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Abstract

The field of bioinformatics has been developing steadily, with computational problems re-

lated to biology taking on an increased importance as further advances are sought. The

large data sets involved in problems within computational biology have dictated a search

for good, fast approximations to computationally complex problems

This research aims to improve a method used to discover and understand genes, which

are small subsequences of DNA. A difficulty arises because genes contain parts we know to

be functional and other parts we assume are non-functional as there functions have not been

determined. Isolating the functional parts requires the use of natural biological processes

which perform this separation. However, these processes cannot read long sequences, forc-

ing biologists to break a long sequence into a large number of small sequences, then reading

these. This creates the computational difficulty of categorizing the short fragments accord-

ing to gene membership.

Expressed Sequence Tag Clustering is a technique used to facilitate the identification

of expressed genes by grouping together similar fragments with the assumption that they

belong to the same gene.

The aim of this research was to investigate the usefulness of distributed memory paral-

lelisation for the Expressed Sequence Tag Clustering problem. This was investigated em-

pirically, with a distributed system tested for speed against a sequential one. It was found

that distributed memory parallelisation can be very effective in this domain.

The results showed a super-linear speedup for up to 100 processors, with higher num-

bers not tested, and likely to produce further speedups. The system was able to cluster

500000 ESTs in 641 minutes using 101 processors.
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Chapter 1

Introduction

In this chapter, the problem is introduced, showing the importance of finding faster meth-

ods for accomplishing Expressed Sequence Tag (EST) Clustering, placing this problem in

context. A solution to this problem is then presented, with brief motivation. The results

achieved by this solution are then shown.

1.1 Genetic Information

Hereditary information is stored by a molecule called Deoxyribonucleic Acid (DNA), present

in all animal cells. DNA can be seen as a linear string, with genetic information stored by

the sequence in which letters appear in the string.

DNA is used as a template to create proteins, with complex biological processes accom-

plishing the translation to protein. It is known that different parts of the DNA are translated

into proteins in different cells and at different times. This is called “Gene Expression”. The

parts of the DNA that are translated are said to be “expressed”. The problem lies in dis-

covering which parts of the DNA are expressed in which cells and at what times. This is

presented in more detail in section 2.1.

We currently have no method of inferring gene expression information from the se-

quence itself. Thus, even with a complete DNA sequence we cannot tell what proteins will

be produced in particular cells at particular times. In order to obtain this information, we

need to capture a record of the expressed portions of the DNA from the cell itself.

In order to accomplish the translation from DNA to protein, the cell must remove the

parts that are not expressed, thereby creating a new set of sequences called mRNA contain-

ing only the expressed parts. By capturing these new sequences, we can obtain a record of

what we think are the useful portions of the original DNA sequence.

Capturing the expressed sequences is made difficult because they are extremely unstable

and therefore difficult to sequence. Because of this, the expressed sequences are sequenced

as a large collection of unordered fragments. The fragments are known as Expressed Se-

quence Tags (ESTs) and are short substrings of DNA, being fragments of expressed DNA

produced naturally. This is extremely useful because it allows us to identify which parts of
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the DNA are expressed by examining the ESTs that are produced.

1.2 Problem Introduction

1.2.1 Definition of Expressed Sequence Tag Clustering

Expressed Sequence Tags are collected as an unordered set of DNA fragments. In order to

accomplish some ordering of this data, we attempt to find out which fragments are derived

from which mRNA sequence, as a first step in discovering the original mRNA sequence.

The problem is to take a set of input ESTs and group them according to the mRNA they are

originally from.

This is accomplished by taking into account the fact that each mRNA is covered by

a large amount of overlapping ESTs. This is useful because it means that we can find

sequences that display a large degree of similarity, indicating that they overlap to a large

degree, and hence are from the same mRNA. Furthermore, it is likely that we can do this

for any two non-overlapping ESTs in an mRNA as they will be connected to each other by a

chain of overlapping sequences. Thus, grouping together ESTs according to their similarity

would in effect group them according to the mRNA they are originally from.

The method we use to calculate similarity between the ESTs must satisfy the condition

that any two ESTs which overlapped on the original mRNA must be calculated to be similar,

and any that did not must be dissimilar. This similarity is then used as the criterion govern-

ing whether two sequences will be grouped or not. However, there is no agreement on the

best way to measure similarity in ESTs, with many different similarity measures being in

common use.

The EST Clustering problem is solvable, but is an extremely computationally intensive

task because of the large sizes of the input sets. The complexity of the solution is quadratic,

which becomes a problem as the input sizes can be extremely large.

The EST Clustering problem is explained in greater detail in section 2.2.1.

1.2.2 Proposed Solution

The aim of the research was to investigate the usefulness of distributed memory parallelisa-

tion to reduce the time needed to perform EST Clustering.

Because EST Clustering can be used to indicate which parts of DNA are expressed at

what times in particular cells, it is a process routinely performed by biologists. The existing

algorithms to accomplish this are extremely time consuming, limiting the usefulness of this

technique. The ultimate aim was thus to reduce the time taken to perform EST Clustering,

with parallelisation chosen as a likely technique to achieve this.

1.2.3 Motivation for Parallelisation

The solution proposed to reduce the time needed to perform EST Clustering involved using

distributed memory parallelisation to share the computation among multiple processors.
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This approach was chosen because the time taken for an algorithm to complete is closely

related to the speed of the underlying hardware. By making use of parallel computation, the

computational capability of the hardware can be increased dramatically if a good method of

dividing the work is found. By using a parallel algorithm which returns the same results as

an existing sequential one, a reduction in the time taken for the algorithm to execute can be

achieved while leaving the accuracy of the results unaffected.

It is known that parallelisation works best on independent tasks. A smaller amount of

data dependencies results in a larger gain from parallelisation [Subhlok 1993]. This means

that parallelisation works best when the computations performed by the various machines

do not depend on results from computations performed on other machines. This is because

cooperating machines have no need to wait for the results of other operations before com-

pleting their own tasks. EST Clustering is suited to parallelisation because the task consists

of numerous comparisons performed between ESTs, with no side effects from previous

comparisons. This means that each comparison can be considered to be an isolated event,

with no artifacts from other operations affecting its result, allowing us to conclude that work

can be divided such that there will be very few data dependencies.

One bottleneck in the process of distributed memory parallelisation is the distribution

of the input sets to the various processors. With a complex algorithm, this step becomes

less significant because the computation time grows much faster than the input set size.

The time taken to distribute this input set is then much smaller than the computation that

must be performed on it for large input set sizes. This is magnified by the fact that all we

are interested in here are large input set sizes, as small input sets can be processed in a

reasonable time by the existing sequential algorithm.

The reason a distributed memory approach was chosen over a shared memory approach

is that there is a large cost saving in that networks of machines cost less than single ma-

chine multiprocessors. Another factor is that researchers generally already have access to

networks of machines, so there is no incremental cost to using these. Furthermore, some

work already exists pertaining to the usefulness of a shared memory approach, making the

unexplored area of distributed memory more attractive.

1.3 EST Clustering algorithm

The algorithm operates by initially assigning each EST to its own group. Thus, initially

there will be as many clusters as there are ESTs. The ESTs are then compared against each

other using some similarity measurement. If two ESTs are found to be significantly similar,

their groups are merged, allowing larger groups to be built up. This technique follows the

method used by Burke et al. [1999]. There are, however, two major differences, one being

that the algorithm has been parallelised and the other being the strategy adopted regarding

the similarity measurement method.

There is no similarity measure that is widely regarded as being the best measurement.

This is partly because the measure must trade accuracy for speed, using heuristics and ap-
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proximations that reduce the complexity of the algorithms. Because a parallel approach

reduces the total time taken to run the algorithm, it might become feasible to use measure-

ment methods that would otherwise be too expensive to consider. This gain might allow for

more accurate comparisons. To facilitate this, the parallel system does not follow previous

research by building the comparison method into the algorithm, instead including a plugin

mechanism facilitating easy modification of the comparison system.

1.4 Results

The parallel implementation has been tested experimentally. The sequential and parallel

clustering implementations were run using the same input sets to compare their outputs and

computation times.

The output of the parallel system has been tested against that of the existing sequential

implementation, returning identical results in all test cases. This shows that the paralleli-

sation has not adversely affected the results, and is an expected result as the system was

designed with identical results as a necessary condition.

The parallel system returned a very good speedup, with efficiency increasing for large

numbers of sequences. The sequential algorithm took approximately 25 days to cluster

300000 sequences, whereas the parallel algorithm running with 101 machines (a server and

100 clients) took about 6 hours. The results allowed us to conclude that distributed memory

parallelisation makes efficient use of the extra processors when used for EST clustering.

1.5 Limitations

The experiments were carried out using an otherwise unused network, ruling out the effects

of external network traffic. The parallel system does rely on the network for communica-

tion and would thus be adversely affected by an increase in traffic. All machines were also

located on the same subnet, allowing for the use of broadcasting to minimize communica-

tion costs. While multicasting could be used across multiple subnets, it is not yet widely

supported and it will affect communication time.

A further limitation arises because the results were obtained using a particular similarity

measurement. The results will vary when using different similarity measurement methods,

so the results gained from this research cannot be used to infer that the approach will be

useful when using other methods. It does however indicate that it is likely that algorithms

with a complexity close to or above that of the measure used will benefit from the paralleli-

sation. This is because the total time taken for the parallel algorithm to complete is made up

of computation, communication, coordination and data distribution. Communication, coor-

dination and data distribution are the overheads involved in the parallel algorithm, whereas

computation must be performed by both the sequential and the parallel algorithms. With a

larger amount of computation, the overheads are relatively smaller, making the parallelisa-

tion more efficient.
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1.6 Contribution to Genetic Research

EST Clustering is an important problem as it can be used to yield valuable information

relating to what parts of a DNA strand are expressed at particular times in particular places.

This is especially useful for the identification of function in genes. The clustering of ESTs is

also indispensable for gene structure prediction, gene discovery and gene mapping [Claverie

1997]. This means that EST Clustering is a necessary step toward identifying the functions

of parts of DNA.

Furthermore, this clustering can be used to consolidate short sequences into larger as-

sembled sequences. With EST data being by nature a fragmented version of a full length

gene, this is especially useful for yielding a full-length gene. This is an important process, as

it utilizes captured data to yield knowledge. However, the methods used to accomplish EST

Clustering are computationally expensive, causing the time taken to become prohibitive.

Since this categorization is just one step in a larger sequential process performed by

molecular biologists to glean useful information from collected data, increased efficiency

will relax a significant bottleneck in information processing.

1.7 Document Structure

The rest of the document is structured as follows :

� Chapter 2 presents a brief explanation of the biology necessary to understand this

research, along with the background work pertaining to the methods chosen.

� Chapter 3 provides a detailed look at the objective of this research, stating the hy-

pothesis and outlining the experimental methodology of this research.

� Chapter 4 shows the experiments that were conducted and justifies their use in terms

of the aims of the research.

� Chapter 5 presents and explains the results of the experiments conducted.

� Chapter 6 concludes the document, drawing inferences from the results presented,

presenting some future work and outlining the significance of the research.
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Chapter 2

Background and Related Work

In this chapter some of the knowledge that has already been gained in related fields is

explored. First, some introductory genetics is presented in order to allow a reader unfamiliar

with the field to understand the basic concepts used in this document.

Related work pertaining to the problem of grouping sequences is presented next. First,

work pertaining to the various methods of calculating similarity between sequences is pre-

sented, followed by background material pertaining to the grouping mechanism.

Lastly, background material relating to parallelisation is presented to facilitate under-

standing of the methods used in this research and the reasons they were chosen.

2.1 Biological background

In this section, the biology necessary to understand the problem is presented, along with a

restatement of the problem in biological terms. Firstly, the basic terms are defined, followed

by a detailed description of the domain of this problem.

2.1.1 Introductory Genetics

A G G T C A C

T C C A G T G

Figure 2.1: Untwisted DNA Molecule

Hereditary material in animals is stored in molecules called Deoxyribonucleic Acid

(DNA). DNA molecules are made up of a double-helix structure, resembling a twisted lad-

der. The information is stored in the sequence of the particles that make up the “rungs”

of the ladder called “bases”. There are four different types of particles that are present in

6



these rungs – adenine, guanine, cytosine and thymine. These are represented by the letters

‘A’, ‘G’, ‘C’ and ‘T’ respectively. Each rung is made up of two of these, with a comple-

mentary relationship existing between the two halves such that if one half is adenine, the

other must be thymine, and if one half is guanine, the other must by cytosine. This entire

system can be abstracted such that it can be represented as a string made up of an alphabet

of the four base characters. In figure 2.1, the untwisted DNA molecule represented by the

string ‘AGGTCAC’ is presented. This string is complemented by the string ‘TCCAGTG’.

DNA determines many aspects of our anatomy and physiology, as it controls the production

of proteins that determine the structure and functions of living organisms [Koza and Andre

1996].

The function of a majority of the DNA contained in a strand is not known. The parts

whose functions are known are found in genes, which are defined to be a portion of DNA

that fully specifies the production of a particular protein or RNA molecule. Genes are thus

thought of as the smallest unit of hereditary material. A gene contains exons and introns.

The exons are the portions of the gene that get translated into proteins, with the introns

being seemingly junk sequences.

A G G C A CU

Figure 2.2: An RNA Molecule

Since the main purpose of DNA is to guide protein production, we will now look at the

process by which proteins are produced. The information in the DNA strand is first un-

wound into its separate component strands. One of these strands is then used as a template

from which a new single stranded molecule called RNA (Ribonucleic acid) is produced.

This RNA corresponds to one strand of the DNA, but contains only the portions that make

up genes, discarding the non-gene DNA. Another difference is that in RNA, Thymine is

substituted for another particle, called Uracil, represented by the letter ‘U’. The RNA corre-

sponding to the sequence ‘AGGUCAC’ can be seen in figure 2.2. The process that accom-

plishes this conversion is called “transcription” and results in a molecule known as mRNA

Precursor.

mRNA precursor contains exons and introns making up genes. The introns are then

removed in a process called “splicing”, which produces a type of RNA called mRNA or

messenger RNA which contains only the functional parts of the original DNA. The process

is illustrated in figure 2.3. This splicing process is unpredictable in that it sometimes re-

moves some exons along with the introns, a phenomenon known as “alternative splicing”,

illustrated in figure 2.4. The mRNA that is produced from this is a record of the genetic

material that will be used to produce proteins in this cell.

Protein is then produced from the mRNA that has been constructed. Protein is the

7
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Figure 2.3: From DNA to mRNA
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Figure 2.4: Alternative Splicing

determining factor in the structure and function of the organism.

2.1.2 Expressed Sequence Tags

Since the mRNA is considered to be a representation of the portion of the gene responsible

for the synthesis of proteins, it is useful to be able to isolate it. However, mRNA is very

unstable, in that it breaks apart quite easily and therefore difficult to sequence.

In order to sequence the mRNA, biologists make use of special enzymes to produce

more stable cDNA from the mRNA. cDNA is a form of DNA made using an enzyme called

reverse transcriptase. The process is the inverse of the usual process of transcription in cells

because the procedure uses mRNA as a template to produce DNA. Unlike genomic DNA,

cDNA contains only expressed DNA sequences, or exons, because it was generated from

mRNA. However, the reverse transcriptase enzyme which facilitates the conversion does

not function over the entire length of an mRNA, falling off after around 300-500 bases. The

cDNA molecules produced are thus fragments from the original mRNA.

This cDNA is then sequenced to produce a single EST. This process is, however, quite

error prone, resulting in a sequence read which deviates slightly from the original mRNA.

This is partly because the sequencing is performed as a single-pass read, trading off accuracy
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for quantity as more fragments can then be sequenced.

From a computing perspective, ESTs can be viewed as the strings generated by the

grammar (A+C+G+T) � , and are generally constrained to a length of around 500 characters.

These are a record of the exons that have been joined together by the removal of the introns.

This is important as it gives us a picture of the functional genetic information in a cell.

To summarize, ESTs are short sequences which comprise fragments from a full mRNA

sequence rather than the sequence in its entirety [Aaronson et al. 1996].

A further complication arises because of alternative splicing which results in unpre-

dictable transcription, with some exons being removed along with the introns [Mironov et

al. 1999]. This alternative splicing needs to be taken into account when deciding on cluster

membership.

One important characteristic of ESTs is that huge public databases of them exist. Since

submission can be done by anyone, the ESTs are often error prone and badly annotated.

The positive impact is that there is a lot of EST data available, and the error rates are higher

than for other types of data but not unacceptable.

2.2 Clustering ESTs

In this section, the motivation and background relating to clustering expressed sequence tags

is presented, along with an explanation of some of the factors that make this an expensive

problem.

2.2.1 Introduction

EST clustering attempts to take the fragmented data presented as ESTs, and create maps of

genes from them. The aim is therefore to categorize individual ESTs into clusters, such that

each cluster contains only the information for a single gene, and each gene’s information

can be found in a single cluster [Burke et al. 1999]. The advantage of doing this is that

it yields important data about the specific splicing events in that cell, information called

“Gene Expression Data”, and can be used to facilitate the early identification of genes.

EST Clustering is generally performed by utilizing some form of sequence comparison

measure. Expressed sequence tags are clustered together if they display a large degree of

similarity, making it likely that they are derived from the same gene. There is, however

no agreement on a good measure of sequence similarity yet, with many vastly different

methods being used to enumerate the level of difference between two ESTs. The purpose

of EST Clustering is to identify gene sequences which come from the same gene family.

This means that the genes share a common ancestor and is known as homology. So, we

do not consider genes with slight mutations to be separate genes for the purposes of EST

Clustering. We use similarity as an indicator of homology.

Some issues to consider when looking at sequence similarity are :

� Errors which occur in the sequencing process, when the individual EST is read.
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� The phenomenon of Alternative Splicing, where a single gene can, in the process

which separates the exons from introns units, discard some exons [Mironov et al.

1999]. Because of alternative splicing, it is generally considered to be a good idea to

cluster ESTs if they seem to share a common exon. This is done by clustering ESTs

if they share some substrings of a significant size called ‘windows’ which are similar.

� Mutations which alter the sequence, occasionally shifting the data forward or back-

ward to accommodate new data or the loss of some data.

2.2.2 Clustering Techniques

In this section, some clustering methods are presented with an idea of their suitability for

EST Clustering in particular.

Some characteristics of clustering techniques are discussed in Jain et al. [1999]. These

include whether an algorithm operates by joining sets of initially disparate clusters, or split-

ting an initial cluster to produce the final set of clusters. These are known as “agglomera-

tive” and “divisive” clustering algorithms respectively.

Another important characteristic of the algorithm is whether it generates clusters such

that each element can belong to only one cluster. These algorithms are known as “hard”

clustering algorithms. The other option is to allow a particular element to appear in many

clusters, which is known as a “fuzzy” clustering. For EST Clustering,“hard” clustering

needs to be performed as we need to be sure that each EST appears in only one cluster.

Algorithms can also be either “deterministic” or “stochastic”. Deterministic algorithms

always generate the same set of clusters for the same input, whereas stochastic methods

have a random element which causes them to generate different results on different runs.

EST Clustering should not contain a stochastic element, because the characterisation of an

EST as belonging to a particular gene should not be changeable when the criteria for this

decision are unchanged.

“Incremental” clustering is a technique whereby any additional elements that need to

be considered are compared against the clusters that have already been created rather than

against the original elements themselves. This is useful for large data sets, as it removes

a lot of comparisons when we can compare against a cluster of elements rather than all

individual elements.

2.2.3 Taxonomy of Clustering Algorithms

A taxonomy for clustering methods has been presented in Jain and Dubes [1988]. This tax-

onomy divides clustering algorithms into hierarchical clustering algorithms and partitional

clustering algorithms.

Hierarchical Clustering

Hierarchical clustering constructs a graph of the similarities between sequences to yield

clusters. “Single-link” methods construct a tree whose lowest level contains each sequence
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in its own cluster, and represents the lowest similarity level at which no two sequences are

similar. Each level of the tree represents a different similarity level, with subtrees joining at

a particular level if the clusters represented by those subtrees would merge at the similarity

level represented. It is thus possible to easily retrieve the set of clusters for a particular

similarity level. “Complete-link” methods keep a set of graphs, with one graph for each

similarity value. Each graph contains an edge between two nodes if the corresponding

elements are closer than the value which the graph represents. This hierarchy of graphs can

then be separated to yield the clustering corresponding to a desired similarity level.

Partitional Clustering

Partitional clustering is different from hierarchical clustering in that it produces a single

set of clusters from the initial data. There is no hierarchy constructed and thus no way

of changing the clustering similarity criterion once the clustering has been accomplished,

short of reclustering. They are less computationally complex, making them attractive for

clustering large data sets as is the case with EST Clustering. Most partitional algorithms,

however, require us to have a fixed number of output clusters. This is not possible for EST

Clustering, as it would require us to have prior knowledge of the number of genes the ESTs

in our data set represent.

Nearest Neighbour clustering is an iterative method which can be used as the basis for

clustering [Jain et al. 1999]. It works by symbolically joining elements to the element they

are closest to, marking them as neighbours when the similarity between the two elements is

below a certain threshold.

The clusters can then be created by finding the sets of mutual neighbours. This means

that we construct neighbourhoods such that any element is in only one neighbourhood, and

every neighbour of a particular element is in its neighbourhood. For the purposes of EST

Clustering, this means that any sequence is in only one cluster, and all similar sequences are

in the same cluster. In section 2.2.1 we stated that similarity indicated that sequences were

in the same gene family. Thus we can see that nearest neighbour clustering would result in

clusters which represented individual gene families. This method is functionally equivalent

to “Agglomerative Clustering”, wherein clusters are joined if any member of a particular

cluster is similar to any member of another [Zhao and Karypis 2002].

For the purposes of EST Clustering, partitional clustering is attractive, as hierarchical

clustering is not necessary, and would impose larger costs than partitional clustering would.

This is because hierarchical clustering methods must result in a graph that represents enough

information to construct the clusters for every similarity level. This representation would

thus be a lot larger than that necessary for partitional clustering, which only needs to rep-

resent enough information to construct the clusters for a particular similarity level. Hierar-

chical clustering could have some value in order to determine which similarity level is best

for satisfying the condition that any two sequences which are similar must be in the same

gene and any two which are not in the same gene must not be in the same cluster. However,

this value needs to be determined only once, so the general task of EST Clustering does not
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require hierarchical clustering.

2.3 Similarity Measures

Since clustering is done by sequence comparison, it is important to ensure that the similar-

ity measure used is both biologically significant and computationally efficient. A primary

concern here is that for EST Clustering to be sensitive enough, it is necessary to search for

sequences which display a similarity over only part of their length. Because of differing

splicing events, some ESTs will have their exons in a different sequence to others, meaning

that they will not be similar over their entire length even if they are from the same gene.

However, we would like to categorize them as being from the same gene, leading us to rely

on local similarity, which provides an indication that two sequences contain regions that

are similar, indicating that they contain some of the same exons, and are therefore from the

same gene.

2.3.1 Windowed comparison

One technique used to adapt similarity measures to calculate local similarity is windowed

comparison [Horton 2001; Hide et al. 1994]. This process utilizes “windows” within which

to compare. It works by partitioning the sequence into every possible subsequence of a

specific word length. For example, the sequence ‘AGGGCT’ with word length 3 would

yield the windows ‘AGG’, ‘GGG’, ‘GGC’ and ‘GCT’. Every window in the first sequence

is then compared against every window in the second sequence, leading to the multiple

scores being calculated for each pair of sequences. The actual similarity measure is then

taken as the distance between the most similar pair of windows.

A design decision that arises because of this is the choice for the size of the windows.

A change in window size offers a chance to trade off sensitivity for selectivity and vice

versa. A large window size would create a need for a similarity to be long, and so may

miss shorter but still significant similarities. A small window size suffers from the opposite

problem, as with too small a window size, the length of the similarity required to decide

two sequences are similar will be too small, increasing the probability that sequences that

are not homologous will be designated similar by chance. The computational advantages

depend on the complexity of the similarity measure. In the experiments conducted in this

research, a window size of 100 is used, in line with that used in previous research [Burke et

al. 1999].

The number of windows in each sequence is proportional to the length of the sequence,

as the window size is fixed.

A similarity measure must be chosen to operate within these windows. Similarity mea-

sures can be divided into two broad categories – those which use sequence alignment as a

comparison tool and those which do not.
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2.3.2 Alignment based Methods

Using sequence alignment involves lining up the two sequences to find out where they

overlap. A score is then calculated which represents how good that alignment is, and can be

based on factors such as the length of the overlap and the number of errors in the overlapping

segment.

For the purposes of EST clustering, the alignment can be local rather than global. This

means that we look for the highest scoring segments of the sequences rather than trying to

find the score of the sequence as a whole. We do this because of alternative splicing, which

we have discussed in section 2.2.1, as local alignments give us an indication of shared exons,

which is sufficient for us to decide that two sequences belong to the same gene or cluster.

Alignment-based methods can miss some larger characteristics that make sequences

similar [Vinga and Almeida 2003], but are widely used to compute sequence similarity. Edit

distance [Allison 1992] and BLAST [Altschul et al. 1990] are alignment-based methods, as

both attempt to find the overlaps between the sequences.

Edit Distance

The Edit Distance between two sequences ��� and ��� is defined as the minimum number of

insertions, deletions and substitutions needed to transform ��� to ��� . More formally, edit

distance is defined as follows [Allison 1992]:

Let
�

be the empty string, � , � � and � � be some sequences of characters, and�	� � and �	� � be some characters.
�� ��
��������

�� � 
������ 
�� ��
 � ����� � � with

� � � being length of �


�� �������	��� 
 �������	� � ���"!$#&%
'(((() ((((*


�� � � 
 � � � if ch � � �	� �,+
�� � � 
 � � � �.- if ch �0/� �	� �,+
�� � � �1�2� � 
 � � � ��-
�� � � 
 � � ���	� � � ��-
This can be solved by a dynamic programming algorithm which runs in 3 � %�!4�

time for

two sequences with lengths
%

and
!

[Needleman and Wunsch 1970]. This algorithm is

generally not used for EST Clustering because the execution time is prohibitive, and more

efficient alternatives which return similar results are available. It must be noted that this

algorithm performs a test for similarity over the entire length of the EST. In order to find

local similarity, it is necessary to compare every region of the first sequence to every region

of the second sequence.

In practice, a weighting function is employed, giving a different penalty to each type of

mismatch. This is more accurate because certain types of edits happen more frequently than

others in the actual cells. Edit distance as shown above can be seen as assigning a penalty of

1 to each type of mismatch. When a weighting function is used, a different value is attached

to the different types of edits. Furthermore, if an insertion has been performed at a particular
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point on a sequence, the penalty for subsequent insertions is generally significantly reduced

as an insertion of 1 character is not much more likely than an insertion of more characters.

The modification does not affect the complexity of the algorithm.

BLAST

BLAST (Basic Local Alignment Search Tool) [Altschul et al. 1990] is widely used for se-

quence comparison. BLAST attempts to approximate the maximal segment pair measure

efficiently. This measure is an indicator of the difference between the most similar regions

of the two sequences involved. This is useful for EST Clustering because of the possi-

bility of sequencing errors, and alternative splicing. Specifically for alternative splicing,

local similarity measures are able to detect common exons as high similarity regions, rather

than discarding the possibility of the ESTs being from the same gene because their global

similarity is too low.

The BLAST method of calculating a similarity score is based on assigning scores and

penalties to the various parameters it must use to get two sequences to align. Thus, there

will be penalties for gaps and mismatches, and rewards for matches. A score calculated

this way can then be used as an indication of how similar two sequences are. BLAST finds

maximal scoring pairs by comparing words of a user specified word length in one sequence

to every word of the same length in the other sequence. When it finds a pair of words whose

similarity exceeds a value calculated by BLAST from a user specified threshold, it extends

the words in an attempt to find a pair with a score above the threshold that constitutes a

match. The value calculated by BLAST is used to decide whether the pair is likely to have

an extension that exceeds the threshold.

This method can be used to decide whether to cluster the ESTs involved, by deciding

on a maximal scoring pair threshold that is necessary for a match. BLAST is able to op-

erate more efficiently due to the ability to discard regions which are unlikely to exceed the

threshold similarity score [Karlin et al. 1990].

BLAST is an extremely popular comparison method because it is extremely efficient,

and provides a good approximation for edit distance.

2.3.3 Alignment free methods

Alignment free methods are methods for evaluating sequence similarity which do not re-

quire an alignment of the sequences. One indicator used in these methods is word frequency,

although other methods such as chaos game representation have also been explored [Vinga

and Almeida 2003].

In general, alignment free methods calculate some statistics regarding the frequency

of words of a predefined length, calculating a similarity score based on the comparative

statistics of the two sequences. This does not perform an alignment, and the theory is that it

is able to capture some similarity which alignment does not.

14




 �
distance


 �
determines whether two sequences are similar by looking at the frequency with which

each word of a particular size appears. The user selects a word size for

 �

to operate on.

The program then counts the number of times each word of a length not exceeding the user

inputted word size occurs in each of the sequences. The difference in the number of times

a word is found in each of the sequences is the important factor here, with the

 �

score

reported as the sum of the squares of the differences. This works as a dissimilarity measure,

with a higher number indicating that the sequences share a smaller degree of commonality

in terms of the words they contain [Hide et al. 1994].

The

 �

score is calculated as the weighted sum of the squares of the difference in word

frequencies between the input sequences for all words whose length is not greater than a

specified length. More formally:

� Choose a word length
%

.

� Let ��� ��� � denote the number of times word
�

occurs in sequence � .
� Let

����� 	
denote the

#
th word in a lexicographical ordering of all words of length 
 .

� Let � � !4�
denote the weighting assigned to word

!
.

� Then, 
 � �
� 
��	��� ��
��� �

����
� � � �

��� ��� � � � ��� ��� ��� � ��� ��� ��� ��� � � � �

However, because we are looking for regions of high similarity which would indicate shared

exons, we calculate the similarity within windows as described in section 2.3.1. For a

user-specified window size, the

 �

comparison is performed between every window in one

sequence and every window in the other. We thus have numerous scores calculated between

two sequences. The

 �

score for the sequence as a whole is taken to be the minimum of all

the scores between the individual windows [Burke et al. 1999].

This requires the calculation of the

 �

similarity measure between every two subse-

quences of a specific length and is therefore quadratic in terms of the number of windows,

and therefore in the sequence length.

In current implementations of

 �

, this specification is not followed closely, with some

elements being discarded to save computation time. There is no word weighting mecha-

nism implemented, giving all words an equal significance. This is equivalent to setting the

weighting of all words to 1.

Another decision made by current implementations is to discard the word sizes less

than the maximum. The calculation is thus done using only words of exactly the maximum

length.

The revised

 �

calculation thus looks as follows:

Choose a word length
%

.

Let � � ��� � denote the number of times word
�

occurs in sequence � .
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Let
� �

denote the
#
th word in a lexicographical ordering of all words of length

%
.


 � �
� 
��	��� ����
� � �

� � � ��� � ��� � � ��� � � � �

The choice of word length is also an important one, with different word sizes yielding

different results. Previous research has focused on a word size of 6 and a window size of

100 [Hide et al. 1994].

2.4 Clustering Algorithm

A clustering algorithm groups sequences according to their similarity. We have already dis-

cussed similarity, and now move on to background work relating to the grouping technique.

2.4.1 d2 cluster

Burke et al. [1999] presents a method for accomplishing EST clustering according to the

results obtained from a

 �

comparison. This algorithm, called the d2 cluster algorithm, has

been shown to be both relatively fast and accurate. d2 cluster works by running through the

following steps.

� First a threshold score is derived from a user definable Stringency setting which

indicates, as a percentage, the required level of similarity in order to consider two

ESTs similar enough to be clustered.

� Initially, each EST is assigned to its own cluster, so there exist as many clusters as

there are ESTs.

� Then, compare each EST
#

to every other EST
�

– If

 � � #�
 � ���

threshold, merge the cluster containing
#

with the cluster contain-

ing
�
. For details of


 �
, see section 2.3.3

� The clusters left after this process are the target EST clusters [Burke et al. 1999]. The

clustering method used can be seen as equivalent to agglomerative clustering.

This algorithm operates in 3 � % � � time in relation to the number of strings involved in the

clustering, multiplied by the complexity of the measurement method.

2.4.2 wcd

Another clustering method called wcd [Hazelhurst 2003a,b] uses

 �

as its measure. It con-

structs the same clusters as d2 cluster, but uses a different method to do so. In order to

minimize the execution time of the clustering process, a heuristic is used. Before a pair of

sequences are compared using

 �

, they are first examined to see whether they share at least
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5 non-overlapping common words. It has been empirically determined that this is a safe cri-

terion to use as it is unlikely that any sequences that do not share at least 5 non-overlapping

common words would have a

 �

score below a threshold of 40 used by wcd.

Another interesting characteristic of wcd is the use of compressed sequences, which

allow it to hold more sequences in memory for increased efficiency. Like d2 cluster, wcd

uses agglomerative clustering as its clustering technique.

The clustering algorithm employed by wcd is presented below.

Algorithm 1 The wcd clustering algorithm

Let
%

be the number of sequences
initially, assign every sequence to its own cluster
for

#
= 1 to n do

for
�

=
#

to n do
if sequence

#
is not in the same cluster as sequence

�
then

if sequence
#

has a chance of being similar to sequence
�

then
if

 �

score between sequence
#

and sequence
�

is below the threshold then
merge the clusters containing the two sequences

end if
end if

end if
end for

end for
Output clusters

2.4.3 TIGR

TIGR, a clustering system named after The Institue for Genomic Research which developed

it, is a system that seeks to produce an index of the sequences represented by EST Sequences

[Quackenbush et al. 2000]. TIGR’s goal is not EST Clustering, as its primary focus is the

assembly of the ESTs into full genes. The assembly of ESTs into genes is a process whereby

a sequence is constructed which is the shortest sequence from which all the ESTs could have

come, and represents the mRNA sequence from which the ESTs were originally produced.

It uses EST Clustering as one step in this process.

TIGR uses an incremental system, building on the results of previous assemblies to

produce its new assembled sequences. Initially, it uses reference sequences to help classify

ESTs. This approach is known as “Supervised Clustering”.

TIGR works by using mRNA sequences as reference sequences. It adds these already

assembled sequences to its database, for later comparison to ESTs. It then gets its EST

data from a database, and performs a pairwise comparison between all the sequences it now

has using the edit distance metric, checking for local similarities. If any pair are found to

be sufficiently similar, they form a cluster. When an already assembled sequence appears

in a cluster, it is separated into the sequences that were used to assemble it. New mRNA

sequences are then assembled from these clusters, and added to the database of assembled

sequences.
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TIGR is different from wcd and d2 cluster in that it has as its goal the creation of

assembled genes rather than clusters of ESTs. The use of an incremental approach is also a

vital difference, as the comparison to assembled mRNA rather than the original ESTs could

yield different results.

2.4.4 UniGene

Unigene [Schuler 1997] is a system for clustering Expressed Sequence Tags. Like d2 cluster,

it does not attempt to assemble the sequences into mRNAs, instead producing clusters of

ESTs as its final goal.

Unigene uses a similar approach to that of TIGR, using mRNAs as reference sequences,

but uses some further knowledge to help produce correct clusters. First, UniGene gets

clusters of genes and mRNAs from a database. These serve as reference. Next, the ESTs

are introduced, and compared to the existing clusters using BLAST as a similarity measure.

Now, one of the ends of an mRNA, known as the 3’ end, is a recognizable sequence,

and can thus be identified by the algorithm. This is useful, as in order for a sequence to

constitute a full mRNA, it must have this recognizable sequence on its end. So, when we

compare sequences to clusters, and find that a sequence seems to belong in two separate

clusters, we know that this cannot be so because the mRNA resulting from this would then

have to have two distinct 3’ endings.

Furthermore, we know that any cluster that does not contain an EST with a 3’ end is

incomplete and cannot represent a full mRNA, so we discard that cluster. At some point,

ESTs are likely to be added which will complete that sequence, at which point its cluster

will be added.

The resulting clusters are known as “anchored clusters” because their 3’ end is known.

This anchoring of the clusters is a major difference when compared to the other clustering

systems, and makes clear that the goal of UniGene is the construction of clusters which fully

describe the genes they are derived from. d2 cluster, wcd and TIGR allow EST clusters

which do not have a 3’ end, showing that they are incomplete clusters. This means that they

allow clusters which do not represent an entire gene, but a portion of one.

2.4.5 Conclusion

The comparison methods presented here have different characteristics with regard to EST

Clustering. TIGR is a system for assembling ESTs into full length gene transcripts. Its goal

differs from that of this research in that it attempts to construct mRNA sequences from the

ESTs, rather than just grouping the sequences. This is an important distinction, as the stated

goal of grouping ESTs from the same gene family means that the desired clusters would not

necessarily assemble into a single gene sequence.

Unigene is inappropriate for a similar reason. Anchoring the sequences by their 3’

end, and then not allowing clusters to have multiple 3’ ends means that we will exclude

sequences from the same gene family. Modifications to a gene close to its 3’ end will cause
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them to end up in different clusters, when a similar mutation further away will not. This is

not desirable behaviour.

d2 cluster can be used to find the set of gene families, but is less efficient than wcd,

which was the method adopted for this research.

2.5 Parallelisation

Parallelisation is the process whereby work is split up among a number of processors with

the goal of reducing execution time. In this section issues relating to parallelisation will be

discussed with reference to related work.

2.5.1 Parallel Models

Parallel systems are generally classified according to Flynn’s Taxonomy [Flynn 1972],

which classifies parallel systems based on the number of different instruction streams and

memory pools. Three main classifications of interest are :

� Single-Instruction Single-Data (SISD)

� Single-Instruction Multiple-Data (SIMD)

� Multiple-Instruction Multiple-Data (MIMD)

SISD systems consist of a single instructions stream with a single data stream, and is thus a

sequential computer. SIMD systems consist of a number of processors executing the same

instructions at the same time, but each processor has its own data stream. This does not

mean that they have a different memory pool, as all data streams could be taken from one

shared memory pool. Multiple data streams refers to the flow of that data, and indicates that

while the processors are executing the same instructions, they are executing those instruc-

tions on different inputs. MIMD systems consist of multiple processors, each processor has

a separate instruction stream as well as operating on a separate data stream.

2.5.2 MIMD Systems

MIMD systems can be further divided into two distinct categories. Systems where all pro-

cessors have a single memory pool from which the data streams are read are known as

shared-memory systems whereas systems where each processor has its own memory pool

are known as distributed-memory systems [Levine 1994]. This affects the communication

between processes as well as the distribution of the input data.

Parallel programs written for MIMD systems can employ one of two strategies for com-

munication between processors. These are the shared-memory model and the message pass-

ing model [Chong and Agarwal 1996]. It is important to note that this is independent of the

physical memory system employed, as it is possible to use a shared memory programming

model on a distributed memory system, and is also possible to use a message passing model

on a shared memory system.
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In the shared-memory model, the actions of individual processes can be observed by

their effect on the shared memory pool. This is extremely fast, as there does not have to

be explicit communication between processors. However, the memory generally needs to

be explicitly synchronized, to avoid the problem of race conditions and overwriting [Yang

1993]. This synchronization cost increases markedly as more processors are introduced,

making these algorithms less scalable than message passing algorithms.

The other communication model is known as the message passing model. Message

passing systems do not use a single pool of data to operate from. Instead, each processor

operates on its own local store, with messages passed between the machines in order to share

resources and results. These have been shown to be more scalable than shared-memory

machines. They do, however, require more programming effort as there is a need to ensure

consistency in the different memory spaces [Nikolopoulos and Polychronopoulos 2001].

The model minimizes the need for synchronization as the individuals involved do not need

to be given the ability to force the overwriting of data on another individual. The problem,

however, is that in a domain where a large amount of data will need to be distributed, the

processors spend a lot of idle time waiting for input from other machines [Yang 1993].

It is possible for a message passing implementation to be faster than a shared memory

implementation. This is because the cost of ensuring cache consistency and data integrity

can overwhelm the overheads involved with the mechanics of message passing. This result

has been experimentally verified for certain problems [Lew 1995].

2.5.3 Distributed Systems

Distributed Systems are systems wherein multiple processors with seperate memory are

used to cooperate in solving a particular problem. Since these machines have no single

pool of memory, the message passing model must be used. While it is possible to simu-

late a shared pool of memory, the message passing model results in less communication

[Martonosi and Gupta 1989]. Distributed computing has become an attractive idea thanks

to the prevalence of extremely cheap, powerful desktop machines. This could prove to

be a more cost effective solution than having specialist multiple processor shared memory

machines.

In order to accomplish multiprocessing on a network, it is essential to reconsider issues

like security and efficiency in your systems. Decisions which may have been appropriate

for a standard network may hamper parallel computing. The handling of all these issues for

efficient parallel computing is known as ‘clustering’, not to be confused with EST Cluster-

ing. Some policies which may need to be changed include remote login facilities on slave

machines. In order to preserve efficiency, clusters also generally isolate the local network

so that it is invisible from the outside, thereby preventing unnecessary traffic [Brown 2000].
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2.5.4 Design issues in distributed systems

The use of a distributed system introduces tasks which are not present in sequential algo-

rithms. The distributed system must allow the various processors to communicate, it must

ensure all necessary data is distributed to the processors, and ensure that work is fairly

allocated so as to minimise the idle time of the processors.

Work allocation

It is important to allocate work so as to minimize the total idle time of all processors in the

distributed system.

A choice must be made as to whether to allocate the processing statically or dynamically

[Kim et al. 1997]. Static allocation of work entails dividing the work among the processors

as the system starts up. Dynamic allocation is adapative, dividing the work while the system

is running. Static allocation achieves a good distribution of work if the size of the tasks to be

performed and speed of the hardware to be utilized is known beforehand. Otherwise it does

not achieve a very good balance. Dynamic scheduling allocates work during the execution

of the parallel algorithm. This allows it to be more adaptive in its allocation, taking into

account the the amount of work the processors have to do [Mao and Tu 1995]. Dynamic

scheduling is more suited to the purpose of EST Clustering, because the execution time of

the tasks involved is not known beforehand, and can vary greatly in relation to each other.

This is because of the use of a heuristic which can reduce the execution time dramatically.

An important decision arising from the use of dynamic allocation concerns the responsi-

bility for the division of work. It is possible to have a central coordinator that is responsible

for the division of work. This is known as the master/slave model of distributed computa-

tion. Another method involves a system of cooperating peers [Oden and Patra 1994].

The master/slave architecture is simpler to implement, with a single master responsible

for control of the system. It has the disadvantage that the master machine could become

a bottleneck, primarily because of communication overheads [Bonacina 2000]. Using a

system of cooperating peers is an alternative strategy, wherein there is no single machine

that would become the bottleneck. It is, however, more difficult to negotiate control.

The EST Clustering consists of a large number of expensive, independent calculations.

It thus has few data dependencies, and the order of computation is unimportant. The mas-

ter/slave model is well suited to this type of problem [Shao 2001] and was thus chosen for

this research.

Communication

Distributed systems involve multiple processors acting in a cooperative manner. This makes

communication an important concern. Various techniques exist to accomplish information

sharing between the various processors in a distributed system.

Remote Procedure Call (RPC) and message-oriented communication are two important

techniques which have some suitability for a distributed system for EST clustering. These
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techniques are discussed below.

Remote Procedure Call [Birrel and Nelson 1984] is a technique whereby procedures can

be executed on remote machines. Machines which need a remote procedure executed must

know the name of the procedure and the machine responsible for executing it. The Remote

Procedure Call mechanism takes care of the mechanics of the communication required to

transmit the function parameters and the procedure results between the machines.

The mechanism does this by wrapping the parameters and responses into network mes-

sages which are transmitted via an existing underlying network. An important characteristic

of Remote Procedure Call is that communication is synchronous. This means that the pro-

cess requesting a remote procedure becomes blocked or idle while waiting for the results of

the operation. This idle time is undesirable as it increases the time taken for the task to be

completed.

While extensions of RPC exist which allow asynchronous communication, it is often

easier to use message-oriented communication [Tanenbaum and van Steen 2002].

Message-oriented communication [Tanenbaum and van Steen 2002] is a technique whereby

processes communicate by sending messages to each other. There is no built-in mechanism

for requesting work to be performed by remote machines. This must be added to the pro-

grams using this form of communication, by designating certain messages to be requests

for work, and standardising the message format.

Message-oriented communication can be either transient or persistent. Transient com-

munication requires that the receiver be ready to receive a message when the sender is

sending it. When persistent communication is necessary, the communication system must

hold the message until the receiver is ready to receive it.

Another issue is whether communication should be synchronous or asynchronous. When

using synchronous communication, the sender is blocked until the message is delivered [Ek-

lund 1998]. Synchronous communication is not necessary for this system, and is a waste of

processor time. Asynchronous communication, which allows the sender to continue imme-

diately after sending a message, is more attractive. Achieving asynchronous communication

requires some sort of local buffer or intermediate server to hold the messages until the re-

ceiver is ready to process them. The approach used in this research was to use transient

asynchronous communication with a local buffer on each machine.

A factor in favour of a successful parallelisation is that the EST Clustering consists of

many independent jobs. This lack of data dependencies means that there is a smaller amount

of necessary communication [Sheliga et al. 1998].

Data Distribution

Where data needs to be accessed by multiple machines, as is the case for a distributed

system for EST Clustering, there are three strategies that can be employed. These are the

central-server algorithm, the full-replication algorithm and the read-replication algorithm

[Richard and Singhal 1993].

The central-server algorithm dictates that a central server is responsible for managing
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the data. It contains the data in its memory, and client machines request the data they

require from it. The advantage of this approach is that maintaining data consistency across

the memory space is easy as all data is stored in a central location. The major disadvantage

of this approach is that the cost of a data access in a client is the cost of the transfer of that

data item over the network. This is typically much larger than the cost of an access to local

memory.

The full-replication scheme works by copying data to every machine involved in the

system. All machines thus access data items from local memory. The advantage of this

approach is that the cost of a memory access is the same as for a sequential program, and

is much lower than the cost of a memory access. A major disadvantage is that maintaining

data consistency is very difficult, as a change to a data item requires all machines to update

the copies in their local memories.

Read-replication is a hybrid approach whereby data is distributed across the set of ma-

chines, but a central server controls writes to the data items. This means that all machines

can read the data, but only one can modify the data. This scheme has the advantage of a

low read time on a data item. A write to a data item is more expensive, as it requires a

network access, but because there is now a central server responsible for maintaining data

consistency, this task is easier.

None of these techniques is the best in all situations, with the characteristics of the data

that must be distributed determining which scheme is the most efficient. Data which is not

going to be modified often would benefit from read-replication or full-replication, as data

item reads are much faster than under the central server method. When data must be written

to often, the central-server approach would be more effective as it is easier to maintain data

consistency using this scheme than any other. Because of these factors, a hybrid approach

was chosen, with data which did not need modifying being distributed using full-replication,

and data which required mostly writing and not much reading being managed by a central

server.

2.5.5 Implementation of parallel algorithms

Distributed systems, and indeed parallel algorithms in general, are difficult to implement.

However, tools exist to make this task less complex than it previously was.

The Parallel Virtual Machine [Sunderam 1990] is a framework for parallel computing

which provides functionality that makes it easier to implement a parallel algorithm. The

framework hides the details of communication and some coordination from the programmer,

with the goal of making it appear that a collection of processors are a single computing

resource.

The Message Passing Interface (MPI) [Dongarra et al. 1992; Forum 1994] is a standard-

ised set of cross-platform communication tools that provide a standard way to communicate

with parallel programs. This is useful when a parallel algorithm is implemented on multiple

platforms and must interact across those platforms. MPI also implements higher level com-

munication tools to allow communication across groups of processes. MPI was not used for
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this research because the system involved was not intended to run on multiple architectures,

and standard communication tools were sufficient.

Deshpande and Schultz [1992] discusses a general framework for parallel computing

which minimizes programming effort on a parallelisation task by integrating parallel fea-

tures into sequential languages. This system, called Linda, maintains a common shared

memory space administered by the Linda system itself, without the intervention of the pro-

grammer. The central system is allowed to create processes on remote machines, and all

processes can access the shared memory space. A common method of using this system is

to have worker processes which run on slave machines reading and processing tasks from

the shared memory space, and grabbing new tasks as they have processing power avail-

able. The major advantage of this system is that it reduces programming effort. Linda was

not used as the potential for increased efficiency in a custom system outweighed the extra

programming effort.

Ramanujam and Sadayappan [1989] discuss optimizations that can be made regarding

both data partitioning and optimal communication. A mechanism is outlined for the parti-

tioning of data after constructing a model of the data dependencies involved. This is nec-

essary because if the data dependencies are not taken into account, incorrect results could

be returned as results from operations that have not been executed yet may be needed. The

EST clustering problem is easily divided because there are few data dependencies. The pair-

wise computations that can be done here are independent, meaning that they do not require

results from previous computations.

2.5.6 Performance

In this section, the issues governing the performance of a parallel system will be highlighted.

Speedup and efficiency are two of the most important measures of the performance of a

parallel algorithm. The speedup demonstrated by an algorithm running on � processors is

defined as the ratio between the time taken for the sequential algorithm to complete and that

taken for the parallel algorithm to complete on � processors. The efficiency of the algorithm

executed on � processors is the speedup on � processors divided by � [Quinn 1987, page

19].

One way of determining the speedup achievable from a parallelisation is Amdahl’s Law

[Quinn 1987, page 19] which relates the possible gain from parallelisation to the cost of the

operations that are inherently sequential. The relation established is presented below.

Let � be the fraction of operations that must be performed sequentially. The

Speedup � that can be achieved by a machine with � processors can thus be

constrained as:

���
-

� � � - � � ��� �

From this equation, it can be seen that a factor constraining the maximum speedup achiev-

able by a parallel system is the fraction of sequential operations. For instance, if the fraction
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of sequential operations is 0.1, the maximum value for � is 10, regardless of the number of

processors used.

A discussion of the effect of this on the EST Clustering problem is presented in section

3.3.2.

2.5.7 Case studies

d2 cluster has been successfully parallelised using the shared memory model, with results

showing that the work can be effectively shared on a shared memory machine. The clus-

tering was performed on an SGI Origin 2000 multiprocessor. The speedup achieved by the

algorithm when executed on a 126 processors was 100 [Carpenter et al. 2002]. This par-

allelisation made use of sequential merge operations, indicating that the merge is a simple

enough operation to not become a bottleneck for a single processor.

A parallel system has also been designed to do EST Clustering using sequence align-

ment as a comparison method [Kalyanaraman et al. 2002]. This system is also built for

shared memory machines, and when run on 32 processors, produces a speedup of 8.3 over

the 2 processor parallel version. This indicates an efficiency of 0.5. Unfortunately, no timing

results are shown for a single processor version of the algorithm. The system constructed

here has different constraints to a

 �

system, as it uses a completely different algorithm to

accomplish the comparisons.

The algorithm makes use of a master/slave paradigm, with the master assigning calcu-

lations to individual processors and storing the result. Then, in a post-calculation stage, all

merges are performed at once. Because the memory space required to store the results of the

comparisons is prohibitive, this is modified slightly so that there are alternating comparison

calculation and merge stages, meaning that the results of the comparisons only need to be

stored until the next merge stage.

This algorithm uses a heuristic to identify promising pairs. The heuristic is also paral-

lelized, so that the computation performed by slaves can be either determining whether a

pair of sequences is promising or performing an alignment on these sequences.

Yap et al. [1998] present a comparison between parallel methods of Human Genome

Database searching. One method uses a master-slave method, wherein the master assigns

calculations that need to be performed to slave machines, who then return the results of

their computation to the master. This allocation is done dynamically, so that the load on the

various slaves is balanced. The other method partitioned the problem by assigning calcula-

tions to the slaves at startup. The results showed that assigning the calculations at startup

achieved better performance as the master became a bottleneck in the master-slave system.

The master became a bottleneck for short sequences, with performance for sequences of the

average length of ESTs (approximately 300) showing a speedup of approximately 100 on

128 processors, and performance on sequences of length 50 showing a speedup of only 32

on 128 processors.
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2.6 Conclusion

These papers collectively indicate that parallel d2 clustering could be successful. We have

seen that the sequential component of d2 clustering is not large enough to be a problem

[Carpenter et al. 2002], We have seen that a master-slave system can be tailored to allow

impressive performance, as in [Yap et al. 1998], and that when there is a small amount of

data dependencies, master/slave parallelisation is useful [Shao 2001].

Since parallel systems involve many different design choices, some of these have also

been discussed to justify the approach outlined in chapter 3. Experimental results from the

parallelisation of other algorithms has also been presented to support the results shown in

chapter 5.
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Chapter 3

Proposed EST Clustering System

3.1 Introduction

This section will be used to state the formal hypothesis, and the formulation of the exper-

iment used to test it. It will thus present the project more clearly, giving details of the

experiment and justification for design decisions made. First, the hypothesis will be pre-

sented, making clear what the goals of the research were. Then, implementation details

regarding the parallel system and the similarity measure will be given. Finally, the design

decisions made in the implementation of the system will be discussed.

3.2 Hypothesis

The ultimate purpose of this work was to investigate the usefulness of distributed memory

parallelisation as a technique to reduce the time taken to perform EST clustering. This

purpose was evaluated according the results gained by implementing a parallel program

using

 �

as a metric, and comparing it against a sequential

 �

clustering program. The

hypothesis can be stated as follows.

A parallel EST Clustering algorithm can be constructed to share the computa-

tional load efficiently among multiple processors with separate memory.

The efficiency required was a decrease in the amount of time in relation to the number of

processors (� ) which would hold up to 100 processors, such that the efficiency should have

been 0.6.

The primary reason for this was the result shown in Carpenter et al. [2002] which

showed an efficiency of 0.8 on 128 machines for a parallel

 �

clustering algorithm. The

major differences between the approach taken in Carpenter et al. [2002] and this research,

which led to the expectation of a lower efficiency, were:

� The Carpenter et al. [2002] parallelisation was designed for processors having a

shared memory, and did not use message passing. It did not incur the overhead of se-

quence distribution, as all processors had access to the input set in the shared memory
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space, meaning that the sequences did not need to be transferred into each processor’s

space. The latency of communication was also much lower as network latencies are

higher than memory latencies.

� The algorithm that was parallelised by Carpenter et al. [2002] was a different

 �

clustering algorithm, d2 cluster instead of wcd. The characteristics of the algorithm

would affect the efficiency of the parallelisation. In particular, the use of a heuristic

in wcd to avoid unnecessary calculations could cause a decrease in the efficiency of

the algorithm.

� The Carpenter et al. [2002] parallelisation did not use a master-slave architecture,

instead using a system of peers for the parallel portion.

An efficiency of 0.6 was chosen as a conservative estimate based on the extra costs imposed

by the modifications necessary to the strategy adopted by Carpenter et al. [2002].

An examination of whether this is likely to be achievable in terms of Amdahl’s Law

indicates that an efficiency of 0.6 should not present a problem. Amdahl’s Law, presented

in section 2.5.6 was stated as

���
-

� � � - � � ��� �
. In order to satisfy an efficiency of 0.6 on 100 processors, the equation read as follows

� � � -
� � � - � � ��� - ���

. Solving for � , which represents the sequential part of the algorithm, we get

� �
-

-��������
.

This number means that in order for the speedup to be achievable, the sequential portion

of the program must be no more than - � -�������� of the program according to Amdahl’s law,

presented in section 2.5.6. This was reasonable because there are at most
% � - merges

whereas there are at most
% �

comparisons. The smallest value of
%

to be tested in this

research was 10000. For this value, the condition holds, as - ������� � � -��������
	 - ������� . The

load-balancing procedure is 3 � % � � but does not take much processor time. The procedure

by which load-balancing is accomplished is detailed in 3.4.3. For a large
%

, this makes the

fraction achievable.

An efficiency of 0.6 would have meant that when run on 100 machines, the program

should have taken
�
�
� th of the time taken when run on a single machine. As the number

of machine increases, the costs of communication and coordination increase, leading to a

smaller gain until eventually no gains are made, so no claims about the efficiency are made

for � 	 - ��� .
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3.3 Overview of the Parallel System

The approach that was taken by this research was to implement a parallel algorithm to

perform

 �

clustering. The resulting clusters would need to be the same as those calculated

by the wcd implementation.

The strategy that was employed in this experiment was to use a Master or Coordinating

machine, to which all other machines are subordinate. This master machine holds the EST

database and the find-union graph of the clustering, which is initially a collection of EST

fragments, and eventually consolidates into a group of clusters. This master machine is

responsible for performing the merge operations that are necessary when a comparison

satisfies the merge criterion. As an example of a merge criterion, using the

 �

metric,

the merge is performed if the score is below a user-defined threshold.

The subordinate machines are assigned calculations by the master machine and then

calculate the required comparisons, and send back a merge request, if one is necessary, or

a done signal to indicate that the particular calculation has completed. The master machine

then performs a merge on the clusters if necessary, and keeps a record that the comparison

has been done.

The basic algorithm for the master machine is presented below.

Algorithm 2 Algorithm for the master machine

Let
%

be the number of sequences
Send all sequences to all clients
while there exist some calculations to be performed do

if there is a client whose queue is not full then
send a batch of calculations to that client

end if
if a client indicates two sequences are similar then

merge the clusters containing the relevant sequences
end if

end while

The algorithm for the slave machines is presented below.

Algorithm 3 Algorithm for the slave machine

Let
%

be the number of sequences
Receive all sequences from server
while the server has not exited do

Receive batches of work and put in queue
for each comparison in the batch do

if comparison shows similarity then
send message indicating similarity to server

end if
end for
send message to server indicating completion

end while
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3.3.1 Union-Find Data Structure

In order to efficiently accomplish the clustering, we need to be able to merge clusters effi-

ciently. We must also be able to easily identify the cluster containing a particular sequence.

A suitable data structure for this task is the Union-Find data structure.

Hopcroft and Ullman [1973] present an efficient method of performing set union oper-

ations that can be used to perform cluster merges, as these are essentially set merge opera-

tions.

The algorithm works by using a tree data structure to represent each set. Two operations

are allowed on the structure, union and find. The union(
�

,
�
) operation connects the

trees containing vertices
�

and
�
, and find(

�
) returns the root of the tree containing vertex�

.

Each vertex in the structure maintains a pointer to its parent. An internal link(
�

,
�
)

operation is defined which sets the parent pointer of
�

to
�
. The union(

�
,
�
) operation is

then performed as link(find(
�

),find(
�
)). This means that the find operation is the

pivot to ensuring efficient operation. The find operation is performed by following the

parent pointers until the root of the tree is reached. It is thus clear that the time taken to

perform the find operation is directly related to the depth of the node in the tree.

We thus employ heuristics to keep the trees short. Two important heuristics are union

by rank and path compression. The union by rank heuristic is useful because it makes sure

that the shorter tree is appended to the larger one, rather than the other way around. This

keeps the trees shorter as the tree height only increases when two trees of equal height are

joined. Path compression is a method added to the find operation. When we perform a find

on an element, we set its parent pointer to point directly to the root. Since we have to find

the root anyway, the operation does not add extra complexity. Note that in order to perform

a find operation on a vertex
�
, we need to find the root of its parent. The result of this is that

all vertices along the chain from
�

to the root have find operations performed on them, and

hence have their parent pointers set directly to the root.

The worst case complexity for a series of
%

union and find operations is 3 � % ������� �
� % � � �

[Quinn 1987, page 168]. The time spent per individual operation thus amortizes to 3 ������� �
� % � �

which is almost constant. The function
�����

�
%

can be defined as follows:

�����
�
� 
 � =1 for 
 � -

�����
�
� 
 � =1+

�����
�
��������� 
 � � for 
�� -

For example,
�����

� �
�
	

,
�����

� - � �
�
,
�����

�
� � � � � � � .

3.3.2 Effect on the parallelisation

For the purposes of EST Clustering, the inherently sequential fraction of the program is

made up of the merge operation, which is 3 � % ����� �
% �

in the worst case, with
%

representing

the number of sequences to be clustered, as was shown in section 3.3.1. The parallel fraction
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is made up of the sequence comparisons, which are in general 3 � % � � multiplied by the

complexity of the comparison measure, which, for

 �

, is 3 � ! � �
with

!
representing the

sequence length. This indicates that the portion of the program which is sequential will be

decreasing for increasing problem sizes, hence making the parallelisation work better for

larger instances of the problem.

This demonstrates that the portion of the program that cannot be parallelised is not likely

to be a large fraction of the total instructions, and will thus allow a large speedup.

Another limitation caused by parallel code is that if there is parallel code dependent on

the sequential code, all processors must wait for an individual processor to complete the

sequential code. This does present a problem for EST Clustering, as processors could be

waiting for instructions if the processing of the sequential operations become a bottleneck.

This processing can be one of two operations, a merge operation or an ignore operation.

Individual merge instructions have a close to constant cost, as was shown in section 3.3.1,

and an individual ignore instruction has a constant cost as it just decrements the number

of requests known to be in a particular slave’s queue. With � processors, this means that

conceptually, � operations need to be performed during each comparison calculation on a

single processor, because this is the amount of sequential work that needs to be done before

more sequential work comes in. The operations are thus collectively close to 3 � � � while

the comparison calculation is 3 � ! � �
. Since � is unlikely to be larger than the average

!
(approximately 300), a large difference in the constant factors would be the only reason for

the merges to constitute a bottleneck.

3.4 Implementation of the Distributed System

The decision to implement the system as a master-slave system was made for a variety of

reasons. Primary among these is that a central coordinator imposes less costs than requir-

ing the machines to cooperate in making decisions about what work would be handled by

the various machines. It is thus necessary to have a machine dedicated to coordinating

the activities of the various machines, ensuring that the work is divided evenly among the

machines.

The slaves are responsible for the similarity calculation, and the processing that is nec-

essary to decide whether two sequences are similar enough to be clustered together is the

sole responsibility of the slave machines. The master machine decides which computations

to send to which slaves. These slaves then tell the master which sequences should be clus-

tered together, and the master performs the clustering on the basis of this. A diagrammatic

view of the system is presented in figure 3.1.

In order to help hide the delays which network latency would impose, requests are

queued on the slave and the master, allowing them to continuously process the requests at

the heads of their queues rather than pause to wait for the next job upon completion of the

previous one. This queuing system complicates the load balancing, as it is now necessary

to keep the queue sizes balanced, rather than the simpler task of ensuring that a machine
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is available before sending a sequence to it. The saving is significant because the network

latency time cost is incurred once if queuing is used, which is when the first item is being

added to the queue. If no queuing is used, the network latency is incurred every time a

request is sent to the slave, which is 3 � % � times.
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Figure 3.1: Diagrammatic view of the system

3.4.1 The master

The master algorithm was implemented as three coordinated threads. These are the ‘send

thread’, the ‘receive thread’ and the ‘merge thread’.

The send thread

The send thread’s first responsibility is to distribute the sequences to the slave machines.

The thread reads sequences from a file and then distributes these sequences to every slave.

After distributing the sequences, the master must decide which machines to distribute

requests to, and must then distribute that work. To minimize network usage, the master
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sends batches of work rather than individual sequence pairs for comparison. The master

sends a sequence number to an available slave, which must then process all pairs of se-

quences involving this sequence. However, in order to avoid pairs being compared twice,

the slave will compare the sequence with all sequences having an index higher than its own.

In order to decide which machine to send a query to, the send thread sends a load query

to the merge thread. The merge thread picks a slave to send the request to using the algo-

rithm outlined in 3.4.3. It picks this slave on the basis of how many pending calculations

that slave has queued. If all slaves are operating at full capacity, the master waits for a

small amount of time and checks again. This small delay was included because if there

was no delay the master would continuously check if there was an available slave, consum-

ing an unnecessarily large amount of computation time. If the queue size is chosen to be

sufficiently large, this delay will not be large enough to allow a slave to reach zero pend-

ing requests and therefore waste time. The idea is that the master waits while a slave gets

through enough work to open space in its queue for more requests.

The receive thread

The receive thread listens for responses from slaves. When one is received, the thread

checks which slave the response is from and records this for load-balancing purposes, which

is discussed in greater detail in Section 3.4.3. Next, the receive thread checks whether the

slave had decided the sequences should be clustered together or not. If they should, the

request is forwarded to the merge thread, so that it can merge the find-union structures

containing the sequences appropriately.

The merge thread

The merge thread contains the find-union structure. It is responsible for all operations re-

quiring this structure. Another option would have been to make the find-union structure a

shared structure available to all threads. The decision to make it part of the merge thread

was taken for two major reasons. The first is that the find-union structure is large enough to

make it problematic to allocate shared memory to it. It is therefore easier not to share the

structure, meaning that only one thread can have access to it.

The other major reason is that the operations on the find-union structure are processor

driven tasks, whereas the master’s other tasks are more I/O driven. Keeping these in a

separate process thus allows us to make more effective use of the processor.

The merge thread is also responsible for load-balancing. This task was integrated into

the merge operation because its operation is tightly coupled with that of the find-union

structure. The load-balancing system is also a processor driven task rather than an I/O

driven task, and because the load-balancing structure must be accessed by both the send

and receive threads, they submit requests to the merge thread rather than accessing a shared

structure directly.

The merge thread serves two main functions. One of these is to determine which slave
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has the smallest current load, and the other is to perform the union operation on clusters

when the receive thread indicates that it should. The merge thread listens for requests, and

when one is received, it checks what type of request it is.

If the received request is a find request, the merge thread checks which slave currently

has the smallest queue. It returns a message containing the number of this slave to the send

thread. It then increments the recorded queue size of that slave, because that slave’s queue

will increase due to the request the send thread is about to distribute to it.

Done requests contain a slave number, and indicate that the slave has completed the

batch of work that was sent to it. When the merge thread receives one of these, it decrements

the recorded queue size of the slave, indicating that the slave has less pending work.

If the request is a union request, a union operation is performed on the clusters con-

taining the sequences in question.

3.4.2 The Slave

The slave system has a similar structure to that of the master, being divided up into three

constituent threads, the ‘receive thread’, the ‘compare thread’, and the ‘send thread’.

The receive thread

The receive thread on the slave can receive two different types of requests from the master.

The two request types are handled as follows:

� When a compare request is received, the receive thread forwards this request to the

compare thread.

� When a done request is received, the slave is stopped, as this request from the master

means that all necessary calculations have been successfully performed.

The receive thread handles all communication from the master.

The compare thread

The compare thread is where most of the work of the entire system is done, as it handles

the comparisons between the sequences. Before it can do this, it must first receive all the

sequences from the master.

Once all sequences have been received and stored, the slave dynamically loads the com-

parison method to be used. Dynamically loading the comparison method rather than stat-

ically linking it allows the use of multiple similarity measures without modification of the

main code. The comparison methods thus act as plugins into the main system.

The compare thread then listens for incoming compare requests from the receive thread.

These compare requests contain a sequence number. The compare thread compares the

sequence referred to in the request with every sequence that has a higher sequence number,

and if they are found to be similar, it sends a union request to the send thread. These

34



comparisons determine whether the sequences should be clustered together. Once all the

comparisons for a particular request have been performed, a done request is sent to the

send thread.

The send thread

The send thread waits for results from the compare thread, and forwards these to the master.

As can be inferred from the operation of the compare thread, the messages which could be

sent back to the master are union requests and done requests. The facility to batch these

requests to further optimize network usage is included, but the batch size was set to 1 for

the experiments, as batching them did not have any effect on the times. This may become

useful as the number of slave machines is increased beyond the numbers explored in this

research, as the network usage could become important.

3.4.3 The Load-Balancing Algorithm

The load-balancing algorithm is responsible for making sure there is an even division of

work among the slave machines, to avoid wasting computation time as some machines are

busy and others sitting idle. In order to do this, it tries to balance the number of requests

in the request queue in each slave. This request queue should not be emptied until all

comparisons have been performed. This is done on the master, so the master keeps a record

of the amount of requests in the queue of each slave. In order to keep the load balanced,

we assign all calculations to the slave with the least requests in its queue at the time of

generating the calculation.

The algorithm thus has three main functions governing the selection of a suitable slave.

� It must be able to find the slave with the smallest recorded queue size.

� The recorded queue size of a slave must be able to be incremented.

� The queue size recorded for a slave must also be decrementable.

The algorithm displays all of these characteristics, with each function taking a constant

time to perform.

Data structures

The data structures used for the load-balancing system were chosen to minimize the com-

putational complexity rather than the memory usage. They do not, however, impose a large

memory overhead.

The structure takes the form of an array of doubly linked lists, with one linked list being

created for every integer from 0 to the maximum queue size of the slaves. In the linked lists,

we store a node for every slave that has a number of queued elements that corresponds to

the array position. In other words, every slave that has
#

comparisons waiting in its queue

appears in the linked list referenced by the
#
th position of the array. An important decision
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made here was to keep the address of the head and the tail in the array. While this does cost

more memory, it allows us to avoid traversing the entire linked list when we want to attach

a node to the end.

A record is kept of the array position with the smallest index which has at least one

node in its linked list, called least. This record allows us to find the slave with the least

number of pending requests in constant time.

Furthermore, an array is created which keeps a reference to each node, indexed by a

slave number. This allows us to access the node for a particular slave in constant time.

Algorithm

Initially, we create a node for every slave, forming a linked list with slave number 0 at the

head. Then, to select a slave, we always pick the head of the linked list pointed to by least,

removing it from the linked list and attaching it to the tail of the linked list representing the

new number of sequences in its queue. This is done in constant time, as the tail of the queue

is easily accessible from the array. Now, if the linked list which the node was removed from

is now empty, we increment least. This can be done because the slave that we selected

now has one more queued request than it had initially, so we know that at least one node

has just one more queued request than the slave had initially.

When we receive a done response from a slave, we must decrement the number of

requests we record it as having. In order to accomplish this more efficiently, we use an

array which has one entry for each slave. This array stores a pointer to the node created

for each slave, and allows us to access that node in constant time. Once we have found the

node, we remove it from its linked list, which can be done in constant time because the list

is doubly linked. We then attach its node to the tail of the linked list representing slaves with

one less queued request. Then, if this number of requests is less than least, we decrement

least.

This system can thus perform all of its operations in constant time, and was therefore

chosen for the load-balancing algorithm. This is important because load-balancing must

perform its operations every time a compare request is sent out to a slave, and every time a

done response is received. The number of times this is done is 3 � % � , so the problem of a

time consuming load-balancing system would be compounded dramatically.

3.4.4 The wcd plugin

The

 �

calculation has been implemented as a plugin to the clustering system, using the wcd

algorithm presented in section 2.4.2. The calculation is performed in a manner described in

Hide et al. [1994], but does not take into account sequence weights. This is similar to the

approach taken in current implementations and will thus allow for more useful comparison

in relation to already existing clustering methods.

The calculations are performed on subordinate machines, with these machines imme-

diately deciding whether to merge or not, on the basis of the calculated

 �

score. The
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implemented plugin operates on compressed sequences, a decision which has been justified

in section 3.4.1.

It also makes use of a heuristic to speed up the calculation. This is a decision which

was made in the sequential implementation due to the complexity of the

 �

calculation. The

heuristic filters out pairs which could not have a

 �

score below the clustering threshold. The

sequences which make it past the heuristic must still be evaluated by the main

 �

algorithm.

This heuristic dramatically reduces the execution time of the sequential algorithm and was

thus included in the parallel implementation.

3.5 Design Decisions

In this section, alternative approaches to the decisions made for the system will be presented,

along with reasons they were not used.

3.5.1 Architecture

For the system architecture, it was possible to choose a master/slave system, or one of

cooperating peers. One issue here is the division of work.

The division of work among the machines is an issue which must be addressed in a

parallel system. In a system of cooperating peers, the lack of a coordinating mechanism

means that there is no central authority to dictate that division.

One technique used to deal with this is to have the machines negotiate among themselves

as to which calculations they are responsible for. This is problematic as it requires a large

amount of communication between processors.

Another approach is to divide the work beforehand, performing some sort of arithmetic

division of the work such that a machine is responsible for its partition of the work. An

obvious advantage of this is the reduction in the communication required, as machines know

beforehand what their responsibilities are. A disadvantage is the possibility of uneven loads

as the division of work must be done beforehand by attempting to assign each machine a

set of comparisons that would take an equal amount of time to perform. For this problem,

calculating this division of work is likely to be extremely difficult. This is because the

algorithm makes use of a heuristic which drastically reduces the time taken to perform the

calculation in certain cases, and leaves it unaffected in others, leading to a difficulty in

calculating the time a set of comparisons is likely to take.

A master/slave architecture would allow a master machine to distribute calculations to

the sequences, and since it knows the current state of the clustering, it would be able to avoid

redundant calculations. This would however, lead to an increase in the communication cost,

as every calculation would then generate a request which would need to be transmitted from

the master to a slave. The costs of avoiding these redundant calculations would outweigh

the benefit. This has been tested experimentally for the purposes of this system.

A possible disadvantage of the master/slave architecture is that the master could become

a bottleneck, as all machines must wait for the master to assign calculations to them before
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they can perform any work. In order for this to happen, the master must be too busy dealing

with comparison results for new comparison requests to be generated. For this to happen,

� merges must be more expensive than the combined time of one comparison calculation,

one find operation, and one done operation, as this is the amount of work the master

has to do in comparison with the slave. This is unlikely to happen, as the merge is a small

operation in relation to a comparison.

The architecture chosen was the master/slave architecture, as it provides more flexibility

regarding the division of work among the machines.

3.5.2 Distribution of work

In the master/slave architecture, there is a need to distribute work to the slaves. This can

be done in many ways, including partitioning the work beforehand, which was discussed

in 3.5.1. This results in a small network overhead, as comparison results are the only net-

work traffic that results. The other option, of requesting calculations from the slaves as

they are deemed necessary, would result in more effective balancing of the amount of work

performed by each machine, but this balancing also comes at the cost of increased commu-

nication and processing.

While it remains to be tested which is the more efficient approach, a dynamic division of

work rather than a predefined partitioning was chosen. Within this approach, there are two

possibilities for assigning work. The slaves can either request work when they recognize

that they need more, or the master can poll slaves to evaluate whether they have enough

work. Polling slaves involves the master requesting some sort of status report from each

slave, which would then send this back, so that the master can then decide whether to

distribute work to that slave. This results in a lot of unnecessary communication, but would

help facilitate load-balancing. A difficulty arises in choosing the frequency of the polling.

Another approach is to have the slaves request work. This is the approach that was chosen

here. A message from the slave indicating that a particular calculation has finished is treated

by the master as a request for more work. This approach was chosen as there is no need

to decide how often to poll slaves, with them indicating when they have capacity for more

calculations.

3.5.3 Sequence Distribution

In order for the slaves to perform their comparisons, they must know what the sequences

are. There are many possibilities for the distribution of sequences to the slaves. One is that

all hard drives must contain a copy of the input file. This would make it impossible to run

this system on diskless machines. Since the machines used in the experiments conducted for

this research are diskless, this technique was not an option. A problem with using a shared

storage system such as NFS [Sandberg 1985] for this is that the number of reads from that

individual file would dramatically increase the network usage. Using NFS to distribute
%

bytes to � processors would use 3 � � % � bytes of network traffic.
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Another option is to distribute the sequences to slaves via TCP. This would also be

3 � � % � and would be more difficult to implement than using NFS, but would have increased

compatibility as the slaves would not need to have a shared storage medium for the system

to operate.

A more adaptive option would be to distribute the sequences with the comparison re-

quests. This would, however, cause a huge increase in the amount of network traffic, but

would dramatically reduce the memory usage on the slaves as they would only have to keep

the sequences that they were working on, rather than the entire data set. It would use 3 � % � �
bytes of network traffic, which would not be acceptable. This could be reduced by keeping

a record of which sequences have been distributed to which slaves and only including the

sequence with the comparison request if it is necessary. This would cost 3 � � % � , and would

negate the memory usage saving as the slaves would have to store the sequences.

The option which was used in the system was UDP broadcasting, which is a technique

allowing packets to be addressed to all machines on a particular subnet. UDP is, however, an

unreliable protocol, in that it does not guarantee that the packets will be delivered correctly.

This meant that reliability had to be built on top of it to ensure that all the sequences were

correctly delivered. A further disadvantage is that broadcast packets are not forwarded

by routers or switches, so all slave machines must be on the same subnet as the master

machine. The decision to use broadcasting was made because communication within a

subnet is reasonably reliable without the intervention of the protocol, and the advantage

of being able to address individual packets to all slave machines means network traffic is

greatly reduced. The cost of sending the sequences to each machine individually would be

3 � � % � where � is the number of slaves and
%

the number of characters in all the sequences.

Using broadcasting, this is reduced to 3 � % � .
3.5.4 Sequence Storage

The sequences are stored in a compressed form. This compression does incur a speed

penalty as it is more complex to extract data from these than from the uncompressed se-

quences. However, it is beneficial to the system as a whole as the compression reduces the

sequence size to around 25% of its original size. This has a positive effect on the number

of sequences which can be processed, as the implementation requires all input sequences to

be stored in the memory of every slave.

A further benefit is that the distribution of compressed sequences to all slave machines

involves much less network traffic than the uncompressed sequences would. The combined

effect of broadcasting the sequences and using compressed sequences reduces the network

usage required by sequence distribution to
���� of the usage required otherwise.

3.5.5 Load-balancing

The load-balancing approach used in the system functions by having the slaves return a

done request when they have completed a request. This allows the load-balancing system
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to calculate how many comparison requests are in the queue of each slave, allowing the

system to effectively balance the queue sizes, which leads to a balancing of the loads.

An alternative to this would be to have each slave send a work request when the number

of requests in its queue falls below a particular threshold. Because the master will also be

aware of what this threshold is, it would then distribute enough work to that slave to fill its

queue. This would result in a smaller amount of network traffic. This alternative was not

used because it would have complicated the implementation, and because the queue size

chosen was too small for this approach to make too much of a difference.

3.5.6 Interprocess communication

Both the master and the slaves are multi-threaded, improving the efficiency of the system

due to the ability to receive input and send output while processor intensive tasks are si-

multaneously executing. This, however, required the implementation of an interprocess

communication system.

A common method of communication is to use shared memory. The difficulty here is

that this memory must be synchronized, to avoid race conditions and overwriting.

In the system developed for this research, interprocess communication was accom-

plished through the use of interprocess sockets. Interprocess sockets were used to pass

messages between the various threads. These were chosen for ease of implementation, as

they present an interface that is consistent with network sockets. They are also reliable and

efficient.

3.5.7 Messages

The messaging system made use of batching for the comparison requests, by consolidating

groups of comparisons into a single request. This was accomplished using the system out-

lined earlier, whereby a request containing a sequence number indicates that the sequence

should be compared to all sequences with a higher number. Because the sequences are

distributed in increasing order of sequence number, this results in a constantly decreasing

batch size.

An alternative approach would have been to algorithmically divide the comparisons into

equal batch sizes. This would, however, have been more difficult to implement. Another

factor in favour of decreasing batch sizes is that it helps fine tune the load-balancing toward

the end of the run. This is because unless the master machine becomes a bottleneck, the

slaves are operating at full capacity, due to the master machine making sure their queues

are full. This holds until the master machine has no more batches of work to distribute. At

this point, the queues of the slaves empty at different rates. Large batch sizes at this point

could result in some slaves having no more work to do while others had a large number

of comparisons in their queues. Decreasing batch sizes ensure that by the time the master

machine runs out of batches to distribute the batch size is small enough that no machine has

a large number of comparisons in its queue.
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3.6 Conclusion

The distributed system constructed for this research is a multithreaded, master/slave system.

Design decisions presented in this chapter affect the efficiency of the system. The results

obtained from the experiments presented in the next chapter must thus be understood in

relation to the implementation decisions discussed in this chapter.
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Chapter 4

Experiments

In this chapter, the experiments used in this research are presented, with some justifica-

tion for these as well as an indication of the limitations that results obtained from these

experiments would suffer from. The system outlined in chapter 3 was run using inputs pre-

sented later in this chapter, and then tested for performance against an existing sequential

implementation.

4.1 Hardware

The experiments were run on a network of Linux machines. The machines have 128MB

of RAM. The processors are not homogeneous, with a majority of Intel Celeron processors

running at 1.7GHz and some running at 2GHz. These machines were chosen due to their

availability. There is a certain amount of inaccuracy introduced because the hardware is

disparate. This was handled by erring on the side of caution, measuring the time taken by

the sequential runs on the fastest available hardware, while testing the parallel runs on a mix

of the machines. This means that the speedup is underestimated.

The machines use the Networked File System [Sandberg 1985], meaning that they use a

shared file system physically located on a central server. Because the system makes minimal

use of the file system, this does not make a large difference to the running time of the

program. Furthermore, the processing costs are so much larger than the I/O costs that gains

in this area will make a small difference to the results. This is partly because the use of

broadcasting has meant that the I/O costs do not scale up with the number of machines,

instead staying constant for a particular number of sequences.

The experiments were run after hours, when the machines are not in use. This meant

that the experiments would not be interfered with by other jobs.

4.2 Data Set

The data set used was a disparate set of human gene sequences derived from various human

genes collected from a publicly available EST database known as Genbank. The data set
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does have some effect on the results, as the input sets affect some of the behaviour of the

algorithm.

One reason the results would be affected is that the client machines employ a heuristic

which determines whether it is necessary to perform the

 �

calculation. If it is found that

two sequences cannot have a sufficiently low

 �

score, the calculation is not performed. In

a pathological case, where almost all cases would be discarded by this heuristic, the amount

of work that must be performed by the client machines will be so small that it could be

overwhelmed by the costs of communication, coordination and sequence distribution. The

speedups gained will thus be less impressive, and it is quite possible that the sequential

algorithm would be faster than the parallel system. This would, however, be an extremely

unlikely set of cases, and would in any case be processed by the fast heuristic rather than

the slow

 �

calculation and would thus not be in much need of efficient parallelisation.

Another reason the input set is of some importance is that the sequential algorithm does

not compare sequences to each other if they are already in the same cluster, saving some

time. In most cases this is a very small number of pairs, and this time reduction is not

significant. The parallel algorithm does not use this technique as the cost of letting client

machines know which pairs not to process would outweigh the time saving in most cases.

However, in a pathological case where there were many more similar sequences and hence

a smaller number of large clusters rather than the large number of small clusters we find

in general, the sequential algorithm would have much less work to do, and would hence

perform better in relation to the parallel one than it currently does. This is because the cost

of communication would become larger than the cost of computation.

4.3 Experiment Setups

The sequential version of the wcd algorithm was run multiple times, varying the number of

sequences in the input set and testing the time taken. This was done to allow comparison

with the parallel algorithm. The sequential algorithm was run on a 2GHz Celeron machine

with 128MB of RAM.

The distributed version was run using different numbers of sequences as well as differ-

ent numbers of processors. The distributed system was run on a set of machines ranging

from 1.7GHz Celeron machines to 2GHz Celeron machines, all with 128 MB of RAM. The

numbers of sequences used correspond to those used with the sequential algorithm, and in-

clude time measurements for higher numbers of sequences that could not be tested with the

sequential implementation due to the large amount of time the sequential implementation

would take to complete. The number of sequences used are shown in table 4.1. In the case

of experiments run on the parallel system, a server processor is required, increasing the

total number of machines used by one. The total number of machines used for 10000 se-

quences for instance would then become 1, 11, 31, 51, 81, and 101. Note that the sequential

experiment is not affected as no server processor is present.

Higher numbers of sequences were not tested due to the amount of time it would take
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Number of Sequences No. Of Client Machines Used
10000 1, 10, 30, 50, 80, 100
50000 1, 10, 30, 50, 80, 100
100000 1, 10, 30, 50, 80, 100
200000 1, 10, 30, 50, 80, 100
300000 1, 10, 30, 50, 80, 100
500000 50, 80, 100

Table 4.1: Input Sizes and No. of Clients used in the experiments

for runs using higher numbers of sequences to complete. The numbers of sequences used

do provide a good picture of the performance of the algorithms, as they represent a large

variety of data sizes which could be used in practice.

4.4 Limitations

One limitation of these experiments is that all the machines are located on the same subnet,

allowing the use of UDP broadcasting to limit the bandwidth usage. This means that the

speed results cannot be extrapolated to machines that are not on the same subnet. This has

particular significance in grid computing where the machines making up the parallel system

are not on the same subnet. It also places a limit of 254 machines in the distributed system

as this is the maximum number of machines that can be placed on a single subnet.

The test hardware was chosen on the basis of its availability and has some characteristics

that make its results noisy. Part of the reason for this is that network response is often

unpredictable, so that two identical runs yield slightly different results. Another problem is

that the machines used are not homogeneous, so that the mix of processors used affects the

final result. An important factor to note here is that these characteristics do not affect the

sequential runs, and serve to slow down the parallel runs, with network performance either

at optimal or less than optimal, and the sequential runs performed on the fastest available

hardware. This meant that all noise resulted in an underestimation of the speedup possible

from this approach.

Although the parallel system uses a plugin system that can accommodate many different

measurement methods, the only plugin used implements the wcd algorithm for d2 cluster-

ing. This means that no claims can be made about the performance of the system when used

with other methods. This was considered to be outside the scope of this research, and can

still be tested in the future.

4.5 Conclusion

The experiments chosen give enough information to decide on the accuracy of the hypothe-

sis, giving us an indication of the suitability of a distributed system for EST Clustering. The
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results from these experiments, shown in the next chapter, must be recognized to be slightly

inaccurate due to the test setup, but can still be used to draw conclusions about the system.
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Chapter 5

Results

5.1 Introduction

The results presented in this chapter are those captured from running the sequential and par-

allel experiments outlined in the previous chapter. The results are presented in tabular form

as well as a series of graphs showing the speedups gained from using multiple machines as

opposed to a single machine. The results are then analysed.

5.2 Execution Times

Table 5.2 shows the time in minutes EST clustering took for data sizes of the indicated

sizes on the stated number of machines. A point to note here is that the results for 500000

sequences are incomplete. This is because the execution would take too long on small num-

bers of machines, based on an estimation resulting from the complexity of the algorithm.

The graphs in the next section present this information in graphical form, showing the

relationship between the execution times and number of machines used. When the number

of machines is greater than 1, the total machines used includes a server, with the rest of the

machines being client machines. So, when the number of machines is 101, this refers to

100 client machines.

Number of sequences used
Total Machines 10000 50000 100000 200000 300000 500000

1 9 652 2305 12127 35787 n/a
11 2 60 185 1061 3247 n/a
31 1 21 73 358 1080 n/a
51 1 13 48 213 642 1190
81 1 8 31 127 394 730

101 1 8 27 111 343 641

Table 5.1: Time in minutes for the various runs, rounded to the nearest minute
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Number of sequences used
Total Machines 10000 50000 100000 200000 300000

11 6.0 10.8 12.4 11.4 11.0
31 18.0 31.8 31.6 33.8 33.1
51 18.0 52.2 48.0 57.0 55.7
81 18.0 81.5 75.6 95.5 90.8

101 18,0 81.5 87.0 109.3 104.3

Table 5.2: Speedup

5.3 Discussion of Results

The graphs show the speedup relations for the different input sizes and numbers of ma-

chines. Figure 5.3 shows the speedup, which is calculated as the time taken by the sequen-

tial algorithm divided by the time taken by the parallel algorithm. It is presented for each of

the input sizes for which a sequential run was performed, since a sequential run is necessary

for us to calculate the speedup. It thus presents a graphical version of table 5.2, making

Figure 5.1: Speedup Graph

the information contained easier to observe. From figure 5.3 we can see that the speedup

increases with the number of machines, indicating that the distributed system is functioning

effectively.

This is not true of the experiments done for 10000 sequences. No incremental speedup

is gained for more than 31 machines, as the time taken for execution to complete is excep-
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tionally small. Once the costs of the comparisons are shared among the slaves, each slave

spends very little time on comparison calculation, with almost all of the total time spent

on inherently sequential operations like the distribution of the sequences to the slaves, the

setting up of the sockets and the file handling. This means that however small we make

the calculation time for the comparisons by using more machines, the time taken cannot be

lower than a particular threshold.

Theoretically, this makes sense as we have seen Amdahl’s Law in section 2.5.6 which

limits the execution time of the program to that of the operations that are inherently sequen-

tial. The cost which has remained regardless of the parallelisation is primarily the cost of

the inherently sequential operations, and a small cost for the sequence comparison.

For 50000 sequences, the same phenomenon occurs at 101 machines, where no gains

are made above those for 81 machines. Here, the time taken is much higher than at the point

where increasing the number of machines ceased to help the 10000 sequence execution. One

reason for this is that the inherently sequential portion of the algorithm has grown, with the

find-union data structure now performing more work. With the larger number of processors,

setting up the connections and performing the load-balancing operations is also slower.

For 100000 or more sequences, the speedup increases all the way to 100 processors.

This means that the scalability of the system is strong. All gains from parallelisation must

eventually taper off as the costs of coordination and communication begin to outweigh

the benefits of sharing the workload. This does begin to happen, as the gains are not as

impressive between 81 and 101 processors. Since there is still a significant speedup, we can

see that the scalability of the algorithm has not been fully tested.

Figure 5.2: Efficiency Graph

48



Figure 5.3 shows the speedup divided by the number of machines. This gives an indica-

tion of the efficiency of the parallelisation, with lower numbers indicating that an increase

in the number of processors does not result in as big a decrease in execution time as the

experiments with higher numbers of sequences.

For the experiments with 10000 sequences, the efficiency of the system reaches a peak

at 31 machines, after which the system becomes less efficient at sharing the work among

the machines. This has been discussed earlier, and is due to the sequential component of

the program being relatively large, so that the decrease in the execution time of the parallel

portion is insignificant by comparison. Another factor is the increase in the coordination

and communication overhead resulting from the use of multiple machines.

The curve for 100000 sequences shows a decreasing efficiency, so that every machine

added yields a smaller gain. This is because the overheads from communication are increas-

ing. Another factor is the master machine, which sends out batches of work. The smaller

these batches of work are, the more work the master has to do in comparison to the slaves.

This work also increases for a higher number of machines. At some point, the master be-

comes a bottleneck when it takes longer to send out a batch to every slave than those slaves

take to process them. This is open to some optimization by varying the batch sizes.

For data sets larger than 100000 sequences, the efficiency increases for a while, before

decreasing again. Part of this increase is due to the use of UDP broadcasting. Using this

technique keeps the cost of distributing the sequences close to constant, meaning that with

an increased number of processors, its proportion of the total execution time is decreasing.

Also, the master does not become a bottleneck until much later because the batch sizes are

larger for these large numbers of sequences.

5.4 Super-linear Speedup

Some of the experiments exhibit what is known as “super-linear speedup”. This means

that for � processors, their execution times have decreased to less than - � � of the original

time. This is theoretically impossible if the machine on which the sequential algorithm is

executed has enough memory, and the sequential algorithm is perfect.

One reason why this does not hold in practice is the use of tiered memory [Gustafson

1990]. Because of the parallelisation, there is very little data that needs to be used on

the master. The calculation of the comparisons requires quite a bit of memory, which in

the sequential implementation would push the find-union structure out of memory, thus

incurring a penalty when it is used again. In the parallel implementation, the master machine

does not have calculations to perform, thus making it less likely that calling the find-union

structure will cause misses in the cache.

Another reason for super-linear speedup could be inaccuracy in the results, as the test

system is not perfect. A characteristic of the machines used to run the experiments is that

they are multitasking systems with networking. This means that network requests could

have caused more context switches and processor sharing while the sequential algorithm
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was executing than while the distributed one was. The distributed system would also be

more tolerant of this, as a larger number of machines means a disruption to one causes a

smaller overall disruption than if the one machine running the sequential implementation

was interrupted.

This was minimized by performing the experiments during off-peak times, when the

hardware is normally not in use. It is thus unlikely that the sequential implementation was

interrupted.

5.5 Analysis

The results show that parallelisation, and distributed computing in particular, is useful for

solving the EST Clustering problem. The results show that a message passing system com-

municating over the high latency medium of a network can outperform a shared memory

system such as that used by Carpenter et al. [2002].

One possible reason for this is that message passing systems are more scalable than

shared memory systems, because the cost of ensuring memory consistency among the mul-

tiple processors eventually becomes too high [Ahamad et al. 1994].

While the latency of network communication is higher than that of memory, this was

effectively hidden for this problem because it does not have many data dependancies. This

lack of data dependancies means that there are few points where the completion of a task

requires information from other tasks. The only major communication that must be done

is thus communicating the results of calculations to the master machine. Since the next

calculation is not dependent on this task, the processor does not need to wait to make sure

the communication was succesful before continuing. This hides the latency of the network

communication.

The Carpenter et al. [2002] implementation also did not perform any load-balancing,

with a static division of work performed at the beginning of the processing. This meant that

processors would occasionally be idle if they were assigned small computations when other

processors were assigned larger ones.

The result achieved were also better than those obtained by Kalyanaraman et al. [2002].

A possible reason for this is that the Kalyanaraman et al. [2002] system made use of a

heuristic to generate promising pairs based on overlaps. This function was also parallelised,

with a possible pitfall being that the heuristic was not computationally intensive enough to

allow successful parallelisation.

The approach in Kalyanaraman et al. [2002] may also have incurred the overheads of

ensuring cache consistency as it was implemented on shared memory hardware.

The results achieved by this distributed system are very good in relation to previous

research. Some factors influencing this strong showing have been presented to show that

the results make sense in light of previous research.
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5.6 Limitations

The results that were observed do not allow us to determine the point at which the algorithm

stops yielding speedups for increases in the numbers of processors used. The scalability of

the algorithm has thus not been fully tested.

5.7 Conclusion

While there is some noise in the test data, the results indicate that the distributed system

performs effectively. The decrease in efficiency for 101 processors indicates that the system

is beginning to reach the limits of its scalability. This is a good result as our goal was

efficiency on up to 100 processors. Overall, the experiments yielded good results.
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Chapter 6

Conclusion

6.1 Introduction

This section summarizes the work that was done and states what conclusions were reached

in light of the results obtained. It then gives some suggestions for future work which needs

to be done in this area, showing the limitations of this research. Finally, the contribution of

the research is outlined.

6.2 Summary of research

The research aimed to investigate the usefulness of distributed memory parallelisation as

a technique to reduce the time taken to perform EST Clustering. In order to test this, a

distributed system was built to perform a particular type of EST Clustering, called

 �

clus-

tering. This system was then tested against an existing sequential implementation to inves-

tigate whether any gains were made. The system was also tested with differently sized input

sets because the difference in performance between the sequential and parallel implemen-

tations would change for different input sizes.

The input sizes tested were 10000, 50000, 100000, 200000, 300000 and 500000. The

numbers of slave machines used were 1, 10, 30, 50, 80 and 100. Including the master

machine used in the parallel experiments, the total numbers of machines used were 1, 11,

31, 51, 81 and 101. The success of the distributed system was then evaluated using the

timing data from these experiments.

6.3 Summary of results

The results showed that a distributed system can efficiently share the computational load

of EST Clustering, and can therefore provide a large speed increase. The research showed

linear and occasionally super-linear speedup. Because the test setup was slightly noisy, the

results have a slight error introduced.

The results showed that the distributed system performs more effectively for large input
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sets. This is useful because the distributed system is most likely to be used on large input

sets, as small ones can be handled quickly enough on the sequential implementation.

The results thus allowed us to accept the hypothesis, concluding that it was possible to

build a parallel algorithm to perform EST Clustering that would share the load efficiently

among multiple machines with separate memory.

6.4 Future Work

This work offers some opportunity for expansion, with various avenues which could be

explored to make this technique more useful and to test its effectiveness further.

6.4.1 Measurement Methods

The distributed system has been tested using

 �

clustering only, and as such, the results

can only be applied to this form of EST Clustering. Since the distributed system uses a

plugin system facilitating the use of different measurement methods, it would be interesting

to check whether similarly good results can be obtained using other measurement methods.

Other quadratic methods are particularly promising as they should yield similar results to

those obtained for

 �

.

Furthermore, the system can be used to more quickly and more exhaustively examine

the effectiveness of different sequence comparison methods in terms of their accuracy for

partitioning sets of sequences according to gene membership.

6.4.2 Optimizing

Some parameters of the system were not fully tested for performance. It is thus possible

that a different configuration will result in better performance, yielding larger speedups than

that of the current configuration.

Queuing batches on the slaves helps to hide latency and bandwidth problems. This is

because the slaves request work when their queues are not full rather than when they have

no more work to perform. This means that the delay between sending a request for work

and receipt of a batch of work is hidden because the slave continues working on the other

batches of work in its queue while waiting for the new batch. It is important to have a queue

that is large enough to accomplish this, so the slave is never idle. However, the drawback

of a large queue is that load-balancing becomes less efficient. This is because it is possible

that when all slaves exit, one slave which had been assigned what turned out to be time-

consuming batches may have a large amount of work in its queue while the other slaves are

idle. Because of this trade-off, this is a parameter which can affect the results. A queue size

of three batches was chosen for the experiments conducted in this research as the batches

are large enough to ensure that the processing of a batch takes longer than the receipt of

another.
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Another parameter which could be altered is the batching of slave requests for work.

This would reduce the network bandwidth required as multiple requests could be contained

in one message. Batching the slave requests involves delaying the sending of a request

until enough requests are received to make it worthwhile to send a batched request. This

is useful for small batch sizes coupled with large queue sizes. When we have small batch

sizes and large queue sizes, a large number of slave requests are issued from each slave,

making network usage a problem. Batching slave requests reduces this problem as multiple

requests are contained in a single message. This technique was not used in the experiments

conducted here as the batch sizes are large and the queues small.

6.4.3 Reliability

Reliability was not factored into the design of the distributed system. When the system

failed, the experiment involved was repeated. The only observed cause of failure was the

disappearance of a machine from the setup, which was caused by another user rebooting

the machine. There would be some costs involved in making the system reliable, which

would reduce the efficiency of the parallelisation, with these costs not being present in the

sequential version of the algorithm.

On failure of a particular slave, it is necessary for the master to recognise that a failure

has occurred and reassign the work that the failed slave should have done. The difficulty

here is that for the failure to be recognised within a reasonable time, we cannot rely on the

lack of results begin returned. This is because the batches of work assigned to slaves can

become so large that results might take a long time to be returned from working slaves. To

more quickly detect failures, the slaves could be forced to periodically send a message to

the master indicating that they are alive. This would increase network traffic and thereby

decrease the efficiency of the parallelisation.

The handling of a recognised failure would also require changes, as the current system

does not keep a record of what work a slave still has pending. The master only knows how

much work a particular slave has, not which particular batches make up that work. In order

to reassign this work on a slave failure, this must be stored. This would introduce extra

memory usage, but this would not be a large amount as the slaves do not keep many batches

in their queue. The master would also need to be able to mark a slave as failed so as to

ensure that no new work is assigned to it. This would not introduce any extra costs as it can

be done within the current system.

Since the communication between the master and slaves is accomplished using TCP, it

is reliable and needs no modification. The distribution of the sequences is accomplished by

employing UDP broadcasting, which is unreliable. Reliability has already been added on

top of this, so no modification is necessary here.
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6.4.4 Data Set Sizes

The experiments used data sets of up to 500000 sequences. The gain in speed allows us

to consider processing data sizes that we would not previously have been able to process.

The algorithm in question is quadratic, indicating that for a tenfold increase in the problem

size we would encounter a hundredfold increase in the execution time. Note that on 100

machines, we achieve a speedup of approximately 100. This means that using the system

on 100 machines we can cluster a data set of around 10 times the size we could on the

sequential algorithm in the same time.

This is similar to the indications of the results, with 50000 sequences taking 652 minutes

on a single processor and 500000 taking 641 minutes on 101 processors. Extrapolating this,

the time that 3000000 sequences would take to cluster on 101 processors can be estimated

at around 35787 minutes. Since batch sizes are related to the data set size, large data sets

induce better performance in the parallel algorithm than small ones do. This is because it

is easier to ensure that all machines are busy when there is more work to do, allowing us to

use larger initial batch sizes while still ensuring that there are no idle slaves.

The scalability of the algorithm is not a problem in terms of computational complexity,

but memory usage will become a problem for large data sets. Although the sequences

are compressed, they still require a large amount of space. Since ESTs are on average

around 500 characters long and the compression reduces this to 125 bytes per EST, 3000000

sequences would require 375MB of RAM for sequence storage alone. Other memory costs

are not large in relation to this and can thus be safely ignored. The problem here is that

all sequences must be transferred to all slaves, meaning that all slaves must have at least

375MB of RAM to store the sequences.

The system was designed to accommodate a number of sequences that could fit in the

memory of the slave machines and was tested on this basis. Should the sequences not fit

in main memory, they will be swapped in and out of main memory by the OS as they are

needed. This will impose a large speed penalty, hampering the performance of the system.

It is possible, however, to make different decisions which will not be as harsh on large

numbers of sequences. One possibility is to interlace the sequences any slave must store,

separating the slave machines into two groups. All machines in one group contain half the

sequences in the input set, with the machines in the other group all containing the other half.

Then, in order to perform a comparison between a sequence and all others, the sequence is

sent to one machine in each group, which then performs a comparison between it and every

sequence it stores.

6.4.5 Architectures

The distributed system built to test the hypothesis in this research used a master/slave archi-

tecture. This decision was taken because it simplified communication and coordination. It

is not, however, the only possible architecture for a distributed system, with different costs

and benefits associated with various architectures. These could be explored to determine
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whether another architecture yields a good result. A master/slave architecture introduces a

few problems because it is centralized. This means that there is a single point of failure, and

also the central point, the master, can become a performance bottleneck.

It is possible to avoid this entirely, using a system of cooperating peers. These proces-

sors would allocate work amongst themselves in a distributed manner. One way would be

for each processor to broadcast what work it decided to do, allowing all other processors to

mark that work as having been done. When a processor required more work, it would grab

some work that had not yet been done, and broadcast a message saying that it had chosen

to do this work. This process would continue until all work was done. This would create

the problem of constructing a unified set of resulting clusters from the disparate clusters

calculated by the various machines. A possible scheme to circumvent this is to have all

slaves broadcast merge requests so that the merge is performed on all clients. This would

increase the total amount of work and hence decrease efficiency. Another option is to have

the clusters combined once all the slaves have completed their clustering, computing com-

posite clustering from the individual clusters. This merging of the clusters can be explored

further in order to find efficient methods of doing this.

6.5 Contribution

The research showed that a distributed system can be used to dramatically reduce the time

needed to perform EST Clustering. This is a result that could immediately be adopted into

real-world systems. This would enable faster clustering and hence facilitate a better under-

standing of gene structure and operation. Because the system uses current measurement

methods and does not affect output, the interface presented to biologists is not different and

thus presents no barrier to adoption.

The research also showed that shared memory computers are not needed to perform

EST clustering, with the relatively inexpensive option of a network of sequential machines

yielding good performance. An important side effect of this is that it makes it cheaper

and therefore more attarctive to search for better comparison methods, and might make it

feasible to use more accurate measures that were previously ignored because they would

slow execution down.

This research has thus made a significant contribution to the field of EST Clustering.
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