List of symbols

A	Latitude (degrees)
A	Guelph Permeameter reservoir constant (cm ²)
A	Surface area of inundated floodplain (m ² or km ²)
A	Catchment area (km²)
$\sum A_t$	Cumulative surface inundation area (km²)
В	Environmental base flow release
C	Reservoir area-storage relationship
C	Dimensionless shape factor for Guelph Permeameter
C_G	Specific heat of soil (kJ/kg/°C)
C_{Gd}	Specific heat of dry soil particles (kJ/kg/°C)
C_w	Specific heat of water
D	Guelph Permeameter diameter of hole
D	Draft
Δ	Slope of the saturated vapour pressure vs. temperature curve at air
	temperature (kPa.°C ⁻¹)
ΔT	Average measured rise in temperature over depth z_G
e_a	Dalton vapour pressure of the air at the surface
e_a	Actual vapour pressure at air temperature (kPa)
e_d	Saturated vapour pressure at dew point
e_s	Mean saturation vapour pressure at air temperature (kPa)
e_s^*	Dalton saturation vapour pressure at the temperature of the surface
E	Potential evapotranspiration (mm/day, cm/month or inches/month)
E	Loss to evaporation from reservoir surface
E_t^{loss}	Evaporation losses from reservoir surface expressed as a flow rate
ET_o	FAO Penman-Monteith reference evapotranspiration (mm.day ⁻¹)
γ	Psychometric constant (kPa.°C ⁻¹)
G	Soil heat flux density (MJ.m ⁻² .day ⁻¹)
h	Elevation (m)

HSensible heat flux Н Steady depth of water in augered hole for Guelph Permeameter (cm) H_c Guelph Permeameter constant depth of water in hole above bottom of hole Inflow from Nyl River (m³/s) Ι K Blaney-Criddle crop constant K_{fs} Soil field-saturated hydraulic conductivity (cm/sec) LLatent heat of vaporisation of water LGuelph Permeameter depth of water in hole Latent heat flux of evaporation L_e Daily loss due to infiltration and ponding (m³) L_t $\sum L_t$ Cumulative water loss (m³) Penman bright sunshine n N Penman sunshine 0 Outflow in the form of spill O_{\star}^{total} Total outflow from reservoir Monthly percentage of daytime hours in the year p Φ_m Soil matric Flux Potential Q Discharge Guelph Permeameter steady-state flow rate of water into soil Q_c Bulk density of soil (kg.m⁻²) $\rho_{\scriptscriptstyle G}$ Albedo r R Mean daily temperature range (°C) R Steady state rate of fall of water in Guelph Permeameter reservoir (cm/minute) R Radius of Guelph Permeameter well (cm) \overline{R} Steady state rate of fall of water in Guelph Permeameter reservoir (cm/s) Difference between the mean temperatures of the hottest and R_{ann} coldest months (°C) Net radiation at the crop surface (MJ.m⁻².day⁻¹) R_n

Net radiation flux for the surface R_n R_{s} Monthly mean solar radiation at the top of the atmosphere (MJ/m²/day or mm/day) Soil sorptivity S S Reservoir storage Reservoir storage capacity S_{cap} Stefan-Boltzman constant (mm.Hg/d) σ Temperature (°F) Time (days) TMean daily temperature (°C) Mean daily air temperature at 2 m height (°C) T T_a Absolute mean daily air temperature (K) T_d Mean dew point temperature (°C) Linacre sea level equivalent temperature (°C) T_m T_m Hargreaves mean daily temperature (°C) Maximum daily temperature (°C) T_{max} T_{min} Minimum daily temperature (°C) Blaney-Criddle monthly consumptive use (inches) и Dalton mean wind speed Mean wind velocity at 2 metres above ground level u_2 Gravimetric water content of soil w Guelph Permeameter reservoir constant (cm²) XRiver stage yDepth of soil heated (m) Z_G