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ABSTRACT 

Background: In sub-Saharan Africa, sepsis is the third most common cause of deaths during 

the neonatal period. Both maternal human immunodeficiency virus (HIV) infection and 

vitamin D deficiency (VDD) have been identified as risk factors for infection in children. The 

relationship of these risk factors, especially VDD among neonates in developing countries is 

not well documented. The “gold” standard to diagnose sepsis is blood culture; however, it has 

low sensitivity. Therefore there is a need for tests with improved sensitivity, to improve 

estimates of the incidence and aetiology of neonatal sepsis. This could enable prompt and 

targeted use of antibiotics to reduce both mortality and mitigate against emergence of 

antimicrobial resistance. The aims of this study were to determine the epidemiology of early-

onset sepsis (EOS) and community acquired sepsis (CAS) using standard blood culture. 

Further, we evaluated the role of molecular diagnostic using  polymerase chain reaction 

(PCR) based technology (Taqman array card), and evaluated  role of  maternal HIV infection 

and vitamin D status as risk factors for  EOS and CAS in neonates born in Soweto, South 

Africa.  

Methods and Procedures:   Neonates born and/ or admitted with a diagnosis of possible 

serious bacterial infection (pSBI) with no previous hospital admission were prospectively 

enrolled into the study. They were grouped into EOS (onset of sepsis before 3 days of life) 

and CAS (onset of sepsis between 3-27 days of life). A subgroup of patients who met a 

predetermined definition of clinical or culture confirmed neonatal sepsis (protocol-defined 

sepsis), had blood and naso/oro-pharyngeal (NPOP) swabs tested using a PCR- based 

technique, Taqman array card (TAC) to identify possible causative pathogens.  Healthy 

neonates were enrolled as controls, matched for age-group of cases with sepsis. In a separate 

cohort, mother-newborn dyads were enrolled soon after birth, and had blood taken to measure 

serum 25-hydroxyvitamin D [25(OH)D]. These newborns were grouped as being healthy or 

ill  with sepsis. Sepsis in this cohort was defined as presence of clinical signs together with 

the presence of a positive blood culture and/or high C-reactive protein or interleukin-6. For 

both cohorts, cases and controls were stratified according to HIV exposure.  

Results: There were 34,808 live births in Soweto over the study period, August 2013 to 

September 2014. A total of 3260 neonates were enrolled, 2624 (80%) and 636 (20%) with a 

diagnosis of early-onset pSBI (EO-pSBI) and community acquired pSBI (CA-pSBI) 

respectively. Blood culture positivity rate due to pathogens in neonates with EO-pSBI was 

3.7% (96/2624). The incidence (per 1000 live births) of EO-pSBI was 106 (95%CI 102-109) 
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and 3.8 (95% CI 3.2-4.6) for culture-confirmed EOS. More than two thirds of putative 

pathogens isolated from neonates with culture-confirmed EOS  (69.8%) were Gram positive 

bacteria. The common bacteria were Group B streptococcus (GBS; 35/105; 33%) , Viridans 

streptococcus (23/105; 22%), Enterococcus species (10/105; 10%) and Escherichia coli (E. 

coli; 10/105; 10%), with incidences (per 1000 live births) of 1.41 (95%CI 1.06-1.86), 0.92 

(95%CI 0.65-1.30), 0.40 (95% CI 0.20-0.61) and 0.40 (95% CI 0.20-0.61) respectively. HIV 

exposed neonates had higher incidence of sepsis than HIV unexposed for EO-pSBI (OR:1.45; 

95%CI  1.34-1.56). The overall case fatality rate was 9.0% (236/2624) for EOS. Blood culture 

positivity rate due to pathogens in neonates with CA-pSBI was 9% (55/636). The incidence  

of CA-pSBI and blood/CSF culture confirmed CAS were 33.4 (95%CI 31.6-35.4) and  3.53 

(95%CI 2.96-4.22), respectively. More than three-quarters (76.7%) of putative pathogens 

isolated from CA-pSBI were Gram positive bacteria.  Among, the culture-confirmed CAS,  

common organisms in blood were  Viridans streptococci (17/60; 28%), GBS (14/60; 23%), 

Staphylococcus aureus (12/60; 20%), and E.coli (9/60; 15%); while in CSF the common 

organisms were GBS (9/25; 36%), Staphylococcus aureus (5/25; 20%), Viridans 

streptococcus (4/25; 16%) and Enterococcus species (4/25; 16%). The overall incidence for 

common organisms in blood and/ or CSF for CAS were  0.95 (95%CI 0.67-1.33), 0.90 

(95%CI 0.63-1.27), 0.75 (95%CI 0.51-1.10) and 0.58 (95%CI 0.37-0.89) for Staphylococcus 

aureus, Viridans streptococcus, GBS and Enterococcus species  respectively. HIV exposed 

neonates had higher incidence of blood/CSF culture confirmed CAS   than HIV unexposed 

(OR:1.90;95%CI 1.32-2.74), including specifically  for Staphylococcus aureus (OR:2.71; 

95% CI 1.35-5.41), GBS (OR:4.82; 95%CI 2.13-10.9) and E.coli (OR:2.71; 95%CI 1.07-

6.82). . The case fatality rate for CAS was 1.4% (9/636).  

Among protocol-defined sepsis cases tested with TAC, bacteria or viruses were detected in 

blood in 37.1% of cases with EOS.  Although similar organisms were identified in blood of 

cases and controls, proportion of cases with positive TAC was higher than in controls (37.1% 

vs 19.5%; OR: 2.35; 95%CI 1.72-3.21).  The common organisms identified in blood of EOS 

cases using TAC were Streptococcus pneumoniae (14.2%), Ureaplasma species (9.2%), 

Pseudomonas species (8.5%) and GBS (7.0%). In pharyngeal swabs there were fewer cases 

that tested positive with TAC compared to controls (44.1% vs 53.1%; OR:0.69; 95%CI 0.59-

0.90), and the common organisms identified in cases were Ureaplasma species (19.9%), 

Klebsiella pneumoniae (11.9%) and GBS (8.5%). After applying modelling factoring positive 

blood culture, one was able to attribute aetiology to a specific pathogen for 26.7% of cases 

using blood culture and TAC, and therefore 73.3% of cases did not have an identifiable 
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aetiology from the pathogens tested in culture or TAC. Among the positive TAC results in 

blood and pharyngeal swabs the organisms that were found to be attributable to EOS were 

Ureaplasma species (5.4%, 95% CI 3.6%-5.1%) , GBS (4.8%, 95%CI 4.1%-5.8%), and 

Viridans streptococcus (4.2%, 95%CI 3.5%-5.1%). There were no differences in number of 

cases and controls with positive TAC results between HIV exposed and unexposed neonates.   

In neonates with CAS  protocol-defined sepsis cases tested with TAC, bacteria or viruses 

were detected in blood in 45.8% of cases.  Proportion of cases with positive TAC in blood 

was higher than in controls (45.8% vs 27.4%; OR: 2.24; 95%CI 1.30-3.86).  The common 

organisms identified included Streptococcus pneumoniae (15.7%), GBS (14.5%) and E. coli 

(8.3%). In pharyngeal  swabs there were no differences in numbers with positive TAC results 

between cases and controls (75.0% vs 70.1%, OR:1.28; 95%CI 0.77-2.12), and the common 

organisms identified in cases were GBS (28.0%), Klebsiella pneumoniae (24.2%) and at equal 

rates (13.6%) were E. coli, Ureaplasma species and Streptococcus pneumoniae.  Viruses were 

identified in 40% of cases in the pharyngeal swabs. There were no differences in number of 

cases and controls with positive TAC results between HIV exposed and unexposed neonates.   

Maternal and cord blood 25(OH)D levels were 54.7±30.1 and 39.0±21.3 nmol/L respectively, 

and prevalence of VDD (defined as a 25(OH)D level of <30 nmol/L) among the women and 

their newborns was 18.8% and 39.8% respectively. There were no significant differences in 

25(OH)D levels or VDD between HIV infected and uninfected pregnant women. On 

multivariate analysis VDD in neonates was not associated with EOS.        

Conclusions: There is high burden of neonatal sepsis in Soweto, including significant 

mortality. Based on blood culture, GBS is the most common pathogen causing EOS; Viridans 

streptococcus and Staphylococcus aureus the most common causes of culture-confirmed 

CAS. HIV exposure contributes significantly to a higher burden of bacterial sepsis in 

neonates. Although molecular detection using the TAC assay identified more bacteria 

organisms than from blood culture, including non-culturable organisms like Ureaplasma 

species, its use as a diagnostic tool for sepsis warrants further evaluation due to high positivity 

rates among healthy neonates for many of the targeted organisms in blood and NPOP swabs. 

Nevertheless, after correcting for positive controls, a combination of blood culture and TAC 

improved the detection of organisms in neonates with sepsis. In this study, maternal and 

newborn VDD was not associated with sepsis; however, this warrants further evaluation since 

this study had a limited number of neonates with culture confirmed disease.       
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DEFINITIONS OF SEPSIS 

1. Possible Serious Bacterial Infection (pSBI) – neonate has clinical signs suggestive  

of infection and attending physician has taken blood for culture and started on empiric 

antibiotics 

 

2. Protocol Define Sepsis- neonate has clinical signs with abnormality in any one of the 

ancillary laboratory tests and/or positive blood/ cerebrospinal fluid culture due to an 

organism considered to be a pathogen 

 

3. Culture-Confirmed Sepsis -  neonate has clinical signs with a positive blood/ 

cerebrospinal fluid culture due to an organism considered to be a pathogen 

 

4. Early-Onset Sepsis – any type of sepsis listed in 1, 2 and 3 above, diagnosed in a 

neonate at <3 days of life. 

 

5. Community-Acquired Sepsis – any type of sepsis listed in 1, 2 and 3 above, 

diagnosed in a neonate at 3-27 days of life who has not previously been ill and/ or 

admitted in hospital since birth except for the days in hospital with mother post-

delivery   
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1 INTRODUCTION 

1.1  General Introduction 

 Globally in 2013, 44% of all under -5 childhood deaths occurred during the neonatal period 

(first 28 days of life), of which approximately 20% were due to sepsis.
1
  In sub-Saharan 

Africa, neonatal sepsis is the third most common cause of deaths in the first month of life, 

after prematurity and intrapartum-related complications.
1
  Many deaths among premature 

infants might also be due to sepsis, so the current estimates of sepsis are most likely an 

underestimate. A study from Uganda reported neonatal sepsis as the leading cause of neonatal 

deaths, ahead of prematurity and asphyxia.
2
  The number of deaths due to neonatal sepsis has 

remained relatively unchanged over the past 14 years, despite a 40% reduction in under-5 

childhood mortality, emphasizing the need to focus on neonatal deaths. Reducing neonatal 

deaths due to sepsis requires an understanding of its epidemiology, including identification of 

the major risk-factors. Early diagnosis and treatment of neonatal sepsis is critical in improving 

outcomes.  Treatment requires starting empiric management promptly while awaiting 

confirmatory microbiology results.  

 

There are many factors that may contribute to the high incidence of neonatal sepsis in low-

income settings, including maternal factors, and quality of health-care at delivery and during 

the neonatal period. Maternal factors associated with sepsis include maternal illness, poor 

nutritional status, and  inadequate quality of care related to infection control at delivery. Both 

maternal human immunodeficiency virus (HIV) infection and vitamin D deficiency have been 

associated with increased incidence of neonatal sepsis.
3-6

  Possible mechanisms for the 

association of both conditions with neonatal infection relate to impaired immunity in the 

fetus. Not only does HIV infection in the fetus impair immunity, but  in-utero HIV exposure 

to viral products even in the absence of HIV-infection in the neonate causes immune 

dysregulation.
7-12

 Therefore, even if vertical transmission of HIV is prevented, a sizeable 

number of neonates who are born to HIV-infected mothers remain  at risk of immune 

dysregulation. Maternal vitamin D deficiency and HIV infection are both prevalent in 

developing countries. Therefore determining the association of  vitamin D deficiency  and 

HIV exposure on the epidemiology of neonatal sepsis is important, and might assist in 

developing strategies to reduce neonatal sepsis.  
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The incidence of neonatal sepsis is often underestimated, as most studies involve passive 

surveillance of hospitalizations. This often excludes neonates who succumb to sepsis prior to 

reaching health-care facilities. Another potential reason for underestimating the incidence of 

neonatal sepsis  relates to difficulties in diagnosing sepsis. Among very low birth weight 

(<1500g) newborns, the contribution of sepsis towards neonatal mortality in developing 

countries is often underestimated, as mortality in these neonates may  be attributed to 

complications of prematurity rather than specifically attributed to sepsis, since many of these 

patients may die without workup for sepsis because of limited resources. In settings where 

resources are available for managing VLBW or preterm infants, infections have been reported 

to be the third common cause of death in these infants.
13, 14

 Similarly, newborns might present 

with non-specific signs such as neonatal encephalopathy, which too could be caused but not 

recognized as sepsis. This is pertinent in the context of the high incidence of birth-asphyxia in 

developing countries, where newborns with neonatal encephalopathy might be misdiagnosed 

as having birth-asphyxia rather than sepsis. The odds of an early neonatal death due to 

intrapartum asphyxia in newborns exposed to maternal infection are increased compared to 

unexposed newborn highlighting the role of sepsis in these deaths.
15

 A combination of 

maternal fever and prematurity results in a 7-fold increase in risk of birth asphyxia mortality 

compared to term infants born to afebrile mothers.
16

 Among term infants who present with 

neonatal encephalopathy after birth, 25% have been reported to be having infections.
17

  

Therefore sepsis is likely the leading cause of neonatal deaths, as deaths due to sepsis might 

be inappropriately attributed to prematurity and birth asphyxia. In order to delineate the 

epidemiology of neonatal sepsis, reliable diagnostic tests are required.  

 

The current available test used as the gold standard in diagnosing sepsis is blood culture, 

which has low sensitivity (24-30%).
18, 19

 The blood culture sensitivity might be further 

reduced in newborns of mothers who received intrapartum antibiotics.
20, 21

 In countries with a 

high incidence of HIV infection, there is likely to be a higher number of pregnant women 

treated with intrapartum antibiotics because of preterm labour and non-pregnancy related 

infections associated with underlying immunosuppression in the women.
22-24

  Thus the 

incidence of sepsis might be further underestimated in countries with a high incidence of 

maternal HIV infection. Consequently, other diagnostic tests with improved sensitivity 

compared to blood culture are required to better determine the aetiology and incidence of 

neonatal sepsis.  
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This study involved three components. Firstly it focused on the epidemiology of culture-

confirmed neonatal sepsis in Soweto, South Africa; specifically evaluating the incidence of 

early-onset neonatal sepsis for both facility and home births and community acquired late-

onset neonatal sepsis. Further, this was stratified by the maternal HIV-infection status and 

neonates categorized as either HIV-exposed and HIV-unexposed. This study component also 

evaluated the antibiotic susceptibility of pathogenic bacteria.  Secondly, I investigated the 

utility of polymerase chain reaction (PCR) based technology, i.e. Taqman array card (TAC) 

molecular diagnostic to supplement blood culture to diagnose and estimate the incidence of 

pathogen specific causes of  neonatal sepsis. Lastly, I investigated the role of maternal 

vitamin D status on risk of clinically-defined (clinical signs and abnormal laboratory findings) 

early-onset neonatal sepsis.  

1.2 Epidemiology of Neonatal Sepsis  

This section reviews the epidemiology of neonatal sepsis, including clinical algorithms for 

diagnosing sepsis, inflammatory markers of sepsis, incidence of disease and causative 

pathogens and their antimicrobial susceptibilities, sepsis related case fatality rates, and the 

utility of  molecular assays for diagnosing pathogen-specific causes of neonatal sepsis.   

1.2.1  Definition of sepsis 

Sepsis is traditionally defined as bacteraemia accompanied by clinical signs suggestive of 

infection. The International Sepsis Definition Conference defined sepsis as a clinical 

syndrome, which requires the presence of both infection and systemic inflammatory 

response.
25

 This definition recognizes that sepsis has two components, the presence of an 

organism which may manifest as a positive blood culture (infection) and an inflammatory 

response evidenced by clinical signs or changes in physiological parameters.  Bone et al.
26

 

states that sepsis is a continuum of phases from bacteraemia  to clinical manifestations and 

ultimately to organ failure and death. Thus he classifies infection into five phases, 

bacteraemia, systemic inflammatory response syndrome, sepsis, severe sepsis and septic 

shock. Systemic inflammatory response syndrome results in development of clinical signs of 

sepsis.  

 

This definition of sepsis has some limitations when used during the neonatal period. While 

reliance might be placed on positive blood cultures in adults and children where large 
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volumes or multiple blood samples can be taken, in neonates it is not always possible to draw 

large volumes of blood, thus reducing the sensitivity of a blood culture.
27-29

 Secondly 

neonates are relatively immunodeficient compared to older children,  and therefore may not 

always develop an inflammatory response syndrome resulting in some patients having 

infection without clinical signs.
30

 Thus while normal physical examination is strongly 

associated with a lower risk of having a positive blood culture and the presence of clinical 

signs is associated with high risk for infection,
31-33

  not all cases of neonatal sepsis manifest 

with obvious signs and symptoms of sepsis. The presence of risk factors for bacterial infection 

such as maternal fever, chorioamnionitis, low birth weight and prematurity could be 

associated with sepsis, despite the absence of clinical signs due to an attenuated systemic 

inflammatory response in neonates.
34

 Conversely, many neonates with clinical signs 

suggestive of infection may not have bacteraemia.     

1.2.2  Classification of sepsis 

Common localized infective syndromes that are classified separately in older children are 

often accompanied by septicaemia in neonates due to an immature immune function, which is 

unable to contain the infection to a single organ. This results in diagnoses like pneumonia and 

meningitis during the neonatal period being included under the broad umbrella of sepsis. 

Another term that is used to be more inclusive when sepsis is suspected is ‘possible serious 

bacterial infections” (pSBI), including suspected cases of sepsis, meningitis, pneumonia and 

other  neonatal bacterial infections.  

 

Neonatal sepsis is stratified  into early-onset (EOS) and late-onset sepsis (LOS), partly based 

on  identifying the most likely source and pathogen causing the infection. This also informs 

appropriate empiric antibiotic treatment. EOS is commonly considered to be due to bacterial 

infections acquired from the maternal recto-vaginal tracts. LOS is generally regarded as 

originating from the care-giving environment within both the healthcare and community 

settings; therefore it is further stratified into hospital-acquired or healthcare-associated sepsis 

and community-acquired sepsis, based on the environment to which the neonate was exposed 

at the time of developing sepsis. The definition of EOS varies from study to study.
35-48

   Some 

studies have defined EOS as sepsis occurring within the first three days of life,
35-43

 while 

others have defined it as sepsis occurring within the first seven days of life.
44-48

  Zaidi et al. 

described  EOS occurring within the first three days of life as very-early onset sepsis.
49

 There 

are also some studies that have defined EOS as infection with onset within 48 hours of 
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birth.
41, 50

  Using a definition of EOS as within three days of birth rather than seven days is 

more biologically useful, in identifying the recto-vagina as being the likely source of the 

infection than cases which occur beyond three  days of age, among whom infection  could 

also have been acquired  through healthcare or community environment sources.  

1.2.3 Diagnosing sepsis  

Clinical signs 

Early diagnosis of sepsis depends on the detection of clinical signs, as this allows for early 

initiation of empiric antibiotic treatment before infection proceeds to severe sepsis and death. 

In infants less than 60 days of age,  signs associated with sepsis, meningitis and pneumonia 

include reduced feeding ability, decrease in spontaneous movement (lethargy), fever 

(temperature ≥38⁰C) or hypothermia (temperature <35.5⁰C), being drowsy/ unconscious, 

being agitated (irritability), the presence of lower chest wall in drawing, respiratory rate >60 

breaths per minute, grunting, cyanosis, convulsions, a bulging fontanelle, and slow digital 

capillary refill time.
51

 The presence of any one of these signs has been reported to have 

sensitivity for severe disease (including sepsis, meningitis, hypoxaemia and radiologically 

proven pneumonia) of 87% and a specificity of 54%. A combination of signs from this list 

resulted in lower sensitivity. The Young Infant Study Group assessed sensitivity and 

specificity of a number of signs during the neonatal period, which  included history of 

difficulty with feeding, movement only when stimulated (lethargy), temperature <35.5⁰ or 

>37.5⁰ C, respiratory rate ≥60 breaths per minute, prolonged capillary refill time, grunting, 

cyanosis, severe chest in-drawing,  convulsions and stiff limbs. These individual signs were 

reported to have a sensitivity of 87% and specificity of 74%.
52

 The shortcoming of using these 

signs is the lack for specificity due to them also manifesting  in other illnesses; for example 

lethargy, poor feeding and convulsions are common findings in neonates with hypoxic 

ischaemic encephalopathy or asphyxia. Furthermore, some healthy neonates may have 

respiratory rate of >60 breaths per minute which has been used to define tachypnoea.
30, 53-55

 

Thus, clinical signs are non-specific and therefore a diagnosis of sepsis based on clinical signs 

alone will result in overestimation of the true burden of sepsis. This is highlighted by a study, 

which estimated that 30 non-infected neonates will be treated for every patient with confirmed 

infection.
56

  Stoll et al.
35

 reported that 50% of all very low birth weight newborns receive 

empiric antibiotic therapy based on clinical signs and risk factors for sepsis, yet only 1.9% 

had culture-proven sepsis.  

 



6 

 

There is no consensus on the predictive value of the various clinical signs and symptoms in 

diagnosing sepsis. In the absence of a positive blood culture result and with the recognition of 

the low specificity of clinical signs, a combination of clinical signs and other ancillary 

laboratory tests has been proposed to diagnose sepsis in neonates.
28, 37, 57

 The laboratory tests 

that have been used and that are fairly accessible include white cell count, neutrophil count, 

platelet count, C-reactive protein (CRP), and cerebrospinal fluid white cell count in those who  

had a lumbar puncture.  

 

Ancillary laboratory tests 

One of the commonly used laboratory tests in assessing infants with suspected neonatal sepsis 

is the full blood count (FBC). When newborn infants are symptomatic, white cell count, 

absolute neutrophil count and platelet count are commonly used to assess the likelihood of 

infection, and the consequent need for antibiotics. The major limitation of using these 

parameters is that they have low sensitivity (0.3% - 54.5%)
58

 and  are affected by  factors 

other than infection including maternal hypertension,
59-61

  mode of delivery,
62-64

  gender,
63

 

age
31, 59, 65-67

 and method of blood sampling.
68-70

 Leucopenia and neutropenia are also 

associated with increasing odds of infection. For example leucopenia of <5500/mm
3
 and 

neutropenia of <1540/mm
3
 are associated with increasing odds of EOS with odds ratios (OR) 

of 8.80 ( 95% CI 6.29-11.20) and 10.74 (95% CI 7.76-15.06), respectively.
58

 However, the 

sensitivities of leucopenia, neutropenia and thrombocytopenia in diagnosing sepsis are only 

18%, 19% and 14%, respectively.
58

 A number of studies have shown that a high (>0.2) 

immature (I) to total (T) neutrophil ratio (I/T ratio) is associated with increasing odds of EOS, 

thus can be used as a predictor for sepsis.
31, 67, 71, 72

 Though I/T ratio can predict those 

neonates with EOS, with high specificity and negative predictive value of >90%, it has a low 

sensitivity with studies reporting sensitivities <60% and a positive predictive value of 

<10%.
71-73

  

 

 A high C-reactive protein (CRP) (>10 mg/L) is associated with infection and/or 

inflammation. In neonates  in whom the incidence of non-infective inflammatory conditions is 

rare, a raised CRP is most likely related to infection. It takes at least 6-12 hours for CRP 

levels to be raised following antigenic stimulation,
74, 75

  therefore it is important that the CRP 

measurement is delayed compared to time of onset of infection or it should be done at 

presentation and repeated 12-24 hours later. However, CRP levels in neonates must be 

interpreted with caution, as it might be influenced by gestational age, fetal distress and 
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maternal fever, and therefore cannot be used on its own.
76-79

 It has also been reported to have 

poor sensitivity (35%-47%) for diagnosing EOS.
80-82

 Another biomarker that has been 

recommended in the diagnosis of sepsis is procalcitonin (PCT). It is a prohormone of 

calcitonin secreted from the liver and circulating macrophages in response to endotoxins.
83

 Its 

serum levels increase within 2-3 hours of the infection, peaking up by 6-12 hours and 

returning to normal levels within 2 days.
84

  In children, the normal concentration has been 

reported to be <0.5 ng/mL, with a slight increase to levels of 0.5-2 ng/mL during viral 

infections and non-infectious inflammation or stress situations and an increase to above 2 

ng/mL in bacterial and fungal infections.
85, 86

  It rises earlier than CRP and correlates with the 

severity of the disease.
87, 88

 A systematic review of 18 studies that assessed PCT diagnostic 

accuracy in neonatal EOS reported that it had sensitivity ranging from 47.4% (95% CI 27.3-

68.3) to 100% (95% CI 67.6-100) and specificity from 35.3% (95% CI 17.3-58.7) and 100% 

(95% CI 96.8-100).
89

  The possible reasons for this wide variation in sensitivity and 

specificity of PCT from these studies include different  cutoff levels used to define high PCT 

which ranged from 0.253 to 100 ng/mL, and different postnatal ages ranging from birth to 

three days of life. In neonates normal PCT levels have been shown to be affected by postnatal 

age with one study reporting that PCT start at levels of <1 ng/mL at birth, peaking up to levels 

of 10ng/mL at about 28 hours and returning to <1 ng/mL at 72-96 hours.
90

  Therefore when 

one is using PCT to diagnose EOS, cutoff levels should be assessed against postnatal age.   

   

Cerebrospinal fluid biochemistry and cytology results are often difficult to interpret in 

neonates, since unlike adults, CSF of neonates may normally contain white cells,
91-94

 and 

secondly lumbar punctures in neonates are often contaminated with blood, making it difficult 

to interpret the CSF results to diagnose meningitis.
95

 Values of CSF white cell count>20 cells/ 

mm
3
 have been reported to have a sensitivity of 79% and specificity of 81% for diagnosing 

bacterial meningitis.
92

  

 

A number of studies have used these ancillary laboratory tests in addition to clinical signs as 

criteria to diagnose neonatal sepsis.
37, 57

 Since the definitive diagnosis of sepsis requires 

isolation of bacteria from blood, patients with clinical signs and abnormal ancillary tests but 

negative blood cultures are categorized  as having clinical sepsis or probable sepsis.  
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Culture  

The gold standard for diagnosing sepsis historically has been a positive blood or cerebrospinal 

fluid culture. The limitation of using blood culture as a gold standard is that the yield from 

culture varies based on volume of blood sent for culture and degree of bacteraemia, previous 

exposure to antibiotics and whether or not the causative pathogen grows on standard blood 

culture media. In adults it has been reported that a greater volume of blood improves the yield 

of culture, with the yield increasing by 3% per milliliter of blood cultured.
96, 97

 In neonates, 

the probability of bacterial growth on blood culture is affected by both the sample volume and 

the degree of bacteraemia. As an example the probability of having a positive culture if there 

is one  colony forming unit per milliliter (cfu/ml) increases from 0.39 with 0.5 ml of blood to 

0.63, 0.87 and 0.98 with 1 ml, 2 ml and 4 ml of inoculated  blood, respectively. When the 

colony count is 4 cfu/ml, the probability of positivity is 0.87 with 0.5 ml and increases to 

0.98, 0.99 and 0.99 with 1ml, 2 ml and 4 ml of inoculated blood, respectively.
98

 In patients 

with a high  bacterial load in blood  (≥10 cfu/ml), as little as 0.25 ml of blood might be 

required to consistently detect the pathogen in blood.
27

 The challenge in young children, 

including neonates, is that a large proportion of patients with infection (60-64%) have low 

bacterial loads (<10 cfu/ml), including 23-42% with levels as low as 1 cfu/ml.
99, 100

 Therefore, 

blood volumes >0.25 ml will be needed to detect such low levels of bacteraemia. The 

suggested minimum blood volume to send for blood culture in neonates is between 0.5 to 1 

ml.
101

   In neonates who have been exposed to maternal intrapartum antibiotics the sensitivity 

of culture is questionable because if maternal antibiotics do cross the placenta they might lead 

to suppression of bacterial growth in a neonate, thus the recommendation that well neonates 

exposed to maternal intrapartum antibiotics should be observed in hospital for 48 hours. Yield 

of blood cultures in patients exposed to antibiotics is lower than those who have not been 

exposed with one study reporting that pathogens were detected in 14.3% of blood cultures 

obtained before the institution of antibiotic treatment compared to 7% in those under 

antibiotic treatment.
102

 This effect of antibiotics suppressing bacterial growth is supported by 

improvement in detection of pathogens when resin that adsorbs antibiotics is added before 

performing culture.
103

  

 

The positive blood culture rate also varies depending on age of neonate at onset of sepsis and 

the setting from which the neonate is presenting at time of culture. The blood culture from 

neonates with suspected EOS (<3days age) has low positivity yield of 0.7% to 3.3%
104-106

 in 

developed countries, compared to yield of 33% to 47% in developing countries.
39, 40

 This 
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difference could be due to clinicians in developed countries having a low threshold to 

diagnose or investigate for sepsis or patients presenting late in developing countries with 

fulminant sepsis and high bacterial counts. In those suspected with EOS (<seven days of life) 

the yield is high at 46-67%.
107, 108

  The high yield in this group of patients with EOS defined 

as less than seven days is probably because the group includes cases that might have 

developed healthcare-associated infections (onset of infection after being in hospital for >72 

hours) and therefore more likely to have higher colony counts.
109

 Furthermore, possible 

contaminants are not excluded. The blood culture yield from community acquired neonatal 

sepsis is 3.4% to 13.5% (Table 1.1).
44, 48, 110-112

 Many studies reporting on community 

acquired neonatal sepsis have excluded possible contaminants, and this would explain the 

relative lower rates of positive culture when compared to studies based in healthcare facilities. 
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Table 1.1:   Positivity of blood cultures according to category of neonatal sepsis 

 Year Country Number enrolled Sepsis Criteria Number with 

Positive 

Culture  

Positive 

culture 

Excluding 

Contaminants 

Early-onset sepsis (<3 days), 

healthcare facility 

- Jardine, L et al, 2006
104

 

- Ogunlesi, T. et al, 2011
39

 

- Kayange, et, al, 2010
40

 

- Sgro, M. et al, 2011
105

 

- Guerti, K. et al, 2011
106

 

 

 

 

2000-4 

2006-8 

2009 

2003-8 

2001-7 

 

 

 

Australia 

Nigeria 

Tanzania 

Canada 

Belgium 

 

 

2640 

360 

121 

62453 

1783 

 

 

Risk factors or  Clinical Signs 

Risk factors or Clinical signs 

Clinical signs 

NICU admissions 

NICU admissions and suspected 

sepsis 

 

 

56 (2.1%) 

119 (33%) 

57 (47%) 

405 (0.7%) 

58 (3.3%) 

 

 

21 (0.8%) 

 

 

 

Early-onset Sepsis (<7 days), 

healthcare facility 

- Tallur, S. et al, 2000
107

 

- Mugalu, J. et al, 2006
108

 

 

 

1996-7 

2002 

 

 

India 

Uganda 

 

 

202 

119 

 

 

Clinical signs 

Clinical signs 

 

 

135 (67%) 

 55 (46%) 

 

 

 

Community acquired Sepsis 

- English, M. et al. 2003
44

 

 

- Berkley, J. et al. 2005
112

 

 

- Quiambao, B. et al. 2007
110

 

 

- Darmstadt, G. et al. 2009
111

 

 

- Hamer, DH, et al. 2015
48

 

 

 

 

 

1999-2001 

1998-2002 

1994-2000 

2004-6 

 

Not stated 

 

Kenya 

 

Kenya 

 

Philippines 

 

Bangladesh 

 

Bangladesh 

Bolivia 

Ghana 

India 

Pakistan 

South Africa 

 

 432 (0-6 days) 

  

867 (<7 days) 

 

767 (0-59 days) 

 

500  (0-27 days) 

 

424 (0-7days) 

358 (7-59 days) 

 

Admissions 

 

Admissions 

 

Clinical signs 

 

Clinical signs 

 

Clinical signs 

Clinical signs 

 

 67 (15.8%) 

 

 

 41 (9%) 

 

117 (13.5%) 

 

 26 (3.4%) 

 

29 (5.8%) 

 

44 (10.4%) 

39 (10.9%) 

 

*- NICU – neonatal intensive care unit
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Polymerase chain reaction (PCR) based molecular technology 

The typical isolation media and incubation conditions do not allow the growth of all bacterial 

strains, thus a large number of microbial species remain unidentified in blood culture of 

infants with infection. Even among those pathogens which can be cultured, some might be 

difficult to culture. Therefore, in order to identify all possible causes of infection in neonates, 

tests other than blood culture that can identify all forms of microbes are required.  

 

Microbes are reported to exist in three macroscopic physiological states, viable, viable but 

dormant and non-viable state.
113

 Microbes in the viable state can reproduce and replicate and 

are detectable using blood culture. In the dormant state the organism is neither obviously 

viable, nor immediately culturable but has the potential to reproduce. Identification of 

dormant organisms is important as even if they are not the cause of infection at the time of 

detection they could become viable and therefore cause infection. An organism in a non-

viable state is unable to reproduce under any conditions, and therefore it is possible that such 

microbes might be present in a human body or blood without causing illness. It has been 

reported that even blood from “healthy” individuals might contain bacterial 16S ribosomal 

RNA, which can be detected and allows for the identification of bacterial phyla.
114-116

 

 

While blood culture only identifies viable organisms, molecular assays may detect viable and 

non-viable microbes including viruses and dormant organisms through identification of 16S 

ribosomal RNA gene sequence. The new molecular pathogen detection methods are based on 

amplification of specific target regions in the microbial genome using polymerase chain 

reaction (PCR). The PCR targets the 16S rRNA gene, a ubiquitous gene preserved in all 

bacteria and comprises both conserved and variable regions. The conserved regions are 

targeted by universal primers for identification of bacteria while identification of the variable 

regions allow for genus or species-specific detection. Amplified target regions may then be 

subjected to downstream applications such as sequencing or microarray/probe hybridization. 

A number of amplification methods have been evaluated in neonates to diagnose of sepsis.
117

 

These include broad-range conventional PCR assays, real-time PCR in which amplification is 

monitored in real time, PCR followed by post-PCR processing such as sequencing or 

hybridization, multiplex PCR in which amplification is directed against multiple organisms in 

the same assays and species-specific and genus-specific assays. These techniques rely on 

PCR amplification of the 16S rRNA gene, a highly conserved gene which is absent in 
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humans. These assays have been used successfully to identify a wide range of organisms 

including bacteria and viruses.
118-121

 Molecular assays have an advantage over blood culture 

as they can detect pathogens more rapidly, use smaller volumes of blood and have ability to 

detect small amounts of bacteria, including dormant and non-viable ones and have better 

sensitivity than cultures.
122

 The turn-around time for TAC is less than 4 hours including 

sample preparation and real-time PCR compared with 1 to 2 days to detect growth in culture 

or 5 days to finalize no growth culture results.
123

  

 

A number of studies have compared PCR methodology with cultures as the gold standard and 

have reported variable results with some suggesting that PCR has low sensitivity (41% - 

67%),
122, 124, 125

 while others report sensitivity  of 100% and specificity >85% (89-91).
126-128

 

In studies where these PCR assays were compared head–to-head with blood culture, PCR had 

a higher detection rate (8.3% - 38.5% vs. 3.8% - 15.4%).
126

 
129-131

 Though PCR tests may 

have a significant impact on early diagnosis and treatment of neonatal sepsis, currently they 

do not provide information about antibiotic susceptibility, which is important in antibiotic 

stewardship and patient outcomes. Thus in studies to assess the epidemiology and burden of 

sepsis in neonates, PCR techniques should always be used in combination with blood culture.  

 

Detecting pathogens using Taqman Array Card 

One of the molecular methods used in detecting pathogen is a multiplex PCR. This allows for 

detection of multiple pathogens from a single specimen, which is advantageous in neonates, 

in whom volumes of blood available are often small and many different infectious agents 

may contribute to the illness. This allows for more comprehensive evaluation of specimens in 

a relatively short period of time. Although the multiplex PCR detect multiple pathogens, a 

number of bacteria and virus antigen targets will still need to be included in these PCR 

assays, as sequence data on known and emerging pathogens become available. The 

disadvantage of multiplex PCR based technology is that any change to existing primers or 

addition of new primers and probes requires re-evaluation of the sensitivity and specificity of 

the entire assay and this is costly. An alternative to this approach, is the use of a singleplex 

quantitative PCR which allows for simultaneously detection of multiple pathogens. The 

format that allows for this is the Taqman low-density array (TLDA), which has been used for 

multiple gene expression and micro-RNA expression analyses in cancer research.
132, 133

 

Compared to multiplex PCR, the TLDA platform allows for the flexibility of adding new 
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primers and probes without recalibration of others already incorporated in the assay. In the 

TLDA card, also known as Taqman array card (TAC), reagents for each assay are pre-

allocated to the reaction wells making it easy to use and the samples are added only once.
134

  

It has a 384-well microfluidic array consisting of dried-down individual singleplex qPCR 

reactions.  

 

One of the advantages of using TAC is that total nucleic acids from one clinical specimen or 

control can be combined with a PCR mix, loaded into a TAC port, and separated by 

microfluidics into 48 separate reactions capable of amplifying either DNA or RNA.
135

  The 

TAC technology has been evaluated for detection of respiratory pathogens and 

enteropathogens and has been used to determine the aetiology of respiratory outbreaks in the 

United States.
135, 136

 The role of TAC for detection of pathogens in respiratory secretions, 

blood or cerebrospinal fluid of neonates with suspected infection has not previously been 

assessed in sub-Saharan Africa. TAC tests for both DNA and RNA, which include panels 

containing 21 specific primers and probes for simultaneous detection of bacteria and/ or 

viruses and two human genome controls, all in duplicate in each lane. There are 48 wells in 

each of the 8 lanes (384 wells in total). This allows testing of 7 different specimens for up to 

21 pathogens with a positive control for each pathogen. All these 384 reactions can be 

completed within 3 hours. The reagents for each assay are pre-allocated to the reaction wells 

making it easy to use, thus reducing the chance of operator-error. There are lyophilized 

pathogen specific primers and probes in each well.  

 

The pathogens tested for in blood and CSF using TAC are Escherichia coli/Shigella sp., 

Group A streptococcus, Group B streptococcus, Haemophilus influenzae, Klebsiella 

pneumoniae, Neisseria meningitides, Pseudomonas aeruginosa, Salmonella species, 

Staphylococcus aureus, Streptococcus pneumoniae, Ureaplasma urealyticum/ parvum and 

Enterovirus. In respiratory secretions or nasopharyngeal/oropharyngeal (NPOP) swabs, the 

pathogens tested for are  Bordetella pertussis, Chlamydia pneumoniae, Chlamydia 

trachomatis, Escherichia coli/Shigella, Group B streptococcus, Klebsiella pneumoniae, 

Mycoplasma pneumoniae, Streptococcus pneumoniae and Ureaplasma urealyticum/ parvum, 

Adenovirus, Cytomegalovirus, Enterovirus, Human metapneumovirus, Human Parechovirus, 

Influenza A and B viruses, Parainfluenza 1, 2 and 3 viruses, Rhinovirus and Rubella. Once 

specific nucleic acids are added to the wells, reactions are completely contained within each 
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well. This is of particular benefit in resource-poor settings where there are generally not 

dedicated facilities for different standard PCR steps. The TAC system allows for internal 

positive and two nucleic acid quality controls. In conclusion, TAC allows for simultaneous 

detection of multiple pathogens, eliminating the need for processing of clinical specimens for 

different pathogens sequentially. It reduces the amount of handling and chances of human 

error and contamination. Other advantages of using TAC in detection of pathogens, are the 

abilities to customize a panel of pathogen targets without the need for revalidation, testing for 

multiple pathogens including both bacteria and viruses, the requirement for small volume of 

specimens, short turn-around time, reduced potential for contamination due to the closed 

system format of TAC and ease of use, including minimal hands-on setup.
134

 

 

Detecting organisms with molecular technology in addition to culture 

The clinical suspicion of sepsis is based on the presence and interpretation of clinical signs. 

The major limitation of using clinical signs only during the neonatal period is that they are 

non-specific. The likelihood of detecting infection is augmented by laboratory investigations. 

The most readily available laboratory investigations when investigating for sepsis include 

white cell count with differential and platelet count and CRP. Although abnormalities in any 

of the above improve the specificity for diagnosing neonatal sepsis, they have low individual 

sensitivity. The confirmatory test is positive culture from a sterile site, usually either blood 

and/or CSF. The major limitations of blood culture are that it is often negative, despite strong 

clinical suspicion of sepsis and that some of the bacteria grown on blood culture might be 

contaminants and not the causative pathogens for sepsis. Among the bacteria that are grown 

on blood culture, there are those that are always considered pathogens namely Group B 

streptococcus, and those that are always considered contaminants namely Corynebacteria sp.; 

whereas others could be either pathogens or contaminants; e.g. Coagulase negative 

Staphylococcus. Consequently, although blood culture is considered as a “gold standard” for 

diagnosing sepsis, it does not satisfy the criteria of an appropriate gold standard because it 

has a high proportion of false negatives and positives (contaminants), thus the need for use of 

complementary tests like TAC to identify the pathogens involved in sepsis.  

1.2.4  Incidence of neonatal sepsis   

The incidence of culture confirmed neonatal sepsis varies between countries and regions. In 

developing countries the incidence (per 1000 live births) of neonatal sepsis varies from 7.1 to 



15 

 

40  in Asia
107, 137, 138

 and 6.5 to 23 in Africa,
52, 139, 140

 compared to 6 to 9 in United States and 

Autralasia.
34, 141-143

  These rates include healthcare associated infections, which are influenced 

by other factors such as infection control and overcrowding and therefore do not reflect the 

burden of community associated sepsis. To assess the burden of community-associated 

sepsis, one needs to specifically study EOS defined as occurring within 3 days of birth and 

community acquired sepsis (CAS), hence limiting the chances of including healthcare-

associated sepsis.  

 

Early-onset sepsis 

The incidence (per 1000 live births) of clinical diagnosed EOS in developing countries is 

reportedly 20.7 to 35.6 using a definition of <3 days 
37, 144

 and as high as 44.8 using a 

definition of <7 days,
145

 while in developed countries it is much lower at 11.3.
146

 The facility 

based incidence of culture confirmed EOS defined as within the first three days of life is 

reported to be 0.6 to 3.5 in developed countries.
34, 38, 41, 147-152

 The facility-based incidence of 

culture confirmed EOS in developing countries varies widely amongst the different studies 

from as low as 0.72-0.93,
43, 153

  to as high as 8.6-9.8.
144, 154

    

 

Community acquired sepsis (CAS) 

Most studies investigating CAS often do not differentiate between early and late onset CAS, 

thus in this review CAS includes both categories. Community-based studies from developing 

countries have reported an incidence (per 1000 live births) of clinically diagnosed neonatal 

sepsis ranging between 21 to 170.
155-158

 The wide range in these studies is possible due to the 

different methods used to collect the data, the studies with high incidence of clinical sepsis 

were associated with active household surveillance of newborns by village health workers, 

therefore identifying  more infants with clinical signs who might have been missed by those 

studies collecting data only from patients who present to facilities.
157, 158

 It could also be due 

to different sensitivities of algorithms used to diagnose clinical sepsis and skills of the 

healthcare providers to recognize signs suggestive of sepsis. Population-based surveillance 

studies from developed countries have reported incidence (per 1 000 live births) of culture 

confirmed CAS to be from 1.1 to 1.7,
141, 146, 159

 while in developing countries it varies from as 

low of 2.9
111

 to as high of 5.5.
112
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1.2.5  Bacterial causes of sepsis  

Early-onset sepsis 

Knowledge of the pathogens most likely to cause neonatal sepsis assists in guiding the choice 

of empiric antibiotic treatment while awaiting culture and antibiotic susceptibility results. 

Pathogens isolated from neonates with sepsis vary from region to region and country to 

country. In order to exclude pathogens that might have been acquired from hospital, studies 

which are discussed in the following section are those reporting on EOS defined as sepsis 

occurring within the first 3 days of life.   

 

In developed countries, the pathogen most commonly isolated from neonates with EOS sepsis 

is Group B streptococcus (GBS) which account for 30-50% of cases of EOS in the neonatal 

period in these countries.
38, 41, 160

 In contrast, pathogens most commonly isolated from 

neonates in developing countries are  Gram-negative bacteria (GNB), with a few countries 

reporting Gram-positive bacteria (GPB) as common pathogens (Table 1.2). In many 

countries in Asia, the common pathogens isolated from neonates with EOS (within 3 days) 

are GNB, namely Klebsiella species, Pseudomonas aeruginosa, Serratia and Escherichia coli 

(E. coli).
138, 144, 161

 Among the GPB, the common pathogen isolated in Asia is Staphylococcus 

aureus.
138, 144

  Only one study from countries in Asia during the first decade of this century 

reported GBS as a common pathogen.
153

  In sub-Saharan Africa, the pathogens isolated in 

neonates with EOS also vary from country to country, for example in Nigeria the common 

pathogens isolated are GNB, namely Klebsiella species (29-65%), E. coli (7-8%), Proteus (5-

7%) and Pseudomonas (3%) and the common GPB is Staphylococcus aureus (15-40%) as in 

Asia.
39, 162

 In Kenya, Kohli-Kochlar et al.
45

 reported, that GPB were  more common than 

GNB,  with Staphylococcus aureus (27%), Streptococcus species other than GBS (17%),  

Enterococcus (12%) and Staphylococcus epidermidis (27%) accounting for more than two 

thirds of isolates. Studies from South Africa reported GBS as a common pathogen isolated in 

neonates with EOS accounting for between 40% and 60% of all pathogens.
37, 43

 In summary it 

would appear that the pathogen most commonly isolated from neonates with EOS is 

uniformly GBS  in most developed countries, while in developing countries the bacteria 

causing EOS vary from country to country with GNB more common in Asia than in other 

countries. These differences, however, could be due to which neonates are enrolled in these 

studies, e.g.  preterm infants are more likely to be enrolled in developed than developing 

countries, therefore pathogens might differ. Secondly in developing countries where most 
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deliveries occur outside healthcare facilities, it is possible that some neonates might die 

before they reach the healthcare facility and are never investigated. This could mitigate 

against detecting bacteria, which can be acquired in utero and present clinically at the time of 

birth, e.g.  early-onset disease due to GBS commonly presents within 24 hours of delivery 

(and at birth) and therefore cannot be excluded as a possible cause of sepsis in these early 

newborn deaths. Thus its incidence is possibly underestimated in some African and Asian 

countries where most of the births occur outside healthcare facilities or even in health 

facilities which do not have the capabilities of undertaking blood culture.   

 

Community acquired sepsis 

A number of studies that assessed the pathogens causing CAS have included neonates and 

infants under the age of 60 days, which makes the interpretation and comparison of data 

difficult.
46, 48, 112

 A systematic review of studies from developing countries including 2066 

infants with CAS, aged from birth to 59 days of life, reported that the common pathogens 

isolated  were Escherichia coli (16-18%), Staphylococcus aureus (12-15%), Klebsiella sp. (8-

13%), Pseudomonas sp. (8-9%), Acinetobacter sp (6-7%) and Group B Streptococcus 1.7-

7%.
46

 A systematic review of studies with 2594  neonatal (0-28 days) sepsis cases, reported 

similar findings with E.coli (17%), Klebsiella species (14%) and Staphylococcus aureus 

(13%) being the common pathogens.
49

 A more recent systematic review and meta-analysis of 

3077 sepsis cases <1 month age from developing countries, reported that Staphylococcus 

aureus (26%), Klebsiella species (21%), and E. coli (8%) were the common pathogens.
163

 A 

multicenter study including sites from six countries (Bangladesh, Bolivia, Ghana, India, 

Pakistan and South Africa) reported that the common pathogen for infants <60 days age was 

Staphylococcus aureus (43%).
48

 Pathogens causing CAS in developing countries also vary 

from region to region and country to country. In a systematic review, Waters et al.
46

 reported 

that in Africa the common pathogens were Staphylococcus aureus (14.6%), Streptococcus 

pneumoniae (13.9%), E. coli (11.0%) and GBS (6.9%). In South East Asia, the common 

pathogens were Klebsiella species (33.5%), Staphylococcus aureus (10.0%), E. coli (9.0%) 

and Pseudomonas species (9.0%). Focusing only on studies from developing countries 

conducted since 2000s, it is also clear that pathogens isolated from neonates with CAS vary 

by country (Table 1.3). Quiambao et al reported that the common pathogens causing CAS in 

Philippines were GNB with Enterobacter species (27%) and Klebsiella species (17%) being 

the commonest.
110

 A study from Bangladesh reported that the common pathogens found in 
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neonates (0-27 days) with CAS were Staphylococcus aureus (33%) and Pseudomonas 

aeruginosa (17%).
111

 Studies from Kenya and Malawi reported that the commonest pathogen 

causing sepsis in neonates (<30 days age) admitted to a district hospital was GBS (17-

19%).
44, 164

  Two years later another study from Kenya reported that the common pathogens 

identified to be causing CAS in the <7 day age group were E. coli (19%), Acinetobacter 

species (12%) and Klebsiella species (10%), while in those infants between 7-59 days of age 

the common pathogens were Group A streptococcus (15%), GBS (13%), Streptococcus 

pneumoniae (12%) and Staphylococcus aureus (12%).
112

 In summary in developing countries 

the common pathogens causing CAS are Staphylococcus aureus (33-70%), E. coli (14-19%) 

and Klebsiella species (10-16%), but the sequence hierarchy of these bacteria varies from 

country to country and age at onset. Unlike the situation in developed countries, in 

developing countries GBS has not consistently been identified as a dominant pathogen 

associated with sepsis except in the southern part of sub-Saharan Africa.  These studies also 

suggest that the relative contribution of different pathogens causing CAS may vary over time, 

highlighting the importance of ongoing auditing of pathogens isolated in neonates with 

sepsis. 
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Table 1.2:  Bacteria isolated in neonates with early-onset (<3 days of life) in studies from 

2000 onward 

GNB – Gram negative bacteria, CONS – Coagulase negative staphylococcus 

Study Years Studied, Region Countries Number 

with 

positive 

culture 

Pathogens Percent 

Chacko, et al. 

2005
144

  

2000-1, Asia India N = 15 Pseudomonas species 

Klebsiella pneumoniae 

Staphylococcus aureus 

Escherichia coli 

Viridans streptococcus 

70% 

13% 

13% 

  7% 

  7% 

Sundaram, et al. 

2009
138

  

2001-2006, Asia India N = 527 Non fermenting GNB  

Staphylococcus aureus  

Klebsiella pneumoniae  

Escherichia coli  

Enterococcus faecalis 

30% 

20% 

12% 

  9% 

  7% 

Tiskumara, et 

al. 2009
153

  

2005, Asia China, 

Hong-Kong, 

India, Iran, 

Kuwait, 

Malaysia, 

Thailand 

N = 47 Group B streptococcus    

CONS  

Escherichia coli 

Staphylococcus aureus  

38% 

17% 

13% 

  4% 

Tosson, et al. 

2011
161

 

2003-5, Middle East Jordan,   N = 100 Klebsiella species   

Serratia species  

Escherichia coli 

Enterobacter species 

Pseudomonas species 

49% 

11% 

10% 

  9% 

  5% 

Ogunlesi, et al. 

2011
39

 

2006-8, Sub-Saharan 

Africa 

Nigeria N = 119 Staphylococcus aureus 

Klebsiella species 

Unclassified coliforms 

Escherichia coli 

34% 

29% 

10% 

  8% 

Cutland, et al. 

2009
37

 

2004-7, Sub-Saharan 

Africa 

South Africa N = 28 Group B streptococcus  

Enterococcus species 

Acinetobacter species 

Viridans streptococcus  

57% 

11% 

11% 

7% 

Ballot, et al. 

2012
43

 

2009-10, Sub-Saharan 

Africa 

South Africa N = 16 Group B streptococcus 

CONS  

Viridans streptococcus      

Other                                                                                 

44% 

25% 

19% 

12% 

Vergnano, et al. 

2011
41

 

2006-9, Europe England N = 124 Group B streptococcus 

Escherichia coli               

Other Streptococci           

Listeria monocytogenes   

Staphylococcus aureus     

50% 

18% 

  6% 

  6% 

  5% 

Simonsen, et al. 

2014
165

 

2005-8, Americas USA N = 739 Group B streptococcus   

Escherichia coli              

Viridans streptococcus 

Staphylococcus aureus    

Haemophilus influenzae    

34% 

32% 

16% 

  4% 

  4% 

Perez, et al. 

2015
166

 

2013-14, Americas Mexico N = 68 Escherichia coli               

Klebsiella pneumoniae    

Enterobacter cloacae       

Streptococcus bovis         

25% 

21% 

10% 

  9% 
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Table 1.3:  Pathogens isolated in neonates (<28 days of age) with community acquired 

sepsis 

Study Year, 

region 

Country Number 

culture 

positive 

Pathogens Percent 

Quiambao, et al. 

2007
110

 

1994-2000, 

Asia 

Philippines N = 22 Enterobacter species 

Klebsiella species 

Streptococcus pneumoniae 

Pseudomonas aeruginosa 

Staphylococcus aureus  

27% 

14% 

14% 

  9% 

  9% 

Darmstadt, et al. 

2009
111

 

2004-6, 

Asia 

Bangladesh N = 30 Staphylococcus aureus 

Pseudomonas species 

Klebsiella species   

Acinetobacter species 

Streptococcus pneumoniae 

33% 

17% 

10% 

10% 

10% 

English, et al. 

2003
44

 

1999-2001, 

Africa 

Kenya N = 64 Group B streptococcus 

Klebsiella species  

Escherichia coli    

Streptococcus pneumoniae 

Pseudomonas species             

19% 

16% 

14% 

11% 

 9% 

Berkley, et al. 

2005
112

 

1998-2002, 

Africa 

Kenya N = 129 Escherichia coli                   

Acinetobacter species 

Klebsiella species                        

Group B streptococcus           

Staphylococcus aureus 

19% 

12% 

10% 

  8% 

  5% 

Milledge, et al. 

2005
164

 

1996-2001, 

Africa 

Malawi N = 784 Group B streptococcus         

Salmonella non-typhoidal    

Staphylococcus aureus          

Streptococcus pneumoniae    

Escherichia coli                      

17% 

14% 

11% 

10% 

  8% 

Blomberg, et al. 

2007
167

 

2001-2, 

Africa 

Tanzania N = 155 Salmonella species                  

Escherichia coli                       

Enterococci species                 

Klebsiella species                          

Candida species                    

17% 

16% 

16% 

12% 

10% 

Hamer, et al. 

2015
48

 

Asia Bangladesh, 

India, Pakistan 

N = 55 Staphylococcus aureus            

Acinetobacter species              

Escherichia  coli                        

Enterobacter species                

31% 

16% 

11% 

  9% 

Hamer, et al. 

2015
48

 

Africa Ghana, South 

Africa 

N = 27 Staphylococcus aureus            

Klebsiella species                    

Other                                          

70% 

15% 

15% 
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1.2.6  Susceptibility of bacterial pathogens to antimicrobials 

Antibiotics recommended in empiric treatment of EOS and CAS include intravenous 

ampicillin or penicillin combined with an aminoglycoside targeted at covering both GPB and 

GNB. Cloxacillin is an alternative if Staphylococcal infection is suspected. The effectiveness 

of this treatment depends on whether or not the pathogens causing sepsis are susceptible to 

these antibiotics. Definitive therapy should be chosen based on antibiotic susceptibility. In 

developed countries the two most common pathogens, GBS and E. coli, are sensitive to 

antibiotics recommended by WHO for empiric treatment of neonates with EOS.
38

 GBS is 

reported to be 100% sensitive to ampicillin or penicillin and although E. coli is 78% resistant 

to ampicillin, only 4% of strains are resistant to gentamicin.
38

 Studies reporting on antibiotic 

susceptibilities in facilities from developing countries often do not differentiate between 

pathogens isolated from neonates with EOS and those with healthcare associated infections.
39, 

40, 45, 108, 168-170
 

 

A number of studies have reported on antibiotic susceptibilities of common pathogens 

causing CAS. Darmstadt et al reported that among the 10 isolates of Staphylococcus aureus 

cultured from neonates with CAS in Bangladesh, none were sensitive to ampicillin, 90% 

were sensitive to gentamicin and seven of nine (78%) were sensitive to cloxacillin.
111

 A 

multicenter observational study from six developing countries (Bangladesh, Bolivia, Ghana, 

India, Pakistan and South Africa) reported that 83% and 29% of E coli were resistant to 

ampicillin/ amoxicillin and gentamicin, respectively.
48

 All Klebsiella species were resistant to 

ampicillin and only 38% were sensitive to gentamicin.  

 

A systematic review and meta-analysis of studies reporting on susceptibilities of different 

pathogens to WHO currently recommended antibiotics of penicillin/ampicillin and 

gentamicin for CAS,  found  that only 14% (95% CI 8-20%) and 80% (95% CI 71-89%) of 

Staphylococcus aureus; 3% (95% CI 1-5%) and 28% (95% CI 17-38%) of Klebsiella species; 

and 22% (95% CI 9-35%) and 52% (95% CI 29-76%) of E. coli were sensitive to ampicillin 

and gentamicin, respectively.
163

 This meta-analysis showed a wide variation in 

susceptibilities of the common pathogens from different studies, and this is supported by 

findings from another systematic review, which reported variation in percentage sensitivity 

patterns of most prevalent pathogens causing CAS, where susceptibility of E. coli to 
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ampicillin varied from 29% to 100% and susceptibility of Klebsiella species to gentamicin 

varied from 43% to 100%.
46

   

1.2.7  Case fatality rate  

Globally, 6.3 million children under the age of 5 years died in 2013, and 52% of these deaths 

globally and 61% in sub-Saharan Africa were due to infectious causes.
1
 Most of deaths under 

the age of 5 years occur in developing countries.  In developing countries, neonatal deaths 

account for 34-56% of deaths in children under the age of 5 years.
1
 In developed countries 

15% of neonatal deaths are due to infections, whereas in developing countries 32-34% of 

deaths are due to infections.
2, 171

  

 

Two-thirds to three-quarters of neonatal deaths occur within the first week of life.
2, 172

 It is 

estimated that as many as 42% of neonatal deaths in the first week of life are due to infectious 

causes.
173

 Thus EOS is the major contributor to mortality. Studies reporting on case fatality 

rates (CFR) in neonates with culture-confirmed EOS (defined as sepsis occurring <3 days) 

have reported rates of 3-16% in developed countries,
38, 105, 151, 174

 compared to rates of 6-28% 

in developing countries.
42, 43, 152, 153

 Many other studies from developing countries have 

reported on sepsis CFR occurring in neonates <7 days age, to be between 47-65%.
164, 175

 

These high rates could be due to inclusion of neonates who might have had healthcare-

associated sepsis.   

 

Many studies that have looked at CFR in CAS in developing countries have included 

neonates and infants between 0 and 91 days of age and reported CFR of 26-70%.
110, 176-179

 

Some studies have reported on neonates and infants between 0-59 days, stratifying them into 

early onset (0-6 days of age) and late-onset (7-59 days age) and reported higher CFR among 

the EOS (27-56%) than late-onset (5-26%) cases.
44, 112

 Factors like prematurity, low birth 

weight, very low birth weight and type of organism have been associated with increased risk 

for mortality in neonates with sepsis in both developed and developing countries.
35, 38, 40, 42, 

137, 151, 174, 180
 Case fatality rates in preterm infants have been reported to be 21.5%-24.4% 

compared to 1.6-1.7% in term infants in the USA.
151

 A study from South Africa reported that 

preterm delivery was associated with strongest risk of death in neonates with EOS with 

adjusted relative risk ratio (aRRR) of 5.9 (95% CI: 3.1-11.2).
42

 Also both low birth weight 

and very low birth weight are associated with a high mortality in neonates with EOS.
35, 42, 181
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Mortality has also been reported to vary according to the type of organism causing the 

infection. GNB are associated with high CFR (41%) compared to GPB (26%), for example 

the CFR for E.  coli (33%) is higher than that for GBS (9%) in the USA.
35, 38

 However, 

Tiskumara et al from Asia reported the opposite with GBS having a higher CFR (22%) than 

GNB (12%).
153

 This difference could be due to differences in virulence of pathogens in the 

different regions or differences in the groups of patients who are infected by these pathogens, 

the time of presentation and the presenting clinical syndromes.  

1.3 Human immunodeficiency virus exposure as a risk factor for neonatal 

sepsis  

Intact innate and adaptive immunity are important in the neonate’s defense against infections, 

therefore, any factors that affect the qualitative and/or quantitative function of the immune 

system could increase the risk for sepsis. In sub-Saharan countries, including South Africa, 

the high incidence of sepsis and its associated mortality in neonates and infants occurs on the 

background of a high prevalence of maternal HIV infection.  Both HIV-infection and HIV-

exposure may contribute to this high incidence of neonatal infections. The heightened 

susceptibility of HIV-infected children to infections is well documented and relates to 

immunosuppression.
182, 183

  Some studies have reported that children who are HIV exposed 

but HIV-uninfected (HEU) are also at increased risk of infectious morbidity and mortality 

compared to HIV unexposed infants.
184, 185

 As many as 60% of infants born to mothers with 

HIV infection experience infectious disease morbidity during their first 6 months of life.
186

 

HIV exposed but uninfected children with pneumonia have been reported to have more 

treatment failures than unexposed children.
187

 In addition, among children hospitalized with 

pneumonia, those who were HIV infected or HEU were more likely to have a worse outcome 

than HIV unexposed children.
188

 It would appear that the high infectious morbidity seen in 

infants born to mothers who are HIV infected starts early in the neonatal period. Neonates, 

especially very low birth weight infants born to mothers who are HIV positive might have a 

higher incidence of sepsis, possibly due to exposure to the vaginal flora of the HIV-infected 

mother, which might be different, both in terms of density and type of organism to that of 

HIV-non-infected mothers.
189, 190

 In addition newborns of HIV-infected mothers could have 

increased susceptibility to bacterial infection because of lower transplacental acquired 

antibody, including due to lower maternal antibody levels and   impaired transplacental 
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transfer.
191-194

 The transfer of transplacental antibodies, which primarily occurs after 34 

weeks of gestational age, may be further reduced in newborns that are very low birth weight 

or born preterm. Therefore maternal HIV-infection may contribute to the high rate of 

neonatal sepsis in high-HIV burdened countries.  A study from Latin America and the 

Caribbean reported a high incidence of neonatal infections (26/1000 live births) among 

infants born to mothers who were HIV infected, and that those with one or more episodes of 

infections were more likely to be born to mothers with advanced HIV disease.
186

  Cutland et 

al, reported that neonates born to severely immunocompromised mothers (CD4+ count <200 

cells/mm
3
) were at higher risk of developing clinically diagnosed EOS with an incidence of 

79/1000 live births compared to 19/1000 live births in those born to mothers with CD4+ 

count >350 cells/mm
3
.
195

 This study also reported that the proportion of infants colonized 

with E. coli tended to be  higher among HIV exposed than HIV unexposed infants (60% vs 

53%, p = 0.066) and that the incidence of clinical EOS was greater among HIV-exposed at 

33.7/1000 live births compared to 20.6/1000 live births in HIV unexposed infants.  A study 

from Belgium also reported that 1.55% of HIV exposed infants developed invasive GBS 

disease compared to 0.08% in HIV unexposed infants.
196

  In a setting with high prevalence of 

HIV infection similar findings were noted, where the incidence of invasive GBS disease was 

reported to be 4.46 /1000 live births  in HIV exposed infants compared to 1.98/1000 live 

births  in HIV unexposed infants.
3
 This difference in incidence of  invasive GBS disease 

between HIV exposed and unexposed infants was noted for both early-onset disease (2.10 vs 

1.24/ 1000 live births, risk ratio of 1.69)  and late-onset disease (2.36 vs 0.74/ 1000 live 

births, risk ratio of 3.18).
3
 Neonates who are HIV-infected have also been reported to have 

diseases such as tuberculosis (TB), syphilis and cytomegalovirus, most likely due to 

immunosuppression.
197

 

 

While the reasons for the high incidence of infections in HIV-infected infants are well 

understood to be due to immune-suppression, the reasons for differences in infectious 

morbidity between the HEU and HIV unexposed (HU) neonates are less clear. This could be 

due to an increase in exposure to infective agents from the infected mother or due to 

disturbances in the infant’s innate immunity. Mothers who are HIV infected are likely to be 

immunosuppressed, which could be associated with increased shedding of opportunistic 

agents such as cytomegalovirus, and reactivation of dormant infections such as TB and 

herpes infections, thereby increasing the risk of neonates being infected by these 
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organisms.
198, 199

  Immune suppression may also result in high rates of bacterial vaginal 

colonization.
200-202

 These suggestions are supported by studies,  which have reported that 

HEU  infants born to mothers with advanced HIV disease or with low CD4+ counts are more 

likely to have neonatal or post-neonatal infections and associated increased mortality.
9, 203

 

Mothers with advanced disease might have lower antibody titers to common pathogens and 

might also have impaired transplacental transfer of antibodies to the fetus.
9, 191-193

  Recently 

two studies reported lower levels of GBS antibodies in HIV-infected mothers and lower 

transplacental transfer or reduced maternal-cord ratio of GBS antibodies in their newborns.
194, 

204
 Dangor et al. reported that median capsular antibody concentrations were lower in HIV-

infected than -uninfected women and that the maternal-cord ratios were lower in HIV-

infected mothers
194

. Similar findings were reported by Le Doare et al. who found that both 

maternal mean concentration of surface-binding GBS antibody and antibody-mediated 

complement deposition onto GBS were reduced in HIV-infected women compared to HIV-

uninfected women; and that median transplacental transfer of antibody from HIV-infected 

women to their infants was reduced compared to HIV-uninfected women.
204

  

 

A number of studies have shown aberrations in the immune system of HEU infants.
205-208

 

These abnormalities include changes in the proportion of T-cell populations, cytokine 

production and dendritic or antigen presenting cells. Among HEU, it is unclear whether the 

abnormalities are due to fetal exposure to HIV products, antiretroviral drugs or maternal 

responses to the HIV. The abnormalities in the immune system associated with HIV exposure 

have included reduced CD4+/ CD8+ lymphocyte ratios due to fewer total and naive CD4+ 

cell counts.
205, 206

 Plasma and mononuclear were also functionally affected, including being 

unable to produce Th1 phenotype cytokines namely interleukin (IL)-2 and gamma-interferon 

(IFN-γ). Low Th1 cytokine production results in impaired antigen presentation and increased 

susceptibility to intracellular pathogens.
209

 Another identified abnormality has been an 

imbalance in cytokine production between pro-inflammatory and anti-inflammatory 

cytokines. The production of pro-inflammatory cytokines like IFN-γ and TNF-α is 

significantly higher in HEU than HIV-unexposed infants, whereas the anti-inflammatory 

cytokines like IL-4 and IL-10 have been noted to be dominant in HIV-unexposed infants.
206

 

The circulating myeloid dendritic cells have also been found to be lower in HEU infants.
209

 

Some of the immune abnormalities have been related to maternal viral loads. Interleukin-10 

which is an anti-inflammatory cytokine, is higher in HIV-unexposed and HEU infants born to 
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mothers with lower HIV-1 viral loads or who are on anti-retroviral treatment. The reverse is 

seen with pro-inflammatory cytokines like IFN-γ and TNF-α, which were significantly higher 

in a group of HEU infants born to mothers with high HIV-1 viral loads.
206

 The abnormalities 

in the immune system are expected to be associated with increased risk of developing 

different types of infections. Therefore one would expect that infants who are HIV-exposed 

even if not infected will have a higher incidence of sepsis than HIV-unexposed infants. 

Recently guidelines for prevention of mother to child transmission of HIV have been changed 

from a single drug to highly active antiretroviral therapy, and the effects of this combination 

on the impaired immunity associated with HIV exposure are not known.   

1.4  Vitamin D status as a risk factor for neonatal sepsis    

Sepsis is more common in developing countries where problems of malnutrition are also 

common, than in developed countries.  A number of micronutrients like vitamin A and zinc 

have been shown to play a role in reducing infections or their complications in children.
210-214

 

The role of micronutrient deficiencies in sepsis during the neonatal period has not been fully 

established. One of the micronutrient deficiencies reported to be associated with increased 

risk of developing infections in both neonates and children is vitamin D.
6, 178, 215-217

 This is 

thought to be due to its immunoregulatory effect on both innate and adaptive immune 

systems. Vitamin D is a pro-hormone which is either ingested or produced in the skin from 7-

dehydrocholesterol through absorption of ultraviolet B from the sun to form cholecalciferol 

(Vitamin D3).  

 

Cholecalciferol and dietary vitamin D are transported to the liver where they are metabolized 

to form 25-hydroxyvitamin D [25(OH)D] which is the major circulating vitamin D metabolite 

and is the best marker of vitamin D nutritional status. 25(OH)D is converted in the kidney to 

1,25-dihydroxyvitamin D [1,25(OH)2D] which is the active form of vitamin D. 1,25(OH)2D 

reacts with a single nuclear type 2 receptor to facilitate the activation or suppression of target 

genes.
218

 The proteins produced from activation of target genes carry out the functions of 

vitamin D. In addition to its well-known functions of increasing absorption of calcium and 

phosphorus in the intestines and regulating parathyroid hormone (PTH) production, vitamin 

D also plays a role in the functioning of the immune system.
219
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1.4.1 Serum 25-hydroxyvitamin D Levels 

Serum 25(OH)D levels provide an excellent measure of overall vitamin D status.  They 

reflect both intake from the diet and the amount contributed by skin synthesis. Adequate 

circulating 25(OH)D levels have been defined as levels where PTH, calcium absorption and 

bone mineral density (BMD) are maintained within normal limits.
220, 221

 There is an inverse 

relationship between circulating 25(OH)D and PTH, whereas it has direct relationship with 

calcium absorption and therefore levels of serum calcium.
221-223

 Thus one definition of 

25(OH)D deficiency includes the level at which PTH start to increase or where there is a 

decrease in intestinal calcium absorption.
224, 225

    

 

Currently there is no agreement as to what cut-off level of serum 25(OH)D should be used to 

define vitamin D deficiency. The lack of agreement on the definition of 25(OH)D deficiency 

and its optimal levels has resulted in a range of terminology and values to describe vitamin D 

status, namely deficiency, insufficiency and adequacy or optimal. A number of systematic 

reviews of the literature looking at 25(OH)D levels have come up with different cut-off levels 

to define deficiency, insufficiency and optimal concentrations.
226-228

 The Institute of 

Medicine in the United States has defined deficiency as serum 25(OH)D less than 30 nmol/L, 

insufficiency as levels of 30-50 nmol/L and sufficiency or adequacy as levels of >50 

nmol/L.
226

 The WHO has defined insufficiency as a serum 25(OH)D 25-50 nmol/L and 

deficiency as levels below 25 nmol/L.
227

 The Endocrine Society Task Force has defined 

deficiency as a serum 25(OH)D <50 nmol/L with optimal concentrations being greater than 

75 nmol/L.
228

 The International Osteoporosis Foundation has recommended using levels >75 

nmol/L as desirable, levels 50-74 nmol/L as inadequate, 25-49 nmol/L as insufficient and <25 

nmol/L as deficient.
229, 230

 The reasons for these different cutoff levels are most likely related 

to studies included in the different systematic reviews and interpretation of results from the 

different studies.
231

 Individual studies will report different levels to define deficiency or 

adequacy possibly due to vitamin D assay methodology used, population studied, geographic 

latitude, season in which blood samples were taken, age range of study participants, ethnicity 

and sex.
230

  

 

25(OH)D levels are strongly associated with the degree of skin pigmentation and season of 

the year.
232-235

 Individuals with lighter pigmentation exposed to similar ultra-violet B (UVB) 

doses produce higher serum 25(OH)D concentrations compared with individuals with darker 
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pigmentation.
234

 This difference is due to the effect of melanin pigment absorbing the UVB 

photons responsible for the photolysis of 7-dehydrocholesterol. Another strong determinant 

of serum 25(OH)D levels is the season of the year. Serum 25(OH)D levels, are higher during 

summer than winter months.
232, 233, 235

 However this response is also influenced by genetic 

factors, duration and dose of UVB exposure and baseline serum 25(OH)D levels.
236, 237

 

Therefore it is important to report levels of 25(OH)D for different communities based on skin 

pigmentation and seasons of the year.   

1.4.2  Serum vitamin D levels in pregnant women and in cord blood 

During pregnancy a mother provides large amounts of calcium to the developing foetus with 

more than 150 mg/kg/day actively transferred across the placenta from the mother to the 

foetus.
238, 239

 Therefore pregnancy is a time when there is an increased calcium requirement 

and the need for higher concentrations of the active metabolite, 1, 25(OH)2D are required to 

increase calcium absorption by the intestine to meet the increased  demands. With this 

increased need for vitamin D, it is important to assess the levels of 25(OH)D during the 

pregnancy, especially in those women who are at risk of vitamin D deficiency, such as those 

with dark pigmented skin, living at high latitude, or with social and religious customs which 

reduce skin exposure to UVB.   

 

A number of studies have reported on the prevalence of vitamin D deficiency in pregnant 

women using different serum levels of 25(OH)D for the definition of deficiency. Studies 

assessing the prevalence of vitamin D deficiency defined as serum levels <25 nmol/L in 

white near-term or term pregnant women or soon after delivery reported a prevalence of 5.9% 

– 19.5%.
240-246

 The prevalence of vitamin D deficiency in a similar group of women was 5 – 

50% using a cut-off level of 25 – 50 nmol/L to define vitamin D deficiency.
246-249

 Studies in 

pregnant women of non-Western descent reported a higher percentage of women with 

vitamin D deficiency using a similar definition as those studies reporting from women of 

western origin. Using a cut-off level of 25 nmol/L, a study from the Netherlands reported a 

prevalence of 81% and 84% in Moroccan and Turkish pregnant women respectively,
243

 a 

study from Iran reported a prevalence of 46% and 89% in pregnant women in summer and 

winter respectively,
250

 while another study from the same country that defined deficiency as 

levels <35 nmol/L reported a prevalence of 66.8% .
251

 Sachan et al. from North India reported 

a prevalence of 42.5% and 66.7% using levels of 25 and 37.5 nmol/L respectively for 
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definition of vitamin D deficiency.
252

 In summary there is a high prevalence of vitamin D 

deficiency during pregnancy especially in black women and in those who wear long dresses 

and veils. The prevalence varies depending on cut-off level of 25(OH)D used to define 

vitamin D deficiency.  

 

25(OH)D readily crosses the human placenta, thus the vitamin D status in the foetus and 

newborn depends on maternal 25(OH)D. The half-life of serum 25(OH)D is two to three 

weeks, therefore cord serum levels reflect the maternal-foetal status during the final months 

of pregnancy and first months of life post-delivery.
253

 There is a linear positive association 

between the cord 25(OH)D and maternal 25(OH)D,
252, 254-256

 with a correlation of 

approximately 0.8 (218).
252

 Therefore the high prevalence of vitamin D deficiency seen in 

pregnant women at delivery  has a major influence on the umbilical cord blood 25(OH)D 

levels. Using a serum level of 25(OH)D of 25-37.5 nmol/L to define vitamin D deficiency, 

the prevalence of vitamin D deficiency was 4-11% in cord blood of white newborns 
254, 257-259

 

compared to 45.6% to 65.5% in black patients in the USA.
258, 259

 The effect of the poor 

vitamin D status in newborns has not been well studied. In children vitamin D deficiency has 

been associated with increased risk for different types of infection including upper respiratory 

tract infections, pneumonia and bronchiolitis.
178, 215-217

 and recently a number of studies have 

reported an association with EOS.
6, 260

 Vitamin D status in pregnant women and newborns in 

South African is not well known. Only one report, presented in abstract form has reported on 

vitamin D status in this population and found that 3.4% and 4.6% of pregnant women and 

their newborns respectively were vitamin D deficient [25(OH)D <30 nmol/L].
261

 As far as I 

know, no studies from South Africa or sub-Saharan Africa have evaluated association of 

vitamin D status with EOS in neonates. 

1.4.3  Vitamin D and Immune System  

A basic understanding of the components of the immune system is important to 

contextualizing the role of vitamin D in immunity. The immune system is divided into innate 

and acquired or adaptive immune systems. The innate immune system is important in 

protecting the neonate against infection as it is present at birth. The main components of the 

innate immune system are physical epithelial barriers, macrophages, monocytes, neutrophils, 

dendritic cells, natural killer cells and circulating plasma proteins. The system is non-specific 

and reacts the same way to the same organism at each encounter. The acquired immune 
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system is activated once the pathogen has overcome or evaded the innate immune system. It 

is not fully functional at the time of birth. It has two main components, humoral immunity 

which mediates its function by antibodies produced by B lymphocytes, and cell mediated 

immunity, which mediates its function through T lymphocytes, of which there are a number 

of different types (such as suppressor T cells, helper T cells, and killer T cells). There are two 

types of T helper (Th) cells, Th1 cells which potentiate cellular immunity and Th2 cells, 

which potentiate the humoral immunity.  

 

The first barrier to infection is the mechanical barrier of the skin and other epithelial cells. In 

epithelial cells antimicrobial peptides are produced constitutively but can also be induced by 

infection or inflammation. These antimicrobial peptides are cathelicidin and defensins. They 

have a broad spectrum activity against gram positive and negative bacteria, viruses, fungi and 

protozoa.
262, 263

 They protect against infection through damaging lipoprotein membranes, 

increasing chemotactic activity of macrophages and monocytes and increasing release of 

cytokines.
264-266

  Cathelicidin stimulates chemotaxis of neutrophils, monocytes and T cells, 

neutralizes the effects of lipopolysaccharide and stimulates angiogenesis.
267-270

 The innate 

immune system distinguishes pathogens by identifying pathogen molecular associated 

patterns with pattern recognition receptors. One of the groups of these pattern recognition 

receptors is called the Toll like-receptors (TLR), which are found on cell membranes of many 

cells of the innate immune system.
271

 TLRs enable the host to sense the microbial 

components within minutes, allowing invading foreign micro-organisms such as bacteria, 

viruses and fungi to be dealt with quickly and efficiently.
272, 273

 For example TLRs bind 

peptidoglycans from gram positive bacteria such as Streptococci
274

 and Staphylococci 
275

  and 

TLR4 is activated by lipopolysaccharides found in gram negative bacteria like Salmonella 

and E. coli. 
276

  Activation of TLRs results in release of pro-inflammatory mediators. 

Monocytes and macrophages constitutively express high levels of TLR2 and TLR4 and thus 

are in the forefront of defence against pathogens.
277

 Once the pathogen is identified by these 

receptors, phagocytosis and opsonisation are induced and the pathogen gets presented to the 

cells of the acquired immune system.  

 

The biological action of vitamin D is achieved by 1,25(OH)2D binding to the vitamin D 

receptors (VDR) found in the nucleus of various cells of the body including monocytes, 

macrophages, dendritic cells, natural killer cells, B and T lymphocytes.
278, 279

 Activated VDR 
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binds to vitamin D response elements in genes resulting in the formation of different 

proteins.
280

 Some of the proteins encoded by the genes activated by 1,25(OH)2D are proteins 

required for formation of tight junctions, gap junctions and adherens junctions.
281-283

 These 

junctions are important in maintaining the integrity of epithelial cells which are barriers 

against infection. Vitamin D also induces genetic expression of the antimicrobial peptides 

(AMPs) cathelicidins and defensins in epithelial cells, macrophages, monocytes and 

neutrophils.
284-286

 The AMPs have a broad spectrum of antimicrobial and antiviral 

activities.
262, 287

 Cathelicidin releases a molecule LL37 which attaches to phospholipid head 

groups of capsular polysaccharides on membrane surfaces of pathogens leading to disruption 

of the membrane.
288, 289

 LL37 also stimulates the production of chemokines and cytokines. 

1,25(OH)2D also regulates the expression of TLR2 and TLR4 and its co-receptor CD14.
290

 

Treatment of human monocytes with 1,25(OH)2D has a dose dependent effect on the 

expression of TLR2 and TLR4, with higher doses inhibiting their expression and therefore 

inducing a state of hyporesponsiveness to pathogen associated molecular patterns (PAMPs), 

while low doses increase the expression of both TLR2 and TLR4.
291, 292

 This negative 

feedback is thought to prevent excessive TLR activation and therefore limit inflammation and 

the severity of sepsis at a later stage of the infection. The attachment of PAMPs to TLR also 

results in the induction of the 1ɑ-hydroxylase enzyme which catalyses the production of 

1,25(OH)2D and potentiates  the effect of activation of TLRs. Vitamin D also modulates the 

adaptive immune system via its effects on T-cell activation. It is associated with a dose 

dependent reduction in the transcription of Th-1 cytokines such as IL-2, GM-CSF and 

interferon gamma as well as the expression of the Th-2 cytokines, IL-4, IL-5 and IL-10.
293

 

 

An essential element of the innate immune response is its capacity to recognize microbial 

invasion and stimulate production of antimicrobial peptides. Innate immunity is mediated by 

the Toll family of pattern-recognition receptors, whose activation induces expression of anti-

microbial peptides. 
294

  Activation of Toll-like receptors (TLRs) results in a direct 

antimicrobial response in monocytes and macrophages in vitro. Activation of monocytes with 

a TLR ligand triggers a vitamin D-dependent pathway leading to the induction of the 

antimicrobial peptide cathelicidin.
267, 295

 TLR stimulation of human macrophages up-

regulates expression of the vitamin D receptor and induces the enzyme CYP27B1 which 

catalyses the conversion of 25(OH)D to 1,25(OH)2D. In the presence of adequate 25(OH)D, 

activation of the upregulated vitamin D receptors leads to induction of cathelicidin. Therefore 
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the TLR antimicrobial pathway is dependent on the presence of 25(OH)D which is converted 

in monocytes and macrophages to 1,25(OH)2D. These immunomodulatory properties of 

vitamin D may result in a reduction in incidence of infections in infants with adequate 

vitamin D status compared to those with vitamin D deficiency. Neonates with low 25(OH)D 

levels at birth may thus be at risk of developing early neonatal sepsis. 

1.4.4  Vitamin D and Infections 

A number of studies have reported on association between vitamin D status and the incidence 

or severity of infections in different age groups. In-vitro, TLR activation of human 

macrophages up-regulates expression of the VDR and 1ɑ-hydroxylase genes leading to 

induction of the antimicrobial peptide cathelicidin and killing of intracellular Mycobacterium 

tuberculosis. Furthermore, sera from individuals known to have increased susceptibility to 

TB had low 25(OH)D and were inefficient in supporting cathelicidin messenger RNA 

induction.
267

 It is also reported that treatment of epithelial cells with 1,25(OH)2D induced 

antimicrobial activity against the airway pathogens Bordetella bronchiseptica and 

Pseudomonas aeruginosa in normal human bronchial epithelial cells.
286

 An inverse 

association between 25(OH)D levels and prevalence of both bacterial and viral infections has 

also been reported .
178, 215, 216, 296-302

  Children with nutritional rickets have a higher incidence 

of lower respiratory tract infections (LRTI) compared to patients without clinical rickets,
215

 

and in an Ethiopian study, children presenting with pneumonia have been reported to have a 

13-fold higher incidence of rickets compared to those without pneumonia.
178

  

 

In children aged 2-60 months the odds of having severe acute respiratory infections were 

significantly lower if children had levels of 25(OH)D levels >22.5 nmol/L  (OR- 0.09, 95% 

CI 0.03-0.24, p<0.001).
216

 Among children with active TB, 86% were either vitamin D 

deficient (serum 25(OH)D <20 nmol/L) or insufficient (serum 25(OH)D <75 nmol/L).
296

 A 

prospective study of 50 patients presenting with culture positive tuberculosis (TB) found  that 

they had lower serum 25(OH)D concentrations than healthy matched controls.
297

 Serum 

25(OH)D levels have also been reported to be inversely associated with a recent episode of 

upper respiratory infection.
300

 It is postulated that the high incidence of viral infections during 

the winter months is related to 25(OH)D levels as these are frequently low during the winter 

months.
301

 This hypothesis is supported by a study by Urashima et al who reported that 

school children supplemented with 1200 IU of vitamin D3, had fewer episodes of infection 
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due to Influenza A compared to those who received a placebo with relative risk (RR) -0.58, 

95% CI 0.34-0.99).
302

  

 

The association between vitamin D status and infection has also been reported in neonates.
6, 

217, 260, 303
 In a study from Turkey, newborns with acute respiratory tract infections who were 

admitted to neonatal intensive care unit, had lower serum 25(OH)D concentrations than 

healthy newborns of similar gestation, weight and gender (9.12 ± 8.8 ng/ml vs 16.3 ± 13.4 

ng/ml, p = 0.011).
217

 Similar findings were noted in their mothers, with mothers of neonates 

with acute respiratory tract infections having 25(OH)D levels lower  than mothers of controls. 

Neonates with congenital pneumonia have also been shown to have lower serum 25(OH)D 

compared to controls.
303

 Two studies have reported an association between serum 25(OH)D 

levels and risk of EOS.
6, 260

 Cord blood 25(OH)D levels of neonates with EOS were reported 

to be significantly lower than those of healthy controls with median and ranges of 12.6 (3.1-

78.9) ng/ml compared to 21 (5-118) ng/ml, p=0.038.
260

 Both  maternal and neonatal 

25(OH)D levels in those with EOS have been reported to be lower at 22.2 and 8.6 ng/ml 

compared to 36.2 and 19 ng/ml respectively in controls.
6
  One study did not find an 

association between neonatal 25(OH)D levels and EOS.
304

 The levels of 25(OH)D in cord 

blood or neonates is not only associated with infection during neonatal period but also during 

childhood.
305-307

 Concentrations of cord 25(OH)D were reported to be lower in neonates who 

developed Respiratory syncytial virus (RSV) LRTI within the first year of life compared to 

those who did not (65 vs 84 nmol/L, p=0.009); and neonates who had cord 25(OH)D 

concentrations <50 nmol/L had a six-fold increase in risk of RSV infection in the first year of 

life compared with those with 25(OH)D ≥75 nmol/L.
305

 Mohamed et al.
307

 also reported 

similar findings in the first two years of life when low cord blood 25(OH)D levels were 

associated with increased risk of acute LRTI. Camargo et al.
306

 reported that cord blood level 

of 25 (OH)D had an inverse association with risk of respiratory infection at 3 months and risk 

of wheezing at 15 months, 3 years and 5 years of age but no association with incidence of 

asthma.   

 

A number of clinical studies have also reported an association between vitamin D status and 

severity or prevalence of infection in both children and adults. In adults admitted to the 

intensive care unit, the prevalence of vitamin D insufficiency defined as 25(OH)D <30 ng/ml 

was 100% in critically ill patients with sepsis compared to 92% in critically ill patients 
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without sepsis and 66.5% in healthy controls.
308

  In critical ill children lower levels of 

25(OH)D were associated with septic shock.
309

  McNally et al.
310

 reported that though they 

found no significant difference in 25(OH)D levels between patients who had acute respiratory 

tract infections and controls,  significantly more children admitted to the paediatric intensive 

care unit with acute respiratory tract infections were vitamin D deficient. In children with 

severe pneumonia the presence of rickets was significantly associated with high treatment 

failure rate.
311

   

1.5 Justification for the study 

Knowledge of the causative pathogens of sepsis is essential for appropriate and effective 

treatment of neonatal infections. The marked difference in the types of bacteria causing sepsis 

in different regions and countries noted in the above-sections suggests a regional or local 

approach rather than a global one in developing treatment guidelines for neonatal sepsis. One 

of the major causes of neonatal deaths is sepsis; therefore it is important that in the efforts to 

reduce these deaths we have a clear understanding of the burden of sepsis in our facilities and 

regions. In order to accurately identify patients who are infected, reliable diagnostic tests are 

required. The current available test used as the gold standard in diagnosing sepsis is the blood 

culture, which however, has low sensitivity and is prone to many limitations. The sensitivity 

of this test might be further reduced in newborns of mothers who received intrapartum 

antibiotics. For these reasons, tests other than the blood culture, with improved sensitivity and 

reasonable specificity, need to be investigated to better delineate the epidemiology of 

neonatal sepsis. This could include investigating the utility of new molecular based assays, 

which are less likely to be affected by the use of intrapartum antibiotics and are also able to 

detect non-culturable pathogens. 

 

There are many factors that may contribute to the high incidence of neonatal sepsis in 

developing countries, including maternal factors and the quality of health-care at delivery and 

during the neonatal period. Maternal factors associated with sepsis include maternal illness, 

nutritional status, and quality of care related to infection control at time of delivery. Both 

maternal HIV infection and vitamin D deficiency have been associated with increased 

incidence of sepsis in neonates.
3-6

 Some of the possible mechanisms for the association of 

both conditions with neonatal infection relate to impaired immunity in the fetus. It would 
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appear that it is not only HIV infection of the fetus that impairs the immunity, but also the 

exposure of the fetus to the effects of maternal HIV infection
205, 209

. Therefore even if vertical 

transmission of HIV can be reduced, a significant number of neonates will still be born to 

mothers who are HIV infected. Maternal vitamin D deficiency and HIV infection are both 

prevalent in developing countries. Therefore determining the roles of vitamin D status and 

HIV exposure in neonatal sepsis could assist in developing strategies to reduce neonatal 

sepsis. 

 

In the United States poorer vitamin D status has been implicated in the disparities in perinatal 

outcomes between black and white populations.
312

 It is possible that poor perinatal outcomes 

observed in countries in Africa might be related to vitamin D deficiency. Rich sources of 

dietary vitamin D like fish oil and organ meats are often not affordable to women from poor 

communities. Therefore in the absence of these dietary sources of vitamin D, sunlight 

becomes the only source of vitamin D. In blacks skin melanin decreases the penetration of 

ultraviolet B through the skin therefore limiting the production of vitamin D. Thus the high 

melanin content of the skin and an inadequate intake of vitamin D could put black women at 

risk of developing vitamin D deficiency, therefore putting their infants at risk of infection. 

Pregnant women have been reported to generally have poor vitamin D status around the 

world.
243, 252, 313-315

 The extent and the effect of these low levels on infant infectious 

morbidities have not been well studied in developing countries including South Africa.   
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1.6 Aims and Objectives 

Aims 

i). To determine the epidemiology of early-onset sepsis (EOS) (<3 days of age) and 

community acquired sepsis (CAS) using standard blood and cerebrospinal fluid culture;  

ii). To evaluate the role of a molecular diagnostic assay in improving the sensitivity of 

methods used to detect sepsis. 

iii). To delineate the role of respiratory viruses in early onset and community acquired sepsis.  

iv). To assess the role of maternal HIV infection on the incidence of EOS and CAS in 

neonates born in Soweto, South Africa.  

iv). To assess vitamin D status in pregnant mothers and their offspring and its role on EOS in 

neonates. 

 

Objectives 

1. To determine the incidence of early-onset pSBI (EO-pSBI), community acquired 

pSBI (CA-pSBI), and laboratory confirmed EOS  and  CAS in neonates, stratified 

according to HIV exposure status; 

2. To determine the aetiology and incidence of culture-confirmed EOS and CAS;   

3. To determine antibiotic susceptibility of bacteria isolated from neonates with EOS 

and CAS; 

4. To determine case fatality rates and predictors of mortality in neonates with EOS and 

CAS; 

5. To determine the utility of molecular diagnostic assay using the Taqman array card  to  

identify putative pathogens associated with protocol-defined sepsis among  neonates 

with pSBI 

6.  To determine sensitivity and specificity of Taqman Array Card in detecting 

pathogens in neonates; 

7. To determine maternal vitamin D status according to HIV status; 

8. To determine the relationship  between  maternal and cord blood 25(OH)D levels ; 

9. To determine the seasonal variation in maternal and newborn 25(OH)D levels. 

10. To evaluate the association of 25(OH)D  levels in maternal and cord blood serum and 

risk for EOS. 
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2 METHODS AND MATERIALS 

2.1 Epidemiology of Sepsis and Detection of Pathogens Using Blood 

Culture and the Taqman Array Card  

2.1.1  Study Setting  

This study was undertaken at Chris Hani Baragwanath Academic Hospital (CHBAH), in 

Soweto, Johannesburg, South Africa. Though CHBAH is a secondary-tertiary level hospital, 

about a third of women delivering at this hospital are low risk in terms of adverse pregnancy 

outcomes. It is also the referral centre for the Soweto Community Health Clinics and 

provides free maternal and child care to an urban, low-middle income population. 

Approximately 22,000 of the 32,000 annual births in Soweto occur at CHBAH, with the 

remaining births conducted by midwives in the public community health centres or clinics. 

There are very few births conducted outside healthcare facilities in Soweto, thus the majority 

of births are attended by skilled birth attendants. At the time of the study (12 August 2013 to 

30 September 2014), CHBAH was the only public facility that admitted neonates requiring 

hospital care in the Soweto region.   

 

All pregnant women attending antenatal care are routinely counselled and offered HIV 

testing. During the study period, pregnant women who were HIV positive were started on full 

antiretroviral treatment (tenofovir,  emtricitabine, lamivudine and efavirenz) either for their 

own health or for prevention of mother to child transmission of HIV. All neonates were put 

on nevirapine for a period of six weeks and had HIV PCR done at six weeks. The HIV 

prevalence has been approximately 29% among pregnant women in Soweto since 2006.
316

 

Management of women in labour includes recommended administration of intrapartum 

antibiotics to women with chorioamnionitis, prolonged rupture of membranes (≥18 hours), 

preterm labour (<34 weeks) and previous birth with GBS infection. There is no systematic 

screening of pregnant women for recto-vaginal GBS colonization during pregnancy in 

Soweto, nor any systematic provision of intrapartum antibiotics for this indication to 

colonized women.   

 

Newborns with  respiratory depression or asphyxia are resuscitated according to the South 

African Paediatric Guidelines that were adapted from the American Academy of Paediatric 
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Neonatal Resuscitation Program.
317

 Infants who need respiratory support are admitted to the 

neonatal unit for non-invasive assisted ventilation if birth weight is between 799 and 1000 

grams; and are eligible for both non-invasive and invasive mechanical ventilation if birth 

weight is greater than or equal to 1000 grams. All newborns born at or referred to CHBAH 

with clinical signs suggestive of sepsis have a FBC with a differential count and blood culture 

done prior to antibiotic administration. Though the local haematology laboratory uses the 

automated cell counter which generates leukocyte related abnormal cell flags, this is often not 

followed up routinely with identification of abnormal cell types in neonatal bloods, thus is 

often reported as left shift being present or not which makes it difficult to calculate immature 

to total neutrophil ratio. Serum CRP is measured 24-48 hours later in newborns whose 

clinical signs are considered to be significant and/ or persistent beyond 24 hours. Serum PCT 

is not part of protocol for workup for sepsis because of its high cost. Lumbar puncture is not 

done routinely as part of workup for sepsis in neonates with suspected EOS, it is only done if 

the blood culture is positive for an organism considered a pathogen.  Neonates born outside 

the hospital and who are admitted beyond 24 hours of life are admitted to the general 

paediatric wards and managed in a similar manner to those born in the hospital, except that 

the investigation might include CRP on admission and a lumbar puncture if there are signs 

suggestive of neonatal sepsis. The empiric antibiotic regimen for both EOS and CAS is a 

combination of ampicillin and gentamicin.  

2.1.2  Study Population 

All neonates admitted at CHBAH who had blood cultures done at the discretion of the 

attending physician for early-onset or community acquired pSBI were eligible for enrolment 

to the study. 

Inclusion criteria for epidemiology of sepsis:  

Possible serious bacterial infection (pSBI) (early-onset or community-acquired):  

 Any neonate  aged between 0-27 days of life hospitalized at CHBAH who had blood 

and/or cerebrospinal fluid taken for culture according to the standard hospital protocol 

for  early-onset (<3 days age) or  community acquired  (onset of sepsis at 3-27 days of 

life) pSBI,  

 Had not been hospitalized during the preceding 27 days, except for postnatal hospital 

observation for facility-related births.  
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Inclusion criteria for detection of pathogens using TAC 

Cases   

Clinical EOS, was defined by clinical presentation with signs suggestive of sepsis (requiring 

the presence of respiratory distress or at least two other clinical criteria in the absence of 

another recognizable congenital infection) between days 0-2 of life, and at least one 

laboratory criterion 
37

 (Table 2.1). 

Culture confirmed EOS, was defined by isolation of a putative pathogen that is not a common 

contaminant from a normally sterile body site between 0-2 days of life. Bacteria that were 

considered to be contaminants included coagulase negative Staphylococcus (CONS), 

Corynebacteria species and Bacillus species. Further, bacteria that are generally normal 

commensals but which could also be pathogens, namely Viridans streptococcus, were 

classified as “possible pathogens”. Other bacteria such as Group B Streptococcus (GBS), 

Staphylococcus aureus and E. coli were categorized as “definite pathogens”. 

 

Clinical CAS was defined as being present if a neonate was hospitalized from home between 

the ages of 3-27 days with signs suggestive of sepsis, as defined by presence of respiratory 

distress and one other clinical criterion or at least two other clinical criteria, and at least one 

laboratory criterion (Table 2.1).  The neonate also should not have been admitted to hospital 

within the preceding 27 days, excluding postnatal hospital observation for facility-related 

births. 

 

Culture confirmed CAS, was defined as being present in a neonate admitted from home and 

on the isolation of a microorganism (as defined in the section of EOS) that is not a common 

contaminant from a normally sterile body site between 3-27 days of life. The categorization 

of identified bacteria for CAS was the same as for EOS detailed above.  

Severe infection was defined as disease resulting in death, or the presence of lethargy, or the 

need for admission to NICU for mechanical ventilation 
51, 318

.  

 

Controls 

Using TAC, increases the likelihood of being able to detect the genome of organisms that 

may not viable and therefore not a cause of sepsis, making interpretation of results from 

molecular assays such as TAC difficult. Thus, in order to evaluate the epidemiological 

association between the identification of putative pathogens using TAC in children and 
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suspected sepsis, there was a need to estimate the background prevalence of positivity for the 

epitopes included in TAC among healthy neonates. To address this, we enrolled healthy 

controls from whom we collected blood and nasopharyngeal/ oropharyngeal (NPOP) swabs 

for TAC. 

 

The controls for the EOS cases were age-group matched healthy newborns <3 days of age, 

born at CHBAH. They represented the general population as they were enrolled from 

maternal wards where well neonates weighing more than 1800 grams at birth were registered 

for rooming-in with their mothers, to establish breastfeeding before discharge. They were 

selected from the ward register using computer generated random numbers stratified 

according to mode of delivery; and had all study procedures (following maternal consent) 

performed before they were discharged home post-delivery.    

 

Controls for the CAS cases were healthy neonates with ages between 3-27 days, born at 

CHBAH and subsequently discharged home without having been admitted for any reason, 

and as such were considered as representative of the general population. They were selected 

from the birth register using computer generated random numbers. After random selection, 

parents were phoned and were informed about the study and were asked about the condition 

of the infant.  If the infant was reported to be well and the mother consented, the mother was 

given a date to bring the neonate to CHBAH. If the parent refused participation at any stage, 

the next eligible participant on the list was phoned. On arrival the mother was reconsented 

and the neonate had a clinical assessment, and if the neonate was well the study procedures 

(blood and NPOP swab taken) were performed.  

 

Exclusion criteria for enrolment into the study evaluating the TAC assay 

 Case for EOS and CAS: Infants with major congenital abnormalities, whose care was being 

redirected because of poor prognosis (expected  to demise within hours), born to mothers 

aged less than 18 years and those who had a previous hospital admission other than at the 

time of delivery were excluded.  

 

Controls for EOS and CAS: Well infants with congenital abnormalities or born to mothers 

less than 18 years old, or who had a subsequent illness after being discharged following birth 

were excluded.  
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Table 2.1:  Clinical signs and laboratory tests used in the definition of clinical sepsis
37

 

Clinical Criteria Definition 

Respiratory  distress - Respiratory rate >60 breaths per minute, and/or   

- Cyanosis, and/or  

- Chest wall in-drawing, and/ or  

- Grunting on expiration, and/or  

- Respiratory distress noted in medical records, and/or  

- Requirement for ventilation support 

 Cardiovascular instability - Hypotension defined as mean arterial pressure < 2 standard 

deviations from mean for weight/ age; and/or 

- Mottled skin 

Pyrexia or Hypothermia - Axillary temperature >38.0ºC, not attributable to external 

warming or  

- Axillary temperature <36.0ºC 

Abdominal/ feeding problems - Abdominal distension or  

- feeding intolerance (>20% residual over 24 hours) or  

- poor feeding after have been feeding well, or  

- > 2 episodes of emesis 

Bleeding diathesis - Defined as petechiae, ecchymosis, mucous membrane 

bleeding, pulmonary haemorrhage or excessive oozing 

from venipuncture sites 

 Lethargy or irritability - Lethargy or irritability noted by medical staff in absence of 

other central nervous system symptoms 

Central nervous system - Seizures, or bulging fontanelle, or single witnessed episode 

of apnoea 

Metabolic abnormalities - Hyperglycaemia (blood glucose >180mg/dL or 10 mmol/L) 

or 

- Hypoglycaemia (blood glucose <45 mg/dL or 2.5 mmol/L) 

or 

- Metabolic acidosis: base excess (BE) <-10mEq/L  

Laboratory Test Definition 

White blood cell count (WCC) - WCC <5 x 10
9 
cells/L or WCC > 25 x 10

9
cells/L  

Absolute neutrophil count (ANC) - ANC < 1.75 x 10
9
/L or > 15 x 10 

9
/L 

Platelet count - < 150 x 10
9
cells/L 

C – reactive protein - >10 mg/L  

Elevate cerebrospinal fluid (CSF) 

white blood cell count (WCC) 

- >30 cells/ mm
3
  in absence of significant red blood cells 

  Footnote: 1. Protocol defined early-onset sepsis – one respiratory clinical criterion or two other clinical 

criteria with at least one laboratory criterion and/ or positive blood or CSF culture due to an organism (not a 

common contaminant) from a normally sterile body site (blood or CSF) in a neonate with age between 0-2 

days. 2. Protocol defined community-acquired sepsis - presence of respiratory distress (two criteria 

required) or one feature of respiratory distress and one other clinical criterion or at least two other clinical 

criteria and at least one laboratory criterion and/ or positive culture due to an organisms that is not a 

common contaminant from a normally sterile body site in a neonates with age 3-27 days. 
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2.1.3  Study Procedures 

Enrolment 

Neonates diagnosed by the attending physician as having pSBI were identified through a 

daily review of all neonatal medical records and hospital admission registries from Monday 

through Friday.  Clinical data were collected by research nurses from maternal and neonatal 

medical records using a standardized data entry form.  Collected information included 

maternal and neonatal demographics, sepsis risk factors, clinical presentation, care received, 

pertinent laboratory findings, and outcome.  Results of blood culture, FBC with differential 

count, CRP and CSF parameters (culture, cell count and chemistry) were obtained from the 

National Health Laboratory Service (NHLS) electronic laboratory system. Data collection 

used paper based digitized forms using a digital pen, with information transmitted 

electronically, and central data storage and management using the Xcallibre system 

(Xcallibre, Durban, South Africa).  

 

 Specimen collection from cases and controls 

Clinical specimens for the study included approximately 0.5 -1.0 ml of whole blood and 

naso- and oro-pharyngeal (NPOP) swabs. Attending physicians were requested, when they 

took blood for routine tests which included CSF and blood culture, to take an extra 0.5 - 1 ml 

of blood in a ethylenediaminetetraacetic acid (EDTA) containing sterile tube, and an extra 0.5 

- 1 ml of cerebrospinal fluid (CSF) in a plain sterile tube for TAC concurrently. The blood 

and CSF for TAC were only taken if sufficient volume (0.5 - 1ml) had been obtained for 

blood and CSF culture.  In order to reduce contamination during venipuncture, the study 

provided gloves, cotton wool and chlorhexidine solution for cleaning of the skin. Extra blood 

taken for TAC was labeled with a laboratory code similar to that used for blood cultures for 

each patient and immediately stored in a -2⁰C to 8⁰C fridge until informed consent was 

obtained. The extra blood and CSF were taken before consenting to avoid a second 

venipuncture within a short period of time, thus minimizing the risks associated with 

venipuncture. Collection of the required blood and CSF samples prior to consenting was 

approved by the Human Research Ethics Committee. After reviewing the records and 

assessing the condition of the neonate, mothers were approached for consent to allow their 

infants to be enrolled in the study. NPOP swabs were taken from all neonates who were 

consented using flocculated swabs. The exceptions were those who were intubated or on 
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nasal continuous positive airway pressure, who only had an oropharyngeal swab taken. Both 

swabs from each case were immediately placed in a specimen bottle with Universal Transport 

Media (UTM) (Copan Diagnostics, Murrieta, CA, USA). Blood from controls was collected 

by a study doctor. NPOP swabs were collected by a study nurse from both cases and controls.   

 

Blood culture processing 

Blood culture bottles (BacT/ALERT® PF bottle) and other specimens for routine tests (FBC, 

CRP and CSF) were collected from the wards hourly and taken to the CHBAH NHLS 

laboratory. The microbiology laboratory used an automated continuous monitoring blood 

culture system (BacT/Alert system, BioMerieux, Marcy l’Etoile, France).  If bacterial growth 

was detected, a Gram stain was performed and the sample sub-cultured onto appropriate 

media and incubated overnight. Further identification and antimicrobial susceptibility was 

performed with the automated Vitek system (BioMerieux, Marcy l’Etoile, France) using 

breakpoints annually published by the Clinical and Laboratory Standards Institute.
319

   

 

Storage of specimens for TAC 

The NPOP swabs were collected and placed in 1 mL Universal Transport Media (UTM, 

Copan Diagnostics, Murrieta, CA, USA). Blood and CSF specimens were collected in 

standard EDTA blood collection tubes and plain tubes respectively and were placed in a -2 to 

8⁰C fridge for not more than 72 hours, after which they were placed in a -70⁰C freezer. Only 

samples from cases identified to fulfil the protocol-defined criteria for sepsis had samples 

tested by TAC, which was undertaken at the National Institute for Communicable Diseases 

(NICD).   Blood, CSF and NPOP swabs in UTM were transported to the NICD laboratory on 

dry ice and stored at -70°C until processing. 

 

Molecular testing of specimens using TAC 

The nucleic acid extraction, procedures and analysis for TAC were performed at NICD as 

described in previous studies
134, 320

.  To determine if the positive amplification of the E. coli/ 

Shigella spp. target in study specimens was due to the presence of residual E. coli DNA in the 

enzyme mastermix, the assay was repeated as an individual single-plex real-time PCR 

reaction using an ultra-purified DNA enzyme (Phoenix Hot Start Taq DNA Polymerase, 

Enzymatics, Beverly, MA, USA). A nuclease free water negative control was used as 

template in reactions using this ultra-purified polymerase. A negative signal in this negative 
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control indicates no residual E coli DNA in the reaction mix. For this study, original 

specimen or extracted nucleic acid from specimens in which amplification was observed for 

the E. coli/Shigella spp. assay on TAC with a threshold cycle (Ct) value ≥ 30 were shipped to 

the CDC for further testing. If no extracted nucleic acid was available from the first 

extraction, the original specimen was re-extracted at CDC using the MagNA Pure Compact 

instrument (Roche).
134, 320

 Each extract was tested in triplicate 25 µl reactions on the Applied 

Biosystems 7500 real-time PCR instrument (Life Technologies). All specimens in which 

amplification was observed in at least one reaction, regardless of the Ct value, were assigned 

a positive final result, whereas specimens exhibiting no amplification in any reactions were 

considered negative for E.coli/Shigella spp.  

 

2.1.4 Sample size considerations 

The study was planned to be conducted over a 12 month period, during which we estimated 

that 22 000 live births would occur at CHBAH and an additional 10 000 in the surrounding 

midwife obstetric units (MOUs). Based on a previous study
37

 conducted on women 

delivering at CHBAH, we estimated an incidence for protocol defined EOS of 35 per 1000 

live births. We therefore anticipated that there would be approximately 800 neonates (cases) 

eligible for testing using TAC over a 12 month period. Furthermore, we estimated that 500 

children would be admitted from home to the general paediatric wards monthly, 

approximately 10% of whom would be neonates (0-27 days of age) with protocol defined 

CAS,  resulting in approximately 600 neonates with CAS   over the study period. Controls 

were enrolled at a ratio of 1 control per 2-3 cases. Based on the estimate of 800 cases with 

protocol defined EOS and 600 cases of protocol defined CAS, we planned to enroll 250-400 

and 200-300 controls for EOS and CAS cases respectively. Cases and controls were not 

matched for any characteristics.    

2.1.5 Data analysis  

Data were entered into Excel 2010 and statistical analyses were carried out using SAS 

version 9.2 (Carey, NC; USA). Analyses were performed with cases stratified according to 

HIV exposure. The chi-square test was used to compare proportions with p-values of <0.05 

indicating significance. The Student’s t-test was used to compare means from data with 

normal distribution. The Wilcoxon Mann Whitney U test was used to compare medians from 
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non-parametric data. Odds ratios with 95% confidence intervals were determined to compare 

cases and controls. A multivariate analysis was performed to determine predictors of culture-

proven sepsis, and mortality utilizing those variables which on univariate analysis had a p-

value of <0.2.  

   

The incidence of pSBI, protocol defined sepsis, culture- confirmed sepsis and specific 

pathogens was expressed per 1000 live births for both EOS and CAS. Since most neonates 

who are admitted to CHBAH are born within Soweto, the number of live births was estimated 

as those born in CHBAH, and the seven midwifery obstetric units which   in Soweto and 

surrounding areas namely Lenasia South, Lillian Ngoyi, Mofolo, Zola, Chiawelo, Itireleng 

and Stretford Community Health Centres. In estimating the incidence for the birth cohort, 

adjustment was made for the days when enrolment did not occur and for non-enrolment due 

to non-eligibility and refusal of consent. The adjustment factor used was calculated from the 

following equation: 

(Number presenting with pSBI/ Number screened) x (Number eligible for study/ Number 

enrolled).  

 

Further statistical analysis was performed by a statistician from CDC, and is as detailed 

below. A non-parametric Bayesian latent class regression approach was developed to 

estimate the pathogen proportions for each pathogen class.  This approach was based on the 

Partially Latent Class Model (pLCM) developed by Wu.
321

 The relationship between 

observed binary test results and modeled population-level pathogen proportions can be 

summarized by a basic linear mixture model of pathogen classes. We extended the basic 

aetiologic model to include date of enrolment, maternal HIV status, and severity of infection 

as covariates.   Parameters in the model were estimated under a Bayesian analysis framework 

with Gibbs sampling. A non-parametric Bayesian approach was applied to model the 

covariates.  Gibbs sampling generates a chain of samples each of which is correlated with 

nearby samples. Samples from the beginning of the chain are called the burn-in period as they 

may not accurately represent the desired distribution. The burn-in period is the set of initial 

values that start off the estimations.  The first few estimations are usually not representative 

of the distribution that we want to generate.  Over time, the estimates get closer to the “best” 

answer and we used several thousand of the last iterations from the Gibbs sampler to report 

the mean and confidence intervals of the value that we were trying to estimate. 
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The complete pathogen class list included the pathogen targets tested by PCR plus an 

“other/none” class for episodes that could not be attributed to one of the evaluated pathogen 

classes. Modelled pathogens varied across covariate strata and were selected by a stepwise 

procedure. Due to low the overall prevalence, pathogens not selected for modelling in any 

strata were incorporated into the “other/none” class.  For pathogens included in some strata 

but not others, the pathogen proportion in excluded strata was set to zero. 

 

In addition to estimated pathogen proportions, the proportion of cases attributed to pathogens 

identified by blood culture but not included in our etiologic models were estimated indirectly 

by calculating the product of the number of blood culture isolates in this “other blood 

culture” class and the averaged etiologic proportion attributed to modeled pathogens that 

included blood culture (Escherichia coli,  Group A streptococcus,  Group B streptococcus, 

Haemophilus influenzae, Klebsiella pneumoniae, Neisseria meningitides, Staphylococcus 

aureus, and Streptococcus pneumoniae). The final estimate was calculated as the sum of 

these pathogen-specific etiologic proportions divided by the total blood culture isolates for 

these pathogens.  Estimated incidence was calculated as the product of the pathogen 

proportion and total number of cases divided by the number of live births in the catchment 

population during the study period.        

 

The burn-in period for the Gibbs sampler was 50,000 iterations with samples taken from 

every 50 iterations post burn-in to generate 3,000 samples for the calculation of posterior 

distributions of model parameters.  Posterior means and the corresponding 95% credible 

intervals were generated from the corresponding samples. Model convergence was assessed 

through trace and other diagnosis plots. Model assumptions were examined using interim 

model outputs by stopping the Gibbs Sampler at random cycles.  Model fit to input data was 

evaluated by comparing the fitted and observed number of positives for each PCR test and 

blood culture.  Programming and analysis were conducted using the R platform version 3.2.3. 
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2.2 Vitamin D Status and Neonatal Sepsis 

2.2.1 Study design and setting 

We undertook a prospective cohort study to determine the role of vitamin D status in the 

pathogenesis of neonatal sepsis at CHBAH in Soweto, Johannesburg, South Africa between 

March 2013 and November 2014. Soweto has latitude of 26°S, an average elevation of 

1632m and a temperate climate. The average daily sunshine hours vary between 7.7 and 9.4 

hours per month over the year.  The setting is as described under section 2.1.1 above.   

2.2.2 Study population 

All mothers and their infants who were born in the hospital during weekdays between 08h00 

and 14h00 were eligible for inclusion in the study, provided they did not have severe 

congenital abnormalities. Infants were stratified into well and sick neonates based on whether 

or not they were admitted to a neonatal ward and had a diagnosis of suspected sepsis assigned 

by the attending physicians.  

2.2.3 Study Procedures 

The study was conducted over an 18 month period to cover all seasons of the year, enrolling 

8-12 neonates a month. Selection of patients was based on a convenience sample, enrolling 

the first two consenting participants screened between 08h00 and 14h00 on weekdays who 

had delivered newborns meeting the inclusion criteria. Post-delivery, placentas were kept 

until the mother was approached for consent and the neonate had been assessed for eligibility. 

After the neonate had been weighed and assessed by the attending physician, mothers were 

approached for consent for enrolment into the study following which blood was collected into 

EDTA tubes from the mother and placental side of the umbilical cord from both healthy 

newborns and those suspected to have sepsis.  Blood samples were promptly refrigerated at 2 

to 8⁰C and centrifuged at 2000g for 5 minutes within 6 hours of collection. Processed serum 

was then refrigerated at -70⁰C until the assays were performed on all samples at the end of 

the study. 25(OH)D levels were measured in both maternal and cord blood samples. C-

reactive protein and interleukin 6 (IL6) were measured in the cord blood samples only.  
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Clinical data 

The maternal data collected included race, age, gravidity, HIV status, and mode and month of 

delivery and the neonatal data included birth weight, gestational age, Apgar score, and 

placement of the infant post-delivery (admitted or not). If the neonate was admitted, medical 

records were reviewed and data on clinical signs, white cell and platelet counts, blood culture 

and CRP were collected.   

 

Laboratory assays for 25(OH)D, C-reactive protein, and interleukin 6 

These tests were conducted in the research laboratory of the South African Medical Research 

Council (SAMRC)/ Developmental Pathways for Health Research Unit (DPHRU), University 

of the Witwatersrand, South Africa. This laboratory participates in the external vitamin D 

quality assurance system, DEQAS.  

 

25(OH)D assay 

25(OH)D levels were measured in both maternal and cord blood samples using the Liaison 

chemiluminescent immunoassay, (DiaSorin, Saluggia, Italy). The inter-assay CV for lower 

and higher controls was 10% and 9%, respectively, the intra-assay CV was 8% and 6%, 

respectively.  Vitamin D deficiency was defined as a 25(OH)D concentration of <30 

nmol/L.
226

  To assess seasonal variation in 25(OH)D concentrations, the seasons were divided 

as follows: summer (December to February), autumn (March to May), winter (June to 

August) and spring (September to November). 

 

C-reactive protein and interleukin 6 

C-reactive protein and IL-6 assays were performed using an Immulite 1000 automated 

immunoassay system. The detectable ranges for CRP were 0.3 mg/L for lower level and 100 

mg/L for upper level; and for IL-6 the lower detectable level was 2 pg/mL and upper level 

was 1000 pg/mL.  CRP >10 mg/L or IL-6 >70 pg/mL were considered to be suggestive  of 

probable clinical sepsis.
28

 

 

Identification of infants with sepsis 

Infants were identified as having suspected sepsis if they had clinical signs suggestive of 

sepsis as documented by the attending physician, had blood taken for full blood count and 

culture, and were started on antibiotics.  C-reactive protein was done as part of standard 
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hospital practice in newborns with suspected sepsis only if their clinical signs had not 

resolved by 12-24 hours as assessed by the attending physicians, or if they had abnormal full 

blood count. Because of low sensitivity of full blood count, CRP and blood culture in 

diagnosing sepsis, serum IL-6 at birth was also assessed in all neonates who had clinically 

suspected neonatal sepsis. Therefore for this study, a laboratory based definition of sepsis 

was defined as the presence of clinical signs with CRP>10 mg/L and/or IL6>70 pg/mL 

and/or a positive blood culture due to an organism not considered to be a contaminant. Serum 

PCT was considered for inclusion as one of the biomarkers for defining sepsis but it was not 

included because of its high cost.The main focus of the study was a comparison of cord 

25(OH)D levels between newborns with and without protocol defined sepsis.   

2.2.4 Sample size estimation   

Sample size estimation for pregnant mothers: We estimated that we needed to enrol 320 

pregnant women,  based on an estimated  prevalence of vitamin D deficiency (25(OH)D <30 

nmol/L) during pregnancy of 3.4% at CHBAH,
261

 within 2% confidence limits, that is 2% on 

either side of 3.4% and a 95% confidence level.  

 

Sample size for infants with early-onset sepsis: Using a significance of 0.05 and a power of 

90% and assuming that about 5% of well neonates at birth will have vitamin D deficiency 

(<30 nmol/L)
261

  and that the odds of neonates with clinical EOS having vitamin D deficiency 

is 1.5 fold greater, and that 27% of neonates with clinical signs suggestive of sepsis will have 

clinical EOS,
57

  320 neonates with suspected  EOS and 320 well neonates needed to be 

enrolled.  

2.2.5 Data analysis 

Frequencies and percentages were used to report dichotomous or categorical variables, while 

means with standard deviations were used to report continuous variables. In order to assess 

the relationship between 25(OH)D levels and HIV status, mothers were stratified into HIV 

negative and HIV positive, and newborns into HIV-unexposed and -exposed. Neonates were 

grouped according to gestational age (<30, 30-34, 35-37 and >37 weeks) and birth weight 

(1000-1499, 1500-1999, 2000-2499 and ≥2500 grams).  Comparisons of 25(OH)D levels 

between newborns  with and without sepsis; and between HIV infected and non-infected 

mothers were performed using Student’s t-test and Mann-Whitney U tests for normally and 
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not normally distributed data respectively.  Differences were considered to be significant if 

the p-value was <0.05. Correlations between cord blood and maternal 25(OH)D 

concentrations were assessed using the Pearson test. Multivariate logistic regression analyses 

were performed to determine factors associated with vitamin D deficiency or sepsis, using 

variables that had a correlation with a p-value of <0.2 on univariate analysis. 

2.2.6 Ethical considerations 

Ethical approval to conduct the study was obtained from the University of the Witwatersrand 

Human Research Ethics Committee (M120651), and permission to conduct the study at 

CHBAH was obtained from the hospital Chief Executive Officer. Written, informed consent 

was obtained from the mothers for themselves and their newborns for study inclusion.  
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3 RESULTS  

3.1 Epidemiology of Neonatal Sepsis and HIV Exposure as a Risk Factor  

3.1.1 Early-onset Sepsis 

Number of neonates screened and enrolled with early-onset sepsis 

There were 34 808 live births over the study period of 13 months throughout the study area in 

the Soweto clinics and CHBAH. A total of 4 045 neonates with ages between 0-2 days were 

admitted to the neonatal unit for suspected EO-pSBI by the attending physicians. Of these 

neonates, 3 323 were screened for study eligibility, 3013 (90.7%) were assessed as being 

eligible. The reasons for non-eligibility (n=310) among the others included mother being <18 

years of age and therefore unable to consent independently (n = 147; 47.4%), anticipated 

immediate demise (n = 76, 24.5%) and major congenital abnormalities (n = 49, 15.8%). Of 

the 3 013 eligible neonates with EO-pSBI, a further 389 (12.9%) were not enrolled, the 

commonest reason being a refusal to give consent (n=208/389; 53.5%). Hence a total of 2624 

(79.0%) of the original 3323 neonates with EO-pSBI who had been screened for eligibility 

were finally enrolled in the study (Figure 3.1). All patients had blood cultures done but 

lumbar puncture was not done unless a neonate subsequently had a positive blood culture. 

This was done as part of standard hospital protocol for working up neonates with EO-pSBI 

 

Maternal and Infant Characteristics 

All enrolled (EO-pSBI) 

Maternal and neonatal characteristics of enrolled newborns with early-onset pSBI stratified 

according to maternal HIV-status are shown in (Table 3.1). Most of the women of these pSBI 

cases had attended antenatal care (94%), the proportion being slightly higher among HIV- 

infected (97%) than HIV-uninfected women (95%) (p=0.012). Ninety eight percent of the 

mothers delivered either in hospital or at the clinic,  and 55% were delivered by Caesarean 

section, and the percentage being slightly lower among HIV-infected (52%) than HIV-

uninfected women (57%;  p=0.019).  Seven percent of mothers had prolonged rupture of 

membranes (PROM), which was also more common among HIV-infected (9%) than HIV-

uninfected women (6%; p= 0.002). Nine percent of mothers received intrapartum antibiotics, 

(12% and 8% in HIV-infected and HIV-uninfected mothers respectively (p=0.004)). The 
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amniotic fluid was meconium-stained in 20% of women with no differences by maternal HIV 

status.  Infants born to HIV-infected women were more likely to have a lower birth weight 

and to be born preterm than those born to HIV-uninfected women. Eighteen percent of 

infants had an Apgar score <7 at 5 minutes with no differences between HIV-exposed and -

unexposed newborns. Eighty two percent of neonates with EO-pSBI were enrolled on the day 

of birth with only 1 percent of neonates being enrolled on day 2 of life.  
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Figure 3.1:  Number of neonates who were screened for and enrolled with early-onset 

presumed serious bacterial infection 

 

Protocol defined EOS 

Among the 2624 neonates enrolled with early-onset pSBI, 1231 (46.9%) met the criteria for 

protocol defined EOS. Their maternal and infant characteristics are listed in Table 3.2.  

Maternal HIV status was unknown for 90 infants (7.3%); and of those with known maternal 

HIV status, 359 (31.5%) were HIV exposed.  Maternal characteristics of the protocol defined 
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EOS cases were similar to those of the overall group with EO-pSBI, with 93% of mothers 

having attended antenatal care, 96% born in a healthcare facility, and 47% delivered  by 

Caesarean section. Twenty-three percent of protocol-defined EOS cases were exposed to 

meconium stained amniotic fluid and 5% were born to mothers with PROM. Only 9% of 

women who gave birth to neonates with protocol defined EOS received intrapartum 

antibiotics.  Forty eight percent of cases with protocol defined EOS were born preterm and 

56% were low birth weight (birth weight <2500 grams). About a fifth of cases with EOS 

(21%) had an Apgar score <7 at 5 minutes. A higher proportion of HIV-exposed newborns 

with protocol defined EOS were born to mothers who did not receive antenatal care (6% vs 

2%, p=0.001), had PROM (7% vs 4%, p=0.023), or had received intrapartum antibiotics 

(12% vs 7%, p=0.008) than those who were HIV unexposed. The HIV exposed compared to 

HIV unexposed protocol defined EOS cases were also more likely to be born preterm 

(gestation age <37 weeks) (56% vs 41%, p<0.001) and be of low birth weight (<2500 grams; 

67% vs 48%, p<0.001) (Table 3.2). 
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Table 3.1:  Maternal and infant characteristics of neonates admitted with early-onset possible serious bacterial infection in Soweto, 2013-14 

 

 

 

 

 

 

  

Maternal characteristics 

All enrolled 

n = 2624* 

HIV-infected 

n = 845 

HIV-uninfected 

n = 1640 

HIV-infected vs  

HIV-uninfected 

    n/N (%) n/N (%) OR (95% CI) p-value 

Antenatal care 2442/2612 (93.5) 801/839 (95.5) 1592/1636  (97.4) 0.57 (0.36-0.89) 0.012 

Healthcare facility births 2523/ 2617 (96.4) 819/843 (97.3) 1600/1637 (97.7) 0.82 (0.49-1.39) 0.469 

Vaginal delivery 1224/2624 (46.6) 407/845 (48.2) 709/1640 (43.2) 1.22 (1.03-1.44) 0.019 

Prolonged rupture of membranes 174/2589 (6.7) 77/837 (9.2) 94/1615 (5.8) 1.64 (1.20-2.24) 0.002 

Meconium stained amniotic fluid 516/2591 (19.9) 169/740 (20.1) 331/1616 (20.5) 0.98 (0.79-1.20)  0.832 

Intrapartum antibiotics 243/2592 (9.4) 101/841 (12.0) 136/1614 (8.4) 1.48 (1.13-1.95) 0.004 

Infant Characteristics 

All enrolled 

n = 2624 

HIV-exposed 

n = 845 

HIV-unexposed 

n = 1640 

HIV-exposed vs  

HIV-unexposed 

    n/N (%) n/N (%) OR (95% CI) p-value 

Male 1400/2619 (53.5) 469/845 (55.5) 862/1636 (52.7) 1.12 (0.95-1.32) 0.183 

Gestational Age  

 

 

  
<0.001 

< 30 weeks 344 (13.1) 111 (13.2) 177 (10.8) 1.58 (1.21-2.06) 

 30-34 weeks 688 (26.2) 271 (32.1) 383 (23.4) 1.78 (1.47-2.16) 

 35-37 weeks 185 (7.1) 74 (8.7) 101 (6.2) 1.84 (1.34-2.55) 

 >37 weeks 1404 (53.6) 388 (46.0) 977 (59.6) Ref 

     Median Gestational Age (weeks) (25th -75thcentile) 40 (32-40) 36 (32-40) 40 (33-40)  <0.001 

Birth weight  

 

 

  
<0.001 

<1000 grams 172 (6.6) 47 (5.6) 100 (6.1) 1.30 (0.90-1.88) 

 1000-1499 grams 381 (14.5) 134 (15.8) 208 (12.7) 1.78 (1.38-2.29) 

 1500-1999 grams 489 (18.6) 207 (24.5) 255 (15.6) 2.24 (1.78-2.80) 

 2000-2499 grams 378 (14.4) 145 (17.2) 217 (13.2) 1.84 (1.44-2.36) 

 ≥2500 grams 1204 (45.9) 312 (36.9) 860 (52.4) Ref 

     Median Birth Weight (grams) (25th -75thcentile) 2375 (1600-3070) 2115 (1550-2890) 2600 (1680-3185)  <0.001 

Apgar score at 5 min. <7 480/2624 (18.3) 140/845 (16.6) 282/1640 (17.2) 0.96 (0.77-1.19) 0.693 

Age at enrolment (days) 

 

 

  

0.277 

   0 2160 (82.3) 707 (83.7) 1342 (81.8) 1.14 (0.91-1.42) 

    1 - 2 days 464 (17.7) 138 (16.3) 298 (18.2) Ref 

    Median age at enrolment    (25th -75th centile) 0 (0-0) 0 (0-0) 0 (0-0)   0.569 

*In 139 HIV status was not recorded.      
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Table 3.2:  Maternal and infant characteristics of neonates admitted with early-onset defined sepsis  

Maternal Characteristics 

All enrolled 

N = 1231* 

HIV-infected 

N = 389 

HIV-uninfected 

N = 786 

HIV-infected vs 

HIV-uninfected 

    n (%) n (%) OR (95% CI) p-value 

Antenatal care visit 1136/1221 (93.0) 359/383 (93.7) 763/782 (97.6) 0.37 (0.20-0.69) 0.002 

Healthcare facility births 1184/1228 (96.4) 372/387 (96.1) 770/786 (98.0) 0.52 (0.25-1.05) 0.069 

Vaginal delivery 558/1231 (45.3) 178/389 (45.8) 337/ 786 (42.9) 1.12 (0.88-1.44) 0.349 

Prolonged rupture of membranes 60/1231 (4.9) 28/387 (7.2) 32/779 (4.1) 1.82 (1.08-3.07) 0.023 

Meconium stained amniotic fluid 277/ 1231 (22.5) 86/388 (22.2) 185/780 (23.7) 0.92 (0.68-1.22) 0.554 

Intrapartum antibiotics 103/1120 (8.4) 46/388 (11.9) 56/ 779 (7.2) 1.74 (1.15-2.62) 0.008 

Infant Factors 

All enrolled 

N = 1231 

HIV-exposed 

N = 389 

HIV-unexposed 

N = 786 

HIV-exposed vs 

HIV-unexposed 

    n (%) n (%) OR (95% CI) p-value 

Male 675/1231 (45.2) 213/389 (45.2) 429/784 (45.3) 1.00 (0.78-1.28) 0.991 

Apgar score <7 at 5 minutes 254/1231 (20.6) 79/389 (20.3) 153/786 (19.5) 1.05 (0.78-1.43) 0.730 

Gestational age 

 

 

  
<0.001 

<30 weeks 200 (16.2) 67 (17.3) 109 (13.9) 1.66 (1.17-2.36) 

 30 - 34 weeks 307 (25.0) 123 (31.7) 168 (21.4) 1.98 (1.48-2.65) 

 35 - 37 weeks 80 (6.5) 28 (7.2) 49 (6.2) 1.55 (0.94-2.54) 

 >37 weeks 643 (52.3) 170 (43.8) 460 (58.5) Ref 

 Median Gestational age (weeks) (25
th

 – 75
th

) 40 (31-46) 35 (31-40) 40 (32-40)  <0.001 

Birth weight 

 

 

  
<0.001 

<1000 grams 115 (9.4) 37 (9.5) 69 (8.8) 1.67 (1.07-2.61) 

 1000 - 1499 grams 222 (18.0) 81 (20.8) 120 (15.3) 2.10 (1.49-2.97) 

 1500 - 1999 grams 195 (15.8) 85 (21.9) 103 (13.1) 2.57 (1.81-3.64) 

 2000 - 2499 grams 155 (12.6) 56 (14.4) 89 (11.3) 1.96 (1.33-2.89) 

 ≥2500 grams 544 (44.2) 130 (33.4) 405 (51.5) Ref 

 Median Birth weight (grams) (25
th

 – 75
th

) 2294 (1440-3065) 1940 (1375-2780) 2585 (1530-3200)             <0.001 

Age at onset of sepsis 

 

 

  

0.561 

Day 0 1035 (84.1) 324 (83.3) 665 (84.6) 0.91 (0.65-1.26) 

 Day 1-2 196 (15.7) 65 (16.7) 121 (15.4) Ref 

 Median age (25th-75th centile)  0 (0-0) 0 (0-0) 0 (0-0)   0.569 

*In 56 patients HIV status not recorded      
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Clinical signs  

The common clinical signs in neonates with EO-pSBI included chest wall retractions (52%) 

and tachypnoea (28%) (Table 3.3).  Twenty four percent of cases required ventilator support, 

with 80% of these receiving nasal continuous positive airway pressures (nCPAP) and the rest 

intermittent positive pressure ventilation (IPPV). Other common clinical signs were 

hypothermia (19%), hypotonia (15%), jaundice (14%), apnoea (13%) and lethargy (11%). 

Common bedside abnormal laboratory results were metabolic acidosis (29%) and 

hypoglycaemia (12%). Clinical signs and symptoms were generally similar between HIV-

exposed and -unexposed neonates, except for retractions (57% vs. 51%, p=0.007) and the 

need for assisted ventilation (28% vs. 21%, p<0.001) which were more common among the 

HIV-exposed neonates.  

 

Clinical signs of those with protocol defined EOS were similar to those with EO-pSBI and the 

common clinical signs were chest wall retractions or indrawing, and metabolic acidosis found 

in 60% and 36% of cases, respectively (Table 3.4). There was a higher proportion of neonates 

who had chest retractions (68% vs 56%, p<0.001), needed mechanical ventilation (35% vs 

25%, p<0.001), and had metabolic acidosis (40% vs 33%, p=0.011) among the HIV-exposed 

compared to -unexposed neonates, while seizures/ bulging fontanelle was seen more 

commonly in HIV-unexposed infants (3% vs 6%, p=0.033) with protocol defined EOS.  
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Table 3.3:  Clinical signs and management of neonates with early-onset possible serious bacterial infection 

  

All 

N = 2624* 

HIV exposed 

N = 845 

HIV unexposed 

N = 1640 

HIV exposed vs  

unexposed  

    n/N (%) n/N (%) OR (95% CI) p-value 

General Signs 

 

 

   Lethargy 310/2606 (11.9) 91/840 (10.8) 192/1629 (11.8) 0.91 (0.70-1.18) 0.481 

Irritability 41/2606 (1.6) 12/838 (1.4) 28/1631 (1.7) 0.83 (0.42-1.64) 0.596 

Jaundice 356/2563 (13.9) 103/832 (12.4) 234/1598 (14.6) 0.82 (0.64-1.06) 0.125 

Fever 22/2624 (0.8) 6/845 (0.7) 14/1640 (0.9) 0.83 (0.32-2.17) 0.704 

Hypothermia 509/2624 (19.4) 157/845 (18.6) 319/1640 (19.5) 0.94 (0.76-1.17) 0.601 

Gastrointestinal Tract 

 

 

   Poor feeding 18/977 (1.8) 4/292 (1.4) 13/657 (2.0) 0.69 (0.22-2.13) 0.514 

Distension 104/2605 (4.0) 37/ 840 (4.4) 61/1629 (3.7) 1.18 (0.78-1.80 0.426 

Central nervous system 

 

 

   Apnoea 333/2539 (14.1) 104/816 (12.7) 200/1590 (12.6) 1.01 (0.79-1.31) 0.970 

Seizures or bulging fontanelle 121/2602 (4.7) 31/836 (3.7) 85/1630 (5.2) 0.70 (0.46-1.07) 0.094 

Hypotonia 401/2602 (15.4) 126/839 (15.0) 241/1626 (14.8) 1.01 (0.80-1.30) 0.897 

Cardiorespiratory system 

 

 

   Tachypnoea (RR>60/min) 749/2624 (28.5) 224/845 (26.5) 484/1640 (29.5) 0.86 (0.72-1.04) 0.116 

Chest wall indrawing 1379/2597 (53.1) 475/836 (56.8) 829/1624 (51.0) 1.26 (1.07-1.49) 0.007 

Required ventilation 625/2517 (24.8) 227/810 (28.0) 336/1576 (21.3) 1.44 (1.18-1.75) <0.001 

Non-invasive ventilation (CPAP) 472/583 (81.0) 187/472 (39.6) 285/472 (60.4) 

  Invasive ventilation (CMV) 111/583 (19.0) 42/111 (37.8) 69/111 (62.2) 

  Hypotension requiring inotropes 65/2529 (2.6) 21/813 (2.6) 37/1586 (2.3) 1.11 (0.64-1.91) 0.706 

Metabolic   

 

 

   Hypoglycaemia 315/2597 (12.1) 89/837 (10.6) 206/1623 (12.7) 0.82 (0.63-1.07) 0.136 

Hyperglycaemia 193/2597 (7.4) 57/836 (6.8) 114/1624 (7.0) 0.97 (0.70-1.35) 0.852 

Metabolic acidosis 770/2598 (29.6) 257/839 (30.6) 456/1623 (28.1) 1.13 (0.94-1.36) 0.189 

Antibiotics use 

 

 

 

Not estimable N/A 

Ampicillin 2624/2624 (100) 845/845 (100) 1640/1640 (100) 

  Gentamicin 2624/2624 (100) 845/845 (100) 1640/1640 (100)     
                                    *-In 139 neonates HIV exposure status was not recorded 

                                      Required ventilation includes nasal continuous positive airway pressure (CPAP) and intermittent positive pressure ventilation (IPPV) 

                                    Hypoglycaemia = glucose <2.6 mmol/L, Hyperglycaemia = glucose >10 mmol/L; Metabolic acidosis = base deficit >10 mmol/L  



59 

 

Table 3.4:  Clinical signs and management of neonates with protocol-defined early-onset sepsis 

  
All enrolled  

N = 1231 

HIV exposed 

N = 389 

HIV unexposed 

N = 786 

HIV exposed vs  

unexposed 

    n /N (%) n/ N (%) OR (95% CI) p-value 

General Signs 

 

 

   Lethargy 183/1216  (15.0) 57/381 (15.0) 106/774 (13.7) 1.07 (0.76-1.52) 0.686 

Irritability 20/1227 (1.6) 5/387 (1.3) 15/776 (1.9) 0.67 (0.24-1.86) 0.444 

Jaundice 175/1208 (14.5) 51/378 (13.5) 116/769 (15.1) 0.88 (0.62-1.26) 0.484 

Fever 13/1231 (1.1) 4/382 (1.0) 8/778 (1.0) 0.90 (0.27-2.93) 0.857 

Hypothermia 267/1160 (23.0) 83/382 (21.7) 184/778 (23.7) 0.91 (0.68-1.22) 0.518 

Gastrointestinal Tract 

 

 

   Poor feeding 7/413 (1.7) 1/114 (0.9) 5/289 (1.7) 0.49 (0.06-4.28) 0.511 

Abdominal distension 48/1227 (3.9) 17/381 (4.5) 28/776 (3.6) 1.24 (0.67-2.29) 0.497 

Central nervous system 

 

 

   Apnoea 191/1201 (15.9) 64/375 (17.1) 111/760 (14.6) 1.20 (0.86-1.67) 0.284 

Seizures or bulging fontanelle 60/1226 (4.9) 12/380 (3.2) 47/776 (6.1) 0.50 (0.26-0.95 0.033 

Hypotonia 234/990 (23.6) 77/380 (20.3) 136/773 (17.6) 1.20 (0.88-1.63) 0.256 

Cardiorespiratory system 

 

 

   Tachypnoea (RR>60/min) 398/1231 (32.3) 108/382 (28.3) 262/778 (33.7) 0.77 (0.59-1.01) 0.064 

Chest wall indrawing 734/1222 (60.1) 256/379 (67.5) 433/773 (56.0) 1.63 (1.26-2.10) <0.001 

Required ventilation 354/1185 (29.9) 129/367 (35.1) 185/750 (24.7) 1.64 (1.25-2.15) <0.001 

Hypotension requiring inotropes 37/1179 (3.1) 9/369 (2.4) 22/750 (2.9) 0.76(0.35-1.66) 0.497 

Metabolic   

 

 

   Hypoglycaemia 163/1224 13.3) 45/380 (11.8) 107/775 (13.8) 0.83 (0.58-1.20) 0.326 

Hyperglycaemia 115/1223 (9.4) 36/369 (9.8) 67/774 (8.7) 1.12 (0.74-1.71) 0.574 

Metabolic acidosis 441/1223 (36.1) 153/380 (40.3) 254/774 (32.8) 1.38 (1.08-1.78) 0.011 

Empiric antibiotics 

 

 

   Ampicillin 1231/1231 (100) 382/382 (100) 778/778 (100) Not estimatable N/A 

Gentamicin 1231/1231 (100) 382/382 (100) 778/778 (100) Not estimatable N/A 

                           *- In 56 neonates, HIV exposure status was not recorded 

                           Assisted ventilation included nasal continuous positive airway pressure (nCPAP) and intermittent positive pressure ventilation (IPPV). 

                           Hypoglycaemia = glucose <2.6 nmol/L, Hyperglycaemia = glucose >10 nmol/L; Metabolic acidosis = base deficit >10 nmol/L
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Ancillary Laboratory Findings  

Fourteen percent of patients with early-onset pSBI had an abnormal full blood count (FBC) 

with 9% having leukopenia, 13% neutropenia, and 38% thrombocytopenia. Twenty-four 

percent also had CRP >10 mg/L, and 16% CRP >20 mg/L (Table 3.5). There were more 

children with leukocytosis (6.4% vs 4.1%; p=0.042) and neutrophilia (7.8% vs 4.2%; 

p=0.005) among the HIV-unexposed than -exposed cases. Among the protocol-defined EOS 

cases, 21% had an abnormal FBC, and 38% had CRP >10mg/L and 25% with CRP >20 mg/L 

(Table 3.6). The HIV-unexposed cases were more likely to present with neutrophilia 

compared to HIV-exposed protocol-defined EOS cases.  

 

Table 3.5:  Laboratory findings in neonates with early-onset possible serious bacterial 

infection 

  

All enrolled 

N = 2624* 

HIV-exposed 

N = 845  

HIV-unexposed 

N = 1640        

HIV-exposed vs 

HIV-unexposed  

  
n/N (%) n/N (%) n/N (%) p-value 

Number with white cell count (cells/10
9
) N = 2598 N = 838 N = 1621 0.042 

<5 x 10
9
/L 225 (8.7) 79 (9.4) 135 (8.3) 

 
5-25 x 10

9
/L 2228 (85.8) 725 (86.5) 1382 (85.3) 

 
>25 x 10

9
/L 145 (5.5) 34 (4.1) 104 (6.4)   

Median white cell count  

(25
th

 -75
th

 centile) 

12.1 

(8.41-16.6) 

11.3  

(8.04-15.2) 

12.7  

(8.94-17.5) <0.001 

Number with absolute neutrophil count N = 2306 N = 742 N = 1437 0.005 

<1.75 x 10
9
/L 306 (13.3) 102 (13.7) 186 (12.9) 

 
1.75 - 15.0 x 10

9
/L 1851 (80.3) 609 (82.1) 1139 (79.3) 

 
>15 x 10

9
/L 149 (6.4) 31 (4.2) 112 (7.8)   

Median absolute neutrophil count 

(25
th

 – 75
th

) 

6.31 

 (3.35-9.64) 

5.67 

 (3.15-9.00) 

6.89  

(3.81-10.2) <0.001 

Number with platelet count N = 2603 N = 837 N = 1627 0.641 

<100 x 10
9
/L 443 (17.0) 154 (18.4) 278 (17.1) 

 
100 - 150 x 10

9
/L 548 (21.1) 170 (20.3) 349 (21.4) 

 
>150 x 10

9
/L 1612 (61.9) 513 (61.3) 1000 (61.5)   

Median platelet count 

(25
th

 – 75
th

) 

177  

(129-227) 

177 

 (126-227) 

176  

(128-227) 0.842 

Number with c-reactive protein N = 1622 N = 528 N = 994 0.056 

<10 mg/L 1227 (75.6) 415 (78.6) 732 (73.6) 

 10 - 20 mg/L 154 (9.5) 48 (9.1) 95 (9.6) 

 >20 mg/L 241 (14.9) 65 (12.3) 167 (16.8)   

Median c-reactive protein 2 (1-9) 6 (1-6) 3 (1-11) <0.001 
    *-In 139 neonates, the HIV exposure status was not recorded  
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Table 3.6:  Laboratory findings in neonates with early-onset protocol-defined sepsis 

  

All enrolled 

N = 1231* 

HIV-exposed 

N=389 

HIV-unexposed 

N=786 

HIV-exposed vs 

HIV-unexposed 

  n% n (%) n (%) p-value 

Number with white cell count  N = 1214 N = 383 N = 775 0.106 

<5 x 10
9
/L 124 (10.2) 41 (10.7) 74 (9.6) 

 
5-25 x 10

9
/L 958 (78.9) 311 (81.2) 607 (78.3) 

 
>25 x 10

9
/L 132 (10.9) 31 (8.1) 94 (12.1)   

Median white cell count (x10
9
) 

(25
th

 – 75
th

) 

11.7  

(7.50-17.8) 

10.8 

 (7.15-15.9) 

12.3  

(7.94-18.7) <0.001 

Number with absolute neutrophil count N = 1102 N = 349 N = 702 0.019 

<1.75 x 10
9
/L 219 (19.9) 74 (21.3) 130 (18.5) 

 
1.75 - 15.0 x 10

9
/L 755 (68.5) 248 (71.1) 477 (68.0) 

 
>15 x 10

9
/L 128 (11.6) 27 (7.7) 95 (13.6)   

Median absolute neutrophil count (x10
9
) 

(25
th

 – 75
th

) 

6.15 

 (2.62-10.3) 

5.15 

 (2.30-9.21) 

6.99 

 (3.06-11.4) <0.001 

Number with platelet count N = 1220 N = 383 N = 781 0.440 

<100 x 10
9
/L 326 (26.7) 112 (29.2) 204 (26.1) 

 
100 - 150 x 10

9
/L 493 (40.4) 151 (39.4) 319 (40.8) 

 
>150 x 10

9
/L 401 (32.8) 119 (31.3) 258 (33.0)   

Median platelet count (x10
9
) 

(25
th

 – 75
th

) 

131 

(97-179) 

130  

(95-180) 

131  

(98-177) 0.603 

Number with c-reactive protein N = 882 N = 271 N = 567 0.247 

<10 mg/L 544 (61.7) 177 (65.3) 341 (60.1) 

 10 - 20 mg/L 122 (13.8) 37 (13.7) 76 (13.4) 

 >20 mg/L 216 (24.5) 57 (21.0) 150 (26.5)   

Median c-reactive protein (25
th

-75
th

) 5 (1-20) 3.5 (1-18) 5.0 (1-22) 0.013 

*-In 56 neonates, the HIV exposure was not recorded 

 

Organisms detected on blood culture of neonates with EO-pSBI 

Blood cultures were positive in 228 (8.7%) of 2624 EO-pSBI cases, 132 (5.0%) of which 

grew presumed contaminants, whilst 96 (3.7%) yielded an organism considered to be a 

putative pathogen.  There were no statistical significant differences in blood culture 

contamination rates (5.1% vs 4.6%, p=0.650) or pathogen-confirmed positivity between HIV-

unexposed (3.8%) and HIV-exposed neonates (3.6%; p=0.773) (Table 3.7). The cultured 

organisms considered to be contaminants were Corynebacterium species (n=59; 45%), 

Coagulase negative staphylococcus (n=57; 43%), and Bacillus species (n=15; 12%). Among 

the 96 neonates with putative pathogens, eight had more than one pathogen cultured 

concurrently. Among the 105 putative pathogens cultured from blood in neonates with EO-

pSBI, 77 (73.3%) were considered as definite pathogens and 28 (26.7%) as possible 

pathogens. Overall, 73 (69.5%) of all putative pathogens were Gram positives. The 
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commonest bacteria among the 77 definite pathogens were GBS (45.4%), Enterococcus and 

E. coli both accounting for 13.0% each. Among the organisms that were considered to be 

possible pathogens, Viridans streptococcus was the most common (82.1%). Among the 

neonates with positive blood cultures only one had a positive CSF culture and the organism 

was GBS, the same as that grown on blood culture.     
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Table 3.7:  Positive culture results and organisms isolated from neonates with early-onset 

possible serious bacterial infection 

 

  

All 

enrolled 

N = 2624*  

HIV- 

Exposed 

N = 845 

HIV- 

Unexposed 

N = 1640 

HIV- exposed vs 

HIV-unexposed 

n (%) n (%) n (%) p-value 

All patients with positive blood cultures 228* (8.7) 69 (8.2) 146 (8.9) 0.536 

Patients with positive blood culture due to  

contaminants 
132* (5.0) 39 (4.6) 84 (5.1) 0.650 

Patients with positive blood culture due to  

pathogens 
96* (3.7) 30 (3.6) 63 (3.8) 0.773 

Definite Pathogens 77* (2.9) 25 (3.0) 48 (2.9) 0.933 

Group B Streptococcus 35* (1.3) 6 (0.7) 25 (1.5) 0.106 

Enterococcus sp. 10 (0.4) 3 (0.4) 7 (0.4) 0.829 

Escherichia coli 10 (0.4) 3 (0.4) 7 (0.4) 0.828 

Acinetobacter species 3 (0.1) 1 (0.1) 2 (0.1) 0.829 

Staphylococcus aureus 3 (0.1) 1 (0.1) 2 (0.1) 0.829 

Haemophilus influenza 3 (0.1) 3 (0.4) 0 N/A 

Candida species 3 (0.1) 1 (0.1) 2 (0.1) 0.829 

Enterobacter species 2 (0.1) 0 2 (0.1) N/A 

Sphingomonas paucimobilis 2 (0.1) 1 (0.1) 1 (0.1) 0.615 

Citrobacter koseri 1 (0.0) 1 (0.1) 0 N/A 

Klebsiella pneumoniae. 1 (0.0) 0 1 (0.1) N/A 

Morganella morganii 1 (0.0) 1 (0.1) 0 N/A 

Proteus mirabilis 1 (0.0 1 (0.1) 0 N/A 

Pseudomonas species 1 (0.0) 1 (0.1) 0 N/A 

Salmonella species 1 (0.0) 1 (0.1) 0 N/A 

Possible Pathogens 28 (1.1) 7 (0.8) 21 (1.3) 0.273 

Viridans streptococcus 23 (0.9) 6 (0.7) 17 (1.0) 0.612 

Neisseria species 2 (0.1) 0 2 (0.1) N/A 

Mucor fungi 1 (0.0) 0 1 (0.1) N/A 

Other streptococcus species (mitis& bovis) 2 (0.1) 1 (0.1) 1 (0.1) 0.829 

ALL PATHOGENS 

- Gram positives† 

- Gram negatives† 

- Fungi† 

105* (4.0) 

73* (69.5) 

28 (26.7) 

4 (3.8) 

31 (3.7) 

17 (54.8) 

13 (41.9) 

1 (3.2) 

70 (4.2) 

52 (74.3) 

15 (21.4) 

3 (4.3) 

0.542 

 

 

 

 Contaminants 131* (5.0) 39 (4.6) 83 (5.1) 0.650 

Coagulase Negative Staphylococcus 59* (2.2) 18 (2.1) 36 (2.2) 0.883 

Corynebacteria species 57* (2.2) 17 (2.0) 36 (2.2) 0.280 

Bacillus species 15 (0.6) 4 (0.5) 11 (0.7) 0.741 

* -The sum of HIV exposed and unexposed is not adding up to total because not all had HIV exposure recorded 

†- percentages calculated out of the total of all pathogens 

Footnote: Eight patients grew more than one bacteria (polymicrobial), 1 Citrobacter koseri+Enterococcus, 1 Enterobacter 

cloacae+Enterococcus, 1 Escherichia coli+Enterococcus, 1 Salmonella sp + Enterococcus, 1 Staphylococcus aureus + Group 

B streptococcus, 1 Viridans streptococcus + Neisseria sp. and 2 Escherichia coli + Group B streptococcus  
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Factors associated with culture confirmed sepsis in neonates with early-onset pSBI 

On univariate analysis of all EO-pSBI cases, factors/ signs associated with culture-confirmed 

EOS were lethargy (OR: 1.81; 95% CI 1.05 – 3.11), fever (OR: 4.56; 95% CI 1.32 – 15.76), 

metabolic acidosis (OR: 1.92; 95% CI 1.29 – 3.04), severe infection (OR: 1.65; 95% CI 1.04-

2.61) and CRP >10mg/L (OR: 3.96; 95% CI 2.36 – 6.65). On multivariate analysis the 

predictors of culture confirmed sepsis among neonates with EO-pSBI were vaginal delivery 

(OR: 2.82; 95% CI 1.55 – 5.13) and CRP >10 mg/L (OR: 3.00; 95% CI 1.70 – 5.30), with 

47% of culture-confirmed cases having CRP>10 mg/L (Table 3.8). The only organism that 

was found to be isolated more commonly in vaginal deliveries than caesarean sections was 

group B streptococcus (1.90% vs 0.64%, p = 0.007).  
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Table 3.8:  Predictors of culture-confirmed sepsis in neonates with early-onset possible serious bacterial infection 

  

Culture-Positive 

sepsis 

N = 96 

Culture-Negative 

sepsis 

N = 2528  Univariate analysis Multivariate analysis 

  n/N (%) n/N (%) OR (95%CI) 

p-

value aOR (95% CI) 

p-

value 

 

Characteristics 

      HIV Exposure 30/92 (32.6) 815/2393 (34.1) 0.94 (0.60-1.46) 0.773 N/A N/A 

PROM 8/95 (8.4) 166/2499 (6.7) 1.29 (0.62-2.71) 0.500 N/A N/A 

Maternal Antibiotics 12/93 (12.9) 231/2499 (9.2) 1.45 (0.82-2.86) 0.235 N/A N/A 

Meconium stained liqour 25/95 (26.3) 491/2496 (19.7) 1.45 (0.91-2.33) 0.112 1.49 (0.79-2.83) 0.220 

Vaginal delivery 64/96 (66.7) 1160/2528 (45.9) 2.34 (1.53-3.63) <0.001 2.82 (1.55-5.13) <0.001 

Low birth weight 44/96 (45.8) 1376/2528 (54.4) 0.71 (0.47-1.07) 0.097 1.01 (0.56-1.84) 0.963 

Male sex 52/96 (54.2) 1348/2523 (53.4) 1.03 (0.68-1.55) 0.887 N/A N/A 

Apgar at 5 min <7 18/96 (18.8) 462/2528 (18.3) 1.03 (0.61-1.74) 0.906 N/A N/A 

 

General Signs 

      Lethargy 19/94 (20.2) 291/2512 (11.6) 1.93 (1.15-3.24) 0.011 1.47 (0.56-1.84) 0.491 

Irritability 1/94 (1.1) 40/2512 (1.6) 0.66 (0.09-4.88) 0.686 N/A N/A 

Jaundice 17/94 (18.1) 339/2469 (13.7) 1.39 (0.81-2.37) 0.238 N/A N/A 

Fever 3/96 (3.1) 19/2528 (0.75) 4.26 (1.24-14.6) 0.012 <0.01 (<0.01->99) 0.990 

Hypothermia 25/96 (25.8) 485/2528 (19.2) 1.40 (0.88-2.25) 0.157 0.78 (0.37-1.62) 0.500 

 

Central nervous system 

      Apnoea 12/93 (12.9) 321/2448 (13.1) 0.98 (0.53-1.82) 0.951 N/A N/A 

Seizures  9/94 (9.6) 112/2508 (4.5) 2.26 (1.11-4.62) 0.027 0.83 (0.23-3.03) 0.774 

Hypotonia 21/94 (22.3) 380/2508 (15.2) 1.61 (0.98-2.65) 0.058 0.61 (0.26-1.46) 0.265 

 

Gastrointestinal tract 

      Poor feeding 1/35 (2.9) 17/942 (1.8) 1.60 (0.21-12.4) 0.649 N/A N/A 

Abdominal distension 2/94 (2.1) 102/2511 (4.1) 0.51 (0.13-2.11) 0.347 N/A N/A 
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Table 3.8 (continued):  Predictors of culture-confirmed sepsis in neonates with earl-onset possible serious bacterial infection 

  

Culture-Positive 

sepsis 

N = 96 

Culture-Negative 

sepsis 

N = 2528  Univariate analysis  Multivariate analysis  

  n/N (%) n/N (%) OR (95%CI) 

p-

value aOR (95% CI) 

p-

value 

 

Cardiorespiratory 

Tachypnoea (RR>60/min) 25/96 (26.0) 724/2528 (28.6) 0.88 (0.55-1.40) 0.580 N/A N/A 

Chest wall indrawing 53/94 (56.4) 1326/2503 (53.0) 1.15 (0.76-1.74) 0.516 N/A N/A 

Required ventilation 20/89 (22.5) 605/2492 (24.9) 0.87 (0.53-1.45) 0.600 N/A N/A 

Hypotension  1/91 (1.1) 64/2438 (2.6) 0.41 (0.06-3.00) 0.366 N/A N/A 

Metabolic   

      Hypoglycaemia 11/93 (11.8) 304/2504 (12.1) 0.97 (0.51-1.84) 0.928 N/A N/A 

Hyperglycaemia 7/94 (7.4) 186/2503 (7.4) 1.00 (0.46-2.20) 0.995 N/A N/A 

Metabolic acidosis 42/94 (44.7) 728/2504 (29.1) 1.97 (1.30-2.99) <0.001 1.51 (0.85-2.69) 0.156 

Severe infection* 31/96 (32.3) 527/2528 (20.8) 1.81 (1.17-2.81) 0.007 0.09 (0.39-2.16) 0.840 

Laboratory findings 

      Leukopenia (WCC<5.0x10
9
) 9/91 (9.9) 216/2507 (8.6) 1.16 (0.58-2.35) 0.671 N/A N/A 

Leukocytosis (WCC>25.0x10
9
) 5/91 (5.5) 140/2507 (5.6) 0.98 (0.39-2.46) 0.971 N/A N/A 

Neutropenia 14/82 (17.1) 292/2224 (13.1) 1.36 (0.76-2.45) 0.301 N/A N/A 

Thrombocytopenia 34/93 (36.6) 957/2510 (38.1) 0.94 (0.61-1.44) 0.760 N/A N/A 

High CRP (>10 mg/L) 31/61 (50.8) 343/1561 (22.0) 3.67 (2.19-6.15) <0.001 3.00 (1.70-5.30) <0.001 

        * - Severe infection was defined as a combination of lethargy, poor feeding, admission to NICU and deaths; HIV - human immunodeficiency virus; 

PROM- prolonged rupture of membranes; RR- respiratory rate; WCC- white cell count; CRP- c-reactive protein 
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Incidence  

In assessing the incidence of sepsis, patients were stratified into three categories, including 

EO-pSBI, protocol defined EOS, and culture confirmed EOS. The incidence was expressed 

per 1000 live births, (34 808 live births over the study period). The measured incidence was 

adjusted by a factor of 1.4, to include accounting for non-enrolment of pSBI cases that did not 

occur over weekends (n=722) and for refusal to consent among the eligible neonates (n=389). 

The adjusted incidence (per 1000 live births) of early-onset pSBI was 106, of protocol defined 

EOS 49.5 and of for culture-confirmed sepsis 3.9. (Table 3.9). The odds of having early-onset 

pSBI (OR: 1.45; 95% CI 1.34-1.56), or protocol defined EOS (OR: 1.36; 95% CI 1.22-1.51) 

were higher for HIV exposed compared to HIV-unexposed newborns, with a similar trend 

observed for culture-confirmed EOS (OR: 1.29; 95% CI 0.0.89-1.87, although not statistical 

significant.  

 

The adjusted incidence (per 1000 live births) of early-onset culture confirmed GBS infection 

was 1.41 (95% CI 1.06 – 1.86); while that of Viridans streptococcus, Enterococcus species, 

and E. coli were 0.92 (95% CI 0.65- 1.30); 0.40 (95%CI 0.20-0.61) and 0.40 (95%CI 0.20-

0.61), respectively (Table 3.10). There was no statistical significant difference in incidence of 

culture confirmed EOS due to any of these organisms between HIV exposed and unexposed 

neonates.  
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Table 3.9:  Incidence of early-onset possible bacterial, protocol-confined and culture-confirmed sepsis 

  Number 

Numbers after 

adjusting for  

Non-enrolment 

Live 

births 

Incidence*  

(95% CI) 

HIV-exposed vs.  

HIV-unexposed  

OR (95% CI) 

Adjusted 

 Incidence*  

(95% CI) 

HIV-exposed vs  

HIV-unexposed 

aOR (95% CI)  

Early-onset possible  serious   

bacterial sepsis 

       

All 2624 3674 34808 

75.4  

(72.7-78.2) 

 

105.6  

(102.5-108.9) 

 

HIV exposed 845 1183 9400 

89.9  

(84.3-95.9) 

 

125.8  

(119.3-132.7) 

 

HIV unexposed 1640 2296 25408 

64.6  

(61.6-67.6) 
1.43  

(1.31-1.56) 

90.4  

(86.9-94.0) 
1.45  

(1.34-1.56) 

Protocol define  

early-onset sepsis               

All 1231 1723 34808 

35.4  

(33.5-37.4) 

 

49.5  

(47.3-51.8) 

 

HIV exposed 389 545 9400 

41.4  

(37.5-45.6)  

58.0  

(53.4-62.9)  

HIV unexposed 786 1100 25408 

30.9  

(28.9-33.1) 
1.35  

(1.20-1.53) 

43.3  

(40.9-45.9) 
1.36  

(1.22-1.51) 

Culture-confirmed  

early-onset sepsis               

All 96 136 34808 

2.79 

 (2.28-3.40) 

 

3.91  

(3.30-4.62) 

 

HIV exposed 30 42 9400 

3.19  

(2.23-4.56)  

4.47  

(3.30-6.04)  

HIV unexposed 63 88 25408 

2.48  

(1.94-3.17) 

1.29  

(0.83-1.99) 

3.46  

(2.81-4.27) 

1.29  

(0.89-1.87) 
* - incidence per 1000 live births 

 

      Footnote:  

Adjustment for non-enrolment was calculated by multiplying numbers enrolled by factor 1.4 derived from: (Number admitted with possible serious bacterial infection/ Number screened) x 

(Number Eligible/Number enrolled) 
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Table 3.10:  Incidence of Group B streptococcus, Viridans streptococcus, Enterococcus species, Escherichia coli and Staphylococcus 

aureus in neonates with early-onset sepsis 

  
Numbers  

enrolled 

Numbers after 

adjusting for  

Non-enrolment 

Live 

births 

Incidence*  

(95% CI) 

HIV-exposed vs.  

HIV-unexposed  

OR (95% CI) 

Adjusted 

 Incidence*  

(95% CI) 

HIV-exposed vs  

HIV-unexposed 

aOR (95% CI)  

Group B Streptococcus 

       

Total 35 49 34808 

1.01  

(0.72-1.40) 

 

1.41   

(1.06-1.86) 

 

HIV exposed 6 8 9400 

0.64  

(0.29-1.42)  

0.85  

(0.43-1.70)  

HIV unexposed 25 35 25408 

0.98  

(0.66-1.46) 

0.65  

(0.27-1.58) 

1.38  

(0.99-1.92) 

0.62 

(0.29-1.33) 

Viridans Streptococcus             

Total 23 32 34808 

0.66  

(0.44-0.99) 

 

0.92  

(0.65-1.30) 

 

HIV exposed 6 8 9400 

0.64  

(0.29-1.42)  

0.85  

(0.43-1.70)  

HIV unexposed 17 24 25408 

0.67  

(0.42-1.08) 

0.95  

(0.38-2.42) 

0.94  

(0.63-1.41) 

0.90  

(0.41-2.01) 

Enterococcus species             

Total 10 14 34808 

0.29  

(0.16-0.54) 

 

0.40  

(0.20-0.61) 

 

HIV exposed 3 4 9400 

0.32  

(0.10-0.99)  

0.42  

(0.16-1.13)  

HIV unexposed 7 10 25408 

0.28  

(0.13-0.58) 

1.16  

(0.30-4.48) 

0.39  

(0.21-0.73) 

1.08  

(0.34-3.45) 

Escherichia coli               

Total 10 14 34808 

0.29  

(0.16-0.54) 

 

0.40  

(0.20-0.61) 

 

HIV exposed 3 4 9400 

0.32  

(0.10-0.99)  

0.42  

(0.16-1.13)  

HIV unexposed 7 10 25408 

0.28  

(0.13-0.58) 

1.16  

(0.30-4.48) 

0.39  

(0.21-0.73) 

1.08  

(0.34-3.45) 
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Table 3.10 (continued) :  Incidence of Group B streptococcus, Viridans streptococcus, Enterococcus species, Escherichia coli 

and Staphylococcus aureus in neonates with early-onset sepsis 

 

 
Numbers  

enrolled 

Numbers after 

adjusting for  

Non-enrolment 

Live 

births 

Incidence*  

(95% CI) 

HIV-exposed vs.  

HIV-unexposed  

OR (95% CI) 

Adjusted 

 Incidence*  

(95% CI) 

HIV-exposed vs  

HIV-unexposed 

aOR (95% CI) 

Staphylococcus aureus        

Total 3 4 34808 

0.09  

(0.03-0.27) 

 

0.12  

(0.04-0.31) 

 

HIV unexposed 2 3 25408 

0.08  

(0.02-0.32) 

 

0.12  

(0.04-0.37) 

 

HIV exposed 1 1 9400 

0.11  

(0.02-0.76) 

1.35  

(0.12-14.9) 

0.11  

(0.02-0.76) 

0.90  

(0.09-8.66) 
*- incidence per 1000 live births 

Footnote:  

Adjustment for non-enrolment was calculated by multiplying numbers enrolled by factor 1.4 derived from: (Number admitted with early-onset possible serious bacterial infection / Number 

screened) x (Number eligible/Number enrolled) 
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Susceptibility of bacteria isolated from neonates with EO-pSBI  

The median time for bacterial growth detection on BactTAlert system was 7 hours. The 

median times to positive results for GBS and E. coli were shorter than for Enterococcus 

species, Staphylococcus aureus or Viridans streptococcus (Table 3.11).  All GBS isolates 

were susceptible to penicillin, ampicillin, clindamycin and cefotaxime; and 91.2% were 

sensitive to macrolides (Table 3.12). Only 14% of E. coli were sensitive to ampicillin, but all 

were sensitive to gentamicin and cefotaxime. Staphylococcus aureus were all sensitive to 

cloxacillin, gentamicin and clindamycin.  

 

Table 3.11:  Time to growth for the common pathogens isolated in neonates with early-onset 

culture-confirmed sepsis 

 

  Time to growth (hours) 

  Number* Mean ± SD Median (25-75
th

 Centile) 

Escherichia coli 7 5.0 ± 2.9 5.0 (2.0 - 7.0) 

Group B Streptococcus 34 7.8 ± 7.2 5.0 (3.0 - 9.0) 

Viridans streptococcus  21 15.6 ± 18.7 10.0 (7.0 - 13.0) 

Enterococcus sp. 8 7.4 ± 6.8 11.0 (5.0 - 17.0) 

Staphylococcus aureus 3 11.0 ± 6.0 11.0 (5.0 - 17.0) 

All 73 9.8 ± 11.5 7.0 (4.0 - 11.0) 
*- Missing results for time to growth for Escherichia coli (n=2), Group B Streptococcus (n=2), 

Viridans streptococcus (n=3) and Enterococcus (n=2). 
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Table 3.12:  Antimicrobial susceptibility of pathogens isolated from neonates with early-onset possible serious bacterial sepsis 

 

Pen= penicillin, Ampi= ampicillin, Cloxa= cloxacillin, Erythro= erythromycin, Genta=gentamicin, Cefotax= cefotaxime; NT – Not tested 

 *- Missing results for antimicrobial susceptibility for Escherichia coli (n=2), Group B Streptococcus (n=2), Viridans streptococcus (n=3) and Enterococcus (n=2). 

 

 

  Number*  

Pen 

n (%) 

Ampi 

n (%) 

Cloxa 

n (%) 

Erythro 

n (%) 

Clinda 

n (%) 

Genta 

n (%) 

Cefotax 

n (%) 

Group B streptococcus 34 34 (100) 34 (100) NT 31 (91.2) 34 (100) 31 (91.2) 34 (100) 

Viridans streptococcus  21    NT  14/15 (93.3)    NT 7/12 (63.2) 17/19 (89.5) NT  19 (90.5) 

Escherichia coli 7 NT 1 (14.3) NT NT NT 7 (100) 7 (100) 

Enterococcus faecalis 7 NT  7 (100) NT NT NT NT NT 

Staphylococcus aureus 3 NT  0 3 (100) 2 (66.7) 3 (100) 3 (100) NT 

Haemophilus influenzae 2 NT 1 (50) NT NT NT NT 2 (100) 

Enterococcus faecium 1 NT 0  NT NT NT NT NT 

Klebsiella species 1 NT 0 NT NT NT 1 (100) 1 (100) 

Enterobacter species 1 NT 0 NT NT NT 1 (100) 1 (100) 
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Predictors of mortality in neonates with early-onset presumed serious bacterial infection or 

protocol defined early-onset sepsis   

Overall the CFR for EO-pSBI cases was 9%. The CFR ranged from 6.2% among those who 

did not meet the protocol defined sepsis criteria to 17.7% among those with culture-confirmed 

EOS (Table 3.13). The odds ratios for mortality were high in protocol-defined culture 

negative EOS (OR: 1.98; 95% CI 1.49 –2.62), and culture positive EOS (OR= 3.23, 95% CI: 

1.83 – 5.70) compared to mortality in neonates who did not meet the criteria for protocol 

defined nor culture confirmed sepsis.  

 

Table 3.13:  Case fatality ratio among neonates with early-onset sepsis 

Sepsis category Total Died Survived OR (95% CI) 

All neonates with early-onset 

possible serious bacterial 

infection  2624 236 (9.0%) 2388 (81.0%) _ 

Neonates with possible serious 

bacterial infection NOT meeting 

protocol defined sepsis criteria  1393 87 (6.2%) 

1306 

(93.80%) REF 

 

Neonates with protocol-defined, 

culture negative sepsis 1134 132 (11.6%) 1003 (88.4%) 

1.98  

(1.49 - 2.62) 

 

Neonates with culture positive 

sepsis 97 17 (17.5%) 79 (83.3%) 

3.23  

(1.83 – 5.70) 

 

On multivariate logistic regression analysis,  factors which were  found to be predictors of 

death in neonates with pSBI were vaginal delivery (aOR: 2.08; 95% CI 1.39-3.10), low birth 

weight (aOR: 3.16; 95% CI 1.51-6.60),  prematurity (aOR: 2.23; 95%CI 1.14-4.36), 

hypothermia (aOR: 1.79; 95%CI 1.19-2.69), apnoea (aOR: 2.95; 95% CI 1.89 –4.60), 

hypotonia (aOR: 2.89; 95%CI 1.78-4.68), need for ventilation (aOR: 2.04; 95% CI 1.32-3.14), 

hyperglycaemia (aOR: 3.13; 95% CI 1.93-5.07), metabolic acidosis (aOR: 1.87; 95% CI 1.25-

2.82), leukocytosis (aOR: 3.43; 95% CI 1.71-6.90) and positive blood culture (aOR: 3.30; 

95%CI 1.43-7.61)  (Table 3.14).  Predictors of mortality in those with protocol-defined sepsis 

were similar to those observed with possible serious bacterial infection except for not being 

significant for metabolic acidosis (Table 3.15).  
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Table 3.14:  Predictors of mortality in neonates with early-onset possible serious bacterial sepsis 

  

Died 

N = 236 

Survived 

N = 2388  Univariate analysis Multivariate analysis 

  n/N (%) n/N (%) OR (95%CI) p-value aOR (95% CI) p-value 

Characteristics 

      Antenatal care 197/235 (83.8) 2245/2377 (94.5) 0.31(0.21-0.45) <0.001 1.07 (0.58-2.00) 0.824 

HIV Exposure 76/207 (36.7) 769/2278 (33.8) 1.14 (0.85-1.53) 0.390  N/A N/A 

PROM 11/232 (4.7) 163/2362 (6.9) 0.67 (0.36-1.25) 0.207 N/A N/A 

Maternal Antibiotics 20/233 (8.6) 223/2359 (9.4) 0.90 (0.56-1.45) 0.664 N/A N/A 

Meconium stained liquor 20/233 (8.6) 496/2358 (21.0) 0.35 (0.22-0.56) <0.001 0.60 (0.30-1.22) 0.162 

Vaginal delivery 147/236 (62.3) 1077/2388 (45.1) 2.01 (1.53-2.65) <0.001 2.08 (1.39-3.10) <0.001 

Low birth weight 200/236 (84.8) 1220/2388 (51.1) 5.32 (3.70-7.65) <0.001 3.16 (1.51-6.60) 0.002 

Prematurity 190/234 (81.2) 1003/2377 (42.2) 5.92 (4.22-8.29) <0.001 ND ND 

Male sex 120/235 (51.1) 1280/2384 (53.7) 0.90 (0.69-1.18) 0.441 N/A N/A 

Apgar at 5 min <7 89/236 (37.7) 391/2388 (16.4) 3.09 (2.33-4.11) <0.001 1.11 (0.69-1.78) 0.663 

 

General Signs 

      Lethargy 71/233 (30.5) 239/2373 (10.1) 3.92 (2.87-5.33) <0.001 1.37 (0.46-4.05) 0.572 

Jaundice 51/227 (22.5) 305/2236 (13.1) 1.93 (1.38-2.70) <0.001 1.10 (0.67-1.81) 0.706 

Hypothermia 93/236 (39.4) 416/2388 (17.4) 3.08 (2.33-4.09) <0.001 1.79 (1.19-2.69) 0.005 

 

Central nervous system 

      Apnoea 89/229 (38.9) 244/2310 (10.6) 5.38 (4.00-7.24) <0.001 2.95 (1.89-4.60) <0.001 

Seizures  14/233 (6.0) 107/2369 (4.5) 1.35 (0.76-2.40) 0.302 N/A N/A 

Hypotonia 92/230 (40.0) 309/2372 (13.0) 4.45 (3.33-5.95) <0.001 2.89 (1.78-4.68) <0.001 

 

Cardiorespiratory system 

      Tachypnoea (RR>60/min) 63/236 (26.7) 686/2388 (28.7) 0.90 (0.67-1.22) 0.510 N/A N/A 

Chest wall indrawing 166/231 (71.9) 1213/2366 (51.3) 2.43 (1.80-3.27) <0.001 1.38 (0.89-2.12) 0.152 

Required invasive ventilation 111/224 (63.0) 484/2293 (21.1) 6.35 (4.76-8.48) <0.001 2.04 (1.32-3.14) 0.001 

Hypotension requiring inotrope  29/221 (13.1) 36/2308 (1.56) 9.53 (5.72-15.89) <0.001 1.66 (0.69-1.78) 0.256 
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Table 3.14 (continued):  Predictors of mortality in neonates with early-onset possible serious bacterial sepsis 

  

Died 

N = 236 

Survived 

N = 2388  Univariate analysis Multivariate analysis 

  n/N (%) n/N (%) OR (95%CI) p-value aOR (95% CI) p-value 

Hypoglycaemia 39/230 (17.0) 276/2367 (11.7) 1.55 (1.07-2.23) 0.018 1.43 (0.84-2.41) 0.186 

Hyperglycaemia 70/233 (30.0) 123/2364 (5.2) 7.82 (5.60-10.9) <0.001 3.13 (1.93-5.07) <0.001 

Metabolic acidosis 139/232 (59.9) 631/2366 (26.7) 4.11 (3.11-5.42) <0.001 1.87 (1.25-2.82) 0.002 

Laboratory findings 

      Leukopenia (WCC<5.0x10
9
) 31/234 (13.2) 194/2364 (8.2) 1.71 (1.14-2.56) 0.009 0.97 (0.50-1.90) 0.932 

Leucocytosis (WCC>25.0x10
9
) 28/234 (12.0) 117/2364 (4.95) 2.61 (1.69-4.04) <0.001 3.43 (1.71-6.90) <0.001 

Neutropenia 56/208 (26.9) 250/2098 (11.9) 2.72 (1.95-3.80) <0.001 1.41 (0.86-2.32) 0.170 

Thrombocytopenia 99/235 (42.10 892/2368 (37.7) 1.21 (0.92-1.58) 0.179 1.06 (0.72-1.57) 0.769 

High CRP (>10 mg/L) 33/161 (20.5) 341/1461 (23.3) 0.85 (0.57-1.26) 0.416 N/A N/A 

Positive culture 16/236 (6.8) 26/2388 (3.2) 2.21 (1.27-3.86) 0.004 3.30 (1.43-7.61) 0.005 

      *- HIV- immunodeficiency virus, WCC- white cells count, CRP- c-reactive protein     
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Table 3.15:  Predictors of mortality in neonates with early-onset protocol-defined sepsis 

  

Died 

N = 149 

Survived 

N = 1082  Univariate analysis Multivariate analysis 

  n/N (%) n/N (%) OR (95%CI) p-value aOR (95% CI) p-value 

Characteristics 

      Antenatal care 128/149 (86.5) 1008/1082 (93.9) 0.41 (0.24-0.70) <0.001 1.98 (0.54-7.28) 0.306 

HIV Exposure 55/135 (40.7) 334/1040 (32.1) 1.45 (1.01-2.10) 0.045 1.05 (0.57-1.95) 0.876 

PROM 4/145 (2.8) 56/1077 (5.20) 0.52 (0.18-1.45) 0.202 N/A N/A 

Maternal Antibiotics 10/146 (6.9) 93/1077 (5.20) 0.78 (0.40-1.53) 0.466 N/A N/A 

Meconium stained liqour 16/146 (11.0) 261/1078 (24.2) 0.38 (0.22-0.66) <0.001 0.68 (0.26-1.78) 0.436 

Vaginal delivery 88/149 (59.1) 470/1082 (43.4) 1.88 (1.33-2.66) <0.001 2.13 (1.17-3.86) 0.013 

Low birth weight 126/149 (84.6) 561/1082 (51.9) 5.09 (3.21-8.06) <0.001 7.26 (2.89-18.2) <0.001 

Prematurity 120/148 (81.1) 459/1078 (42.6) 5.78 (3.76-8.87) <0.001 ND ND 

Male sex 74/148 (50.0) 598/1080 (55.4) 0.81 (0.57-1.14) 0.218 N/A N/A 

Apgar at 5 min <7 55/149 (36.9) 199/1082 (18.4) 2.60 (1.80-3.75) <0.001 1.63 (0.82-3.24) 0.162 

 

General Signs 

      Lethargy 48/148 (32.4) 135/1078 (12.5) 3.35 (2.27-4.94) <0.001 0.78 (0.34-1.82) 0.572 

Jaundice 30/145 (20.7) 145/1063 (13.6) 1.65 (1.07-2.56) 0.024 1.28 (0.63-2.60) 0.503 

Hypothermia 59/149 (39.6) 222/1082 (20.5) 2.54 (1.77-3.64) <0.001 1.36 (0.72-2.58) 0.351 

 

Central nervous system 

      Apnoea 57/146 (39.0) 134/1055 (12.7) 4.40 (3.01-6.43) <0.001 2.01 (1.02-3.99) 0.045 

Seizures  10/148 (6.8) 50/1078 (4.64) 1.49 (0.74-3.01) 0.263 N/A N/A 

Hypotonia 57/146 (39.0) 177/1078 (16.4) 3.26 (2.25-4.72) <0.001 2.52 (1.19-5.30) 0.015 

 

Cardiorespiratory system 

      Tachypnoea (RR>60/min) 44/149 (29.5) 354/1082 0.86 (0.59-1.25) 0.436 N/A N/A 

Chest wall indrawing 112/146 (76.7) 622/1076 (57.8) 2.40 (1.61-3.60) <0.001 2.36 (1.14-4.86) 0.021 

Required ventilation 93/143 (65.0) 261/1042 (25.1) 5.57 (3.84-8.07) <0.001 3.83 (1.97-7.47) 0.031 

Hypotension  19/140 (13.6) 18/1039 (1.73) 8.91 (4.55-17.4) <0.001 1.54 (0.42-5.67) 0.514 
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Table 3.15 (continued):  Predictors of mortality in neonates with early-onset protocol-defined sepsis 

 

  

Died 

N = 149 

Survived 

N = 1082  Univariate analysis Multivariate analysis 

  n/N (%) n/N (%) OR (95%CI) p-value aOR (95% CI) p-value 

Metabolic 

Hypoglycaemia 27/147 (18.4) 136/1077 (12.6) 1.55 (0.99-2.45) 0.055 1.26 (0.60-2.66) 0.546 

Hyperglycaemia 43/148 (29.1) 72/1075 (6.7) 5.71 (3.72-8.75) <0.001 2.36 (1.14-4.86) 0.022 

Metabolic acidosis 85/147 (57.8) 356/1076 (33.1) 2.77 (1.95-3.94) <0.001 1.38 (0.74-2.54) 0.311 

Laboratory findings 

      Leukopenia (WCC<5.0x10
9
) 28/147 (19.0) 96/1067 (9.0) 2.38 (1.50-3.78) <0.001 1.39 (0.61-3.21) 0.436 

Leucocytosis 

(WCC>25.0x10
9
) 26/147 (17.7) 106/1067 (9.9) 1.95 (1.22-3.11) 0.005 3.76 (1.40-10.1) 0.009 

Neutropenia 49/131 (37.4) 170/971 (17.5) 2.82 (1.91-4.16) <0.001 1.41 (0.71-2.82) 0.325 

Thrombocytopenia 94/148 (63.5) 715/1072 (66.7) 0.87 (0.61-1.24) 0.442 N/A N/A 

High CRP (>10 mg/L) 31/106 (29.3) 307/776 (39.6) 0.63 (0.41-0.98) 0.040 0.80 (0.40-1.59) 0.521 

Positive culture 16/146 (11.0) 77/1027 (7.5) 1.52 (0.86-2.68) 0.148 3.19 (1.11-9.19) 0.031 

    HIV- human immunodeficiency virus, WCC- white cell count, CRP- c-reactive protein, N/A- Not applicable, ND – Not done 
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3.1.2 Community Acquired Sepsis   

Neonates enrolled with possible serious bacterial infection 

There were 1371 neonates 3-27 days of age admitted during the study period, 919 (67.0%) of 

whom were screened for eligibility to the study.  Of the 919 screened, 137 (14.9%) were not 

eligible for enrolment, mainly due to previous hospital admission (84/137; 61.3%). Among 

the 782 eligible neonates with community-acquired pSBI (CA-pSBI), consent was not 

obtained for 146 (18.7%) neonates, the most common reason being refusal of the mother to 

participate (n=89; 61.0%). Of the 636 neonates enrolled, 11 (1.7%) were born to mothers 

whose HIV infection status was unavailable. Among the 625 neonates in whom maternal HIV 

infection status was known, 174 (27.4%) were HIV-exposed (Figure 3.2).     
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Figure 3.2:   Number of neonates with community acquired presumed serious bacterial 

infection who were screened and enrolled in the study 
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Maternal and infant characteristics 

All enrolled CA-pSBI 

Almost all mothers of neonates with CA-pSBI had attended antenatal care (98%) and were 

delivered either at a clinic or in hospital (98%), with   80% born by vaginal delivery. There 

were no differences between HIV-uninfected and HIV-infected women with regard to 

attending antenatal care, and place and mode of delivery. Only seven percent of CA-pSBI 

cases were born preterm, and 14% had birth weight <2500 grams. The odds of being low birth 

weight were greater in HIV-exposed than -unexposed (OR=1.72, 95% CI 1.07-2.76) CA-pSBI 

cases. Approximately two-thirds (68%) of CA-pSBI presented after the first seven days of 

life, at median age of 10 days. A higher proportion of HIV-unexposed (36%) presented at 

between ages 3-7 days than HIV-exposed (20%, p<0.001) neonates (Table 3.16).  

 

Protocol defined CAS 

Among the 636 neonates enrolled with CA-pSBI, 137 (22%) met the criteria for protocol 

defined CAS.  Maternal HIV status was unknown for 3 infants (2.20%); and among those 

with known maternal HIV status, 57 (42.0%) were HIV exposed.  Maternal and infant 

characteristics of neonates with protocol-defined CAS were similar to those observed in CA-

pSBI. Compared to the CA-pSBI, the protocol defined CAS group had fewer neonates who 

were males among the HIV-exposed neonates than in those who were HIV-unexposed (49.1% 

vs 68.4%, p = 0.024). A higher percentage of HIV-unexposed (36%) presented within 3-7 

days with protocol defined CAS than HIV-exposed neonates (17%, p<0.001) (Table 3.17).  
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Table 3.16:  Maternal and infant characteristics of neonates hospitalized for community acquired possible serious bacterial infection 

Maternal Factors All enrolled 

N = 636* 

HIV-infected 

N = 174 

HIV-uninfected 

N = 451 

HIV-infected vs  

HIV-uninfected 

    n (%) n (%) OR (95% CI) p-value 

Antenatal care visit 623/633 (98.4) 169/172 (98.3) 446/450 (99.1) 0.51 (0.11-2.28) 0.367 

Vaginal delivery 521/636 (81.9) 136/174 (78.2) 376/451 (83.4) 0.71 (0.46-1.10) 0.129 

Healthcare facility births 621/633 (98.1) 170/173 (98.3) 441/450 (98.0) 1.16 (0.31-4.32) 0.828 

Infant Factors 
All enrolled 

N = 636 

HIV-exposed 

N = 174 

HIV-unexposed 

N = 451 

HIV-exposed vs  

HIV-unexposed 

    n (%) n (%) OR (95% CI) p-value 

Low birth weight (<2500 g) 90/636 (14.2) 33/174 (19.0) 54/451 (12.0) 1.72 (1.07-2.76) 0.024 

Prematurity ( <37 weeks) 43/632 (6.8) 14/172 (8.1) 29/449 (6.5) 1.28 (0.66-2.49) 0.460 

Male 378/636 (59.4) 99/174 (56.9) 270/451 (59.9) 0.88 (0.63-1.26) 0.499 

Apgar score<7 at 5 minutes 71/636 (11.2) 26/174 (14.9) 45/451 (10.0) 1.58 (0.94-2.66) 0.080 

Age at enrolment       

 

<0.001 

3 - 7 days 201 (31.6) 34 (19.5) 164 (36.4) 2.35 (1.54-3.58) 
 

8 - 27 days 435 (68.4) 140 (80.5) 287 (63.6) Ref 
 

Median age at onset  (25
th

 -75
th

) days  10 (5-17)  14 (8-20)  10 (5 -15)   <0.001 

 *-In 11 neonates, the maternal HIV status was not recorded 
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Table 3.17:  Maternal and infant characteristics of neonates with community acquired protocol-defined sepsis 

Maternal Factors 

All enrolled 

N = 137 

HIV-infected 

N = 57 

HIV-uninfected 

N = 76 

HIV-infected vs  

HIV-uninfected 

    n/N (%) n/N (%) OR (95% CI) p-value 

Antenatal care visit 134/136 (98.5) 55/56 (98.2) 76/76 (100) Not estimable 

 Vaginal delivery 116/137 (84.7) 52/57 (91.2) 61/76 (80.3) 2.53 (0.87-7.51) 0.08 

Healthcare facility births 136/136 (100) 56/56 (100) 76/76 (100) Undefined 

 

Infant Factors 

All enrolled 

N = 137 

HIV-exposed 

N = 57 

HIV-unexposed 

N = 76 

HIV-exposed vs  

HIV-unexposed 

    n/N (%) n/N (%) OR (95% CI) p-value 

Low birth weight 24/137 (17.5) 11/57 (19.3) 11/66 (14.5) 1.41 (0.57-3.53) 0.459 

Preterm 12/137 (8.8) 5/57 (8.8) 7/76 (9.2) 0.95 (0.28-3.15) 0.930 

Male 83/137 (60.5) 28/57 (49.1) 52/67 (68.4) 0.44 (0.21-0.91) 0.024 

Apgar score <7 at 5 minutes 17/137 (12.4) 8/57 (14.0) 9/76 (11.8) 1.21 (0.44-3.37) 0.708 

Age at onset of sepsis         0.047 

3-7 days 36 (26.3) 10 (17.5) 25 (32.9) 2.30 (1.00-5.30) 

 7 - 27 days 101 (73.7) 47 (82.5) 51 (67.1) Ref 

 Median age at onset (25
th

 -75
th

) days  10 (5-17)  14 (8-20)  10 (5 -15)   <0.001 
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Clinical signs  

The common clinical signs in neonates with CA-pSBI included jaundice (47%), irritability 

(22%), tachypnoea (21%), chest wall retractions (21%) and abdominal distension (16%) 

(Table 3.18). The odds of presenting with the following signs, lethargy (OR: 2.48; 95% CI 

1.49-4.13), irritability (OR:2.04; 95% CI 1.37-3.03), fever (OR:2.36; 95% CI 1.41-3.92), poor 

feeding (OR:1.96; 95% CI 1.12-3.44), abdominal distension (OR:1.80; 95% CI 1.15-2.82),  

seizures or bulging fontanelle (OR:2.60; 95% CI 1.25-5.38), hypotonia (OR:2.54; 95% CI 

1.17-5.53), tachypnoea (OR:1.87; 1.24-2.81), retractions (OR:1.86; 95% CI 1.24-2.81), need 

for ventilation (OR:3.26; 95% CI 0.98-10.8) and metabolic acidosis (OR:5.06; 95% CI 1.84-

13.9) were greater, while those of presenting with jaundice (OR:0.12; 95% CI 0.08-0.19) were 

lower in HIV-exposed compared to HIV-unexposed neonates with CA-pSBI. The common 

clinical signs among the neonates with protocol defined CAS were similar to those with CA-

pSBI (                                 Table 3.19). Differences between HIV-exposed and -unexposed 

neonates with pSBI included odds being high for fever (OR: 3.11; 95% CI 1.37-7.05) and 

tachypnoea (OR: 2.90; 95% CI 1.37-6.40), but lower for jaundice (OR: 0.18 95% CI 0.08-

0.48) in HIV-exposed neonates.   
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Table 3.18:  Clinical presentation of neonates with community acquired possible serious bacterial infection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            *-In 11 neonates, the maternal HIV status was not recorded 

Clinical Signs 

All Enrolled 

N = 636 

HIV-exposed 

N = 174 

HIV-unexposed 

N = 451 

HIV-exposed vs  

HIV-unexposed 

    n/N (%) n/N (%) OR (95% CI) p-value 

General Signs 

 

 

   Lethargy 71/630 (11.3) 32/171 (18.7) 38/448 (8.5) 2.48 (1.49-4.13) <0.001 

Irritability 140/631 (22.2) 55/172 (32.0) 84/448 (18.8) 2.04 (1.37-3.03) <0.001 

Jaundice 302/624 (48.4) 27/169 (15.0) 270/444 (60.8) 0.12 (0.08-0.19) <0.001 

Fever 70/636 (11.0) 31/174 (17.8) 38/451 (8.4) 2.36 (1.41-3.92) <0.001 

Hypothermia 40/636 (6.3) 7/174 (4.0) 33/451 (7.3) 0.53 (0.23-1.22) 0.131 

Gastrointestinal Tract 

 

 

   Poor feeding 60/586 (10.2) 23/153 (15.0) 35/423 (8.3) 1.96 (1.12-3.44) 0.017 

Distension 101/631 (16.0) 38/172 (22.1) 61/448 (13.6) 1.80 (1.15-2.82) 0.010 

Central nervous system 

 

 

   Apnoea 33/630 (5.2) 14/171 (8.2) 19/448 (4.2) 2.01 (0.99-4.11) 0.051 

Seizures or bulging fontanelle 32/630 (5.1) 15/171 (8.8) 16/448 (3.6) 2.60 (1.25-5.38) 0.008 

Hypotonia 27/629 (4.3) 13/171 (7.6) 14/447 (3.1) 2.54 (1.17-5.53) 0.015 

Cardiorespiratory system 

 

 

   Tachypnoea (RR>60/min) 131/636 (20.6) 50/174 (28.7) 80/451 (17.7) 1.87 (1.24-2.81) 0.002 

Chest wall indrawing 135/628 (21.5) 50/171 (29.2) 81/446 (18.2) 1.86 (1.24-2.80) 0.003 

Required ventilation 11/ 628 (1.8) 6/169 (3.6) 5/448 (1.1) 3.26 (0.98-10.8) 0.042 

Hypotension requiring inotropes 9/601 (1.5) 3/166 (1.8) 6/424 (1.4) 1.28 (0.32-5.19) 0.727 

Metabolic   

 

 

   Hypoglycaemia 9/629 (1.4) 3/171 (1.8) 6/447 (1.3) 1.31 (0.32-5.31) 0.702 

Hyperglycaemia 40/636 (6.3) 12/171 (7.0) 26/447 (5.8) 1.22 (0.60-2.48) 0.578 

Metabolic acidosis 17/625 (2.7) 11/170 (6.5) 6/445 (1.3) 5.06 (1.84-13.9) <0.001 

Empiric antibiotics used 

 

 

   Ampicillin 636/636 (100) 176 (100) 451/451 (100) Not estimatable N/A 

Gentamicin 636/636 (100) 176 (100) 451/451 (100)     
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                                  Table 3.19:  Clinical presentation of neonates with community acquired protocol-defined sepsis 

  

All Enrolled 

N = 137* 

HIV-exposed 

N = 57 

HIV-unexposed 

N = 76 

HIV-exposed vs  

HIV-unexposed 

    n/N (%) n/N (%) OR (95% CI) p-value 

General Signs 

 

 

   Lethargy 29/135 (21.5) 16/54 (29.6) 12/76 (15.8) 2.19 (0.94-5.11) 0.067 

Irritability 54/136 (39.7) 25/56 (44.6) 28/76 (36.8) 1.38 (0.68-2.79) 0.366 

Jaundice 84/134 (62.7) 9/34 (26.5) 36/76 (47.4) 0.18 (0.08-0.48) <0.001 

Fever 33/137 (24.1) 21/57 (36.8) 12/76 (15.8) 3.11 (1.37-7.05) 0.005 

Hypothermia 10/137 (7.3) 4/57 (7.0) 6/76 (7.9) 0.88 (0.24-3.28) 0.849 

Gastrointestinal Tract 

 

 

   Poor feeding 21/122 (17.2) 9/46 (19.6) 11/67 (16.4) 1.35 (0.51-3.56) 0.545 

Distension 33/136 (24.3) 16/56 (28.6) 16/76 (21.1) 1.50 (0.67-3.39) 0.319 

Central nervous system 

 

 

   Apnoea 12/135 (8.9) 5/55 (9.1) 7/76 (9.2) 0.99 (0.30-3.29) 0.981 

Seizures or bulging fontanelle 12/136 (8.8) 7/56 (12.5) 4/76 (5.3) 2.57 (0.71-9.25) 0.137 

Hypotonia 11/136 (8.1) 7/56 (12.5) 4/76 (5.3) 2.57 (0.71-9.25) 0.137 

Cardiorespiratory system 

 

 

   Tachypnoea (RR>60/min) 40/137 (29.2) 24/57 (42.1) 15/76 (19.7) 2.90 (1.37-6.40) 0.005 

Chest wall indrawing 47/136 (34.6) 23/56 (41.1) 22/76 (28.9) 1.71 (0.83-3.54) 0.146 

Required invasive ventilation 8/134 (6.0) 5/54 (9.3) 3/76 (3.9) 2.48 (0.57-10.87) 0.214 

Hypotension requiring inotrope 6/134 (4.5) 3/54 (5.6) 3/76 (3.9) 1.43 (0.28-7.38) 0.667 

Metabolic   

 

 

   Hypoglycaemia 3/136 (2.2) 2/56 (3.6) 1/76 (1.3) 2.78 (0.25-31.4) 0.390 

Hyperglycaemia 9/136 (6.6) 4/56 (7.1) 5/76 (6.6) 1.09 (0.28-4.27) 0.898 

Metabolic acidosis 7/136 (5.1) 5/56 (8.9) 2/76 (2.6) 3.63 (0.68-19.42) 0.111 

Empiric antibiotics 

 

 

   Ampicillin 137/137 (100) 57/57 (100) 76/76 (100) Not estimatable N/A 

Gentamicin 137/137 (100) 57/57 (100) 76/76 (100)     

  

 

    *-In 4 neonates maternal HIV status was not recorded 
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Ancillary laboratory findings  

Six percent of neonates with CA-pSBI had an abnormal total white cell count (WCC), 

including 4.5% with leukopenia and 1.8% with leukocytosis (Table 3.20). Among those who 

had white cell differential count, 19% had neutropenia. There were no significant differences 

in prevalence of white cell count abnormalities and thrombocytopenia between the HIV-

exposed and -unexposed neonates. A higher proportion of HIV-exposed neonates had high 

CRP>10 mg/L (37.0%) compared to HIV- unexposed neonates (10.9%, p<0.001).  Among the 

neonates with protocol defined CAS, 18% had abnormal WCC, including 31.8% with 

neutropenia and 38.4% with CRP >10 mg/L (Table 3.21). There were no differences in 

proportion of HIV-exposed and -unexposed neonates with abnormal WCC, platelet count or 

elevated CRP among those with protocol-defined CAS.  

Table 3.20:  Laboratory findings in neonates with community acquired presumed serious 

bacterial infection 

  

All               

N = 636* 

n (%) 

HIV- exposed 

N = 174           n 

(%) 

HIV- unexposed 

N = 451            

 n (%) 

HIV-exposed vs 

HIV-unexposed 

p- value 

Number with white cell count  N = 615 N = 168 N = 436 0.152 

<5 x 10
9
/L 28 (4.5) 11 (6.5) 17 (3.9) 

 
5-25 x 10

9
/L 576 (93.7) 152 (90.5) 413 (94.7) 

 
>25 x 10

9
/L 11 (1.8) 5 (3.0) 6 (1.4) 

      Median white cell count (x10
9
) 

(25
th

 – 75
th

 centile) 

10.8  

(8.75-13.4) 

11.2  

(8.73-14.9) 

10.7  

(8.76-13.0) 0.125 

Number with absolute neutrophil count N = 582 N = 155 N = 416 0.205 

<1.75 x 10
9
/L 111 (19.1) 26 (16.8) 82 (19.7) 

 
1.75 - 15.0 x 10

9
/L 460 (79.0) 124 (80.0) 329 (79.1) 

 
>15 x 10

9
/L 11 (1.9) 5 (3.2) 5 (1.2) 

 Median absolute neutrophil count (x10
9
) 

(25
th

 -75
th

 centile) 

3.34 

 (2.16-4.97) 

3.59  

(2.16-6.29) 

3.25  

(2.16-4.46) 0.014 

Number with platelet count N = 614 N = 168 N = 436 0.823 

<100 x 10
9
/L 23 (3.7) 7 (4.2) 16 (3.7) 

 
100 - 150 x 10

9
/L 30 (4.8) 7 (4.2) 23 (5.3) 

 
>150 x 10

9
/L 561 (91.5) 154 (91.6) 397 (91.0) 

      Median platelet count (x10
9
) 

(25
th

-75
th

 centile) 

324 

 (233-422) 

367  

(276-472) 

310  

(220-404) <0.001 

C-reactive protein N = 335 N = 81 N = 248 <0.001 

<10 mg/L 278 (83.0) 51 (63.0) 221 (89.1) 

 10 - 20 mg/L 22 (6.6) 14 (17.3) 8 (3.2) 

 >20 mg/L 35 (10.4) 16 (19.7) 19 (7.7) 

 Median c-reactive protein (x10
9
) 

(25
th

 – 75
th

 centile) 

1  

(0-6) 

3  

(0-14) 

1  

(0-3) <0.001 

*-In 11 neonates, the maternal HIV status was not recorded 
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Table 3.21:  Laboratory findings in neonates with community acquired protocol-defined 

sepsis 

  

All 

N = 137* 

n (%) 

HIV- exposed 

N=57 

n (%) 

HIV- unexposed 

N=76 

n (%) 

HIV-exposed vs 

HIV-unexposed 

p- value 

Number with white cell count  N = 134 N = 56 N = 74 0.450 

<5 x 10
9
/L 14 (10.4) 8 (14.3) 6 (8.1) 

 
5-25 x 10

9
/L 110 (82.1) 43 (76.8) 63 (85.1) 

 
>25 x 10

9
/L 10 (7.5) 5 (8.9) 5 (6.8) 

        Median white cell count (x10
9
) 

(25
th

 – 75
th

 centile) 

10.1 

 (7.54-14.6) 

10.5  

(7.54-16.5) 

9.51 

 (7.54-13.3) 0.278 

Number with absolute neutrophil count N = 129 N = 50 N = 74 0.511 

<1.75 x 10
9
/L 41 (31.8) 14 (28.0) 26 (35.1) 

 
1.75 - 15.0 x 10

9
/L 78 (60.5) 31 (62.0) 44 (59.5) 

 
>15 x 10

9
/L 10 (7.8) 5 (10.0) 4 (5.4) 

  Median absolute neutrophil count (x10
9
) 

(25
th

 – 75
th

 centile) 

3.04 

 (1.63-6.38) 

3.93  

(1.66-7.91) 

2.77  

(1.60-5.64) 0.084 

Number with platelet count N = 134 N = 56 N = 74 0.662 

<100 x 10
9
/L 4 (3.0) 2 (3.6) 2 (2.7) 

 
100 - 150 x 10

9
/L 18 (13.4) 6 (10.7) 12 (16.2) 

 
>150 x 10

9
/L 112 (83.6) 48 (85.7) 60 (81.1) 

          Median platelet count (x10
9
) 

(25
th

 – 75
th

 centile) 

311  

(197-418) 

342 

 (245-423) 274 (194-387) 0.051 

Number with c-reactive protein N = 73 N = 29 N = 42 0.115 

<10 mg/L 45 (61.6) 14 (48.3) 29 (69.0) 

 10 - 20 mg/L 7 (9.6) 5 (17.2) 2 (4.8) 

 >20 mg/L 21 (28.8) 10 (34.5) 11 (26.2) 

       Median c-reactive protein (mg/L) 

(25
th

 – 75
th

 centile) 

3  

(1-40) 

10 

 (1-58) 

1.5 

 (0-22) 0.054 

*-In 4 neonates maternal HIV status was not recorded 

 

Culture   

Blood culture was positive in 160 (25.2%) of 636 the CA-pSBI, including 105/636 (16.5%) 

with presumed contaminants, whilst 55/636 (8.6%) yielded a pathogen considered to be 

significant. This yielded a culture-confirmed sepsis rate of 8.6% among the CA-pSBI cases 

and 40.1% (55/137) among those with protocol-defined community acquired sepsis. Among 

the 636 CA-pSBI cases, 540 (85%) had a lumbar puncture done, 47 (8.7%) of which had a 

positive bacterial culture. Of these, 24/540 (4.4%) were classified as presumed contaminants, 

and 23/540 (4.3%) were considered pathogenic (Table 3.22).  Among the neonates who had 

both blood and lumbar puncture done (n = 540), 45 had positive blood cultures due to 

pathogenic bacteria, of whom 11 (24.4%) also had a positive CSF culture, 8 of which (72.7%) 

had the same pathogen cultured on blood. The HIV-exposed CA-pSBI cases were more likely 
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to have a positive blood or CSF culture due to pathogenic bacteria (27/174;  15.5%) than 

those who were HIV-unexposed (38/451; 8.4%;  OR:2.00; 95% CI 1.18 – 3.38).  
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Table 3.22:  Blood or cerebrospinal fluid culture results in neonates with community acquired possible serious bacterial infection 

Blood and CSF culture results 

All 

N = 636    

HIV-exposed     

N = 174               

HIV-Unexposed 

N = 451                 

HIV-exposed vs  

HIV-unexposed 

 

n /N (%) n/N (%) n/N (%) OR (95% CI) 

Neonates with  positive blood and/or CSF culture 187/636 (29.4) 54/174 (31.0) 129/451 (28.6) 1.12 (0.77 - 1.64) 

Positive blood culture (blood culture done in all) 160/636 (25.2) 48/174 (27.6) 108/451 (24.0) 1.21 (0.81 - 1.60) 

Positive CSF culture (lumbar puncture done in 540 patients) 47/540 (8.7) 14/153 (9.1) 32/377 (8.5) 1.08 (0.56 - 2.10) 

Neonates with positive culture due to pathogens         

Blood and/or CSF 67/636 (10.5) 27/174 (15.5) 38/451 (8.4) 2.00 (1.18 – 3.38) 

Blood 55/636 (8.7) 23/174 (13.2) 30/451 (6.6) 2.14 (1.20 - 3.80) 

CSF 23/540 (4.3) 10/153 (6.5) 12/377 (3.2) 2.13 (0.90 - 5.03) 

Neonates with positive culture due to presumed contaminants         

Blood and/or CSF 120/636 (18.9) 27/174 (15.5) 91/451 (20.2) 0.73 (0.45 – 1.16) 

Blood  105/636 (16.5) 25/174 (14.4) 78/451 (17.3) 0.80 (0.49 - 1.31) 

CSF 24/540 (4.4) 4/153 (2.6) 20/377 (5.3) 0.48 (0.16 - 1.43) 

                               *-In 11 neonates maternal HIV results were not recorded 
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Organisms detected in blood of neonates with CA- pSBI 

Among the 55 neonates with positive blood cultures, 1 had 3 pathogens and 3 had 2 pathogens 

cultures, giving a total of 60 pathogens. Forty of these bacteria were considered definite 

pathogens, with GBS (35.0%), Staphylococcus aureus (30.0%), and E. coli ( 22.5%) being the 

most common definite pathogens, whilst Viridans streptococcus  was the most common 

among the “possible pathogen” (85%) category.  Gram positive bacteria constituted 76.7% of 

all pathogens. There was a higher proportion of HIV exposed neonates with GBS on blood 

culture (5.7%) compared to HIV-unexposed neonates (0.7%; OR: 6.81, 95% CI 2.11-22.0), 

whilst this did not differ for other bacteria (Table 3.23).  
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Table 3.23:  Organism isolated from neonates with community acquired possible serious bacterial infection 

 All enrolled HIV-exposed HIV-unexposed 
HIV-exposed vs 

HIV-unexposed 

  
N = 636* 

n (%) 
N = 174 

n (%) 
N = 451 

n (%) OR (95% CI) 

ALL PATHOGENS 60 (9.4) 27 (15.5) 32 (6.9) 2.41 (1.39-4.15)  

- Gram positive bacteria† 

- Gram negative bacteria† 

46 (76.7) 

14 (23.3) 

20 (74.1) 

7 (25.9) 

25 (78.1) 

7 (21.9) 
 

Definite Pathogens 40 (6.3)  21 (12.1)  18 (4.0) 3.30 (1.71-6.36) 

Group B Streptococcus 14 (2.2) 10 (5.7) 4 (0.9) 6.81 (2.11-22.0) 

Staphylococcus aureus 12 (1.9) 5 (2.9)  7 (1.5) 1.88 (0.59-5.99) 

Escherichia coli 9 (1.4) 5 (2.9) 4 (0.9) 3.31 (0.88-12.5) 

Klebsiella sp. 2 (0.3) 2 (1.2) 0 n/a 

Enterococcus sp. 1 (0.2) 0 1 (0.2) n/a 

Enterobacter species 1 (0.2) 0 1 (0.2) n/a 

Proteus mirabilis 1 (0.2) 0 1 (0.2) n/a 

Possible Pathogens 20 (3.1) 5 (2.9) 14 (3.1) 0.92 (0.33-2.60)  

Viridans streptococcus 17 (2.7) 5 (2.9) 11 (2.4) 1.18 (0.41-3.46) 

Other Streptococcus species 2 (0.3) 0 2 (0.4) n/a 

Lactobacillus species 1 (0.2) 0 1 (0.2) n/a 

CONTAMINANTS 105 (16.5) 24 (13.8) 79 (17.5)  0.75 (0.46-1.24) 

Coagulase Negative Staphylococcus 102 (16.0) 24 (13.8) 76 (16.8) 0.79 (0.48-1.30) 

Bacillus species 2 (0.3) 0 2 (0.4) n/a 

Corynebacteria 1 (0.2) 0 1 (0.2) n/a 

*-In 11 neonates, maternal HIV results were not recorded 

†-percentages calculated out of a total of all pathogens 

Footnote: 4 patients grew more than 1 organism in blood culture; 1 Group B streptococcus + Klebsiella pneumoniae + Staphylococcus aureus, 

1 Enterobacter cloacae +Proteus mirabilis, 1 Klebsiella pneumoniae + Escherichia coli and 1 Lactobacillus + Neisseria species 
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Organisms detected in cerebrospinal fluid of neonates with CA- pSBI 

Among the 540 CA-pSBI cases investigated by lumbar puncture, 23 (4.3%) cultured a 

pathogenic bacteria on CSF, including one neonate with 3 different pathogenic bacteria, 

resulting in 25 bacteria overall. Among these 25 pathogenic bacteria, 21 (84.0%) were 

considered as definite pathogen due to (GBS (9/21; 42.9%), Staphylococcus aureus (5/21; 

23.8%), Enterococcus species (4/21; 19.0%) and E. coli (2/21; 9.5%). Further, among the 9 

cases from whom GBS was cultured from CSF, seven (77.8%) also had a positive culture 

from blood. The HIV-exposed neonates with CA-pSBI were more likely to have GBS 

cultured from CSF (3.9%) than HIV-unexposed neonates (0.8%; OR: 5.09; 95%CI 1.26-20.6) 

(Table 3.24). 

 

Factors associated with blood or CSF culture confirmed sepsis in neonates with CA-pSBI 

Among the neonates with CA-pSBI, we did not identify any maternal or infant characteristics 

that were predictive of positive blood or CSF bacterial culture (Table 3.25).  
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Table 3.24:  Bacteria isolated in cerebrospinal fluid culture of neonates with community acquired possible serious bacterial infection 

  All enrolled and 

CSF taken  HIV-exposed HIV-unexposed 

HIV-exposed vs  

HIV-unexposed 

  
N = 540 

n (%) 

N = 153 

n (%) 

N = 377 

n (%) 

 

OR (95% CI)  

ALL PATHOGENS 25 (4.6) 11 (6.5) 13 (3.4) 2.17 (0.95-4.96) 

- Gram positives bacteria* 

- Gram negatives bacteria* 

  22 (88.0) 

   3 (12.0) 

11 (100) 

0 

  11 (84.6) 

   2 (15.4) 
  

Definite Pathogens 21 (3.9) 9 (5.9) 11 (2.9) 2.08 (0.84-5.12) 

Group B Streptococcus 9 (1.7) 6 (3.9) 3 (0.8) 5.09 (1.26-20.6) 

Staphylococcus aureus 5 (0.9) 3 (2.0) 2 (0.5) 3.75 (0.62-22.7) 

Enterococcus sp. 4 (0.7) 0 4 (1.1) n/a 

Escherichia coli 2 (0.4) 0 1 (0.3) n/a 

Klebsiella sp. 1 (0.2) 0 1 (0.3) n/a 

Possible Pathogens 4 (0.7) 2 (1.3) 2 (0.5) 2.48 (0.35-17.8)  

Viridans streptococcus 4 (0.7) 2 (1.3) 2 (0.5) 2.48 (0.35-17.8) 

CONTAMINANTS 24 2 (1.3) 20 (5.3) 0.24 (0.06-1.02) 

Coagulase Negative Staphylococcus 22 (4.1) 1 (0.6) 19 (5.6) 0.12 (0.02-0.93) 

Bacillus 2 (0.4) 1 (0.6) 1 (0.3) 2.47 (0.15-39.8) 

*- percentages calculated out of a total of all pathogens 

Footnote: 1 patient grew Enterococcus faecalis+ Staphylococcus aureus + Klebsiella pneumoniae 
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Table 3.25:  Predictors of culture-confirmed sepsis in neonates with community acquired serious bacterial infection 

  

Culture-Positive 

sepsis 

N = 67 

Culture-Negative 

sepsis 

N = 569 Univariate analysis Multivariate analysis 

  n/N (%) n/N (%) OR (95%CI) p-value aOR (95% CI) p-value 

Characteristics 

      HIV Exposure 27/65 (41.5) 147/560 (26.2) 2.00 (1.18-3.38) 0.009 1.38 (0.50-3.83) 0.538 

Vaginal delivery 59/67 (88.1) 462/569 (81.2) 1.71 (0.79-3.68 0.167 2.10 (0.57-7.75) 0.264 

Low birth weight 13/67 (19.4) 77/569 (10.7) 1.54 (0.80-2.95) 0.192 1.24 (0.40-3.86) 0.709 

Male sex 35/67 (52.2) 343/569 (60.3) 0.72 (0.43-1.20) 0.205 N/A N/A 

Apgar at 5 min <7 10/67 (14.9) 61/569 (10.7) 1.46 (0.71-3.01) 0.301 N/A N/A 

General Signs 

      Lethargy 11/65 (16.9) 60/565 (10.6) 1.71 (0.85-3.46) 0.128 3.72 (0.29-47.7) 0.787 

Irritability 21/66 (31.8) 119/565 (21.1) 1.75 (1.00-3.05) 0.047 0.79 (0.25-2.50) 0.685 

Jaundice 27/65 (41.5) 275/559 (49.2) 0.73 (0.44-1.23) 0.242 N/A N/A 

Fever 11/67 (16.4) 59/569 (10.4) 1.69 (0.84-3.42) 0.135 0.63 (0.14-2.75) 0.537 

Hypothermia 5/67 (7.5) 35/569 (6.2) 1.23 (0.46-3.25) 0.676 N/A N/A 

 

Central nervous system 

      Apnoea 5/66 (7.6) 28/564 (5.0) 1.57 (0.58-4.21) 0.368 N/A N/A 

Seizures  10/66 (15.2) 22/564 (3.9) 4.40 (1.98-9.76)  <0.001 1.06 (0.16-7.03) N/A 

Hypotonia 8/66 (12.1) 19/563 (3.4) 3.95 (1.66-9.42) <0.001 1.01 (0.09-11.74) 0.993 

 

Gastrointestinal tract 

      Poor feeding 12/59 (20.3) 48/527 (9.1) 2.55 (1.26-5.13) 0.007 2.71 (0.72-10.26) 0.141 

Abdominal distension 11/66 (16.7) 90/565 (15.9) 1.06 (0.53-2.09) 0.877 N/A N/A 

 

Cardiorespiratory system 

      Tachypnoea (RR>60/min) 16/67 (23.9) 115/569 (20.2) 1.24 (0.68-2.25) 0.482 N/A N/A 

Chest wall indrawing 13/66 (19.7) 122/562 (21.7) 0.88 (0.47-1.68) 0.707 N/A N/A 

Required ventilation 5/65 (7.7) 5/563 (1.07) 7.74 (2.29-26.1) 0.001 >99 (<0.01->99.9) 0.979 

Hypotension  4/65 (6.2) 5/536 (0.93) 6.96 (1.82-26.6) 0.001 >99 (<0.01->99.9) 0.980 
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Table 3.25 (continued):  Predictors of culture-confirmed sepsis in neonates with community acquired serious bacterial 

infection 

 

  

Culture-Positive 

sepsis 

N = 67 

Culture-Negative 

sepsis 

N = 569 Univariate analysis Multivariate analysis 

  n/N (%) n/N (%) OR (95%CI) p-value aOR (95% CI) p-value 

Metabolic       

Hypoglycaemia 1/66 (1.5) 8/563 (1.4) 1.07 (0.13-8.67) 0.951 N/A N/A 

Hyperglycaemia 6/66 (9.1) 34/563 (6.0) 1.56 (0.63-3.86) 0.336 N/A N/A 

Metabolic acidosis 3/66 (4.6) 14/559 (2.5) 1.85 (0.52-6.62) 0.335 N/A N/A 

Laboratory findings 

      Leukopenia (WCC<5.0x10
9
) 6/66 (9.1) 22/549 (1.8) 2.40 (0.93-6.14) 0.061 1.27 (0.17-9.61) 0.820 

Leukocytosis 

(WCC>25.0x10
9
) 1/66 (1.5) 10/549 (1.8) 0.83 (0.11-6.58) 0.859 N/A N/A 

Neutropenia 16/64 (25.0) 95/518 (18.3) 1.48 (0.81-2.73) 0.201 N/A N/A 

Thrombocytopenia 9/67 (13.40 44/553 (8.00 1.80 (0.83-3.86) 0.130 1.26 (0.29-5.43) 0.758 

High CRP (>10) 10/33 (30.3) 44/302 (14.6) 2.54 (1.14-5.72) 0.020 2.45 (0.73-8.27) 0.150 
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Incidence of community acquired sepsis   

We evaluated the incidence (per 1000 live births) of CA-pSBI, protocol defined CAS, and 

culture confirmed CAS. The live birth cohort for the study area during this period was 34 808. 

The incidence estimate was adjusted by a factor of 1.8, to adjust for non-enrolment over 

weekends and refusal of consent by mothers of some eligible neonates (Figure 3.2). The 

adjusted incidence of  CA-pSBI was 33.4, that of protocol defined CAS  7.21, and that of 

blood culture-confirmed sepsis 2.90 and that of culture-confirmed meningitis 0.92 (Table 

3.26). HIV-exposed compared to HIV-unexposed neonates were more likely to have protocol 

defined CAS (OR: 2.01; 95% CI 1.55-2.59), blood-culture confirmed CAS (OR: 2.07; 95% CI 

1.39-3.09) and culture-confirmed meningitis (OR: 2.26; 95% CI 1.19-4.13). 
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Table 3.26:  Incidence of community acquired possible serious bacterial, protocol-defined and culture-confirmed sepsis 

  

Number 

Enrolled 

Numbers after 

Adjusting for  

Non-enrolment 

Live 

births 

Incidence*  

(95% CI) 

HIV- exposed vs  

HIV-unexposed  

OR (95% CI) 

Adjusted 

 Incidence*  

(95% CI) 

HIV-exposed vs  

HIV-unexposed 

aOR (95% CI)  

Community acquired possible 

bacterial infection 

   

        

All 636 1164 34808 

18.2  

(16.8-19.6)   

33.4 

(31.6-35.4) 

 

HIV exposed 174 318 9400 

18.5 

(16.0-21.4)  

33.8 

(30.3-37.7)  

HIV unexposed 451 825 25408 

17.6 

(16.2-19.4)  

1.04  

(0.87-1.24) 

32.5 

(30.8-34.7) 

1.04 

(0.92-1.19) 

Protocol defined community 

acquired sepsis 

   

    

  

All 137 251 34808 

3.94  

(3.33-4.65)   

7.21 

(6.38-8.16) 

 

HIV exposed 57 104 9400 

6.06  

(4.68-7.86)  

11.1 

(9.14-13.4)  

HIV unexposed 77 141 25408 

3.03  

(2.42-3.79) 
2.01  

(1.42-2.83)  

5.55 

(4.71-6.54) 
2.01 

(1.55-2.59) 

Blood and/or CSF culture-confirmed  

community acquired sepsis            

  

All 67 123 34808 

1.92 

(1.52-2.44)   

3.53 

(2.96-4.22) 

 

HIV exposed 27 49 9400 

2.87 

(1.97-4.19)  

5.21 

(3.94-6.89)  

HIV unexposed 38 70 25408 

1.50 

(1.09-2.06) 
1.92 

(1.17-3.15)  

2.76 

(2.18-3.48) 
1.90 

(1.32-2.74) 

Blood culture-confirmed community 

acquired sepsis            

  

All 55 101 34808 

1.52 

(1.21-2.06)   

2.90 

(2.39-3.53) 

 

HIV exposed 23 42 9400 

2.45 

(1.63-3.68)  

4.47 

(3.30-6.04)  

HIV unexposed 30 55 25408 

1.18 

(0.83-1.69) 
2.08 

(1.21-3.57)  

2.17 

(1.66-2.82) 
2.07 

(1.39-3.09) 
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Table 3.26 (continued):  Incidence of community acquired possible serious bacterial, protocol-defined and culture-confirmed sepsis 

  

Number 

Enrolled 

Numbers after 

Adjusting for  

Non-enrolment 

Live 

births 

Incidence*  

(95% CI) 

HIV-exposed vs  

HIV-unexposed  

OR (95% CI) 

Adjusted 

 Incidence*  

(95% CI) 

HIV-exposed vs  

HIV-unexposed 

aOR (95% CI)  

CSF culture-confirmed community  

acquired sepsis            

  

All 23 42 34808 

0.67 

(0.44-0.99)   

0.92  

(0.65-1.30) 

 

HIV exposed 10 18 9400 

1.06 

(0.57-1.97)  

1.60  

(0.96-2.65)  

HIV unexposed 12 22 25408 

0.47 

(0.27-0.83) 

2.25 

(0.97-5.22)  

0.63  

(0.39-1.03) 
2.21 

(1.19-4.13) 

* - per 1000 live births 

       
 

     Footnote:  

Adjustment for non-enrolment was calculated by multiplying numbers enrolled by factor 1.8 derived from: (Number admitted with possible serious bacterial infection/ Number screened) x 

(Number eligible/Number enrolled) 
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Incidence of common bacterial infection in neonates with CAS 

The incidences of the most common bacterial infections are illustrated in Table 3.27. The 

adjusted incidence (per 1000 live births) of Staphylococcus aureus, Viridans streptococcus, 

GBS and E. coli CAS were 0.95, 0.90, 0.75 and 0.58, respectively.  HIV-exposed neonates 

had a higher incidence of Staphylococcus aureus (OR: 2.71; 95% CI 1.35-5.41), Viridans 

streptococcus (OR: 2.41; 95% CI 1.39-4.15), GBS (OR: 4.81; 95% CI 2.13-10.9) and E. coli 

(OR: 3.16; 95% CI 1.06-9.39) identified on blood and/or CSF culture than HIV-unexposed 

neonates. 
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Table 3.27:  Incidence of Staphylococcus aureus, Viridans streptococcus, Group B streptococcus and Escherichia coli in neonates with culture   

confirmed (blood and/or cerebrospinal fluid) community acquired infection 

  

Numbers 

Enrolled 

Numbers after 

Adjusting for  

Non-enrolment 

Live 

births 

Incidence*  

(95% CI) 

HIV-exposed vs  

HIV-unexposed  

OR (95% CI) 

Adjusted 

 Incidence  

(95% CI) 

HIV- exposed vs  

HIV-unexposed 

aOR (95% CI)  

Staphylococcus aureus   

 

          

All 18 33 34808 

0.52 

(0.33-0.82)   

0.95 

(0.67-1.33) 

 

HIV exposed 9 16 9400 

0.96 

(0.50-1.84)  

1.70 

(1.04-2.78)  

HIV unexposed 9 16 25408 

0.35 

(0.18-0.68) 
2.71 

(1.07-6.81) 

0.63 

(0.39-1.03) 
2.71 

(1.35-5.41) 

Viridans streptococcus            

All 17 31 34808 

0.49 

(0.30-0.79)   

0.90 

(0.63-1.27)  

HIV exposed 5 9 9400 

1.02 

(0.42-2.45)  

1.84  

(0.96-3.53)  

HIV unexposed 11 20 25408 

0.43 

(0.24-0.78) 

2.36 

(0.82-6.79) 

0.79 

(0.51-1.22) 
2.41 

(1.39-4.15) 

Group B streptococcus   

 

      

  

All 14 26 34808 

0.40 

(0.24-0.68)   

0.75 

(0.51-1.10) 

 

HIV exposed 9 16 9400 

0.96 

(0.50-1.84)  

1.70  

(1.04-2.78)  

HIV unexposed 5 9 25408 

0.20 

(0.08-0.47) 
4.87 

(1.63-14.5) 

0.35 

(0.18-0.68) 
4.81 

(2.13-10.9) 

Escherichia coli           

  

All 11 20 34808 

0.32 

(0.18-0.57)   

0.58 

(0.37-0.89) 

 

HIV exposed 5 9 9400 

0.53 

(0.22-1.28)  

2.71 

(1.07-6.82)  

HIV unexposed 5 9 25408 

0.20 

(0.08-0.47) 

2.71 

(0.78-9.34)  

0.35 

(0.18-0.68) 
2.71 

(1.07-6.81) 

* - per 1000 live births 

Footnote: Adjustment for non-enrolment was calculated by multiplying numbers enrolled by factor 1.8 derived from: (Number admitted with possible serious bacterial infection/ Number screened) x   

                   (Number eligible/Number enrolled)
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Susceptibility of bacteria isolated in neonates with CA culture-confirmed sepsis  

Among CA-pSBI in whom putative bacteria were cultured, the median time for detecting 

growth on the BactT-Alert system was 7 hours. In isolates from CA-pSBI, the median times 

to growth were shorter for Enterococcus sp., GBS and Staphylococcus aureus when compared 

to those of E.  Coli or Viridans streptococcus (Table 3.28).  All GBS isolates were 

susceptible to penicillin, ampicillin, clindamycin and cefotaxime; and 93.3% were sensitive to 

macrolides (Table 3.29).  Only 11% of E. coli were susceptible to ampicillin but all were 

susceptible to gentamicin and cefotaxime. Staphylococcus aureus were all susceptible to 

cloxacillin and 83% were susceptible to gentamicin.  

 

Table 3.28:  Time to growth for common pathogens isolated from neonates with culture-

confirmed community acquired sepsis 

    Time to growth (hours) 

 

Number Mean ± SD Median (25-75
th

 Centile) 

Enterococcus species 3 4.6 ± 1.7 2.0 (2.0 - 10.0) 

Group B streptococcus 15 5.5 ± 2.9 5.0 (3.0 - 8.0) 

Staphylococcus aureus 12 9.3 ± 2.9 6.0 (4.0 - 8.0) 

Escherichia coli 9 6.8 ± 4.1 9.5 (7.0 - 11.0) 

Viridans streptococcus 12 14.1 ± 6.8 13.0 (7.0 - 19.0) 

All 49 8.6 ± 5.4 7.0 (5.0 - 11.0) 
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Table 3.29:  Antimicrobial susceptibility of pathogens isolated from blood and/or cerebrospinal fluid in neonates with community 

acquired sepsis 

  Number  

Pen 

N (%) 

Ampi 

N (%) 

Cloxa 

N (%) 

Erythro 

N (%) 

Clinda 

N (%) 

Genta 

N (%) 

Cefotax 

N (%) 

Group B Streptococcus 15 15 (100) 15 (100) NT 14 (93.3) 15 (100) NT 14/14 (100) 

Escherichia coli 9 NT 1 (11.1) NT NT NT 9 (100) 9 (100) 

Staphylococcus aureus 12 NT 2 (16.7) 12 (100) 10 (83.3) NT 10 (83.3) NT 

Enterococcus faecalis 2 NT 2 (100) NT NT NT NT NT 

Enterococcus faecium 1 NT 1 (100) NT 0 NT NT NT 

Klebsiella species 2 NT 0 NT NT NT 2 (100) 2 (100) 

Enterobacter species 1 NT 0 NT NT NT 1 (100) 1 (100) 

Viridans streptococcus 12 NT 8/10 (80) NT 6/10 (60) NT NT NT 
Pen=penicillin; Ampi-Ampicillin; Cloxa- Cloxacillin; Erythro- Erythromycin; Clinda-Clindamycin; Genta- Gentamicin; Cefotx- Cefotaxime; NT- Not tested 
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Mortality in neonates with community acquired sepsis 

Overall, the case fatality rate for CA-pSBI was 1.4% (9/636). The case fatality rate was 10.5-

fold (95% CI 2.30-48.0) higher among culture-confirmed CAS (6.0%) than pSBI-CAS cases 

who did not fulfil the protocol-defined criteria for sepsis ( 0.6%) (Table 3.30). We did not 

undertake a  risk factor analysis for predictors of mortality among pSBI-CAS cases due to the 

small number of deaths observed in neonates with CAS as noted above.   

 

Table 3.30:  Case fatality rate among neonates with community acquired sepsis 

Sepsis category 
Total 

Died 

n (%) 

Survived 

n (%) OR (95% CI) 

Possible serious bacterial infection NOT fulfilling  

protocol defined sepsis criteria  
499 3 (0.6) 496 (99.4) REF 

Protocol-defined community acquired sepsis but culture 

negative 
70 2 (2.9) 68 (97.1) 4.86 (0.80 – 29.6) 

Culture confirmed community acquired sepsis 67 4 (6.0) 63 (94.0) 10.5 (2.30 – 48.0) 

 

  



104 

 

3.2 Examining Strength of Attribution of Causality of Detected Putative 

Pathogens Using Taqman Array Card on Blood, Nasopharyngeal and 

Oropharyngeal Samples 

3.2.1 Early-onset sepsis 

A total of 4045 newborn infants  with ages less than 3 days  were hospitalized for EO-pSBI  

during the study period, 3323 of whom were screened for eligibility from Mondays to 

Fridays. Among the screened neonates, 310 (9.3%) were ineligible for enrolment. Reasons 

included mother being  <18 years age (n=147/310; 47.4%) and  therefore unable to consent 

for her child.  Among the 3013 eligible neonates, 389 (12.9%) were not enrolled, the 

commonest reason being mother’s unwillingness to participate in the study (n=208; 53.5%) 

(Figure 3.3).  Consequently, 2624 neonates with EO-pSBI who had blood cultures done as 

part of standard care were consented and enrolled into the study. Of these, 1231 (47%) met 

the protocol-defined criteria for EOS, of whom 1223 had blood and/or NPOP taken, 914 had 

both blood and NPOP samples, 19 only blood sample  and 290  had only NPOP swabs taken 

for molecular testing using TAC. Overall, among those who fulfilled protocol-defined criteria 

for EOS, 933 (75.9%) had blood samples and 1204 (97.9%) had NPOP swabs taken for 

testing using TAC (Figure 3.3). Maternal HIV status was known in 96% of those who had 

blood taken and 95.4% of those who had NPOP swabs taken for TAC, among whom the 

prevalence of HIV-exposure was 33.0% and 32.5%, respectively .  

 

Among the 23 228 well neonates born in hospital, 383 were screened for eligibility as 

controls, 15 (3.92%) of whom were excluded due to the mother being <18 years age. 

Furthermore, an additional 56 were not enrolled, 46 (82.3%) of whom refused consent. 

Consequently, a total of 312 well neonates were enrolled as controls.  Among the 312 enrolled 

controls, 298 had both blood and NPOP swab samples,  6 only blood sample  and  5 only  

NPOP swabs (Figure 3.4). Maternal HIV status was known in 99% of neonates, of whom 

32.0% were HIV exposed.  

 

 



105 

 

 
Figure 3.3:  Neonates with early-onset presumed serious bacterial infection who met 

criteria for protocol defined sepsis and had specimens for Taqman array card collected 

(cases) 
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Figure 3.4:   Healthy neonates with ages <3 days who were enrolled as controls 

 

Comparing cases with protocol defined early-onset sepsis and controls aged <3 days 

a. Characteristics of cases and controls  

Maternal and infant characteristics of cases with protocol-defined EOS, and controls with 

ages <3 days, tested using TAC in blood and/or NPOP swabs is shown in Table 3.31. More 

than 90% of mothers of both cases and controls attended antenatal care, and delivered in a 

healthcare facility, although a lower  percentage of mothers of cases than controls had 

attended antenatal care (93.4%  vs  98.3%, p<0.001),  delivered vaginally (43.9% vs 69.1%, 

p<0.001) and delivered in a healthcare facility (96.9% vs 99.3%, p=0.021). There were more 

cases born through meconium stained amniotic fluid than controls (22.6% vs 11.4%, 

p<0.001). Conversely, cases compared to controls were more likely to be male  (55.3% vs 

48.5%, p=0.042), born preterm (45.4% vs 6.7%, p<0.001), were of low birth weight (54.6 % 

vs 9.40%, p<0.001), and had an Apgar score <7 at 5 minutes (18.4% vs 5.4%, p<0.001). 

Approximately one-third of mothers from both cases and controls were HIV infected. A 
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higher percentage  of cases were enrolled on day 0 of life than controls (84.4% vs 19.5%) 

(p<0.001).   

 

Table 3.31:  Characteristics of neonates with early-onset protocol-defined sepsis (cases) and 

healthy neonates with ages <3 days (controls) who had blood and/or pharyngeal swabs tested 

using the Taqman array card 

 

Cases 

n = 1223 

Controls 

n = 309 OR (95% CI) p-value 

Maternal Factors         

Antenatal care visit 1130/1214 (93.1) 302/307 (98.4) 0.22 (0.09-0.55) <0.001 

Vaginal delivery 553/1223 (45.2) 214/309 (69.3) 0.37 (0.28-0.48) <0.001 

Healthcare facility birth 1176/1220 (96.4) 306/308 (99.4) 0.18 (0.04-0.72) 0.007 

HIV infected 384/1168 (32.9) 99/306 (32.4) 1.02 (0.78-1.34) 0.862 

Prolonged rupture of membranes 59/1214 (4.9) 22/308 (7.1) 0.66 (0.40-1.10) 0.111 

Meconium stained amniotic fluid 275/1216 (22.6) 35/307 (11.4) 2.27 (1.56-3.31) <0.001 

Intrapartum antibiotics 101/1215 (8.3) 27/307 (8.8) 0.94 (0.60-1.47) 0.786 

Infant Factors         

Preterm (<37 weeks) 574/1218 (47.1) 20/308 (6.5) 12.8 (8.05-20.5) <0.001 

Male 668/1222 (54.7) 151 (49.0) 0.78 (0.62-1.02) 0.072 

Low birth weight  682/1223 (55.8) 28/309 (9.1) 12.6 (8.44-19.0) <0.001 

Apgar score<7 at 5 minutes 251/1223 (20.5) 16/309 (5.2) 4.75 (2.82-8.01) <0.001 

Age at enrolment 

    Day 0 1027 (84.0) 60 (19.4) 

 
<0.001 

Day 1-2 196 (16.0) 249 (80.6) 

  Median age at enrolment 0 (0-0) 1 (1 - 1)   <0.001 

* - Missing data accounted for <5% for each variable and for both cases and controls 
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b. Detection of organisms in blood and pharyngeal swabs  in cases with early-onset 

sepsis and controls of ages <3 days using the Taqman Array Card  

 

Blood Taqman analysis 

Among the 933 neonates with protocol defined EOS with available blood sample for testing 

by TAC, 346 (37.1%) had at least one organism detected, which was 2.35 fold (95% CI 1.72-

3.21) greater compared to than in controls (19.8%; p<0.001) (Table 3.32). The positivity rate 

among cases were similar for those investigated on day 0 (37.9%) and day 1-2 (32.6%), both 

of which were greater than observed among controls at those time-periods. Although the 

majority of cases (70.5%) and controls (86.9%) had only one organism detected per sample, 

concurrent detection of >1 organism per sample was more common in cases (29.5%) than 

controls (13.1%; p=0.028). There were no differences in HIV exposure prevalence between 

cases and controls overall, or among those with a TAC positive result. 

 

Naso/oro-pharyngeal swab Taqman analysis 

A total of 531 (44.1%) of 1204 cases with protocol defined EOS with NPOP swabs tested had 

at least one organism detected on the NPOP swab TAC assay, which was however lower than 

observed among controls (53.4%; OR: 0.67, 95% CI 0.52-0.88) (Table 3.32). There was no  

difference in positivity rates between  cases (43.4%) and controls (48.3%)  on day 0 of life, 

while fewer cases had a positive NPOP TAC result on days 1-2 (44.1%) than  controls 

(54.6%; OR: 0.66, 95% CI 0.43-0.99; p=0.046).  There was no difference in HIV exposure 

prevalence between cases and controls overall, or among those with a TAC positive result. 
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Table 3.32:  Detection of organisms using Taqman array card in blood and pharyngeal swabs in neonates with protocol 

defined sepsis (cases) and healthy neonates <3 days (controls) 

  
Cases 

n (%) 

Controls 

n (%) OR (95% CI) p-value 

Total number of neonates with protocol defined early-onset sepsis 1231 312 

  Blood 

    Total number with blood taken for Taqman Array Card 933 304 

  Total number with positive Taqman Array Card in blood   346/933 (37.1) 61/304 (19.5) 2.35 (1.72-3.21)   

Number with blood collected according to age at enrolment       <0.001 

Day 0 789 (84.6) 58 (19.1) 

  Day 1-2 144 (15.4) 246 (80.9)     

Number with positive Taqman Array Card according to age of enrolment         

Day 0 297/789 (37.6) 14/58 (24.1) 1.90 (1.02-3.52) 

 Day 1-2 49/144 (34.0) 47/246 (19.1) 2.18 (1.37-3.49)   

Number of organism per sample in those with positive Taqman Array Card       0.028 

1 organism 244 (70.5) 53 (86.9) 

  2 organisms 83 (24.0) 7 (11.5) 

  ≥3 organisms 19 (5.5) 1 (1.64)     

Exposure to human immunodeficiency virus 

    Number exposed amongst those with blood collected 296/896 (33.0) 97/301 (32.2) 1.04 (0.79-1.37) 

 Number exposed among those positive for Taqman Array Card 109/332 (32.8) 22/61 (36.1) 0.87 (0.49-1.53)   

Pharyngeal Swabs         

Total number with swabs taken for Taqman Array Card 1204 303 

  Total number with positive Taqman Array Card in pharyngeal swabs 531/1204 (44.1) 161/303 (53.1) 0.69 (0.54-0.90)   

Number with swabs collected according to age at enrolment        <0.001 

Day 0 1009 (83.8) 60 (19.8) 

  Day 1-2 195 (16.2) 243 (80.2)     

Number with positive Taqman Array Card according to age of enrolment         

Day 0 444/1009 (44.0) 30/60 (50.0) 0.79 (0.47-1.32) 

 Day 1-2 87/195 (44.6) 134/243 (55.1) 0.66 (0.45-0.96)   



110 

 

Table 3.32 (continued):  Detection of organisms using Taqman array card in blood and pharyngeal swabs in neonates 

with protocol defined sepsis (cases) and healthy neonates <3 days (controls) 

 

  
Cases 

n (%) 

Controls 

n (%) OR (95% CI) p-value 

Number of organism per sample in those with positive Taqman Array Card       0.696 

1 organism 354 (66.7) 107 (65.2) 

  2 organisms 142 (26.7) 43 (26.2) 

  ≥3 organisms 35 (6.6) 14 (8.5)     

Exposure to human immunodeficiency virus (HIV)         

Number exposed among those with swabs taken and tested for HIV 373/1149 (32.5) 96/300 (32.0) 1.02 (0.78-1.34) 

 Number exposed among those with positive Taqman Array Card 175/507 (34.5) 51/161 (31.7) 1.14 (0.78-1.66)   
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c. Organisms detected in blood of cases with protocol defined early-onset sepsis and 

controls with ages <3 days  using Taqman Array Card 

The common organisms detected in the blood of protocol-defined EOS cases using TAC were 

Streptococcus pneumoniae (14.2%), Ureaplasma urealyticum/ parvum (9.2%); Pseudomonas 

aeruginosa (8.2%), GBS (7.0%) and Klebsiella pneumoniae  (3.7%) (Figure 3.5).  In 

controls, similar organisms were detected by TAC, but the prevalence differed for some 

compared to in cases. Organisms with a higher prevalence in cases than controls included 

Ureaplasma urealyticum/ parvum (9.2% vs 2.0%; OR: 4.03, CI 95% 1.72-9.43), Pseudomonas 

aeruginosa (8.2% vs 2.0%; OR: 3.81; 95% CI 1.63-8.95), and GBS (7.0% vs 1.6%; OR:  

3.63, 95% CI 1.42-9.23).  There were, however, no statistical significant differences between 

cases and controls in the prevalences of detection of Streptococcus pneumoniae (14.2% vs 

9.9%, p=0.177), Staphylococcus aureus (1.3% vs 0.3%, p=0.298); E.  coli (2.2% vs 1.3%, 

p=0.907); Klebsiella species (3.8% vs 2.6%, p=0.769); Salmonella species (3.1% vs 2.3%, 

p=0.511) and Neisseria meningitides (1.1% vs 1.0%, p=0.882).  
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Figure 3.5:  Organisms detected using Taqman array card in blood in neonates with early-onset protocol-defined sepsis (cases) and 

healthy neonates of ages <3 days (controls) 
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d. Organisms detected in naso/oro-pharyngeal swabs in neonates with early onset sepsis 

and controls aged  <3 days using the Taqman Array Card  

The common bacterial pathogens detected on NPOP swabs of cases were Ureaplasma 

urealyticum/ parvum (19.9%), Klebsiella pneumoniae (11.9%), GBS (8.5%) and E.  coli 

(8.3%) (Figure 3.6); whilst Cytomegalovirus (5.7%) and Enterovirus (1.4%) were the most 

commonly detected viruses. A number of organisms were, however, detected less commonly 

in cases than controls, including  E. coli (8.3% vs 18.2%; OR: 0.37, 95% CI 0.25-0.55), 

Streptococcus pneumoniae (2.2% vs 5.0%; OR: 0.40, 95% CI 0.20-0.79), GBS (8.5 % vs 

13.2%; OR: 0.54; 95% CI 0.35-0.81) and  Enterovirus (1.4% vs 8.6%; OR: 0.13, 95% CI 

0.06-0.25).  Ureaplasma urealyticum/ parvum was the only organism detected with a higher 

frequency among cases (19.9%) than controls (14.5%; OR: 1.69, 95% CI 1.17-2.44).  

Organisms detected among  cases with similar prevalence compared to controls included 

Bordetella pertussis (0.7% vs 0.30%, p = 0.226), Klebsiella pneumoniae (11.9% vs 10.2%,  p 

= 0.059), Rhinovirus (0.7% vs 1.0%, p = 0.353), Cytomegalovirus (5.7% vs 5.9%, p = 0.523), 

Human parechovirus  (0.3% vs 0.3%, p = 0.800), Human metapneumovirus (0.4% vs 0.3%, p 

= 0.574) and RSV  (0.2% vs 1.0%, p = 0.165).  Rubella virus, Chlamydia pneumoniae, 

Chlamydia trachomatis and Parainfluenza A virus were not detected among controls, and had 

a low prevalence (<1.0%) among cases, Figure 3.6.   
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Figure 3.6:  Organisms detected in pharyngeal swabs using the Taqman array card in 

neonates with early-onset protocol-defined sepsis (cases) and healthy neonates aged <3 days 

(controls) 
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e. Detection of organisms in blood and pharyngeal swabs  from  neonates with early-

onset sepsis and controls with ages <3 days  stratified according to HIV exposure  

Blood 

Similarly to the overall group,  positivity prevalence on blood TAC was higher among cases 

than controls in  both HIV-exposed (37.2% vs 19.1%; OR 2.50, 95% CI  1.70-3.68)  and HIV-

unexposed  (36.8% vs 22.7%; OR 1.99, 95% CI 1.17-3.38)  neonates. This also remained 

significantly so for Pseudomonas aeruginosa (8.0% vs 1.0%; OR: 8.30, CI 1.98-34.9), 

Ureaplasma species (8.2% vs 1.5%, OR: 5.19, 95% CI 1.56-17.2) and GBS (7.3% vs 2.0%; 

OR: 95% CI 1.56-17.2) among HIV-unexposed newborns, with similar trends observed in 

HIV-exposed neonates, though not statistically significant (Table 3.33). There were no 

significant differences in neonates with positive TAC in blood between HIV exposed and 

unexposed cases or controls. 
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Table 3.33:  Organisms detected using Taqman array card in blood in neonates with early-onset protocol-defined sepsis (cases) 

and healthy neonates <3 days (controls) stratified according to HIV exposure 

  HIV Unexposed   HIV exposed   

  
Cases 

N = 600 

Controls 

N = 204 OR (95%CI) 

Cases 

N = 296 

Controls 

N = 97 OR (95%CI) 

 

n (%) n (%)   n (%) n (%) 

 Any organism detected 223 (37.2) 39 (19.1) 2.50 (1.70-3.68) 109 (36.8) 22 (22.7) 1.99 (1.17-3.38) 

Pseudomonas aeruginosa 48 (8.0) 2 (1.0) 8.30 (1.98-34.9) 25 (8.4) 4 (4.1) 1.73 (0.56-5.29) 

Ureaplasma species 49 (8.2) 3 (1.47) 5.19 (1.56-17.2) 30 (10.5) 3 (3.1) 3.04 (0.88-10.5) 

Group B streptococcus 44 (7.3) 4 (2.0) 3.13 (1.08-9.05) 17 (5.7) 1 (1.0) 4.38 (0.56-34.2) 

Neisseria meningitides 6 (1.0) 1 (0.5) 2.31 (0.27-20.2) 4 (1.4) 2 (2.1) 0.64 (0.11-3.70) 

Staphylococcus aureus 9 (1.4) 1 (0.5) 2.16 (0.25-18.5) 2 (0.7) 0 n/a 

Salmonella species 18 (3.0) 3 (1.5) 1.91 (0.55-6.69) 11 (3.7) 4 (4.1) 0.92 (0.28-3.04) 

Streptococcus pneumoniae 89 (14.8) 20 (9.8) 1.39 (0.82-2.67) 38 (12.8) 10 (10.3) 1.22 (0.57-2.61) 

Escherichia coli/ Shigella 16 (2.7) 4 (2.0) 1.33 (0.40-4.41) 4 (1.4) 0 n/a 

Klebsiella pneumoniae 24 (4.0) 5 (2.4) 1.30 (0.47-3.61) 10 (3.4) 3 (3.1) 1.11 (0.29-4.22) 

Enterovirus 2 (0.3) 1 (0.5) 0.44 (0.03-7.03) 0 0 N/A 

Group A streptococcus 2 (0.3) 0 n/a 0 0 N/A 

Haemophilus influenzae 2 (0.3) 0 n/a 3 (1.03) 0 0.75 (0.71 - 0.80) 
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Naso/oro-pharyngeal swabs 

Overall there were fewer cases with positive TAC in NPOP swabs than in controls among the 

HIV unexposed neonates (42.8% vs 53.9%; OR: 0.64, 95% CI 0.46-0.87), and a similar trend 

was observed in HIV exposed neonates.  For specific organisms, E. coli (8.2 % vs 15.2%; OR: 

0.46, 95% CI 0.28-0.75), Streptococcus pneumoniae (2.2% vs 5.9%; OR: 0.32, 95% CI 0.15-

0.71) and Enterovirus (1.2% vs 7.8%; OR: 0.11, 95% CI 0.05-0.28) were detected less 

commonly in cases than controls among HIV-unexposed neonates. Among HIV-exposed 

neonates, Escherichia coli (8.8% vs 24.0 %; OR: 0.26, 95% CI 0.14-0.51), GBS (6.4% vs 

15.6%; OR: 0.34, 95% CI 0.16-0.73) and Enterovirus (2.1 % vs 10.4%; OR: 0.17, 95% CI 

0.06-0.50) were also detected less frequently in cases than in controls. The only organism 

identified more frequently in cases than controls was Ureaplasma urealyticum/ parvum 

(19.0% vs 11.5%; OR: 2.08 (1.02-4.26), albeit only significant among HIV exposed neonates 

(Table 3.34). 
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Table 3.34:  Organisms detected using Taqman array card in naso/oro-pharyngeal swabs in neonates with early-onset protocol-defined 

sepsis (cases) and healthy neonates with ages <3 days (controls) stratified according to HIV exposure 

 

 

 

 

 

 

 

 

 

 

 

 

 

  HIV Unexposed HIV Exposed 

 

Cases 

N = 776 

Controls 

N = 204 OR (95%CI) 

Cases 

N = 373 

Controls 

N = 96 OR (95%CI) 

  n (%) n (%)   n (%) n (%)   

Positive TAC for any organism 332 (42.8) 110 (53.9) 0.64 (0.46-0.87) 175 (46.9) 51 (53.1) 0.78 (0.50-1.22) 

Bacteria   

 

  

   Escherichia coli/ Shigella 64 (8.2) 31 (15.2) 0.46 (0.28-0.75) 33 (8.8) 23 (24.0) 0.26 (0.14-0.51) 

Streptococcus pneumoniae 17 (2.2) 12 (5.9) 0.32 (0.15-0.71) 8 (2.1) 3 (3.4) 0.61 (0.14-2.55) 

Group B Streptococcus 75 (9.7) 24 (11.8) 0.67 (0.40-1.13) 24 (6.4) 15 (15.6) 0.34 (0.16-0.73) 

Klebsiella pneumoniae 93 (12.0) 21 (10.3) 1.40 (0.82-2.38) 44 (11.8) 10 (0.4) 1.83 (0.80-4.19) 

Ureaplasma sp. 157 (20.2) 33 (16.2) 1.46 (0.94-2.25) 71 (19.0) 11 (11.5) 2.08 (1.02-4.26) 

Bordetella pertussis 6 (0.8) 0 n/a 0 2 (2.1) n/a 

Chlamydia pneumoniae 1 (0.1) 0 n/a 1 (0.3) 0 n/a 

Chlamydia trachomatis 4 (0.5) 0 n/a 2 (0.5) 0 n/a 

Mycoplasma pneumoniae 0 0 N/A 0 0 N/A 

Viruses   

 

  

   Enterovirus 9 (1.2) 16 (7.8) 0.11 (0.05-0.28) 8 (2.1) 10 (10.4) 0.17 (0.06-0.50) 

Rhinovirus 3 (0.4) 2 (1.0) 0.84 (0.09-7.75) 3 (0.8) 1 (1.0) 0.26 (0.02-4.68) 

Cytomegalovirus 30 (3.9) 9 (4.4) 0.90 (0.41-2.01) 37 (9.9) 8 (8.3) 2.16 (0.85-5.54) 

Human parechovirus 1 (0.1) 1 (0.5) 0.23 (0.01-3.73) 3 (0.8) 0 n/a 

Human metapneumovirus 3 (0.4) 1 (0.5) 0.80 (0.08-8.11) 1 (0.3) 0 n/a 

Respiratory syncytial virus 3 (0.4) 1 (0.5) 0.86 (0.08-9.21) 0 2 (2.1) n/a 

Rubella virus 9 (1.2) 0 n/a 2 (0.5) 0 n/a 

Parainfluenza virus 1 4 (0.5) 0 n/a 0 0 N/A 

Parainfluenza virus 2 0 0 N/A 0 0 N/A 

Parainfluenza virus 3 0 0 N/A 0 0 N/A 

Adenovirus 0 0 N/A 0 0 N/A 

Influenza A 0 0 _ 0 0 N/A 

Influenza B 0 0 _ 0 0 N/A 
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3.2.2 Community acquired sepsis 

Enrolment of neonates with community acquired sepsis (cases) and healthy neonates 

(controls) aged between 3 and 27 days tested with TAC 

A total of 1371 neonates 3-27 days of age were hospitalized with physician-diagnosed pSBI, 

919 (67.0%) of whom were screened for eligibility. One hundred and thirty seven of the 

screened neonates (14.9%) were ineligible for enrolment, common reasons being previous 

admission (n = 84; 61.3%), or the mother being <18 years of age (n=35, 25.6%). Among the 

782 eligible neonates, 146 (18.7%) were not enrolled, with refusal to provide consent (n = 89; 

61.0%) being the most common reason. Consequently, 636 neonates with CA-pSBI who had 

a blood culture done as part of standard care were enrolled into the study. Of these, only  137 

(21.5%) fulfilled the protocol-defined criteria for CAS, among whom 135 had blood and/ or 

NPOP swab taken, 80 had both blood and NPOP samples collected, 3 had only blood sample 

and 52 only NPOP swabs collected. Overall, among those who fulfilled protocol-defined 

criteria for CAS, 83 (60.6%) had blood samples and 132 (96.4%) had NPOP swabs taken for 

TAC testing. Maternal HIV status was known for 80 (96.4%) of those who had blood and 128 

(97.0%) of those with NPOP swabs taken for TAC. Among neonates whose maternal HIV 

status was known, 46.2% (37/80) of those with blood and 43.8% (56/128) of those with 

NPOP swabs available for TAC analysis were HIV exposed (Figure 3.7).   
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Figure 3.7:  Neonates with community acquired possible serious bacterial infection and those 

who met criteria for testing with the Taqman array card  
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Among the 23,228 healthy neonates born in hospital, 195 were screened for eligibility as 

controls for the community acquired sepsis cases, of whom 192 were enrolled as controls at 3-

27 days of age.  Of these 192 enrolled controls, 185 had blood and/ or NPOP swabs taken, 

178 had both blood  and NPOP swab samples taken, 1 only had blood sample and 6 only had 

NPOP swab taken.  Thus overall 179 (93.2%) healthy neonates had blood samples and 184 

(95.8) had NPOP swabs taken for testing using TAC. Maternal HIV status was known for 177 

(98.9%) of those who had blood and 182 (98.9%) of those with NPOP swabs taken for TAC. 

Among those infants with known maternal HIV status, 81 (45.8%) of those with blood and 86 

(47.2%) of those with NPOP swabs taken for TAC were HIV-exposed (Figure 3.8).   
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Figure 3.8:   Healthy neonates of ages 3-27 days who were enrolled as controls 
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Comparing cases with community-acquired sepsis and controls of ages 3-27 days  

a. Characteristic of cases and controls  

There were no statistical significant differences in maternal characteristics between cases and 

controls. Cases compared to controls were, however, younger at enrolment (median age 12 vs 

16 days, p<0.001), more likely to be male (60.7% vs 46.4%; p=0.012) and to be born with 

low birth weight (17.9% vs 9.7%; p=0.035).  In the cases, the neonates were fairly evenly 

spread throughout the 25 days period of enrolment, but in the controls, only one was enrolled 

in the first week of life (Table 3.35). 
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Table 3.35:  Characteristics of neonates with community acquired protocol-defined sepsis (cases) and healthy neonates (controls) with ages 3-27 days 

who had blood and/or pharyngeal swabs tested using the Taqman array card 

 

  Cases Controls OR (95% CI) p-value 

Total number of neonates enrolled 137 192 

  Total number of neonates tested with Taqman 

array card in blood and/ or pharyngeal swabs 
135 185 

    

Maternal Factors         

Antenatal care visit 132/134 (98.5) 183/184 (99.5) 0.36 (0.03-4.02) 0.387 

Vaginal delivery 114/135 (84.4) 151/185 (81.6) 1.22 (0.67-2.22) 0.509 

Healthcare facility birth 134/134 (100) 184/185 (99.5) n/a 0.394 

HIV infected 57/131 (43.5) 86/186 (47.0) 0.90 (0.57-1.40) 0.541 

Infant Factors         

Preterm (<37 weeks) 12/135 (8.89) 8/185 (4.32) 2.16 (0.85-5.44) 0.096 

Male 82/135 (60.7) 85/183 (46.4) 1.78 (1.14-2.80) 0.012 

Low birth weight  24/135 (17.9) 18/185 (9.73) 2.00 (1.04-3.87) 0.035 

Apgar score<7 at 5 minutes 17/135 (12.6) 18/185 (10.3) 1.26 (0.63-2.52) 0.516 

Age at enrolment 

   
<0.001 

Day 3-6 36 (26.7) 1 (0.54) 
  

Day 7-13 38 (28.2) 36 (19.5) 

  Day 14-20 38 (28.2) 91 (49.2) 

  Day 21-27 23 (17.0) 57 (30.8) 

  Median age at enrolment in days (25-75th) 12 (6-19) 16 (14-22)   <0.001 

* - Missing data accounted for <5% for each variable and for both cases and controls 
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b. Detection of organisms using TAC in blood and NPOP of cases with protocol defined 

CAS and controls among  3-27 day old neonates  

Blood TAC results 

Identification of bacteria on the blood TAC assay was 2.24-fold (95%CI 1.30-3.86) more 

common in cases (45.8%) than controls (27.4%); (Table 3.36). This difference in blood TAC 

positivity between cases and controls was significant among age-groups 7-13 days (60.2% vs 

32.3%; OR: 3.14, 95% CI 1.00-9.88) and 14-20 days (53.8% vs 31.5%; OR: 2.54, 95% CI 

1.04-6.20). There was limited power, due to only a single control in the 3-6 day age group for 

such an analysis to be undertaken. There was no statistically significant difference in the 

number of organisms identified per sample between cases and controls. Furthermore, the 

prevalence of HIV exposure was similar between cases and controls in the overall group, as 

well as among those with positive TAC results.   

 

Naso/oro pharyngeal swabs 

Ninety-nine (75.0%) neonates with CAS had at least one organism identified by TAC on 

NPOP swabs, which was similar to that observed among controls (70.1%, p = 0.407), even 

after stratifying by age groups (Table 3.36). A higher percentage of cases had ≥3 organisms 

detected per sample (30.3%) than controls (14.7%; p = 0.018). There was no difference in 

HIV-exposure overall or those with positive TAC results on NPOP swabs between cases and 

controls.   
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Table 3.36: Detection of organisms using the Taqman array card in blood and pharyngeal swabs from neonates with 

community acquired protocol-defined sepsis (cases) and healthy neonates (controls) with ages 3-27 days 

  
Cases 

n (%) 

Controls 

n (%) OR (95% CI) p-value 

Total number of neonates with ages 3-27 days old 137 192 

  Blood 

    Total number with blood taken for Taqman array card 83 179 

  Total number with positive Taqman array card in blood   38/83 (45.8) 49/179 (27.4) 2.24 (1.30-3.86) 0.005 

Number with positive Taqman array card according to age of enrolment 

    Day 3-6 7/25 (28.0) 0/1 (0) n/a 0.535 

Day 7-13 12/20 (60.0) 11/34 (32.3) 3.14 (1.00-9.88) 0.045 

Day 14-20 14/26 (53.8) 28/89 (31.5) 2.54 (1.04-6.20) 0.034 

Day 21-27 5/12 (41.7) 10/55 (18.2) 3.21 (0.84-12.2) 0.165 

Number of organism per sample in those with positive Taqman array card     0.132 

1 organism 31 (81.6) 36 (73.5) 

  2 organisms 4 (10.5) 12 (24.5) 

  ≥3 organisms 3 (7.9) 1 (2.0) 

  Exposure to human immunodeficiency virus 

    Number exposed amongst those with blood collected 57/80 (46.2) 81/177 (45.8) 1.02 (0.60-1.73) 0.950 

Number exposed among those positive Taqman array card 19/38 (50.0) 16/48 (33.3) 2.00 (0.83-4.80) 0.180 

Pharyngeal swabs         

Total number with swabs taken for Taqman array card 132 184 

  Total number with positive Taqman array card in pharyngeal swabs 99 (75.0) 129 (70.1) 1.28 (0.77-2.12) 0.407 

Number with positive Taqman array card according to age of enrolment         

Day 3-6 22/35 (62.9) 0/1 (0) n/a 0.407 

Day 7-13 25/37 (67.6) 20/35 (57.1) 1.56 (0.60-4.08) 0.503 

Day 14-20 31/38 (81.8) 67/91 (76.6) 1.59 (0.62-4.08) 0.461 

Day 21-27 21/22 (95.5) 42/57 (73.7) 7.50 (0.93-60.7) 0.065 
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Table 3.36 (continued): Detection of organisms using the Taqman array card in blood and pharyngeal swabs from 

neonates with community acquired protocol-defined sepsis (cases) and healthy neonates (controls) with ages 3-27 days 

 

  
Cases 

n (%) 

Controls 

n (%) OR (95% CI) p-value 

Number of organism per sample in those with positive Taqman array card     0.018 

1 organism 41 (41.4) 67 (51.9) 

  2 organisms 28 (28.3) 43 (33.3) 

  ≥3 organisms 30 (30.3) 19 (14.7) 

 

  

Exposure to human immunodeficiency virus          

Number exposed among those with swabs taken  56/128 (43.8) 86/182 (47.3) 0.87 (0.65-1.37) 0.542 

Number exposed among those with positive Taqman array card 48/97 (49.5) 72/128 (56.2) 0.76 (0.45-1.29) 0.313 
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c. Organisms detected in blood of cases with community acquired sepsis and controls, in 

neonates  3-27 days of age,  using the Taqman array card 

The common bacteria detected on blood by TAC assay among cases were Streptococcus 

pneumoniae (15.7%), GBS (14.5%), Escherichia coli (8.4%), Staphylococcus aureus (6.0%) 

and Klebsiella pneumoniae (4.8%) (Figure 3.9). Similar organisms were, however, also 

detected on blood among controls, with a higher prevalence in cases observed for E. coli (8.4 

% vs 0.6%; OR: 16.4, 95% CI 1.98-135.6) and GBS (14.5% vs 1.7%; OR: 9.12, 95% CI 

2.71-36.2).  There were no statistically significant differences in prevalence of detection by 

TAC on blood samples between cases and controls for Salmonella species (2.4% vs 0.6%, 

p=0.493),  Staphylococcus aureus (6.0% vs 1.7%, p=0.129),  Haemophilus influenzae (2.4% 

vs 1.1%, p=0.801), Pseudomonas aeruginosa (2.4% vs 1.1%, p=0.801), Ureaplasma species 

(1.2% vs 0.6%, p = 0.838), Klebsiella pneumoniae (4.8% vs 2.8%, p=0.636), Neisseria 

meningitides (1.2% vs 1.1%, p = 0.574) and Streptococcus pneumoniae (15.7% vs 19.0%, 

p=0.630).  
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Figure 3.9:  Organisms detected using Taqman array card in blood in neonates with 

community acquired protocol-defined sepsis (cases) and healthy neonates with ages 3-27 

days (controls) 

 

d. Organisms detected in nasopharyngeal swabs of cases with community acquired sepsis 

and controls in neonates 3-27 days of age using the Taqman array card  

The common bacterial organisms detected on NPOP swabs in cases were GBS (28.0%), 

Klebsiella species (24.2%), Escherichia coli (13.6%), Streptococcus pneumoniae (13.6%) 

and Ureaplasma urealyticum/ parvum (13.6%). The common viruses detected among cases 

were cytomegalovirus (9.9%), rhinovirus (11.4%), enterovirus (7.6%) and RSV (7.6%). The 

prevalence of most bacteria and viruses was similar between cases and controls, except for 

higher positivity in cases than controls for GBS (28.0% vs 14.7%; OR: 2.26, 95% CI 1.30-

3.96), and RSV (7.6% vs 2.2%; OR: 3.69, 95% CI 1.13-12.0), (Figure 3.10).  
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Figure 3.10:  Organisms detected using Taqman array card in pharyngeal swabs in neonates 

with community acquired protocol-defined sepsis (cases) and healthy neonates with ages 3-

27 days (controls) 

e. Detection of organisms in blood and pharyngeal swabs  from  neonates with community 

acquired sepsis and controls with ages 3-27 days  stratified according to HIV exposure  

Blood 

There were no differences in the percentage of cases and controls with positive TAC results 

on blood among HIV-unexposed neonates (44.2% vs 33.3%, p=0.184), although cases had a 

4.3 fold higher positivity rate than controls among HIV-exposed infants (51.4% vs 19.8%; 

OR: 4.29, 95% CI 1.84-9.99) (Table 3.37). There were, however, no differences in 

prevalences of individual organisms between cases and controls when stratified by HIV 

exposure status.   
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Naso/oro-pharyngeal swabs 

On stratifying the neonates according to HIV exposure, there were no statistically significant 

differences in percentage with positive TAC results between cases and controls for all those 

with ages 3-27 days. For specific organisms, cases were more likely than controls to be 

positive for Klebsiella pneumoniae (26.4% vs 13.5%; OR: 2.29, 95% CI 1.04-5.02) and RSV 

(12.5% vs 2.1%; OR: 6.71, 95% CI 1.40-32.1) in HIV unexposed neonates, and for GBS 

(39.3% vs 16.3%; OR: 3.33, 95% CI 1.52-7.29) among HIV exposed neonates (Table 3.38). 
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Table 3.37:  Organisms detected using the Taqman array card in blood in neonates with community acquired protocol-defined 

sepsis (cases) and healthy neonates with ages 3-27 days (controls) stratified according to HIV exposure 

 

  HIV Unexposed HIV exposed 

  
Cases 

N = 43 

Controls 

N = 96 OR (95%CI) 

Cases 

N = 37 

Controls 

N = 81 OR (95%CI) 

  n (%) n (%)   n (%) n (%) 

 Any positive Taqman array card 19 (44.2) 32 (33.3) 1.58 (0.76-3.31) 19 (51.4) 16 (19.8) 4.29 (1.84-9.99) 

Escherichia coli/ Shigella 2 (4.6) 1 (1.0) 4.63 (0.41-52.5) 5 (13.5) 0 n/a 

Group B streptococcus 5 (11.6) 3 (3.1) 4.08 (0.93-17.9) 7 (18.9) 0 n/a 

Salmonella species 0 1 (1.0) n/a 1 (2.7) 0 n/a 

Staphylococcus aureus 2 (4.6) 1 (1.0) 4.63 (0.41-52.5) 3 (8.6) 2 (2.5) 3.48 (0.56-21.8) 

Haemophilus influenzae 1 (2.3) 1 (1.0) 2.26 (0.14-37.0) 1 (2.7) 1 (1.2) 2.22 (0.14-36.5) 

Pseudomonas aeruginosa 1 (2.3) 1 (1.0) 2.26 (0.14-37.0) 1 (2.7) 1 (1.2) 2.22 (0.14-36.5) 

Ureaplasma urealyticum/ parvum 0 1 (1.0) n/a 1 (2.7) 0 n/a 

Klebsiella pneumoniae 3 (7.0) 3 (3.1) 2.32 (0.45-12.0) 1 (2.7) 1 (1.2) 2.22 (0.14-36.5) 

Neisseria meningitides 0 2 (2.1) n/a 1 (2.7) 0 n/a 

Streptococcus pneumoniae 8 (18.6) 23 (24.0) 0.73 (0.30-1.78) 5 (13.5) 10 (12.4) 1.15 (0.36-3.63) 

Enterovirus 2 (4.6) 5 (5.2) 0.89 (0.17-4.76) 0 5 (6.2) n/a 

Group A streptococcus 0 0 N/A 0 0 N/A 
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Table 3.38:  Organisms detected using Taqman array card in pharyngeal swabs in neonates with community acquired 

protocol-defined sepsis (cases) and healthy neonates with ages 3-27 days (controls) stratified according to HIV exposure 
  HIV Unexposed HIV Exposed 

 

Cases 

N = 72 

Controls 

N = 96 OR (95% CI) 

Cases 

N = 56 

Controls 

N = 86 OR (95% CI) 

  n (%) n (%)   n (%) n (%)   

Any positive Taqman array card 49 (68.1) 56 (58.3) 1.52 (0.80-2.89) 48 (85.7) 72 (83.7) 1.17 (0.56-2.99) 

Bacteria 

      Bordetella pertussis 2 (2.8) 1 (1.0) 2.71 (0.24-30.5) 3 (5.4) 1 (1.2) 4.81 (0.49-47.4) 

Group B Streptococcus 14 (19.4) 13 (13.5) 1.54 (0.67-3.54) 21 (39.3) 14 (16.3) 3.33 (1.52-7.29) 

Chlamydia trachomatis 0 1 (1.0) n/a 1 (1.8) 1 (1.16) 1.55 (0.09-25.2) 

Ureaplasma species 7 (9.7) 11 (11.5) 0.83 (0..31-2.27) 10 (17.9) 8 (9.3) 2.12 (0.78-5.75) 

Klebsiella pneumoniae 19 (26.4) 13 (13.5) 2.29 (1.04-5.02) 13 (23.2) 30 (34.9) 0.56 (0.26-1.21) 

Streptococcus pneumoniae 7 (9.7) 7 (7.3) 1.37 (0.46-4.09) 11 (19.6) 17 (19.8) 0.99 (0.43-2.31) 

Escherichia coli/ Shigella 10 (13.8) 16 (16.7) 0.81 (0.34-1.90) 22 (39.3) 30 (34.9) 1.18 (0.53-2.65) 

Mycoplasma pneumoniae 1 (1.4) 0 n/a 0 0 N/A 

Chlamydia pneumoniae 0 0 N/A 1 (1.8) 0 n/a 

Virus             

Respiratory syncytial virus 9 (12.5) 2 (2.1) 6.71 (1.40-32.1) 0 2 (2.3) n/a 

Cytomegalovirus 5 (6.9) 4 (4.2) 1.72 (0.44-6.63) 8 (14.3) 7 (8.1) 1.88 (0.64-5.52) 

Parainfluenza virus 3 0 0 N/A 3 (5.4) 3 (3.5) 1.57 (0.31-8.05) 

Enterovirus 5 (6.9) 1 (1.0) 7.09 (0.81-62.1) 5 (8.9) 10 (11.6) 0.74 (0.24-2.31) 

Rhinovirus 7 (8.3) 7 (7.3) 1.17 ((0.37-3.60) 9 (16.1) 13 (15.1)) 1.08 (0.43-2.71) 

Adenovirus 1 (1.4) 1 (1.0) 1.34 (0.08-21.8) 0 2 (2.3) n/a 

Influenza B 1 (1.4) 0 n/a 0 0 N/A 

Parainfluenza virus 1 0 0 N/A 1 (1.8)) 0 n/a 

Human metapneumovirus 0 1 (1.0) n/a 0 1 (1.2) n/a 

Human parechovirus 0 0 N/A 0 2 (2.3) n/a 

Rubella 0 1 (1.0) n/a 0 1 (1.2) n/a 

Influenza A 0 0 N/A 0 0 N/A 

Parainfluenza virus 2 0 0 N/A 0 0 N/A 
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3.2.3 Detection rate of organisms using both Taqman array card and culture in blood 

of neonates with protocol defined early-onset or community acquired sepsis  

Among the 933 neonates with protocol-defined EOS who had blood samples sent for culture 

and  TAC assay analysis, 3.6% (34) were positive for pathogens on blood culture, whilst  

32.8% (n=306) were positive for culturable organisms on TAC. After correcting for positive 

controls for culturable organisms on TAC in neonates with protocol-defined EOS, only 135 

(14.5%) were positive on TAC.  The odds of detecting a culturable pathogen in neonates with 

EOS using TAC was 4.5- fold (95%CI: 3.03-6.59) greater than by blood culture. The common 

organism detected in neonates with EOS on blood culture was GBS (23/46; 67.6% of positive 

blood cultures), while it accounted for 36.6% (49/134) of bacteria detected on TAC after 

adjusting for controls.  Pseudomonas aeruginosa accounted for 43.3% of all culturable 

organisms identified by TAC (Table 3.39). Detection of culturable bacteria by TAC was 

higher compared to blood culture for all putative pathogens, except for Neisseria 

meningitides.   

 

Among the 83 neonates with protocol-defined CAS who had blood analyzed by conventional 

culture and on TAC, 25 (30.1%) yielded a putative pathogen on culture and 36 (43.4%) on 

TAC. After correcting for controls with positive TAC, the number positive on TAC (n=16; 

19.2%) for culturable putative pathogens was similar to culture positivity (n= 25; 30.1%; OR: 

0.27; 95%CI 0.27-1.14). There were no differences in detection for specific culturable 

bacteria by culture compared to TAC (Table 3.40).  Because of limited number of neonates 

with ages between 3 and 27 days of age, we did not undertake any further modelling to assess 

which pathogens attribute to CAS.  

 

In assessing the value of TAC in diagnosing sepsis in neonates using culture as the gold 

standard, overall the sensitivity of TAC was 60.9%, specificity 69.7% and positive and 

negative predictive value of 12.8% and 96.1% respectively (Table 3.41). The diagnostic 

utility of TAC appeared to differ for specific bacteria. For GBS, the sensitivity and specificity 

were of 84.4% and 94.9%, respectively; whilst its specificity was 85.7% for S. pneumoniae 

for which the positive predictive value was zero. 
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Table 3.39:  Comparing detection of culturable bacteria using Taqman array card (TAC) versus culture in blood of neonates with early-onset 

protocol-defined sepsis who had both tests done 

  

Number detected in 

blood in cases using 

TAC 

N=933 

Number detected in 

blood in controls using 

TAC 

N = 304 

Number detected in blood in 

cases using TAC adjusted for  

positive controls 

N = 933 

Number 

detected on 

blood  culture 

N = 933 

Comparing detection of  

culturable organism using 

TAC (adjusted) vs culture 

OR (95% CI) 

Group B streptococcus 65 (6.97) 5 (1.64) 49 (5.25) 23 (2.46) 2.19 (1.32-3.63) 

Escherichia coli  21 (2.25) 4 (1.34) 8 (0.86) 4 (0.43) 2.00 (0.60-6.69) 

Haemophilus influenzae 6 (0.64) 0 6 (0.64) 2 (0.21) 3.01 (0.61-15.0) 

Neisseria meningitides 10 (1.07) 3 (0.99) 1 (0.11) 2 (0.21) 0.50 (0.04-5.52) 

Pseudomonas aeruginosa 77 (8.25) 6 (1.97) 58 (6.20) 1 (0.11) 61.8 (8.54-446) 

Klebsiella pneumoniae 35 (3.75) 8 (2.63) 11 (1.18) 1 (0.11) 11.1 (1.43-86.3) 

Staphylococcus aureus 12 (1.29) 1 (0.33) 9 (0.96) 1 (0.11) 9.08 (1.14-71.8) 

Streptococcus pneumoniae 132 (14.2) 29 (9.87) 40 (4.29) 0 (0) n/a 

Salmonella species 29 (3.11) 7 (2.30) 29 (3.11) 0 (0) n/a 

Group A streptococcus 2 (0.21) 0 2 (0.21) 0 (0) n/a 

All 306 (32.8) 56 (18.4) 134 (14.4) 34 (3.64) 4.47 (3.03-6.59) 

 

 

 

 Footnote: Correction for positive controls in TAC was calculated by multiplying number of cases with positive TAC by a factor derived from the following equation: (Relative risk for cases 

minus Relative risk for controls)/Relative risk for cases for each and for all culturable organisms. 
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Table 3.40: Comparing detection of culturable pathogens using Taqman array card (TAC) versus culture in blood of neonates with protocol-

defined community acquired sepsis 

  

Number detected 

in blood in cases 

using TAC 

N = 83 

Number detected in 

blood in controls using 

TAC 

N = 179 

Number detected in blood in 

cases using TAC adjusted 

for positive controls 

N = 83 

Number detected in 

blood in cases using 

culture 

N = 83 

Comparing detection of  

culturable organism using 

adjusted TAC vs culture 

OR (95% CI) 

Group B streptococcus 12 (14.5) 3 (1.68) 11 (13.2) 9 (10.8) 1.26 (0.49-3.21) 

Staphylococcus aureus 5 (6.02) 3 (1.68) 4 (4.82) 8 (9.64) 0.45 (0.14-1.64) 

Escherichia coli  7 (8.43) 1 (0.56) 7 (8.43) 6 (7.23) 1.18 (0.38-3.68) 

Klebsiella pneumoniae 4 (4.82) 5 (2.79) 2 (2.41) 2 (2.41) 1.00 (0.14-7.27) 

Streptococcus pneumoniae 13 (15.7) 34 (19.0) 3 (3.61) 0 n/a 

Haemophilus influenzae 6 (7.23) 2 (1.12) 1 (1.21) 0 n/a 

Pseudomonas aeruginosa 2 (2.41) 2 (1.12) 1 (1.21) 0 n/a 

Salmonella species 2 (2.41) 1 (0.56) 1 (1.21) 0 n/a 

Neisseria meningitis 1 (1.20) 2 (1.12) 0 0 n/a 

Group A streptococcus 0 0 0 0 n/a 

All 36 (43.4) 42 (23.5) 16 (19.2) 25 (30.1) 0.55 (0.27-1.14) 

Footnote: Correction for positive controls in TAC was calculated by multiplying number of cases with positive TAC by a factor derived from the following equation: (Relative risk for cases 

minus Relative risk for controls)/Relative risk for cases for each and for all culturable organisms. 

 

  



137 

 

Table 3.41:  Sensitivity, specificity, positive and negative predictive values of Taqman array card in neonates 

with early-onset culture-confirmed sepsis 

  Sensitivity Specificity 

Positive predictive 

value 

Negative predictive 

value 

Group B streptococcus 82.6% 94.9% 29.2% 99.5% 

Escherichia coli  50.0% 98.0% 9.5% 99.8% 

Haemophilus influenzae 50.0% 99.5% 16.7% 99.9% 

Neisseria meningitis 0 98.9% 0 99.8 

Pseudomonas aeruginosa 0 91.7% 0 99.9% 

Klebsiella pneumoniae 0 96.2% 0 99.9% 

Staphylococcus aureus 100% 98.8% 8.3% 0 

Streptococcus pneumoniae N/A 85.8% 0 0 

Salmonella species N/A 96.9% 0 0 

Group A streptococcus N/A 99.8% 0 0 

All 78.8% 68.9% 8.5% 98.9% 
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3.2.4 Aetiologic attribution to neonates with early-onset sepsis using statistical 

modelling factoring type of case, test used and type of specimen 

Of the 28 pathogens considered for aetiologic attribution, 10 were identified at a rate 

sufficient for aetiologic modeling (Table 3.42). Overall, one was able to attribute aetiology to 

a specific pathogen for 26.7% of cases using blood culture or TAC, and therefore 73.3% of 

cases did not have an identifiable aetiology from the pathogens tested in culture or TAC  

(Figure 3.11).  The three most common pathogens among those included in the TAC panel 

attributed to the sepsis episodes were Ureaplasma (5.4%), GBS (4.8%), and Klebsiella 

pneumoniae (1.8%).  Putative pathogens in the “other blood culture” group (i.e. bacteria 

cultured from blood, but not included on the TAC panel) accounted for an additional 8.7% of 

cases, with Viridans streptococci (4.2%), Enterococcus faecalis (1.4%), and Acinetobacter 

baumannii (0.7%) being the most common.  Among the neonates with severe infection the 

most commonly attributed pathogens were GBS (7.6%), Ureaplasma (5.2%) and Viridans 

streptococcus (4.1%) (Figure 3.12), and in 68.8% of cases with severe infection no pathogen 

was identified as the possible cause of the sepsis.   
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Table 3.42: List of organisms from culture, blood and respiratory 

Taqman array card included in the aetiologic modelling 

Organism Culture 
Blood  

TAC 

Resp.  

TAC 
Modeled 

Adenovirus   X  

Bordetella pertussis I   X  

Chlamydia pneumoniae   X  

Chlamydia trachomatis   X  

Cytomegalovirus   X X 

E. coli/Shigella X X X X 

Rhinovirus/Enterovirus  X X X 

Group A Streptococcus X X   

Group B Streptococcus X X X X 

Human metapneumovirus   X  

Human parechovirus   X  

Influenza A   X  

Influenza B   X  

Klebsiella pneumoniae X X X X 

Mycoplasma pneumoniae   X  

Neisseria meningitides X X  X 

pan-Haemophilus influenzae X X   

pan-Salmonella X X  X 

Parainfluenza virus 1   X  

Parainfluenza virus 2   X  

Parainfluenza virus 3   X  

Pseudomonas aeruginosa X X   

Respiratory syncytial virus   X  

Rubella   X  

Staphylococcus aureus X X  X 

Streptococcus pneumoniae X X X X 

Ureaplasma sp.  X X X 

Acinetobacter Baumannii X   X* 

Viridans streptococci X   X* 

Enterococcus faecalis X   X* 

Culture: Culturable using the BACTEC automated blood culture system 

Blood TAC: Included on whole blood Taqman array card panel 

Resp. TAC: included on respiratory (NP/OP) Taqman array card panel 

Modeled: Included in etiologic models based on the Partially Latent Class Model 

developed by Wu, et al321. 

* Estimated indirectly from the “other blood culture” class 
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Figure 3.11:  Estimated proportions with 95% confidence intervals attributable to specific 

pathogens among cases with early-onset sepsis 

* Pathogen proportion estimated indirectly from the “other blood culture” class. 
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Figure 3.12:  Estimated proportions with 95% confidence intervals attributable to specific 

organism among cases with severe infections (i.e. presence of lethargy, NICU admissions or 

died) 

* Pathogen proportion estimated indirectly from the “other blood culture” class. 
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While the adjusted  incidence (per 1000 live births) of  culture-confirmed EOS among 

neonates with EO-pSBI was 3.8, using the modelling output which included positive blood 

culture, and positive TAC in blood and NPOP swabs and adjusting for positive controls,  the  

incidence for TAC or culture confirmed EOS sepsis was 9.7. Among those cases with TAC 

or cultured confirmed bacterial sepsis, the incidence of Gram-positive bacteria was 4.7 higher 

than that of 2.9 observed for Gram-negative bacteria. Ureaplasma sp., GBS, and Viridans 

streptococcus all had estimated incidence of >1 per 1,000 live births (Table 3.43).  

 

Table 3.43: Observed and estimated pathogen specific incidence (per 1000 live births) of 

early-onset protocol-defined sepsis 

Pathogen 
Observed 

Incidence 

Estimated  

Incidence 
Estimated 

LCL 

Estimated 

UCL 

Ureaplasma spp. NA 2.11 1.40 3.13 

Group B Streptococcus 1.01 1.90 1.59 2.27 

Viridans streptococci 0.66 1.65 1.38 2.01 

K. pneumoniae 0.03 0.70 0.26 1.43 

E. coli/Shigella 0.29 0.60 0.43 0.89 

E. faecalis 0.29 0.57 0.46 0.71 

Cytomegalovirus NA 0.47 0.16 1.06 

Pan-Salmonella 0.03 0.44 0.15 0.99 

A. baumannii 0.13 0.26 0.22 0.32 

S. pneumoniae -- 0.23 0.14 0.44 

N. meningitides 0.06 0.19 0.09 0.46 

Staphylococcus aureus 0.09 0.07 0.03 0.19 

Rhinovirus/Enterovirus NA 0.06 0.03 0.13 

Bacterial Sepsis 3.16 9.71 8.67 10.88 

Gram-negative  0.80 2.86 2.31 3.53 

Gram-positive 2.23 4.74 4.02 5.58 

Observed incidence based on pathogen isolation from blood culture specimens   

Estimated incidence based on the Partially Latent Class Model developed by Wu, et al.
321

 

LCL (lower confidence limit) and UCL (upper confidence limit) based on 95% credible intervals 
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3.3 Maternal and Neonatal Vitamin D Status and its Association with 

Early-Onset Neonatal Sepsis in Black South Africans 

3.3.1 Enrolled pregnant women and their offspring 

Vitamin D deficiency (VDD) has been associated with increased risk for early-onset sepsis 

(EOS) in neonates; however, there is a paucity of data on vitamin D status in South African 

pregnant women and its association with EOS. Therefore in this part of the project I aimed to 

assess vitamin D status in pregnant South African women and their offspring, and its 

association with EOS. Pregnant women at time of delivery and their offspring living in 

Johannesburg were prospectively enrolled over a period of 18 months.   

 

Of 696 pregnant women who were approached to participate in the vitamin D status study 75 

(10.8%) refused consent, resulting in 621 mothers and 653 neonates (including 32 sets of 

twins) being enrolled (Figure 3.13). Among the 621 women, 254 (41%) were HIV positive 

and 98% were black African. The mean maternal age was 28 years and 30.8% were 

primigravida. The average duration of pregnancy at time of delivery was 37 weeks (Table 

3.44). The 653 enrolled neonates, included 293 (44.8%) with suspected sepsis, including 83 

(12.7%) with protocol defined EOS. Infants with protocol defined  sepsis were   more likely 

to be born by caesarean section (32.6% vs 6.4%%; p<0.001), to be of lower birth weight 

(2405±874 vs 2875±551 g; p<0.001), lower gestation age (36±4 vs 38±2 weeks; p<0.001), to 

have a lower median Apgar score at 5 minutes (9 vs 10, p=0.001) and to have been born in 

winter and spring; (42.2% & 36.1% vs 23.1% & 16.1%, p<0.001)   compared to well 

neonates (Table 3.44).  
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Figure 3.13:  Number of mothers and neonates enrolled in the study 
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Table 3.44:  Characteristics of mother-newborn dyads enrolled in the vitamin D study 

  

All 

n = 653
‡
 

Well infants 

(n = 360) 

Suspected  

Sepsis  

(n = 204) 

Protocol 

Defined Sepsis 

(n = 83) 

Well vs Suspected 

Sepsis 

p-value 

Well vs. Protocol 

Defined Sepsis 

p-value 

  n   (%) n   (%) n (%) n (%)    

Maternal Characteristics 

   

 

 Mother black African 636 (97.4) 352 (97.8) 197 (96.6) 81 (97.6) 0.558 >0.999 

Average maternal age*  28± 6 28± 6 28± 6 26±5 0.548 0.032 

Gravidity 

    

0.552 0.071 

1 200 (30.7) 108 (30.1) 59 (28.9) 33 (39.8)  

 2 – 4 422 (64.7) 230 (64.1) 137(67.2) 49 (59)  

 >4 30 (4.6) 21 (5.8) 8 (3.9) 1 (1.2)  

 Maternal HIV results** 

    

0.01 0.109 

Positive 265(40.9) 163(45.5) 69(34.2) 29(35.4)  

 Negative 383(59.1) 195(54.5) 133(65.8) 53(64.6)  

 Mode of delivery 

    

<0.001 <0.001 

Vaginal 526(80.6) 337(93.6) 131(64.2) 56(67.5)  

 Caesarean section 127(19.4) 23(6.4) 73(35.8) 27(32.5)  

 Season of the year at birth 

   

 <0.001 

Autumn 230(35.2) 169(46.9) 45(22.1) 13(15.7)  

 Winter  179(27.4) 83(23.1) 61(29.9) 35(42.2)  

 Spring 171(26.2) 58(16.1) 82(40.2) 30(36.1)  

 Summer 73(11.2) 50(13.9) 16(7.8) 5(6)  
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Table 3.44 (continued):  Characteristics of mother-newborn dyads enrolled in the vitamin D study 

  

All 

n = 653
‡
 

Well infants 

(n = 360) 

Suspected  

Sepsis  

(n = 204) 

Protocol 

Defined Sepsis 

(n = 83) 

Well vs Suspected 

Sepsis 

p-value 

Well vs. Protocol 

Defined Sepsis 

p-value 

  n   (%) n   (%) n (%) n (%)    

Infant characteristics 

   

 

 Average birth weight*   2690±724 2875±551 2468±805 2405±874 <0.001 <0.001 

Birth weight categories (g) 

   

 <0.001 

1000-1499 39(6) 0(0) 24(11.8) 14(16.9)  

 1500-1999 83(12.7) 15(4.2) 45(22.2) 22(26.5)  

 2000-2499 137(21) 93(25.8) 35(17.2) 8(9.6)  

 ≥2500 393(60.3) 252(70) 99(48.8) 39(47)  

 Average gestational age* 37±3 38±2 36±4 36±4 <0.001 <0.001 

Gestational age categories 

   

 <0.001 

<30 weeks  26(4) 2(0.6) 18(8.8) 6(7.2)  

 30 - 34 weeks  119(18.2) 40(11.1) 47(23) 30(36.1)  

 35 - 37 weeks  161(24.7) 105(29.2) 44(21.6) 12(14.5)  

 >37 weeks  347(53.1) 213(59.2) 95(46.6) 35(42.2)  

 Median Apgar score 

    

 

 at 1 minute† 9(7,9) 9(9,9) 8(5,9) 8(6,9) <0.001 <0.001 

at 5 minutes† 10(9,10) 10(10,10) 9(8,10) 9(8,10) <0.001 0.001 

 ‡- 6 patients had missing  results defining sepsis; * - Mean ± standard deviation;  ** - 5 had missing HIV results;  

† - Median (25th, 27th centiles) 
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3.3.2 25-hydroxyvitamin D in pregnant women  

The mean 25(OH)D concentration in black pregnant women was 54.7±30.1 nmol/L, with no   

statistically significant difference between HIV-infected and HIV-uninfected women (54.4 

±29.3 vs 55.0 ± 31.3 nmol/L, p=0.798) nor between mothers of healthy newborns and those 

who developed EOS; Table 3.45. Overall, vitamin D deficiency (serum 25(OH)D <30 

nmol/L) was noted in 18.8% of mothers, with a similar prevalence by  HIV-infection status.  

Although the mean 25(OH)D concentration did not differ between mothers’ of healthy 

newborns compared to  EOS cases, a  higher percentage  of mothers whose children had 

protocol defined sepsis (27.7%) were vitamin D deficient compared to  mothers of  healthy 

newborns ( 15.9%, p=0.003). There were no significant differences in 25(OH)D levels or 

prevalence of vitamin D deficiency among the women delivering at different gestational ages. 
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Table 3.45:  Maternal serum 25(OH)D concentrations and proportion with vitamin D deficiency 

  Serum 25(OH)D concentrations (nmol/L) Proportion with Vitamin D Deficiency (<30 nmol/L) 

  

HIV- Infected HIV- 

Uninfected 

All* HIV- Infected HIV- Uninfected All* 

  Mean ± SD Mean ± SD Mean ± SD n    (%) n    (%) n    (%) 

Mothers to all neonates n = 254 n = 362 n = 621 n =254 n = 362 n = 621 

Gestational age       

   <30 weeks (n=21)  61.6±40.6 50.1±20.8 57.7±32.3 1/10 (10.0) 2/10 /(20.0) 3/21 (14.3) 

30 - 34 weeks (n=113) 53.2±35.3 58.9±36.4 56.2±35.5 12/52 (23.1) 10/59 (17.0) 22/113 (19.5) 

35 - 37 weeks (n=147) 50.8±31.3 52.8±27.2 51.9±29.0 16/64 (25.0) 15/83 (18.1) 31/147 (21.1) 

>37 weeks (n=340) 57.3±28.8 53.8±28.3 55.2±28.5 25/128 (19.5) 35/210 (16.7) 61/340 (17.9) 

All (n=621) 55.0±31.3 54.4±29.3 54.7±30.1 54/254 (21.2) 62/362 (17.1) 117/621 (18.8) 

              

Mothers to well neonates n = 158 n = 185 n = 345 n = 158 n = 185 n = 345 

Gestational age             

<30 weeks (n=2)  31.7 71.5 51.6±28.1 0/1 0/1 0/2 (0) 

30 - 34 weeks (n=40) 51.4±34.2 46.2±21.8 48.6±27.9 4/19 (21.1) 4/20 (20.0) 8/40 (20.0) 

35 - 37 weeks (n=96) 53.3±31.2 52.7±26.8 53.0±28.8 9/46 (19.6) 10/50 (20.0) 19/96 (19.8) 

>37 weeks (n=207) 61.8±28.7 55.3±27.2 58.1±28.0 12/92 (13.0) 15/114 (13.2) 28/207 (13.5) 

All (n=345) 55.0±28.3 57.9±30.2 53.7±26.5 25/158 (15.8) 29/185 (15.7) 55/345 (15.9) 

              

Mothers to neonates with  

suspected sepsis but laboratory 

tests negative for sepsis n = 70 n = 137 n = 210 n = 70 n = 137 n = 210 

Gestational age   

 

  

   <30 weeks (n=17)  86.4±44.8 52.2±16.2 62.2±30.5 0/5 (0) 1/11 (8.33) 1/17 (5.88) 

30 - 34 weeks (n=48) 63.9±44.1 68.1±34.9 66.4±38.0 4/19 (21.1) 4/28 (14.3) 8/48 (16.7) 

35 - 37 weeks (n=45) 42.1±22.9 55.2±29.7 50.3±27.8 6/17 (35.3) 4/28 (14.3) 10/45 (22.0) 

>37 weeks (n=100) 46.7±26.7 54.1±31.6 52.3±30.4 9/29 (31.0) 13/70 (18.6) 22/100 (22.0) 

All (n=210) 53.1±35.5 57.0±31.1 55.9±32.2 19/70 (27.1) 22/137 (15.9) 41/210 (19.5) 
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 Table 3.45 (continued):  Maternal serum 25(OH)D concentrations and proportion with vitamin D deficiency 

 Serum 25(OH)D concentrations (nmol/L) Proportion with Vitamin D Deficiency 

 

HIV- Infected HIV- 

Uninfected 

All* HIV- Infected HIV- Uninfected All* 

 Mean ± SD Mean ± SD Mean ± SD n    (%) n    (%) n    (%) 

Mothers to neonates with  

suspected sepsis and laboratory 

tests positive for sepsis n = 32 n = 50 n = 83 n = 32 n = 50 n = 83 

Gestational age   

 

  

   <30 weeks (n=7)  58.9±47.7 17.9 58.3±44.9 1/5 (20) 1/1 (100) 2/7 (28.6) 

30 - 34 weeks (n=31) 45.0±26.4 76.9±63.8 60.5±50.1 5/16 (31.2) 2/15 (13.3) 7/31 (22.6) 

35 - 37 weeks (n=11) 72.7±61.1 44.4±19.7 52.1±34.6 1/3 (33.3) 2/8 (25.0) 3/11 (27.3) 

>37 weeks (n=34) 40.2±22.4 47.1±23.7 45.4±23.2 4/8 (50.0) 7/26 (26.9) 11/34 (32.4) 

All (n=83) 48.6±32.9 55.0±41.6 53.0±38.4 11/32 (34.4) 12/50 (24.0) 23/83 (27.7) 

* - A total of 5 mothers had missing HIV results and of these 2 were mothers of well neonates 
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3.3.3 25-hydroxyvitamin D in cord blood 

The overall mean cord blood 25(OH)D among the 653 infants was 39.0±21.3 nmol/L. There 

were no differences in cord blood mean 25(OH)D  levels between HIV-exposed and -

unexposed neonates (37.5 ±20.4 vs 39.8 ± 21.9 nmol/L, p=0.172). Vitamin D deficiency was 

identified in 39.8% of neonates overall, which did not differ between HIV-exposed and -

unexposed newborns (42.6% vs 38.1%, p=0.248) (Table 3.46). There were also no 

significant differences in 25(OH)D levels or prevalence of vitamin D deficiency among 

neonates of differing gestational ages or birth weights (data not shown).  The transplacental 

transfer ratio of 25(OH)D was 0.79±0.45, which did not differ by gestational age or birth 

weight. There was modest correlation between maternal and cord serum 25(OH)D levels for 

both healthy neonates (r=0.47) (Figure 3.14) and neonates with protocol defined sepsis 

(r=0.50) (Figure 3.15).   
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Table 3.46:  Cord blood concentrations, cord to maternal ratio of 25-hydroxyvitamin D and proportion with vitamin D deficiency according 

to gestational age 

  25(OH)D concentration (nmol/l) 

25(OH)D 

Cord to  

Mother 

Ratio Proportion with Vitamin D Deficiency (<30 nmol/L) 

  
HIV- 

exposed  

HIV- 

unexposed All All HIV-exposed 

HIV-

unexposed All* 

  Mean ± SD Mean ± SD Mean ± SD Mean ± SD n    (%) n    (%) n    (%) 

All Neonates n=265 n=381 n=651 n=649 n=265 n=381 n=651 

Gestational Age  

       <30 weeks   34.9±14.6 39.8±24.4 39.1±21.3 0.69±0.38 4/11 (36.4) 5/13 (38.5) 9/25 (36) 

30 - 34 weeks  39.1±22.4 42.6±23.5 41.1±22.9 0.81±0.45 21/54 (38.9) 20/63 (31.7) 41/119 (34.5) 

35 - 37 weeks  33.3±17.5 37.1±22.6 35.5±20.6 0.74±0.34 34/70 (48.6) 45/91 (49.5) 79/161 (49.1) 

>37 weeks  39.4±21.2 40.2±20.9 39.9±21 0.81±0.5 54/130 (41.5) 74/214 (34.6) 129/346 (37.3) 

All  37.5±20.4 39.8±21.9 39±21.3 0.79±0.45 113/265 (42.6) 144/381 (37.8) 258/651 (39.6) 

  

       
Well Neonates n=163 n=194 n=359 n=358 n=163 n=194 n=359 

Gestational Age  

       <30 weeks   13.8±NA 27.8±NA 20.8±9.8 0.41±0.03 1/1 (100) 1/1 (100) 2/2 (100) 

30 - 34 weeks  47.2±29.6 34±17.2 41.1±24.8 0.86±0.49 7/19 (36.8) 9/20 (45) 16/40 (40) 

35 - 37 weeks  36.4±18.3 41±23.1 38.8±21 0.8±0.36 20/50 (40) 22/55 (40) 42/105 (40) 

>37 weeks  43±21.8 44.7±20.9 43.9±21.2 0.83±0.44 32/93 (34.4) 28/118 (23.7) 60/212 (28.3) 

All  41.3±22 42.4±21.3 42±21.6 0.82±0.42 60/163 (36.8) 60/194 (30.9) 120/359 (33.4) 
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Table 3.46 (continued):  Cord blood concentrations, cord to maternal ratio of 25-hydroxyvitamin D and proportion with vitamin D 

deficiency according to gestational age 

  25(OH)D concentration (nmol/l) 

25(OH)D 

Cord to  

Mother 

Ratio Proportion with Vitamin D Deficiency (<30 nmol/L) 

 HIV- 

exposed 

Mean ± SD 

HIV- 

unexposed 

Mean ± SD 

 

All 

Mean ± SD 

 

All 

Mean ± SD 

 

HIV-exposed 

n    (%) 

HIV-

unexposed 

n    (%) 

 

All* 

n    (%) 

Neonates with suspected sepsis but 

negative laboratory tests for sepsis n=69 n=132 n=203 n=202 n=69 n=132 n=203 

Gestational Age 

       <30 weeks   38.9±17.1 43.9±24 42.1±21.4 0.73±0.42 2/6 (33.3) 3/11 (27.3) 5/17 (29.4) 

30 - 34 weeks  34.6±18.4 42.6±21.1 39.4±20.1 0.73±0.41 7/18 (38.9) 8/28 (28.6) 15/47 (31.9) 

35 - 37 weeks  27.8±12.4 32.7±21.4 30.8±18.4 0.65±0.27 11/17 (64.7) 17/27 (63) 28/44 (63.6) 

>37 weeks  31±17.6 33.8±18.7 32.9±18.3 0.74±0.46 16/28 (57.1) 32/66 (48.5) 49/95 (51.6) 

All  31.8±16.6 36.3±20.5 34.7±19.2 0.72±0.41 36/69 (52.2) 60/132 (45.5) 97/203 (47.8) 

  

       Neonates with suspected sepsis and 

positive laboratory tests for sepsis n=29 n=53 n=83 n=83 n=29 n=53 n=83 

Gestational Age 

       <30 weeks   34.2±6.3 7.5±NA 36.8±22.6 0.66±0.31 1/4 (25) 1/1 (100) 2/6 (33.3) 

30 - 34 weeks  33.8±14.8 53.9±30.5 43.9±25.7 0.89±0.44 7/15 (46.7) 3/15 (20) 10/30 (33.3) 

35 - 37 weeks  13.4±7.9 26.9±19.1 23.5±17.8 0.52±0.24 3/3 (100) 6/9 (66.7) 9/12 (75) 

>37 weeks  29.8±15.6 37.1±22.3 35.6±21.2 0.95±0.83 4/7 (57.1) 13/28 (46.4) 17/35 (48.6) 

All  30.8±14.5 39.5±26 36.9±23.2 0.85±0.62 15/29 (51.7) 23/53 (43.4) 38/83 (45.8) 

* - A total of 5 neonates had missing maternal HIV results, and of these 4 were well neonates,  

1 neonate with suspected had missing 25 (OH)D results  
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Figure 3.14:  Correlation between maternal and cord blood 25-hydroxyvitamin D 

concentrations in well neonates 

 

 

Figure 3.15:   Correlation between maternal and cord blood 25-hydroxyvitamin D 

concentrations in neonates with protocol defined sepsis 
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3.3.4 25(OH)D levels in relation to seasons of the year and mother-infant pairs  

25(OH)D levels in women  were highest in summer, and lowest in winter and spring for  

mothers and their newborns (Figure 3.16). The percentage of women with vitamin D 

deficiency increased from 7% in summer to 27% in winter, while newborn vitamin D 

deficiency increased from 22% in summer to 60% in winter.  

 

Figure 3.16:  Vitamin D deficiency and 25-hydroxyvitamin D concentrations in maternal and 

cord blood according to seasons of the year 
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Factors associated with vitamin D deficiency in newborns 

Neonates, who were born with vitamin D deficiency, were by univariate analysis more likely 

to be born by caesarean section, be of low birth weight, and their mothers also had vitamin D 

deficiency. Using multiple logistic regression, the predictors of vitamin D deficiency in cord 

blood included being born with low birth weight (aOR: 2.39, 95%CI 1.26-4.55), delivery by 

caesarean section  (aOR:5.07,  95% CI 1.92-13.37;  p<0.001), being born in winter  (aOR: 

4.76 (2.73-8.29; p<0.001) and being born to mothers with low 25(OH)D concentrations (aOR: 

3.54, 95% CI 1.87-6.69; p<0.001) (Table 3.47).   

 

Table 3.47:  Univariate and multivariate analysis for factors associated with vitamin D 

deficiency in cord blood 

  

Vitamin D  

Deficient 

N = 121 

Vitamin D  

Sufficient 

N = 239  

Univariate  

 

Multivariate 

  

  n (%) n (%) p-value aOR (95% CI) p-value 

Maternal age  in years 

     <20 4 (3) 28 (12)  ref ref 

20-35 102 (85) 174 (73) 0.01 3.73 (1.16-12.02) 0.027 

>35 14 (12) 36 (15) 0.106 2.42 (0.64-9.12) 0.191 

Mother black African 115 (95.8) 236 (98.7) 0.096 0.75 (0.15-3.79) 0.731 

Mother primigravida 36 (30) 72 (30.3) 0.961 N/A N/A 

Mother HIV infected 60 (50) 103 (43.5) 0.242 N/A N/A 

Mother HIV infected and on HAART 46 (37.8) 92 (38.5) 0.906 N/A N/A 

Preterm (<37 weeks) 40 (33.3) 64 (26.8) 0.197 0.62 (0.32-1.21) 0.161 

Low birth weight 50 (41.7) 57 (23.8) 0.001 2.39 (1.26-4.55) 0.008 

Caesarean section 15 (12.5) 8 (3.3) 0.002 5.07 (1.92-13.37) 0.001 

Median Apgar at 1 minute* 9 (9,9) 9 (9,9) 0.221 N/A N/A 

Median Apgar at 5 minutes* 10 (10,10) 10 (10,10) 0.269 N/A N/A 

Delivered in winter months 50 (41.7) 33 (13.8) <0.001 4.76 (2.73-8.29) <0.001 

Mother vitamin D deficient 35 (28.9) 23 (9.6) <0.001 3.54 (1.87-6.69) <0.001 

HIV - Human immunodeficiency virus; SD - Standard 

deviation 

    * - Numbers in parenthesis are 25th and 75th centiles 

    # - Number in parenthesis is standard deviation 
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3.3.5 Association between 25-hydroxyvitamin D levels and protocol defined early 

neonatal sepsis  

Neonates who had protocol-defined EOS were more likely to be born in winter (42.2% vs 

23.1%, p<0.001),  had vitamin D deficiency in cord blood (45.8% vs 33.4%, p=0.035), were 

born preterm (49.4% vs 28.9%, p<0.001), had  lower birth weight (53.0% vs 30.0%, 

p<0.001), were  born by Caesarean section (32.5% vs 6.4%, p<0.001) and had lower Apgar 

scores at  1 and 5 minutes (p<0.001) (Table 3.48). On multivariate analysis the factors that 

were shown to be predictors of protocol-defined EOS were being born in winter (aOR: 2.91; 

95% CI 1.47-5.76), being born preterm (aOR: 2.92, 95% CI 1.29-6.61), and being delivered 

by caesarean section (aOR: 6.06, 95% CI 2.63-14.0).  

 

Table 3.48:  Univariate and multivariate analysis for factors associated with early-onset 

protocol-defined sepsis in neonates 

  

Neonates with 

Protocol Defined 

Sepsis 

N = 83 

Well 

Neonates 

N = 360 Univariate Multivariate 
  n (%) n (%) p - value OR (95% CI) p-value 

Maternal age  in years 

     <20 10 (12) 32 (9)  ref ref 

20-35 68 (82) 277 (77) 0.01 1.54 (0.51-4.59) 0.442 

>35 5 (6) 50 (14) 0.106 0.94 (0.2-4.43) 0.939 

Mother black African 81 (97.6) 352 (97.8) 0.917 N/A N/A 

Mother primigravida 33 (39.8) 108 (30.1) 0.09 1.73 (0.86-3.47) 0.123 

Mother HIV-infected 29 (35.4) 163 (45.5) 0.096 0.71 (0.36-1.38) 0.31 

Delivered in winter months 35 (42.2) 83 (23.1) <0.001 2.91 (1.47-5.76) 0.002 

Maternal vitamin D deficiency 21 (25.3) 58 (16.1) 0.051 1.59 (0.72-3.51) 0.252 

Newborn vitamin D deficiency 38 (45.8) 120 (33.4) 0.035 0.82 (0.41-1.64) 0.567 

Preterm (<37 weeks) 41 (49.4) 104 (28.9) <0.001 2.92 (1.29-6.61) 0.01 

Low birth weight (<2500 g) 44 (53) 108 (30) <0.001 1.36 (0.61-3.05) 0.449 

Birth by Caesarean section 27 (32.5) 23 (6.4) <0.001 6.06 (2.63-13.97) <0.001 

*-HIV - Human immunodeficiency virus   

   

  



157 

 

4 DISCUSSION  

4.1 Burden of Clinical Sepsis 

Sepsis in neonates is an important contributor to the global burden of under-5 morbidity and 

mortality, including being responsible for 27% of neonatal deaths in sub-Saharan Africa in 

2013.
1
  Furthermore, neonatal sepsis in very low birth weight infants has been associated with 

increased risk for neurodevelopmental impairment (OR: 2.09; 95% CI 1.65-2.65) including 

cerebral palsy (OR: 2.09; 95% CI 1.78-2.45).
322

  Preventing mortality and morbidity related to 

bacterial sepsis requires early diagnosis and treatment. Because of the high mortality rate 

associated with untreated or delayed treatment of bacterial sepsis, treatment needs to be 

started early, as soon as the diagnosis is made based on clinical signs before availability of 

laboratory confirmation of sepsis. Therefore neonates are often managed as having pSBI 

based on clinical signs.   

 

One of the objectives of this thesis was to determine the incidence of sepsis, including pSBI, 

in neonates presenting within the first three days of life (EO-pSBI), and in those presenting 

from home within the first 28 days of life (CA-pSBI). The clinical diagnosis of neonatal 

sepsis is challenging due to the non-specificity of signs for sepsis in this age group. The WHO 

Young Infants Clinical Signs Study  listed a number of clinical signs that if present are 

suggestive of severe bacterial infection and have a sensitivity and specificity of 85% and 75%, 

respectively.
52

 In the present study the common clinical signs among the neonates with EO-

pSBI were chest wall retractions and tachypnoea, while among neonates with CA-pSBI the 

commonest presenting sign was jaundice. This difference in type of presenting signs between 

the EO-pSBI and CA-pSBI is most likely related to the fact that these signs are general 

common signs for conditions including sepsis that commonly present during the time periods 

that define these 2 groups. Neonates soon after delivery might present with signs suggestive 

of sepsis even though they might not have sepsis, for example they might present with 

tachypnoea because they still have fluid in the alveolar space (wet lung syndrome) which 

might affect compliance and therefore results in tachypnoea, and secondly those who are born 

preterm are likely to have tachypnoea and chest retractions because of alveolar collapse from 

surfactant deficiency (respiratory distress syndrome). Because of difficulties of differentiating 

patients with tachypnoea or retractions due to pneumonia from those with wet lung or 

respiratory distress syndrome, these neonates are often admitted with a diagnosis of suspected 
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sepsis and have blood cultures done, thus providing a rationale for why respiratory symptoms 

are a common sign in EO-pSBI. Similarly patients who present with different signs of CA-

pSBI are also more likely to have jaundice as it commonly present after the first 48 hours of 

life and peaks during the second week of life in well neonates. One study looking at clinical 

signs of sepsis in neonates with CAS reported that jaundice was the common reason for 

neonates seeking help at outpatients department.
48

 Thus the significance of signs of 

respiratory distress and jaundice in this study as common signs found in patients with pSBI 

should be interpreted with caution, a finding which is confirmed by the lack of association 

with culture-proven sepsis on univariate and multivariate analysis. This finding is not 

supported by Kayange et al., who reported both chest indrawing and jaundice to be associated 

with sepsis.
40

 The signs we found to be associated with culture-proven EOS were lethargy and 

fever; while for CAS irritability, lethargy, poor feeding, seizures, hypotonia and hypotension 

were associated with culture-proven sepsis. These signs are similar to those reported to be 

found in infants with pSBI in other studies.
51, 52, 318

     

 

The incidence (per 1000 live births) of EO-pSBI and CA-pSBI in our study was 105.6 and 

33.4 cases, respectively; with an overall incidence of pSBI among neonates in Soweto of 139 

in the years 2013 to 2014. This is higher than that reported in India and Nepal, where 

incidences of 105 and 90/1000 live births, respectively are given.
323, 324

  A possible reason for 

these differences is that majority of neonates in our study were born in hospital and therefore 

were most likely to be examined by skilled healthcare providers who are more likely to have a 

low index of suspicion for sepsis while in the studies from Asia neonates with pSBI were 

most likely diagnosed by community healthcare workers. The other possible explanation is 

the high prevalence of HIV exposure in our population, which in this study was shown to be 

positively associated with higher incidence of pSBI, with HIV-exposed having about 1.5 fold 

increase in incidence of CA-pSBI compared to HIV-unexposed neonates.   

 

Neonates with pSBI were further categorized  as having protocol-defined sepsis, based on 

presence of clinical signs and abnormality in any one of the ancillary tests (white cell counts, 

platelet counts and c-reactive protein) (clinical sepsis) or having positive blood culture due to 

an organism considered a pathogen (culture-confirmed sepsis). The overall incidence of 

protocol-defined EOS (clinical or culture confirmed) in this study was 49.5 per 1000 live 

births. This was higher than previously reported in the same population in 2004-2008 by 

Cutland et al., who reported an incidence of 35/ 1000 live births.
37

 This difference is most 
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likely due to the study by Cutland et al. having fewer neonates who were HIV exposed at 26% 

compared to 34% in this study, and secondly it was designed to minimize enrolment of 

preterm newborns enrolling 4% infants were preterm compared to 46% in this study. 

Prematurity has been shown to be a risk factor for early-onset neonatal sepsis in a number of 

studies
34, 325, 326

 with one study reporting that odds of being preterm among the neonates with 

sepsis was increased ten-fold compared to controls.
326

   

4.2 Incidence of culture confirmed sepsis 

The blood culture positivity rate due to putative bacterial pathogens was 4% and 7.7% for 

EOS and CAS, respectively in this study. The positive culture rate of 4% due to pathogens in 

EOS in this study was higher than that reported in studies from developed countries where 

positive culture rate was reported to be 0.7 – 3.3%,
104, 105, 107

 but lower than that reported in 

other developing countries which reported positive culture rates of 33-47% .
39, 40

 The high 

rates from developing countries are most likely due to number of births occurring in the 

community where births might be conducted in a non-sterile environment. In developed 

countries births are usually conducted inside healthcare facilities where infection control 

measures are closely observed. In this study most births occurred in a healthcare facility 

therefore rates were closer to those in developed countries. The positive culture rate of 7.7% 

due to pathogens in CAS in this study is similar to that in studies conducted in developing 

countries where culture positive rates of 3.4 to 13.5% are reported.
48

 
44, 110-112

  

 

The incidence of culture confirmed EOS was 2.97/ 1000 live births, which is higher than that 

of CAS at 1.98 /1000 live births. The incidence of culture confirmed CAS is much lower than 

that reported in Kenya at 5.4/ 1000 live births
112

 and from Bangladesh at 2.9 / 1000 live 

births.
111

 The reason for this difference is most likely due to early care-seeking behavior in 

this study, thus many patients who presented with possible signs of sepsis were actually not 

infected. This is supported by the high incidence of pSBI compared to culture-confirmed 

sepsis in this study, which is more than ten times lower. The incidence of culture-confirmed 

sepsis was similar to that reported in developed countries.
34, 141

  

 

The common organisms considered to be definite pathogens isolated in blood culture were 

GBS, Enterococcus species and E. coli in those with EOS and GBS, Staphylococcus aureus 

and Enterococcus species in those with CAS. Therefore overall GBS was the common 
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pathogen causing EOS or CAS during the neonatal period. The GBS being a common 

pathogen causing neonatal sepsis is commonly reported from developed countries.
41, 165

  The 

finding in this study is different from many studies  in developing countries where the 

common pathogens are reported to be Gram negatives and Staphylococcus aureus infection.
46, 

49, 163
 It is not clear why studies from the developing countries have different results from 

developed countries, as GBS  has been reported to be one of the colonizers of the female 

genital tract from both developed and developing countries.
327

 A possibility is that as many of 

the births in developing countries occur in the community, those infected with GBS may  die 

before reaching the healthcare facility as many cases of GBS  present within the first 24 hours 

of life. There are some studies from developing countries that reported GBS as a common 

pathogen and most of these studies were from Africa,
37, 43, 44, 164

 except for one from the 

Asia.
153

 The incidence of GBS in EOS was 1.41/ 1000 live births and that for CAS was 0.97/ 

1000 live births giving an overall incidence of 2.38/ 1000 live births. The incidence of GBS  

EOS was more than 2 fold higher than the worldwide incidence of 0.43/ 1000 live births
328

  or 

0.41 and 0.50/1000 live births from developed countries like USA
38

 and UK
41

 respectively. It 

is also higher than that seen in developing countries like Brazil
329

 and India
138, 330

  which have 

reported incidences of 0.39/1000 and 0.15/1000 live births respectively. The incidence of 

GBS in EOS from this study is similar to that of 1.37/1000 live births reported by Dangor et 

al. in the same region and province,
331

 and lower than that reported  in the same institution in 

2003 (2.07) and 2009 (1.97) per 1000 live births.
37, 180

  This reduction is possibly due to an 

increase in the use of intrapartum antibiotics for patients with risk-factors for GBS. The 

incidence of GBS  in neonates with CAS is higher that reported in Pakistan 
111

 at 0.10/1000 

live births. In summary the incidence of GBS in this study was higher than that reported in 

developed countries, and other countries in sub-Saharan Africa, highlighting the importance 

of each country having its own surveillance in identifying common pathogens causing 

neonatal sepsis. This is supported by a number of systematic reviews that have reported on the 

incidence of GBS in different countries in the world, which have shown a wide variation 

among these countries.
328, 332, 333

 The lower incidence of GBS in India and Brazil compared to 

this study could also be related to the relative lower incidence of colonization of the mother’s 

genital tract with GBS  of 12% and 14% in India/ Pakistan and Americas compared to 19% in 

sub-Saharan Africa.
327

  Vaginal delivery was a predictor for positive blood culture in EOS, 

supporting that one of the mechanism of acquisition of infection peripartum is through 

colonization of the neonate during delivery, and through ascending infection. This difference 

was more prominent with GBS confirming the role of colonization on acquisition of GBS.   
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4.3 Antimicrobial Susceptibility 

The first line antibiotics recommended by WHO for EOS and CAS are ampicillin and 

gentamicin. Overall at least 80% of pathogens including both Gram positives and Gram 

negatives isolated from both EOS and CAS were susceptible to at least one of the two empiric 

antibiotics used in the unit and recommended by WHO. This number is similar to that 

reported by Talbert et al in Kenya which had 84% of bacteria isolated in neonates with 

community acquired infection being susceptible to ampicillin and gentamicin.
334

 But it is 

higher than that reported from Bangladesh where only 70% of pathogens isolated from 

neonates with community acquired sepsis were sensitive to ampicillin and gentamicin with 

53% and 46.7% of Gram negatives being resistant to gentamicin and cephalosporins 

respectively.
111

 The differences in susceptibilities of organisms between Bangladesh and those 

in this study are most likely due to high proportion of Gram negatives in neonates with sepsis, 

whereas in South Africa the predominant organisms are Gram positives 

 

In focusing on susceptibility of specific organisms to these antibiotics, the finding from this 

study is that all GBS isolates were susceptible to ampicillin for both EOS and CAS. Among 

the E. coli isolates only 11.1% and 14.3% were susceptible to ampicillin for EOS and CAS 

respectively, but were all susceptible to gentamicin and cephalosporins. All Staphylococcus 

aureus were susceptible to cloxacillin from both EOS and CAS, and all those isolated from 

neonates with EOS were susceptible to gentamicin and 83% of the isolates from CAS were 

susceptible. With Staphylococcus aureus being the third common bacteria isolated in 

neonates, it would be appropriate to consider cloxacillin as part of empiric antibiotics used in 

neonates with community acquired sepsis, but this would mean giving three empiric 

antibiotics which might encourage selection of resistant bacteria. While this change might be 

appropriate, for now one would suggest waiting with cloxacillin as it would appear that 

gentamicin might be adequate as cover for Staphylococcus aureus since there were no deaths 

among the neonates with positive culture due to this organism and majority were sensitive to 

gentamicin. None of the Staphylococcus aureus were methicillin or cloxacillin resistant which 

is different from a study conducted in Nigeria which reported that 30.7% of community 

acquired Staphylococcus aureus were methicillin resistant (MRSA). 
335

  Based on these 

findings, it remains appropriate to use ampicillin and gentamicin for EOS and CAS in the 

setting where this study was conducted. Recently a number of studies from developing 

countries have reported on antimicrobial susceptibilities for different pathogens but they did 
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not differentiate between EOS and late-onset sepsis, which is important as the common 

pathogens causing EOS in these studies were different from those found in this study.
336, 337

 

The antimicrobial susceptibilities of both GBS and E. coli are similar to those reported from 

countries where these organisms are common causes of EOS.
38, 338

     

4.4 Case fatality rates and predictors of mortality 

The case fatality rate (CFR) in EOS was 12% and 18% in neonates with clinical and culture 

confirmed sepsis respectively. These are much higher than those observed in neonates with 

CAS which were 6% and 3% for clinical and culture confirmed sepsis respectively.  The 

higher CFR in EOS compared to CAS is similar to the  reports from other studies in which 

neonates  aged 0-7 days were reported to have a mortality rate of 27-56% compared to 5-26% 

in the age group 8-59 days.
44, 112

 The CFR of 18% in culture confirmed EOS is higher than the 

rate of 3-16% reported from developed countries 
38, 105, 151, 160

 but similar or lower than that of 

6-28% from developing countries.
39, 42, 43, 152, 153, 174

 The factors that were identified as 

predictors of mortality in this study were vaginal delivery, very low birth weight, clinical 

presentation with apnoea and need the for mechanical ventilation. While the other three 

factors were expected because they reflect the vulnerability or maturity of organs and severity 

of illness, the finding of vaginal delivery was unexpected.  The possible mechanism for this 

association could be due to possible increased risk of intraventricular haemorrhage which has 

been reported to be associated with vaginal delivery in preterm infants.
339

  Intraventricular 

haemorrhage is associated with sepsis and high mortality if severe. This is only a hypothesis, 

as we did not collect information on intraventricular haemorrhage. The other reason could be 

that vaginally delivered neonates were exposed to a high load of bacteria and therefore severe 

disease as confirmed by its association with culture-confirmed sepsis. This association could 

also be explained by the corollary, that caesarean section provided survival advantage 

especially in the preterm infants.
340

  Vaginal delivery might have other complications that 

were not recorded in this study, namely prolonged second stage which is associated with 

morbidity and mortality. Prolonged second stage especially in nulliparous women is 

associated with neonatal sepsis (OR: 2.34; 95%CI 1.28-4.27), asphyxia (OR: 2.39; 95%CI 

1.22-4.66) and perinatal mortality (OR 5.92; 95%CI 1.43-24.5).
341
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4.5 HIV Exposure and Neonatal Sepsis 

Exposure to HIV is more likely to predispose neonates to sepsis as it is associated with 

abnormalities in the humoral and cellular immune systems in the neonate 
205, 206, 208, 209

 and an 

increases in bacterial vaginosis and diversity of vaginal microbiota in the infected mother.
342, 

343
 Bacterial vaginosis is associated with premature rupture of and prematurity,

344, 345
 thus the 

possible reason for high prevalence of PROM and use of intrapartum antibiotics in HIV-

infected women. Therefore it was important that patients were stratified according to HIV 

exposure in this study. Though there were no differences in most of the clinical signs between 

HIV exposed and unexposed neonates with EOS, more patients in the HIV exposed neonates 

required mechanical ventilation. This is most likely due to the fact that HIV exposed neonates 

were of lower gestation than unexposed neonates and it is well know that HIV exposed infants 

tend to be of lower gestation and birth weight than unexposed neonates.
346, 347

 Among the 

neonates with CAS more HIV exposed neonates presented with signs other than jaundice than 

unexposed infants.  This finding might suggest a greater degree of severity of their illness 

than in unexposed infants who commonly presented with jaundice which is a common 

physiological condition during the neonatal period. Thus signs considered to be suggestive of 

sepsis were more common in HIV exposed infants than unexposed. The findings are also 

supported by the fact that HIV positive mothers were more likely to present with prolonged 

rupture of membranes which increases the risk of infection to the foetus. The high prevalence 

of metabolic acidosis in HIV-exposed neonates in this study could be explained by perinatal 

exposure to antiretroviral therapy as all HIV-positive mothers were put on three drugs 

including nucleoside reverse transcriptase inhibitors either as part of their treatment or 

PMTCT. It has been reported that in-utero exposure to antiretroviral therapy is associated 

with transient lactic acidaemia in neonates.
348, 349

   

 

The incidence of EO-pSBI among those who were HIV exposed was significantly higher than 

those who were not exposed, but this difference was not observed in those with CA-pSBI. The 

incidence of laboratory-diagnosed sepsis was about 2 fold higher in HIV exposed than in 

unexposed neonates with both early-onset and community-acquired sepsis. The high 

incidence of EO-pSBI in HIV exposed could be explained by a number of factors, namely a 

higher proportion of neonates who were HIV exposed were preterm, therefore more likely to 

present with signs of respiratory distress, a sign used in the  diagnosis of pSBI. Secondly HIV 

exposed neonates might have impairment in their immune system therefore be at greater risk 
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of sepsis or they may be exposed to high load of pathogens in their mothers’ genital tract  at 

the time of delivery. The possibility of an impaired immunity is further supported by the 

higher incidence of protocol defined and culture-proven CAS, which was 2-3 folds higher in 

HIV exposed than unexposed neonates. The high incidence of sepsis observed in HIV 

exposed neonates in this study has been observed in other studies.
195, 196

 A study from 

Belgium reported that the incidence of neonatal GBS sepsis was greater in HIV exposed than 

unexposed newborns.
196

 Similarly a study from South Africa reported that the vertical 

transmission of E. coli was higher in the HIV exposed than unexposed neonates.
195

  Therefore 

it appears that HIV exposure is a risk factor for development of sepsis during the neonatal 

period. 

 

This study highlights the burden of sepsis, which is partly due to the high prevalence of 

maternal HIV infection in the region and Southern Africa in general. Therefore strategies 

introduced to reduce neonatal sepsis should also include those to reduce maternal HIV 

infection.   

4.6 Use of the Taqman array card in the diagnosis of sepsis 

4.6.1 Blood Taqman array card 

In this study it was found that TAC detected organisms in the blood of 37% and 46% neonates 

with clinical EOS and CAS respectively. These detection rates are much higher than those 

observed using blood culture which were 4% and 7% in EOS and CAS respectively. These 

differences might be explained partially by the fact that TAC detects bacteria that are not 

detectable on microbiological cultures, namely Ureaplasma, Mycoplasma and Bordetella 

pertussis and viruses. It is therefore important that when one compares the detection rate 

between the two tests one should only include pathogens that can be detected by both tests. 

Using this methodology and correcting the positive results obtained using TAC in healthy 

neonates, TAC still had a higher detection rate at 14.5% and 19% for EOS and CAS 

respectively, compared to 4% and 7% using blood culture. The other reason for the 

differences in detection rate between TAC and culture relates to the methods used in detection 

of organisms. The PCR-based assays, including the TAC system detect the 16S ribosomal 

RNA in blood, thus are able to detect viable and therefore culturable organisms, non-

culturable but viable dormant organisms and non-viable organisms. Blood culture detects only 

culturable organisms and culturability of an organism refers to its viability at the time or 
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circumstances under which the culture is done. Therefore a negative culture does not 

necessarily mean that there is no organism as the isolation media and incubation conditions 

might not allow for the growth of all strains. Some culturable organisms might be dormant but 

not dead, and thus have a potential to return to a viable state of being culturable.  

In assessing the role of TAC in diagnosing neonatal sepsis, using blood culture as a gold 

standard test, overall TAC had a sensitivity of 79% but a specificity of only 70%.  These 

numbers seem to vary for different organisms, for example, the sensitivity and specificity for 

GBS was 83% and 95% respectively compared to sensitivity of 50% and specificity of 98% 

for E. coli.  This suggest that while TAC might be useful in diagnosis of neonatal sepsis, it 

needs to be developed further for it to be used to detect a broader range of pathogens.    

 

Finding evidence of Pseudomonas aeruginosa and Streptococcus pneumonia being so 

common  was unexpected. These are not organisms commonly cultured in neonates. In this 

study, we did not have a single culture positive for Streptococcus pneumoniae and there was 

only one positive culture for Pseudomonas aeruginosa.  The possible explanation for the high 

detection of these organisms in TAC but not in blood culture could be due either to 

contamination of the specimen after the blood had been injected into the blood culture bottle 

but before testing the blood by TAC or to  there  being other organisms with similar genetic 

make-up but not detectable on blood culture. The high positivity rate for Pseudomonas 

aeruginosa was most likely due to contamination as the positive results were clustered over 

two months. Previously contamination of blood with Pseudomonas aeruginosa had been 

observed in Chris Hani Baragwanath Academic Hospital, there had been a cluster of positive 

blood cultures without other markers of sepsis being suggestive and babies recovered without 

the use of appropriate antibiotics covering Pseudomonas aeruginosa.  This was subsequently 

found to be due to health care providers putting the required blood specimen in the blood gas 

analyzer first before putting the remaining specimen into the blood culture bottle. The nozzle 

of the blood gas analyzer was found to be colonized with Pseudomonas aeruginosa.  In order 

to exclude the second possibility that the positive result was due to a different organism with 

similar TAC profile, the specimens that were positive for Streptococcus pneumonia on TAC 

were selected randomly to be tested with LytA and were found to be positive suggesting that 

TAC correctly detected Streptococcus pneumoniae. The source of Streptococcus pneumoniae 

is unknown as vaginal swabs from women in labour did not culture Streptococcus 

pneumoniae (unpublished data) making it unlikely that the organisms were from maternal 
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genital tract. The significance of finding Streptococcus pneumoniae in blood using TAC is 

unknown as its prevalence was similar in cases and controls.  

4.6.2 Organisms from Naso/oro-pharyngeal swabs using the Taqman array card 

One of the entry points for infection into the blood is the mucosa of the respiratory tract 

system, therefore one would expect that colonization of the oropharyngeal and 

nasopharyngeal airway might be associated with the development of clinical sepsis. In this 

study, neonates with clinical sepsis and well neonates (controls) had NPOP taken for 

detection of organisms by TAC.  Three-quarters of the cases between ages 3-27 days and less 

than half of cases aged between 0-2 days had organisms detected in their NPOP swabs, 

suggesting that the colonization of the airways increases with postnatal age. This was 

confirmed by the proportion of colonized cases increasing from 44% at day 0 to 95%  at day 

21-27 days; and similarly among controls the percentage increased from 54% at day 0 to 74% 

at day 21-27 days. The colonization of the airways  did not appear to be a factor in the 

pathogenesis of  in neonatal sepsis as the numbers of colonized infants were not significantly 

different between cases and controls with rates 44% vs 54% in 0-2 days age group and 75 vs 

70% in the age group 3-27 days. The acquisition of the organisms in the nasopharynx appears 

to start in utero or at the time of birth as 44% and 54% of controls was colonized as early as 

day 0. This is the first study reporting on colonization of naso-oropharyngeal airways from 

birth through the neonatal period.  

4.7 Attributable Proportion 

In considering the fact that TAC can detect 16S ribosomal RNA of organisms that might not 

be viable and therefore not causative of sepsis, we also performed TAC assay in blood of 

neonates considered to be well in order to assess the significance of finding an organisms in 

neonates with clinical sepsis. In this study we found that among the healthy neonates 

(controls) 20% in the first 3 days of life and 27% in the age group 3-27 days had organism 

detected in blood. These findings brought into question whether blood is a true sterile site as it 

is commonly referred to or not, and secondly whether the finding of an organism in blood of a 

sick neonate means that the organism detected is a causative organism or not. The detection of 

viruses and bacteria in blood by TAC in healthy neonates in the current study challenges the 

notion that blood is a sterile site. Other studies have also reported that blood from healthy 

individuals can contain bacterial 16S ribosomal DNA.
114-116
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The positive results in blood of healthy neonates based on TAC challenge the notion that 

healthy humans have sterile blood, as it suggests that non-culturable or dormant forms of 

organisms are present.
350-354

  Secondly finding non-culturable organisms such as Ureaplasma 

species and a statistical modelling using TAC suggests that the presence of a negative blood 

culture does not mean an absence of a causative organism. Therefore detection of organisms 

using PCR-based technology like TAC in patients with clinical sepsis should be interpreted 

with caution as some of the organisms might be dormant or non-viable and therefore not the  

cause of the current illness,  although they have potential for causing disease when reactivated 

or resuscitated. The finding of organisms in the blood of healthy neonates makes it difficult to 

implicate an organism found in a neonate with clinical sepsis as being the causative organism. 

Therefore in order to assess which detected organisms contribute to illness in cases and what 

the odds are of detecting the pathogenetic organism, a statistically modelling was used for 

EOS and included positive blood cultures in cases and positive blood and nasopharyngeal 

results from TAC in both cases and controls. Using the statistical modelling only 27% of 

cases could be attributed to have aetiological organisms from the organisms which could be 

detected in blood culture or in TAC, thus 73% of cases could not be attributed a causative 

organism. Among those neonates with an attributed aetiology, the common pathogens were 

Ureaplasma species, GBS and Klebsiella pneumoniae. These three organisms are commonly 

found in the urogenital tract of pregnant women, suggesting acquisition from the mother. This 

concept is further supported by the finding that vaginal delivery is a predictor of culture-

confirmed sepsis.  

 

Though GBS and Klebsiella pneumoniae are commonly considered causes of neonatal sepsis, 

Ureaplasma species has not been considered a common pathogen in neonatal sepsis. The 

neonatal disease that has been reported to be associated with Ureaplasma colonization/ 

infection is bronchopulmonary dysplasia, a condition commonly seen in neonates born 

preterm.
355

 Ureaplasma species are detected in 67% of sexually active women of reproductive 

age, compared to 40% of sexually inactive and 25% of postmenopausal women.
356

  The 

prevalence of amniotic fluid infection with Ureaplasma is seen 6-9% in those with preterm 

and intact membranes compared to 22% in those with preterm labour with ruptured 

membranes.
357-359

 The rate of Ureaplasam species respiratory tract colonization increases with 

duration of rupture of membranes.
360, 361

 Therefore this could explain the difference between 

cases and controls in the prevalence of Ureaplasma in this study as more cases had prolonged 

rupture of membranes than controls. However, 45% of neonates with Ureaplasma on TAC 
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were born preterm, leaving 55% being full-term infants suggesting that this infection is not 

limited only to those born preterm.  

 

The finding in this study that organisms were identified in both NPOP and blood samples 

suggests possible translocation of the organism from the mucosa of the respiratory tract.  This 

translocation can occur with or without inflammation.
362

  and therefore present with or 

without clinical signs of infection making it difficult to attribute the illness to the presence of 

the organism.  One study reported that 26% of neonates who had positive Ureaplasma in the 

lower respiratory tract also had bacteraemia
363

 and another study reported that 23% of 

neonates had positive culture for Ureaplasma in cord blood.
364

 Therefore it appears that there 

is a relationship between the presence of Ureaplasma in blood and pharyngeal secretions, 

supporting translocation from the respiratory tract through the mucosa to the blood stream. A 

number of studies that looked at treatment of patients with positive tracheal aspirate cultures 

for Ureaplasma reported that macrolides led to clearance of the organism but no reduction in 

neonatal morbidity.
365

 The lack of effect on morbidity in these studies could be related to not 

having adequate sample size, secondly studying different types of macrolides or that 

Ureaplasma does not cause diseases in the neonate. Therefore there is a need to conduct 

larger randomized clinical trials with clear enrolment criteria to assess the efficacy and safety 

of available macrolides. .    

4.8 Vitamin D and Sepsis 

The increasing number of reports on vitamin D deficiency being associated with adverse 

obstetric and neonatal outcomes suggests that the extent of this problem should be assessed 

for each and every community or population in which vitamin D deficiency might be 

prevalent. Serum 25(OH)D reflect the adequacy of vitamin D intake and cutaneous production 

and is therefore used for the assessment of vitamin D status.  In this study we assessed serum 

25(OH)D in pregnant women and their offspring in Johannesburg, South Africa (latitude 

26°S) in order to assess the prevalence of vitamin D deficiency, the factors associated with 

this deficiency and the role of vitamin D status in early-onset neonatal sepsis.   In a cohort of 

621 pregnant women in this study the mean 25(OH)D was 54.7 ± 30.1 nmol/L and  nearly one 

in five (19%) pregnant women at delivery were vitamin D deficient [25(OH)D <30nmol/L]. 

These results are very similar to another study conducted in adult black African females in 

Johannesburg, who were not pregnant, in whom the mean 25(OH)D was 58.3 nmol/L.
366

 The 
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mean 25(OH)D observed in pregnant women in the present study is much higher than those 

reported from Asian countries which have reported means of <40 nmol/L,
367

 but similar to 

levels reported in African Americans from the United States.
258, 368, 369

 Our mean is lower than 

those reported from other sub-Saharan countries.
370-372

 In Nigeria the mean 25(OH)D was 

reported to be 90 nmol/L in pregnant women not practicing purdah (use of veils by 

women).
370

  In East Africa the serum 25(OH)D concentrations in pregnant women from the 

ethnic groups of Maasai and Sengerema were 147.7 nmol/L and 141.9 nmol/L.
371

 The higher 

levels of serum 25(OH)D in blacks from East Africa are thought to be related to sun exposure 

as they tend to spend more time outside.
371

 The role of sunlight in maintaining 25(OH)D 

levels is supported by the findings that women practicing purdah in Nigeria had lower serum 

25(OH)D than those not practicing purdah (53 vs 90 nmol/L).
370

  In the present study the 

levels of 25(OH)D varied by season, with levels during summer being nearly double those 

during winter (82.9 vs 41.8 nmol/L). The prevalence of vitamin deficiency among mothers 

followed a similar pattern (27% and 7% during winter and summer respectively). Numerous 

other studies have also reported similar seasonal variations.
244, 373-375

 This study and these 

other studies confirm that sun exposure is a major determinant of vitamin D status in 

humans.
243-245, 249, 254, 258

   

 

Mean 25(OH)D concentrations in cord blood was 39 nmol/L and it correlated with maternal 

serum 25(OH)D concentrations (r=0.47). This finding is similar to other studies that have 

consistently reported a correlation between cord blood 25(OH)D and maternal 

concentrations.
244, 256, 258, 369, 376, 377

 The main factors influencing cord blood concentrations of 

25(OH)D in the present study were maternal serum 25(OH)D and season of the year. The 

seasonal variation in cord blood concentrations reflect seasonal changes seen in maternal 

serum concentrations. The prevalence of vitamin D deficiency in neonates was 40%. This 

prevalence is lower than that reported in black neonates from other studies, in which vitamin 

D deficiency varied from 46% -65%,
258, 259, 378, 379

 while in white neonates the prevalence is 

much lower at 4-11%.
254, 257-259

  A number of studies have reported an association between 

HIV-infection and vitamin D deficiency.
380-384

 This association has been related to the degree 

of immunosuppression/severity of infection and thus vitamin D status has been reported to 

improve with the use of antiretroviral drugs.
385, 386

  It is possible that the absence of 

association between HIV infection and vitamin D deficiency in this study could be due to 

most patients being on antiretroviral agents and well, and their activities not being restricted 

by ill-health.  
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Even though neonates with early-onset sepsis (EOS) had lower mean cord blood 25(OH)D 

than healthy neonates (36.3 vs 42.0 nmol/L, p=0.033), and a higher proportion of neonates 

with vitamin D deficiency were found in the group with EOS than in healthy neonates (45.8% 

vs 33.6%, p = 0.037), vitamin D deficiency was not a predictor of neonatal sepsis based on 

multivariate analysis. This finding is contrary to that reported from Turkey where vitamin D 

deficiency was associated with sepsis.
6, 260

 Therefore it remains unclear whether low 

25(OH)D concentrations predispose to EOS or sepsis results in low levels of 25(OH)D. The 

finding of similar concentrations in both groups of mothers suggests that sepsis in the neonate 

might play a role in lowering circulating concentrations in the neonate.  

 

A systematic review of studies conducted in adults reported that patients with vitamin D 

deficiency before or during hospitalization had higher odds of developing sepsis compared to 

individuals without vitamin D deficiency, suggesting that vitamin D deficiency predisposes to 

infection.
387

  Despite this proposed mechanism, supplementation with vitamin D to normal 

levels in vitamin D deficient patients has not resulted in a reduction in the incidence of 

sepsis.
388

  Another suggested mechanism is that sepsis has an effect on vitamin D binding 

protein reducing serum concentrations. Serum levels of vitamin D-binding protein, the carrier 

protein of 25(OH)D, have been reported to be lower in patients with sepsis compared to 

healthy controls, thus resulting to lower serum concentrations of 25(OH)D without affecting 

the biologically active free levels.
308, 389

 It is also possible that the association observed 

between low 25(OH)D and EOS might be related to high c-reactive protein (CRP) in neonates 

with sepsis. Recently a study in neonates reported an inverse relationship between 25(OH)D 

concentrations and CRP.
390

  In this study there were few neonates with culture proven sepsis, 

therefore the diagnosis was primarily made on abnormal biomarkers, c-reactive protein and 

interleukin-6. High c-reactive protein on its own has been associated with low vitamin D. 

Therefore the next step will be to enrol more patients with culture proven sepsis with or 

without raised biomarkers. The second step is to assess levels of vitamin D binding protein 

between those with or without sepsis as levels of this protein have also been associated with 

neonatal sepsis. The third step is to assess whether prevention of vitamin D deficiency is 

associated with reduction in neonatal sepsis through randomizing pregnant women to vitamin 

D supplementation or placebo. Lastly it would be appropriate to determine genotype 

associated with low 25(OH)D levels, and see if there is a difference in neonates with or 

without this genotype in terms of developing neonatal sepsis.  
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4.9 Strengths of the study 

A large number of neonates were enrolled in this study allowing one to determine the 

incidence of both clinical and culture-confirmed sepsis per 1000 live births for both HIV 

exposed and unexposed neonates. Most patients suspected to have either EOS or CAS were 

born inside a healthcare facility consistent with the current statistics from Statistics South 

Africa that most (95.6%) births in Gauteng, South Africa take place in healthcare facilities.
391

 

This is in contrast to reports from many developing countries, where more than 50% of births 

are reported to take place at home.
392

 The majority of neonates enrolled with EOS had a blood 

culture done within the first 24 hours of life. The fact that most neonates were born within a 

healthcare facility and developed their illness soon after birth, they had blood culture taken at 

presentation generally within the first 24 hours, enables one to conclude that the most likely 

source of infection is from the mother rather than from the community environment.   

Another strength of the study was the design of the research protocol, which included controls 

in the assessment of TAC, thus enabling us to determine the true positive rate of this test, 

which could otherwise have been overestimated if controls had not been included.  A number 

of studies previously have assessed the use of PCR-based tests without including controls 

therefore potentially overestimating the incidence of sepsis. For the study on vitamin D levels, 

as far as one is aware, this is the first study that has measured 25(OH)D concentrations in 

black pregnant women and their offspring and its association with sepsis in the South African 

context. The strengths of this part of the study include the large number of patients enrolled 

and the fact that the study was conducted throughout the different seasons of the year. 

4.10 Limitations 

One of the limitations of the study was that we were unable to enroll over weekends due to 

research staff constraints, therefore not all sick neonates were enrolled into the study, which 

could have resulted in an underestimation of incidence of sepsis. However, this is unlikely as 

one would not expect that neonates born over the weekend would be sicker or grow more 

pathogens than those being born on weekdays. Secondly in calculating for incidence for 

sepsis we corrected for non-enrolment over the weekends. Blood cultures were taken by 

doctors as part of routine care, and thus blood volumes available and put in the culture bottle 

might have been lower than the minimum required volume of 0.5-1 ml, resulting in an 

underestimation of culture-confirmed sepsis. Another limitation was not having HIV-PCR at 
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birth to further elucidate the role of HIV infection in neonatal sepsis and placental 

histopathology with TAC to assess if the positive TAC results in blood and NPOP swabs 

reflects or is affected by integrity if the placenta.   

 

Furthermore, blood from cases was taken by the attending doctor at the time of the blood 

culture, resulting in not all cases having bloods taken for TAC. This could have resulted in 

error in the estimation of TAC-confirmed sepsis through sample selection bias. Regarding the 

study on vitamin D the major limitation relates to the small number of positive cultures in 

neonates with suspected EOS resulting in a small number of infants being confirmed with 

definite EOS. A further limitation was the inability to track the changes in maternal vitamin D 

status through the three trimesters of pregnancy, which might have influenced immune status 

and susceptibility of the neonate to infection, and not recording intake of diet or supplements 

that might affect vitamin D levels. 
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5 CONCLUSIONS 

 Sepsis is a major burden in neonates in Soweto with 139/1000 and 7/1000 live births having 

possible serious bacterial and culture-confirmed early-onset or community acquired sepsis 

respectively. The incidence of neonatal sepsis is much higher than that observed in developed 

countries but is similar to that reported in other developing countries. The common pathogens 

causing culture-confirmed sepsis are GBS, E. coli and Staphylococcus aureus in neonates 

with EOS and CAS. The vast majority of these common pathogens are susceptible to the 

recommended first line antibiotics, ampicillin and gentamicin with 100% of GBS and E. coli 

being susceptible to ampicillin and gentamicin respectively, and 83% of Staphylococcus 

aureus being susceptible to gentamicin. Neonatal sepsis is associated with high case fatality 

rate. Neonates born to mothers who are HIV infected have high incidence of sepsis compared 

to those born to uninfected mothers.  

 

TAC detects pathogens in neonates with sepsis but results from this test must be interpreted 

with caution as the pathogen detected might not be the cause of sepsis as the test might detect 

components of the pathogen that might not be viable to cause sepsis. Using TAC in its current 

form as part of routine care in diagnosing bacterial neonatal sepsis still has major limitations, 

because of its low specificity, high false positive rate and inability to test for antimicrobial 

susceptibility. However, it has a number of advantages over blood culture because of its 

ability to detect non-culturable pathogens namely atypical bacteria like Ureaplasma, 

Mycoplasma and viruses, and the short turnaround time of less than 4 hours in getting results.  

In its current form, the strategy to use TAC will first require that more probes are added in the 

current list. In the setting where this study was conducted these probes will need to include  

Acinetobacter species, Candida species, Enterococcus species, Viridans streptococci and 

coagulase negative staphylococcus.  Once these probes are added it will need to be used in 

supplementation to blood culture. Blood culture will still need to be part of work up because 

of TAC’s low specificity and not being able to assess antimicrobial susceptibility. The 

approach that one would need to adopt will be as follows, 1. if TAC is positive with a 

common pathogen known to cause sepsis, then a patient is changed to a targeted antibiotic, 

while awaiting blood culture results. If blood cultures subsequently come back positive with 

the same pathogen as in TAC, then the patient completes the full course on the targeted 

antibiotic. If blood culture is negative, then assess clinical and ancillary laboratory test 

responses and if the responses are positive then continue targeted antibiotics for organisms 



174 

 

identified on TAC. 2. If both TAC and blood culture are negative for culturable organisms, 

then consider non-culturable organism isolated in TAC as a possible causes and start on 

targeted treatment if available, e.g. use chlarithromycin or azithromycin for Ureaplasma.  

 

The major current limitation of TAC is that it does not differentiate between viable and non-

viable organisms. However there are advances that are starting to differentiate DNA from a 

viable to that from non-viable organism. There are techniques that can eliminate PCR signals 

from dead organisms or cells and able to quantify viable cells.
393, 394

  Incorporating these 

techniques into TAC technology will revolutionize the use of PCR-based technology in 

diagnosing neonatal sepsis. In getting TAC to fully takeover the role of blood culture a 

technique similar to gene-X-pert used in diagnosing rifampicin sensitive Mycobacterium 

tuberculosis will also need to be adopted for TAC in order to detect resistant organism.   

 

One in five black pregnant women delivering at Chris Hani Baragwanath Academic Hospital 

has vitamin D deficiency. The concentrations of 25(OH)D in maternal blood correlate with 

those in cord blood of their offspring and are related to season of the year. The prevalence of 

vitamin D deficiency in infants was double that seen in mothers. Even though neonates with 

EOS were more likely to have lower levels of 25(OH)D or to be vitamin D deficient on 

univariate analysis, these were not predictors of sepsis on multivariate analysis, suggesting 

that there could be another explanation for the low levels of 25(OH)D in neonates with EOS. 

One possibility includes that there were more neonates enrolled in winter months than 

summer months. Future studies should look at including a larger number of neonates with 

definite culture-confirmed sepsis and spread out through the different seasons of the year. 

They should also assess the effect of vitamin D supplementation during pregnancy on the 

incidence and severity of neonatal sepsis and on the role of sepsis on vitamin D binding 

protein concentrations. 
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7.3.2 Case report form 2 
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7.3.3 Case report form 3 
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7.3.4 Case report form 4 
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7.3.5 Case report form 5 
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7.3.6 Case report form 6 
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7.3.7 Case report form 7 

VITAMIN D LEVELS IN PREGNANT WOMEN AND IN CORD BLOOD STUDY 

DATA COLLECTION SHEET 

 

Mother’s initials: __  __  __  __ 

Date of enrolment: __  __/ __  __ /__  __   

1.  

1.1. If yes, please label blood with :   I-  

1.2. If yes, state date and time taken: __  __ / __ __ / __  __;   Time: __ __h__ __ 

2. Mother’s bloo  

2.1. If yes, please label blood with : M-  

2.2. If yes, state date and time taken: __  __ / __ __ / __  __;   Time: __ __h__ __ 

3. Maternal details 

3.1. Maternal age (years): ______ 

3.2. Parity: ______ 

3.3. Gravidity: ______ 

3.4.  

3.5. WR results:  1 = Positive;  2 = Negative;  3 = Unknown  

If positive what was the mother’s titres: ________________ 

3.6. HIV Elisa results:   1 = Positive;  2 = Negative;  3 = Unknown  

3.6.1.  

3.6.1.1. If viral load done, state results: _____________, date done:  ___/ ___/ ___ 

3.6.2. If HIV positive  was the C  

3.6.2.1. If CD4 count done, state results: _____________, date done: : ___/ ___/ ___ 

3.6.3.  

3.6.3.1. If yes, state  



207 

 

3.6.3.2.  If on HAART, state names of drugs: _________________________________ 

 

3.7.  

3.7.1. If yes, name of supplement: ________________________; and dose per day: _____ 

3.8.  

3.9. Offensive amniotic fluid:                                    

3.10.  

3.11. Duration of rupture of membranes (hours):     __________ 

3.12. Antenatal steroids:                                               

3.13. Multivitamins  during pregnancy:                        

3.14. Intrapartum antibiotics:                                        

3.15. If yes, state name of antibiotics:  

_____________________________________________ 

Infant details 

3.16. Birthweight (grams):   __   __   __   __ 

3.17. Gestational Age (weeks):  _____ 

3.17.1. Gestational age based on: 1 = LMP/Exam; 2= Early Sonar; 3 = Late Sonar; 4= Ballard 

3.18. Date of Birth (dd/mm/yyyy): ___  // ___//___ 

3.19. Time of Birth: ___  ___ 

3.20. Mode of Delivery: 1 – Vaginal Delivery; 2 –Caesarian Section 

3.21. Apgar Score at 1 min: ___  ___ 

3.22. Apgar Score at 5 min:___  ___ 

3.23. Resuscitation 

3.23.1. Bag Mask Ventilation                          

3.23.2.  

3.23.3.  

3.23.4. Adrenalin                                              

3.24.  
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3.25.  

4. 25-Hydroxyvitamin D Levels 

4.1. Mother’s Results: _________________________________ 

4.2. Cord blood Results: _______________________________ 

 

IF BABY SICK AT BIRTH OR ADMITTED PLEASE COMPLETE CASE REPORT 2  
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7.3.8 Case report form 8 

VITAMIN D LEVELS IN PREGNANT WOMEN AND IN CORD BLOOD STUDY 

DATA COLLECTION SHEET 

 

Mother’s initials: __  __  __  __ 

Date of enrolment: __  __/ __  __ /__  __   

DATA FOR SICK OR ADMITTED INFANTS 

 

Mother’s Hospital Number: ____________________________ 

Baby’s Hospital Number: ______________________________ 

1. Clinical signs at admission/ birth and up to 24 hours after birth 

Date of admission: ___  // ___// ___ 

1.1. General   

1.1.1. Hypothermia (Temperature <36.5) 

1.1.2. Fever (Temperature >38) 

1.1.3. Lethargy 

1.2. Respiratory system 

Are the following signs recorded in the doctors or nurses’ notes 

1.2.1.  

1.2.2.  

1.2.3.  

1.2.4.  

If yes, state severity:    1 = mild;  2 = moderate;  3 = severe 

1.2.5. On supplemental oxygen                                 

1.2.6.  

1.3. Cardiovascular system 

Are the following signs recorded in doctors or nurses’ notes 
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1.3.1. Heart rate more than 180  

1.3.2.  

1.3.3. State lowest Mean arterial BP (MAP): ___________ 

1.3.4. On inotropes (Dopamine or dobuta  

1.4. Abdominal findings 

1.4.1. Vomiting                           

1.4.2.  

1.4.3. Distension                                                                                        

1.4.4.  

1.4.5. Poor feeding                                                                                     

1.5. Central nervous system 

1.5.1.    

1.5.2.  

1.5.3.  

1.6. Metabolic 

1.6.1.  

1.6.2.  

1.6.3. Lactate levels (Lev  

2. Laboratory Findings on Tests done on Admission 

2.1. Full/ Complete Blood Count 

Date of FBC  (dd/mm/yyyy): ___ // ___ // ___ 

2.1.1.  Record the white cell count (wcc):____x10
9
/L from FBC done at time sepsis work-up 

2.1.2.  Record the Neutrophils: ______ % from FBC done at time of sepsis work-up 

2.1.3. Record the platelet count: ______ x10
9
/L from FBC done at time of sepsis work-up 

2.2. C-reactive protein (CRP) 

Date CRP done (dd/mm/yyyy): ___// ___// ___ 

2.2.1. CRP results: ____ mg/L 
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2.3. Cerebrospinal fluid results 

 

If yes, date of lumbar puncture (dd/mm/yyyy): ___// ___// ___ 

2.3.1. Polys/ PMN:  ________ cells/ mm
3
 

2.3.2. Lymphocytes: ________ cells/ mm
3
 

2.3.3. Red blood cells: ________ cells/ mm
3
 

2.3.4. Protein: _______ 

2.3.5. Glucose: _______ 

3. Antibiotics 

Were antibiotics started/ changed in light of this event                         

If yes, complete the following 

3.1. Antibiotic:_____________;Dose:______; Start date:__________;Stop date:________ 

3.2. Antibiotic: ____________;Dose: ______; Start date:__________;Stop date: ________ 

3.3. Antibiotic: ____________;Dose: ______; Start date: __________;Stop date:________ 

4. Culture Results 

4.1.  

4.1.1. If yes, select site of the culture from below: 

1 = blood                           2 = CSF                         3 = Urine                     4 = Other, specify 

            Date culture done: ___ // ___ // ___ 

4.1.2.  

If yes;  circle name of organism as below        

1 =Group B Strep/ Strep. Agalactiae   2 = Staph. Aureus (MSSA)  3 = Staph. Aureus (MRSA) 

4 = Enterococcus faecalis   5 = Enterococcus faecium     6 = Strep. Viridans   7 = CONS/ CNS 

8 = E. coli    9 = Klebsiella species  10 = Enterobacter species    11 = Acinetobacter baumanni 

12 = Pseudomonas species          13 = Salmonella         14 = Serratia 

15= Candida albicans 16 = Candida parapsillosis 17 = Candida glabrata    18 = Candida krusei 
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19 = Candida tropicalis   20 = Other, state name of organism: __________________________ 

If organisms is isolated complete the susceptibility table below 

Name of Organisms:  Time organism took to grow:  

Names of antibiotics Sensitive to: ________________________________________________ 

Names of antibiotics Resistant to: ________________________________________________ 

5. Sepsis Diagnosis on Admission 

5.1.  

5.2.  

5.3.  

6. Other diagnosis and outcome 

6.1. Hyaline Memb  

6.2.  

6.3.  

6.4.  

6.5. Congenital abnormali  

                  If yes, state the diagnosis: ___________________________ 

6.6.  

             If died, state date of death: _________________________________ 

              If survived, state date of discharge:_______________________________ 

 

 


