
 
 

 

 

 

 

 

 

 

 

 

 

 

Towards a Robust, Universal Predictor of Gas Hydrate Equilibria through 

the means of a Deep Learning Regression 

 

Research Report  

 

Prepared by  

M. K. B. Landgrebe (Student Number: 704140) 

 

 

A research report submitted to the Faculty of Engineering and Built Environment, 

University of the Witwatersrand, Johannesburg, South Africa, in partial fulfilment of the 

requirements for the Degree of Master of Science in Engineering. 

 

Supervisor: Dr. DB Nkazi   

October, 2019 



 

Declaration 
 

 

I, M. Landgrebe (Student Number: 704140) student registered for Master of Science in 

Engineering (Chemical) in the year 2018 - 2019. I hereby declare the following: 

• I am aware that plagiarism (the use of someone else’s work without their permission 

and/or without acknowledging the original source) is wrong.   

• I confirm that the work submitted for assessment for the above course is my own 

unaided work except where I have explicitly indicated otherwise.  

• I have followed the required conventions in referencing the thoughts and ideas of 

others.  

• I understand that the University of the Witwatersrand may take disciplinary action 

against me if there is a belief that this is not my own unaided work or that I have failed 

to acknowledge the source of the ideas or words in my writing. 

 

 

Signature:       Date: October 15, 2019 

  



ii 
 

Acknowledgements 

My thanks to my research supervisor, Dr. D. Nkazi for his continuous input, feedback and 

guidance throughout my research, for the assistance with administrative matters, for 

encouraging me to pursue such a fascinating topic, and for the time taken to ensure my research 

was a success 

Acknowledgements to the University of the Witwatersrand, the school of Chemical and 

Metallurgical Engineering, and the staff of the Wartenweiler and Chamber of Mines 

Engineering libraries for their assistance in administrative matters, and research material 

requests. 

Special thanks to Dr. T.C.W. Landgrebe for the guidance, feedback and valuable insight into 

the machine learning and data gathering aspects of this research, and for recommending the 

software which facilitated the development of my model. 

Further thanks to the Python and Keras development teams, whose software greatly simplified 

the procedure of model development, and made my venture into machine learning a satisfying 

experience. 

 

  



iii 
 

Abstract 
 

Gas hydrate equilibria of natural gas mixtures has proven to be a highly non-linear, multimodal phenomenon, and 

extensive investment has been made over decades in order to understand and accurately predict natural gas hydrate 

equilibrium conditions. While most models applied toward predicting gas hydrate equilibria industrially are 

computerised thermodynamic models based on intrinsic molecular behaviour, these approaches are often limited 

in their capability to predict actual phenomena over a wide range of conditions due to the high degrees of non-

linearity and complexities resulting from other factors which prove difficult to model explicitly. In this research, 

an artificial neural network was developed using publicly available experimental gas hydrate equilibrium data. A 

regression was achieved by means of a deep-learning multi-layer perceptron consisting of three hidden layers with 

a high neuron count, and an output layer comprised of a single neuron, corresponding with the predicted 

equilibrium pressure. 9 model features are present in the input layer, consisting of the temperature and the molar 

fractions of methane, ethane, propane, iso-butane, n-butane, carbon dioxide, nitrogen and a lumped fraction of 

organic molecules consisting of at least five carbon atoms. Models have been evaluated according to the ability 

to predict a wide range of data, multicomponent prediction accuracy, and dependency on individual sources of 

data. 670 multicomponent experimental equilibrium data samples have been obtained from literature. Due to the 

limited amount of multicomponent equilibrium data published, the incorporation of pure and binary methane 

mixtures into a second dataset including multicomponent data has proven imperative to achieve the best possible 

model. The complete dataset consists of 1209 equilibrium data samples. To ensure multicomponent data is 

accurately modelled, several models have been developed using both datasets to prove that the pure and binary 

inclusive dataset models do not simply inflate results through inclusion of easily predicted data. Regression 

scoring was assessed using the coefficient of determination, the R2 score. Cross-validation and hold-out validation 

have been employed in conjunction to assess the model’s ability to predict unseen data, while facilitating 

parameter optimization and yielding the bias and variance associated with the model. Cross-validation has been 

implemented by means of 10-fold validation, with a randomized 70%-30% train-test split performed to determine 

the test indices for each fold. Hold-out validation has been achieved by means of a 10% stratified-split, whereby 

the proportion of data from each independent source is held approximately constant across training and hold-out 

validation sets with the purpose of ensuring a wide range of conditions are tested. A cross validation R2 score of 

0.9860 is achieved with a standard deviation of 0.0035. Hold-out validation yields an R2 of 0.9926. Results 

indicate a sufficiently accurate model has been achieved with a low enough variance to consider the model 

universal over the range of equilibrium data included in this investigation. The dependency on individual 

experimental data sources is of concern due to the limited amount of multicomponent equilibrium data available, 

and the age of equilibrium measurement practices for many sources and time frames associated with hydrate 

equilibrium measurements. However, the inclusion of pure methane and methane binary compounds does assist 

in reducing the susceptibility of the model to these errors. Dependency on individual data sources has been 

assessed by means of grouped cross-validation being performed on neural network models. Grouping results do 

indicate a lack of independently obtained data covering certain ranges of conditions, however binary inclusive 

models are shown to present a damping effect on the magnitude of experimental or measurement error on the 

model at large. Due to a lack of independent experimental studies covering a wide range of conditions, hydrogen 

sulphide could not be included as a feature in model development. As such, the developed model is noted to be 

applicable to sweet natural gas flow systems, where hydrate structures I or II are exhibited. 
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CHAPTER 1: BACKGROUND AND MOTIVATION 

1.1 The Role of Natural Gas in South Africa 

Some may question the viability of research in the field of natural gas in a world where 

increasing focus is being placed upon meeting the energy demands of nations through means 

of green energy. This concern is valid, with the threats of climate change becoming 

increasingly prevalent, conducting research into hydrocarbon extraction and production seems 

redundant due to the burning of natural gas leading to more carbon emissions. This argument 

however, does not account for the immediate energy grid strain affecting developing economies 

such as South Africa. While the goal is to achieve a significant proportion of energy being 

generated by renewable means in South Africa by 2030 (IRP, 2010), the time-scale associated 

with these projects and current strain on the energy grid make large scale non-renewable 

projects with a high power output worth examining. Investment in renewables such as solar 

and wind are capital intensive and can thus take many years to replace what a large coal power 

station could supply. As such, there is a demand for a means to rapidly supply energy while 

the grid shifts toward a renewable base without producing carbon emissions at a similar 

magnitude to coal combustion. While natural gas still emits carbon dioxide in addition to other 

atmospheric pollutants, combustion of natural gas produces 50 to 60% of the carbon dioxide 

produced by coal, and emits significantly less sulphur and particulate matter (Union of 

Concerned Scientists, 2019).  Combined with heat recovery systems such as those of Combined 

Cycle Gas Turbines (CCGT), which boast high thermal efficiencies through combining the 

generation of energy through hydrocarbon combustion with a heat recovery loop which 

generates steam from waste heat to run a separate turbine, natural gas can be seen that a highly 

efficient means of generating power compared to coal. Gas turbines additionally provide the 

great benefit of flexibility, whereby the unit may be activated solely during peak demand 

periods, then shut off once more (U.S. Energy Information Administration, 2013). This factor 

proves essential to countries with a struggling power grid, such as South Africa, which instead 

currently fires carbon unfriendly diesel turbines and energy intensive pumped storage schemes 

to supplement peak demand. Finally, an additional benefit of investing in gas infrastructure is 

the potential for a gas market, serving to lower energy consumption while developing a 

substantial industry. Further details on the strategic planning for a gas infrastructure in South 

Africa is detailed in the Gas Utilization Master Plan (GUMP) (Strategic Energy Plan 2015-

2020). Through domestic use of gas, electricity consumption is reduced. While carbon 

emissions are still produced, they are significantly lower than that of the coal plant generating 
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power. These factors illustrate the utility of natural gas serving as a means to transition an 

energy grid towards renewable energy, developing a subsequent industry, while still meeting 

energy demands and lowering carbon dioxide emissions. As such, gas hydrate prediction, a 

significant challenge of natural gas production and distribution will now be discussed, and this 

research aims to present a solution that is based on experimental data, rather than intrinsic 

statistical thermodynamics. 

1.2 Introduction 

Gas hydrates, or clathrate hydrates, are solid, crystalline masses which form as a result of a 

guest molecule stabilizing a water lattice. These hydrates will form when sufficient water and 

an appropriate guest molecule are present at the conditions of system temperature being lower 

than the dew point of the water, and the pressure of the system being high enough for hydrate 

formation to be initiated (GPSA, 2004). The water lattice may be stabilized by a guest molecule 

which may be a low carbon number organic molecule or an inorganic gas with a small 

molecular diameter. While the hydrates may appear crystalline in nature, the structure of gas 

hydrates varies considerably from ice formed by pure water. The structure by which hydrate 

lattices arrange themselves may differ depending on the conditions and composition of the gas 

phase, and several different structures have been identified. While several structures have been 

identified for certain hydrates, natural gas hydrates have been found to conform to three distinct 

hydrate structures: sI, sII & sH (Tohidi et al., 2001). The respective components of natural gas 

additionally do not form other structures in isolation when under normal conditions. These 

structures are achieved through hydrogen bonds between the encaging water molecules, and 

are stabilized through interactions between guest and encaging water molecules (Hawtin et al., 

2008; Rodger, 1990). 

The formation of gas hydrates is of considerable interest in the chemical and petroleum 

industry, as the formation of gas hydrates often results in flow interruptions leading to 

additional costs of operation, damage to equipment and possibly leading to hazardous 

conditions for personnel. As such, a significant amount of research has been directed towards 

the flow assurance problems resulting from gas hydrates, notably towards predicting the 

conditions at which these hydrates are likely stable (Shahnazar & Hasan, 2014). Gas hydrates 

are well documented as forming in transit pipelines of reservoir fluids, including both liquid 

and gas hydrocarbon flows. The conditions at which hydrates are most likely to be encountered 
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at high pressure and low temperature conditions (Rajnauth et al., 2012), which are often 

encountered when dealing with offshore wells and pipelines (Makogon, 1997).  

The structure of gas hydrates is responsible for much of the complexities associated with 

modelling gas hydrate phenomena. Natural gases have been identified as assuming three 

distinct hydrate structures: the cubic sI, and sII structures, and the hexagonal sH (Sloan, 1998). 

These different structures exhibit different numbers of cages present, and the sizes of these 

cages. The size of cages plays a vital role in determining which guest molecules may stabilize 

the structure, for instance while the largest cage diameter of sI hydrates is too small to 

accommodate molecules such as iso-butane, iso-butane forms sII hydrates, being present in the 

large cages of this structure (Sloan & Koh, 2007). The difference between hydrate structures 

is significant from a thermodynamic standpoint, as different hydrates may form at different 

conditions. GPSA (2004) attributes the hydrate structure as significantly impacting the hydrate 

formation temperature and pressure. As such, any thermodynamic models need to account for 

the hydrate structure, which poses a significant challenge considering natural gas forms three 

different structures. The systems being examined in this research focus on the formation of gas 

hydrates from reservoir fluids in production tubing, flow-lines to surface facilities and 

pipelines. Based on these constraints, it is possible to further narrow down the range of hydrate 

structures relevant to an equilibrium condition model operating the expected conditions of 

these flow-lines. Tohidi et al.  (2001) investigated the occurrence of structure H hydrates in 

reservoir fluids including natural gas, and found that structure H hydrates are unlikely to form 

when operating outside the hydrate stability region, while identifying structure II hydrates as 

the dominant structure in reservoir fluid hydrate formation. Tohidi et al. (2001) further claims 

that sI hydrates are more likely to be stable than sH hydrates. GPSA (2004) notes that gas 

mixtures are likely to form sII hydrates. Natural gas mixtures are more likely to form sII 

hydrates as molecules above a certain diameter only can fit into the large cages of sII hydrates, 

and n-butane being too large to even form sII hydrates on its own, requiring a smaller molecule 

such as methane to assist in fitting into the large cage of sII (Sloan & Koh, 2007). Overall it is 

thus possible to conclude that the model developed to predict equilibrium conditions for natural 

gas flow within flow lines at normal operating ranges need only consider gas mixtures and 

conditions forming sI and sII hydrates. Note that structure H natural gas hydrates may be 

encountered outside of transit lines and reservoirs, and thus further consideration is required 

when examining naturally occurring hydrates or systems under abnormally high pressures. 
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Furthermore, as will be discussed, operating well within the hydrate stability zone may lead to 

structure H hydrate formation (Tohidi et al., 2001). 

Hydrate formation is often considered an unwanted process, however due to the volatile and 

highly flammable nature of natural gas, hydrates have been viewed as a safer means of storing 

and transporting natural gas, or as an energy source when considering naturally occurring 

hydrates offshore or in reservoirs. Veluswamy et al. (2018) notes artificially solidified natural 

gas hydrates as the safest means of storing and transporting natural gas, due to lowered risk of 

ignition or explosion, and thus additionally serves to increase the attractiveness of clathrate 

hydrates for long term storage of natural gas. Converting natural gas into hydrates would prove 

particularly useful for offshore gas production which occurs far from the shore or from a 

pipeline, thus allowing safer storage of natural gas on platform, and safer transportation of 

natural gas to its destination. This approach would contrast current Liquefied Natural Gas 

(LNG) approaches which seek to transport natural gas as a liquid using specifically designed 

tankers and storage facilities, by instead converting natural gas into solid hydrate crystals. 

While technological limitations have largely prevented significant application of converting 

natural gases into hydrates for transportation and storage, increasing interest has arisen over 

the potential use of naturally occurring gas hydrates and artificially produced hydrates for 

storing and transporting natural gas, partially driven due to several countries attempting to 

reduce carbon emissions or increase energy production by adopting gas as a cleaner fossil fuel 

and increasing the share of gas in the generation of electricity (Chong et al., 2016; Veluswamy 

et al., 2018). While a considerable number of publications have been conducted on the 

economic viability of implementing large-scale gas hydrate conversion, transportation and 

storage, Veluswamy et al. (2018) in a review reports that a significant degree of conflicting 

studies are present, and that further investigation into the economic viability of storing and 

transporting hydrates as sII rather than sI hydrates is required, as most studies are  based on 

pure methane sI hydrates rather than natural gas sII hydrates. Naturally occurring hydrates 

found on the sea-floor or within reservoirs have been identified as an extremely large potential 

source of carbon-based energy (Chong et al., 2016). Makogon et al. (2007) details that naturally 

occurring gas hydrates can be commercially exploited to yield significantly more energy than 

consumed during extraction, pressurization and transportation depending on the composition 

of the hydrate and hydrate concentration within the bed being developed, thus highlighting the 

potential of naturally occurring gas hydrates as an energy source. Much research has been 

conducted on the properties, geographic distribution and potential for use as an energy source 
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of naturally occurring hydrates. Chong et al. (2016) has conducted a recent review of the state 

of naturally occurring clathrate hydrate developments. 

1.3 Effect of Hydrates and Safety Concerns 

The presence of hydrate plugs in a pipeline poses serious risks to operational and potentially 

personnel safety. These plugs can completely block flow through a pipeline, with the 

subsequent blockage halting production and requiring a pipeline shutdown to remove the plug, 

thus resulting in financial losses (Perrin et al., 2013). In addition to production losses, halting 

the flow of a pipeline can further compound hydrate problems and requires immediate removal 

of the plug, which can in itself pose serious hazards. Common means of plug removal include 

depressurizing both ends of the pipeline so as to dissociate hydrates (Austvik et al., 2000). 

During depressurization, as hydrate plugs begin to dissociate from the outer radius, they may 

separate from the pipe wall and travel downstream as a solid mass of significant density, thus 

potentially serving as a projectile which can rupture the pipeline when striking obstructions or 

bends in piping, or cause a rupture downstream due to dense gas pockets resulting from the 

plug’s momentum (Sloan & Koh, 2007). Other techniques for removal of hydrates have been 

developed such as chemical injection and external heating to dissolve hydrates (Austvik et al., 

2000; Turner et al., 2014), however these are also subject to various challenges. Thus, caution 

must be exercised when removing hydrate plugs, which can take extended periods of time and 

can incur significant costs. Due to the difficulties associated with removing hydrate plugs, 

avoiding the presence of hydrates entirely or significantly slowing the rate at which hydrate 

plugs form has become a highly popular means of managing gas hydrates, particularly for deep 

offshore wells where operating conditions are well within the hydrate stability zone. 

1.4 Hydrate Formation Mechanism 

The formation of hydrates is prevalent throughout the production of offshore reservoirs, 

affecting the production well, surface equipment, transit lines from well to surface and 

pipelines. Within reservoirs undergoing production or drilling, hydrates are known to form in 

oil wells as well as gas wells through water, which enters the production zone during drilling 

(Makogon, 1997). As most shallow reservoirs with favourable depth and temperatures have 

been produced, offshore production is trending towards deeper wells and arctic reservoirs 

where adverse conditions leading to hydrate formation are likely to be encountered (Makogon, 

1997; Sloan & Koh, 2007). As such, there is an increased likelihood that the presence of gas 

hydrates will be a significant factor when considering the profitability of a potential reservoir. 
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This increased prevalence of hydrates has led to the need to establish effective means of 

controlling the rate at which hydrates form, or preventing the formation entirely. 

While the exact mechanism for how hydrate nucleation and growth occur is still debated, with 

competing nucleation hypotheses discussed in Perrin et al. (2013), it is well established that in 

order for hydrate masses to form, hydrate crystal nucleation and growth must occur (Perrin et 

al., 2013). Following nucleation and growth, hydrate plugs may form through the 

agglomeration of smaller hydrate particles (Hawtin et al., 2008, Zerpa, 2013). As the focus of 

this research is the formation of hydrates in flow lines from natural gas wells, the case of 

hydrate formation in gas dominated pipelines is examined. While a detailed description for 

hydrate formation for both gas-water and multiphase systems may be found in Zerpa (2013), a 

brief description of hydrate formation in gas flow pipelines is provided to facilitate a discussion 

on the types of hydrate inhibition commonly applied in industry. Hydrates may initially 

nucleate and grow either at the pipe wall if the temperature at the wall is lower than that of the 

bulk fluid, and where defects in the surface of the wall lead to sites promoting hydrate 

formation (Bassani et al., 2017). The likelihood of the wall temperature is lower than that of 

the bulk flow is especially plausible for deep water pipelines, where line burial and insulation 

may prove insufficient due to low ambient temperatures, thus leading to large differentials in 

temperature across the inner radius of a pipe due to radial heat transfer. Hydrates may 

alternatively form at the gas-water interface as a dispersion where sufficient contact between 

phases is present (Bassani et al., 2017). Following hydrate particle nucleation and growth, 

formed hydrates may agglomerate to form a plug, which may be identified through a highly 

fluctuating pressure drop (Zerpa, 2013). Having nucleated and grown, hydrates may break from 

the wall and enter the fluid phase, and thus may agglomerate further downstream and result in 

hydrate plugs forming downstream from the site of hydrate nucleation, possibly even locations 

outside the expected regions of hydrate build up (Sloan & Koh, 2007).  Having discussed how 

hydrate plugs form, it is now possible to discuss means of preventing or controlling the 

unwanted formation of hydrates. 

1.5 Hydrate Control 

Several means of preventing formation or controlling the rate of formation have been 

established. These approaches range from mechanical means such as insulation and routine 

pipe cleaning, to the addition of chemicals into the produced reservoir fluids which prevent or 

alter the mechanism of hydrate formation. Before examining the chemical means of hydrate 
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control, it is worth discussing factors which promote hydrate formation, and how these can be 

managed. Naturally, the presence of water is required to facilitate the formation of hydrates. 

Water enters pipelines through construction of the line and condensation of water dissolved in 

the reservoir fluid during pipeline stoppages, whereby the temperature profile in the pipeline 

begins to tend toward ambient conditions leading to condensation, furthermore, stoppages 

allow for adhesive bonds to form between the pipe and hydrate which would have been carried 

by the flowing phase (Makogon, 1997). Makogon (1997) attributes water in the pipeline 

tending to accumulate to form stagnant zones in the lower sections of an elevation in the 

pipeline as the main cause for the agglomeration of hydrate plugs, however these stagnant 

zones may be removed from the pipeline by means of pigging, whereby a pigging piston passed 

through removes water from the pipeline, provided this is physically possible due to pipeline 

structure. However, it is often not possible to avoid the presence of water in the pipeline, and 

eliminating water from the line may result in costly stoppages which may lead to further 

hydrate formation. Aside from managing the water content inside the pipeline where possible, 

the risk of hydrate formation may be reduced by burying and insulating the pipeline. Through 

burial and insulation, the heat transferred from the fluid phase into the ambient surroundings is 

significantly lowered. As such, this approach can be taken in an attempt to prevent the fluid 

phase of the pipeline from dropping below the hydrate equilibrium temperature into the zone 

in which hydrates are stable. In addition to this, electrical heating can be applied to sections of 

the pipeline, thus further increasing the fluid phase temperature and reducing the required 

concentration of inhibitors (Turner et al., 2014). Further consideration additionally needs to be 

given to the ambient temperature of the region through which the pipeline is laid, which greatly 

affects the hydrate equilibrium temperature. As such, pipeline insulation is often added to slow 

the rate of heat transfer between pipe contents and the sea floor if the pipe is buried, or the 

surrounding sea water if left exposed. The knowledge of this heat transfer is an essential quality 

used in determining the driving force of hydrate formation in addition to predicting the 

equilibrium conditions, however complexity arises as a result of seasonal variations in ambient 

conditions (Makogon, 1997), and must be considered when establishing a hydrate control 

strategy. As drilling operations move into deeper and colder waters however, these approaches 

may not be enough to prevent or reduce hydrate formation to an acceptable extent from an 

economic standpoint. As ambient conditions grow colder and pressures increase, the costs of 

adequate insulation may prove unacceptable. Furthermore, line burial may not be possible for 

sections of a pipeline such as vertical lines to the surface or pipeline crossings on the sea-floor. 

As such, chemical means of managing and preventing hydrates are popular, with the use of 



Page | 8  
 

thermodynamic inhibitors such as methanol are widespread throughout the industry, and are 

used for preventing hydrate formation inside wells, production lines, surface facilities and 

pipelines. These approaches are not mutually exclusive, chemical inhibitors are usually applied 

in conjunction with pipeline insulation and burial.  

Three types of chemical inhibitors are currently used in industry: thermodynamic inhibitors, 

kinetic inhibitors and anti-agglomerants. Thermodynamic inhibitors such as methanol and 

ethylene glycols serve to reduce the hydrate equilibrium temperature, thus allowing the fluid 

phase of the flow line to operate at low temperatures without significant risk of hydrate 

formation occurring (GPSA, 2004). Thermodynamic inhibitors operate independently of 

formation kinetics by preventing the formation of hydrates (Perrin et al., 2013). These 

inhibitors function by lowering the temperature required for hydrate formation for a fluid phase 

of a specific pressure and composition. When using thermodynamic inhibitors, hydrate 

formation is completely unwanted, and the flow line is to be operated at temperature and 

pressure conditions outside of the hydrate stability zone. The use of thermodynamic inhibitors 

is not without disadvantages; these inhibitors do require addition into the fluid phase in large 

concentrations, often as high as 50%, and requires separation from the product, thus requiring 

separation equipment to handle this high volume of inhibitors which is often added 

continuously and thus proving costly (GPSA, 2004). Methods of thermodynamic inhibition 

when applied to deep or cold-water drilling so as to prevent hydrate formation may prove 

highly costly, so much so that the possibility of controlling the rate of hydrate formation rather 

than prevention becomes economically viable (Sloan & Koh, 2007). A separate class of 

inhibitors termed low dosage hydrate inhibitors (LDHIs) has been developed for this purpose, 

to control hydrate formation rather than prevent it.  These LDHIs are branched into two 

categories: kinetic inhibitors and anti-agglomerants. These inhibitors prove more suited to 

production well within the hydrate stability zone, as the quantity of inhibitors added into the 

pipeline proves far lower than that of thermodynamic inhibition, thus facilitating lower costs 

of hydrate control in addition to capital savings through reduced inhibitor storage requirements 

(Perrin et al., 2013; Hawtin et al., 2008; GPSA, 2004). As opposed to thermodynamic inhibitors 

which prevent hydrate formation, kinetic inhibitors act in a dynamic manner, allowing hydrate 

nucleation while slowing the growth of nucleated hydrates, thus delaying plug formation. 

(GPSA, 2004). While using LDHIs, further consideration is required to account for expected 

stoppages in production, whereby the contents of the pipeline cease to flow and the nucleated 

hydrates are given greater time to grow and pipeline contents experience cooling towards 
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ambient conditions, which may result in the maximum subcooling tolerated by the inhibitor 

being exceeded (Sloan & Koh, 2007). Unlike kinetic inhibitors which slow the rate of hydrate 

formation, anti-agglomerants allow hydrates to form, while dispersing and transporting these 

hydrates downstream with the pipeline flow, thus limiting hydrate particle size without slowing 

formation rate (Frostman, 2000). Through preventing hydrates from aggregating downstream 

of the site of hydrate growth, plug formation is avoided. Instead, hydrate particles travel 

downstream and are later removed. Unlike thermodynamic or kinetic inhibitors which may 

operate with or without liquid hydrocarbons present in the pipeline, anti-agglomerants require 

the presence of liquid phase hydrocarbons (Perrin et al., 2013). As gas-phase wells and flow-

lines are the focus of this research, the presence of a significant liquid flow in the pipeline 

cannot be ensured, as such this is not recommended as an inhibition strategy for use with the 

model developed in this research. 

Hydrate control is not exclusive to flow-lines and surface equipment. Control of hydrates which 

form in reservoirs being drilled or produced is performed by means of adding inhibitors to 

drilling fluids to prevent formation in the production lines; additionally, external heating could 

be applied by means of heated fluids such that the temperature of the line exceeds hydrate 

equilibria (Makogon, 1997). Through use of thermodynamic inhibitors, the well can be 

operated outside the hydrate stability zone (Makogon, 1997). 

Overall this short review of hydrate control methods is provided to illustrate that the procedure 

for preventing or controlling hydrate formation is a highly varied process with several options 

available to achieve the desired hydrate control strategy objectives. Furthermore, various 

control strategies may incur large capital and operational costs (GPSA, 2004; Perrin et al., 

2013). As such, due to the multiple competing strategies of hydrate control it is essential to 

have available accurate information regarding the hydrate equilibrium conditions, which are 

central to determining whether hydrates will form or the driving force promoting hydrate 

growth. Accurate predictions could allow for lower margins of heating above the predicted 

equilibrium temperature due to uncertainty in predicted results being reduced, and similarly 

would allow higher operating pressure for flow-lines. Furthermore, this would also prove 

useful for kinetic models requiring equilibrium conditions by once more reducing uncertainty 

for subsequent calculations and thus the need to significantly adjust model results to account 

for this. As will be discussed in detail in the following sections, a significant number of models 

have been developed which determine the conditions of hydrate formation when provided with 

the composition of the fluid and either the temperature or pressure of said fluid. As the field of 
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gas hydrate research has an extensive history, many different classes of model have been 

created, with the use of models based on statistical thermodynamics widespread throughout the 

industry. Over time, the accuracy of these models has greatly increased. As an increasingly 

wide range of conditions and gas compositions are likely to be encountered with wells being 

developed in deeper and colder waters, it is required for general hydrate prediction models to 

cover a universal range of conditions. This becomes challenging due to the highly complex 

nature of hydrate formation, particularly considering multicomponent systems such as natural 

gas, where a great many factors influence hydrate equilibria. Recently, new methodologies for 

developing hydrate equilibrium prediction models have been established with the advent of 

machine learning becoming increasingly viable. Of particular note has been the popularization 

of Artificial Neural Networks, which can be used to provide a continuous real number output 

through means of a regression. 

Thus, it can be seen that there is a need for accurate models capable of predicting the conditions 

of hydrate equilibria. A review of several current models is provided later in this report. This 

research aims to develop a neural network capable of predicting the hydrate equilibrium 

pressure, trained and tested on datasets comprised of equilibrium points found from published 

experimental studies on gas hydrates. A data sampling campaign has been undertaken with the 

obtaining of natural gas or synthetic natural gas data prioritised. An emphasis is placed on 

ensuring the model performs accurately when specifically considering multicomponent gases, 

so as to increase confidence that the model is applicable to natural gas. 

1.6 Gas Hydrate Equilibria and the Metastability Effect 

Before discussing the model development, it is essential to clarify exactly what prediction the 

model is making, and why the predicted quality proves useful in predicting, preventing and 

possibly treating gas hydrate formation. The final goal of all models developed in this research, 

is the prediction of the pressure under which gas hydrate equilibria will occur for gas of a 

certain molar composition, at a certain temperature. The nature of this equilibrium point is 

complex, and elaboration on this occurrence is worthwhile as equilibrium data in this 

investigation is taken from a wide range of experimental studies, thus resulting in the definition 

of hydrate equilibrium having significant importance to this study. 

While it is clear that gas hydrates will not form before certain temperature and pressure 

conditions are met, hydrate formation for mixtures of components has proven to be a complex 

issue. A significant amount of research has been performed on the nature of hydrate formation 
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thermodynamics and kinetics. While predicting the conditions of hydrate equilibria yields a 

definitive result, the significance of this point requires elaboration. Unlike a saturation curve, 

where either side of the curve represents 100% of one phase, the equilibrium curve of gas 

hydrates for mixed components does not exactly exhibit this behaviour due to the metastability 

effect of the system, referring to the persistence of hydrates outside of the conditions where 

hydrates are thermodynamically stable (Ward, 2015). This metastability effect is prevalent for 

systems containing propane, an sII hydrate former which is prevalent in natural gas systems 

(Ward, 2015). Many publications in the field of predicting gas hydrate equilibrium conditions 

use the terms of formation and equilibrium interchangeably, which can result in a degree of 

confusion as to what state the model is actually predicting. As the purpose of this research is 

to predict the equilibrium conditions for a given gas mixture, it is worth further elaborating on 

the nature of hydrate equilibria so as to dispel uncertainty over the definition of the equilibrium 

point, and to provide certainty that a useful quality is being predicted by the model. The 

discussion which follows is based on existing methodologies of obtaining isochoric gas hydrate 

equilibrium measurements, with experimental methodologies presented in Stringari et al. 

(2014) and Ward (2015).  

In order to illustrate the significance of the equilibrium conditions for a mixed gas hydrate, 

consider Figure 1.1, which has been drafted to detail the overall concept of hydrate stability 

through investigating an isochoric system which forms then dissociates hydrates. Figure 1.1 

represents a simplification of isochoric experimental observations for hydrate formation in 

isochoric, closed conditions, further details of the experimental approach itself can be found in 

Stringari et al. (2014) and Ward (2015). Note that other experimental approaches aside from 

isochoric methods have been applied, such as the isothermal pressure search method (Bishnoi 

& Dholabhai, 1999). Assuming natural gas is subject to temperature and pressure 

measurements within a closed system of constant volume with the purpose of determining 

hydrate equilibrium conditions, point (i) in Figure 1.1 represents the initial temperature and 

pressure conditions of the gas in the experimental apparatus. In order to form hydrates, the gas 

is cooled from temperature (i) to (ii). At conditions (ii), the metastability limit of the gas is 

reached, and a large quantity of hydrates rapidly form, with the pressure of the system dropping 

to point (iii) due to the gas in the isochoric system becoming encaged (Sloan & Koh, 2007). 

Having completely formed all hydrates the system can accommodate, the system is heated to 

(iv), after which the system is gradually heated in a stepwise manner (Stringari et al., 2014), 

and hydrate dissociation begins to occur. The dissociation is marked by an increase in pressure, 
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indicating that some of the encaged molecules have been released as gases. Further heating is 

accompanied by a sharp gradient change in the pressure-temperature curve, with complete 

dissociation of hydrates is marked by the point at which the last hydrate crystal dissociates 

(Stringari et al., 2014), corresponding with (v) in Figure 1.1. The pressure gradient at total 

dissociation follows approximately the same gradient as the gas prior to hydrate formation. (v) 

is defined as the equilibrium point of the gas mixture (Ward, 2015). Thus, it can be seen that 

while hydrate equilibrium occurs at point (v), for a system at initial conditions (i) experiencing 

cooling to (v), hydrate formation is not likely to occur. Sloan & Koh (2007) attributes this 

phenomenon to the metastability of the system, and comments that during the cooling from 

point (i) to (ii), no hydrates are observed after extended time periods before the metastability 

limit (ii) is reached.  

In order to ensure more replicable and meaningful measurements, Sloan & Koh (2007) 

recommends defining the hydrate equilibrium point as the conditions required for complete 

dissociation of hydrates to occur. Measurements of the equilibrium point, upon which the 

models in this investigation are based, are far more reproducible than those of formation, be 

they at nucleation or the metastability limit. While measurements of the equilibrium point may 

also be subject to metastability should the heating between stages (iv) and (v) in Figure 1.1 

occur too rapidly, a low rate of heating during dissociation will overcome metastability and 

ensure a minimized error of the dissociation point measurement, at the cost of increasing the 

time taken to perform experimental measurements (Tohidi et al., 2000). Failure to account for 

the metastability effect during heating may lead to significant error (Ward, 2015). Furthermore, 

hydrate formation may occur in pipelines in a different manner compared with experimental 

data obtained from pressurized reactor due to the velocity of the contents within the pipeline, 

or the presence of hydrate seed crystals (Ahmed & McKinney, 2011), which Ikoku (1980) lists 

as a hydrate promoting factor. As such, to prevent hydrates forming prior to the metastability 

limit being reached, adequately accounting for metastability and ensuring no seed crystals are 

present is essential. This factor further illustrates the utility of a dissociation point based 

definition of hydrate equilibria. Additionally, the memory effect present in systems which 

previously contained hydrates could result in a narrowed metastability range (Sloan & Koh, 

2007). Wu & Zhang (2010) determined that residual hydrate structures following dissociation, 

could act as seeds for subsequent hydrate formation, thus reducing the time for hydrate 

nucleation to occur. This memory effect is of particular importance to the experimental studies 

from which data was sampled to develop the models which are the focus of this research. There 
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is no way of knowing as to whether after successive experiments using the same apparatus and 

initial sample, sufficient time or heating was given between experiments to account for the 

persistence of a memory effect. Furthermore, use of formation metrics would involve the need 

to specify whether the measured point took place at nucleation or the metastability limit, both 

of which are subject to the host of influencing factors discussed. It can thus be seen that 

ensuring replicable results when using hydrate formation metrics proves highly challenging, 

and poses a significant potential source of error to data sampling campaigns requiring a wide 

range of data. Defining the equilibrium point as the conditions at which formed hydrates 

completely dissociate involves far fewer degrees of variability and influencing factors, and is 

well suited to the development of models designed to operate over a universal range of 

conditions. 

Overall, the equilibrium curve for a gas of a given composition yields the boundary between 

the region where hydrates will not occur, and the region wherein formed hydrates are stable. 

This proves a useful quality, as thermodynamic approaches to avoiding hydrate formation in 

natural gas systems involve operating outside the zone wherein hydrates are stable (Ahmed & 

McKinney, 2011). Through equilibrium measurements being replicable and possessing a set 

definition, it is possible to sample a large quantity of experimental data from literature for the 

purpose of model development. 

Figure 1.1: Isochoric Hydrate Equilibrium Measurement. Discussion and diagram influenced by the works of 

Stringari et al. (2014), Sloan & Koh (2007) and Ward (2015) 



Page | 14  
 

CHAPTER 2: CURRENT AND HISTORICAL MEANS OF PREDICTING GAS 

HYDRATE EQUILIBRIA 

Due to the costs incurred by hydrate formation, significant incentives into the research of gas 

hydrates are present through practical application being achievable with significant results. A 

significant number of models designed to predict gas hydrate equilibrium conditions have been 

developed, many of which are models used by corporations with specific criteria to suit the 

range of conditions dealt with. Predictive models to date have been developed using a wide 

range of approaches. Amongst the early models to prove sufficiently accurate to be used was 

the Katz (1945) gas gravity plot, which involves graphically determining the expected 

formation temperature or pressure by providing the gas gravity of the sample gas being 

investigated. In this case, determining the gas gravity requires the molecular weight of the 

sample being investigated, and hence the composition of the gas. These gravity charts have 

been developed based on experimental data and calculations (Shahnazar & Hasan, 2014). Sloan 

& Koh (2007) details that since accurate hydrate prediction models formulated and tested on a 

wide range of data have been developed, gas gravity methods are often used as a preliminary 

estimate of the equilibrium conditions due to the ease of obtaining a prediction. Shahnazar & 

Hasan (2014) details the shortcomings of specific K-factor models, which are also graph-based 

hydrate predictors. GPSA (2004) recommends not using the Katz gravity charts for gases with 

significant quantities of carbon dioxide or hydrogen sulphide, but states that the method yields 

potentially acceptable results for systems excluding hydrogen sulphide. Furthermore, GPSA 

(2004) does not recommend using this method for calculating hydrate formation conditions 

above approximately 10 MPa. 

Amongst the models aiming to yield more reliable results than the gas gravity model, are 

thermodynamic models. One of the first successful thermodynamic models was developed in 

Van der Waals & Platteeuw (1959), which has served as a basis for many subsequent models 

(Giavarini & Hester, 2011; Shahnazar & Hasan, 2014; Antunes et al., 2018). Such models entail 

the prediction of hydrate equilibrium conditions through use of a statistical thermodynamic 

approach based on intrinsic factors of the gas investigated, and depending on the model, the 

minimization of Gibbs free energy (Giavarini & Hester, 2011). The advantages of a 

thermodynamic model are discussed in Sloan & Koh (2007). A particularly advantageous 

factor is that thermodynamic models can be developed without requiring a massive compilation 

of experimental data. The lack of experimental data involved during model development avoids 
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potential experimental errors leaking into the model. GPSA (2004) asserts that presently 

equation of state based computerized models offer the most consistent means of prediction gas 

hydrate equilibria, with a low variance in results on average. These thermodynamic models are 

capable of determining hydrate structure, even multiple hydrate structures in the same 

environment (Giavarini & Hester, 2011). Ballard & Sloan (2002) investigates the development 

of a multiphase model minimizing the Gibbs free energy. Many of these popular models use 

as a base the Van der Waals & Platteuw (1959) model or later variations to model the hydrate 

phase, while an equation of state such as Peng-Robinson is applied to modelling the fluid phase 

(Antunes et al., 2018). Ballard & Sloan (2004) and Giavarini & Hester (2011) list computerized 

thermodynamic models commonly applied in industry, and Ballard & Sloan (2004) tests the 

accuracy of several computerised programs developed to predict hydrate equilibria based on 

thermodynamic models which are commonly used in industry, and results indicate that the 

models do accurately predict unseen test data.  The results of the Ballard & Sloan (2004) 

investigations include ternary and natural gas component tests, which is the focus of this 

research, and indicates accurate predictions for a moderate sample size. It can thus be seen that 

successful gas hydrate prediction models have been achieved through a statistical 

thermodynamics base, and any subsequent models attempting to predict a universal range of 

conditions need to be able to compete with these models which have achieved a degree of 

industrial acceptance. Chapoy et al. (2007) explains several shortcomings of the 

thermodynamic model, notably the difficulty of adjusting model parameters, and uncertainty 

as to whether or not the model yields the optimal result as opposed to a result corresponding to 

a local minimum. 

A modern approach to modelling gas hydrate equilibrium has been achieved through the 

application of machine learning. Unlike intrinsic thermodynamic models, machine learning 

allows for easily measured variables, such as those listed in Table 3.1, to be used to generalize 

behaviour when trained over a wide range of data. The purpose of this is to attempt the 

development of a model more capable of accurately predicting highly non-linear, multimodal 

phenomena such as the equilibrium conditions of gas hydrates than models based on statistical 

thermodynamics. Prior to popularization of the back-propagation algorithm and the 

commercialization of increasingly powerful single-core processors, allowing for neural 

networks to gain traction in the field, the majority of machine learning application to the field 

of gas hydrate equilibrium prediction has been achieved through Support Vector Machine 

programs. With increasingly powerful processors becoming commercially viable, artificial 
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neural network approaches have become prevalent in the field of gas hydrate equilibrium 

research. 

Note that the following models listed are discussed under the lens of natural gas hydrate 

prediction, with specific focus on multicomponent hydrocarbon gas systems. As such, models 

designed exclusively to predict the hydrate equilibrium conditions for pure and binary 

components are not discussed. 

Within the field of predicting the equilibrium conditions of gas hydrates, a wide range of 

studies into machine learning models have been published to date. The input features of the 

models which have been developed vary considerably. While the output of each regression 

model is either the temperature or pressure at which hydrate equilibria forms for either the 

temperature or pressure specified, different models may account for the compositions of the 

gas phase differently, and may include the presence of inhibitors or electrolytes as a feature. 

Heydari et al. (2006) and Hesami et al. (2016) developed neural networks to predict the 

temperature of hydrate formation from an input of two features, gas phase pressure and the 

specific gravity of the gas. The specific gravity of a gas acts as a form of lumped factor which 

is used as opposed to inputting the exact composition of each component of the gas phase. The 

Heydari et al. (2006) and Hesami et al. (2016) neural network models were developed using 

data sets consisting of under 400 data points. In both cases, the dataset the models were 

developed from was separated into a training and test data by a pre-defined split, such that the 

model performance could be tested on data unseen by the model. Other machine learning 

models have been developed to account for the fraction individual components within the gas 

phase as inputs to the network.  Zenali et al. (2012) developed machine learning models capable 

of predicting gas hydrate equilibrium conditions through means of both Neural Network and 

Adaptive Neural-Fuzzy Interface (ANFIS) models for non-inhibited systems based on a dataset 

consisting of over 700 points. The dataset is split randomly such that two-thirds of the data 

which is randomly selected serves as the training data, while the rest is used for model testing. 

Inputs consisted of temperature, and the compositions of methane, ethane, propane, iso-butane, 

normal-butane, carbon dioxide and hydrogen sulphide.  

Ghavipour et al. (2013) reported difficulty in developing a convergent model for the input of 

specific gravity, and subsequently developed a successful model predicting hydrate equilibria 

for the inputs of pressure and the gas phase composition of methane, ethane, propane, and 

normal-butane. The dataset for this model consisted of 130 data points. An interesting feature 
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of this model is how validation is performed. Unlike many other models, the split of training-

test data is governed by the process of leave-one-out validation. This is a form of cross 

validation where the data set is split into partitions, such that for a dataset with n samples, the 

training data corresponds to size (n-1) for partitions of size 1, thus each partition is tested once 

(Ghavipour et al., 2013). This validation practice does provide a means of judging how well 

the model performs across the entire dataset, rather than a narrow testing range. 

Several neural networks have been developed so as to predict hydrate equilibrium conditions 

in systems where thermodynamic inhibitors, and electrolytes are present. Thermodynamic 

inhibitors serve to alter the conditions at which hydrate equilibria occurs, typically to cause 

hydrates to achieve stability at a lower temperature and higher pressure. The presence of 

electrolytes additionally alters the mechanism of hydrate formation, and affects the conditions 

at which hydrate equilibria occurs. Elgibaly & Elkamel (1998) developed several models with 

inputs of pressure and gas gravity, in addition to separate models accounting for the 

composition of methane, ethane, propane, iso-butane, normal-butane, pentanes, carbon 

dioxide, nitrogen, hydrogen sulphide and the presence of hydrocarbons with a carbon number 

greater than five. Of particular interest is the neural network model of Elgibaly & Elkamel 

(1998), developed to account for a total of 16 inputs, including the presence of several 

thermodynamic inhibitors and electrolytes. Validation was performed by separating the dataset 

into two separate sets, one for training and another as held-out data unseen by the neural 

network used to test the predictive capabilities of the model. This model was later expanded on 

in Elgibaly & Elkamel (1999) where an optimization was performed such that the cost of 

inhibitors was accounted for and the optimal thermodynamic inhibition strategy is provided. 

This was achieved through the development of a neural network which is trained on the inputs 

of pressure, gas composition and the presence of thermodynamic inhibitors and electrolytes to 

predict the temperature at which equilibrium is attained. Elgibaly & Elkamel (1999) then 

developed a subsequent neural network taking into account the gas composition or gas gravity, 

in addition to both the temperature and pressure of the system and generated an output reporting 

the concentration of each specific inhibitor that would be required to shift equilibrium 

conditions to the desired temperature and pressure. Upon providing cost data concerning 

inhibitors, it is possible as is shown in Elgibaly & Elkamel (1999) that such a model can be 

used to optimize the thermodynamic inhibition strategy through achieving the desired 

equilibrium conditions at the lowest cost. Chapoy et al. (2007) developed a neural network 

from 19 inputs, including gas compositions, temperature, inhibitor and electrolyte 
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concentration in solution in addition to the hydrate structure. The model separates the dataset 

into training data, used to develop the model, testing data which is used to tune the model, and 

validating data which is held-out and unseen by the neural network and used to assess the 

overall accuracy of the model. The dataset for the Chapoy et al. (2007) model proved extensive, 

consisting of over 3000 data points, including data for methane gas phase compositions less 

than 50%.  

While neural networks have largely been of the focus of recent model development, support 

vector machine models have continued to be developed. Ghiasi et al. (2016) developed a 

support vector model with inputs considering the composition of the gas, in addition to possible 

thermodynamic inhibitor and electrolyte presence, from a dataset of nearly 4000 points to 

predict the dissociation temperature of formed hydrates. This model employed the practice of 

separating the compiled dataset into training, test and validating data. This practice is 

performed such that model tuning can occur while lowering the risk of overfitting. 

 While many studies cover an extensive range of conditions, many include a copious amount 

of data used to both train and test the neural network which consists of pure and binary 

components, which is largely irrelevant to the application of natural gas itself. While the 

inclusion of pure and binary component data, particularly methane-propane interactions, can 

assist a model in distinguishing between sI and sII states of hydrates, and possibly mixtures of 

the two, testing the model on this data could possibly serve to inflate the final regression score 

while potentially yielding little information regarding the model’s ability to predict complex 

systems consisting of multiple components, which is of significant importance when dealing 

with natural gas. This issue can result in a loss of confidence in expecting to achieve results 

within the reported accuracy of the model when predicting natural gas hydrate equilibrium 

conditions. Several studies have attempted to develop models exclusively using 

multicomponent databases, however due to a lack of reliable multicomponent data publically 

available, this has proven challenging. Soroush et al. (2015) developed a neural network 

consisting of two Hidden Layers, trained on a dataset consisting of just under 300 equilibrium 

points obtained from literature. The model was developed by randomly selecting 42 data points 

to be held out for validation purposes, while the model itself was developed and tuned on a 

split of 201 training points with the remainder used for testing purposes. Following model 

training and tuning, the model of Soroush et al. (2015) was tested through using all training 

data to train the neural network, and performing validation using the held-out data, resulting in 

a R2 coefficient of 0.998 being obtained. While this model is limited through use of a small 
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dataset, what is remarkable about this study is the restriction of the methane + ethane molar 

gas phase composition limited to a minimum value well above 50%, and still yields an accurate 

regression score (Soroush et al., 2015). This restriction raises confidence in the models 

capability of predicting multicomponent systems through outright rejecting ranges of data 

irrelevant to natural gas systems, and thus resulting in the final result being a good indicator of 

performance. This study revealed the possibility of developing a convergent neural network on 

a limited dataset. This contrasts traditional neural network models in the field which largely 

consist of a large amount of pure and binary component equilibrium points in the datasets used 

to train and test models. 

As it can be seen, a significant degree of study has been directed toward the development of 

models capable of predicting gas hydrate equilibrium conditions. Shahnazar & Hasan (2015) 

indicates that at the time of their publication, the majority of publications in the field had still 

been directed toward the development of thermodynamic models. While many neural network 

and other machine learning models have been able to successfully predict gas hydrate 

equilibrium conditions based on a wide range of conditions when tested with experimental 

data, there is a noticeable lack of an indication as to the error margins of the results from many 

models. As such, there is significant concern as to the statistical significance of the results of 

many machine learning studies in the field. Furthermore, as datasets used to train these machine 

learning models are likely to be non-gaussian, it is imperative that model testing occurs over a 

significantly wide range of data, such that surety is obtained that model results are not merely 

representative of a favourable randomized selection of training data. Non-Gaussian datasets 

imply that randomly sampling indices for training and testing is unlikely to be representative 

of the entire dataset. This research aims to address these issues which are current weaknesses 

in many existing machine learning models in the field, and in doing so aims to yield statistically 

sound model results and to prove the viability of the neural network methodology as a whole 

for the prediction of gas hydrate equilibrium conditions. Through application of the practice of 

cross-validation, the model may be trained and tested for several different combinations of data 

prior to validation with a held-out dataset, while providing the bias and variance, which are 

essential quantities used to assess machine learning models based on experimental data. This 

will assist in identifying whether or not unexpectedly weak predictions are made by the model, 

be it as a result of overfitting or a lack of data for certain conditions. Overall, while hold-out 

validation will yield a single reported accuracy of the model, cross validation will allow for 

multiple performance metrics to be obtained for different combinations of train-test datasets, 
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thus yielding the bias and the model variance across a number of combinations. Furthermore, 

as the overwhelming majority of data used to develop most models has been sampled from 

literature, with work on hydrate equilibrium experiments dating as far back as the publication 

by Hammerschmidt (1934), confidence in some sources of data may be raised due to now 

outdated methodologies such as optical measurements of hydrate formation. The practice of 

grouping data per unique source and prohibiting the training and testing of data from the same 

group will provide an indication as to the dependency of a model on individual sources for data 

covering certain ranges. Establishing the difference between results trained on grouped and 

ungrouped data will provide an indication as to how susceptible the model is to experimental, 

methodology or measurement errors, and will assist in providing a lower estimate of the 

predictive capabilities of the model when testing on truly unseen data. Finally, through use of 

datasets that exclusively contain multicomponent data, further confidence in the methodology 

could be achieved when high accuracy predictions are made by the model when tested by 

multicomponent data in the absence of pure or binary data which could serve to provide a poor 

estimation of model performance concerning natural gas environments. The research 

performed in this publication will seek to develop several models trained on two different 

datasets, a multicomponent exclusive dataset, and a dataset similar to many used in literature, 

consisting of a roughly equal mixture of multicomponent data and pure and binary component 

equilibrium points. Furthermore, the models developed will undergo extensive cross-validation 

practices to ensure that the model does not perform well only for select combinations of training 

and test data, while the effect of grouping data by source will be investigated. Cross-validation 

will provide the bias and variance of results, while Hold-out validation is performed to provide 

the overall indication of model accuracy while ensuring that overfitting has not occurred 

through testing the cross-validated model on data completely unseen during the training 

process. 
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CHAPTER 3 METHODOLOGY 

3.1 Overview 

The methodology selected to model the conditions of gas hydrate equilibria is that of a neural 

network. While significant discussion is presented regarding the topology, training and 

validation of the model, the neural networks developed in this investigation may be 

summarized as feed-forward, multilayer perceptron, artificial neural networks. The various 

neural networks developed in this investigation are trained in a supervised manner by means 

of one of two datasets comprising of 670 and 1209 experimental equilibrium measurements 

sampled from various publications which are listed in appendix A. Results obtained include 

various metrics which determine the ability of the model to predict unseen data, and a final 

estimate along with possible variance are provided. Deep learning has been incorporated into 

model development, and all neural networks developed in this investigation consist of at least 

two hidden layers. The trained models have been evaluated according to 10-fold cross-

validation, and additionally in the case of several models, hold-out validation. By incorporating 

both cross-validation and hold-out validation, models have been tuned by a Grid-search 

iterative procedure to yield final models which are likely close to the optimal configuration. 

Due to a slight variance in results over repeating the same model configuration and parameters, 

true optimization cannot be performed in this case. The main scoring metrics used in this 

investigation include the R2 regression coefficient, and the variance using this metric has been 

determined through use of cross-validation 

3.2 Dataset Sampling 

In order to train and validate a neural network, a vast quantity of data is required. Fortunately, 

a wide array of conditions for gas hydrate formation has been examined in various experimental 

studies. A large quantity of gas hydrate equilibrium measurements has been published. Due to 

the wide range of equilibrium measurements publicly available, all data sampled for the models 

developed has been obtained from literature. Creating the datasets used to model hydrate 

equilibria has been achieved through a rigorous data sampling campaign. It is worth noting that 

the compiled datasets do not cover an even distribution of the range of conditions investigated, 

which is largely due to the lack of experimental data for certain ranges. As such, the datasets 

are not considered to be Gaussian, which requires significant consideration when sampling data 

to be used in model training and testing. Much of the difficulty in performing gas hydrate 

equilibrium measurements is due to the time factor associated with experimental studies. As 
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discussed in Ward (2015), hydrate equilibria experiments require a significant time investment, 

largely due to the metastability effects requiring significant periods of waiting for hydrates to 

stabilize, and the slow rate of cooling required for hydrate dissociation so as to accurately 

obtain an equilibrium measurement. Significant differences in environment are often present 

between natural gas pipelines and laboratory experiments, notably the site at which hydrate 

formation initiates and agitation present in the pipeline. Ruffine et al. (2018) attributes much 

of the difference in hydrate formation between water oversaturated laboratory-scale 

experiments and natural gas equipment to a lack of time taken to gradually form stable hydrates, 

and insufficient time over which hydrates occupy a stable state.  

 Data has been extracted from several sources which include the following features listed in 

Table 3.1. All data sources used to develop the datasets used in this investigation have been 

listed in Appendix A. Note that a significant portion data sources were discovered through the 

works of Sloan & Koh (2007), which lists a great many hydrate equilibrium points from various 

sources. GPSA (2004) and Sloan (1998) identifies significant hydrate formers as methane, 

ethane, propane, iso-butane, n-butane, carbon dioxide, nitrogen dioxide and hydrogen sulphide. 

Due to the scope of this investigation and a lack of independent experimental studies publishing 

data for the component, the presence of hydrogen sulphide has not been included in this 

investigation. Thus, the study conducted is applicable to sweet natural gases. Furthermore, 

Carroll (2009) details heavy non-hydrate forming hydrocarbons as causing an azeotropic effect 

when mixed with pure methane in a system which forms hydrates. As such, the equilibrium 

conditions can possibly be affected by the presence of non-hydrate forming hydrocarbon 

molecules in the gas phase. The inclusion of heavy non-hydrate forming hydrocarbons is 

accounted for in the models developed in this investigation through the inclusion of an input 

consisting of a lumped sum of hydrocarbons present in the gas phase with a carbon number of 

five or greater. Finally, for the development of the model, both the extrinsic properties of the 

temperature and pressure under which hydrate equilibrium was attained are required. 

𝑃𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 = 𝑓(𝑇, 𝐶1, 𝐶2, 𝐶3, 𝑖𝐶4, 𝑛𝐶4, 𝐶5+, 𝐶𝑂2, 𝑁2)                                                                (3.1) 

While GPSA (2004) details kinetics and mass transfer as additional factors influencing hydrate 

formation, it is assumed that data sources have adequately accounted for metastability effects 

when measuring equilibria. This could be achieved through allowing sufficient time for formed 

hydrates to stabilize, and a sufficiently low heating rate during dissociation up to equilibria 

(Ward, 2015; Tohidi et al., 2000). GPSA (2004) lists the dew point of the mixture as a factor 
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influencing formation conditions, in that the gas must be at a temperature lower than the dew 

point to facilitate hydrate formation. As hydrate equilibria is being measured, it is assumed that 

the temperature of the mixture being investigated is lower than the dew point of water in the 

system. While the exact quantity of water present in the system is not required as an input to 

the model, this model assumes that there is a sufficient quantity of water present, either in liquid 

phase or entrained in the gas such that hydrate formation is possible. 

Table 3.1: Features influencing hydrate formation included in model development 

Temperature 

(ºC) 

C1 

mol 

fraction 

C2 

mol 

fraction 

C3 

mol 

fraction 

i-C4 

mol 

fraction 

n-C4 

mol 

fraction 

C5+ 

mol 

fraction 

CO2 

mol 

fraction 

N2 

mol 

fraction 

Pressure 

(MPa) 

 

While GPSA (2004) lists salinity as impacting hydrate formation, the effect of inhibitors and 

electrolytes on hydrate equilibria is beyond the scope this study, which is to establish 

confidence in the methodology as a whole. Detailed investigation into the modelling of Gas 

Hydrate formation in environments with inhibitors and electrolytes present has been conducted 

by means of a neural network in Chapoy et al. (2007) and Elgibaly & Elkamel (1999).  

Collection of experimental data from literature has been achieved through a rigorous data 

sampling campaign. In order to promote confidence in the model, the inclusion of generated 

data of any kind has been avoided. As such, data reported by studies which involved using 

software or equations to predict the conditions of hydrate equilibrium have been excluded from 

this study. All data sampled has been obtained through experimental measurements of hydrate 

equilibrium. As a regression model is being developed, the inclusion of data outside of 

equilibrium biases the result and reduces the overall accuracy of the model. Thus, experimental 

data included in development of the model has been checked where possible to ensure that the 

reported values do indeed occur at equilibrium, rather than at some condition within the hydrate 

formation region. Several of the data sources used in this study have routinely been included 

in other prediction models in the field, notably Sloan & Koh (2007) which constitutes a 

significant number of equilibrium points used to compile the model datasets. While there is a 

significant overlap of data used in this study and others published in the field, several other 

equilibrium data sources which have been published in recent years have also been included to 

present an updated dataset which is less reliant on individual sources than other studies in the 

field. The overlap of data between this study and others may serve a basis for comparison 

between models. 
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3.3 Dataset Composition 

Having collected a wide range of experimental data from various sources through a data 

sampling campaign, the data was compiled into datasets to be modelled. To standardize data, 

units of measurement for each feature have been converted to those in Table 3.1. Conversions 

between metric temperatures has been performed on the basis that that 0°𝐶 = 273.15 𝐾. 

Normalization has additionally been performed in setting the sum of molar fraction 

compositions to be unitary. The need for this arises from inconsistencies in the decimal places 

in several sources of reported data. Systems containing a relatively insignificant quantity of 

inert components which do not interfere with hydrate formation have similarly undergone 

normalization to fit within the features of the model. 

Having collected a vast quantity of data, it became possible to develop two distinct datasets 

which would be used to train and test a neural network. A distinct lack of studies explicitly 

restricted to multicomponent systems containing three or more components is present in 

literature, particularly in terms of neural network models. Some past studies have included vast 

quantities of data irrelevant to the field of natural gas, such as equilibria of pure nitrogen or 

carbon dioxide, which often serve little use in modelling natural gas systems, and may result 

in biasing the reported regression score. Due to the lower complexity when compared with 

natural gas mixtures, pure components exhibit lesser difficulty to model, hence their inclusion 

in datasets used to train models could possibly result in a high regression score for a model that 

may not adequately predict natural gas hydrate equilibria. As such, a minimum of 50% methane 

concentration for the gas phase is imposed on the data included in all datasets utilized in 

modelling. This constraint serves to provide a model specifically designed to predict natural 

gas equilibria, and to avoid artificially inflating the regression score. 

Data sampled consists of sI and sII hydrates. The work of Tohidi et al. (2001) indicates that the 

occurrence of structure H hydrates in natural gas systems at equilibria is unlikely for normal 

operating ranges, and as such there is no need to include this structure in the equilibrium model. 

It must be emphasized however, that with operating conditions well within the hydrate stability 

zone, it is possible that structure H hydrates could arise. For the sake of this model, it is assumed 

that in the case of a thermodynamic inhibition strategy, the hydrate stability zone is avoided, 

while for other inhibition strategies that the operating temperature is not low enough for 

significant periods of time that would lead to structure H hydrates. These assumptions do not 
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account for unexpectedly long pipeline shut-ins, where heat transfer results in the fluids in the 

pipeline gradually cooling to ambient temperature. 

In order to gauge the performance of the model in terms of multicomponent data prediction, 

two datasets have been compiled to develop distinct neural network models. Through proving 

the ability of an accurate model to be developed from the exclusively multicomponent data set 

summarized in Table 3.2, a model trained from the complete dataset summarized in Table 3.3 

could be expected to perform comparably as all multicomponent data is present in the complete 

dataset. The final model developed in this research will be trained and tested using the complete 

dataset. 

The neural network developed by Soroush et al. (2015) was among first to model a neural 

network through means of a multicomponent exclusive dataset to yield a R2 score of slightly 

over 0.998. This model is however limited through a dataset consisting of only 279 equilibrium 

points being used to train, test and validate the model. The limited range of the data in this case 

results in the model being highly dependent on a few individual data sources, and renders 

testing the model over a wide range of conditions difficult. Nevertheless, a successful neural 

network exclusively trained and tested on multicomponent data lends credibility to the 

methodology in the field of natural gas hydrate equilibria prediction. As such, through use of 

additional data sources, some of which have been published since 2016, a new dataset has been 

compiled in this investigation through use of 670 exclusively multicomponent samples with 

the intent of developing a model less reliant on individual data sources through the practice of 

grouping. A summary of the compiled dataset can be seen in Table 3.2. Through excluding 

pure and binary components, the model will provide a lower estimate of the prediction 

capabilities of neural networks in the field trained by published experimental data. This is a 

significant investigation as viability in the methodology can be assessed through the knowledge 

that the reported regression score and cross-validation performance of the model is reflective 

of a wide range of multicomponent data, rather than an abundance of high scoring pure or 

binary components. 

The exclusion of pure and binary components from the dataset however is likely to yield poor 

predictions for ranges of data which are absent from the multicomponent exclusive dataset. 

Including a quantity of methane and binary components across the operating range of the model 

would allow for better results for conditions where multicomponent data is absent. As such, a 

separate dataset containing a total of 1209 experimental equilibrium data has been compiled. 
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This dataset includes the 670 multicomponent samples from the exclusive dataset, in addition 

to a large quantity of pure methane and binary component data, such as methane-propane and 

methane-isobutane equilibria.  A summary of the complete dataset can be seen in Table 3.3. 

The inclusion of pure methane and binary component data results in the trained model being 

more likely to distinguish between hydrates of structure I and structure II. As such, the model 

trained on this complete dataset is likely to result in a higher regression score than the 

multicomponent exclusive model, in part due to the improved ability of the model to predict 

test samples for ranges significantly different from data used to train the model, and in part due 

to a slight inflation to the regression score due to some pure or binary component data present 

during model validation. 

Table 3.2: Multicomponent Exclusive Dataset Summary 

Feature Temperature 

(˚C) 

C1 

mol 

fraction 

C2 

mol 

fraction 

C3 

mol 

fraction 

i-C4 

mol 

fraction 

n-C4 

mol 

fraction 

C5+ 

mol  

fraction 

CO2 

mol 

fraction 

N2 

mol 

fraction 

Pressure 

(MPa) 

Sample 

Count 

670 670 670 670 670 670 670 670 670 670 

Mean 13.5732 0.8524 0.0651 0.0300 0.0038 0.0065 0.0024 0.0145 0.0253 8.1922 

σ 6.9344 0.1026 0.0604 0.0304 0.0078 0.0115 0.0057 0.0350 0.0620 8.8865 

Min 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4966 

25% 7.4500 0.8025 0.0169 0.0096 0.0000 0.0000 0.0000 0.0000 0.0000 2.6164 

50% 14.1550 0.8654 0.0543 0.0204 0.0001 0.0004 0.0000 0.0004 0.0004 5.1435 

75% 19.2502 0.9280 0.0795 0.0357 0.0040 0.0085 0.0018 0.0143 0.0090 10.4623 

Max 30.3735 0.9940 0.2500 0.1698 0.0461 0.0510 0.0340 0.3140 0.4000 68.2300 

 

Table 3.3: Complete Dataset Summary 

Feature Temperature 

(˚C) 

C1  

mol 

fraction 

C2  

mol 

fraction 

C3 

mol 

fraction 

i-C4  

mol 

fraction 

n-C4  

mol 

fraction 

C5+  

mol 

fraction 

CO2  

mol 

fraction 

N2  

mol 

fraction 

Pressure 

(MPa) 

Sample 

Count 

1209 1209 1209 1209 1209 1209 1209 1209 1209 1209 

Mean 12.5068 0.8758 0.0413 0.0223 0.0066 0.0049 0.0014 0.0225 0.0252 9.2320 

σ 7.3586 0.1168 0.0620 0.0445 0.0301 0.0109 0.0044 0.0667 0.0725 11.1019 

Min 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1800 

25% 6.1500 0.8375 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.8300 

50% 12.1000 0.8950 0.0088 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000 5.3778 

75% 18.3500 0.9725 0.0647 0.0308 0.0029 0.0055 0.0000 0.0051 0.0068 10.8080 

Max 31.8500 1.0000 0.4360 0.4980 0.5000 0.0582 0.0340 0.5000 0.4975 72.2600 

 

3.4 Dataset Grouping 

As will be detailed in model validation, the development of a validation set which is held-out 

of neural network training for the purpose of testing the model on unseen data necessitates the 

grouping of data by source so as to increase the likelihood that the training-validation split of 

data is representative of a wide range of equilibrium conditions. Furthermore, due to the 
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inability to definitively determine as to whether or not metastability was adequately accounted 

for in several sources of data, it is expected that a few data sources report measurements that 

may not precisely report the conditions at equilibrium. Ward (2015) recommends new 

measurements to confirm equilibrium data for measurements reported in literature for certain 

components such as hydrogen sulphide. In order to reduce the potential impact that 

measurement errors may have on the model, and to additionally account for differences in mass 

transfer due to insufficient time taken between heating steps, a decision was made to group 

data according to experimental source. As such, studies measuring hydrate equilibria using the 

same apparatus, under the same ambient conditions are grouped. This grouping further has the 

benefit of providing a true measure of regression variability through the process of cross-

validation displaying model results across a wide combination of groups. Several models have 

been developed in this study, and the effect of grouping on the overall regression and cross-

validation folds is assessed. The grouping strategy is illustrated in Figure 3.1a and Figure 3.1b. 

Groups have been selected such that sources reporting less than four equilibrium points are 

excluded from the dataset due to difficulties achieving a converging model when small groups 

are present. Large groups of 50 or more equilibrium points are restricted to multicomponent 

sources, and large binary sources are divided into groups based on the components recorded. 

Finally, pure component sources have been grouped into two groups such that an even 

distribution of pure methane is present over 81 of the 123 pure methane equilibrium 

measurements. This has been done so as to ensure that pure methane sources are not heavily 

represented in the randomized train-test samplings during both cross and holdout validation. 

Overall the practice of grouping reduces the reported R2 score of the model, while lending 

confidence to the reported result through indicating that the model is less dependent on 

Figure 3.1b: Complete Dataset Grouping Figure 3.1a: Multicomponent Exclusive Dataset Grouping 
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individual data sources covering specific ranges of conditions. While the purpose of the data 

sampling campaign is to provide a wide enough dataset such that statistical variations between 

samples are rendered insignificant, due to the non-Gaussian nature of the datasets and the 

limited number of independent experimental studies, it cannot be assumed that significant 

statistical differences between experimental studies examining similar conditions are not 

present. The development of grouped models will aid in reducing the impact of these factors. 

3.5 Model Datasets 

In order to assess the effectiveness of the developed model at predicting the hydrate equilibrium 

conditions for multicomponent gases, two distinct datasets have been compiled for model 

development. The first dataset bears similarity to the datasets used to develop various other 

neural networks in the field, consisting of a wide range of methane inclusive equilibrium data 

points. A constraint for this dataset is a minimum methane molar concentration in the gas phase 

of 50%. The dataset includes equilibrium points for pure component methane, in addition to 

binary and multicomponent gas mixtures consisting of the components listed in Table 3.1.  A 

second dataset has been developed, which restricts equilibrium data to gases consisting of at 

least three components. Equilibrium data on these multicomponent gases is constrained by a 

minimum gas phase methane molar concentration of 50%, while excluding pure methane and 

binary methane gas mixtures. Both datasets, henceforth referred to as the Complete and 

Multicomponent Exclusive datasets, have been used to develop several models, as detailed in 

Table 3.4. The purpose for using different datasets for model development is to facilitate a 

comparison of model performance when examining the predictive capability of a model trained 

and tested exclusively using multicomponent data, with the results of a model developed using 

a wide dataset including pure methane and binary components. Due to the complexity 

associated with predicting multicomponent hydrate equilibrium conditions, a very large dataset 

is required. Due to the limited number of publicly available equilibrium data for 

multicomponent gas hydrates, the multicomponent exclusive dataset consists of significantly 

fewer samples than the complete dataset. Comparing the results of models developed using the 

multicomponent exclusive dataset likely provides a better indication as to the predictive 

capability of the model when examining multicomponent gases, notably natural gas. Models 

developed from the complete dataset are expected to achieve a more accurate regression score 

due to the increased number of data samples, and further assist the model in distinguishing 

between sI, sII or mixtures of hydrate structures due to the additional data, particularly 

methane-propane and methane-ethane mixtures, in ranges of conditions lacking 
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multicomponent equilibrium points. While the complete dataset reported accuracies include 

pure and binary component testing data, this score does serve to provide an upper estimate of 

model performance. Both datasets are used to develop models capable of being used to predict 

equilibrium conditions for multicomponent gases. As the complete dataset includes all 

equilibrium points from the multicomponent exclusive dataset, adequate cross-validation 

performance for both models will indicate that multicomponent data has a high likelihood of 

being accurately predicted by the complete dataset model. 

3.6 Neural Network Model Validation 

The means of selecting and validating the model is perhaps the area of this research where the 

most significant contribution to the field can be made. The selected approach involves applying 

a 10-fold cross-validation which selects train-test indices based on a random selection to 

optimize parameters and perform model selection, while a hold-out validation set created 

before cross-validation tests the cross-validated model parameter selection by testing using 

data completely unseen during cross-validation, thus allowing the accuracy of the final model 

to be assessed. This approach has been selected so as to make the most use of a dataset with a 

limited sample size. An illustration of the validation approach is provided in Figure 3.2. A 

further benefit of performing cross-validation is that the bias and variance of the model may be 

assessed, and the standard deviation associated with reported accuracy of the model is 

provided. 

Through the process of back-propagation, the neural network is trained by reducing the mean 

squared error resulting from training data. While the final reported mean square error for this 

training data may be reported as an exceptionally low figure, this does not provide an indication 

of the capability of the model to predict unseen data. A high training score may be achieved at 

the cost of overfitting the model, providing artificially favourable model results at the expense 

of reduced generalization capability and thus ability to predict unseen data (Cawley & Talbot, 

2010). In order to test the predictive capability of the model, unseen data must be used. The 

validation strategy used in this investigation includes a randomized hold-out validation set 

which is separated from the dataset before training occurs, thus separating the dataset into a 

training and validation set. Having trained the model, the holdout validation set is run through 

the model, and the error resulting from the difference between experimental and predicted 

results is used to calculate the final predictive capability of the model. Reported metrics for 

this validation includes the R2 score of predicted data defined in equation 4.1, and the mean 
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absolute percentage error. In addition to performing hold-out validation, cross-validation is 

performed. Cross-validation is employed to gauge whether overfitting has occurred, and 

provides an indication of how the model performs under a range of conditions. Cross-validation 

additionally allows for a variance to be attributed to the final score of the model. Under cross-

validation, the training dataset which is used to develop the neural network itself is further split 

into training and testing data. Cross-validation is performed over 10 folds, and provides a final 

R2 score in addition to a standard deviation which serves to highlight potential outliers or ranges 

of conditions which lack a significant quantity of data needed to make accurate predictions. 

While the hold-out validation score provides an upper average of the model’s capability over 

a wide range of conditions, cross-validation provides an indication of potential shortcomings 

of the model regarding the ability to predict conditions over the entire range of data provided. 

The hold-out validation set is created by sampling data from the dataset prior to training the 

model, and is completely unseen by the neural network during training. In order to ensure the 

hold-out validation set covers a wide range of conditions, creation of the hold-out set is 

achieved through means of stratified sampling. Due to the non-Gaussian nature of the both 

datasets required in model development, and the limited quantity of data available, randomly 

sampling a number of equilibrium points is unlikely to cover an adequate range of equilibrium 

conditions needed to assess the capability of the model to predict a universal range of 

conditions. While a degree of randomization when sampling data for the validation set is 

required to avoid biasing results, performing the traditional approach of randomly selecting 

equilibrium points to hold out is not viable; as such, groups are created in the dataset according 

to the criteria of equilibrium measurements obtained using the same experimental equipment, 

methodology and means of measuring the equilibrium conditions. Thus, groups are, for the 

most part, created according to equilibrium measurements reported per publication. Due to the 

long experimental times encountered for multicomponent gas hydrate equilibrium 

measurements as a result of metastability (Ward, 2015), many publications from which data 

was sampled for this investigation report a narrow range of conditions, thereby rendering the 

compiled datasets highly suited towards sampling data per group when developing holdout 

sets. A consequence of grouping data by source is a highly uneven number of equilibrium 

measurements per group, as illustrated for both datasets in Figure 3.1a and Figure 3.1b. This 

behaviour eliminates the possibility of using traditional sampling techniques which are centred 

on sampling an equal number of points from each group, or the approximate uniformity of 

group sizes. Therefore, the conclusion has been reached that the optimal approach to generating 
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a universal-approximating holdout set is through use of a randomized stratified split technique. 

Through stratified sampling, items from each group are sampled such that the original 

proportion of entries per group remains approximately constant. Hence, large groups will have 

more equilibrium points sampled than smaller groups. Furthermore, randomization is added to 

the sampling process through randomly selecting the entries which are sampled from each 

group. Overall this process allows a wide range of data to be tested for a limited dataset, without 

requiring a large number of samples to be split into the holdout set relative to the size of the 

overall compiled dataset. The grouping of data by source is a feature which is additionally 

utilized during cross-validation for several models developed, and groupings are carried over 

into the training dataset for the models which require this information. For the models 

developed in this investigation, all models employing a hold-out validation split follow a target 

of 10% of the original dataset being used to develop the hold-out set. The reason this figure is 

low is due to the employment of cross-validation in model development.  

Having divided the dataset into a training set and a hold-out validation set, it is necessary to 

elaborate on the testing process of the model which is performed by cross-validation. While 

hold-out validation allows a definitive model to be developed from the entire training set, hold-

out validation in prone to a high variance in reported accuracy. This is due to the random 

selection of data to be held out not necessarily being representative of the entire range of the 

dataset, caused by the datasets being non-Gaussian. While a stratified split assists in mitigating 

this factor, due to the relative size of the holdout set only being a fraction of the complete 

dataset, there is a significant variance associated with the reported accuracy of holdout 

validation when altering the randomization of the data split. The non-Gaussian nature of the 

compiled dataset further compounds this problem. While a larger validation set would allow 

for a more confident reported model validation accuracy, this would come at the expense of 

having less data available to train the model. In order to train the model with as much data as 

possible, while judging the variance in results, cross-validation is employed. Cross-validation 

allows the bias and variance of the model to be examined, and certainty that the model is not 

merely stable for a favourable data split can be provided. Hence, cross-validation additionally 

allows for the parameters of the neural network model to be tuned to improve the predictive 

capability of the model. Cawley & Talbot (2010) however warns that hyperparameter 

optimization paired with model selection does present the risk of overfitting occurring, 

whereby information on the validation set leaks into the network. In order to facilitate 
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hyperparameter tuning while attempting to reduce the risk and impact of overfitting, hold-out 

validation has been employed to further test the model after model selection. 

While cross-validation does involve further dividing the training data according another train-

test split, all training data may be used after cross-validation has been performed to generate a 

final model which tests held-out validation data and thus yields vital insight into the stability 

of the model without compromising the quantity of training data. In order to incorporate cross-

validation into the model, the training set which is created by splitting the dataset into a training 

set and hold-out validation set, is further split into a train-test set. Unlike the hold-out validating 

set, cross-validation allows for multiple train-test splits to be performed. For this investigation, 

all models undergo 10-fold cross-validation, whereby 10 randomized train-test splits are 

generated, and a model is trained and tested for each. This yields 10 reported regression scores, 

which are then averaged and the standard deviation is calculated so as to assess the bias and 

variance of the model. Unlike the hold-out validation split, the train-test split does not follow 

a stratified sampling procedure. Rather, two different approaches have been applied for the 

various models developed in this investigation. The first approach which is used in models F 

and G involves simply selecting random samples to be divided into a train-test split according 

to a pre-defined ratio, in this case 30%. The second approach to generating the train-test split 

for cross-validation is achieved through a randomized group split, and is employed in models 

A, B, C, D and E. The group split is performed by separating entire groups of data, such that 

the same group is not used for both training and testing the model during cross-validation. This 

grouped approach allows the dependence of the model on individual data sources for certain 

ranges of conditions to be assessed, and serves to mitigate some of the bias of experimental or 

measurement errors from the equilibrium data on the reported accuracy through preventing 

experimental factors such as equilibrium conditions measured when inadequate time was given 

to account for metastability from achieving high prediction scores due to the presence of some 

of this group’s data in the data used to train the model. An example of both cross-validation 

strategies is shown in Figures 4.3a-f, where for Figure 4.3e & Figure 4.3f, cross-validation is 

performed sampling random indices, and in Figure 4.3a-d, cross-validation has been performed 

through the group split technique. After having performed cross-validation, the entire original 

training set develops a model which is tested with the held-out set. This practice allows for the 

model parameters to be tuned to yield more effective predictions with a significantly reduced 

risk of overfitting the model, which would serve to reduce the reported hold-out validation 

score. Overfitting results when tuning a model that may even include cross-validation, 
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increases reported accuracy while reducing the accuracy of predicting unseen data, due to 

information on the testing set leaking into the neural network through parameter tuning and 

model selection (Cawley & Talbot, 2010). Through combining cross-validation and hold-out 

validation, confidence is granted that overfitting highly unlikely. Note that model selection 

based on hold-out validation results has been limited to avoid leaking hold-out validation data, 

as opposed to hyperparameter optimization whereby model selection is performed from a wide 

range of models. 

In summary, the model parameters are selected by a process of 10-fold cross-validation with a 

70%-30% train-test split (80%-20% in the case of model A), and then validated for 

performance on a truly unseen data set which was randomly selected prior to cross-validation 

in a 90%-10% train-validation split, where the 10% represents data which is complete held-out 

from the cross-validation procedure. An illustration of how validation and model selection is 

performed is provided in Figure 3.2. This process allows for extensive insight to be gained 

from a model trained and tested using a dataset with a limited number of samples available. 

While larger datasets would allow for more accurate models, the validation practice employed 

ensures that overfitting has not occurred and confirms that the model accurately predicts unseen 

data. Overall this method when combined with the variance yielded after cross-validation, and 

the seed-test results provided in Figure 4.2a-d allows for a highly transparent validation 

procedure, with a high degree of confidence that reported results can be expected to represent 

those of the practical application of the model. 

3.7 Model Development 

In this investigation, Neural Network models have been designed as multi-layer perceptrons. 

The models are trained in a supervised manner through use of datasets containing equilibrium 

data, which are trained by means of a backpropagation algorithm. Due to the significant non-

linearity of the data, neural networks are well suited to model the conditions of gas hydrate 

equilibria. Leshno et al. (1993) details that a multilayer feedforward network is capable of 

acting as a universal approximator, which is the end goal of this research. 

Models A through G have been developed as artificial neural networks designed to predict the 

hydrate equilibrium pressure in MPa for the inputs of gas phase composition as a molar fraction 

and temperature in degrees Celsius. All neural networks have been developed as a feedforward 

Multilayer Perceptron, wherein one or more hidden layers containing nodes linking model 

input to output are present. Supervised learning occurs, and model training is achieved by 
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means of a back-propagation. All neural network models have been developed using the Python 

infrastructure and libraries developed for use with Python, specifically the keras library running 

on a tensorflow backend. While each neural network developed for models A through G differs 

in terms of topology or parameters, the generic diagram in Figure B.1 provides an overview as 

to the relation between the input, hidden and output layers. In this investigation, several 

different network topologies are used, as indicated in Table 3.4. Deep learning has been 

implemented, with a minimum number of two hidden layers for neural network models. For 

each case, nine inputs are present corresponding to Table 3.1 excluding pressure, which is the 

output. Each of these input nodes connects to each neuron present in the subsequent hidden 

layer, each node of which connects to all nodes of the following layer, be it another hidden 

layer or the output. As a regression is being performed, the model output consists of a single 

node, and outputs the numerical value of gas phase pressure. Neuron training weights have 

been initialized by means of a normal distribution. 

Table 3.4: Summary of Models and Results 

Model Dataset Hold-

out 

Group Hidden 

Layers 

Neuron 

Count 

Activation R2 (CV) σ (CV) R2 

(Holdout) 

A Multicomponent 

Exclusive 

True True 2 64 ReLU 
0.90622 0.05410 0.95114 

B Complete True True 2 256 ReLU 0.96032 0.01811 0.98564 

C Multicomponent 

Exclusive 

False True 3 256 ReLU 
0.91554 0.00450 - 

D Complete  False True 3 256 ReLU 0.95219 0.03062 - 

E Complete False True 2 128 Sigmoid 0.94703 0.04610 - 

F Multicomponent 

Exclusive 

True False 3 352 ReLU 
0.97067 0.01135 0.97870 

G* Complete True False 3 352 ReLU 0.98604 0.00352 0.99255 

H** Multicomponent 

Exclusive 

True False 0 - - 
0.60671 0.02469 0.68302 

I** Complete False False 0 - - 0.87105 0.05564 - 

J Complete True True 3 352 ReLU 0.95814 0.02154 0.98918 
*: End product of this research 
**: Simple polynomial regression 

As discussed, both hold-out validation and cross-validation has been implemented in model 

development. For models employing hold-out validation, a pre-defined split of 90% of the 

original dataset is used to compile a training set, while the remaining 10% of data forms the 

hold-out set used to test the model post-training. The hold-out validation split has been 

performed in a stratified manner such that the approximate proportion of indices per group 

present in the dataset is preserved across both the training and validation set. In order to ensure 

the replicability of results, the function generating the stratified split indices has been seeded 

such that the randomly selected indices present in the training and hold-out validation set are 

constant over successive models. Regarding cross-validation, in which the training set 
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following the split from hold-out validation is further split into train and test sets, all models 

incorporating cross-validation have been implemented through a 10-fold split. Under this 

practice, 10 different splits of training and test data are used to develop models and the final 

accuracy is taken as the mean of each of the 10 fold results, with the standard deviation being 

yielded. As to how the 10-fold split occurs, two different mechanisms have been developed for 

determining the train-test split for various models. Models A, B, C, D & E undergo a 

randomized group split, whereby data is divided into separate train and test sets such that data 

from the same group is only present in one of these sets. Under this approach, approximately 

70% of the data forms the training set, while approximately 30% forms the test set, with the 

exception of Model A which utilizes a 20% test set due to the limited number of groups in the 

multicomponent exclusive dataset. Models F and G employ a standard randomized split, 

whereby exactly 30% of randomly selected indices from the sampling dataset is used to develop 

the test set, while the remaining 70% is used to train the model. In the case of the group split, 

as indicated in Figures 3.1a and 3.1b, only a limited number of groups of uneven size are 

present, as such an exact 70%-30% train-test split is unlikely, as opposed to the ungrouped 

randomized approach in which an exact 70%-30% split is ensured. In either case, 10 different 

random train-test split sets are used to develop 10 distinct models. For each model, training is 

performed using the train set, while the test set is run through the trained model and evaluates 

the overall disparity between predicted and experimental gas phase pressure. For each of the 

10 folds, the testing score is recorded, and an overall score is yielded by averaging these results, 

and calculating the standard deviation. As with creating the hold-out validation set, both the 

randomized grouped and ungrouped split methods are randomly seeded, such that the same 

random segmentation of data into train and test sets for each fold is constant for repeated model 

executions. The seeding of model randomization allows the effect of different model 

parameters on results to be assessed, and is thus a foundation of hyperparameter optimization, 

the process by which a wide range of model parameters are investigated so as to achieve an 

improved result.  

Having performed cross-validation, models which implement hold-out validation then train the 

neural network using the entire original training set which was obtained prior to performing 

cross-validation. This model is then tested using the hold-out validation set, to yield the overall 

accuracy of the model when testing completely unseen data. Unlike cross-validation, this is a 

single fold process and yields a single real number as a result. As such, several useful metrics 

are yielded which can be used to evaluate the accuracy of the model. From cross-validation the 
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variance of the model can be assessed by investigating the variation in results for various folds 

containing different combinations of data used for training and testing. From this, potential 

weak folds can be identified and a lower estimate of model performance can be obtained. A 

real number corresponding to the accuracy of each fold is provided, with the average of the 10 

folds provided to assess the bias, while the standard deviation across the 10 fold results being 

used to assess the variance of the cross-validated model. The hold-out validation procedure 

yields a single real number representing the accuracy of the model across the stratified range 

of validation data, thus providing an indication of model performance across a wide range of 

data unseen during cross validation, and serves as the final accuracy of the model. Accuracy 

for a regression model can be assessed through a number of metrics. For this investigation, the 

R2 regression score has been used as a baseline for model tuning, and is taken to represent the 

overall performance of the model. The R2 score is calculated, and has been selected due to its 

penalizing of pressure predictions on test data both greater or less than the actual test value 

without reducing the error metric due to overshoot and undershoot balancing. The mean 

absolute percentage error has additionally been calculated for several models, to facilitate 

comparison results with other studies which have not adopted R2 metrics. Mean absolute 

percentage error metrics do exhibit considerably more variation than R2 scores for the models 

developed in this investigation, thus limiting the replicability of their results. As such, R2 

metrics have been used as the primary means of scoring the models developed. A variance plot 

of cross-validated results obtained for each model illustrates the effect of altering the random 

state of train-test split indices, while seed plots such as Figure 4.2a-d illustrate the fact that the 

model does not merely perform in the range of reported results for a favourable train-test split. 

The split of data for both grouped and ungrouped cross-validation train-test split configuration 

is illustrated in Figure 4.3 a-f. Plots of predicted pressure vs experimental pressure are 

additionally used to indicate potential outliers, while serving to illustrate potential weak ranges 

of the model, and are provided in Figure 4.5a-d. 

Model development has been performed using Python (v. 3.6.8) and the Keras (v. 2.2.4) library 

running on a Tensorflow (v. 1.12.0) backend to develop the neural network and train the model. 

Other libraries utilized in model development include scikit-learn (v. 0.20.2), Pandas (v.0.24.1) 

and Numpy (v. 1.15.4). Matplotlib (v. 3.0.2) is a library, which has been used to develop the 

plots and illustrations in Figures 3.1a and 3.1b, all plots including and between Figures 4.1 to 

4.5, and the appendix Figure B.1 and Figure C.1. 
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Figure 3.2: Illustration of the model validation strategy. The dataset is divided into separate indices used for training 

and hold-out validation in a stratified manner. The training indices are further sub-divided for cross-validation into 

train-test indices over 10 folds. The algorithm for splitting cross-validation indices depends on whether or not 

grouping is being investigated. In the absence of grouping, indices are divided randomly to form sets of pre-defined 

sizes. If grouping is investigated, entire groups are divided such that the same group cannot be used to both train 

and test a fold. Note limited selection has been performed based on hold-out validation results to avoid overfitting.  
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3.8 Hyperparameter Optimization 

A significant risk is present when attempting to optimize model hyperparameters in that 

overfitting is possible. Cawley & Talbot (2010) elaborates that whenever model selection is 

performed over a limited dataset, overfitting is a risk, whereby iterating hyperparameters risks 

improving model results by providing a regression highly specific to the sample data while 

lowering generalization ability across unseen data. A significant advantage to the incorporation 

of both hold-out and cross-validation is that optimization of the model is facilitated while 

lowering the risk of overfitting. By separating the dataset into train and validation sets prior to 

cross-validation being performed allows for the model to be tested post-tuning to truly unseen 

data. Thus, the model parameters may be iterated to yield improved results for both cross-

validation testing and hold-out validation without significant risk of overfitting occurring 

unnoticed. Seed tests being performed on models further lends confidence to the model results 

in that surety is provided that results are only valid for a favourable train-test split. Model 

parameters have been tuned in a hyperparameter optimization approach, using a grid-search 

iterative technique to achieve a model accuracy close to the optimal result. Due to the 

computational times involved in training highly non-linear, multi-layered neural network 

regression models, the optimal neural network could not be determined. As part of an iterative 

procedure, a wide range of conditions for each parameter has been specified before training, as 

such the true optimum cannot be obtained. Additionally, variance in the results obtained when 

training successive models may result in the highest scoring model alternating between several 

different parameter combinations. Nevertheless, an iterative approach has allowed for 

significant improvement to results, and likely yields a result close to optimal. 

Hyperparameter tuning has been performed on several parameters, including: The number of 

hidden layers and neurons, the activation function of the hidden layers, the optimizer used to 

minimize the training loss function, the training batch sample size and the number of epochs 

over which the model was trained. The tuning was performed by means of a grid-search 

procedure, and iterating over a wide number of parameters by means of pre-defined values in 

a range. This procedure involved cross-validation yielding the final performance metric, and 

10-fold validation was performed for each combination of parameters. The output of the grid-

search was the mean cross-validated R2 score and standard deviation. Models with the best R2 

score and a sufficiently low variance were selected as potentially the best model, and were 

further tested by performing hold-out validation in addition to cross-validation over a variety 

of different random seeds to ensure results were not specific to a favourable train-test split. 
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Finally, the best model was selected based on the criteria of adequately low cross-validation 

variance, and a high scoring hold-out validation test. 

The hidden layers of the neural network serve to greatly increase computational time, while 

allowing more complex behaviour to be modelled through the activation functions of hidden 

layers. The presence of hidden layers allows non-linearity to be introduced into the model by 

means of activation functions (Leshno et al., 1993). As such, models have been tested using 

configurations with no hidden layers, thus yielding a baseline for minimum performance. A 

neural network comprised of no hidden layers, and only an input and output layers functions 

as a linear model. Models H & I are such models, bearing limited polynomial functions which 

poorly model the system behaviour, as indicated in Table 3.4. Optimal neural network 

configurations have been found to consist of either two or three hidden layers, and have the 

advantage of training in an acceptable time frame. It is expected that at least one hidden layer 

is required due to the high non-linearity of the dataset resulting from the significant differences 

in equilibrium conditions arising from sI and sII hydrates of similar composition that may be 

present in the training set. During the tuning of the number of neurons per hidden layer, due to 

training time a constraint has been specified such that the number of neurons is constant across 

each of the hidden layers. As such, results in Table 3.4 specify the number of neurons present 

in each hidden layer. 

The role of the activation function in a neural network, is to govern whether or not a neuron is 

turned on and transforms incoming input during the training process, where a deactivated 

neuron does not alter an input, while an activated neuron transforms input according to a pre-

defined function. Leshno et al. (1993) details that any continuous function can be modelled by 

a non-constant activation function, provided the activation function is not a polynomial.  As a 

regression is being performed, each model constitutes a single neuron in the output layer which 

corresponds to the predicted pressure. In all neural network models with the exception of Model 

E, a linear activation function is used for the output layer, so as to provide a continuous, real 

output. Model E achieved better results using the softplus activation function as opposed to 

linear, due to its use of the sigmoid activation function governing hidden layer output. 

Regarding the activation function of the hidden layer, as the dataset is highly non-linear, a non-

linear activation function is required. Utilizing a linear activation function in the hidden layers 

would merely result in a linear approximator being developed, unable to accurately predict the 

hydrate equilibrium conditions. As such, several non-linear activation functions were selected 

to be iterated as part of the grid-search procedure. Amongst these non-linear activation 
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functions, are the rectified linear unit (ReLU) and sigmoid activation functions. Glorot & Begio 

(2010) discusses the difficulty of implementing the sigmoid activation for deep-learning 

application. The ReLU hidden layer activation function successfully introduces non-linearity 

into the system and allows complex behaviour to be learned (Maas et al., 2013). A constraint 

on the selection of hidden layer activation functions has been made, in that the activation 

function selected is constant across all hidden layers. The following equations represent the 

activation functions used to develop the neural network models in this investigation. In most 

cases, ReLU activation is applied to hidden layer activation, while Linear activation is applied 

to the output layer as a continuous output is desired. With the exception of linear activation, 

which does not transform the input into a neuron, activation functions in a deep learning context 

are provided and discussed in Nwankpa et al. (2018). 

𝐿𝑖𝑛𝑒𝑎𝑟: 𝑓(𝑥) = 𝑥                                                                                                                               (3.2) 

𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠: 𝑓(𝑥) = ln (1 + 𝑒𝑥)                                                                                                         (3.3) 

𝑅𝑒𝐿𝑈: 𝑓(𝑥) = max(0, 𝑥)                                                                                                                 (3.4) 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑: 𝑓(𝑥) =
1

1 + 𝑒−𝑥
                                                                                                               (3.5) 

The purpose of training the model is to lower the loss function, thus ensuring an improved 

correlation between the model and training data. In order to achieve this, the model is trained 

according to an optimizer which serves to minimize the loss of the model when comparing to 

training data. The optimizer should be selected such that the global minima, rather than some 

local minima is obtained when seeking to minimize the loss. Optimizers function by 

minimizing a cost function during training (Kingma & Ba, 2014). Highly popular optimizers 

include the stochastic gradient descent (SGD) optimizer, which has achieved numerous 

successes in machine learning and is widely used in machine learning (Hsueh et al., 2019; 

Kingma & Ba, 2014). The SGD and similar approaches however do include the learning rate 

of the optimizer as an additional hyperparameter, which adds to the extensive list of parameter 

iterated during the grid-search procedure. Learning rate schedulers such as the step decay 

method, which adjusts the learning rate after a number of epochs, could serve to reduce the 

number of hyperparameters (Hsueh et al., 2019). An alternate to this approach is to utilize some 

of the newer optimizers which incorporate adaptive learning rates. Several optimizers have 

been investigated during model development, and in the majority of cases the best results 

during hyperparameter optimization has been achieved by means of the Adam optimizer, a 
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gradient-based optimizer which is discussed and introduced in Kingma & Ba (2014). As an 

adaptive learning rate optimizer, Adam allows for fewer hyperparameters to be iterated, and 

thus simplifies model selection. Due to success using this optimizer, and the reduced number 

of hyperparameters requiring tuning, all models listed in Table 3.4 have been developed using 

the Adam optimizer. 

3.9 Model Description 

During the course of model development, it became clear that multiple models would be 

required in order to satisfy the research objective. In order to judge the effect of excluding a 

large quantity of non-multicomponent data from model development, two neural networks 

have been developed. One neural network is trained and tested using exclusively 

multicomponent data, while another is trained and tested using a wide-ranging dataset 

including hydrate equilibrium data for pure methane and methane binary gas phase mixtures. 

Developing models from two different datasets provides an indication as to whether or not 

sufficient multicomponent data is available to reliably predict unseen data when comparing the 

results of both models. Additionally, proving the model yields adequate results when trained 

with a multicomponent exclusive data will indicate a lower-estimate for the multicomponent 

predictive capability of a model trained on the complete dataset. Having identified that two 

separate models will be required to accommodate the different datasets, the impact of including 

grouping in model training and testing is also to be assessed. As discussed, grouping of data 

by source has been performed so as to facilitate a stratified split for a separate hold-out 

validation set in order to ensure a wide range of data is validated. A benefit of this grouping 

configuration is that the dependency of the model on individual sources of experimental 

equilibrium data on certain ranges of conditions can be assessed. The heavy reliance of the 

model upon individual sources of data to cover specific ranges of data is often unwanted, 

particularly when considering experimental sources of data, which possibly used outdated 

measurement practices for identifying the equilibrium point, or may not have adequately 

accounted for metastability. While the goal of the data sampling campaign was to gather an 

abundance of equilibrium measurements over a wide range, thus rendering factors such as this 

insignificant, the limited number of independent groups results in the grouping practice being 

a necessary supplement to model development. As such, for each dataset two neural networks 

are developed, one where cross-validation is performed by grouping data, and another where 

grouping is not considered during cross-validation. It is expected that ungrouped cross-

validation results will be significantly higher than grouped results, due to a relative shortage of 



Page | 42  
 

multicomponent gas hydrate equilibrium data over several ranges of conditions. Each of these 

4 models discussed employ both hold-out validation and cross-validation. Models A, B, F and 

G cover these cases, and are summarized in Table 3.4. In addition to these 4 models, additional 

neural networks will be developed without validating with a hold-out dataset, and exclusively 

using cross-validation to assess model performance. Developing two models for each dataset 

where grouping is performed without a hold-out validation set allows for 10% more data to be 

included in the training set, and while parameter tuning cannot be performed so as to attempt 

to optimize these models, an indication of model cross-validation performance when the 

training set size increases by a relatively small amount. Models C and D cover these cases. 

Finally, due to the abundant use of the sigmoid activation function for hidden layer activation 

by numerous similar studies in the field, and a relative lack of studies in the field employing 

the Rectified Linear Unit (ReLU) activation function for hidden layer activation, a final 

additional model is trained using the Sigmoid activation function so as to indicate similar 

performance between the model employing sigmoid activation, and another employing ReLU 

activation. This model is developed in Model E. Finally, in order to facilitate comparison 

between Model B and G which have been developed with different parameters, Model J has 

been trained using all the same parameters as Model G with the exception of performing 

grouped cross-validation. 

In addition to developing neural network models for the compiled datasets, simple polynomial 

regressions have additionally been developed for comparative purposes, and to serve as a lower 

baseline for model performance. These models have been developed by fitting a polynomial of 

a specific degree to the data provided. Naturally these linear models are expected to perform 

significantly worse than neural network models due to inability to distinguish between sI and 

sII hydrates in many cases. Models H and I cover these cases. 

Several models have been developed so as to provide a comparative basis of results using the 

same sets of data. This approach has been selected due to the datasets being used in this 

investigation significantly differing from others in the field used to develop similar neural 

networks. In order to definitively assess model results, industrially applied methods tested 

under the same datasets used in this investigation will provide a good basis for comparison. 

While assessing industrially applied hydrate prediction methods, particularly computerized 

models, falls outside the scope of this research, a comparative study is certainly viable due to 

the large size of the datasets provided and could be investigated in future studies to further 

assess the viability of the neural network methodology on a wider scale in terms of regressions 
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performed in the chemical and petroleum industries. Several studies such as Ballard & Sloan 

(2004) have assessed several industrially popular software models using limited 

multicomponent and natural gas hydrate equilibrium data. Due to the significant differences 

between datasets used in this research and other studies, extrapolating model accuracies from 

other works cannot supplant actual testing industrial models with the datasets used in this 

research.  Based on preliminary comparison with other studies such as Ballard & Sloan (2004), 

results do suggest that the neural network models developed in this research, Particularly 

Models F and G, do fall within an acceptable range of accuracy, and further investigation into 

comparison between popular software methods and these neural networks is worthwhile. 
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CHAPTER 4 RESULTS AND DISCUSSION OF MODELS 

 

Results of neural network models have been assessed according to cross-validation bias and 

variance, in addition to the validation error of testing the final model using the hold-out 

validation set. A sensitivity analysis by means of an iterative grid-search procedure has been 

used to select model parameters, and the best performing model has been selected based on the 

criteria of hold-out validation error and cross-validation performance, specifically in terms of 

variance across 10 folds. The primary scoring metric used in this study is the coefficient of 

determination, or R2 score. The results for all models developed are available in Table 3.4 

𝑅2 = 1 −
∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡)

2

∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦̅𝑡𝑟𝑢𝑒)2
                                                                                                      (4.1) 

As 10-fold cross-validation is performed, and cross-validation seed tests have been developed, 

it is possible to visualize the results. Figures 4.1a & 4.1b plot the 10-fold cross-validation 

variance in the form of a box-plot. As only 10 folds are tested, the error bars for the box plot 

extend to the minimum and maximum result, rather than the traditional approach of extending 

error bars up to the second standard deviation. This approach is taken due to the intention of 

the diagram to illustrate the variance between cross-validation folds, in an environment where 

the presence of poor-scoring folds is a highly significant statistic. Figures 4.2a-d plot the effect 

of altering the random seeding of the train-test split for cross-validation, a useful means of 

indicating the highly non-Gaussian nature of the dataset, while providing a means of ensuring 

that the model has not simply been trained to accurately model a convenient train-test split 

seeding. Seed tests have been included where cross-validation on the testing fold exhibited a 

low variance. Seed tests for models exhibiting a high cross-validation variance have not been 

included, as their purpose is to illustrate low variance models are not only valid for a favourable 

train-test split. 

Cross-validation and hold-out validation results for all models are summarized in Table 3.4, 

while cross-validation variance is illustrated in Figure 4.1a & Figure 4.1b. Seed-Tests are 

presented in Figures 4.2a-d to indicate the non-Gaussian complex nature of the dataset, while 

Cross-validation indices have further been illustrated in Figures 4.3a-f to illustrate how train-

test indices are randomized despite grouping occurring. Figures 4.4a & 4.4b provide the hold-

out validation indices for models applying hold-out validation. The purpose for including these 

indices is to illustrate the stratified manner in which data is divided into training and validation 

sets.  
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Before discussing model results, it is important to clarify that several factors have necessitated 

the development of multiple models. Model G is trained and tested using the complete dataset 

without grouping restrictions, and serves as the model which would be used to predict real 

natural gas hydrate equilibria for practical application. Information regarding performance for 

exclusively multicomponent data, and the dependence of the model on individual sources of 

experimental data however, cannot be obtained from model G alone. For this reason, separate 

models have been developed to assess these factors and to later be used to conclude that the 

results model G likely indicates actual performance on unseen data, and that the model could 

viably be used in practical application, after testing using specific cases applicable to the 

application. The following section will appear rather verbose due to the number of factors used 

to assess each model, and as such routinely refers to each model by letter. A summary of each 

model developed is provided in Table 3.4. For shorthand reference, models A and B assess 

model dependency on individual sources to cover equilibrium conditions where little overlap 

between independent sources is present, models C, D, and E supplement models A and B by 

excluding hold-out validation and thus injecting slightly more data into cross-validation. 

models F and G serve to provide final results for each dataset. Comparison between models in 

each category is performed to prove that complete dataset models accurately predict 

multicomponent data. In order to facilitate comparison between models B and G, model J was 

developed using the parameters and topology of G. Similar results between models J and B 

result in further discussion of unoptimized model J being unnecessary. The sole purpose of 

model J is to ensure that grouped validation does not experience overfitting when using the 

higher neuron count of G. Model G is regarded as the best model developed in this 

investigation, and serves as the proposed universal model. All other models presented have 

been designed to lend further credibility towards model G, and will be discussed extensively. 

As expected, polynomial regression models listed in Table 3.4 prove vastly inferior to the 

developed machine learning models. This further serves to illustrate the highly non-linear and 

multimodal nature of the equilibrium datasets, which a linear model proves incapable of 

adequately accounting for. 

As several models have been developed, it is necessary to first compare model results according 

to dataset before discussing trends. Observations arising when comparing multicomponent 

exclusive models A & F are similar to the those between results of Complete Dataset Models 

B & G, and as such parallels can be drawn between models. As the purpose of this investigation 

is to develop a natural gas hydrate prediction model, detailed discussion regarding the 
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differences between multicomponent exclusive models as a result of grouping is held, and the 

similar behaviour between Complete dataset models will be noted by drawing on this 

discussion. 

As discussed, it is expected that grouped cross-validation results be worse than ungrouped 

results. On examining the results of neural network models A, C & F, which are trained using 

the multicomponent exclusive dataset, it can be seen that there is a significant difference in 

results between grouped and ungrouped models. Model A has been developed to incorporate a 

10% hold-out validation split, and a 20% cross-validation train-test split, thus facilitating a 

grid-search sensitivity analysis. As detailed in Table 3.4, the model yields a coefficient of 

determination of 0.9062, a standard deviation of 0.0541, and a hold-out validation R2 score of 

0.9511. The cross-validation results prove unexpectedly low, likely due to the randomized 

group split practice being implemented for 10-fold cross-validation. This result starkly 

contrasts the results Model F, similarly incorporating a hold-out validation split of 10% and a 

cross-validation train-test split of 30%, but performs cross-validation without regard to 

grouping. Model F achieves a cross-validation R2 score of 0.9707, a low variance of 0.0114 

and a hold-out validation score of 0.9787. As such, it can be seen that model A, through the 

practice of grouping cross-validation test indices, achieves a significantly worse R2 score, 

indicated by a cross-validation R2 score lower than model F by 0.064, with a significantly 

higher variance. As the final validation score from the hold-out dataset is calculated by using 

the same indices across models A, C & F, one may expect the hold-out validation R2 score to 

be approximately the same across model. This however is not the case, as Models A and F have 

undergone a grid-search procedure to yield close to optimal parameters based on both hold-out 

and cross-validation scores, thus the disparity between validation scores is expected. Thus it 

can be concluded Model F is clearly the best model of those developed using the 

multicomponent exclusive dataset. As such a significant disparity of cross-validation results is 

present between models A and F, the cause is worth investigating so as to gain further insight 

from the grouping of cross-validation indices. Cross-validation for Model A is performed 

according to a grouped practice, which randomly selects entire groups to be used for testing a 

specific cross-validation practice. Unlike Model F, developing a convergent model A using a 

cross-validation train-test split of 30% proved unsuccessful, with average cross-validation R2 

scores below 0.9, the bare minimum considered by this investigation. As such, a 20% train-test 

split was imposed for selecting groups being separated into train and test sets for this model. 

While lowering the amount of testing data allowed a marginally larger training set, it is likely 
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that insufficient independent data groups are present to adequately execute the grouped-

randomization split, due to a lack of multiple sources covering overlapping ranges of 

equilibrium conditions. This indicates that it is possible that the model is highly dependent on 

individual data groups to cover wide ranges of conditions. In order to test the validity of this 

claim, Model C was developed to provide a slightly larger amount of data available to cross-

validation by not implementing a hold-out split. As such, the entirety of groups provided in the 

multicomponent dataset are present. As a hold-out validation set is not present, this model 

cannot undergo an optimization attempt, instead a few widely different parameter values have 

been selected to determine a favourable model as opposed to the highly encompassing grid-

search. Using a train-test split of 30%, grouped cross-validation yields highly similar results to 

model A. Model C results in a minor improvement to the R2 Score of Model A, a 0.0093 

increase, with a slight reduction in the standard deviation by 0.0091. This improvement in 

results is rather insignificant, despite the 30% train-test split being facilitated. While an 

extensive grid-search could not be performed for model C, even an unoptimized configuration 

for model F provides significantly improved results.  

A lack of improvement to the cross-validation results of model A through the slightly greater 

in size dataset of Model C can be seen. This allows the elimination of the possibility that model 

A yields poor results simply because a very unfavourable hold-out validation split has been 

made. Thus, it can be seen that establishing a model capable of predicting the gas hydrate 

equilibrium pressure with a high accuracy is very unlikely when using the multicomponent 

exclusive dataset and testing the model by a randomized grouping cross-validation procedure. 

Figure 4.1a: Multicomponent exclusive dataset model 

cross-validation variance 

Figure 4.1b: Complete dataset model cross-validation 

variances: Model G selected as optimal model in this 

investigation due to low variance and mean R2 score  
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As the possibility that model A is simply underperforming due to an unfavourable hold-out 

validation split, or an unfavourable cross-validation train-test split has been eliminated, it can 

be concluded that the superior performance of model F is due to the ungrouped cross-validation 

being performed. Model F applies cross-validation by randomly selecting 30% of the training 

data after the original dataset is split into a training set and a held-out validation set, to be used 

in each fold to test the model. As data is divided between train and test sets in a completely 

random manner, there is expected to be a significant degree of overlap between the train-test 

splits of different folds, however as 10 folds are being implemented, it is exceedingly unlikely 

that the majority of folds will exhibit a high degree of similarity. Figure 4.3e provides the 

indices of the training set, which is split during cross-validation, and indicates that highly 

Figure 4.2b: Cross Validation Seed Tests for Model D: 

Unoptimized version of Model B with additional data 

passed to cross-validation through lack of a hold-out set 

Figure 4.2a: Cross Validation Seed Tests for Model B: 

Note reasonable interquartile ranges. Individual weak 

folds due to lack of overlapping data groups 

Figure 4.2c: Cross Validation Seed Tests for Model F: 

Proves low variance solutions are possible with a model 

trained and tested only using multicomponent data 

Figure 4.2d: Cross Validation Seed Tests for Model G: 

Primary model selected in this investigation, yields the 

lowest variation with randomization changes. 
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similar folds are very improbable. Nevertheless, in order to prove that the results model F are 

not high simply due to a favourable randomization across the 10 cross-validation folds, seed 

tests have been performed and are indicated in Figure 4.2c. Figure 4.2c indicates that average 

cross-validation performance is approximately constant across several different randomization 

seedings, with the lowest single-fold R2 score exceeding 0.94. Figure 4.2c additionally serves 

to prove that the model is not overfitted, while the hold-out validation R2 score of 0.9771 lends 

further legitimacy to this claim. As model F employs random selection of indices, and the 

results are a significant improvement to model A, it can be concluded that the higher accuracy 

of model F is due to the completely randomized train-test split of cross-validation better 

allowing for a more balanced distribution of equilibrium conditions across the training and test 

sets. This behaviour is contrasted by model A, which prevented entire groups from being used 

in both training and testing sets, thus withholding wide ranges of data from the training sets of 

various folds. This behaviour is confirmed in Figure 4.1a, where model A can be seen providing 

highly accurate (R2 > 0.98) predictions for some folds, while a relatively large number of folds 

provide poor predictions of less than 0.9 and extremely poor predictions of R2~0.825, while 

Model F displays a relatively low variance in results, and the lowest fold score exceeding 0.945. 

As such, in order to achieve a high scoring model developed from the multicomponent 

exclusive dataset while applying grouped cross-validation, a larger dataset is required.  

While model F clearly is more likely to yield accurate predictions regarding the hydrate 

equilibrium pressure for a gas of a specified composition at a certain temperature, there are 

certain factors which must be considered concerning the reported model accuracy for 

ungrouped cross-validation. The disparity in cross-validation results between models A and F 

proves that the model is highly reliant upon certain sources to cover specific ranges of 

conditions where little overlap is prevalent between data groups. The predictions of the 

ungrouped trained model F are thus highly susceptible to any experimental or measurement 

errors, which are present in data used to train the model. As discussed, the presence of 

experimental or measurement error is of great concern when considering both datasets used to 

train models, due to the high variability in the methodologies of experiments measuring the 

hydrate equilibrium conditions for specific gases, and a lengthy history of data being published 

in the field. Verifying as to whether or not metastability effects were adequately accounted for 

in data sources in the field occasionally proves impossible, often due to outdated techniques of 

measuring the equilibrium point and the lengthy time periods over which an acceptably 

accurate equilibrium measurement occurs. Ward (2015) does state that equilibrium data for 
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components such as hydrogen sulphide reported in literature may need revision to confirm 

accuracy. The same may well hold true for sources of other components or mixtures using 

inadequate measurement techniques or dissociation times. Inadequately accounting for 

metastability effects does significantly alter the nature mass transfer and kinetics when 

considering the equilibria of a sample, thus likely altering the equilibrium conditions 

significantly. Due to a notable lack of multicomponent gas equilibrium measurements for a 

wide range of conditions, it is not possible to merely accept verifiably perfect measurements 

as worthy of inclusion into the datasets. Neural networks inherently require a vast amount of 

data to train and test, the result of an inadequate range of data being clear from comparisons 

between model A and F.  While care has been taken to prioritise including data, which 

reportedly occurs at equilibrium, and not somewhere within the metastable region, it is 

expected that potentially a non-insignificant number of equilibrium measurements located in 

both model datasets could bias the model for certain ranges of conditions, resulting in 

equilibrium pressure predictions outside the expected margins of error. Nevertheless, model A 

through practice of grouping serves to provide a lower-estimate of model performance while 

satisfying many of the concerns raised as to the impact of experimental or measurement errors 

on the predictive capability of the model. With a lower estimate exceeding a cross-validated 

average R2 score of 0.90, when accounting for the fact that the lower score is largely due to a 

lack of data covering certain ranges, it can be seen that the results model F are feasible, and the 

true model performance if tested with further data would likely lead to a similar result. A 

conclusion, which may be drawn from models A, C and F, is that a convergent, accurate model 

can be developed using a multicomponent dataset. This can be seen through model F yielding 

for hold-out validation a mean absolute percentage error of 7.563% when predicting the 

equilibrium pressure of a specific gas mixture for a certain temperature, a figure that is within 

the expected performance when considering certain established models of gas hydrate 

prediction. This figure is particularly significant, as the testing set exclusively contains 

multicomponent gases, and results are thus free from potentially being inflated by single 

component gases or certain binary component mixtures which may prove simpler to model 

than multicomponent mixtures. Having discussed the neural network models trained using the 

Multicomponent Exclusive dataset, parallels may now be drawn from the observations on the 

disparity between the multicomponent exclusive grouped and ungrouped cross-validation 

neural network models A, C & F, and the complete dataset models of B & G. As with the 

grouped cross-validated model A and the ungrouped cross-validation model F, grouped cross-

validated model B reports a significantly lower coefficient of determination than ungrouped 
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cross-validated model G. However, the difference between results of models B & G are 

significantly smaller than those between the multicomponent exclusive models. Unlike the 

multicomponent exclusive models, notably model A, all complete dataset models undergo 

cross-validation using a train-test split where 30% of training data is used to form the cross-

validation test set for each fold, following the hold-out train-validate split, if applied. Model B 

reports an average cross-validation R2 score of 0.9603, and a standard deviation of 0.0181 for 

10-fold grouped cross-validation. Hold-out validation for Model B yields an R2 score of 

0.9856. Model G reports an average cross-validation R2 score of 0.9860, with a standard 

deviation of 0.0035 across 10 ungrouped folds. The hold-out validation R2 score for model G 

is 0.9926. For comparative basis, the mean absolute percentage error for model G is given as 

6.877%. An immediate observation arising from these results is that the models trained on the 

complete dataset models perform significantly better than the multicomponent exclusive 

dataset models in terms of cross-validation performance. As discussed, this behaviour is 

expected due to the significant increase in dataset size, the multicomponent dataset consisting 

of 670 experimental equilibrium measurements as opposed to the complete dataset including 

1209 experimental equilibrium measurements. Furthermore, as pure and binary components 

usually prove less complex to model than multicomponent gases, model performance for the 

complete dataset is expected to be slightly increased due to the likelihood that the model will 

better predict the equilibrium conditions of pure of binary gases than complex multicomponent 

gases. Comparisons between Models A, C & F revealed that grouped cross-validation models 

were significantly affected by a lack of data covering certain ranges of conditions. Through the 

inclusion of pure and binary component equilibrium data, it is possible that the model is more 

capable of predicting multicomponent ranges where only a few if more than one source 

contains overlapping conditions.  
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Figure 4.3f 

Figure 4.3d 

Figure 4.3b Figure 4.3a 

Figure 4.3c 

Figure 4.3e 

Figures 4.3a-f: Cross-validation train-test indices. Illustration of indices used in the training and testing of the 

various neural network models developed. Included to illustrate the variability of train-test sets across the 10 cross-

validation folds for the various models developed.  
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This behaviour is due to binary mixtures such as methane-propane being capable of exhibiting 

sII hydrate formation, thus providing a basis for predictions for multicomponent gases under 

conditions where few, if any multicomponent data points were present during training. Due to 

this effect, the inclusion of pure and binary methane gas mixtures introduces to the model in 

predicting conditions where training data is lacking, it is very likely that not all of the increased 

model performance is due to simply the presence of easier to predict equilibrium points when 

comparing the multicomponent exclusive grouped model A with complete dataset model B, 

and ungrouped multicomponent model F with complete dataset model G. As such, it can be 

seen that the inclusion of pure and binary component data into the training dataset does not 

hamper the model or provide grounds for dismissing model results. Furthermore, the results of 

model J being similar to B while using the same parameters and topology as G facilitates 

comparison of model B with G. 

A significant result of these complete dataset models are the seed tests illustrated in Figure 

4.2d, where it can be seen that the weakest fold for model G is R2 >0.97, a major improvement 

over even model F. As discussed, this observation is due in part to the increased size of the 

dataset with more data which proves simpler to model than multicomponent data, however this 

also indicates the possibility of a damping effect, whereby the presence of pure and binary 

methane gases serves to reduce the effect bad data points may have on the model. The damping 

effect further may serve to improve predictive capabilities of the model in addition to this 

negative factor of increasing the number easily predicted samples in the test set. This will be 

further elaborated after discussing the variance of results. 

A notable observation when considering models B & G is that the hold-out validation score is 

approximately the same, with a relatively minor deviation of 0.0069 in terms of the coefficient 

of determination. This indicates that sufficient independent data groups are present in the 

dataset to facilitate grouped cross-validation practices, as the tuned model parameters both lead 

to a similar result when tested using the same hold-out validation set. These hold-out indices 

are illustrated in Figure 4.4b, which depicts the hold-out split indices being constant between 

models B & G. Model B has been developed using the complete dataset, a stratified 10% hold-

out validation set, and a randomly selected 30% group cross-validation procedure across 10 

Folds. Unlike model A, model B exhibits a relatively low standard deviation of 0.0181, thus 

indicating that most cross-validation folds present similar R2 scores. Figure 4.1b illustrates the 

relatively low variance of model B, achieving a minimum fold R2 score of approximately 0.92. 

Although the variance of the cross-validated model appears low, seed tests are performed in 
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Figure 4.2a to ensure that results are not simply valid for a favourable train-test split random 

seeding. Figure 4.2a indicates that, box-plots do correlate to a certain degree with the 

Interquartile range for model B in Figure 4.1b. A variance in results when altering the random 

seed used to determine which groups are used to develop the training and testing sets for cross 

validation is expected due to the highly non-Gaussian nature of the dataset and the limited 

number of equilibrium data samples, which further aggravates variance between results of a 

different random seeding. Thus, as the model has undergone a grid-search optimization 

procedure concentrated on a certain random seeding, it is expected that other random seeds will 

display varied results, but similar interquartile ranges over 10-fold cross-validation. While the 

interquartile ranges indicated in Figure 4.2a largely correlate for most folds with the variance 

box plot in Figure 4.1b, the seed test indicates that for certain individual folds, unexpectedly 

poor R2 scores are yielded, with values as low as 0.805 resulting for single folds. Unlike model 

A, where very poor predictions are noted across the interquartile range, these weak folds are 

the result of singular poor folds. Due to the adequate interquartile ranges, it is likely that these 

weak folds present in Figure 4.2a are from the model attempting to predict a certain range 

multicomponent equilibrium conditions, which is represented only by a single source where 

pure and binary component data proves insufficient to adequately model the complex 

multicomponent nature of the gas in question. This significant outlier only appears in a few 

random seedings, thus indicating that the issue is likely due to a single, completely isolated 

group or two, which are present in the test set. As all training data is used to train the model 

tested on the hold-out set, this weak fold is covered in the final model by the singular 

problematic group or two guaranteed being present in the training set. Another possibility is 

that there are several data points present in the dataset, likely from the same groups, which do 

not truly report equilibrium conditions, perhaps due to the metastability effect not being 

adequately accounted for, or due to measurement error. As experimental sources of data have 

been checked where possible to ensure obvious errors have been excluded, it is however 

unlikely that these poor-quality points would have such a significant effect on individual folds. 

Additionally, as is demonstrated by the consistent performance of model G across seed tests as 

illustrated in Figure 4.2d, no exceedingly weak folds are present. As such, weak folds present 

in Figure 4.2a for model B are most likely due to isolated ranges of data. 

As with multicomponent exclusive model C being developed in the absence of a hold-out 

validation set, models D and E have been developed for the complete dataset to assess potential 

improvements to model B by providing a marginally larger cross-validation dataset. Just as no 
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significant improvement to model A is obtained through model C, models D & E fail to provide 

a significant improvement to the results of model B. This is expected, as a cross-validation 

performed without a hold-out validation set required to attempt optimization is unlikely to 

compete with a model which has undergone an extensive grid-search to yield parameters near 

the optimal configuration. Useful information can however be garnered from models D & E 

due to the varied activation functions through which these models are trained. Many similar 

studies have made extensive use of the sigmoid hidden layer activation function due to its 

ability to introduce non-linearity to the system, and illustrating how the Rectified Linear Unit 

(ReLU) activation function is able to successfully introduce non-linearity to the system while 

yielding similar results to a model trained using the sigmoid activation function. Model D has 

been developed using the sigmoid activation function for hidden layer activation, while output 

layer activation is achieved via the softplus activation function. Model E has been developed 

using the ReLU activation function for hidden layer activation, while a linear activation 

function determines the pressure value provided by the output layer. The results for both 

models and their respective topologies are provided in Table 3.4. As can be seen, results from 

both models are largely similar, with the cross-validation average and standard deviation 

displaying slight differences, which can be explained by variance due to slight differences in 

the results of replicated models, and observations of the bias-variance trade-off. This is further 

compounded as Models D & E have been developed with a different number of hidden layers. 

As expected from observations in Glorot & Bengio (2010) and Maas et al. (2013), training 

times were longer for using the sigmoid activation function for hidden layers than the ReLU 

function, while ReLU models achieved slight improvements in regression performance. The 

factor of training time proves significant considering the number of models developed during 

hyperparameter optimization, and is the reason all other models in this investigation have been 

developed using ReLU activation for hidden layers. Models D & E indicate that for the datasets 

used in this investigation, the ReLU activation function performs just as well as the sigmoid 

activation function for hidden layer activation. This is a significant observation, as all other 

neural networks in this research have been developed using a ReLU activation function for 

hidden layer activation, and a linear activation function for output layer activation. The reason 

that ReLU activation was applied so prolifically in the models developed in this research, is 

that a slightly faster training time was observed over sigmoid activation, and allowed the time-

span over which parameter grid-searches were conducted to be shortened. 

 



Page | 56  
 

The results obtained by models B, D, E & G are obtained through cross-validation and, where 

applicable, hold-out test sets, which includes pure methane, binary methane mixtures and 

multicomponent mixtures up to and including natural gas mixtures. Ideally, these models 

would be tested using exclusively multicomponent data, even though training included pure 

and binary components. This however is not possible due to the limited availability of data. It 

is essential to test model performance on pure methane and binary methane mixtures even 

though these are not relevant to natural gas mixtures, as ensuring the model has not been 

overfitted is of paramount importance. A more prudent final validation practice, for those 

seeking to apply a model such as the one developed in this investigation, would be to test the 

performance of these models on completely independent, unseen equilibrium natural gas 

mixtures, which have not been included in this investigation. This could be performed when 

practical application is considered, where the model is tested on gas mixtures and conditions 

relevant to those likely encountered during operation. The act of not validating the potential 

variance of the model, even for pure or binary mixtures, which were used to train the model, 

would reduce confidence in the final reported accuracy, as there would be the potential for 

unforeseen weak ranges of multicomponent data which lie outside the range of conditions 

which have been tested by the multicomponent validation set. 

Overall, the positive results of model F reveal that a neural network based on multicomponent 

hydrate equilibrium experimental data is indeed viable. While the prediction of 

multicomponent gas hydrate equilibrium pressure could possibly be slightly less accurate than 

the reported results of model G, the actual results when tested with real fluids are most likely 

significantly more accurate than the results of models A and F. Thus, the addition of pure and 

Figure 4.4b: Complete Dataset Hold-out Validation 

set indices. Stratified selection of indices 

Figure 4.4a: Multicomponent Exclusive Hold-out 

validation set indices. Stratified selection of indices 
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binary components into the training dataset likely provides a significant increase in potential 

model accuracy in systems where multicomponent data is lacking over a number of ranges of 

conditions. These additional components further serve to dampen the effect of experimental 

error on model accuracy. As the results of model B are not in themselves unacceptable, and 

within the margins of error, and model G achieves a highly accurate regression model, it can 

be seen that complete dataset neural network models are less likely than the multicomponent 

exclusive dataset neural network models to be heavily affected by potential experimental or 

measurement errors which are present for various equilibrium samples in the dataset. Thus, the 

presence of pure methane and binary methane mixture data will serve to dampen the error 

resulting from inaccurate data. In conclusion, as the complete dataset contains all elements of 

the multicomponent dataset, it is thus possible to conclude that the complete dataset neural 

network models, particularly model G, are indeed capable of accurately predicting 

multicomponent data. This claim is further reinforced through the lack of weak folds for model 

G indicated in Figure 4.1b and Figure 4.2d.  As models F and G have been developed using the 

same neural network topology, and as the complete dataset contains all data from the 

multicomponent dataset, it can be concluded that the complete dataset neural network 

accurately models multicomponent data on account of the positive results of both 

multicomponent exclusive model F and complete dataset model G. The final model developed 

on the complete dataset is less likely to yield poor predictions in ranges where limited 

multicomponent data is available than for multicomponent exclusive dataset models.  

Finally, it is worth emphasizing that cross-validation is merely a tool, which allows further 

insight as to the model’s ability to predict unseen data, and to check whether or not overfitting 

has been performed. Hold-out validation is a further metric which indicates the model’s ability 

to predict truly unseen data which has been excluded from cross-validation, and provides a 

basis for optimizing the model parameters.  In order to utilize the neural networks developed 

in this research, the entire dataset could be used to train the model using the network topology 

and parameters for the desired configuration, listed in Table 3.4. The entire dataset would be 

used to train a neural network which would be applied to any gas-hydrate system within the 

constraints listed in Tables 3.2 & 3.3, depending on whether the multicomponent exclusive or 

complete dataset is used. In doing so, the models listed in Table 3.4 can easily be converted 

into practically applicable models. Thus, in effect, models B & G complement each other, 

although network topologies vary, the effect of altering the network topology is merely 

performed to attempt optimization. Model J confirms this, having been developed as a means 
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of mirroring the parameters of model G while performing grouped-cross validation, and still 

achieving similar results to model B. So long as deep learning is performed, with at least two 

hidden layers being used, and with the number of neurons per hidden layer being at least the 

number of inputs, which in this case is nine, results for any model trained under these criteria 

would not be expected to differ dramatically from the desired output listed in Table 3.4. A 

recommendation as to the exact parameters used to train a practically applicable model is 

provided as Model G. Note that alterations to the training dataset would likely alter certain 

model parameters leading to near-optimal solutions significantly, notably the number of epochs 

over which the model is trained – the number of times the entire training set undergoes back-

propagation. The network topology and parameters such as ReLU hidden layer and Linear 

Figure 4.5a Figure 4.5b 

Figure 4.5c Figure 4.5d 

Figures 4.5a-d: Regression plots of predicted vs experimental pressure: Developed using hold-out testing data 

for model B and model G. Overall deviations are within expected performance. 
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Output Layer activation are unlikely to significantly change as long as most of the dataset 

remains constant. As such, providing the exact parameters such as number of epochs and 

training batch-size is an unfruitful exercise, as these can be readily obtained by a grid-search 

procedure, or simply performing a few wide iterations to gain insight into the potential accuracy 

of the model. It is important to note in closing however, that training a model with the desired 

parameters obtained from model G over the entire dataset, including hold-out validation data 

could introduce the possibility of the model overfitting which may go undetected due to a lack 

of separate validating data. Thus, in the absence of further testing data, it is recommended that 

the final model exclude hold-out data from training. 

These results, particularly those of models performing cross-validation grouping (models A 

and B), indicate that additional experimental data from independent sources incorporated into 

existing datasets would result in further improved models. Additional data tailored toward 

application, such as samples from a specific gas pipeline seeking to apply this model, could be 

used to provide a testing basis for training model G on the entirety of the complete dataset, and 

provide a final indication of model performance for a specific application. In the event of 

significantly more data being published, this research could be revised and would likely lead 

to improved cross-validation results for grouped models A and B. As discussed, the inclusion 

of hydrogen sulphide as a feature of the model was not possible due to the lack of independent 

experimental studies. Several attempts were made to incorporate hydrogen sulphide into the 

datasets and to establish a convergent model, however performing grouped cross-validation 

resulted in folds which were simply too inaccurate to extract any meaningful information. It is 

possible to develop a model in the absence of performing grouping, however due to the highly 

limited number of independent sources covering a few narrow ranges of data including these 

models in this investigation would not prove meaningful when compared to the wide range of 

conditions covered in the multicomponent exclusive and complete datasets. More publications 

of equilibrium data considering natural gases containing hydrogen sulphide over a wide range 

of conditions would facilitate the inclusion of this component as a feature of the model. 

Including hydrogen sulphide as a feature of this model would serve as a significant step towards 

the development of a truly universal model. Such data could easily be incorporated into the 

datasets provided in this investigation, and yield results rapidly due to the established topology 

of the neural network through means of a grid-search procedure.  

Overall for the purposes of this investigation, several aspects of the model have been assessed: 

The ability of the model to predict equilibrium data over a wide range of conditions, the ability 
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of the model to predict multicomponent data, and the dependency of the model on individual 

sources of data used in training and thus the potential for experimental or measurement errors 

to influence the final neural network. This investigation has proven through means of an 

extensive 10-fold cross-validation procedure, and stratified hold-out validation approach, 

whereby validation data is proportionally sampled from each independent experimental source 

of data, that the model does indeed accurately predict equilibrium pressure over a wide range 

of conditions. Seed-tests for various models further prove that model results are not artificially 

tailored through means of a favourable random seeding during cross-validation. The ability of 

the model to predict multicomponent data has been assessed through developing neural 

networks trained and tested using exclusively multicomponent data, all of, which is present in 

the complete dataset used to train and test the final model G.  

Dependency of the model on individual sources of experimental data has been investigated, 

and variance plots of grouped cross-validation do indicate certain ranges of data where little to 

no independent source overlap is present. Analysis of the model incorporating pure and binary 

methane gases does however reveal a damping effect provided by the inclusion of this data, 

thus reducing the potential impact experimental or measurement errors of equilibrium data 

would have on the final model. This experimental error could take the form of incorrect 

methodology where inadequate time was provided between dissociation steps thus failing to 

account for metastability and thus reporting a value within the hydrate stability zone as opposed 

to equilibrium and outdated means of judging whether equilibrium has been reached. Thus, it 

can be concluded that the research objectives have been achieved, and a highly accurate model 

has been developed which is capable of predicting the equilibrium pressure for gas hydrates of 

a specific gas-phase concentration at a specified temperature, over a wide range of conditions. 

It must be emphasized that the model is designed to predict sweet natural gases, which are free 

of hydrogen sulphide. 
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH 

 

5.1 Conclusion 

In this investigation, deep learning has been applied to the prediction of gas hydrate equilibrium 

conditions over a wide range of data through means of a Multi-Layer Perceptron regression. 

Neural networks have been developed using two to three hidden layers with a high hidden-

layer neuron count. Several artificial neural networks have been developed in this research for 

the purpose of proving the ability of the neural network model to accurately model 

multicomponent data, and to assess the dependence of the model on individual experimental 

sources of data to cover certain ranges of conditions. A combination of 10-fold cross-validation 

and hold-out validation has been performed to assess the variance of the model, while 

facilitating parameter optimization. Validation practices ensure that the results of the model 

reflect a wide range of conditions. Through developing models according to two separate 

datasets, one compiled of exclusively multicomponent data, and another including pure and 

binary methane gases, it has been proven that multicomponent data for both datasets has been 

adequately predicted by the neural networks. An emphasis has been placed on the collection of 

experimentally obtained natural gas equilibrium data. Additional models do reveal a 

dependence on individual experimental sources to provide equilibrium data for various ranges 

of conditions where little overlap between other independent sources exists. While cross-

validation performed on grouped datasets where data cannot be used to both train and test in 

the same fold results in significantly worse predictions than ungrouped validation, results are 

generally acceptable in terms of average R2 score and variance, barring the performance of 

poor folds where there is an evident lack of overlap in data from independent sources. The 

presence of pure and binary methane in the training set has been shown to provide a damping 

effect on potential errors of experimental data. Seed-tests, where the effect of the random 

selection of data for training and testing purposes is investigated, have been performed and 

assurance is provided that models are not merely accurate for a favourable randomization. A 

lack of independent experimental sources of data prevented the inclusion of hydrogen sulphide 

as a model feature, and thus the model is restricted in application to sweet natural gas flow-

lines. Overall, results indicate a highly accurate model has been developed, with the neural 

network accurately modelling a highly non-linear, multimodal phenomenon. Cross-validation 

of the final model yields a coefficient of determination R2 score of 0.98604, with a standard 

deviation of 0.00352, while an R2 score of 0.99255 is obtained for a 10% stratified hold-out 



Page | 62  
 

validation set after cross-validation. These results prove that the neural network methodology 

is well suited to predicting gas hydrate equilibria. Further testing of model performance 

compared with thermodynamic models, which have gained industrial acceptance, would serve 

to prove the ability of the neural network model to compete at an industrial level with 

established methodologies, especially when considering real natural gas equilibrium 

5.2 Future Research 

This research has largely demonstrated the viability of the neural network methodology across 

a wide dataset from numerous independent sources by illustrating a low cross-validation 10-

fold variance. In order to further assess model accuracy, comparison with existing methods 

must be performed. A significant indicator of model performance aside from the validation 

practices employed in this investigation would be a comparison with industrially accepted and 

applied models. There is a wide range of software programs available, based on statistical 

thermodynamics, which could be used as a comparative basis outside of corporate developed 

models. Furthermore, comparison may also be performed via older graphical methods such as 

gas-gravity charts, and empirical equations which have experienced some degree of industrial 

application. Performing pressure predictions for the entire dataset included in this research 

would allow coefficients of determination (R2 Score) to be compared, and neural network 

effectiveness could thus be further assessed. Furthermore, closer investigation into the exact 

predictions made by the neural network would allow for individual ranges where equilibrium 

pressure was poorly predicted to be analysed, and corrections may be made by performing 

further outlier elimination from the dataset where measurement error is suspected. 

As has been emphasized in this report, the developed models do not account for the presence 

of hydrogen sulphide. In order to develop a comprehensive, universal model, the concentration 

of hydrogen sulphide in the produced gas should be included as a neural network model feature. 

As discussed, insufficient independent data sources were present in the dataset to facilitate the 

development of an H2S inclusive model while considering grouping effects during cross 

validation. Gathering significantly more equilibrium data including this feature and combining 

the new data with current datasets may allow a sufficiently accurate model to be developed. As 

thermodynamic inhibitors act by altering equilibrium conditions, it is also possible to include 

the concentration of thermodynamic inhibitors such as methanol or ethylene glycol in the flow-

line as a feature in the model. A significant amount of data is publicly available in various 

publication, and other models such as the neural network developed by (Chapoy et al., 2007) 

includes thermodynamic inhibitors as a feature. 
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APPENDICES 

 

Appendix A: Data Sources 

Note that a significant number of sources were discovered from the works of Sloan & Koh 

(2007), which records a large number of equilibrium samples for a wide range of conditions 

from various experimental studies.  

For a limited number of cases, where data is provided in a graphical format, equilibrium 

conditions have been obtained by manually measuring these points. This process involved 

determining the mid-point of indicators along a curve, and has been applied to cases where 

equilibrium condition plots have been made where gas composition has been explicitly 

specified. The associated error due to these manual measurements is expected to be low due to 

the precision with which manual measurements were performed. The dampening factor 

associated with the complete dataset further reduces the impact minor inaccuracies due to 

manual measurements may have had on model results. 
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Appendix B: Neural Network Topology Diagram 

 

 

 

Figure B.1: Neural network topology diagram for Model G.  
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Appendix C: Distribution of Complete Dataset Data 
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