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Abstract

In this thesis, we give first order asymptotics of eigenvalues of quadratic pencils
presenting a fourth order differential equation together a mixture of boundary
conditions that depend on the eigenvalue parameter and are periodic or anti-
periodic. The non-self-adjoint quadratic pencils have the two constant coefficient
operators and the differential operator all self-adjoint. For the same differential
equation and the same set of boundary conditions where the only difference is that
the boundary conditions which are periodic are replaced with anti-periodic one,
the zeros of their characterisitic determinants are interlaced. Thus, the eigenvalues
of their quadratic pencils with periodic and anti-periodic boundary conditions,
respectively, are interlaced and lie in the first and third quadrant of the complex
plane. In both cases the periodic and anti-periodic boundary conditions do not
depend on the eigenvalue parameter.
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0
Introduction

Joseph Liouville pioneered the theory of Sturm-Liouville differential equations

through his study of the second order differential equation of the form

d2z

dx2
+ [ρ2 + g(x)]z = 0 (0.0.1)

when ρ is real in 1837. A generalisation of the differential equation (0.0.1) in the

form

dnz

dxn
+ ρan−1(x, ρ)

dn−1z

dxn−1
+ . . .+ ρna0(x, ρ)z = 0 (0.0.2)

where |ρ| is large was studied for its asymptotic character of its solutions by George

D. Birkhoff. The functions ai(x, ρ) are analytic in the complex parameter ρ and
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have derivatives of all orders in the real variable x. Birkhoff in his paper [2] proves

asymptotic properties on a region θ ≤ arg ρ ≤ ψ, where he gives determinantal

inequalities, involving the leading coefficients in the boundary forms, from which

asymptotic eigenfunction estimates and an expansion theorem follow. Birkhoff

gives an expansion theorem and an estimate for the Green’s function of the class

of regular boundary conditions which are those boundary conditions that satisfy

some determinantal inequalities. Stone [17] shows that Birkhoff expansion is in

a sense equivalent to the Fourier expansion. Salaff [16] shows that when n in

(0.0.2) is even, self-adjoint boundary conditions meet determinantal inequalities

which means that he shows that self-adjointness implies Birkhoff reguarity for

even order operators. Tamarkin and Stone establish the equiconvergence theorem

showing that an eigenfunction series of a Birkhoff-regular operator behaves simi-

larly to a trigonometric one on every compact subinterval K of the open interval

(0, 1). On the entire interval [0, 1], Minkin in [6] shows equiconvergence for even

order differential operators from which investigations of boundary value problems

dependent on a spectral parameter or with the Stieltjies integral in the boundary

conditions branched off.

A differential equation of the form (0.0.2) together with its boundary conditions

can be written as quadratic operator pencil. Quadratic operator pencil, quadratic

operator polynomial and quadratic eigenvalue problems(QEP) are synonyms for

an operator of the form

Q(λ) = λ2M + λK + A, (0.0.3)

which is a matrix polynomial of degree 2 in the scalar λ. However, since we study

eigenvalue expansions of the problem (0.0.3) in this document, A is a differential
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operator on a Hilbert space L2(0, a) ⊕ C. QEP is currently receiving attention

because of extensive application in dynamical analysis of mechanical systems in

acoustics and linear stability of flows in fluid mechanics. The aim when solving a

quadratic pencil is to find scalars λ and non-zero vectors that satisfy

Q(λ)x = 0.

Vector x is a right eigenvectors corresponding to the scalar λ. A major compli-

cation to solving QEP is that there is no simple canonical form analogous to the

Schur form for the standard eigenvalue problem or the generalised Schur form for

the generalised eigenvalue problem to this nonlinear eigenvalue problem. Prop-

erties of coefficient matrices correspond to particular spectral properties. For

example, if M , K and A are all real then the eigenvalues are real or come in pairs

(λ, λ̄) and if x is a right eigenvector corresponding to λ then so is x̄ corresponding

to λ̄. Another example is when M and A are real symmetric and positive definite,

K = −KT then the eigenvalues are purely imaginary.

Numerical methods are classed into those that solve the quadratic operator

pencils directly and those that work with the linearised form and compute its

generalised Schur decomposition or a simple form to compute eigenvalues and

eigenvectors. Most numerical methods that deal with QEP are variants of New-

ton’s method, which involve a discretisation of the space on which the problem is

solved which can only involve a finite number of solutions. These Newton’s vari-

ants compute one eigenpair at a time and converge as long as the starting guess is

close enough to the solution, but in practice even with good initial guesses there

is no guarantee that the method will converge to the desired eigenvalue. When
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M , K and A are symmetric, Q(λ) is linearised into S − λT , (S, T ) is symmet-

ric and B is definite, a Cholesky factorisation B = QQ⊺ can be computed, with

Q lower triangular and reduces the symmetric generalised eigenvalue problem to

a standard eigenvalue problem which can be solved with a symmetric QR algo-

rithms. With Q(λ) which usually comes from gyroscopic systems where M and

A are symmetric and K is skew symmetric, linearizations of Q(λ) where S and

T are Hamiltonian or skew Hamiltonian a structure preserving algorithm for real

Hamiltonian matrices as the one developed by [1] Benner, Mehrmann and Xu can

be used instead of the QZ algorithm. There are several methods and algorithms

that use linearisations which can be compared for stability, computational effe-

ciency and memory using metrics like condition numbers. In the problem where

a band travelling at speed ν between two fixed points and the band’s transverse

displacement with no external excitation force is described by the nondimensional

equation

[
∂4

∂x4
+ (κν2 − τ)− ∂2

∂x2
+ 2ν

∂2

∂x∂t
+

∂2

∂t2

]
u(x, t) = 0, x ∈ [0, 1], (0.0.4)

where τ is the dimensionless tension and κ ∈ [0, 1] is a constant depending on

the pulley mounting system of the band. Substituting an appropriate separation

of variable approximation of the solution, the equation becomes a second order

differential equation. Companion linearisation and QZ algorithm implemeted in

Matlab 6 polyeig showed that eigenvalues with particular parameters of ν, κ and

τ do not have Hamiltonian structure and some have positive real part suggesting

incorrectly that the system is unstable as proved by Van Loan [4]. Given infor-

mation about ||M ||, ||K|| and ||A|| and the structure of ε and χ in (S − λT )ε,

χ∗(S−λT ), it is possible to compare the condition numbers of different linearisa-
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tions and identify which formulations are preferred for large and small eigenvalues,

respectively. This result has practical relevance, as in applications it is often only

eigenpairs corresponding to small and large eigenvalues that are of interest. Cur-

rently, there are no numerical methods that tackle QEP directly and compute all

eigenpairs.

We aim to solve directly a quadratic operator polynomial where a homogenous

string has at least one of the boundary conditions being periodic. A problem

of small transversal vibrations across a homogenous string was studied by Pivo-

varchik and Van der Mee [15] and Möller and Pivovarchik [8]. In the former the

transversal vibrations are described by a second order partial differential equation

while in the latter, by a fourth order partial differential equation. A damping co-

efficient is present at the right endpoint in both instances, the string is fixed at the

left end point and through a separation of variables subtitution, we have an eigen-

value dependent boundary condition in one of the boundary conditions. These

two problems result in second and fourth order differential equations, respectively,

which together with their boundary conditions are boundary value problems with

spectral representation as a quadratic operator polynomial of the form

L(λ,α) = λ2M − iαλK − A. (0.0.5)

Pivovarchik and Van der Mee [15] study the inverse problem of constructing the

real potential from its eigenvalues which are zeros of a sine-type entire function

where α > 0 and α ̸= 1. It is the paper of Pivovarchik and Möller [8], where

they studied the location of the spectrum, algebraic and geometric multiplicities

of the eigenvalues and characterised the spectrum of a compact peturbation of

L0 = L(0, 0) by a smooth real function g that initiated the work of Möller and
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Zinsou [11], [13], [12], [14], [10] and [18]. Möller and Zinsou [11] studied (0.0.5)

a fourth order differential equation for which the coefficient matrices M , K and

A are self-adjoint and found four sets of boundary conditions. These cases, both

boundary conditions at the right endpoint were dependent of the eigenvalue pa-

rameter and only one depended on the eigenvalue parameter at the left endpoint.

The eigenvalues of their operator where found as λ−k = −λk for some k ≥ k0, for

some positive integer k0 which are termed ∗-alternating in some texts and may

be viewed as generalisations of symplectic and Hamiltonian matrices.

We consider a special case of (0.0.2) with n = 4, represented by the differential

equation

y(4)(λ, x)− (gy′)′(λ, x)− λ2y(λ, x) = 0. (0.0.6)

The boundary conditions considered are such that one is separated, another is

dependent on the eigenvalue parameter and the remaining two, which have pe-

riodicity are considered for both the periodic and anti-periodic cases, which we

indicate by ϵ = ±1. We initially find the eigenvalues of the boundary value prob-

lem for the simplified case where g = 0 in (0.0.6). An exponential multiple of

the characteristic determinant is written as a sum of three terms. On a sector
5π
8

< arg(ωj − ω0) ≤ π, this characteristic determinant is dominated by one of

the terms whose zeros are determined. We consider small circles around each

zero of the dominant term and find that each circle contains a unique zero of the

dominant term, thus, by Rouché’s theorem each circle contains a unique zero of

the characteristic determinant.

We then consider square annulus on the complex plane centered at the ori-

gin whose side of the inner square is very large. Again, through application of
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Rouché’s theorem we find that the number of zeros inside each square is the same

as the number of zeros of the dominant term in the characteristic determinant.

Hence, inside the square annulus, all the zeros of the characteristic determinant

are accounted for. In order to count the number of zeros of the characteris-

tic determinant, we consider a product of the characteristic determinants of the

two boundary value problems presenting the periodic and anti-periodic cases and

through a factorisation into three factors we are able to enumerate the number of

zeros of the characteristic determinant.

The document is organised into four chapters. Chapter 0 is the Introduction,

which gives history and a broad overview of quadratic operator pencils. Chapter 1

gives definitions, lemmas, propositions and theorems required to define concepts

and ideas communicated in the entire document. Chapter 2 is organised into

three sections which are published in [7]. In Section 2.1, we write the fourth order

partial differential equation as an ordinary differential equation by assuming that

solutions to the differential equation will be superpositions of standing waves.

The ordinary differential equation is then written in terms of its quasi-derivatives

and the Lagrange’s identity is integrated to obtain the Green’s formula. Using

Matlab, we implement [9, Theorem 10.3.5] to find boundary conditions to the

ordinary differential equation such that at least one of the boundary condition

is periodic. We verify in Section 2.2 that the two boundary value problems with

boundary conditions obtained in Section 2.1, fulfil the criteria that the differential

operator in the spectral representation of the boundary value problems is self-

adjoint and prove Theorem 2.2.4. Note that Theorem 2.2.4 states equivalent

statements for boundary conditions of the fourth order differential equation where

we have one boundary condition dependent on the eigenvalue parameter and at

least one periodic boundary condition. We characterise boundary conditions that
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fulfil our criteria in Theorem 2.3.1 in Section 2.3. Chapter 3, also has three

sections. We prove in Section 3.1 that the problem (3.2.1)–(3.2.5) is Birkhoff

regular for ϵ1ϵ2 = 1. In Section 3.2, we provide the asymptotics of the eigenvalues

for g = 0 while in Section 3.3, we derive the first three terms of the eigenvalue

expansions.

8



1
Preliminaries

Definitions, lemmas, propositions and theorems required to define con-

cepts and ideas communicated in this entire document are listed in this chapter.

Efforts have been made to keep these definitions, lemmas, propositions and the-

orems in the order in which they appear in the document. However, deviations

from this order may exist because sometimes it is easier to immediately follow

with a related concept.

One of the reasons for the huge development of the theory of classical Lebesgue

and Sobolev space Lp and W n
p where (1 ≤ p ≤ ∞) and n ∈ N is that many

materials can be modelled with sufficient accuracy using these function spaces.

Throughout this thesis we work in a Sobolev space. We follow notation used in
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[9] and [5]. In addition, we modify results which are in the form of propositions,

lemmas, theorems and corollaries in [9] and [5] that are applicable to the particular

problem under consideration in this thesis.

We give in Section 1.1 definitions and properties required for the characterisa-

tion of self-adjointness of the boundary value problems under consideration. In

Section 1.2, we give definitions and properties for a boundary value problem to

be Birkhoff regular and definitions and properties of eigenvalue expansions.

1.1 Definitions and properties for characterisation of self-adjoint

problems

A Sobolev space is defined as

Wm
2 (a, b) := {g ∈ L2(a, b) : ∀j ∈ {1, . . . ,m} g(j) ∈ L2(0, a)},

where −∞ < a, b < ∞ and m ∈ N.

Let n = 2k where k ∈ N. We consider an nth (n ∈ N\{0}) order differential
expression ℓ of the form

ℓy =
k∑

m=0

(gmy
(m))(m) (1.1.1)

on the interval [a, b], where gm ∈ Wm
2 (a, b), m = 0, . . . , k, are real valued functions

and |gk(x)| > ε for some ε > 0 and x ∈ [a, b]. The differential expression ℓy is well

defined for y ∈ W n
2 (a, b) in which case ℓy ∈ L2(a, b). The operator L0 defined by

D(L0) = W n
2 (0, a), L0y = ℓy, y ∈ W n

2 (a, b), (1.1.2)

is called the maximal operator associated with the differential expression ℓ on
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[a, b].

Definition 1.1.1. Let y ∈ W n
2 (a, b). For j = 0, . . . , n the jth quasi-derivative of

y denoted y[j], is recursively defined by

y[j] = y(j) for j = 0, . . . , k − 1,

y[k] = gky
(k),

y[j] = (y[j−1])′ + gn−jy
(n−j) for j = k + 1, . . . , n.

The quasi-derivatives depend on the differential expression (1.1.1). They are

convenient for the formulation of the Lagrange identity when dealing with differ-

ential operators which have fairly general coefficients.

Let

Y =


y

c


 , Z =


z

d


 , W =


w

e


 (1.1.3)

be elements of the Hilbert space L2(a, b)⊕ C, y, z, w ∈ W n
2 (a, b).

A formulation of the Lagrange identity and Green’s formula is quoted below from

[9, Theorem 10.2.3].

Theorem 1.1.2. For a differential expression ℓ and y, z ∈ W n
2 (a, b), the Lagrange

identity

(ℓy)z − y(ℓz) =
d

dx
[y, z] (1.1.4)
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holds on [a, b] almost everywhere, where

[y, z] =
k∑

j=1

(−1)j(y[j−1]z[n−j] − y[n−j]z[j−1]) (1.1.5)

and Green’s formula

(ℓy, z)− (y, ℓz) = [y, z](b)− [y, z](a) (1.1.6)

is valid, where (·, ·) is the inner product in L2(a, b).

Define the operator A in the Hilbert space L2(a, b)⊕ C by

D(A) =
{
Y ∈ W n

2 (0, a)⊕ C, U1Ŷ = 0, c = U2Ŷ
}
, (1.1.7)

AY =


 ℓy

V Ŷ


 , (1.1.8)

where

Ŷ =
(
y(a), . . . , y[n−1](a), y(b), . . . , y[n−1](b)

)⊺ (1.1.9)

and matrices U1, U2 and V are of sizes 3× 2n, 1× 2n and 1× 2n, respectively.

For m ∈ N, define





Jm,0 = ((−1)s−1δs,m+1−t)
m

s,t=1 , Jm,1 =




0 Jm,0

−J∗
m,0 0


 ,

Jm =



−Jm,1 0

0 Jm,1


 .

(1.1.10)
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Finally define

U3 =




J2

V

−U2


 , (1.1.11)

U =




U1 0 0

U2 −I 0

V 0 −I


 . (1.1.12)

Before stipulating a criterion of self-adjointness, we give a proposition which states

conditions under which Z ∈ D(A∗). The modification of the proposition from [9,

Proposition 10.3.3] is quoted below.

Proposition 1.1.3. Assume that rank


U1

U2


 = 4. Then Z ∈ D(A∗) if and only

if Z ∈ W n
2 (a, b)⊕ C and there is e ∈ C such that

[y, z](b)− [y, z](a) + d∗V Ŷ − e∗U2Ŷ = 0 (1.1.13)

for all Ŷ ∈ N(U1). For Z ∈ D(A∗), e is unique and

A∗Z =


ℓz

e


 .

A criterion of self-adjointness as given in [9, Theorem 10.3.5] is quoted next.
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Theorem 1.1.4. Assume that

rank


U1

U2


 = 4.

Then A is self-adjoint if and only if

U3(N(U1)) = R(U∗).

In addition to determining if A is self-adjoint, we use [9, Theorem 10.3.8] quoted

below to conclude that A is bounded below.

Theorem 1.1.5. Assume that A is self-adjoint. Then A has a compact resolvent.

Assume additionally that

(i) (−1)kgk > 0,

(ii) each component of U1Ŷ either contains only quasi-derivatives y[m] with m <

k or contains only quasi-derivatives m ≥ k,

(iii) each component of U2Ŷ either contains only quasi-derivatives y[m] with m <

k or contains only quasi-derivatives m ≥ k,

(iv) for each component of U2Ŷ which only contains quasi-derivatives y[m] with

m ≥ k, the corresponding component of V Ŷ only contains quasi-derivatives

y[m] with m < k.

Then A is bounded below.

Any m×n matrix can be written as a product of a diagonal matrix of its singular

values augmented by zeros and orthogonal matrices of order m and n as stated in

[3, Theorem 6.1] quoted below as
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Theorem 1.1.6. Any m× n real matrix Γ, with m ≥ n, can be factorized as

Γ = ∆


Σ

0


Θ⊺, (1.1.14)

where ∆ ∈ Rm×m and Θ ∈ Rn×n are orthogonal, and Σ ∈ Rn×n is diagonal,

Σ = diag(σ1, σ2, . . . , σn),

where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

1.2 Definitions and properties for Birkhoff regular problems and

their eigenvalue expansion

For the definition of Birkhoff regularity, we consider a boundary eigenvalue prob-

lem for sufficiently large complex numbers λ, say |λ| ≥ γ. We modify the first

order system in [5] to fit the differential equation and boundary conditions under

consideration in this document as

ŷ′ − (λA1 + A0)ŷ =0, (1.2.1)

fW (0)ŷ(a0) + fW (1)ŷ(a1) =0, (1.2.2)

where ŷ ∈ (W 1
2 (a, b))

n,λ ∈ C.

For the differential system of equations (1.2.1) we assume that the coefficient

matrices A0 and A1 belong to Mn(L2(a, b)). We suppose that A1 is a diagonal
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matrix function

A1 =




r1 0

· ·
0 ·

· · ·
rl




, (1.2.3)

where l is a positive integer,

rν ∈ C (ν = 1, . . . , l).

We assume that there are distinct, nonzero numbers φνµ ∈ [0, 2π), ν, µ = 1, . . . , l

such that

rν =|rν |eiφν , (1.2.4)

rν − rµ =|rν − rµ|eiφνµ in (a, b). (1.2.5)

Let φν := φν0 = φ0ν ± π and

rν =|rν |eiφν0 = | ± irν |eiφ0ν in (a, b) (ν = 1, . . . , l). (1.2.6)

We formulate as a proposition from [5, Theorem 2.8.2].

Proposition 1.2.1. There is a fundamental matrix function

Ỹ (·,λ) = (P [0] + B0(·,λ))E(·,λ) (1.2.7)
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of the differential equation (1.2.1) having the following properties: The matrix

function E(·,λ) belongs to Mn(W
1
2 (a, b)) and

E(·,λ) = diag(E0(·,λ),E1(·,λ), . . . ,El(·,λ)) (1.2.8)

for x ∈ [a, b] and λ ∈ C, where

Eν(λ) = exp(λrν(b− a)). (1.2.9)

The matrix function P [0] belongs to Mn(W
1
p (a, b)) and is a diagonal matrix ac-

cording to the structure of A1, i.e,

P [0] = diag(P
[0]
11 , . . . ,P

[0]
ll ). (1.2.10)

The diagonal elements P
[0]
νν are uniquely given as solution of the initial value

problems




P

[0]
νν

′ = A0,ννP
[0]
νν ,

P
[0]
νν (a) = Inν ,

(1.2.11)

where the nν × nν matrix functions A0,νν are the diagonal elements of A0. The

matrix function B0(·,λ) belong to Mn(W
1
2 (a, b)) for |λ| ≥ γ and fulfils the estimates




B0(·,λ) = {o(1)}∞,

B0(·,λ) = {O(τ2(λ))}∞,

as λ → ∞, (1.2.12)
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where

τp(λ) =
l

max
ν,µ=0
ν ̸=µ

(1 + |ℜ(λeiφνµ)|)− 1
2 . (1.2.13)

We set

δν(λ) :=





0 if ℜ(λeiφν ) < 0,

1 if ℜ(λeiφν ) > 0,

0 if ℜ(λeiφν ) = 0 and ℑ(λeiφν ) > 0,

1 if ℜ(λeiφν ) = 0 and ℑ(λeiφν ) < 0.

(1.2.14)

For convenience let δ0(λ) = δ1(λ) and we can infer that ∆(−λ) = In −∆(λ). We

define the block diagonal matrices




∆(λ) := diag(δ0(λ)In1 , . . . , δl(λ)Inl

),

∆0 := diag(δ1(λ)In1 . . . , δl(λ)Inl
),

(1.2.15)

which (by definition) reduce to

∆(λ) = diag(δ1(λ)In1 , . . . , δl(λ)Inl
), (1.2.16)

and ∆0 = In . From the definition of the δν(λ) we immediately infer that

∆(−λ) = In −∆(λ). (1.2.17)

We quote the definition of Birkhoff regularity from [5, Definitions 4.1.2 and 5.2.1].
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Definition 1.2.2. The boundary eigenvalue problem (1.2.1) and (1.2.2) is called

Birkhoff regular if

W
(0)
0 (In −∆(λ))∆0 +W

(1)
0 ∆(λ)∆0 (1.2.18)

is invertible for λ ∈ C\{0}.

We give the definition of Birkhoff regularity for a differential equation with

its boundary conditions as opposed to the previous definition which applies to a

boundary value problem presented as a first order system.

Let aj ∈ [a, b] (j ∈ N) such that a0 = a and a1 = b. Let

pi(·,λ) =
n−i∑

j=0

λjπn−i,j (i = 0, . . . , n− 1), (1.2.19)

where πn−i,j ∈ Lp(a, b) (i = 0, . . . , n−1, j = 0, . . . , n− i). We assume πn−i,n−i ̸= 0

for some i ∈ {0, . . . , n − 1}. Let wki (i, k = 1, . . . , n) be polynomials in λ with

coefficients in L1(a, b) and w
(j)
ki (j ∈ N; i, k = 1, . . . , n) be polynomials in λ with

complex coefficients.

For λ ∈ C and η ∈ W n
2 (a, b) we consider the boundary eigenvalue problem

η(n) +
n−1∑

j=0

pj(·,λ)η(j) = 0, (1.2.20)

n∑

i=1

1∑

j=0

w
(j)
ki (λ)η

(i−1)(aj) = 0 (k = 1, . . . , n). (1.2.21)

19



The function π defined by

π(·, ρ) := ρn +
n−1∑

i=0

ρiπn−i,n−i (ρ ∈ C) (1.2.22)

is called the characteristic function of the differential equation (1.2.20). We asso-

ciate a first order system to the n-th order differential equation. This system is

defined by the operator

TD(λ)y := y′ − A(·,λ)y (y ∈ (W 1
2 (a, b))

n,λ ∈ C), (1.2.23)

where

A := (δi,j−1 − δi,npj−1)
n
i,j=1 =




0 1

· · 0

0 · ·
0 0

−p0 · · · −pn−1




. (1.2.24)

We assume that there are a matrix function C(·,λ) ∈ Mn(W
1
2 (a, b)) depending

polynomially on λ and a positive real number γ such that

C(·,λ) is invertible in Mn(W
1
2 (a, b)) if |λ| ≥ γ (1.2.25)

and such that the equation

C−1(·,λ)TD(λ)C(·,λ)ŷ = ŷ′ − eA(·,λ)ŷ =: T̃Dŷ (1.2.26)
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holds for |λ| ≥ γ and ŷ ∈ (W 1
2 (a, b))

n, where

Ã(·,λ) = λA1 + A0 (|λ| ≥ γ) (1.2.27)

and the coefficient matrices of Ã fulfils the assumptions of the coefficient matrices

in (1.2.1). When A0 = 0 in the first order system (1.2.1) and there is a boundary

condition dependent on the eigenvalue parameter λ, estimates (1.2.25)–(1.2.27)

are not asymptotically constant in λ. In order for (1.2.25)–(1.2.27) to hold we

require that there is an n× n matrix polynomial C2(λ) whose determinant is not

identically zero such that the following properties hold:

There is a matrix function W0 ∈ Mn(L1(a, b)) such that

C−1
2 (λ)W (·,λ)−W0 = O(λ−1) in Mn(L1(a, b)) as λ → ∞, (1.2.28)

and there are n× n matrices W (j)
0 and

1∑

j=0

|C−1
2 (λ)W (j)(λ)−W

(j)
0 | = O(λ−1) as λ → ∞ (1.2.29)

hold. The boundary conditions (1.2.21) and a function C(x,λ) satisfying (1.2.25)-

(1.2.27) are considered with the matrix functions




W (j)(λ) := (w

(j)
ki (λ))

n
k,i=1C(aj,λ),

W (λ) := (wki(λ))
n
k,i=1C(λ),

(1.2.30)
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and set

bTR(λ)ŷ :=
1∑

j=0

W (j)(λ)ŷ(aj) (ŷ ∈ W 1
2 (a, b))

n. (1.2.31)

Definition 1.2.3. The boundary eigenvalue problem (1.2.20)–(1.2.21) is called

Birkhoff Regular if πnn ̸= 0 and if there are matrix functions C(·,λ) satisfying

(1.2.25)–(1.2.27) and C2(·,λ) satisfying (1.2.28)–(1.2.29) so that the associated

boundary eigenvalue problem eTDŷ = 0, C2(λ)
−1 bTR(λ)ŷ = 0 is Birkhoff regular in

the sense of Definition 1.2.2.

We quote [5, Proposition 4.1.7].

Proposition 1.2.4. Let l = n and ∆(λ) = diag(δ1(λ), . . . , δn(λ)) as given by

(1.2.15). We suppose that

φν =
2π(ν − 1)

n
(ν = 1, . . . , n).

i) If n is even, then the values of ∆ are the diagonal matrices with n
2

consecutive

ones and n
2

consecutive zeros in the diagonal in a cyclic arrangement.

ii) If n is odd, then the values of ∆ are the diagonal matrices with n+1
2

consecutive

ones and n−1
2

consecutives zeros in the diagonal and the diagonal matrices with
n−1
2

consecutive ones and n+1
2

consecutive zeros in the diagonal, each in a cyclic

arrangement.

We quote a simplified version of [5, Proposition 7.2.3].

Proposition 1.2.5. Let l := n, and suppose that

π(·, ρ) = πl(·, ρ)
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where

πl(·, ρ) = ρl +
l∑

j=1

ρl−jπj,j. (1.2.32)

Suppose that for all x ∈ [a, b] the roots of πl(x, ρ) = 0 are simple and nonzero

and that there is κ ∈ N\{0} such that π1,1, . . . , πl,l ∈ W κ
2 p(a, b). Then there are

r1, . . . , rl ∈ W κ
p (a, b) such that

πl(·, ρ) = Πl
j=1(ρ− rj(x)) (1.2.33)

holds for all x ∈ [a, b] and ρ ∈ C. In addition, we have that r−1
j ∈ W κ

2 (a, b) for

j = 1, . . . , l.

We quote [5, Theorem 7.2.4].

Theorem 1.2.6. Let l ∈ {1, . . . , n}, be such that πl,l ̸= 0 and πi,i = 0 for

i = l + 1, . . . , n. Suppose that πi,i ∈ L∞(a, b). Then there is a matrix function

C(x,λ) = diag(λν1 , . . . ,λνn)C1 (x )

with ν1, . . . , νn ∈ Z and C1 ∈ Mn(W
1
2 (a, b)) such that Ã(·,λ) given by (1.2.26) has

the form (1.2.27), where

A1 = diag(0, . . . , 0, r1, . . . , rl)

and 0 ̸= r−1
j ∈ C for j = 1, . . . , l,

i) π−1
l,l ∈ L∞(a, b);

ii) p0(·,λ) =
l∑

j=0

λjπn,j
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iii)πi,i ∈ W 1
2 (a, b) for i = 1, . . . , l

or

l = 1 and πn−i+1,1

πl,l

∈ W 1
2 (a, b) for i = 1, . . . , n− 1;

iv) The zeros of πl(x, ρ) are simple and different from zero for all x ∈ [a, b], where

πl is defined in (1.2.32).

A. If i), ii) and iv) hold and if l = 1 or πi,l ∈ W 1
2 (a, b) for i = l + 1, ..., n, then

νi = i− 1 (i = 2, . . . , n) and

C1 =




1 . . . 1

r1 . . . rl
... rl

rl−1
1 . . . rl−1

1




, (1.2.34)

where r1, . . . , rl ∈ W 1
2 (a, b) are the roots of π(·, ρ) = 0 according to Proposition

1.2.5 if l > 1.

B. If i), ii) and iv) hold and if πi,i ∈ W 1
2 (a, b) for i = 1, ..., l, then νi = i

(i = 1, . . . , n) and

C1 =




1 . . . 1

r1 . . . rl
... rl

rl−1
1 . . . rl−1

1




, (1.2.35)

where r1, . . . , rl ∈ W 1
2 (a, b) are the roots of π(·, ρ) = 0 according to Proposition

1.2.5. We consider the differential equation

Kη = λlHη (η ∈ W n
1 (a, b)), (1.2.36)
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where

Kη = η(n) +
n−1∑

i=0

kiη
(i), (1.2.37)

Hη = h0η
(0), (1.2.38)

with ki ∈ W i
2(a, b) and h0 ∈ W 1

2 (a, b). In the problem under consideration h0 = 1.

We associate the differential operator

LD(λ)η := Kη − λlη (η ∈ W n
2 (a, b)), (1.2.39)

with the differential equation (1.2.37), together with two point boundary condi-

tions

LR(λ)η :=

(
n−1∑

i=0

w
(0)
ki (λ)η

(i−1)(a) +
n−1∑

i=0

w
(1)
ki (λ)η

(i−1)(b)

)n

k=1

= 0, (1.2.40)

where w
(j)
ki are polynomials. Let

W (j)(λ) = (w
(j)
ki (λ))

n
k,i=1 (j = 0, 1). (1.2.41)

We quote a simplified version of [5, Theorem 8.2.1].

Theorem 1.2.7. Suppose that l = n and let k ∈ N. Suppose that

α) kj ∈ L2(a, b) for j = 0, . . . , n − 1 − k and kn−1−j ∈ W k−j
2 (a, b) for j =

0, . . . ,min{k − 1, n− 1}

For sufficiently large λ, the differential equation Kη = λlη has a fundamental
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system {η1(·,λ), . . . , ηn(·,λ)} with the following properties:

Set k̃ := k. Let ωj = exp{2πi(j−1)
l

} (j = 1, . . . , l). There are functions φr ∈
W k+1−r

2 (a, b), r = 0, . . . , k̃, such that φ0 is the solution of the initial value problem

φ′
0 −

1

l
(h0)φ0 = 0 φ0(a) = 1, (1.2.42)

η(µ)ν (x,λ) =

[
dµ

dxµ

] k̃∑

r=0

(λων)
−rφr(x)e

λων(x−a) + {o(λ−k̃+µ)}∞eλων(x−a)

(ν = 1, . . . , n;µ = 0, . . . , n− 1), (1.2.43)

where
[

dµ

dxµ

]
means that we omit those terms of the Leibniz expansion which contain

a function φ
(j)
r with j > k̃ − r.

We denote the i-th unit vectors in Cn and Cl by ei and εi. For i ∈ Z\{1, . . . , n}
or i ∈ Z\{1, . . . , l} we set ei := 0 and εi := 0, respectively. We can write the

matrix A(·,λl) of the corresponding system as

A(·,λl) =
(

εla
⊺
2 + Jl + λlεlε

⊺
1

)
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where

a⊺2 := −(k0, . . . , , kn−1), (1.2.44)

Jr :=




0 1

0 . 0

. .

. .

0 . 1

0




∈ Mr(C). (1.2.45)

We set

ε⊺ :=
l∑

i=1

ε⊺i = (1, . . . , 1) ∈ Cl, (1.2.46)

Ωl := diag(ω1, . . . ,ωl), (1.2.47)

Ξr(λ) := diag(1,λ, . . . ,λr−1) ∈ Mr(C), (1.2.48)

V :=
l∑

i=1

εiε
⊺Ωi−1

l =




1 . . 1

ω1 . . ωl

... .
...

ωl−1
1 . . ωl−1

l




. (1.2.49)

If we observe that

ε⊺Ωj
l ε =

l∑

i=1

ωj
i =




l if j = 0 mod (l),

0 if j ̸= 0 mod (l),

(1.2.50)
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we obtain that V is invertible with

V −1 =
1

l

l∑

i=1

Ωi−1
l εε⊺i . (1.2.51)

We obtain that y′ − Ãy = 0 has a fundamental system

Ỹ (·,λ) =
(

k∑

r=0

λ−rP [r] + {o(λ−k)}∞
)
E(·,λ). (1.2.52)

if λ is sufficiently large, where P [r] ∈ Mn(W
k+1−r
2 (a, b)) and

E(x,λ) = diag(1, . . . , 1, eλω1(x−a), . . . , eλωl(x−a)).

We infer that

(ηµ−1,ν(·,λ))nµ,ν=1 := Y (·,λ) := C(λ)Ỹ (·,λ) (1.2.53)

is a fundamental matrix of TD(λ)y = 0 if λ is sufficiently large. We set

Ỹ (·,λ)E(·,λ)−1 =: Q̃22(·,λ) (1.2.54)

and obtain that

Y (·,λ) = Ξl(λ)V Q̃22(·,λ)E(·,λ).

We set ην := η0,ν . Then {η1(·,λ), . . . , ηn(·,λ)} is a fundamental system of
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Kη = λlHη and η
(µ)
ν = ηµ,ν (ν = 1, . . . , n; µ = 0, . . . , n− 1). We have

Q̃ij(·,λ) =
k∑

r=0

λ−rQ
[r]
ij + {o(λ−k)}∞ (i, j = 1, 2) (1.2.55)

where the elements of Q[r]
ij belong to W k+1−r

2 (a, b). We set Q[r]
ij := 0 for r < 0 and

Q
[r]
ij := 0 for i ̸= j and r ≥ 0. Also,

Q
[0]
22

′ +
1

l
kn−1Q

[0]
22 = 0 Q

[0]
22(a) = Il, (1.2.56)





ΩlQ
[r]
22 −Q

[r]
22Ωl = Q

[r−1]
22

′

+1
l

l∑
j=1

kn−1−jΩlεε
⊺Ω−1−jQ

[r−1−j]
22 (r = 1, . . . , k),

(1.2.57)





0 = ε⊺ν

{
Q

[k]
22

′ + 1
l
kn−1Ωlεε

⊺Ω−1
l Q

[k]
22

+1
l

l∑
j=1

kn−1−jΩlεε
⊺Ω−1−jQ

[k−j]
22

}
εν (ν = 1, . . . , l).

(1.2.58)

We immediately infer that

ην(x,λ) =

{
k∑

r=0

λ−rφνr(x) + {o(λ−k)}∞
}
eλωνx, (1.2.59)

where φνr ∈ W k+1−r
2 (a, b). If 1 ≤ ν ≤ n, and 0 ≤ r ≤ k, then

φνr = ε⊺1V Q
[r]
22εν , (1.2.60)
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leading to

φνr = ω−r
ν φ1,r (1.2.61)

for ν = 1, . . . , n and r = 0, . . . , k̃. Hence, for ν = 1, . . . , n,

ην(x,λ) =





k̃∑

r=0

(λων)
−rφr(x) + {o(λ−k)}∞



 eλωνx, (1.2.62)

where φr := φ1,r, which yields

φ0 = φ10 = ε⊺1Q
[0]
22ε1. (1.2.63)

The relationship between the first order system and the nth-order differential

equation is given as in [5, Proposition 6.1.2].

Proposition 1.2.8. Let y ∈ W n
2 (a, b), λ ∈ Ω, and set

ŷ :=




y

y′

y′′

...

y(n−1)




.
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Then ŷ ∈ (W 1
2 (a, b))

n and

TD(λ)ŷ :=




0

0

0
...

LD(λ)y




.
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2
Periodic and Antiperiodic Boundary

Conditions

Periodic boundary conditions on a homogenous beam that is compressed

or stretched by a force g means that looking at the solutions of the differential

equation as standing waves, we want profiles that are the same as the initial

profile after some time has lapsed. We set out to find periodic and anti periodic

boundary conditions for the fourth order differential equation studied by Möller,

Zinsou and Pivorvarchik. They studied boundary conditions that are separated,

dependent on the eigenvalue parameter and a mixture of separated and dependent

on the eigenvalue parameter such that matrices M , K and A in the spectral

32



representation

L(λ) = λ2M − iαλK − A (2.0.1)

of boundary value problems are self-adjoint.

In Section 2.1, we write the fourth order partial differential equation as an ordi-

nary differential equation by assuming that solutions to the differential equation

will be superpositions of standing waves. The ordinary differential equation is

then written in terms of its quasi-derivatives and the Lagrange’s identity is inte-

grated to obtain the Green’s formula. Using Matlab we implement [9, Theorem

10.3.5] to find boundary conditions to the ordinary differential equation such that

at least one of the boundary condition is periodic. We verify in Section 2.2 that

the two boundary value problems with boundary conditions obtained in Section

2.1, fulfil the criteria that the differential operator in the spectral representaion

of the boundary value problems is self-adjoint and prove Theorem 2.2.4. The-

orem 2.2.4 states equivalent statements for boundary conditions of the fourth

order differential equation where we have one boundary condition dependent on

the eigenvalue parameter and at least one boundary condition dependent on the

eigenvalue parameter. We characterise boundary conditions that fulfil our criteria

in Theorem 2.3.1 in Section 2.3.

2.1 A vibrating string with periodic boundary conditions

This following sections are based on the article [7]. A fourth order partial dif-

ferential equation describing small transversal vibrations of a homogeneous beam
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compressed or stretched by a force g can be described by

∂4

∂x4
u(x, t)− ∂

∂x
g(x)

∂

∂x
u(x, t) = − ∂2

∂x2
u(x, t), (2.1.1)

where we assume g ∈ C1[0, a] to be a sufficiently smooth real-valued function and

a > 0. If g > 0, then the beam is stretched, and if g < 0, then it is compressed.

Our quest is to find boundary conditions to (2.1.1) such that at least one of the

boundary conditions is periodic, at least one of the boundary conditions depends

on the eigenvalue parameter and all the coefficient matrices in (2.0.1) are self-

adjoint.

We solve the differential equation (2.1.1) using the superposition of standing

waves method, where we assume that solutions u(x, t) can be written as u(x, t) =

eiλty(λ, x). Then, (2.1.1) can be written as an ordinary differential equation

y(4)(λ, x)− (gy′)′(λ, x) = λ2y(λ, x). (2.1.2)

We want to find boundary conditions, B0
i and Ba

i to (2.1.2) that satisfy a set

criteria,

B0
i (λ)




y(0)

y′(0)

y′′(0)

y′′′(0)




+ Ba
i (λ)




y(a)

y′(a)

y′′(a)

y′′′(a)




= 0, i = 1, 2, 3, 4 B0
i , B

a
i ∈ C4 (2.1.3)

and

y ∈ W 4
2 (0, a) := {y ∈ L2(0, a) : ∀j ∈ {1, 2, 3, 4}, y(j) ∈ L2(0, a)}. (2.1.4)
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The Lagrange’s identity gives boundary terms arising from integration by parts

of a self-adjoint linear differential operator.

We use methods in [9], which discuss extensively the quadratic operator pencil

of the form (2.0.1). We formulate our problem to implement [9, Theorem 10.3.5]

to find boundary conditions which fulfil a set of criteria. The theorem specifies a

criterion for self-adjointness for a class of differential operators. The differential

operator in (2.0.1) is A. We would like that A is self-adjoint with added condition

that at least one of the boundary conditions is periodic and at least one of the

boundary conditions depends on the eigenvalue parameter. We implement [9,

Theorem 10.3.5] in Matlab which gives us boundary conditions that fulfil the set

of criteria.

From (1.1.1), let n = 4 and 4 = 2k. We consider a fourth order differential

expression of the form ℓ,

ℓy =
2∑

m=0

(gmy
(m))(m) (2.1.5)

on an interval [0, a], where gm ∈ W
(m)
2 (0, a), m = 0, 1, 2, are real valued functions

and |g2(x)| > ε for some ε > 0 and x ∈ [0, a]. The quasi-derivatives of the

differential expression of (2.1.2) are

y[0] = y, y[1] = y′, y[2] = y′′, y[3] = y(3) − gy′, y[4] = y(4) − (gy′)′, (2.1.6)
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making the Lagrange’s identity

(ℓy)z − y(ℓz) =
d

dx
[y, z]

=
d

dx

2∑

j=1

(−1)j(y[j−1]z[4−j] − y[4−j]z[j−1])

=
d

dx

{
−y(z(3) − gz′)− (y(3) − gy′)z + y′z′′ − y′′z′

}
(2.1.7)

where y, z ∈ W 4
2 (0, a) which is integrated on [0, a] to obtain the Green’s formula

(ℓy, z)− (y, ℓz) = [y, z](a)− [y, z](0) (2.1.8)

where (·, ·) is the inner product in L2(0, a). Let U1 be a 3× 8 matrix, U2 a 1× 8

matrix and V a 1×8 matrix. Then the operator A in the Hilbert space L2(0, a)⊕C

is defined by

D(A) =
{
Y ∈ W 4

2 (0, a)⊕ C, U1Ŷ = 0, c = U2Ŷ
}
, (2.1.9)

AY =


 ℓy

V Ŷ


 , (2.1.10)

where

Ŷ =
(
y(0), . . . , y[n−1](0), y(a), . . . , y[n−1](a)

)⊺
. (2.1.11)
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For m = 2, (1.1.10) becomes





J2,0 = ((−1)s−1δs,m+1−t)
2

s,t=1 , J2,1 =




0 J2,0

−J∗
2,0 0


 ,

J2 =



−J2,1 0

0 J2,1


 .

(2.1.12)

Finally define

U3 =




J2

V

−U2


 , (2.1.13)

U =




U1 0 0

U2 −I 0

V 0 −I


 . (2.1.14)

The Matlab code is written so that we have one of the boundary conditions de-

pendent on the eigenvalue parameter and the output is the matrix U1 that ensures

that [9, Theorem 10.3.5] is satisfied. One of the boundary conditions that fulfil

the criteria is verified below. The boundary value problem with a fourth order

differential equation (2.1.2) together with the following boundary conditions

y(λ, 0)− y(λ, a) = 0, (2.1.15)

y[3](λ, 0)− y[3](λ, a) = 0, (2.1.16)

y′(λ, 0) = 0, (2.1.17)

y′′(λ, a) + iαλy′(λ, a) = 0, (2.1.18)
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defined on the interval [0, a], where a > 0, α > 0 and g ∈ C1[0, a] initiates

the study. The boundary conditions (2.1.15) and (2.1.16) are periodic, while the

boundary conditions (2.1.17) and (2.1.18) are separated, the boundary condition

(2.1.18) is also dependent on the eigenvalue parameter λ. The operators A, K

and M are self-adjoint, M and K are bounded, K has rank 1, M ≥ 0, K ≥ 0,

M +K ≫ 0, N(M) ∩ N(A) = {0} and A is bounded below and has a compact

resolvent.

The statements about K and M are obvious. If (y, c)⊺ ∈ N(M) ∩ N(A) then

(y, c)⊺ ∈ N(M) gives y = 0, and (y, c)⊺ ∈ D(A) where c = y′(a) leads to c =

y′(a) = 0. Hence N(M) ∩ N(A) = {0}. We are going to use Theorem 1.1.4 to

verify that A is self-adjoint. The differential expression (1.1.1) with n = 4, g0 = 0,

g1 = −g ∈ C1[0, a] and g2 = 1 represents (2.1.2) as

ℓy = (g0y) + (g1y
′)′ + (g2y

′′)′′ = y(4) − (gy′)′ = L0(λ)y. (2.1.19)

The number of eigenvalue independent boundary conditions as given by (2.1.15)–

(2.1.17) is 3, leaving only one boundary condition dependent on the eigenvalue

parameter. Matrices U1, U2 and V given by

U1 =




1 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 −1

0 1 0 0 0 0 0 0


 , (2.1.20)

U2 =
(
0 0 0 0 0 1 0 0

)
, (2.1.21)

V =
(
0 0 0 0 0 0 1 0

)
. (2.1.22)
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Then the operator A can also be defined in terms of these matrices as

AY =


 ℓy

V Ŷ


 ,

D(A) =
{
Y ∈ W 4

2 (0, a)⊕ C, U1Ŷ = 0, c = U2Ŷ
}
,

similar to (1.1.8) and (1.1.7). We now specify the matrices J2, U3 and U as

J2 =




0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0




, (2.1.23)
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U3 =




0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0




, (2.1.24)

and

U =




1 0 0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 −1 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 −1 0

0 0 0 0 0 0 1 0 0 −1




. (2.1.25)

J2 is a 8 × 8 matrix, U3 is a 10 × 8 matrix and U is a 5 × 10 matrix where I in

(1.1.12) is a 1× 1 matrix.

We find N(U1) and R(U∗) as

N(U1) = span{e1 + e5, e3, e4 + e8, e6, e7} ⊂ C8 (2.1.26)
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and

R(U∗) = span{e1 − e5, e4 − e8, e2, e6 − e9, e7 − e10} ⊂ C10. (2.1.27)

Then compare U3(N(U1)) with R(U∗), showing that they are equal and A is self-

adjoint as postulated by Theorem 1.1.4. Lastly, A has a compact resolvent in

view of Theorem 1.1.5. The coefficient of the highest derivative in the differential

component of A is g2 = 1 > 0 as required by Theorem 1.1.5 (i). Particular values

in assumptions of Theorem 1.1.5 (ii)–(iv) for (2.1.2) and (2.1.15)–(2.1.18) are

U1Ŷ =




y(0)− y(a)

y[3](0)− y[3](a)

y[1](0)


 , (2.1.28)

U2Ŷ = y[1](a), (2.1.29)

V Ŷ = y[2](a). (2.1.30)

The first and third component of U1Ŷ have quasi-derivatives of order zero and one.

Hence their order given by m is less than k = 2, half the order of the differential

equation and the second component has order three which is m = 3 ≥ k = 2. The

component of U2Ŷ has order one which is less than k. A does not have components

of U2Ŷ with quasi-derivatives that are greater than k and the condition on V Ŷ is

irrelevant. Thus all the conditions of Theorem 1.1.5 are fulfilled and A is bounded

below. An alternative criterion is used to show that (2.1.2) and (2.1.15)–(2.1.18)

is self-adjoint. First, define

W = J2 + U∗
2V − V ∗U2. (2.1.31)
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Then W (N(U1)) and R(U∗
1 ) are given by

W (N(U1)) = span{e4 − e8, e2,−e1 + e5} ⊂ C8×3 (2.1.32)

and

R(U∗
1 ) = span{e1 − e5, e2, e4 − e8} ⊂ C8×3. (2.1.33)

A comparison ofW (N(U1)) and R(U∗
1 ) shows thatW (N(U1)) = R(U ∗

1 ) as required

by [11, Corollary 2.5, Theorem 2.12 and Theorem 3.7].

2.2 Periodic and a single eigenvalue dependent boundary condition

Consider on the interval [0, a], where a > 0, the differential equation (2.1.2) with

boundary conditions

U1Ŷ = 0, (2.2.1)

(V + iαU2)Ŷ = 0, (2.2.2)

where the matrices U1, U2 and V are of the following form

U1 = (u1
i,j)

3,8
i=1,j=1, (2.2.3)

U2 = (u2
i,j)

1,8
i=1,j=1, (2.2.4)

V = (vi,j)
1,8
i=1,j=1. (2.2.5)

Consider a particular case where U2 and V contain exactly one non-zero element

such that the non-zero element of U2 is in a different column to the non-zero
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element of V and the non-zero elements of U1 are positioned such that the first

column of (1.1.12) has linearly independent rows. These forms of U1, U2 and V

ensure that each y[j](0) and y[j](a) in (1.1.9) occurs at most once in the boundary

condition (2.2.1). The operator A in (1.1.8) is given by

AY =


 ℓy

V Ŷ


 ,

D(A) =
{
Y ∈ W 4

2 (0, a)⊕ C, U1Ŷ = 0, c = U2Ŷ
}
.

We recall that the dimension of the domain of a linear map between two spaces

is given by the sum of the dimension of the null space and the rank of this linear

map. In addition, two finite dimensional spaces coincide if one space is contained

in the other and their dimensions are equal. A vector space C8 acted upon by

these three matrices U1, U2 and V means that rank U2 and rank V are given by

8− dim(N(U2)) = 1 and 8− dim(N(V )) = 1,

respectively.

Proposition 2.2.1. Let U2 and V contain exactly one non-zero element such that

the non-zero element in U2 is in a different column to the non-zero element in V.

Let

W = J2 + U∗
2V − V ∗U2. (2.2.6)

Then U∗
2V and V ∗U2 are 8×8 matrices of rank 1, U∗

2V −V ∗U2 is an 8×8 matrix

of rank 2 and W is an 8× 8 matrix of rank at least 6.

Let the non-zero element of V be at j = p and that of U2 be at j = s, s ̸= p.
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Then

U∗
2V =

(
(u2

ij)
1,8
i=1,j=1

)⊺
(vij)

1,8
i=1,j=1 = (u2

1jv1i)
8,8
j=1,i=1,

has exactly one non-zero element, u2
1sv1p, at j = s, i = p. The position of the

only non-zero element of V ∗U2 is in row p and column s, thus U∗
2V − V ∗U2 has

rank 2. J2 in (2.2.6) is invertible with rank 8 and U∗
2V −V ∗U2 has rank 2. Hence,

the rank of W is at least 6.

Remark 2.2.2. Whenever Y ∈ D(A) then Ŷ ∈ N(U1), and for every u ∈ N(U1)

there is a Y ∈ D(A) such that Ŷ = u.

Corollary 2.2.3. If A is self-adjoint then rank W = 6 and W (N(U1)) = R(U∗
1 ).

Proposition 1.1.3 states that Z ∈ D(A∗) if and only if Z ∈ W 4
2 (0, a)⊕C and there

is e ∈ C such that

[y, z](a)− [y, z](0) + d∗V Ŷ − e∗U2Ŷ = 0 (2.2.7)

for all Ŷ ∈ N(U1). For Z ∈ D(A∗), e is unique and

A∗Z =


ℓz

e


 .

We use (1.1.3) for W,Z ∈ D(A) = D(A∗) and

[y, z](a)− [y, z](0) = Ẑ∗J2Ŷ

together with values of e and d as implied by (1.1.8) and (1.1.7) respectively, which
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we substitute into (2.2.7) to get

0 = [y, z](a)− [y, z](0) + d∗V Ŷ − e∗U2Ŷ

= [y, z](a)− [y, z](0) + (U2Ẑ)
∗V Ŷ − (V Ẑ)∗U2Ŷ

= Ẑ∗J2Ŷ + Ẑ∗U∗
2V Ŷ − Ẑ∗V ∗U2Ŷ

= Ẑ∗(J2 + U∗
2V − V ∗U2)Ŷ

= Ẑ∗WŶ ,

where Ŷ and Ẑ are as defined in (1.1.9). This means that WŶ ⊥ Ẑ, i.e

W (N(U1)) ⊂ (N(U1))
⊥ = R(U∗

1 ). We use this containment of W (N(U1)) in

R(U∗
1 ) to compare their dimensions as

3 = rank U∗
1 ≥ dim(W (N(U1))) (2.2.8)

≥ dim(N(U1))− (8− rank W )

= −3 + rank W.

Hence rank W ≤ 6. By Proposition 2.2.1 rank W = 6, and hence all the inequal-

ities in (2.2.8) are equalities and dim(W (N(U1))) = dim(R(U∗
1 )) holds. Thus

W (N(U1)) = R(U∗
1 ).

Theorem 2.2.4. The following statements are equivalent

i. A is self-adjoint,

ii. U3(N(U1)) = R(U∗),

iii. W (N(U1)) = R(U∗
1 ) .
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Suppose (i) holds. Then Corollary 2.2.3 implies (iii). Suppose (iii) holds. Let

u ∈ N(U1). Then there is v ∈ D(U∗
1 ) such that Wu = U∗

1 v i.e

U∗
1 v = Wu = (J2 + U∗

2V − V ∗U2)u. (2.2.9)

Consider

U3u =




J2

V

−U2


u =




J2u

V u

−U2u


 . (2.2.10)

Let b = −V u and c = U2u i.e 0 = V u+ b and 0 = U2u− c and substitute (2.2.9)

below. Then



J2u

V u

−U2u


 =




J2u+ U∗
2 (V u+ b)− V ∗(U2u− c)

−b

−c




=




(J2 + U∗
2V − V ∗U2)u+ U∗

2 b+ V ∗c

−b

−c




=




U∗
1 v + U∗

2 b+ V ∗c

−b

−c




=




U∗
1 U∗

2 V ∗

0 −I 0

0 0 −I







v

b

c


 = U∗




v

b

c


 .
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Thus U3(N(U1)) ⊂ R(U∗) and dim(U3(N(U1))) ≤ rank U∗. The map

U1 : C8 → C3, in (2.2.3), has dim(N(U1)) = dim(C8) − rank U1 = 8 − 3 = 5 as

given by the rank nullity theorem. Similarly U with the first column given by

(2.2.3)–(2.2.5) has rank U = 5 thus dim(N(U1)) = rank U∗. We then conclude

that U3(N(U1)) = R(U∗) by showing that U3 is injective i.e 0 is the only element

in N(U3). Suppose U3u = 0. Then

0 = U3u =




J2u

V u

−U2u


 , (2.2.11)

and J2u = 0 implies u = 0 since J2 is invertible. Hence (ii) follows.

Suppose that (ii) holds. Then by Theorem 1.1.4 we have (i).

2.3 Further examples of self-adjoint operators with periodic and

a single eigenvalue dependent boundary conditions

Keeping with the pattern of the boundary conditions of the operator studied in

[8], using the differential equation (2.1.2) and Theorem 1.1.4, we identify the

boundary conditions of the self-adjoint operators under investigation as follows:

y[β1](λ, 0)− ϵ1y
[β1](λ, a) = 0, (2.3.1)

y[β2](λ, 0)− ϵ2y
[β2](λ, a) = 0, (2.3.2)

δy[β3](λ, 0) + (1− δ)y[β3](λ, a) = 0, (2.3.3)

(1− δ)(y[β4](λ, 0) + ϵ3iαλy
[β5](λ, 0)) = δ(y[β4](λ, a) + ϵ3iαλy

[β5](λ, a)) (2.3.4)
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where βm ∈ {0, 1, 2, 3}, m = 1, 2, . . . , 5, βm’s are distinct for m = 1, 2, 3 i.e

βs ̸= βm for s ̸= m with s,m = 1, 2, 3. β1, β2, β4, β5 are different from each other

and β5 = β4−1, β1 < β2, ϵj = ±1 for j = 1, 2, 3 and δ ∈ {0, 1}. We give necessary

and sufficient conditions for which the main operator A is self-adjoint.

Theorem 2.3.1. The quadratic operator polynomial representing the fourth order

differential equation (2.1.2) with the boundary conditions (2.3.1)– (2.3.4) is self-

adjoint if and only if these boundary conditions have the following structure:

ϵ1ϵ2 = 1, (2.3.5)

ϵ3 = −1 for δ = 0, (2.3.6)

ϵ3 = 1 for δ = 1, (2.3.7)

β1 = 0, (2.3.8)

β2 = 3, (2.3.9)

β3 = 1, 2. (2.3.10)

Consider the matrices U1, U2 and V of the form (2.2.3)–(2.2.5). Let the non-zero

elements of U2 and V be at u2
1,2 and v1,3 respectively. Using the representation of

(2.3.4), these corresponds to β4 = 2 and β5 = 1. Let ϵ3 = −1, β1 = 0, ϵ1 = −1,

β2 = 3, ϵ2 = −1 and β3 = 2. Starting with this choice of U2 and V which implies

that δ = 0, U1 given by these parameters is

U1 =




1 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 −1

0 0 0 0 0 0 1 0


 . (2.3.11)

Then consider U2 and V where the non-zero elements are at u2
1,6 and v1,7 respec-
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tively, correspond to β4 = 2, β5 = 1, δ = 1 and ϵ3 = 1. A matrix U1 with such

periodic boundary conditions is given by

U1 =




1 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 0


 . (2.3.12)

The assumption of Theorem 1.1.4 is fulfilled since rank


U1

U2


 = 4 for both (2.3.11)

and (2.3.12) together with their corresponding U2’s. For each U1 we compute

U3(N(U1)) and the corresponding R(U∗). The result is that U3(N(U1)) = R(U ∗)

for each of the two cases and any of the combination of the parameters stated.

Thus the operator A for each of the 12 cases is self-adjoint. A self-adjoint quadratic

operator polynomial representing the fourth order differential equation (2.1.2)

with boundary conditions that satisfy (2.3.1)–(2.3.4) satisfies

U3(N(U1)) = R(U∗).

If we represent boundary conditions with

U1 =




a 0 0 0 ϵ1a 0 0 0

0 0 0 b 0 0 0 ϵ2b

0 c 0 0 0 0 0 0


 , (2.3.13)

U2 =
(
0 0 0 0 0 ϵ3d 0 0

)
, (2.3.14)

V =
(
0 0 0 0 0 0 e 0

)
, (2.3.15)
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such that (2.3.1)–(2.3.4) is satisfied. Then, using Matlab we prove that if U3(N(U1)) =

R(U∗) then the values of parameters β’s, δ’s and ϵ’s are as given by (2.3.5)–

(2.3.10).

We find an unifying structure of boundary conditions that are periodic or anti-

periodic at the endpoints of the interval and have an eigenvalue parameter depen-

dence in one of them as described by Theorem 1.1.6. The matrix U4 defined below

was decomposed into its singular values and orthogonal matrices in an effort to

find a relationship in all the cases.

Define a matrix

U4 :=




U1

U2

V


 . (2.3.16)

All the U4’s that result from (2.3.1)–(2.3.4) and satisfy Theorem 2.3.1 are such

that each U4’s columns has at most one non-zero element and each of its rows has

at least one non-zero element.

Theorem 2.3.2. The self-adjoint quadratic operator polynomial representing the

fourth order differential equation (2.1.2) with boundary conditions (2.3.1)–(2.3.4)

that satisfy Theorem 2.3.1 has

U4 = Θ
(
Σ 0

)
∆⊺,

where Θ = I5, Σ = diag(
√
2,
√
2, 1, 1, 1) and ∆⊺ ∈ R8×8.

Consider (2.3.1)–(2.3.4) with β1 = 0, β2 = 3, β3 = 1, β4 = 2, β5 = 1, δ = 0

and ϵ1, ϵ2, ϵ3 = 1. This choice of parameters results in U1, U2 and V given in
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(2.1.20)–(2.1.22). We then compute singular values of U4 with

U⊺
4 =




1 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 −1 0 0 0




. (2.3.17)

Then

U4U
⊺
4 =




2 0 0 0 0

0 2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




. (2.3.18)

The eigenvalues of U4U
⊺
4 are σ1 = 2 with eigenvectors

(
1 0 0 0 0

)⊺
,
(
0 1 0 0 0

)⊺

and σ2 = 1 with eigenvectors
(
0 0 1 0 0

)⊺
,
(
0 0 0 1 0

)⊺
and

(
0 0 0 0 1

)⊺
.

We construct a matrix C whose columns are the eigenvectors of U4U
⊺
4 and order

these eigenvectors by the magnitude of their eigenvalues i.e C =
(
e1 e2 e3 e4 e5

)
.

Then we implement the Gram-Schmidt orthonormalization process which in this

case is Θ = I5×5. We repeat the process with U⊺
4U4 to find ∆⊺. The eigenvalues of

U⊺
4U4 are 2, 1 and 0 with multiplicities of two, three and three respectively. We

list the eigenvectors of U⊺
4U4 as columns of D = (di)

8
1 ordered below in decreasing
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magnitude of their eigenvalues as

d1 = − 1√
2
(e4 − e8)

d2 = − 1√
2
(e1 − e5)

d3 = e7

d4 = e2

d5 = e6

d6 = − 1√
2
(e1 + e5)

d7 = e3

d8 = − 1√
2
(e4 + e8).

Then project the di’s and normalize them as before, which gives

∆⊺ =




0 1√
2

0 0 0 0 − 1√
2

0

0 0 0 1 0 0 0 0

0 0 0 0 0 − 1√
2

0 − 1√
2

1√
2

0 0 0 0 −1
2

0 1
2

0 − 1√
2

0 0 0 0 − 1√
2

0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

− 1√
2

0 0 0 0 −1
2

0 1
2




⊺

. (2.3.19)

The operators have the same Θ and Σ with ∆⊺ being the only distinguishing

matrix in the decompositions of their U4’s.
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where W = J2 + U∗
2V − V ∗U2, and U3 =




J2

V

−U2


 .
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3
Asymptotics of eigenvalues

In this chapter we show that the non-self-adjoint operator L(λ,α) is Birkhoff reg-

ular. Self-adjoint boundary value problems are Birkhoff-regular and for the same

differential equation, a boundary value problem is Birkhoff regular if the bound-

ary conditions are Birkhoff regular. Birkhoff regular problems possess a number

of spectral properties like an estimate of the Green function and asymptotics

of eigenvalues and eigenfunctions. We consider one of the cases of self-adjoint

boundary value problems in [7], defined by the differential equation

y(4)(λ, x)− (gy′)′(λ, x) = λ2y(λ, x), (3.0.1)
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together with the following boundary conditions

y(λ, 0)− ϵ1y(λ, a) = 0, (3.0.2)

y(3)(λ, 0)− ϵ2y
(3)(λ, a) = 0, (3.0.3)

y′(λ, 0) = 0, (3.0.4)

y′′(λ, a) + iαλy′(λ, a) = 0. (3.0.5)

We prove in Section 3.1 that the problem (3.2.1)–(3.2.5) is Birkhoff regular for

ϵ1ϵ2 = 1. In Section 3.2 we provide the asymptotics of the eigenvalues for g = 0

while in Section 3.3 we derive the first three terms of the eigenvalue expansions.

3.1 Birkhoff Regularity

We show Birkhoff regularity of (3.2.1)–(3.2.5) using Defintion 1.2.3.

Let λ = µ2. From (1.2.20) and (1.2.22), pi(·,λ) =
3∑

i=0

µjπ3−i,j, (i = 0, 1, 2, 3, j =

0, 1, 2, 3), π1,1 = π2,2 = π3,3 = 0 and π4,4 = −1. The characteristic function of

the differential equation (3.2.1) is π(ρ) = ρ4 − 1. The zeros of the characteristic

function are ik−1, k = 1, 2, 3, 4. By Proposition 1.2.5, l = 4, matrices ∆ of

the boundary eigenvalue problem (3.2.1)–(3.2.5) are the following 4× 4 diagonal

matrices with two consecutives ones and two consecutives zeros in the diagonal in

a cycle arrangement:





∆1 = diag(1, 1, 0, 0),

∆2 = diag(0, 1, 1, 0),

∆3 = diag(0, 0, 1, 1),

∆4 = diag(1, 0, 0, 1).

(3.1.1)
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With n0 = 0 and l = 4 the matrix C1 defined in (1.2.34) is reduced to (i(k−1)(l−1))4k,l=1.

Then from Theorem 1.2.6.A ν1 = 0, ν2 = 1, ν3 = 2 and ν4 = 3. Hence, we can

choose

C(x, µ) = diag(µ0, µ1, µ2, µ3)C1(x ) (3.1.2)

with

C1(x) =




1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i




(3.1.3)

defined in (1.2.34) and

C(x, µ) =




1 1 1 1

µ iµ −µ −iµ

µ2 −µ2 µ2 −µ2

µ3 −iµ3 −µ3 iµ3




. (3.1.4)
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Boundary matrices associated with (3.2.1)–(3.2.5) are given by

W (0)(µ) =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0




C(0, µ)

=




1 1 1 1

µ iµ −µ −iµ

µ2 −µ2 µ2 −µ2

0 0 0 0




(3.1.5)

and

W (1)(µ) =




−ϵ1 0 0 0

0 0 0 0

0 0 0 −ϵ2

0 iαµ2 1 0




C(a, µ)

=




−ϵ1 −ϵ1 −ϵ1 −ϵ1

0 0 0 0

−ϵ2µ
3 ϵ2iµ

3 ϵ2µ
3 −ϵ2iµ

3

iαµ3 + µ2 −αµ3 − µ2 −iαµ3 + µ2 αµ3 − µ2




. (3.1.6)
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We choose C2(x, µ) = diag(µ0, µ1, µ3, µ3) defined in (1.2.28) then (1.2.14) leads to

C2(µ)
−1W (0)(µ) =




1 0 0 0

0 µ−1 0 0

0 0 µ−3 0

0 0 0 µ−3







1 1 1 1

µ iµ −µ −iµ

µ2 −µ2 µ2 −µ2

0 0 0 0




=




1 1 1 1

1 i −1 −i

1
µ

− 1
µ

1
µ

− 1
µ

0 0 0 0




= W
(0)
0 (µ) +O(µ−1), (3.1.7)
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C2(µ)
−1W (1)(µ) =




1 0 0 0

0 µ−1 0 0

0 0 µ−3 0

0 0 0 µ−3




×




−ϵ1 −ϵ1 −ϵ1 −ϵ1

0 0 0 0

−ϵ2µ
3 ϵ2iµ

3 ϵ2µ
3 −ϵ2iµ

3

iαµ3 + µ2 −αµ3 − µ2 −iαµ3 + µ2 αµ3 − µ2




=




−ϵ1 −ϵ1 −ϵ1 −ϵ1

0 0 0 0

−ϵ2 iϵ2 ϵ2 −iϵ2

iα + 1
µ

−α− 1
µ

−iα + 1
µ

α− 1
µ




= W
(1)
0 (µ) +O(µ−1). (3.1.8)

Thus C2(µ)
−1W (j)(µ) +O(µ−1) holds for j = 0, 1 and

|W (j)
0 | =

4∑

i=1

4
max
k=1

|w(j)
0ik

| < ∞,

1∑

j=0

|W (j)
0 | < ∞,

|C2(µ)
−1W (j)(µ)−W

(j)
0 | = O(µ−1), (3.1.9)

and

1∑

j=0

|C−1
2 (µ)W (j)(·, µ)−W

(j)
0 | = O(µ−1) as µ → ∞. (3.1.10)
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The order of the differential equation (3.2.1) is 4 then the values of ∆ are diagonal

matrices with 2 consecutive ones and 2 consecutive zeros in the diagonal in a cyclic

arrangement. The boundary value problem (3.2.1)–(3.2.5) is Birkhoff regular since

W
(0)
0 ∆j +W

(1)
0 (I4 −∆j) =








1 1 −ϵ1 −ϵ1

1 i 0 0

0 0 ϵ2 −iϵ2

0 0 −iα α




j = 1




−ϵ1 1 1 −ϵ1

0 i −1 0

−ϵ2 0 0 −iϵ2

iα 0 0 α




j = 2




−ϵ1 −ϵ1 1 1

0 0 −1 −i

−ϵ2 iϵ2 0 0

iα α 0 0




j = 3




1 −ϵ1 −ϵ1 1

1 0 0 −i

0 iϵ2 ϵ2 0

0 −α −iα 0




j = 4

(3.1.11)

is invertible for µ ∈ C\{0}, ∆j j = 1, 2, 3, 4 (3.1.1). Hence,

Proposition 3.1.1. The eigenvalue problem (3.2.1)–(3.2.5) is Birkhoff regular for
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α > 0.

3.2 Asymptotic expansions of eigenvalues when g = 0

We consider one of the cases of self-adjoint boundary value problems in [7], defined

by the differential equation

y(4)(λ, x)− (gy′)′(λ, x) = λ2y(λ, x), (3.2.1)

together with the following boundary conditions

y(λ, 0)− ϵ1y(λ, a) = 0, (3.2.2)

y(3)(λ, 0)− ϵ2y
(3)(λ, a) = 0, (3.2.3)

y′(λ, 0) = 0, (3.2.4)

y′′(λ, a) + iαλy′(λ, a) = 0, (3.2.5)

with ϵ1, ϵ2 = ±1 and ϵ1ϵ2 = 1. In this section we consider g = 0 and put µ =
√
λ,

λ ̸= 0.

A fundamental system of (3.2.1) with g = 0 is {eµx, e−µx, eiµx, e−iµx}. We

associate (3.2.1) with a first order system, TD and a fundamental matrix of TD is

given by

Z(x, µ) =




eµx e−µx eiµx e−iµx

µeµx −µe−µx iµeiµx −iµe−iµx

µ2eµx µ2e−µx −µ2eiµx −µ2e−iµx

µ3eµx −µ3e−µx −iµ3eiµx iµ3e−iµx




. (3.2.6)
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To apply Proposition 1.2.8, another matrix Y (x, µ) is a fundamental matrix if

there is an invertible matrix C ∈ M4(C) for a fundamental matrix Z(x, µ) such

that

Y (x, µ) = Z(x, µ)C. (3.2.7)

It means that for Y (0, µ) = I4,

Z(0, µ) =




1 1 1 1

µ −µ iµ −iµ

µ2 µ2 −µ2 −µ2

µ3 −µ3 −iµ3 iµ3




(3.2.8)

is a fundamental matrix and an invertible C is

C =
1

4




1 1
µ

1
µ2

1
µ3

1 −1
µ

1
µ2 − 1

µ3

1 −i
µ

−1
µ2

i
µ3

1 i
µ

−1
µ2

−i
µ3




. (3.2.9)

The characteristic matrix function defined in [5, (3.1.7)] of (3.2.1)–(3.2.5) is

M(µ) = W (0)Y (0, µ) +W (1)Y (a, µ), (3.2.10)
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where

W (0)(µ) =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0




(3.2.11)

and

W (1)(µ) =




−ϵ1 0 0 0

0 0 0 0

0 0 0 −ϵ2

0 iαµ2 1 0




. (3.2.12)

It then follows that the characteristic determinant is given by

D(µ) := detM(µ) = det(W (0)(µ) · Z(0, µ) +W (1)(µ) · Z(a, µ)) det c

=2µ6
[
− 4i(eµa + e−µa + eiµa + e−iµa − ϵ2)

+ i(2ϵ1 + ϵ2)(e
(1+i)µa + e−(1+i)µa + e(1−i)µa + e−(1−i)µa)

+ µα(4(eµa − e−µa − i(eiµa − e−iµa))

− (1− i)(ϵ1 + ϵ2)(e
(1+i)µa − e−(1+i)µa)

−(1 + i)(ϵ1 + ϵ2)(e
(1−i)µa − e−(1−i)µa))

] −i

16µ6
. (3.2.13)

We rewrite the characteristic determinant as

D(µ) =
−i

8

(
8∑

j=0

(
αµCj + Bj

)
eωjµa

)
, (3.2.14)
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where



ω0 = 1− i, ω1 = 1 + i, ω2 = −1 + i, ω3 = −1− i,

ω4 = −i, ω5 = 1, ω6 = i, ω7 = −1, ω8 = 0.

(3.2.15)

and




−C0 = C2 = (1 + i)(ϵ1 + ϵ2), −C1 = C3 = (1− i)(ϵ1 + ϵ2),

iC4 = −C5 = −iC6 = C7 = −4, C8 = 0,

B0 = B1 = B2 = B3 = i(2ϵ1 + ϵ2),

B4 = B5 = B6 = B7 = −4i, B8 = 4iϵ2.

(3.2.16)

Let

eD0(µ) :=D(µ)e−ω0µa

=
−i

8

(
αµ(−(1 + i)(ϵ1 + ϵ2) + 4eiµa − (1− i)(ϵ1 + ϵ2)e

2iµa)

+ (i(2ϵ1 + ϵ2)− 4ieiµa + i(2ϵ1 + ϵ2)e
2iµa)

+
8∑

j=2
j ̸=5

(
αµCj + Bj

)
e(ωj−ω0)µa


 , (3.2.17)
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where




ω1 − ω0 = 2i, ω2 − ω0 = −2 + 2i, ω3 − ω0 = −2,

ω4 − ω0 = −1, ω5 − ω0 = i, ω6 − ω0 = −1 + 2i,

ω7 − ω0 = −2 + i, ω8 − ω0 = −1 + i.

(3.2.18)

Let

D0
0(µ) := −(1 + i)(ϵ1 + ϵ2) + 4eiµa − (1− i)(ϵ1 + ϵ2)e

2iµa), (3.2.19)

D0
1(µ) := i(2ϵ1 + ϵ2)− 4ieiµa + i(2ϵ1 + ϵ2)e

2iµa, (3.2.20)

D0
2(µ) :=

8∑

j=2
j ̸=5

(
αµCj + Bj

)
e(ωj−ω0)µa. (3.2.21)

The principal values of the arguments are 5π
8

< arg(ωj − ω0) ≤ π for j =

2, 3, 4, 6, 7, 8. The arguments of exponential terms e(ωj−ω0)µa, j = 2, 3, 4, 6, 7, 8 can

be written as

(ωj − ω0)µa = |(ωj − ω0)µa| ei(arg((ωj−ω0)µa)

= |(ωj − ω0)||µ|a[cos(arg((ωj − ω0)µa)) + i sin(arg((ωj − ω0)µa))]

and for arg µ ∈ [− π
12
, 5π
12
], arg((ωj − ω0)µa) ∈ (13π

24
, 34π

24
],

cos(arg((ωj − ω0)µa)) < cos
13π

24
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and |ωj − ω0)| ≥ 1, j = 2, 3, 4, 6, 7, 8. Thus,

|e(ωj−ω0)µa| =eℜ{(ωj−ω0)µa}

=e|(ωj−ω0)||µ|a cos(arg((ωj−ω0)µa))

≤ea|µ| cos(arg((ωj−ω0)µa))

≤e−a|µ| cos( π
24

)

=o(|µ|−s), s ∈ N. (3.2.22)

The coefficients µαCj + Bj of exponential terms e(ωj−ω0)µa, j = 2, 3, 4, 6, 7, 8 can

be estimated as µαCj = O(|µ|), Bj = O(1) and µαCj +Bj = O(1+ |µ|) = O(|µ|).
For large µ in the sector arg µ ∈ [− π

12
, 5π
12
], (µαCj + Bj)e

(ωj−ω0)µa = o(|µ|1−s) and

|D0
2(µ)| = o(|µ|1−s), s ∈ N. (3.2.23)

We find the zeros of D0
0(µ) in the sector where arg µ ∈ [− π

12
, 5π
12
]. Zeros of D0

0(µ)

are given by

µ̃0
k =

i

a
ln

�����
−4±

√
16− 8(ϵ1 + ϵ2)2

−2(1− i)(ϵ1 + ϵ2)

�����

+
1

a

[
arg

(
−4±

√
16− 8(ϵ1 + ϵ2)2

−2(1− i)(ϵ1 + ϵ2)

)
+ 2πk

]
, k ∈ N. (3.2.24)

When ϵ1 = ϵ2 = 1, these zeros simplify to




µ̃0,+
k,1 = (4k − 3) π

2a
,

µ̃0,+
k,2 = 2k π

a
.

(3.2.25)
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and when ϵ1 = ϵ2 = −1, the zeros are




µ̃0,−
k,1 = (4k − 1) π

2a
,

µ̃0,−
k,2 = (2k − 1)π

a
,

(3.2.26)

k ∈ N.

Consider D0,+
µ̃k,1

= {µ ∈ C : |µ − µ̃0,+
k,1 | = π

20a
}, which are inside the sector arg µ ∈

[− π
12
, 5π
12
]. For µ ∈ D0,+

µ̃k,1
,

��D0
0(µ)

�� > 0. (3.2.27)

Therefore,

m0,+
k,1 := min

{
|D0

0(µ)| : µ ∈ D0,+
µ̃k,1

}
> 0, k ∈ N. (3.2.28)

The number m0,+
k,1 in (3.2.28) is independent of k ∈ N, because µ ∈ D0,+

µ̃k,1
written

as µ = µ̃0,+
k,1 + ζ means |ζ| = π

20a
and therefore,

ei(µ̃
0,−
k,1 +ζ)a = ei((4k−3) π

2a
+ζ)a

= ei(−
3π
2
+ζa) = ieiζa (3.2.29)

and

��D0
0(µ)

�� = |− (1 + i)(ϵ1 + ϵ2) + 4ieiζa + (1− i)(ϵ1 + ϵ2)e
2iζa|. (3.2.30)
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Thus,

m0,+
1 := inf

k∈N
m0,+

k,1 > 0. (3.2.31)

Similarly, for µ = µ̃0,+
k,1 + ζ ∈ D0,+

µ̃k,1

|D0
1(µ)| =|i(2ϵ1 + ϵ2) + 4eiζa − i(2ϵ1 + ϵ2)e

2iζa|. (3.2.32)

Let

M0,+
k,1 = max

{
|D0

1(µ)| : µ ∈ D0,+
µ̃k,1

}
, k ∈ N.

Since (3.2.32) is independent of k ∈ N, we have

M0,+
1 := sup

k∈N
M0,+

k,1 < ∞. (3.2.33)

On all circles D0,+
µ̃k,1

, |D0
0(µ)| > m0,+

1 , |D0
1(µ)| < M0,+

1 and (3.2.23) can be bounded

by L > o(1) = |D0
2(µ)| for s = 1, where m0,+

1 , M0,+
1 and L are constants indepen-

dent of k. Thus,

|D0
0(µ)| >

m0,+
1

M0,+
1 + L

|D0
1(µ) +D0

2(µ)| (3.2.34)

and there is a positive integer k0 such that, for k > k0 and µ ∈ D0,+
µ̃k,1

, α|µ| >
M0,+

1 +L

m0,+
1

and (3.2.34) becomes

α|µ||D0
0(µ)| > |D0

1(µ) +D0
2(µ)|. (3.2.35)
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By Rouché’s theorem we conclude that inside each circle D0,+
µ̃k,1

, there is a unique

zero of eD0(µ) which we denote by µ0,+
k,1 , and therefore

|µ0,+
k,1 − µ̃0,+

k,1 | <
π

20a
, k > k0, k ∈ N. (3.2.36)

Consider circles D0,+
k,1,ϵ := {µ ∈ C : |µ− µ̃0,+

k,1 | = ϵ}, 0 < ϵ < π
20a

. For each ϵ we can

find constants as in (3.2.31) and (3.2.33), respectively, that correspond to circles

D0,+
k,1,ϵ and are independent of k. Denote these constants as m0,+

1,ϵ and M0,+
1,ϵ . We

can find a positive integer kϵ > k0 such that for k ≥ kϵ, Lϵ > o(1) = |D0
2(µ)| and

µ ∈ D0,−
k,1,ϵ, α|µ| >

M0,+
1,ϵ +Lϵ

m0,+
1,ϵ

. For each ϵ and µ ∈ D0,+
k,1,ϵ, arguments that lead to

(3.2.34) hold and

α|µ||D0
0(µ)| > |D0

1(µ) +D0
2(µ)| (3.2.37)

is upheld. Again, by Rouché’s theorem we conclude that inside each circle D0,+
k,1,ϵ,

eD0(µ) has a unique zero. The circle D0,+
k,1,ϵ ⊆ D0,+

µ̃k,1
has the same center as D0,+

µ̃k,1
,

which is a zero of D0
0(µ). Since these concentric circles both contain a unique zero

of eD0(µ), we can conclude that these two circles contain exactly one zero, which

is inside D0,+
k,1,ϵ, and therefore,

|µ0,+
k,1 − µ̃0,+

k,1 | < ϵ, k > k0, k ∈ N. (3.2.38)

Thus,

µ0,+
k,1 = (4k − 3)

π

2a
+ o(1), k > k0, k ∈ N (3.2.39)

in the sector arg µ ∈ [− π
12
, 5π
12
]. Another sequence of zeros of D0

0(µ) when ϵ1 =
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ϵ2 = 1 is µ̃0,+
k,2 , k ∈ N, inside the sector arg µ ∈ [− π

12
, 5π
12
]. Let D0,+

µ̃k,2
= {µ ∈ C :

|µ − µ̃0,+
k,2 | = π

20a
}. Then µ ∈ D0,+

µ̃k,2
written as µ = µ̃0,+

k,2 + ζ means |ζ| = π
20a

and

therefore,

ei(µ̃
0,+
k,2 +ζ)a = ei(2k

π
a
+ζ)a

= ei(2kπ+ζa) = eiζa. (3.2.40)

An estimate similar to (3.2.35) can be obtained for µ ∈ D0,+
µ̃k,2

and k > k0 for

some positive integer k0. The same reasoning as above is applied to circles D0,+
µ̃k,2

redefined with radii of ϵ. We repeat this argument again when ϵ1 = ϵ2 = −1.

Proposition 3.2.1. For g = 0 there exists a positive integer k0 such that zeros

of D(µ) are




µ0,+
k,1 = (4k − 3) π

2a
+ o(1),

µ0,+
k,2 = 2k π

a
+ o(1),

(3.2.41)

when ϵ1 = ϵ2 = 1 and when ϵ1 = ϵ2 = −1, they are




µ0,−
k,1 = (4k − 1) π

2a
+ o(1),

µ0,−
k,2 = (2k − 1)π

a
+ o(1),

(3.2.42)

k > k0, k ∈ N.

We use properties of D(µ) to locate its other zeros using zeros already found in
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Proposition 3.2.1. Let

Dc(µ) = − i

8
µα

7∑

j=0

Cje
ωjµa (3.2.43)

and

Db(µ) = − i

8

8∑

j=0

Bje
ωjµa. (3.2.44)

From (3.2.14), D(µ) can be written as

D(µ) = Dc(µ) +Db(µ). (3.2.45)

The terms of the characteristic determinant, D(µ), satisfies

Dc(iµ) = − i

8
µα

7∑

j=0

iCje
ωjiµa

= −
(
− i

8

)
µα

7∑

j=0

Cje
ωjµa = −Dc(µ), (3.2.46)

and

Db(iµ) = − i

8

8∑

j=0

Bje
ωjiµa = −Db(µ). (3.2.47)

Thus,

D(iµ) = −D(µ). (3.2.48)

Thus, µ is a zero of D(µ) if and only if −µ is a zero of D(µ) and iµ is a zero of
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D(µ) if and only if µ is a zero of D(µ). For g = 0 and k > k0, zeros of D(µ) which

are the eigenvalues of M are given below.

Proposition 3.2.2. For g = 0 there exists a positive integer k0 such that zeros

of D(µ) are




µj,0,+
k,1 = ij(4k − 3) π

2a
+ o(1),

µj,0,+
k,2 = ij2k π

a
+ o(1),

(3.2.49)

when ϵ1 = ϵ2 = 1 and




µj,0,−
k,1 = ij(4k − 1) π

2a
+ o(1),

µj,0,−
k,2 = ij(2k − 1)π

a
+ o(1),

(3.2.50)

when ϵ1 = ϵ2 = −1,

k ∈ N, k > k0 and j = 0, 1, 2, 3.

We have already considered zeros of the exponential sum D(µ) inside the sector

arg µ ∈ [− π
12
, 5π
12
] and it is our intention to enumerate its zeros inside big circles

centred at the origin. We rewrite D(µ) as

D(µ) =
−i

8

(
µα

7∑

j=0

Cje
ωjµa +

8∑

j=0

Bje
ωjµa

)
. (3.2.51)

Let Γk := {µ ∈ C : max((ℜµ)2, (ℑµ)2) = R2
k} where Rk = 2(k + 1

3
)π
a
, k ∈ N and

Sj := {µ ∈ C\{0} : arg µ ∈ [− π
12
− j π

2
, 5π
12
− j π

2
]}, j = 0, 1, 2, 3. We rewrite (3.2.17)
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as

D(µ)e−ω0µa =
−i

8

(
µα

7∑

j=0

Cje
(ωj−ω0)µa +

8∑

j=0

Bje
(ωj−ω0)µa

)

=


αµD0

0(µ) + αµ

7∑

j=2
j ̸=5

Cje
(ωj−ω0)µa +D0

1(µ) +
8∑

j=2
j ̸=5

Bje
(ωj−ω0)µa


 .

(3.2.52)

Let µa = x+ iy where x = (2k + 2
3
)π. Then

eiµa = ei(x+iy)

= e(−y+ix)

= e−yeix

= e−yei(2k+
2
3
)π

= e−yei
2
3
π

and

e2iµa = e−2yei
4
3
π.

Consider D0
0(µ) when ϵ1ϵ2 = 1. The zeros of D0

0(µ) are given in (3.2.25), and

µ is not a zero of D0
0(µ) when µa = x + iy and x = (2k + 2

3
)π. Along the line

x = (2k + 2
3
)π,

|D0
0(µ)| =|− (1 + i)(ϵ1 + ϵ2) + 4eiµa − (1− i)(ϵ1 + ϵ2)e

2iµa|

=| ± 2(1 + i)− 4e−yei
2
3
π ± 2(1− i)e−2yei

4
3
π| (3.2.53)
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|D0
1(µ)| =|i(2ϵ1 + ϵ2)− 4ieiµa + i(2ϵ1 + ϵ2)e

2iµa|

=| ± 3i+ 4ie−yei
2
3
π ± 3ie−2yei

4
3
π| (3.2.54)

Therefore,

lim
y→∞

|D0
0(µ)| = 2

√
2,

lim
y→−∞

|D0
0(µ)| = ∞,

lim
y→∞

|D0
1(µ)|

|D0
0(µ)|

=
3

2
√
2
,

lim
y→−∞

|D0
1(µ)|

|D0
0(µ)|

=
3

2
√
2

(3.2.55)

and

inf

{
|D0

0(µ)| : µa = x+ iy, x =

(
2k +

2

3

)
π, y ∈ R, k ∈ N

}
=: mCL

> 0.

(3.2.56)

Limits in (3.2.55) imply that there is a constant mCU
> 0 such that

|D0
1(µ)|

|D0
0(µ)|

< mCU
(3.2.57)

and

|D0
0(µ)| ≥ mCL

, (3.2.58)

for all µa = x + iy, x = (2k + 2
3
)π, y ∈ R, k ∈ N. Consider µa = x + iy, where
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x ∈ R and y = (2k + 2
3
)π, k ∈ N. Then,

|D0
0(µ)| = |− (1 + i)(ϵ1 + ϵ2) + 4eiµa − (1− i)(ϵ1 + ϵ2)e

2iµa|

= | ± 2(1 + i) + 4e−(2k+ 2
3
)πeix ± 2(1− i)e−(4k+ 4

3
)πe2ix|

≥ 2
√
2− 4e−(2k+ 2

3
)π − 2

√
2e−(4k+ 4

3
)π > 2 (3.2.59)

and

|D0
1(µ)| = |i(2ϵ1 + ϵ2)− 4ieiµa + i(2ϵ1 + ϵ2)e

2iµa|

= | ± 3i− 4ie−(2k+ 2
3
)πeix ± 3ie−(4k+ 4

3
)πe2ix|

≤ 3 + 4e−(2k+ 2
3
)π + 3e−(4k+ 4

3
)π < 4. (3.2.60)

Thus,

|D0
1(µ)|

|D0
0(µ)|

< 2 (3.2.61)

for all µa = x+ iy, x ∈ R, y = (2k+ 2
3
)π, k ∈ N. Let mC := min{mCU

, 2}. Then
for µ ∈ Γk

∩
S0

|D0
1(µ)|

|D0
0(µ)|

< mC . (3.2.62)

Let τ0(µ) =
7∑

j=2
j ̸=5

Cje
(ωj−ω0)µa and τ1(µ) =

8∑
j=2
j ̸=5

Bje
(ωj−ω0)µa. For large µ ∈ S0, τ0 ∼

τ1 = o(|µ|−s), s ∈ N by (3.2.22) i.e for each ε > 0 there exists k1(ε) such that for
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k ≥ k1(ε) and for each µ ∈ Γk

∩
S0, |τ0(µ)| < ε, |τ1(µ)| < ε. Thus,

��D0
0(µ) + τ0(µ)

�� ≥ |D0
0(µ)|

(
1− ε

|D0
0(µ)|

)
. (3.2.63)

Let mB := min{2,mCL
} > 0. From (3.2.58) and (3.2.59), |D0

0(µ)| ≥ mB. We

suppose that ε < mB, then (1− ε|D0
0(µ)|−1)

−1 ≤ G :=
(
1− ε

mB

)−1

> 0. Also,

��D0
1(µ) + τ1(µ)

�� < |D0
1(µ)|+ ε

< mC |D0
0(µ)|+ ε

≤
(
1− ε

|D0
0(µ)|

)−1

mC

��D0
0(µ) + τ0(µ)

��+ ε

=

((
1− ε

|D0
0(µ)|

)−1

mC

+
ε

|D0
0(µ) + τ0(µ)|

)
��D0

0(µ) + τ0(µ)
��

<

(
GmC +

ε

|D0
0(µ) + τ0(µ)|

)
��D0

0(µ) + τ0(µ)
�� . (3.2.64)

For each µ ∈ Γk

∩
S0 and k ≥ k1(ε), |D0

0(µ) + τ0(µ)| ≥ ||D0
0(µ)|− |τ0(µ)|| >

mB − ε and (3.2.64) becomes

��D0
1(µ) + τ1(µ)

�� <
(
DmC +

ε

mB − ε

)
��D0

0(µ) + τ0(µ)
�� .

Set M :=

(
DmC + ε(mB − ε)−1

)
. Then kM ∈ N is such that ΓkM := {µ ∈ C :

max((ℜµ)2, (ℑµ)2) = M2}, and for µ ∈ Γk

∩
S0 where k ≥ k1

��D0
1(µ) + τ1(µ)

�� < M
��D0

0(µ) + τ0(µ)
�� . (3.2.65)

76



For all µ ∈ Γk

∩
S0 such that k ≥ k2 = max{k1(ε), kM}

α|µ|
��D0

0(µ) + τ0(µ)
�� >
��D0

1(µ) + τ1(µ)
�� . (3.2.66)

Hence, for all µ ∈ Γk

∩
S0 such that k ≥ k2,

α|µ|

��������
D0

0(µ) +
7∑

j=2
j ̸=5

Cje
(ωj−ω0)µa

��������
|eω0µa| >

��������
D0

1(µ) +
7∑

j=2
j ̸=5

Bje
(ωj−ω0)µa

��������
|eω0µa|

⇔
�����µα

7∑

j=0

Cje
ωjµa

����� >
�����

8∑

j=0

Bje
ωjµa

�����

⇔ |Dc(µ)| >|Db(µ)|. (3.2.67)

The square Γk is invariant under rotation by π
2
. From the symmetry in (3.2.46)

and (3.2.47), a rotation of the function D(µ) by π
2
preserves the domination of

Dc(µ) on Db(µ). Thus,

|Dc(µ)| > |Db(µ)| (3.2.68)

on Γk

∩
Sj, k ≥ k2 and j = 0, 1, 2, 3. Hence, by Rouché’s theorem we conclude

that inside Γk the number of zeros of D(µ) is the same as the number of zeros of

Dc(µ).

We consider two boundary value problems, one when ϵ1 = 1 and the other

when ϵ1 = −1 and their characteristic determinants. From (3.2.13), ϵ1 and ϵ2
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only occurs in terms where j = 0, 1, 2, 3 in (3.2.52). For ϵ1 = ±1, denote

Dc(µ) =
−i

8
µα

7∑

j=0

Cje
ωjµa =

−i

8
µα (ϵ1A(µ) + B(µ)) (3.2.69)

where

A(µ) =
3∑

j=0

Cje
ωjµa

=− 2(1− i)(e(1+i)µa − e−(1+i)µa)

− 2(1 + i)(e(1−i)µa − e−(1−i)µa)

=− 4i ((1− i) sin(1 + i)µa+ (1 + i) sin(1− i)µa)

=− 8(sinµa cos iµa− i sin iµa cosµa), (3.2.70)

and

B(µ) =
7∑

j=4

Cje
ωjµa

= 4(eµa − e−µa − i(eiµa − e−iµa))

= 8(sinµa− i sin iµa). (3.2.71)

Let D1(µ) and D−1(µ) be the characteristic determinants when ϵ1 = 1 and ϵ1 =

−1, respectively. By Rouché’s theorem the number of zeros of D1(µ) and D−1(µ)

inside Γk, k ≥ k2, is the same as the number of zeros of −i
8
µα (A(µ) + B(µ)) and

− i
8
µα (−A(µ) + B(µ)), respectively, because the estimate (3.2.68) holds. We now
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want to count the number zeros of

A(µ) + B(µ) = sinµa(1− coshµa) + sinhµa(1− cosµa)

= 2 sin
µa

2

(
cos

µa

2
(1− coshµa) + sinhµa sin

µa

2

)

= 4 sin
µa

2
sinh

µa

2

(
cosh

µa

2
sin

µa

2
− sinh

µa

2
cos

µa

2

)
(3.2.72)

and

−A(µ) + B(µ) = sinµa(1 + coshµa) + sinhµa(1 + cosµa)

= 4 cos
µa

2
cosh

µa

2

(
cosh

µa

2
sin

µa

2
+ sinh

µa

2
cos

µa

2

)
(3.2.73)

inside Γk, k ≥ k2. The location of the zeros of the factors cosh µa
2
sin µa

2
−

sinh µa
2
cos µa

2
and cosh µa

2
sin µa

2
+sinh µa

2
cos µa

2
in (3.2.72) and (3.2.73) is given in

[10, Lemma 3.1, Case 3] and [10, Lemma 3.1, Case 5], respectively. We quote the

two cases of the lemma below.

Lemma 3.2.3. Case 3. Let ϕ0(µ) = 1
µ
(coshµa sinµa − sinhµa cosµa). The

function ϕ0 has a zero of multiplicity 2 at 0, exactly one simple zero in each

interval ((m− 1
2
)π
a
, (m+ 1

2
)π
a
) for positive integer m with asymptotics

eµm = (4m− 3)
π

4a
+ o(1), m = 1, 2, . . . ,

and simple zeros at −eµm = eµ−m, ieµm, −ieµk, for m = 1, 2, . . . , and no other zeros.

Case 5. Let ϕ0(µ) = µ(coshµa sinµa+sinhµa cosµa). The function ϕ0 has a zero

of multiplicity 2 at 0, exactly one simple zero in each interval ((m− 1
2
)π
a
, (m+ 1

2
)π
a
)
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for positive integer m with asymptotics

eµm = (4m− 1)
π

4a
+ o(1), m = 1, 2, . . . ,

and simple zeros at −eµm = eµ−m, ieµm, −ieµm, for m = 1, 2, . . . , and no other zeros.

Let a in the Lemma above be replaced by a
2
. The zeros of (3.2.72) from sin µa

2
are

at µ = 2nπ
a
and those from sinh µa

2
are at µ = 2niπ

a
, where n is an integer, which

implies that the number of zeros from sin µa
2
and sinh µa

2
is 2k+1 each, inside Γk,

k ≥ k2. Lemma 3.2.3 gives asymptotics of 1
µ
(cosh µa

2
sin µa

2
− sinh µa

2
cos µa

2
) which

coincide with the asymptotics of Proposition 3.2.2 when ϵ1 = 1. Applying the

statement of Lemma 3.2.3 to the factor cosh µa
2
sin µa

2
− sinh µa

2
cos µa

2
, means that

it contributes 4(k + 1) nonzero zeros on the 4 axes inside Γk, k ≥ k2, a zero at 0

of multiplicity 3 and no other zeros. The zeros of − i
8
µα(A(µ) +B(µ)) then total

to 8k + 10 inside Γk, k ≥ k2. Similarly, the zeros of (3.2.73) from cos µa
2

are at

µ = (2n+1)π
a
and those from cosh µa

2
are at µ = (2n+1)iπ

a
, where n is an integer

and there is 2k zeros from each of these two factors inside Γk, k ≥ k2. The factor

µ(coshµa sinµa+sinhµa cosµa), according to Lemma 3.2.3, has 4k nonzero zeros

and the zero at 0 has multiplicity 2 giving − i
8
µα(−A(µ)+B(µ)) a total of 8k+2

zeros inside Γk, k ≥ k2. Denote the number of zeros of − i
8
µα(A(µ) + B(µ)) and

− i
8
µα(−A(µ)+B(µ)) inside Γk, k ≥ k2 as #+Γk and #−Γk, respectively. As it has

already been shown in (3.2.68), the number of zeros of D1(µ) and D−1(µ) inside

Γk, k ≥ k2, is #+Γk and #−Γk. Consider the square Γk+1. Then the number of

zeros of D1(µ) and D−1(µ) inside Γk+1, k ≥ k2, is #+Γk+1 and #−Γk+1 which is

8(k + 1) + 10 and 8(k + 1) + 2. Thus, inside the annulus, Γk+1 − Γk, D1(µ) and

D−1(µ) have 8 zeros each, as their only zeros. Proposition 3.2.2 posits that for

g = 0, there exists a positive integer k0 such that zeros of D(µ) are as given in
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(3.3.1) and (3.3.2). If we choose k0 such that the index k of Γk is larger than k0,

then the number of zeros given by (3.3.1) and (3.3.2) is 8(k − k0) each, missing

8k0 zeros of D1(µ) and D−1(µ) inside Γk, k ≥ k2.

Theorem 3.2.4. For g = 0 the zeros of D(µ) are





µj,+
k,1 = ij(4k − 3) π

2a
+ o(1),

µ+
l,2 = 2l π

a
+ o(1),

µ+
l,3 = i2l π

a
+ o(1)

(3.2.74)

when ϵ1 = ϵ2 = 1, and





µj,−
m,1 = ij(4m− 1) π

2a
+ o(1),

µj,−
p,2 = ij(2p− 1)π

a
+ o(1),

µ−
1 = −π

2a
+ o(1)

µ−
2 = −π

a
+ o(1)

(3.2.75)

when ϵ1 = ϵ2 = −1, k ∈ N ∪ {0}, l ∈ Z, m, p ∈ N and j = 0, 1, 2, 3.

3.3 Asymptotic expansions of eigenvalues when g ̸= 0

It is easy to show that (3.2.1)–(3.2.5) is Birkhoff regular. Solutions of Birkhoff

regular problems can be written as a series of the eigenvalue parameter and dif-

ferentiable functions on [0, a] and Birkhoff regular problems have an estimate for

the Green’s function. In this section we find the first few leading terms of the

asymptotic expansion of the eigenvalues. We will use the results of [5, Chapter

VIII] for asymptotic fundamental systems of differential equations of the form
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(3.2.1).

For the case g = 0 we already know the asymptotic distribution of the eigen-

values, see Theorem 3.2.4. Denote the corresponding characteristic function D

by D0. Due to the Birkhoff regularity, g only influences lower order terms in

D, and therefore, it follows from the estimates in [5, Appendix A.2] that, away

from small disks around the zeros of D0, |D(λ) − D0(λ)| < |D0(λ)| if |λ| is suf-
ficiently large. The function D(λ) is not analytic, but this estimate extends to

the analytic equivalents with, e. g., a fundamental system yj, j = 1, . . . , 4, with

y
(m)
j (0) = δj,m+1 for m = 0, . . . , 3, since these fundamental systems for general g

and g = 0 are asymptotically close. Hence, applying Rouché’s theorem both to

large circles centered at zero avoiding the small disks and to the boundaries of the

small discs which are sufficiently far away from 0, it follows that the eigenvalue

problem for general g have the same asymptotic distribution as for g = 0. Hence,

Theorem 3.2.4 leads to

Theorem 3.3.1. For g ∈ C1[0, a], the zeros of D(µ) are





µj,+
k,1 = ij(4k − 3) π

2a
+ o(1),

µ+
l,2 = 2l π

a
+ o(1),

µ+
l,3 = i2l π

a
+ o(1)

(3.3.1)
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when ϵ1 = ϵ2 = 1, and





µj,−
m,1 = ij(4m− 1) π

2a
+ o(1),

µj,−
p,2 = ij(2p− 1)π

a
+ o(1),

µ−
1 = −π

2a
+ o(1)

µ−
2 = −π

a
+ o(1)

(3.3.2)

when ϵ1 = ϵ2 = −1, k ∈ N ∪ {0}, l ∈ Z, m, p ∈ N and j = 0, 1, 2, 3.

Let λ = µ2. Then, since the coefficient of y(3) in (3.2.1) is zero, [5, (8.2.3)]

immediately gives φ0(x) = 1. It now follows that the characteristic function

Dg(µ) of (3.2.1)–(3.2.5) is the determinant of the associated characteristic matrix

given by

Mg(µ) =W (0)(µ)Y (0, µ) +W (1)(µ)Y (a, µ)

and

Mg(µ) =




δ1,0(0, µ)− ϵ1δ1,0(a, µ)e
µa δ2,0(0, µ)− ϵ1δ2,0(a, µ)e

iµa

δ1,1(0, µ) δ2,1(0, µ)

δ1,3(0, µ)− ϵ2δ1,3(a, µ)e
µa δ2,3(0, µ)− ϵ2δ2,3(a, µ)e

iµa

[δ1,2(a, µ) + iαµ2δ1,1(a, µ)]e
µa [δ2,2(a, µ) + iαµ2δ2,1(a, µ)]e

iµa

δ3,0(0, µ)− ϵ1δ3,0(a, µ)e
−µa δ4,0(0, µ)− ϵ1δ4,0(a, µ)e

−iµa

δ3,1(0, µ) δ4,1(0, µ)

δ3,3(0, µ)− ϵ2δ3,3(a, µ)e
−µa δ4,3(0, µ)− ϵ2δ4,3(a, µ)e

−iµa

[δ3,2(a, µ) + iαµ2δ3,1(a, µ)]e
−µa [δ4,2(a, µ) + iαµ2δ4,1(a, µ)]e

−iµa




,
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where Y (x, µ) = (η
(q−1)
j (x, µ))4q,j=1 is the fundamental matrix associated with the

fundamental system {η1, η2, η3, η4} and η
(q−1)
j (x, µ) are defined in (1.2.43).

The characteristic determinant is

Dg(µ) =det(Mg(µ))

=
8∑

j=0

ψje
ωjµa, (3.3.3)

where ωj are as in (3.2.15). For large µ in the sector arg µ ∈ [− π
12
, 5π
12
],

Dg(µ)e
−ω0µa =ψ0 + ψ1e

2iµa + ψ5e
iµa +

8∑

j=2
j ̸=5

ψje
(ωj−ω0)µa

=ψ0,2 + iαµ2ψ0,1 + (ψ1,2 + iαµ2ψ1,1)e
2iµa

+ (ψ5,2 + iαµ2ψ5,1)e
iµa + o(µ1−s), s ∈ N, (3.3.4)

where

ψ0,l =− ϵ1δ1,0(a, µ)δ2,1(0, µ)δ3,3(0, µ)δ4,l(a, µ)

+ ϵ1δ1,0(a, µ)δ3,1(0, µ)δ2,3(0, µ)δ4,l(a, µ)

− ϵ2δ2,0(0, µ)δ3,1(0, µ)δ1,3(a, µ)δ4,l(a, µ)

+ ϵ2δ2,0(0, µ)δ3,1(0, µ)δ4,3(a, µ)δ1,l(a, µ)

+ ϵ2δ3,0(0, µ)δ2,1(0, µ)δ1,3(a, µ)δ4,l(a, µ)

− ϵ2δ3,0(0, µ)δ2,1(0, µ)δ4,3(a, µ)δ1,l(a, µ)

+ ϵ1δ4,0(a, µ)δ2,1(0, µ)δ3,3(0, µ)δ1,l(a, µ)

− ϵ1δ4,0(a, µ)δ3,1(0, µ)δ2,3(0, µ)δ1,l(a, µ),
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ψ1,l =− ϵ1δ1,0(a, µ)δ3,1(0, µ)δ4,3(0, µ)δ2,l(a, µ)

+ ϵ1δ1,0(a, µ)δ4,1(0, µ)δ3,3(0, µ)δ2,l(a, µ)

+ ϵ1δ2,0(a, µ)δ3,1(0, µ)δ4,3(0, µ)δ1,l(a, µ)

− ϵ1δ2,0(a, µ)δ4,1(0, µ)δ3,3(0, µ)δ1,l(a, µ)

− ϵ2δ3,0(0, µ)δ4,1(0, µ)δ1,3(a, µ)δ2,l(a, µ)

+ ϵ2δ3,0(0, µ)δ4,1(0, µ)δ2,3(a, µ)δ1,l(a, µ)

+ ϵ2δ4,0(0, µ)δ3,1(0, µ)δ1,3(a, µ)δ2,l(a, µ)

− ϵ2δ4,0(0, µ)δ3,1(0, µ)δ2,3(a, µ))δ1,l(a, µ),

ψ5,l =− ϵ1ϵ2δ1,0(a, µ)δ3,1(0, µ)δ4,l(a, µ)δ2,3(a, µ)

+ ϵ1ϵ2δ1,0(a, µ)δ3,1(0, µ)δ2,l(a, µ)δ4,3(a, µ)

+ ϵ1ϵ2δ2,0(a, µ)δ3,1(0, µ)δ4,l(a, µ)δ1,3(a, µ)

− ϵ1ϵ2δ2,0(a, µ)δ3,1(0, µ)δ1,l(a, µ)δ4,3(a, µ)

− δ2,0(0, µ)δ3,1(0, µ)δ1,l(a, µ)δ4,3(0, µ)

+ δ2,0(0, µ)δ4,1(0, µ)δ1,l(a, µ)δ3,3(0, µ)

+ δ3,0(0, µ)δ2,1(0, µ)δ1,l(a, µ)δ4,3(0, µ)

− δ3,0(0, µ)δ4,1(0, µ)δ1,l(a, µ)δ2,3(0, µ)

− δ4,0(0, µ)δ2,1(0, µ)δ1,l(a, µ)δ3,3(0, µ)

+ δ4,0(0, µ)δ3,1(0, µ)δ1,l(a, µ)δ2,3(0, µ)

− ϵ1ϵ2δ4,0(a, µ)δ3,1(0, µ)δ2,l(a, µ)δ1,3(a, µ)

+ ϵ1ϵ2δ4,0(a, µ)δ3,1(0, µ)δ1,l(a, µ)δ2,3(a, µ)
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and l = 1, 2.

The coefficient of y[3] in (3.2.1) is zero and application of [5, (8.2.3)] to (3.2.1)

gives φ0(x) = 1. To determine φ1, n0 = 0 and l = 4 according to [5, Theorem

8.1.2]. From [5, (8.2.45)]

φr = φ1,r = εT1 V Q[r]ε1 (3.3.5)

where εν is the νth unit vector in C4, V = (i(j−1)(k−1))4j,k=1, and Q[r] are 4 × 4

matrices given by [5, (8.2.28)], [5, (8.2.33)] and [5, (8.2.34)], i.e, Q[0] = I4,

Ω4Q
[1] −Q[1]Ω4 = Q[0]′ = 0, (3.3.6)

Ω4Q
[2] −Q[2]Ω4 = Q[1]′ − 1

4
gΩ4εε

TΩ−2
4 Q[0] = 0, (3.3.7)

0 = εTν

(
Q[2]′ +

1

4

2∑

j=1

k3−Ω4εε
TΩ−1−j

4 Q[2−j]

)
εν , (ν = 1, 2, 3, 4), (3.3.8)

where k2 = −g, k1 = −g′, Ω4 = diag(1, i,−1,−i) and εT = (1, 1, 1, 1). A lengthy

calculation gives

φ1(x) =
1

4

∫ x

0

g(t)dt. (3.3.9)

The highest power of µ in (3.3.4) is 7. To find the value of τk,1 we equate coefficeints
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but first we find highest powers of µ of the terms of (3.3.4),

ϵ1ψ0,2 = µ6(−6i) +O(µ5)

ϵ1ψ0,1 = µ5(4− 4i) + µ48φ1(a) +O(µ3)

ϵ1ψ1,2 = µ6(−6i) +O(µ5)

ϵ1ψ1,1 = µ5(−4− 4i) + µ4(−8)φ1(a) +O(µ3)

ψ5,2 = µ68i+O(µ5)

ψ5,1 = µ58i+ µ48iφ1(a) +O(µ3). (3.3.10)

We now want to find the asymptotics

µ0,+
k,1 = k

2π

a
− 3π

2a
+ τ 0,+k , τ 0,+k =

n∑

j=1

τ 0,+k,j k
−j + o(k−n) k = 0, 1, . . . ,

µ+
l,2 = l

2π

a
+ τ+l , τ+l =

n∑

j=1

τ+l,jl
−j + o(l−n) l = 0, 1, . . . ,

µ0,−
m,1 = m

2π

a
− π

2a
+ τ 0,−m , τ 0,−m =

n∑

j=1

τ 0,−m,jm
−j + o(m−n) m = 1, 2, . . . ,

µ0,−
p,2 = p

2π

a
− π

a
+ τ 0,−,2

p , τ 0,−,2
p =

n∑

j=1

τ 0,−,2
p,j p−j + o(p−n) p = 1, 2, . . . .

(3.3.11)

87



We note that

1

µ0,+
k,1

=

(
k
2π

a
− 3π

2a
+ τ 0,+k

)−1

=
a

2πk

(
1 +

3

4k
+ o(k−1)

)
,

1

µ+
l,2

=

(
l
2π

a
+ τ+l

)−1

=
a

2πl

(
1 + o(l−1)

)
,

1

µ0,−
m,1

=

(
m
2π

a
− π

2a
+ τ 0,−m

)−1

=
a

2πm

(
1 +

1

4m
+ o(m−1)

)
,

1

µ0,−
p,2

=

(
p
2π

a
− π

a
+ τ 0,−,2

p

)−1

=
a

2πp

(
1 +

1

2p
+ o(p−1)

)
, (3.3.12)
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eiµ
0,+
k,1 a = ei(k

2π
a
− 3π

2a
+τ0,+k,1 k−1+o(k−1))a

= ieiao(k
−1)

∞∑

j=0

1

j!

(
iaτ 0,+k,1

k

)j

= i
(
1 + o(k−1)

)(
1 +

ia

k
τ 0,+k,1 +O(k−2)

)

= i− a

k
τ 0,+k,1 + o(k−1),

eiµ
+
l,2a = ei(l

2π
a
+τ+l,1l

−1+o(l−1))a

= 1 +
ia

l
τ+l,1 + o(l−1),

eiµ
0,−
m,1a = ei(m

2π
a
− π

2a
+τ0,−m,1m

−1+o(m−1))a

= −i+
a

m
τ 0,−m,1 + o(m−1),

eiµ
0,−
p,2 a = ei(p

2π
a
−π

a
+τ0,−,2

p,1 p−1+o(p−1))a

= −1− ia

p
τ 0,−,2
p,1 + o(p−1) (3.3.13)

and

e2iµ
0,+
k,1 a = −1− 2ia

k
τ 0,+k,1 + o(k−1),

e2iµ
+
l,2a = 1 +

2ia

l
τ+l,1 + o(l−1),

e2iµ
0,−
m,1a = −1− 2ia

m
τ 0,−m,1 + o(m−1),

e2iµ
0,−
p,2 a = 1 +

2ia

p
τ 0,−,2
p,1 + o(p−1). (3.3.14)

For large µ0,+
k,1 in the sector arg µ ∈ [− π

12
, 5π
12
],
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Dg(µ
0,+
k,1 )e

−ω0µ
0,+
k,1 a

(
µ0,+
k,1

)7 = ϵ1
−6i

µ0,+
k,1

+ iαϵ1

(
4− 4i+

8φ1(a)

µ0,+
k,1

)

+

(
ϵ1
−6i

µ0,+
k,1

+ iαϵ1

(
−4− 4i+

−8

µ0,+
k,1

φ1(a)

))(
−1− 2ia

k
τ 0,+k,1

)

+

(
8i

µ0,+
k,1

+ iα

(
8i+

8i

µ0,+
k,1

φ1(a)

))(
i− a

k
τ 0,+k,1

)
+ o(k−1)

= ϵ1
−6ia

2πk
+ iαϵ1

(
4− 4i+

8a

2πk
φ1(a)

)

+

(
ϵ1
−6ia

2πk
+ iαϵ1

(
−4− 4i+

−8a

2πk
φ1(a)

))(
−1− 2ia

k
τ 0,+k,1

)

+

(
8ia

2πk
+ iα

(
8i+

8ia

2πk
φ1(a)

))(
i− a

k
τ 0,+k,1

)
+ o(k−1)

(3.3.15)

and Dg(µ
0,+
k,1 ) in (3.3.15) is 0, meaning that the coefficient of k−1 must be 0.

Equating the coefficient of k−1 to 0, we get the value of τ 0,+k,1 . In a similar manner,

we calculate all the other values of the asymptotic terms listed below as

τ 0,+k,1 =
1

2π
(φ1(a) +

i

α
),

τ+l,1 =
1

2π

−iφ1(a)− 1
2α

2 + i
,

τ 0,−m,1 =
1

2π
φ1(a)(−2− i

α
),

τ 0,−,2
p,1 =

1

2π

iφ1(a)− 1
2α

2− i
. (3.3.16)
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Theorem 3.3.2. For g ∈ C1[0, a] and α > 0 the zeros of D(µ) are





µj,+
k,1 = ij

(
(4k − 3) π

2a
+ k−1τ 0,+k,1

)
+ o(k−1),

µ+
l,2 = 2l π

a
+ l−1τ+l,1 + o(l−1),

µ+
l,3 = i

(
2l π

a
+ l−1τ+l,1

)
+ o(l−1),

(3.3.17)

when ϵ1 = ϵ2 = 1, and





µj,−
m,1 = ij

(
(4m− 1) π

2a
+m−1τ 0,−m,1

)
+ o(m−1),

µj,−
p,2 = ij

(
(2p− 1)π

a
+ p−1τ 0,−,2

p,1

)
+ o(p−1),

µ−
1 = −π

2a
,

µ−
2 = −π

a
,

(3.3.18)

when ϵ1 = ϵ2 = −1, k ∈ N∪{0}, l ∈ Z, m, p ∈ N, j = 0, 1, 2, 3 and τ 0,+k,1 , τ
+
l,1, τ

0,−
m,1, τ

0,−,2
p,1

are as in (3.3.16).
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A
Appendix

Below are sets of Matlab code which where used to find some of the boundary

conditions specified in the text. Further manual work was carried out on the

output to select desired boundary conditions.

findingSA.m

1 % This i s the main program .

2 % This program use s f u n c t i o n s : getU1_ce l lE lements (U2 ,V,

numOnes ) and

3 % getSA (U1 ,U2 ,V, J ) .

4 c l e a r a l l ;

5 c l c ;
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6

7 % I n i t i a l i z a t i o n

8 U1_cell_SA = c e l l ( 2 , 1 ) ;

9 j = 1 ;

10

11 U2 = [ 0 0 0 0 1 0 0 0 ] ;

12 V = [1 0 0 0 0 0 0 0 ] ;

13 J = ze r o s ( 8 ) ;

14 indexJ1 = [ 4 11 18 2 5 ] ;

15 indexJ2 = [40 47 54 6 1 ] ;

16

17 J ( indexJ1 ) = (−1) . ^ ( indexJ1 + 1) ;

18 J ( indexJ2 ) = (−1) . ^ ( indexJ2 ) ;

19

20 U1_ce l lF ina l = getU1_ce l lElements (U2 ,V, 6 ) ;

21

22 % No need to cont inue i f t h e r e are no genera ted a r r ay s

23 i f i sempty ( U1_ce l lF ina l {1})

24 r e tu rn ;

25 end

26

27 f o r i = 1 : s i z e ( U1_ce l lF ina l , 1 ) ;

28 [ SA1 , SA2 , SA3 ] = getSA ( U1_ce l lF ina l { i } ,U2 ,V, J ) ;

29 i f sum(sum(SA1) ) == 0 && sum(sum(SA2) ) == 0 && sum(

sum(SA3) ) == 0
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30 U1_cell_SA{ j } = U1_ce l lF ina l { i } ;

31 j = j + 1 ;

32 d i sp ( U1_ce l lF ina l { i }) ;

33 e l s e

34 d i s p l a y ( ’No such U1 found ! ! ! ’ ) ;

35 end

36 end

getcellElements.m

1 % This f un c t i on i s used to gene ra t e row ve c t o r s (

c on t a i n i ng va lu e s o f 1 ’ s , −1’ s and 0 ’ s us ing some

c r i t e r i a ) .

2 % The c r i t e r i a i s that : Given 3 input arrays , A, U2 , V,

the genera ted row ve c t o r s must not have a va lue o f 1

3 % or −1 in a column i f a va lue o f 1 i s conta ined in the

co r r e spond ing columns o f e i t h e r A, U2 or V.

4 % numRowOnes r e p r e s e n t s the number o f +/− 1 ’ s to be

p laced in the genera ted row ve c t o r s .

5 % U1_cel l i s an ar ray that s t o r e s the genera ted row

ve c t o r s .

6

7 f un c t i on U1_cel l = ge t_ce l lE l ement s (A,U2 ,V, numRowOnes)

8

9 % I n i t i a l i z a t i o n .

10 U1_cel l = c e l l ( 2 , 1 ) ;

11 numColumns = s i z e (U2 , 2 ) ;

94



12 U1_rowVector = z e r o s (1 , numColumns ) ;

13 l = 0 ;

14 k = 1 ;

15 i = 1 ;

16 val_1 = 1 ;

17 numOnes = 0 ;

18 i f numRowOnes > 0

19 % I f numRowOnes = 2 , the next wh i l e loop moves the

f i r s t 1/−1 a long the row vec t o r .

20 whi l e i < (numColumns + 1)

21 j = i ;

22 % The next wh i l e loop i s r e s p o n s i b l e f o r moving

the second 1/−1 a long the row vec t o r .

23 whi l e j < (numColumns + 1)

24 % Checking the c r i t e r i a

25 i f numOnes < numRowOnes && sum(A( 1 : end , j ) ) ==

0 && sum(U2 ( 1 : end , j ) ) == 0 && sum(V( 1 : end

, j ) ) == 0

26 i f val_1 == 1

27 U1_rowVector ( j ) = 1 ;

28 e l s e i f val_1 == −1
29 U1_rowVector ( j ) = −1;

30 end

31 numOnes = numOnes + 1 ;

32 i f l == 0
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33 i = j ;

34 l = 1 ;

35 end

36 end

37 % The f o l l ow i n g i f s tatement he lp s to move

the second 1/−1 a long the row vec t o r .

38 i f numOnes == numRowOnes

39 U1_cel l ( k ) = {U1_rowVector } ;

40 i f val_1 == 1

41 U1_rowVector ( j ) = −1;

42 k = k + 1 ;

43 e l s e i f val_1 == −1
44 U1_rowVector ( j ) = 1 ;

45 end

46 U1_cel l ( k ) = {U1_rowVector } ;

47 U1_rowVector ( j ) = 0 ;

48 numOnes = numOnes − 1 ;

49 k = k + 1 ;

50 end

51 j = j + 1 ;

52 end

53 numOnes = 0 ;

54 % I f numRowOnes = 1 , need to break from the oute r

loop , s i n c e no othe r 1 to move .

55 i f numRowOnes == 1
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56 break ;

57 end

58 i f val_1 == 1

59 val_1 = −1;

60 e l s e i f val_1 == −1
61 val_1 = 1 ;

62 U1_rowVector ( i ) = 0 ; % r e s e t t i n g the −1 to 0 ,

f o r next pat t e rn .

63 i = i + 1 ;

64 end

65 end

66 e l s e

67 d i s p l a y ( ’numOnes va lue i s zero , noth ing to do ! ’ ) ;

68 end

getSA.m

1 % This f un c t i on r e t u rn s a r r ay s SA1 , SA2 and SA3 by us ing

input a r r ay s : U1 ,U2 , V and J .

2 f un c t i on [ SA1 , SA2 , SA3 ] = getSA (U1 ,U2 ,V, J )

3 SA1 = (U1*J*U1 ’ ) ;

4 SA2=(U1*J*U2 ’ ) ;

5 SA3=(U1*J*V’ ) ;

getU1cellElements.m

1 % This f un c t i on i s used to gene ra t e U1 a r r ay s by us ing

row ve c t o r s genera ted from
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2 % ’ ge t_ce l lE l ement s (A,U2 ,V, numOnes ) ’ f un c t i on .

3 % U2 and V are input arrays , which are passed to ’

getU1_ce l lElements (A,U2 ,V, numOnes ) ’ f un c t i on .

4 % numOnes i s the number o f 1 ’ s to be used in the

genera ted arrays , 1 < numOnes < 7 .

5 % U1_ce l lF ina l i s used to s t o r e the genera ted a r r ay s .

6

7 f un c t i on U1_ce l lF ina l = getU1_ce l lElements (U2 ,V, numOnes )

8

9 % I n i t i a l i z a t i o n .

10 U1_ce l lF ina l = c e l l ( 2 , 1 ) ;

11 A = ze r o s (1 , s i z e (U2 , 2 ) ) ;

12 % This s t o r e s the number o f rows to be genera ted .

13 U1_numRows = 4 − s i z e (U2 , 1 ) ;

14 i = 1 ;

15 init_numOnes = numOnes ;

16

17 i f numOnes < 2 | | numOnes > 6

18 d i s p l a y ( ’The min . number o f numOnes = 2 &’ ) ;

19 d i s p l a y ( ’The max . number o f numOnes = 6 ’ ) ;

20 d i s p l a y ( ’ P l ea s e en t e r in that range ! ’ ) ;

21 r e tu rn ;

22 end

23

24 i f numOnes > (U1_numRows * 2)
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25 d i s p l a y ( ’ Only a maximun o f 2 ones are a l l owed per row

’ ) ;

26 r e tu rn ;

27 end

28

29 i f numOnes > U1_numRows

30 numOnes = 2 ;

31 e l s e i f numOnes == U1_numRows

32 numOnes = 1 ;

33 e l s e

34 d i s p l a y ( ’numOnes < U1_numRows ( number o f ones i s

l e s s than number o f rows ’ ) ;

35 r e tu rn ;

36 end

37 end

38

39 i f i <= U1_numRows

40 % Gett ing the f i r s t genera ted row ve c t o r s ( f i r s t row

in the genera ted U1 array ) .

41 U1_cell_1 = get_ce l lE l ement s (A,U2 ,V, numOnes ) ;

42 U1_ce l lF ina l = U1_cell_1 ;

43

44 % I f th e r e are more than one rows to be genera ted .

45 whi l e i < U1_numRows

46 % Remaining 1 ’ s f o r row ( i +1) .
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47 numOnes = init_numOnes − numOnes ;

48 % Remaining rows thus f a r .

49 left_U1_numRows = U1_numRows − i ;

50 init_numOnes = numOnes ;

51 i f numOnes > left_U1_numRows

52 numOnes = 2 ;

53 e l s e i f numOnes == left_U1_numRows

54 numOnes = 1 ;

55 end

56 end

57 l = 1 ;

58 j = 1 ;

59 whi l e j <= s i z e ( U1_cell_1 , 1 )

60 % Generat ing row ve c t o r s f o r each U1_cell_1

e l ements .

61 U1_cell_2 = get_ce l lE l ement s ( U1_cell_1{ j } ,U2 ,

V, numOnes ) ;

62 k = 1 ;

63 whi l e k <= s i z e ( U1_cell_2 , 1 )

64 i f ~( isempty ( U1_cell_2{k}) )

65 % Appending U1_cell_1 element with

i t s gene ra ted row ve c t o r s .

66 U1_ce l lF ina l { l } = [ U1_cell_1{ j } ;

U1_cell_2{k } ] ;

67 l = l + 1 ;
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68 k = k + 1 ;

69 e l s e

70 break ;

71 end

72 end

73 j = j + 1 ;

74 end

75 U1_cell_1 = U1_ce l lF ina l ;

76 i = i + 1 ;

77 end

78 e l s e

79 d i s p l a y ( ’No rows to work with ! ! ! ’ ) ;

80 r e tu rn ;

81 end
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