cover while RMSE and 

rRMSE assist in evaluating the predictive performance and error in the models (Robison, 

2005). The co-polarised VV bands is not as sensitive to volumetric scattering as the VH bands 

(Watanabe et al., 2016), making it not as beneficial on its own for modelling savanna woody 

structure. Cross-polarised VH band is sensitive to volumetric scattering and has been 

documented as the more effective and superior band for modelling savanna woody structure 

(Haarpaintner et al., 2020). As a result, the analysis of this study was simplified by only 

presenting VH results and where VV was combined with VH.  

To model canopy cover, the datasets were analysed using both individual scenes and multi-

temporal combinations of scenes, which created several modelling scenarios: individual 

scenes, per polarisation, individual scenes with both polarisations combined, seasonal 

combinations of scenes by polarisation and year, multi-year combinations of scenes per season 

and polarisation, and lastly, multi-year combinations of scenes where all seasons and 

polarisations were analysed at the same time. The modelling process of the datasets was 

repeated ten times to ensure robustness and cross-validation to allow different combinations of 
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training and validation datasets to determine the regression statistics of R², RMSE and rRMSE 

(Naidoo et al., 2014). Predicted vs observed scatterplots as well as canopy cover maps were 

produced to illustrate and show the distribution of the predictive models. It should be noted 

that spatial autocorrelation was not considered in this study. As such, the results presented in 

chapter 4 might be affected by it. 

CHAPTER 4: Results 

 

4.1. Optimal Season and Most Effective Regression Method  

4.1.1. Individual Scenes, per polarisation  

Validation results for the VH polarised individual scenes for 2017 are shown in Table 3, where 

only the VH polarisation band was analysed per image using SVM, RF and LR. The results 

show that the VH polarisation band is most effective when the environment is drier during the 

late dry season (i.e., September) and early wet season (i.e., November). The trends show that 

the transition into the wet season and the first few wet season months (i.e., October-November), 

show higher accuracy than the late wet season months (i.e., March-April). Furthermore, the 

results also show higher accuracy later in the dry season (i.e., September) than in the early dry 

season (May). SVM shows the highest accuracy, followed by LR and RF having the lowest 

accuracy. SVM and RF have their highest accuracies in November while LR is in October. 

This shows that regardless of which model is used, the drier the environment, the better the 

modelling accuracies. 

Table 3: Validation results from the scenario whereby 2017 VH polarised scenes were analysed. 

  Random Forest SVM Linear Regression 

 Dataset Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

W
et

 

January 0.31 16.56 63.43 0.38 15.8 60.1 0.35 15.97 60.96 

February 0.29 16.77 63.9 0.35 16.09 61.41 0.33 16.23 61.94 

March 0.23 17.65 67.1 0.28 17.03 64.99 0.27 17 64.89 

April 0.3 16.64 64.15 0.37 15.85 60.6 0.35 15.94 60.83 

D
ry

 

May 0.34 16.25 61.64 0.4 15.45 58.97 0.39 15.55 59.33 

June 0.44 14.94 57.71 0.49 14.29 54.54 0.46 14.54 55.47 

July 0.47 14.4 55.45 0.53 13.66 52.14 0.49 14.17 54.09 
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August 0.49 14.1 53.8 0.54 13.48 51.43 0.51 13.87 52.93 

September 0.51 14.01 53.7 0.56 13.33 50.86 0.52 13.71 52.31 

October 0.52 13.85 53.02 0.57 13.15 50.18 0.53 13.65 52.11 

W
et

 November 0.52 13.8 52.66 0.57 13.07 49.8 0.51 13.92 53.13 

December 0.44 14.94 57.56 0.49 14.23 54.29 0.44 14.81 56.51 

 Mean Wet 0.35 16.06 61.47 0.41 15.35 58.53 0.38 15.65 59.71 

 Mean Dry 0.46 14.5 55.89 0.52 13.88 53.02 0.48 14.25 54.37 

* Dry season results on the tables are shaded using a grey colour while the best results are highlighted using red 

and the poorest results on individual scenes per polarisation and all polarisations combined are highlighted using 

a blue colour (here and hereafter). 

Validation results for the VH polarised individual scenes for 2018 are shown below in Table 

4, where only the VH polarisation band was analysed per image using SVM, RF and LR. The 

results (Table 4) show similar trends as the 2017 validation results shown in Table 3 where the 

transition into the wet season and the first few wet season months (i.e., October-November), 

show higher accuracies than the late wet season months (i.e., March-April). However, unlike 

the 2017 validation results (Table 3) where the highest accuracies were recorded in November 

for SVM and RF, and October for LR, the 2018 validation results (Table 4) show that the 

highest accuracies for all models (i.e., SVM, RF and LR) were recorded in August. Although 

these results also show that the drier the environment becomes, the more the modelling 

accuracies improve, they also show that the highest accuracy in 2018 (Table 4) was in the mid-

dry season rather than the early wet season. Furthermore, when comparing the 2018 validation 

results (Table 4) with the 2017 validation results (Table 3), they show higher accuracies were 

recorded in 2018 rather than 2017. This suggests that the year 2018 was drier than the year 

2017 (Figure 3).  

Table 4: Validation results from the scenario whereby 2018 VH polarised scenes were analysed 

  Random Forest SVM Linear Regression 

 Dataset Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

W
et

 

January 0.43 14.81 57.16 0.5 14.14 53.96 0.42 15.11 57.65 

February 0.35 16.05 61.5 0.41 15.33 58.51 0.35 16.02 61.16 

March 0.42 15.2 57.84 0.48 14.47 55.21 0.43 14.98 57.15 

April 0.34 16.27 62.03 0.41 15.38 58.69 0.38 15.68 59.84 
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D
ry

 
May 0.44 14.92 57.27 0.48 14.35 54.96 0.45 14.72 54.19 

June 0.46 14.64 55.96 0.52 13.74 52.43 0.49 14.22 54.26 

July 0.5 14.11 54.04 0.56 13.27 50.65 0.51 13.82 52.75 

August 0.53 13.69 52.07 0.58 13 49.56 0.54 13.51 51.57 

September 0.49 14.08 54.36 0.55 13.34 50.91 0.51 13.86 52.91 

October 0.51 13.92 53.19 0.56 13.23 50.49 0.52 13.77 52.54 

W
et

 November 0.51 13.95 53.29 0.56 13.25 50.56 0.52 13.76 52.51 

December 0.47 14.44 55.34 0.51 13.91 53.1 0.47 13.76 54.87 

 Mean Wet 0.42 19.58 57.86 0.48 14.08 55.01 0.43 14.89 57.2 

 Mean Dry 0.49 14.23 54.48 0.54 13.49 51.5 0.5 13.9 53.04 

 

The results for the individual scenes, per polarisation presented in Table 3 and 4 show that the 

season and model which produced the highest accuracies was the same in both 2017 and 2018. 

Amongst all the individual scenes, per polarisation datasets, August 2018 (dry season; Table 

4) produced the highest model accuracy while March 2017 (wet season; Table 3) produced the 

lowest results. Overall, the late dry and early wet seasons (i.e., Sept-Nov) produced the highest 

results in all models while the late wet seasons (i.e., Feb- Apr) produced the lowest results with 

their rRMSE ranging between 58.69% and 67.1%. The mean results for all seasons in both 

2017 (Table 3) and 2018 (Table 4) show that on average 2018 model accuracies were higher 

than those of 2017 in all models and seasons. 

4.1.2. Individual Scenes with both Polarisations combined 

Validation results for the scenario where both VV and VH polarisation bands were combined 

and analysed together for 2017 are shown below in Table 5. The validation results in Table 5 

show that the trends are comparable to those of the single polarisation band analysis above in 

Tables 3 and 4 where SVM shows the highest accuracy followed by LR and RF showing the 

lowest accuracy. Compared to the 2017 and 2018 individual scenes validation results shown in 

Tables 3 and 4, with modelling accuracies for both polarisations (VV and VH; Table 5) improve 

the drier the environment. The transition into the wet season and the first few wet season 

months (i.e., October-November), show higher accuracies compared to the late wet season 

months (i.e., March-April), with November showing the highest accuracies for SVM and RF 

and October showing the highest accuracies for LR.  
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Table 5: Validation results from the scenario whereby both polarisations (VV & VH) for 2017 were analysed 

  Random Forest SVM Linear Regression 

 Dataset Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

W
et

 

January 0.32 16.4 63 0.38 15.9 60.9 0.36 15.9 60.5 

February 0.3 16.7 63.4 0.35 16.1 61.6 0.33 16.3 62.2 

March 0.2 17.8 68.6 0.27 17 65.2 0.26 17 65.2 

April 0.3 16.7 63.8 0.37 15.9 60.4 0.35 15.9 61 

D
ry

 

May 0.35 16.2 61.7 0.4 15.4 58.8 0.39 15.5 59.5 

June 0.44 15.1 57.8 0.49 14.3 54.6 0.46 14.5 55.6 

July 0.48 14.4 55.7 0.53 13.7 52.3 0.49 14.2 54.3 

August 0.48 14.4 55.2 0.54 13.5 51.6 0.51 13.9 52.8 

September 0.51 14 53.4 0.56 13.3 50.8 0.52 13.7 52.3 

October 0.52 13.9 53.2 0.57 13.2 50.2 0.53 13.7 52 

W
et

 November 0.52 13.7 52.7 0.57 13.1 50 0.51 13.9 52.9 

December 0.43 14.9 56.8 0.49 14.2 54.2 0.44 14.8 56.6 

 Mean Wet 0.35 16 61.4 0.41 15.4 58.7 0.38 15.6 59.7 

 Mean Dry 0.46 14.6 56.2 0.52 13.9 53.1 0.48 14.3 54.4 

 

Validation results where both VV and VH polarisation bands were analysed together per image 

for the year 2018 are shown below in Table 6. Compared to the previous individual scenes 

modelling scenarios shown in Table 3, 4 and 5, results presented in Table 6 also show 

increasing accuracies with the transition into the wet season. The first few wet season months 

(i.e., October-November) show higher accuracies compared to the late wet season months (i.e., 

March-April). SVM outperformed both LR and RF with the highest accuracy for all being in 

August 2018 mid-dry season. These results show similar trends and accuracies with those of 

Tables 3, 4 and 5 and suggest that there are marginal gains when the VH polarisation band is 

analysed individually or when VV and VH are combined and analysed together when dealing 

with a single scene.  
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Table 6: Validation results from the scenario whereby both polarisations (VV & VH) 2018 polarised scenes 

were analysed 

  Random Forest SVM Linear Regression 

 Dataset Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

W
et

 

January 0.44 14.9 57.5 0.5 14.1 54 0.42 15.1 57.8 

February 0.36 15.8 60.7 0.41 15.3 58.5 0.35 16 61.3 

March 0.42 15.1 58.2 0.48 14.4 55.1 0.43 14.9 57.2 

April 0.35 15.9 61.3 0.41 15.4 58.7 0.38 15.7 60 

D
ry

 

May 0.43 15.1 57.2 0.48 14.4 54.9 0.45 14.7 56.4 

June 0.47 14.7 55.9 0.53 13.7 52.4 0.49 14.2 54.3 

July 0.5 14 53.6 0.56 13.2 50.7 0.52 13.8 52.8 

August 0.54 13.5 51.2 0.58 13 49.6 0.54 13.5 51.7 

September 0.5 14.1 54.7 0.55 13.3 50.9 0.51 13.8 52.7 

October 0.51 13.8 53.2 0.56 13.2 50.6 0.52 13.8 52.4 

W
et

 November 0.5 14.1 53.5 0.56 13.3 50.7 0.52 13.8 52.4 

December 0.48 14.4 54.9 0.52 13.9 53.1 0.48 14.4 55 

 Mean Wet 0.43 15 57.7 0.48 14.4 55 0.43 14.9 57.3 

 Mean Dry 0.49 14.2 54.3 0.54 13.5 51.5 0.51 13.9 53.4 

 

The individual scenes, both polarisations (VH & VH) combined (Table 5 and 6), show similar 

trends as the single polarisation individual scenes (Table 3 and 4) where the season and model 

with the highest accuracy was the same in both 2017 and 2018. Compared to the VH only 

validation results in Table 4, August 2018 (dry season) produced the highest model accuracies 

while March 2017 produced the lowest results. Overall, the dry season outperformed the wet 

season regardless of the model while SVM returned the highest accuracies and RF produced 

the lowest. The mean dry and wet seasons results in both Tables 5 and 6 show that the average 

performance for the dry season is higher than that of the wet season with ~4% rRMSE 

difference in 2018 and ~5% rRMSE difference in 2017.  
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4.1.3. Seasonal Combinations of Scenes by Polarisation and Year 

Although some of the results are comparable to those of the individual scenes for 2017 and 

2018 in the tables above (Table 3 to Table 6), combining the individual scenes into seasonal 

and/or yearly composites resulted in improved model accuracies with the rRMSE improving 

by ~2.5% for 2017 and by ~2% for 2018 when compared to the highest individual scene within 

each year of the previous scenarios (Table 3 to Table 6). SVM remains the highest model by 

showing high accuracies in all seasons. The performance of RF improved compared to the 

individual scenes while the performance of LR showed insensitivity for modelling large 

datasets. 

Validation results for seasonal single-polarisation band analysis where individual VH scenes 

were combined into single season or yearly composites for both 2017 and 2018 are shown in 

Table 7. The 2017 VH dry & wet seasons combination produced the highest results in all 

models compared to the 2018 VH dry & wet seasons combination. The validation results for 

2018 wet season returned higher accuracies compared to the validation results for 2017 wet 

season in all models. In the dry season, RF and SVM produced their highest accuracies in the 

2017 dry season while LR produced its highest accuracy in the 2018 dry season. Overall, the 

2017 SVM dry & wet season combination showed the highest accuracies with an rRMSE of 

47.53% while the 2017 LR wet season showed the lowest results with an rRMSE of 52.35%. 

Table 7: Validation results from the scenario whereby VH polarised scenes from both 2017 and 2018 were 

analysed seasonally. Here and hereafter, the red colours in the tables represents the best results for the period 

being analysed. 

 Random Forest SVM Linear Regression 

Dataset Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

2017 VH Dry 

Season 

0.58 12.71 48.63 0.59 12.71 48.65 0.54 13.44 51.42 

2018 VH Dry 

Season 

0.57 12.96 49.6 0.59 12.74 48.75 0.54 13.38 51.2 

2017 VH Wet 

Season 

0.58 12.81 49.17 0.59 12.72 48.65 0.52 13.68 52.35 

2018 VH Wet 

Season 

0.59 12.78 49.6 0.6 12.6 48.21 0.53 13.55 51.87 
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2017 VH Dry & 

Wet 

0.6 12.41 47.63 0.61 12.42 47.53 0.55 13.33 50.99 

2018 VH Dry & 

Wet 

0.6 12.52 47.77 0.61 12.44 47.58 0.55 13.33 51 

4.1.4. Seasonal Combinations of scenes of all Polarisations by Year 

Validation results for seasonal combinations of both VV and VH polarisations for both 2017 

and 2018 are shown below in Table 8. SVM generally shows high accuracies compared to the 

RF and LR validation results in Table 8. The validation results for 2017 dry season (Table 8) 

show that RF has higher accuracies than both the SVM and LR. The validation results for the 

2018 multi-seasonal combination produced the highest results for RF and LR while the 2017 

multi-seasonal combination yielded the highest result for SVM. Compare to the validation 

results in Table 7 (where individual VH scenes were combined into single season or yearly 

composites), the validation results for the 2018 wet season in Table 8 yielded the highest 

accuracies for all models compared to the 2017 wet season. In the dry season, RF and SVM 

produced their highest accuracies in the 2017 dry season and LR produced its highest 

accuracies in the 2018 dry season.   

Table 8: Validation results from the scenario whereby all polarised scenes from both 2017 and 2018 were 

analysed seasonally. 

 Random Forest SVM Linear Regression 

Dataset Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

2017 Dry 

Season 

0.59 12.69 48.42 0.59 12.71 48.65 0.54 13.44 51.42 

2018 Dry 

Season 

0.57 12.97 49.49 0.59 12.74 48.75 0.54 13.38 51.2 

2017 Wet 

Season  

0.57 12.98 49.13 0.59 12.72 48.65 0.52 13.68 52.35 

 2018 Wet 

Season 

0.6 12.72 48.13 0.6 12.6 48.21 0.53 13.56 51.87 

2017 Dry & 

Wet 

0.6 12.7 48.89 0.61 12.42 47.53 0.55 13.38 50.99 

2018 Dry & 

Wet 

0.6 12.3 47.78 0.61 12.43 47.58 0.55 13.33 51 
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RF results improved the more images were added to its analysis compared to the validation 

results of the individual scenes shown in Tables 3 and 4. The highest RF accuracy from 

seasonal combinations of scenes of all polarisations improved by ~3.4% rRMSE when 

compared to RF validation results of the individual scene (August 2018) shown in Table 5. The 

RF seasonal combination results presented in Table 7 are ~0.15% (rRMSE) lower than those 

presented in Table 8. This suggests that there was a marginal increase in the results when VV 

and VH were analysed together. Although the models of SVM and LR show similar validation 

results in both Tables 7 and 8, SVM produced the highest accuracies with the 2017 dry and wet 

season combinations being the overall highest accuracies by an rRMSE of 47.53%. 

4.1.5. Multi-year Combination of Scenes per Season and Polarisation 

Validation results for seasonal and single-polarisation analysis where images of 2017 and 2018 

were combined and analysed using only the VH polarisation band according to season are 

shown in Table 9. The validation results show that all models presented in the table below 

(Table 9) produced their highest accuracies during the dry and wet season combination for both 

2017 and 2018. Amongst all the models, SVM produced the highest results with an rRMSE of 

46.83%, followed by RF with an rRMSE of 47.62% and the lowest being LR with an rRMSE 

of 50.31%. RF improved (compared to the individual scenes from Table 3 to Table 6) with 

more images added to the analysis. Its highest results were comparable to SVM’s highest 

results where the rRMSE of RF is only 0.8% lower than that of SVM (Table 9). 

Table 9: Validation results from the scenario whereby VH polarised scenes from both 2017 and 2018 were 

combined 

 Random Forest SVM Linear Regression 

Dataset Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

Combined VH 

Dry Season  

0.59 12.86 48.77 0.61 12.52 47.91 0.55 13.24 50.66 

Combined VH 

Wet Season 

0.6 12.54 48.15 0.61 12.41 47.51 0.55 13.32 50.94 

Combined VH 

Multi-

Seasonal  

0.6 12.55 47.62 0.62 12.24 46.83 0.56 13.15 50.31 
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4.1.6. Multi-Year combinations of scenes for all polarisation bands by season or both 

Validation results for all polarisation bands multi-year combination analysis are shown below 

in Table 10. The polarisation bands and images for different seasons and years were analysed 

together at the same time. The combined multi-seasonal showed the highest accuracies in all 

models with SVM showing the highest accuracies followed by RF and LR showing the lowest 

results. Overall, SVM showed higher accuracies than RF and LR. LR showed higher accuracies 

than RF on individual scene analysis (Tables 3 and 4). However, the performance of RF 

improved the more images were added to the analysis (Table 5 to Table 10.). The RF (and 

SVM) models were able to better find meaningful relationships between the backscatter and 

the woody canopy cover when more data is added to the model. LR was not sensitive, or robust, 

enough to find good relationships between the variables.    

Table 10: Validation results from the scenario whereby all polarised scenes from both 2017 and 2018 were combined 

 Random Forest SVM Linear Regression 

Dataset Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

Rsq RMSE 

(%) 

rRMSE 

(%) 

Combined 

Dry Season  

0.6 12.67 48.62 0.61 12.52 47.91 0.55 13.24 50.66 

Combined 

Wet Season  

0.59 12.57 48.51 0.61 12.42 47.51 0.55 13.15 50.94 

Combined 

Multi-

Seasonal 

0.61 12.34 47.42 0.62 12.24 46.84 0.56 13.15 50.31 

 

4.1.7. Observed vs predicted canopy cover scatter plots of LR, SVM and RF 

The observed vs predicted scatter plots are shown below in Figure 5a-f for LR, SVM and RF 

individual scenes, all polarisations for the March 2017 (Table 5) scenario and the multi-year 

combinations of scenes for all polarisation bands and all seasons combined. The March 2017 

(Table 5) scenario showed the lowest model accuracies compared to all models. The multi-year 

combinations of scenes for all polarisation bands and all seasons combined (combined multi-

seasonal; Table 10) showed the highest model accuracies compared to all models. The observed 

vs predicted scatter plots (Figure 5a-f) support the findings from Table 3 to Table 10.  The 

deviation of the regression line from the 1:1 line (Figure 5a-f) suggests that all models generally 
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show the same trends by being overestimated but reduced when it comes to the multi-year RF 

and SVM which show underestimation at the top end of the range (Figure 5c, e).  

 

 

 a) LR Multi-Temp Model 
 

 b) LR March 2017 Model 

 

 

 c) SVM Multi-Temp Model 
 

 d) SVM March 2017 Model 

 

 

 e) RF Multi-Temp Model 

 

 

 f) RF March 2017 Model 

 

Figure 5 (a-f): Observed vs predicted canopy cover scatter plots of LR, SVM and RF individual scenes, all 

polarisation March 2017 scenario (b, d, f), and LR, SVM and RF multi-year combinations of scenes for all 

polarisation bands and all seasons combined (a, c, e). The black dashed line represents the 1:1 line, while the red 

solid line is the regression line. 

R2 = 0.26 

rRMSE = 65.2 

 

R2= 0.56 

rRMSE = 50.31  

R2 = 0.62 

rRMSE= 46.84 

R2 = 0.27 

rRMSE= 65.2 

R2 = 0.6 

rRMSE= 47.51 

R2 = 0.2 

rRMSE = 68.6 
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4.2. Mapping Canopy Cover  

4.2.1. Canopy Cover Distribution 

Based on the results shown in Section 4.1: optimal season and most effective regression 

method, the multi-year combinations of all polarisation bands and season scenarios of RF and 

SVM were used to map canopy cover. The maps are shown in Figures 6 and 7. They show the 

spatial distribution of canopy cover in BLM. Figure 6 is an RF canopy cover map while Figure 

7 is an SVM canopy cover map. When assessing the performance or accuracies of the SAR 

models presented in Section 4.1. (Chapter 4), SVM outperformed RF and LR. However, RF 

showed the most improvement between all the models thus both models were chosen as the 

effective methods and were used to map canopy cover.  

The maps shown in Figures 6 and 7 range from brown to green with green showing high canopy 

cover and brown showing little to no canopy cover. The West region is dominated by canopy 

cover, while the Eastern region depicts little to no vegetation cover in both maps. This may be 

due to a rainfall gradient present in the area where the amount of rainfall received decreases 

from the West to the East. Furthermore, the canopy cover of RF is shown to be higher than that 

of SVM. RF canopy cover is at a maximum of 86% while that of SVM has a maximum of 77%.  

This shows that although SVM shows higher results (Table 3 to Table 10), it is predicting for 

a smaller range of canopy cover than the RF model.  
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Figure 6: Multi-Temporal C-band SAR predictive canopy cover (CC) map using Random Forest (RF). Letters A, I, J & W 

represent areas covered by the LiDAR CC.  

 

Figure 7: Multi-Temporal C-band SAR predictive canopy cover (CC) map using Support Vector Machine (SVM). Letters A, 

I, J & W represent areas covered by the LiDAR CC.  
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A zoomed-in area for RF and SVM to determine which of the two models produced a more 

accurate predictive map is shown in Figure 8. The area is in the West where the highest 

percentage of canopy cover in BLM is found. However, the area chosen is without canopy 

cover as it is a dam. In RF, this dam has clearly defined boundaries falling under the 0-13% 

category of canopy cover and ranges from a dark brown to a light brown colour showing that 

there is little to no canopy cover in the dam. Whereas on the SVM, the dam ranges from a light 

brown to a dark brown colour and falls under the 13-25% category of canopy cover which 

shows a much higher presence of canopy cover. The canopy cover categories and clear 

boundary definition of the dam show that RF produced a more accurate predictive map than 

SVM as the categories or percentage of canopy cover increase further away from the dam.  

 

 

Figure 8: Observation of the representation of Random Forest vs SVM maps 
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4.2.2. LiDAR CC Frequency Plot 

The distribution of the predicted LiDAR canopy cover is shown below in Figure 9. This 

distribution plot supports the canopy cover findings of Figure 6 to Figure 8 where canopy cover 

is mapped using SVM and RF. The plot is skewed towards lower values of canopy cover and 

shows that although the canopy cover predictive values are positive, the SVM (blue) model has 

a lower prediction range than the RF (red) model. 

  

Figure 9: Frequency plot showing the distribution of the RF (red) vs SVM (blue) predicted canopy cover  

4.3. Summary of Results  

The analysis showed that although SVM showed higher accuracies regardless of the season, 

noise or number of images that were analysed, it predicted for a smaller range while RF 

predicted for a larger range and improved its performance the more data or noise was added to 

the analysis. LR was not sensitive, or robust, enough to find good relationships between the 

variables as its performance dropped (compared to RF) the more images were added to the 

analysis. 
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CHAPTER 5: Discussion and Conclusion 

5.1. Discussion 

5.1.1. Optimal Season and Most Effective Regression Method 

The analysis presented in chapter 4 assessed the utility of multi-temporal ‘Analysis Ready’ C-

band SAR data for woody canopy cover estimation using different regression methods and 

different combinations of C-band SAR temporal data (dry & wet seasons of 2017 and 2018) to 

find the best results for modelling canopy cover in the savanna areas of BLM.  Table 3 to Table 

10 show model accuracies of different regression methods (RF, SVM & LR) and different 

combinations of C-band SAR temporal data to predict canopy cover using LiDAR data as the 

reference datasets.  

The results of this study agree with other studies (Matheiu et al., 2013, Urbazaev et al., 2015) 

in this environment which also showed that the drier the environment became, the more the 

accuracies increase. The transition into wet season and the first few wet season months (i.e., 

Oct-Nov) generally show higher accuracies than the wet season (i.e., Mar-Apr) images. This is 

likely due to trees greening up in early spring, leading to more volumetric scattering, while 

background soil and grass are still dry and do not negatively affect the SAR signal (Archibald 

and Scholes, 2007). These results are similar to those of Urbazaev et al. (2015), that observed 

that the highest woody canopy cover correlations were obtained during the dry season where 

all grass layers are completely dry, and most trees are without leaves which then allows radar 

signal to penetrate further into the tree canopy and interact with the larger twigs/branches.  

Rainfall in the Bushbuckridge region mostly occurs between late October and May with highest 

rainfall amount expected between the months of January and February (Urbazaev, 2015).  

However, unexpected results were produced in 2018, where some wet season months (e.g., 

January) performed similarly to the early dry season months (e.g., May-June) with an rRMSE 

difference of ~2%. This might be because 2018 was relatively drier than 2017 with total rainfall 

figures being 129mm (decrease from 171,86mm in January 2017 to 43,23mm in January 2018) 

lower in January (Figure 3). Generally, the results produced in the 2018 wet season were 

closely related to those of the 2018 dry season. Similarly, unexpected results were found by 

Main et al. (2016), where some wet season accuracies were similar and/or higher than dry 

season image combinations.  

Apart from environmental conditions influencing the 2018 validation results, the LiDAR 

reference data used in this study was acquired in 2018. Literature suggests that model 
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performance decreases as the time difference increases between the SAR and LiDAR datasets 

(Urbazaev et al., 2015; Haarpaintner et al., 2020). Higher model performance is expected in 

SAR images when the year of acquisition corresponds with the acquisition of LiDAR datasets 

(Urbazaev et al., 2015; Main et al., 2016).  This may well have been the same situation with 

the dataset of this study. Images for 2018 could be showing higher accuracies than 2017 images 

due to the LiDAR datasets being of the same year as the 2018 SAR images. 

Literature shows that the cross-polarised VH band produces higher accuracies than co-

polarised VV band (Haarpaintner et al., 2020). As such, this study presented the results of VH 

only and where both VV & VH were combined and analysed together. This is because VH is 

more associated with volumetric scattering and is more sensitive to canopy structure variations, 

due to differences in canopy volumetric water content (Naidoo et al., 2015). Furthermore, 

Cross-polarisation (i.e., VH) occurs when the microwave energy is emitted in vertical 

orientation and then received in the horizontal orientation, after interacting with a target and 

becoming de-polarised. Co-polarised signals (i.e., VV) emit and receive microwave energy in 

the same orientation. VV polarisations are said to interact with vertical features (tree branches 

and trunks), while VH polarisations would interact with both vertical and horizontal features 

within the canopy and therefore are generally better representations of volume scattering and 

subsequently produce higher accuracies for modelled woody structure variables (Urbazaev et 

al., 2015). Hence when VV & VH were combined and analysed together, the validation results 

showed improvements.  

A study by Urbazaev et al. (2015) showed that the comparisons of polarisation bands were only 

meaningful for imageries of the same season. During the dry season, the HH and HV results 

showed a high correlation with the LiDAR reference data while during the wet season, the HH 

and VV results showed a lower correlation than the HV and VH. This is similar to the results 

of this study where months of the dry season for VH showed higher accuracies than those of 

the wet season. Furthermore, when months are combined according to their seasons for each 

year, VH showed higher sensitivity and accuracies, with 2018 showing the highest accuracies. 

However, when the months and years were combined according to their seasons, there was no 

apparent difference between the seasons. For example, the validation results presented in Table 

7 showed marginal differences regardless of the regression method used.  

Naidoo et al. (2014) compared the modelling accuracies of canopy cover using LR, SVM and 

RF, amongst others. In the study, RF obtained high accuracies while SVM and LR showed 
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poor results. This is somewhat in contrast to this study as the individual scenes’ analysis (e.g., 

Table 3) showed RF to have lower accuracies than SVM and LR. The differences in these 

studies may be because Naidoo et al. (2014) used L-band SAR, which is inherently more 

sensitive to woody structure while C-band is less sensitive and noisy. Therefore, it needs more 

data/images for the models to build accurate relationships to woody structure variables. 

However, as more images were added to the analysis, RF showed higher accuracies while SVM 

remained constant at high accuracies, but with lower predictive ranges (i.e., SVM CC Max = 

77%, RF CC Max= 86%; Figures 6 & 7).  

The improvement of RF is comparable to the observations of Naidoo et al. (2014), where they 

found that when more datasets were combined, the RF results returned higher accuracies 

compared to other regression methods used in their study. Hastie et al. (2009) noted that when 

the number of data being analysed is small, RF is likely to return poor results, but performance 

becomes robust when large datasets are analysed. Furthermore, Hastie et al. (2009) stated that 

in situations where a small dataset is used, LR can sometimes perform better than robust models 

such as the RF. Hence in this study when more images were added, the RF model showed 

higher accuracies than the LR model. This is because the LR model is not sensitive enough to 

find good relationships/correlations between noisy variables while the SVM attempts to 

achieve a balance between overfitting and prediction accuracy (Ge et al., 2018).  

Although the use of ARD products is not common and the products used in this study were 

distributed in 2019, the usefulness of ARD products has been demonstrated by Ruetchi et al. 

(2017) for vegetation mapping and dynamics. Furthermore, even though the results show 

deviations from the regression line (Figure 5.), the results produced are expected for the C-

band and can be comparable to Matheieu et al. (2013) who used multi-temporal full 

polarimetric RADARSAT-2 C-band imagery to map canopy cover in the savannas of the 

southern African Lowveld. Their models showed that the most appropriate season for 

modelling woody structural metrics is in the dry season when trees have very few leaves left 

within their canopy. Urbazaev et al. (2015) also produced comparable results using 

RADARSAT-2 C-band to model woody canopy cover using individual scenes, multi-seasonal 

and multi-temporal scenarios. Their results showed that the cross-polarised datasets (HV & 

VH) produced higher results compared to the co-polarised bands (HH & VV). Like Matheieu 

et al. (2013), their results also showed that woody canopy cover models are more robust during 

the dry season. 
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5.1.2. Mapping Canopy Cover 

Canopy cover ranges between 5% in the savanna area to 60% in woodlands and 80% in riparian 

areas of the BLM (Venter et al., 2003; Main et al., 2016; Janecke, 2020). The canopy cover 

maps presented in Figure 6 and 7 show that canopy cover is most dominant in the West region, 

while the Eastern region of the municipality shows little to no vegetation cover. This is due to 

the topography of the area whereby the West is on a high altitude thus more moisture while the 

rest of the area has an elevation less than 400m (Urbazeav et al., 2015). Furthermore, the area 

is characterized by the East to West increasing rainfall gradient (Mathieu et al., 2013), whereby 

the mean annual rainfall for the West is 1200mm while for the East is 550mm. 

The Western region of the maps in Figures 6 and 7 shows a heavily vegetated area which is 

evidence of commercial forestry. The Eastern region shows a river drainage network while the 

middle (Close to Welverdient (W)) shows fence line contrasts. The fence line contrast in the 

region could be delineating the different land use or management practices present in the BLM. 

Furthermore, the decrease in canopy cover in the East region could be due to the increased land 

utilization and high population density (Mograbi et al., 2015; Fisher et al., 2015) living in areas 

with the legacy of intensive over-grazing left behind by white-owned cattle farms from the 

early 20th century (Pollard et al., 2013). The municipality also comprises communal rangelands, 

private game reserves (Sabi Sands) and a National Park (the Kruger National Park) which 

influence land utilization and management practices, which can result in variable distributions 

of vegetation cover.  

 Although previous studies have shown that L-band SAR performs well when retrieving woody 

canopy cover in southern African savannas (Naidoo et al., 2016), and has a potential for 

accurately mapping canopy cover (Naidoo et al., 2015), Figure 6. and Figure 7. show a good 

representation of the spatial distribution of canopy cover in BLM even though C-band SAR 

images were used to make the predictions and SVM showed to have a lower prediction range 

than RF. This may be in line with Main et al. (2016) who stated that C-band SAR images have 

the possibility of being an alternative to L-band SAR images in producing woody resources 

maps, and Mathieu et al. (2013) who in their study found that C-band SAR data provide 

encouraging results for savanna vegetation studies.  

5.2. Conclusion  

Canopy cover is the simplest system of measurement for assessing the presence of woody 

elements in the savanna biome (Naidoo et al., 2016). However, well-validated and detailed 
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maps are not widely available for southern African savannas. Those that are available often use 

the optical sensors and/or those that can be prohibitively expensive (e.g., SAR L-band).  Thus 

far, SAR C-band imagery continues to be the only freely available and systematically collected 

SAR dataset that has the possibility of being an alternative to optical or expensive high-

resolution SAR images for mapping canopy cover (Main et al., 2016). Even so, Analysis Ready 

Data is not commonly available and is still considered a future goal for being able to select the 

level/readiness of analysis for one to conveniently process data without going through the steps 

of pre-processing data. This study aimed to assess the utility of multi-temporal ‘Analysis 

Ready’ composites of C-band SAR data, for savanna woody canopy cover estimation using 

different regression methods. Through the objectives; determining the most effective 

regression method (RF, SVM and LR) for modelling canopy cover, identifying the optimal 

season for modelling canopy cover (dry & wet seasons of 20017 and 2018) and mapping 

canopy cover using the most effective regression method and optimal season. 

The results of this study showed that although a single season or model is not conclusively 

better than the others, there are results that can or cannot be recommended for use to model 

canopy cover. RF showed the most improvement by the number of images used in the analysis. 

Its performance increased the more images were added while SVM showed high accuracies 

from the beginning and was not affected by the number of images used. LR performed better 

than RF when analysing a single image, but when more images were added the results of RF 

performance surpassed it. This shows that the SVM can be recommended for use regardless of 

the number of images while the use of LR and RF depends on the number of images being 

used. The results also showed that the drier the environment, the higher the model accuracies, 

with a combination of all seasons showing the highest accuracy compared to when each scene 

was analysed individually.  

The utility of the models used in this study differ considerably. SVM is the most effective 

model when only looking at highest R2 and lowest rRMSE because it does not get affected by 

the number of datasets being processed but has a smaller predictive range. RF has a higher 

computational cost as the more images added to the analysis, the better the results. On the other 

hand, adding more images to the analysis of LR makes it to not be sensitive or robust enough 

to find good relationships between the variables being used. On seasonal analysis, dry season 

was the most optimal for modelling canopy cover, but a combination of both dry and wet 

seasons yielded better results. This is however dependent on the conditions of the year as seen 

in the results where 2018 was outperforming 2017 because it (2018) was the driest year. 
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Furthermore, seasonal variations differ per year, the beginning and end of seasons are not 

constant and as such early wet season months tend to appear dry while early dry season months 

appear wet.  

The ARD C-band results are comparable to studies that did not use Analysis Ready datasets 

but instead the authors pre-processed their dataset. The goal of ARD products is to present 

users the choice of not having to pre-process data by doing computationally expensive 

processes such as geometric rectification. The use of ARD products also presents an option of 

easily undertaking large area or long time series analyses studies as much time will no longer 

be spent on pre-processing the data at hand. This study used unique imagery compared to others 

especially those in savanna. The ARD products are an experiment by NORCE which means 

they are not readily available for download on the Sentinel website even though they are 

Sentinel-1 images. They are composites (i.e., averaged individual scenes over a whole month, 

and produced a single/monthly composite). This could be good in a noisy environment like the 

savanna, as it removes a bit of the noise and improves backscatter sensitivity to savanna woody 

structure but in doing so, it could also remove sensitivity to the woody structure component 

too. Although other authors have demonstrated the usefulness of ARD C-band products, there 

is still an ongoing research on its performance, and it can be recommended that more ARD 

studies be undertaken especially in the, often under-represented, savannas to determine how 

well these products are able to model and map savanna woody vegetation before they can 

become the mainstream products of analysis.  
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