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ABSTRACT 

 

Mycobacterium tuberculosis is an important human pathogen, claiming 

more lives per annum than any other single infectious organism. The host 

environment of M. tuberculosis contains DNA-damaging agents that pose a 

constant threat to the M. tuberculosis genome, and as a result, the ability to repair 

damaged DNA is likely to play an important role in bacterial survival. Y-family 

polymerases perform translesional synthesis and replicate DNA in an error-prone 

manner. By characterising the Y-family polymerases in mycobacteria, a better 

understanding the organism’s adaptive mutagenesis may be established.  

Through gene expression studies, it was found that UV irradiation of 

Mycobacterium smegmatis resulted in the up-regulation of dinP3, which was 

determined to be a Y-family polymerase by sequence analysis. DinP3 expression 

was found to be under control of the SOS response and is the first example of a Y-

family polymerase in mycobacteria forming part of the SOS regulon. However, 

loss of DinP3 did not change the ability of M. smegmatis to tolerate UV 

irradiation. Mutagenesis studies revealed a complex interaction between the 

different Y-family polymerases in M. smegmatis. It was shown that spontaneous 

mutagenesis was increased in the absence of DinP3, whereas UV-targeted 

mutagenesis was increased in the absence of DinP, another Y-family polymerase.  

In conclusion, these results reflect the differences in control and in the 

mutational profiles of the Y-family polymerases in M. smegmatis. Moreover, 

these polymerases exhibit distinctive features from other bacterial Y-family 

polymerases, highlighting the different way in which bacteria have adapted to deal 

with lesions in their genetic material. 
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1.0 INTRODUCTION 

 

Mycobacterium tuberculosis claims more lives per annum than any other bacterial 

pathogen (Hingley-Wilson et al., 2003). Although one-third of the world’s 

population is estimated to be infected with M. tuberculosis, not all infected 

individuals show clinical signs of the disease (Stewart et al., 2003). This is a 

result of latent tuberculosis (TB), an asymptomatic infection in which M. 

tuberculosis persists within the human host for years. In 1993, the World Health 

Organisation declared TB a global emergency. The emergence of drug-resistant 

strains of M. tuberculosis and its synergy with the human immunodeficiency virus 

(HIV) have jeopardised attempts to control the disease over the past 11 years 

(Campos et al., 2003).  

 

M. tuberculosis has been shown to develop drug resistance through the 

introduction of multiple chromosomal mutations (Ramaswamy et al., 1998). 

Adaptive mutagenesis has long been regarded as a process in which random 

mutations arise in an organism, thus producing genetically different variants that 

can compete for available resources. It has now been demonstrated that the rate of 

mutation is largely under the control of genetic factors (Metzgar et al., 2000). 

Understanding the mechanisms through which these mutations are introduced into 

the bacterial chromosome should provide the knowledge needed for new therapies 

to treat the TB epidemic.  

 

Through exposure to the host immune response, M. tuberculosis encounters a 

range of DNA-damaging agents in the form of reactive oxygen and reactive 
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nitrogen intermediates (Stewart et al., 2003). These agents pose a constant threat  

to the M. tuberculosis genome, and as a result, the ability to repair the damaged 

DNA plays an important role in bacterial survival (Mizrahi et al., 1998). The 

specific induction of specialised DNA polymerases that are not stalled by DNA 

lesions allows the bacterium to tolerate limited amounts of DNA damage. The 

presence of a DNA-damage-inducible mutagenesis system in M. tuberculosis, as 

well as Mycobacterium smegmatis, was recently demonstrated by Boshoff et al. 

(2003) and was found to be mediated by DnaE2, a member of the C-family of 

DNA polymerases. This result is interesting for two reasons. Firstly, induced 

mutagenesis in other bacterial species, such as Escherichia coli, is mediated by 

polymerases belonging to the Y-family, and secondly, members of the Y-family 

of polymerases are present in M. tuberculosis and M. smegmatis. The primary role 

of the Y-family polymerases in mycobacteria therefore is an important avenue of 

investigation. 

 

1.1   The Biology of Mycobacteria  

 

1.1.1 Pathophysiology of tuberculosis disease 

 

Mankind has suffered from TB for more than 5,000 years (Collins et al., 1998). 

The identification of the tubercle bacillus, M. tuberculosis, as the causative agent 

in 1882 by Robert Koch firmly established the infectious nature of the disease 

(Koch, 1882). Still M. tuberculosis continues to kill approximately three million 

people each year, and approximately two billion people host the mycobacterium 

(Dye et al., 1999). Despite a century of study, the ways in which M. tuberculosis  
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neutralises the host’s efficient cellular defence mechanism remains to be 

elucidated.  

 

Infection starts with the inhalation of small droplets containing M. tuberculosis. 

The mycobacterial droplets make their way to the lung where they are internalised 

by alveolar macrophages (Dannenberg and Rook, 1994). The mycobacterium 

spends almost its entire life inside the macrophage. M. tuberculosis avoids 

destruction within the macrophage phagosomes by actively blocking their fusion 

with lysosomes (Armstrong et al., 1971, Malik et al., 2001). The mycobacterium 

multiplies within the inactivated macrophage until the macrophage bursts. 

Lymphocytes begin to infiltrate and recognise M. tuberculosis antigens, which 

results in the activation of T-cells followed by liberation of cytokines, and 

tubercle formation (Dannenberg and Rook, 1994). As a result, the mycobacterium 

is subjected to a wide variety of growth inhibiting conditions such as low pH, 

oxygen limitation and reactive nitrogen and oxygen intermediates (Jackett et al., 

1978). An individual infected with M. tuberculosis has about a 10 % lifetime risk 

of developing active TB (Corbett et al., 2003). Active TB can be brought on by 

various factors in which the immune response is no longer able to keep the 

mycobacterial growth under control. As a result, rapid multiplication occurs and 

the mycobacteria spread throughout the lung causing necrosis and rupture of the 

bronchi.  
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1.1.2 Tuberculosis treatment 

 

Before the introduction of effective chemotherapeutic agents, treatment of TB 

involved rest, balanced diet and various surgical procedures. The development of 

a vaccine was realised by Calmette and Guérin after serially passaging 

Mycobacterium bovis and discovering an attenuated strain, namely bacille 

Calmette-Guérin (BCG), in guinea pigs, rabbits, cattle and horses (Collins, 1998). 

BCG was first administered to humans in 1921, and from 1948, it has been 

applied worldwide (Wang et al., 2002). Treatment of active TB became possible 

during the 1940’s with the discovery of M. tuberculosis sensitivity to 

streptomycin, which proved to be an effective anti-microbial agent (Ross, 1950). 

Isoniazid was discovered in the 1950’s and was found to be a very effective anti-

TB agent with few side effects (Knox et al., 1952). This led to the identification of 

a host of other antibiotics that were effective against M. tuberculosis, such as 

pyrazinamide, ethambutol and rifampicin (Yeager et al., 1952, Ferebee et al., 

1966 and Furesz et al., 1963). Many of these antibiotics are still used today as 

front line anti-TB agents.  

 

Dismantling of TB clinics and follow-up programs in developed countries 

occurred in the second half of last century as a decline in active TB was observed. 

However, during the 1980’s this decline was reversed with increasing numbers of 

TB cases associated with HIV infection (Houston et al., 1994). Active TB is 

greatly enhanced in HIV-positive individuals, increasing the mortality rates for 

both diseases (Frieden et al., 2003). In persons co-infected with HIV and M. 

tuberculosis the annual risk of developing active TB is in excess of 10 % (Corbett 
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et al., 2003). Along with this, non-compliance of patients with the lengthy 

antibiotic regimes has resulted in the emergence of M. tuberculosis strains that are 

resistant to one or more of the front-line antibiotics used to treat the disease. 

Problems arise when individuals are infected with multi-drug-resistant (MDR) 

strains, where two or more of the front-line antibiotics are no longer effective. Co-

infection of individuals with MDR M. tuberculosis and HIV results in an 

accelerated progression of active TB (Corbett et al., 2003). Understanding the 

mechanisms of pathogenicity and host-bacteria interactions is proving to be vital 

in light of the increase in MDR TB and the rise in HIV-associated active TB. 

 

1.1.3 M. smegmatis as a model organism for M. tuberculosis 

 

Even though the entire genome of M. tuberculosis has been sequenced, attempts 

to identify determinants of virulence have been hampered by the bacterium’s slow 

growth rate (twenty-four hours under optimum conditions) and the biosafety 

conditions under which experiments must be done. These restrictions have 

necessitated the development and characterisation of a surrogate bacterial model 

for M. tuberculosis. Initial studies were performed on E. coli (Lathigra et al., 

1985). However, there are significant differences between E. coli and M. 

tuberculosis in basic cellular and cell wall structure. Furthermore, fundamental 

metabolism and lifestyle differences between E. coli and M. tuberculosis led to 

the search for a more relevant surrogate model organism. A non-pathogenic and 

relatively fast-growing member of the mycobacteria genus was needed. The 

organism of choice was the mycobacterial saprophyte, M. smegmatis. M. 

smegmatis has a dividing time of three hours and in vitro work can be done under 
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standard laboratory conditions. The discovery of an efficient plasmid 

transformation (ept) mutant of M. smegmatis by Snapper et al. (1990) allowed it 

to be readily transformed with foreign DNA thus paving the way for its 

widespread laboratory use.  

 

Doubts have been raised concerning the use of M. smegmatis as a comparable 

model of M. tuberculosis virulence owing largely to differences in pathogenicity 

and a larger gene complement. However, when studying conserved biochemical 

pathways, M. smegmatis can prove to be very useful model organism. 

Considerable sequence conservation exists between classes of genes that 

participate in sensing the environment and the appropriate response to that stress 

(Tyagi et al., 2002). Six of the eleven two-component systems and five of the 

seven orphan response-regulator/histidine kinases of M. tuberculosis have 

homologues in M. smegmatis, as well as nine out of the thirteen M. tuberculosis 

sigma factors (Tyagi et al., 2002). The study of M. smegmatis has proven to be 

useful in gaining valuable insights into specific aspects of physiological 

adaptation of M. tuberculosis in shorter periods of time and under more amenable 

study conditions. M. smegmatis is not only valuable as a model of M. tuberculosis 

biology but also for use in understanding key differences between the two 

organisms. By investigating these differences, the virulence determinants of M. 

tuberculosis may be identified. 
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1.2 Mutagenesis 

 

The ability to maintain functional homeostasis in a continually changing 

environment is essential for survival of all organisms. Individual bacteria with 

high mutation rates have a selective advantage in a changing environment (Foster, 

2004). Mutations can arise spontaneously during growth or mutagenic agents can 

induce them. Spontaneous mutations are a result of errors in replication, 

spontaneous lesions or transposition events (Kunkel et al., 1984 and Hazelbauer et 

al., 1979). Replication errors result in the formation of mutations through multiple 

processes. Transitions or transversions produce base pair substitutions, whereas 

the deletion or addition of a base pair results in frameshift mutations (Echols and 

Goodman, 1991). Large deletions or duplications arise by slippage or 

recombination based mechanisms (Lovett, 2004). Induced mutations are those 

caused by the action of a specific mutagen. Induced mutagenesis occurs when a 

base is damaged so it can no longer pair with other base (Cornell et al., 2000), the 

base is replaced by the incorporation of base analogues (Negishi et al., 1994), or 

mispairing occurs after DNA is exposed to alkylating agents (Drake, 1988). Loss 

of specific base pairing occurs after ultraviolet (UV) light damages the base 

(Franklin et al., 1985). 

 

Bacterial survival requires that the lethal DNA lesions are repaired; however, the 

extent to which the original genetic information is restored depends on the 

essentiality of the gene and the type of mutation (Smith et al., 1998). Direct 

reversal of the damaged base by photoreactivation repairs thymine dimers (Tang 

et al., 1978). Other forms of DNA lesions are repaired by specific mechanisms  
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aimed at excising damaged bases. These include: nucleotide excision repair 

(NER), base excision repair (BER) and mismatch repair (MMR) (Friedberg, 

2003). All function by removing the damaged region and inserting of new bases to 

fill the gap, followed by ligation of the pieces (Friedberg, 2003). NER repairs 

damage located in regions that are undergoing active gene expression whereas 

BER is involved in global genome repair (Friedberg et al., 1995). Translesion 

synthesis is a mechanism in which the cell tolerates damage by bypassing the 

DNA lesion and allowing replication to occur downstream of the damaged DNA 

(Goodman, 2002). This process involves the action of error-prone polymerases 

(discussed further in sections 1.3 and 1.4). 

 

1.2.1 Stress-induced mutagenesis 

 

‘Adaptive’, ‘stationary-phase’ and ‘stress-induced’ mutation are names for the 

mutation responses observed in organisms exposed to growth-limiting 

environments, in which mutations appear to be formed in response to the 

environment (reviewed in Foster, 1999 and Rosenberg, 2001). In bacteria, 

prolonged nutritional stress results in an increase in mutations (Wright et al., 

1999). Controversy exists surrounding the models that describe the origin of the 

observed adaptive mutagenesis (Rosenberg et al., 2004 and Roth et al., 2004). 

Two models, the directed mutation and hypermutation models, are in accordance 

with the theory that mutations arise under stress, producing mutants that have a 

selective advantage and are the basis for the second-order selection hypothesis. 

The directed mutation model states that mutations might be targeted specifically 

to genes that relieve stress, whereas the hypermutation model states that mutation  
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rates increase genome wide in response to stress (Rosenberg et al., 2004). In 

contrast, the amplification mutagenesis model states that stress has no direct effect 

on the mutation rate and that mutations arise in cells growing under selection 

(Roth et al., 2004). Mutations that arise in this manner form the basis of the 

pleiotropic hypothesis. Evidence exists for both hypotheses and no strong 

arguments rejecting either model are presently available, making it probable that 

both scenarios act simultaneously but to a different extent in stress-induced 

mutagenesis (Tenaillon et al., 2004).  

 

The knowledge of the genetic control of stress-induced mutagenesis arose from 

studies where bacterial cells were stressed using chemical and physical treatments, 

one of the first being UV irradiation that resulted in an increase of the mutation 

rate (Friedberg et al., 1995). Starvation-induced mutagenesis has provided 

valuable insight into the understanding of the evolutionary role of genetic control 

of stress-induced mutagenesis (Tenaillon et al., 2004). A stationary-phase-specific 

process for long periods of nutritional stress, “growth advantage in stationary 

phase” (GASP), depends on the appearance of new mutations that confer a 

competitive advantage to certain cells, allowing them to take over the population 

(Zambrano and Kolter, 1996). The appearance of a GASP phenotype indicates the 

dynamic state of the bacterial cells during stationary phase growth. 
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1.2.2 Heritable and Environment-dependent Mutators 

 

Metzgar and Wills (2000) postulated that adaptive mutagenesis does not represent 

the specific generation of adaptive mutations but rather a localisation of mutations 

under specific environmental conditions or in particular regions of the genome. 

Modulation of mutation rates is achieved through either environment-dependent 

or heritable mechanisms. Heritable mechanisms are independent of the 

environment and alter either the global (genome-wide) mutation rate or target 

hotspots (hypervariable loci). Environment-dependent mechanisms induce or 

suppress mutation-inducing processes that have a global effect on the mutation 

rate. 

 

Global heritable mutators appear to be adaptive under certain conditions and are 

likely to arise by chance. Bacterial mutator phenotypes have been traced to 

mutations in DNA repair genes, particularly in the MMR system (Metzgar et al., 

2000). Global mutators allow mutations to arise across the entire genome and 

have been shown to out-compete non-mutators under varying selection 

experiments (Miller et al., 1999). Local mutators on the other hand are specific 

regions of the genome that are predisposed to mutation, due to their unique 

sequence characteristics. Tandem repeats interfere with DNA polymerase activity 

and result in replication slippage errors within tandem repeats (Moxon et al., 

1994). Mutations have also been shown to occur at higher frequencies in certain 

genes, indicating that these genetic sites are “hotspots” for mutations (Torkelson 

et al., 1997). Well-known highly mutable sequences are contingency loci, 

generating the antigen diversity observed in pathogenic prokaryotes (Moxon et  



 11

 

al., 1994).  

 

Environment-dependent mutators are induced in response to environmental 

stresses (such as nutrient deprivation). The mutator phenotype is only transient 

under unfavourable conditions. Mutations arise as a result of the induction of 

these mutators, which are part of stress response systems. The prototypical 

environment-dependent mutator system is the bacterial SOS response (see section 

1.3) (Metzgar et al., 2000). Yeiser et al. (2002) observed that in E. coli, SOS 

polymerase deficient cells showed a competitive disadvantage during long-term 

survival when cultured with wild type. The expression of the SOS polymerases 

during stationary phase in the absence of exogenous DNA damage presents a role 

for the polymerases in conferring a GASP phenotype during long-term survival 

(Yeiser et al., 2002). The ability to survive under conditions of stress is vital for 

bacterial propagation. Insults on the genome due to environmental stresses pose a 

constant burden on the survival of the bacterium. A better understanding of the 

stress response systems that occur under conditions of stress may help explain the 

mechanisms of adaptive mutagenesis. 

 

1.3 The SOS Response 

 

Mutagenesis by the SOS response does not occur from the high-fidelity 

replicative DNA machinery but rather from specialised error-prone DNA 

synthesis (Goodman, 2002). The complete mechanism of the prototypical SOS 

response system was elucidated from several studies on the effect of UV 

irradiation on E. coli.  UV-irradiated bacteriophage lambda was initially shown to  
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have an increased number of mutations when infected in E. coli that had been 

previously irradiated (Weigle, 1953). Later, Radman (1974) proposed that when 

bacteria are exposed to stress (such as UV irradiation) they produce proteins that 

allow the repair of damaged DNA and reactivation of DNA synthesis. It was 

further speculated that the ‘danger’ signal might be a temporary block in DNA 

replication or the presence of certain DNA lesions (Radman, 1974). This 

phenomenon was termed the SOS response to emphasise the cellular response to a 

distress signal, such as DNA damage.  

 

Friedberg (1995) proposed three reasons for the presence of the SOS response. 

Firstly, it allows an organism to mutate in response to DNA damage in order to 

confer a selective advantage (still under debate). Secondly, it provides an 

additional mechanism for damage tolerance that may help the organism to survive 

lethal effects of DNA damage. Thirdly, it allows repair of particular DNA lesions 

that are not subject to other accurate repair systems.  

 

1.3.1 Mechanism of the SOS Response 

 

The E. coli SOS inducible repair response is the best-characterised system and 

thus its general mechanism of action is discussed below. Induction of the SOS 

response in E. coli after DNA damage results in increased expression of 

approximately forty genes (Courcelle et al., 2001 and Abella et al., 2004). The 

SOS controlled genes are scattered at different sites in the genome and their 

expression is dependent on the interaction between two proteins, LexA and RecA 

(Figure 1.1). LexA binds to a similar regulatory sequence in all SOS controlled  
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genes, including itself and recA, and represses transcription of these genes. The 

regulatory sequence to which the LexA repressor binds varies amongst gram-

positive and gram-negative bacteria (Lewis et al., 1994 and Cheo et al., 1991). 

The prototypical regulatory sequence for gram-positive bacteria was identified in 

B. subtilis and referred to as the Cheo box (Cheo et al., 1991). The Cheo box has 

been identified in mycobacteria to which LexA repressor interacts (Durbach et al., 

1997).  

 

Increased expression of the SOS controlled genes is triggered when DNA is 

damaged. At points of DNA damage, single-stranded DNA accumulates. RecA, in 

the presence of ATP, forms filaments on the single-stranded DNA and acquires 

protease activity. The activated RecA/single-stranded nucleoprotein filament 

stimulates the otherwise latent capacity of LexA to autodigest (Little, 1984). LexA 

autodigests at its Ala84 – Gly85 bond which inactivates its ability to act as a 

repressor (Horii et al., 1981). The resulting decrease in LexA allows an increase 

in transcription of the genes under its control, resulting in the SOS response. The 

RecA/single-stranded DNA nucleofilament also facilitates the autocleavage the 

bacteriophage CI repressor as well as processing UmuD protein to its activated 

form UmuD’ (Eguchi et al., 1988, Shinagawa et al., 1988). The recA locus was 

the first to be recognised as being under SOS control followed by lexA. Additional 

SOS-controlled genes were then identified and were initially termed din (damage-

inducible). Since the discovery of the initial damage-inducible genes by Kenyon 

and Walker (1980), a wide range of members belonging to the SOS regulon have 

been identified. 
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Figure 1.1: Diagrammatic representation of the SOS response system and the mechanism 

by which the lexA-recA regulon is regulated.  In the uninduced state (top), LexA repressor 

is constitutively expressed in small amounts and binds to its regulatory sequence in the 

operators of all the genes under its control. Following DNA damage (pyrimidine dimer 

formed after exposure to UV radiation) the SOS response is induced (below). RecA binds 

single-stranded DNA and becomes activated, resulting in the proteolytic cleavage of 

LexA. Expression of the genes under the control of LexA then occurs. (Adapted from 

Friedberg et al., 1995). 
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The SOS response is finely tuned to aid the cell in surviving insults on the 

genome, and exists in different induced states from fully induced to fully 

repressed (Janion, 2001). The repression of the lexA gene by itself leads to various 

induction levels of the SOS response. Firstly, it extends the range over which an 

intermediate state of induction can be established (Walker et al., 2000). This is 

also observed with recA as its expression depends on the amount of LexA that is 

able to bind to its regulatory control sequence. Secondly, LexA’s affinity for its 

own regulatory region is weak when compared to the other SOS controlled 

regulatory regions, allowing buffering against significant induction levels (Walker 

et al., 2000). Thirdly, since LexA is auto-regulated, it returns quickly to its 

repressed state once RecA returns to an inactivated state (Walker et al., 2000). 

LexA represses genes under control of the SOS response with varying efficiency. 

This allows high expression levels of genes that are under weak LexA repression. 

In E. coli the induction can range from about 100-fold for the sulA gene to about 

4-fold for the uvrA gene (Friedberg et al., 1995). 

 

1.3.2 Cellular SOS response for managing damaged DNA 

 

The co-ordinated actions of the SOS controlled gene products manage many 

cellular events after DNA damage (Figure 1.2) (Walker et al., 2000). Loss-of-

function mutations in umuC and umuD showed that the products of these genes 

were mutagenic and processed damaged DNA (Elledge et al., 1983). The umuDC 

gene product (E. coli Pol V) was shown to introduce mutations through a process 

known as translesion synthesis, allowing the replication fork to move over DNA 

lesions (Fujii et al., 2004). 
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Figure 1.2: Cellular SOS response to DNA damage. After induction of the SOS response 

the SOS controlled genes are expressed, among them being uvrA, uvrB, sulA, polB, dinB 

(encoding Pol IV) and umuDC (encoding Pol V). SulA inhibits cell division. Initially 

after induction of the SOS response UmuD together with UmuC function to regulate 

DNA synthesis. First nucleotide excision repair is used and after a defined amount of time 

UmuD is then activated to UmuD’ for translesion synthesis. (Adapted from Walker et al., 

2000). 
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Managing the stalled replication fork represents just one element of the entire 

cellular SOS response. Many of the gene products that are involved in NER (e.g. 

UvrA, UvrB and UvrD) are under the control of the SOS response. Whilst most of 

the proteins induced by the SOS response are involved in DNA metabolism, SulA 

acts to inhibit cell division by preventing polymerisation of FtsZ (Huisman et al., 

1981, Mukherjee et al., 1998). Other polymerases (E. coli Pol II and IV) and 

recombination proteins (RecN) play additional roles in managing the replication 

fork. The SOS response comprises multiple levels of action through the use of 

gene products under SOS control. The redundancy of mechanisms used to 

overcome damaged DNA reveals the complex nature of the SOS response. 

 

1.3.3 The SOS response in other bacterial species 

 

The E. coli SOS response has become a paradigm for the study of inducible repair 

and recombination processes in many different organisms. As the number of 

bacterial organisms that are studied increases, it is clear that the components of 

the SOS response appear to be highly conserved among bacterial species. Many 

similarities have been found between gram-positive and gram-negative bacteria. 

Sequence homology between the damage inducible genes involved in translesion 

synthesis suggests that they shared a common ancestor (Walker, 1995). Each 

organism has its own set of regulated genes that are induced in response to DNA 

damage. The regulatory mechanisms, however, can vary among bacterial species. 

Four types of SOS regulon phenomena can be distinguished in Bacillus subtilis 

(Yasbin et al., 1992). The regulatory sequence for SOS controlled genes, where 

the SOS repressor binds, varies between the gram-positive and gram-negative  
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bacteria (Wertman et al., 1985, Cheo et al., 1991). It appears that the general 

mechanisms of inducible repair processes are comparable between bacterial 

species but the key players involved need to be elucidated for each organism.  

 

1.4 Mutator Polymerases 

 

Organisms have high-fidelity polymerases that function to accurately replicate the 

genome, and low-fidelity polymerases with more specialised functions. The main 

DNA replicative polymerases possess high fidelity in base selection and only 

make an error every ~105 base pairs (Friedberg et al., 1995). With the intrinsic 

exonucleolytic proofreading in DNA replication, coupled with post-replicative 

MMR, the overall error-rate is reduced to 1 in 1010 (Schaaper, 1993). The 

replicative polymerases however are sensitive to lesions in the DNA template 

(Echols and Goodman, 1991). Many organisms have equipped themselves with 

functionally redundant DNA repair pathways for dealing with damage to the 

genome, such as BER, NER, MMR and translesion synthesis (as part of the SOS 

response) that utilise various polymerases that allow the organism to replicate past 

DNA lesions (Friedberg et al., 1995). 

 

1.4.1 Various E. coli polymerase families 

 

Five different DNA polymerases have been identified in E. coli, so far, and are 

numbered Pol I to Pol V. The non-inducible polymerases are Pol I (the main DNA 

repair enzyme) and Pol III (the main replicative polymerase) (Karkas et al., 1972, 

McHenry et al., 1977). The remaining Pol II, Pol IV and Pol V are induced during  
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the SOS response (Napolitano et al., 2000). These five E. coli polymerases fall 

into four different polymerase families (Table 1.1). The A-family comprises of 

polymerases showing similar sequence homology to E. coli Pol I. These 

polymerases are regarded as high-fidelity polymerases and are necessary for the 

removal of RNA primers from Okazaki fragments during DNA replication (Ollis 

et al., 1985). The B-family are homologous to Pol II, a SOS induced polymerase, 

and play a role in replication restart that bypasses DNA damage in an error-free 

manner (Pham et al., 2001). The C-family polymerases are the main replicative 

polymerases in bacterial species and are used for DNA synthesis (Kornberg et al., 

1972). The final family in E. coli is the Y-family of polymerases. These 

polymerases in E. coli are also induced as part of the SOS response and have been 

shown to be error-prone (Ling et al., 2001). The Y-family polymerases share 

common structural features that are useful for classification. However, 

functionally, the Y-family polymerases differ between the bacterial species and 

appear to be specific to the type of lesion that they can bypass (Table 1.1). 

 

1.4.2 Y -family of DNA polymerases 

 

Many of the polymerases that replicate damaged DNA in an error-prone manner 

are phylogenetically related to each other and belong to the UmuC/DinB/Rev1/ 

Rad30 superfamily, and are collectively known as the Y-family of polymerases 

(Ohmori et al., 2001). Some of the polymerases belonging to this family make 

errors 100 times more frequently than normal replicative polymerases (McKenzie 

et al., 2001). 
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Family Polymerase/ gene name Organism Fidelity on undamaged DNA Function 

A Pol I/polA E.coli 10-5-10-6 Okazaki maturation 

B Pol II/polB E.coli 10-5-10-6 TLS, SOS mutagenesis, replication restart 

C Pol III/polC E.coli 10-5-10-6 Chromosome replication 

 dnaE S. pyogenes 10-2-10-3 Chromosome replication, TLS, SOS mutagenesis  

 dnaE2 M. tuberculosis  Chromosome replication, TLS, SOS mutagenesis 

Y Pol IV/dinB E.coli 10-3-10-4 TLS, SOS mutagenesis 

 yqjH B. subtilis  Untargeted mutagenesis 

 dinP/dinX M. tuberculosis  ? 

Y Pol V/ umuDC E.coli 10-3-10-4 TLS, SOS mutagenesis 

 yqjW B. subtilis  UV-induced mutagenesis 

 ? M. tuberculosis  ? 

Table 1.1: Bacterial DNA polymerasesa

a Adapted from Rattray et al., 2003 
TLS – translesion synthesis 

 

S. pyogenes – Streptococcus pyogenes, B. subtilis – Bacillus subtilis
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Y-family polymerases possess five highly conserved regions, at the N-terminus, 

presumed to be involved in binding and catalysis (Goodman et al., 2000). The C-

terminal half contains sequence motifs for interactions with the replication 

processivity factor (Wagner et al., 2000b). Y-family polymerases lack a 3´-5´ 

exonuclease activity (Yang, 2005). All crystal structures of Y-family polymerases 

consist of the catalytic core of ‘finger’, ‘thumb’ and ‘palm’ domains arranged in 

the classic polymerase ‘right hand-like’ configuration (Yang, 2003). However, Y-

family polymerases contain an additional domain known as the ‘little finger’ 

which plays a role in holding the DNA duplex opposite the thumb domain (Ling 

et al., 2001). Watson-Crick base pairs have a flat and smooth minor groove, but 

the minor groove of mismatched base pairs is uneven (Yang, 2005). The lack of a 

complementary interface between the polymerase and replicating base results in 

the high error-rate observed for low fidelity DNA synthesis. 

 

Of particular interest in bacterial studies are Y-family polymerases belonging to 

DinB and UmuC subfamilies. The DinB subfamily consists of the E. coli DNA 

Pol IV, which is encoded by the dinB gene1 (Wagner et al., 1999). Pol IV has 

been demonstrated to have mutagenic properties since cells carrying a dinB null 

allele are defective in phage lambda untargeted mutagenesis (Brotcorne-Lannoye 

et al., 1986). Pol IV has been shown to introduce -1 frameshift deletions by 

skipping over a lesion during replication (Kobayashi et al., 2002). Pol IV adds 

nucleotides in a distributive manner (Wagner et al., 1999). Pol IV overexpression 

leads to a significant increase in the mutation rate, even in the absence of DNA  

                                                 
1 Ohmori (1995) sequenced a damage inducible protein and called it dinP. It was later discovered 

that dinP was allelic with dinB, originally identified by Kenyon and Walker in 1980. dinB is still 

called dinP in certain bacterial species, i.e. mycobacteria. 
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damaging agents, with frameshifts targeted to mononucleotide repeats in 

particular (Wagner et al., 2000a). The E. coli Pol V belongs to the UmuC 

subfamily and is encoded by umuDC (Tang et al., 1999). Pol V generates base 

substitutions in response to UV irradiation or abasic sites (Smith and Walker, 

1998) via translesion synthesis, in which a nucleotide is misincorporated directly 

opposite a damaged DNA nucleotide and followed by accurate DNA synthesis 

downstream of the lesion. As mentioned in section 1.2.2 the Y-family 

polymerases also play a role in long-term survival of the bacterium. 

 

1.4.3 Translesion synthesis 

 

Recent findings have suggested that all organisms accomplish translesion 

synthesis by a common mechanism (Woodgate, 1999). In E. coli, translesion 

synthesis is intimately associated with the SOS response and involves the main 

DNA replicative polymerase, Pol III, in co-operation with the SOS controlled Y-

family polymerases (Witkin et al., 1984, Woodgate et al., 1989, Napolitano et al., 

2000). Pol III is unable to bypass the DNA lesion and dissociates from the DNA 

template, leaving a 3′ primer terminus prior to the lesion. Translesion synthesis 

replication is then carried out by one of the error-prone polymerases. E. coli Pol V 

consists of a dimer of the proteolytically processed UmuD protein, UmuD′, and a 

monomer of UmuC (Tang et al., 1998). It is thought that the RecA/single-stranded 

nucleofilament complex delivers the polymerase complex to DNA lesion to 

perform translesion synthesis (Baynton et al., 2000). A more relaxed base pairing 

is accommodated by a wider active site in Pol V allowing low-fidelity replication 

and lesion bypass (Ling et al., 2001). All of the error-prone polymerases appear to  
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lack significant processivity and probably dissociate from the template shortly 

after translesion synthesis occurs (Maor-Shoshani et al., 2002). Pol V dependent 

translesion synthesis occurs in response to UV irradiation and the chemical 

carcinogen N-2-acetylaminofluorene (Napolitano et al., 2000). However, Pol IV 

and Pol V dependent translesion synthesis occurs in response to benzo(a)pyrene 

(Napolitano et al., 2000). The translesional DNA polymerase required for 

translesion synthesis appears to depend upon the structure of the lesion and the 

sequence context. 

 

1.4.4 Error-prone polymerases in mycobacteria 

 

In gram-positive bacteria two distinct subclasses of C-family polymerases have 

been identified, namely class I (DnaE-type, lacking proofreading abilities) and 

class II (PolC-like, with intrinsic 3’-5’ proofreading exonuclease). M. tuberculosis 

has been shown to contain two polymerases belonging to class I, DnaE1 and 

DnaE2, but none belonging to class II (Cole et al., 1998). Since deletion of DnaE1 

is lethal it is thought to be the main replicative polymerase, whereas DnaE2 does 

not affect survival (Boshoff et al., 2003). Boshoff et al. (2003) observed elevated 

mutational levels after UV irradiation in M. tuberculosis and M. smegmatis that 

appeared to be exclusively mediated by DnaE2. This is intriguing, as polymerases 

showing homology to Y-family polymerases have been identified in 

mycobacteria.  

 

Sequence analysis of the complete genome of M. tuberculosis revealed two Y-

family polymerases with homology to E. coli dinB (Pol IV), namely dinP  
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(Rv3056) and dinX (Rv1537)(Cole et al., 1998). Three polymerases with close 

homology to the two M. tuberculosis Y-family polymerases exist in M. 

smegmatis. The relative homologues of M. tuberculosis dinP (MSMEG1002)2, 

which was found to be duplicated in the genome, and dinX (MSMEG3178) were 

identified as well as another homologue, dinP3 (MSMEG6405), showing close 

homology to dinP. The M. tuberculosis Y-family genes, dinP and dinX, are not 

up-regulated after treatment with DNA damaging agents such as mitomycin C 

(Brooks et al., 2001), UV or hydrogen peroxide (Boshoff et al., 2003). This 

suggests that members of the Y-family of error-prone polymerases in M. 

tuberculosis may not be induced as part of the SOS response. DnaE2, however, is 

under control of the SOS response and is involved in translesion synthesis 

(Boshoff et al., 2003). Furthermore, no homologues of E. coli umuD have been 

found in Gram-positive bacteria, including mycobacteria, although it remains to 

be determined if functional substitute exist. It appears that unique SOS responses 

have evolved in Gram-positive and Gram-negative bacteria (Tippin et al., 2004 

and Duigou et al., 2004). Mycobacteria also lack homologues of genes involved 

in MMR, which may provide an advantage under conditions of stress (Cole et al., 

1998; Mizrahi et al., 1998). The lack of a recognisable MMR system would allow 

arising mutations to be preserved (thus amplifying the advent of genetic 

variation).  

 

Drug resistant TB is a serious health problem and thus a thorough understanding 

of how drug resistance emerges in M. tuberculosis remains an important objective. 

The ability of M. tuberculosis to persist and develop antibiotic resistance during  
                                                 
2 The M. smegmatis damage inducible genes will be referred to by their gene name and not their 

annotated gene number throughout the dissertation. 
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infection appears to be achieved through the action of the DnaE2-dependent 

mutagenesis pathway (Boshoff et al., 2003). The functional role of Y-family 

polymerases in mycobacteria needs to be determined especially since DnaE2 

mediates translesion synthesis. The presence of the three Y-family polymerases in 

M. smegmatis may help to define the role of Y-family polymerases in 

mycobacteria and may provide a better understanding of adaptive mutagenesis. By 

determining when and how the Y-family polymerases function in mycobacteria, 

we may begin to explain how M. tuberculosis persists and develops multiple-drug 

resistance. 
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1.5 Aims of Study 

 

The role of the third Y-family polymerase, dinP3, in M. smegmatis was 

characterised with the following objectives: 

 

1. To determine whether dinP3 is damage inducible by UV irradiation. 

2. To determine whether dinP3 is regulated by LexA. 

3. To generate and phenotypically characterise a dinP3 deletion mutant of M. 

smegmatis. 

4. To evaluate contribution of both inducible and non-inducible Y-family 

polymerases to damage tolerance in M. smegmatis. 

5. To assess the contribution of DinP and DinP3 to mutagenesis by undertaking 

mutation rate studies in vitro that detect –1 frameshift mutations. 
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2.0 MATERIALS AND METHODS 

 

2.1   Bacterial strains and growth conditions 

 

All strains used in this study were stored at –70oC in 50 % glycerol. Lists of 

strains used are detailed in Table 2.1. All strains were recovered by streaking onto 

Luria-Bertani agar (LA) plates (see Appendix A1), and incubated for 3 days at 

37oC. 

 

Table 2.1: Bacterial Strains

Strain Genotype 

mc2155a High frequency transformation mutant of M. smegmatis 

ΔdinPb dinP mutant of mc2155 (both dinP copies deleted), Hygr

ΔdinP3c Unmarked dinP3 deletion mutant of mc2155 

ΔdinP (hisD5T)c dinP mutant of mc2155 in hisD mutant backgroundd

ΔdinP3 (hisD5T)c Unmarked dinP3 mutant of mc2155 in hisD mutant 
backgroundd

a Snapper et al., 1990 
b Constructed in our laboratory by D.F. Warner 
c Constructed in our laboratory by E.E. Machowski 
d See section 2.6.1. for description of hisD mutant background 
 

 

2.1.1 Growth curve of M. smegmatis mc2155 

 

A growth curve was generated to assess the growth characteristics of M. 

smegmatis. This was achieved by diluting a log phase culture 100-fold in 7H9 

liquid media (see Appendix A2). The culture was incubated in a New Brunswick  
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series 25 Orbital Incubator (New Brunswick, Inc, USA) at 37oC and aliquots were 

taken at three-hour time points, from 0 hrs to 24 hrs. The optical density (OD), at 

a wavelength of 600nm, of the aliquots was recorded at each of the three-hour 

time points. A dilution series (see Appendix B1) was generated, and the 10-4 to  

10-6 dilutions were plated, in triplicate, on 7H10 agar plates (see Appendix A3) to 

determine the number of colony forming units (CFU). 

  

2.2   Gene expression analysis 

 

2.2.1 DNA damaging treatment 

 

The effect of DNA damage on the expression of the M. smegmatis Y-family gene, 

dinP3, was analysed. Mycobacterial cultures (30 mL) were grown to an OD600 of 

1.0 in 7H9 liquid media (see Appendix A2) at 37oC in a New Brunswick series 25 

Orbital Incubator (New Brunswick, Inc, USA). The cells were then harvested 

using an Beckman Coulter JA-20 rotor centrifuge (Beckman Coulter, USA) for 5 

min at 5 000 rpm at 4oC and re-suspended in 5 mL of 0.5 % Tween 80 (see 

Appendix A4) before being transferred to a 78cm2 petri dish. At this time, cultures 

were divided into two groups, one of which was exposed to UV radiation while 

the other was mock irradiated and used as a control. The culture was irradiated at 

40 mJ/cm2 in a UV Stratalinker 1800 (Stratagene, USA) before being re-

suspended in the same original volume of 7H9 liquid media (see Appendix A2) 

and returned to 37oC for 90 minutes. The mock-irradiated control was also re-

suspended in the same original volume of media and incubated at 37oC for 90 

minutes. Total RNA was extracted and the mRNA expression level was assessed  
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by semi-quantitative Reverse Transcription (RT) Polymerase Chain Reaction 

(PCR). 

 

2.2.2 RNA isolation and purification  

 

Extraction of RNA was carried out in accordance with established extraction 

techniques (Manganelli et al., 2001). Cells were harvested using a Beckman 

Coulter JA-20 rotor centrifuge (Beckman Coulter, USA) for 5 min at 5 000 rpm at 

4oC and then re-suspended in 1 mL of Tri reagent (Sigma-Aldrich, USA) 

containing 5 μL polyacryl carrier (Molecular Research Center, USA). The 

suspension was then transferred into 2 mL screw-capped polypropylene centrifuge 

tubes containing zirconia/silica beads (QBiogene, USA) and disrupted using a 

BIO 101/Savant FastPrep 120 cell disrupter (QBiogene, USA). The lysate was 

clarified using an Eppendorf 5415D centrifuge (Eppendorf International) for 1 

min at 10 000 rpm. The lysate was then transferred to a 1.5 mL micro-centrifuge 

tube (Molecular BioProducts, USA) and 100 μL 1-Bromo-3-chloropropane 

(Sigma-Aldrich, USA) was added. The suspension was mixed vigorously by hand 

for a few seconds. Separation of phases occurred by incubating at room 

temperature for 10 min, followed by centrifugation (model 5415D, Eppendorf 

International) for 10 min at 10 000 rpm. Isopropanol (350 μL) was then added to 

the upper phase and precipitation of the RNA occurred at room temperature for 10 

min before centrifugation  for 10 min at 10 000 rpm. The RNA pellet was then re-

suspended in 300 μL 75% Ethanol (see Appendix A5) and re-centrifuged for 5 

min at 10 000 rpm. The pellet was air dried for 5 min before being re-suspended 

in 45 μL DEPC-treated distilled H2O (see Appendix A6). 
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Genomic DNA was removed by subjecting the sample, in a final volume of 50 

μL, to a round of DNaseI treatment, using 0.5 U DNaseI (Ambion, USA) in 1× 

DNaseI reaction buffer (Ambion, USA). The Tri reagent extraction procedure was 

then repeated using half the volume of each solution from the first extraction 

round. The quality of the RNA was checked by RNA electrophoresis (see 

Appendix B2). RNA was considered acceptable if the amount of 23S rRNA was 

twice that of 16S rRNA (Manganelli et al., 1999). RNA was stored at –70oC. 

 

2.2.3 Primer design for RT-PCR 

 

All primers were synthesised using standard phosphoramadite chemistry by 

Inqaba Biotech, Inc (South Africa). The primers used for semi-quantitative RT-

PCR are listed in Table 2.2. All RT-PCR primers were designed to anneal to their 

target DNA at the same temperature (55oC) and to amplify DNA fragments 

internal to the coding sequence of the relevant genes (See Appendix C1). Primers 

were designed using the program Primer 3 (Rozen et al., 2000; 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). Primer 3 determines 

both forward and reverse primers for the PCR reactions and assesses the 

oligonucleotide melting temperature, size, G+C content and primer-dimer 

possibilities. It calculates the optimal primer pair according to the size and 

constraints the user specifies (parameters used; primer length: 20 nucleotides, 

product size: 150-200 bp, melting temperature: 60oC). It also analyses the 

positional constraints within the source sequence when designing primers (the 

entire nucleotide sequence for each gene used in the PCR).  

 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
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2.2.4 Reverse transcription of extracted RNA 

 

The RT-PCR procedure was modified from that previously reported by 

Manganelli et al. (2001), as follows. For each sample, 20 ng/μL of total RNA was 

added to 0.25 μM (final concentration) of each antisense primer (all antisense 

primers were used in the same annealing mixture). DEPC-treated H2O was added 

to a final volume of 20 μL. All RT reactions were carried out on an Eppendorf 

MasterCycler (Eppendorf International). After denaturation at 94oC for 1 min and 

30 s, annealing between the RNA and antisense primers was carried out for 3 min 

at 65oC followed by 3 min at 57oC. Subsequently, 10 μL of the annealing mixture 

was added to 1 × Avian Myeloblastoma Virus (AMV) RT buffer (Sigma-Aldrich, 

USA), 200 μΜ each dNTP (Sigma-Aldrich, USA), 4 mM MgCl2
 (Sigma-Aldrich, 

USA), 0.6 μL dimethyl sulphoxide (DMSO)(Sigma-Aldrich, USA) and 2 U 

Enhanced AMV RT (Sigma-Aldrich, USA) in a final volume of 20 μL. Samples 

were incubated for 30 min at 60oC, heated at 95oC for 5 min and chilled to 4oC in 

an Eppendorf MasterCycler (Eppendorf International). The remaining 10μL from 

the primer annealing mixture was treated as above but without the enhanced AMV 

RT, to serve as a control for contaminating DNA. The complementary DNA 

(cDNA) samples were then diluted with 20 μL of distilled H2O and stored at 

20oC. 
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Table 2.2: Primer sequences used to amplify the M. smegmatis dinP3 gene 

Gene Sense primer (5′ - 3′) Antisense Primer*(5′ - 3′) Size 
(bp) 

dinP3 CGAGGCGTTCCTCGACGTAT CACCAAGTTCCTGGCCAAGG 143 

sigA TCTACGCCACGCAGAAGCTG GTTCGCCTCCAGCAGATGGT 128 

dnaE2 CTGCGCAGCAGGTTCTACGA AGAACACCAGCGAGGCGAAG 145 

*cDNA synthesis is primed using these reverse primers. 

 

2.2.5 Polymerase chain reaction of cDNA samples 

 

All PCR reactions were performed in an Eppendorf MasterCycler (Eppendorf 

International) and conditions were identical for all reactions. The 50 μL reaction 

consisted of 1× FastStart PCR buffer (without MgCl2) (Roche Applied Science, 

Germany), 4 mM MgCl2
 (Roche Applied Science, Germany), 250 μM each dNTP 

(Roche Applied Science, Germany), 5 μL DMSO (Roche Applied), 0.5 mg/mL 

bovine serum albumin (BSA)(Roche Applied Science, Germany), 0.5 μM of each 

primer, 2.5 U Faststart Taq DNA polymerase (Roche Applied Science, Germany) 

and 2 μL of either cDNA from the RT reactions or M. smegmatis genomic DNA 

(see Appendix B3). The PCR consisted of an initial heat activation step at 95oC 

for 10 min followed by 15 cycles of stringent amplification (95oC denaturation for 

30 s, 65oC annealing for 30 s and 72oC polymerisation for 30 s). A second round 

of amplification of 25 cycles was then performed (95oC denaturation for 30 s, 

57oC annealing for 30 s and 72oC polymerisation for 30 s). The amount of 

contaminating chromosomal DNA was tested in parallel using the negative AMV 

RT control samples.  Samples were fractioned on a 2 % agarose gel (see Appendix 

B4) using a Gel Doc Imaging System (BioRad, USA) and product sizes  
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were assessed in comparison to molecular weight marker VI (Roche Applied 

Science, Germany). To quantify the PCR products, a known concentration control 

is needed. Genomic DNA was extracted from exponentially growing 

mycobacteria and its concentration was determined using PicoGreen (Molecular 

Probes, Inc, USA). Every PCR reaction contained a known concentration genomic 

DNA control and was electrophorised with the RT-PCR samples. Semi-

quantification was carried out using the Discovery Series Quantity One 1D 

Analysis software (BioRad, USA) on the Gel Doc Imaging System (BioRad, 

USA). The Discovery Series software quantifies differences in band intensity 

from agarose gel electrophoresis. The software quantifies values as a percentage 

of a known concentration band. The degree of induction was determined from 

four independent experiments. 

 

2.3   Gel Mobility Shift Assay  

 

2.3.1 Preparation of dinP3 probe 

 

Binding of cell lysate to the mycobacterial Cheo box was assessed as indicative of 

LexA binding. A 149 base pair (bp) probe corresponding overlapping the dinP3 

Cheo box was prepared by PCR using the primers described in Table 2.3 (see 

Appendix C2). The antisense primer was 5´-[γ32P] end-labelled using 

polynucleotide kinase (PNK), the following were added together to a final volume 

of 10 μL on ice, 25 pmol antisense primer, 1× phosphorylation buffer (Roche 

Applied Science, Germany), 15 μCi of [γ32P] ATP (~3000 μCi/mmol; AEC 

Amersham International) and 10 U PNK (Roche Applied Science, Germany). The  
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labelled primer was used directly in the PCR. The PCR reaction (50 μL) consisted 

of 1× FastStart PCR Buffer (Roche Applied Science, Germany), 250 μM of each 

dNTP (Roche Applied Science, Germany), 0.5 μM sense primer, 1 μM [γ32P] 

labelled antisense primer and 2.5 U FastStart Taq DNA polymerase (Roche 

Applied Science, Germany). The PCR consisted of an initial heat activation step 

at 95oC for 10 min followed by 30 cycles of amplification  (95oC denaturation for 

30 s, 58oC annealing for 30 s and 72oC polymerisation for 30 s). A final 

amplification step at 72oC for 5 min was then performed. The labelled dinP3 

probe was separated on a 1 % low melting agarose gel (see Appendix B5) along 

with molecular weight marker VI (Roche Applied Science, Germany). The 

amplified probe was purified from the agarose gel using β-agarase (see Appendix 

B6) and ethanol precipitation (see Appendix B7) to a final volume of 10 μL. 

Incorporation of the [γ32P] label was measured using a scintillation counter, 1 μL 

of [32P]-labelled dinP3 probe was added to 5 mL of scintillation fluid. 

 

 

Table 2.3: Sense and Antisense primers used to generate the dinP3 probe 

Name Sequence (5′ - 3′) 

MSdinP3 P1 CTCAACAGCATCTACGGCAC 

MSdinP3 P2* TCGACCGAGGCGTAGAACG 

*Primer used for [γ32P] end labelling by PNK. 

 

 

 

 



 35

 

2.3.2 Preparation of cell lysate extracts  

 

Cell free extracts (total cell protein) were prepared according to Durbach et al., 

1997. M. smegmatis cultures were grown in 7H9 liquid media (see Appendix A2) 

at 37oC in a New Brunswick series 25 Orbital Incubator (New Brunswick, Inc, 

USA) until well grown (OD600 greater than 1.5) before being harvested in a 

Beckman Coulter JA-20 rotor centrifuge. The cell pellets were washed twice with 

1 mL Gel Mobility Shift (GMS) assay buffer (see Appendix A7) and re-

centrifuged. Pellets were then re-suspended in 700 μL GMS assay buffer (see 

Appendix A7) and transferred into 2 mL orange screw-caped BIO 101 lysis tubes 

containing lysing matrices (QBiogene, USA). The cells were subjected to 

mechanical lysis in the BIO 101/Savant FastPrep 120 cell disrupter (QBiogene, 

USA). The supernatant was clarified using an Eppendorf 5415D centrifuge 

(Eppendorf International) for 1 min at 5 000 rpm and stored on ice. The cell free 

extracts were immediately used in the binding reactions. Protein concentrations 

relative to BSA were determined using a Bradford assay (see Appendix B8). 

 

2.3.3 DNA binding assay  

 

DNA binding reactions (20 μL) containing 5 000-10 000 cpm [32P]-labelled dinP3 

probe, 1 mg/mL total cell protein lysate, 0.1 mg/mL salmon sperm DNA (Sigma-

Aldrich, USA), 1 μM DTT (Roche Applied Science, Germany) and 1× GMS 

binding buffer (see Appendix A8) in distilled H2O, were incubated at room 

temperature for 30 min. The samples were immediately separated by 

electrophoresis on a 4 % non-denaturing polyacrylamide electrophoresis gel  
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(see Appendix B9). Samples were electrophorised at 20 mA for 45 min at 15oC 

and subjected to autoradiography at –70oC. 

 

2.4    Southern analysis of ΔdinP3 strain 

 

Southern analysis was used to confirm the complete knockout of the dinP3 gene 

generated by homologous recombination.  

 

2.4.1 Electro-blotting of genomic DNA 

 

Genomic DNA was purified from potential double crossover mutants using the 

CTAB mycobacterial genomic DNA extraction method (see Appendix B3) and 

purity was analysed on a 1 % agarose gel (see Appendix B4) in relation to 

molecular weight marker III (Roche Applied Science, Germany). The extracted 

genomic DNA (1 μg) was digested, in separate reactions, with 1 U MluI (Roche 

Applied Science, Germany) and 1 U PstI (AEC Amersham International) at 37oC 

for 3 hrs in a 20 μL reaction with the digestion buffer consisting of 50 mM Tris-

HCl, pH 7.5, 25 mM KCl, 100 mM NaCl, 10 mM MgCl2 and 1 mM DTT. The 

restricted products were fractionated on a 1 % agarose gel (see Appendix B4) 

along with molecular weight marker III (Roche Applied Science, Germany). The 

fractioned molecular weight marker bands were recorded in relation to a ruler 

from a set point on the agarose gel. The gel was soaked in 0.25 M HCl for 15 min, 

washed with distilled H2O, then soaked in 0.5 M NaOH/1.5 M NaCl for 15 min. 

The gel was washed briefly in 1× TBE buffer (see Appendix A9) and a nylon 

membrane (HybondTM-N) was placed on top. This was then placed between 3MM  
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Whatman filter paper and sponges in a TE 22 Mini transfor plastic cassette 

(Hoefer Scientific, USA). The fractioned DNA was transferred onto the nylon 

membrane using the TE 22 Mini Transfor (Hoefer Scientific, USA) at 0.5 A for 2 

h in 1 × TBE buffer. The transferred DNA was cross-linked to the membrane 

using a UV Stratalinker 1800 (Stratagene, USA). 

 

2.4.2 DIG (dioxigenin-11-dUTP) detection procedure  

 

Hybridisation for Southern blot analysis was performed with the DIG- High Prime 

DNA Labelling and Detection System (Kit II; Roche Applied Science, Germany). 

 

Labelling of double-stranded dinP3 DNA probe  

Double stranded dinP3 probe DNA was generated by digesting from plasmid 

DNA (see Appendix C3). Approximately 1 μg of probe DNA was re-suspended in 

16 μL of water, heat denatured at 95oC for 15 min and incubated overnight at 

37oC with 4 μL of supplied DIG-High Prime labelling mixture. The concentration 

of labelled probe was assessed by comparison to control DNA supplied with the 

kit. The concentration of the probe used for hybridisation was 25 ng of probe per 

mL of hybridisation solution. 

 

Hybridisation of dinP3 DNA probe with target sequence  

The nylon membrane with the cross-linked DNA, from section 2.4.1, was pre-

incubated with DIG Easy Hybridisation solution (10 ml/100 cm2 membrane) for 

30 min. The labelled probe was denatured by boiling for 5 min and rapidly 

cooling in ice/water. Denatured labelled DNA probe (25 ng/mL) was added to  
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fresh DIG Easy Hybridisation solution (3.5 mL/100 cm2 membrane) and pre-

warmed to 42oC. The pre-hybridisation solution was discarded and replaced with 

the probe-containing hybridisation solution. Hybridisation of DIG labelled probe 

to target DNA was allowed to occur overnight at 42oC.  

 

Detection of probe DNA bound to target membrane  

Initially the membrane was washed with two washes of 2 × SSC; 0.1 % SDS (see 

Appendix A10) followed by two washes of 0.5 × SSC; 0.1 % SDS (see Appendix 

A11). A series of washes was then performed to develop the chemiluminescent 

signal. The membrane was washed in washing buffer (0.1 M Maleic acid, 0.15 M 

NaCl, pH 7.5, and 0.3 % Tween 20) for 5 min. The membrane was then 

transferred into Blocking buffer (Roche Applied science, Germany) and incubated 

at room temperature for 30 min, followed by 30 min in Antibody solution (Roche 

Applied Science, Germany). The membrane was again washed in washing buffer 

for 15 min, followed by equilibration in 0.1 M Tris-HCl, pH 9.5 with 0.1 M NaCl. 

The chemiluminescent substrate was applied and the membrane was placed in a 

developing cassette with 3MM medical X-ray film. Exposure was performed at 

room temperature for 45 min. The position of the observed bands on the X-ray 

film was measured by a ruler and the appropriate size determination from the 

molecular weight marker was then calculated. 

  

2.5   UV Survival Assay 

 

UV tolerance of the Y-family dinP3 and dinP knockout mutants was determined 

using a UV sensitivity assay. Mycobacterial cultures were grown to an OD600 of  
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1.0 in 7H9 liquid media (see Appendix A2) at 37oC in a New Brunswick series 25 

Orbital Incubator (New Brunswick, Inc, USA) before being serially diluted (see 

Appendix B1). Dilutions (100 to 10-6) were plated in triplicate on 7H10 agar plates 

(see Appendix A3) and irradiated in a UV Stratalinker 1800 (Stratagene, USA) 

from 0-45 mJ/cm2 (Figure 2.1). Viable counts of the serially diluted cultures were 

determined by plating on 7H10 agar plates and incubating at 37oC for four days.   

 

 

 

 

Figure 2.1: Schematic representation of UV survival assay. 
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2.6  Mutation Rate Analysis 

 

The mutation rates of reversion, from histidine auxotrophy to prototrophy, of the 

ΔdinP3 (hisD5T) and ΔdinP (hisD5T) strains were determined. A modified version 

of the fluctuation analysis assay described by Roche and Foster (2000) was used. 

A fluctuation assay consists of a number of parallel cultures, inoculated with a 

small number of identical cells (containing no mutants) that are allowed to grow. 

The number of mutants in each culture that have arisen during growth is 

determined by plating on selective media. The total number of cells is determined 

by plating an aliquot of the cultures on non-selective media. The mutation rate is 

then determined from the distribution of the number of mutants present in the 

cultures. 

 

2.6.1 Experimental method of fluctuation assay 

 

Revertant colonies recorded in the fluctuation assay represented a –1 frameshift 

mutation in the hisD gene of M. smegmatis. The hisD gene encodes histidinol 

dehydrogenase and is the first gene in the operon for de novo histidine 

biosynthesis. Analysis of this gene revealed two nucleotide homopolymer tracts, a 

4T tract and a 5C tract. Auxotrophs of the hisD gene were generated by a two-step 

suicide plasmid strategy to introduce site-directed +1 frameshift mutations into 

these homopolymer tracts (E.E. Machowski, unpublished data). Auxotrophs 

carrying a mutant his allele containing the 5T homopolymer tract (hisD5T ) were 

used in a fluctuation analysis. The mutation rates measured in the fluctuation 

assays represented –1 frameshift mutations in the homopolymer T tract, from 5T  
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(histidine auxotrophy) to 4T (histidine prototrophy)(see Appendix C4). 

 

The overall procedure for the fluctuation assay experimental method is outlined in 

Figure 2.2. Freezer stocks of the M. smegmatis histidine auxotroph strains were 

grown on 7H10 plates with histidine (see Appendix A12) and 7H10 plates without 

histidine (see Appendix A3) to confirm histidine auxotrophy before initiation of 

the fluctuation assay. Genomic DNA was extracted (see Appendix B3) from a 

representative colony and the region of the hisD gene containing the 

homopolymer T tract was sequenced to confirm histidine auxotrophy (see 

Appendix C4). Single colonies from plates confirmed to be auxotrophs were 

inoculated into 5 mL 7H9 liquid medium containing histidine (see Appendix A13) 

and grown overnight in a New Brunswick Series 25 Orbital Incubator (New 

Brunswick, Inc, USA) at 37oC to an OD600 of 1.5, to generate a pre-culture. To 

determine the actual CFU/mL, a serial dilution series (see Appendix B1) of the 

pre-culture was generated. Aliquots (100 μL) from the dilution series (10-4 to 10-8) 

were plated in duplicate on 7H10 plates supplemented with histidine (see 

Appendix A12). The number of revertants that may have arisen during the 

overnight growth was also assessed. This was achieved by plating 1 mL aliquots, 

in duplicate, from the pre-culture on 7H 10 plates without histidine (see Appendix 

A3). Before the cells were plated, the 1 mL aliquots were washed with 0.5 % 

Tween 80 (see Appendix B10). For each single colony inoculated, two pre-

cultures were grown. The first pre-culture was used directly in the fluctuation 

assay as described below. The second pre-culture was transferred into a petri dish 

and UV irradiated at 40 mJ/cm2 in a Stratalinker (Stratagene, USA). The UV 

irradiated culture was then used in the fluctuation assay as further described.  
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Figure 2.2: Breakdown of fluctuation assay experimental procedure used to generate histidine revertants. The mutation rate can be determined from the number of 

revertants generated on the 7H10 agar plates without histidine. 
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The fluctuation assay begins with a small number of cells being inoculated into 

parallel tubes. To achieve this the pre-culture, containing approximately 107 

CFU/mL (consistent with a culture at an OD of 1.5), was serially diluted (see 

Appendix B11) to ~102 CFU/mL to generate the initial inoculum. To confirm the 

number of cells in the initial inoculum a dilution series (see Appendix B1) was 

established and a 100 μL aliquot from the initial inoculum and a 100 μL aliquot 

from the 10-1 dilution was plated, in duplicate, on 7H10 plates with histidine (see 

Appendix A12). The results from these plates gave an indication of the initial 

number of cells, N0 (always found to be around 102 CFU/mL). Along with this, 1 

mL aliquots from the initial inoculum were washed in 0.5 % Tween 80 (see 

Appendix B10) and plated, in duplicate, on 7H10 plates without histidine (see 

Appendix A3). This was to confirm that no revertant colonies were present in the 

N0 culture. The initial inoculum was then distributed between seven parallel tubes, 

by dispensing 1.5 mL aliquots into each culture tube. The tubes were incubated in 

a New Brunswick series 25 Orbital incubator (New Brunswick, Inc, USA) at 350 

rpm at 37oC for three days until stationary phase (OD of 2.5) was reached. The 

total number of cells (Nt) in each parallel culture tube was determined by serially 

diluting (see Appendix B1) the culture in each tube, and then plating 100 μL 

aliquots (10-4 to 10-8) onto 7H10 plates with histidine (see Appendix A12), in 

duplicate. The number of revertants in each parallel culture was determined by 

plating the entire remaining culture onto selective medium. The remaining culture 

was first washed with 0.5 % Tween 80 (see Appendix B10) to remove the 

histidine supplement and then plated onto 7H10 plates without histidine (see 

Appendix A3). All plates were incubated at 37oC for four days before scoring for 

CFU’s. 
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2.6.2 Calculation of mutation rate 

 

Two terms are commonly used when measuring mutations, frequency and rate. 

The mutation rate, rather than the mutation frequency, is the most reliable 

measure as it records the risk of mutation per cell division. Mutation frequency on 

the other hand is a measure of all the mutants present in a given population and is 

significantly affected by a “jackpot” mutation occurring early in the culture. The 

definition of a mutation rate is context dependant. In molecular evolutionary 

biology, the mutation rate is an estimate of the generational rate of mutation per 

nucleotide, locus or genome in total. The mutation rate associated with the 

histidine reversion assay is a function of phenotypic selection. In other words, the 

mutation rate is defined as the probability of a cell sustaining a favourable –1 

frameshift mutation at the 5T tract in hisD that gives rise to histidine prototrophy 

during its lifetime.  

 

A fluctuation assay consists of determining the distribution of mutant numbers in 

parallel cultures and by analysing that distribution, the mutation rate is obtained. 

An important parameter used to determine the mutation rate is m, and it represents 

the mutational events occurring. Luria and Delbrück (1943) were the first to 

describe that an estimation of m and it depended on the theoretical distribution of 

the sizes of mutant clones. Lea and Coulson (1949) then devised a method to 

calculate the distribution. Their model was based on certain assumptions about the 

mutation process:  

(i) the probability of mutation is constant per cell lifetime 
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(ii) the probability of mutation per cell lifetime does not vary during the 

growth of the culture 

(iii) the proportion of mutants is always very small 

(iv) the initial number of cells is negligible relative to the final number of cells 

(v) the growth rates of mutants and non-mutants are the same 

(vi) reverse mutations are negligible 

(vii) death is negligible 

(viii) all mutants are detected 

(ix) no mutants arise after selection is imposed. 

 

There are a number of methods for estimating the mutation rate for a fluctuation 

assay. Before the mutation rate can be determined, the probable number of 

mutations per culture that gave rise to the observed revertants must be calculated. 

This parameter is known as m, and represents the number of mutational events per 

culture. The method used to determine m was the MSS Maximum-Likelihood 

method. The MSS (Ma-Sandri-Sarkar) algorithm (see Appendix C5) is a recursive 

equation that efficiently computes the Luria-Delbrück distribution based on the 

Lea-Coulson generating function (Roche and Foster, 2000). The MSS algorithm 

was used to calculate the probability, Pr, of observing all the experimental values 

of the number of mutants, r, for a given m. The likelihood function (see Appendix 

C5) determines the product of the Pr’s. Initially m is estimated by the method of 

the median (see Appendix C5), adjacent m’s are then used to recalculate the Pr’s 

until an m is identified that maximizes the likelihood function. A spreadsheet was 

created in our laboratory that calculated all the Pr’s for r = 0 to150, for a given m. 

The mutation rate was calculated by dividing m (the mean number of mutations  
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per culture) by the total number of cells in the culture, Nt. A mutation rate was 

determined from three independent fluctuation assay experiments under each 

growth condition. 

 

The MSS algorithm accommodates departures from the Lea-Coulson assumptions 

that often occur under biological situations. Deviations from these assumptions 

that occurred in this study were that the revertants appearing represent only –1 

frameshift events in the 5T homopolymeric tract, and that we are comparing UV 

irradiated cultures to non-UV irradiated cultures. Curve fitting can assess the 

deviations that occur when estimating m. One can plot log (Pr) versus log (r), 

where Pr is the proportion of cultures that contain r or more mutants. With a 

perfect Luria-Delbrück distribution, the plot of log (Pr) versus the log (r) 

approaches a straight line with a slope of –1. If the slope is close to this value, 

then an estimation of m based on the Lea-Coulson generating function is valid. To 

assess the data for deviations from the Luria-Delbrück distribution plots of log 

(Pr) versus log (r) were determined for all fluctuation assays. 

 

To compare mutation rates among different bacterial conditions one needs to 

determine what confidence should be placed in the observed values. As estimates 

of m and μ -are not distributed normally, it is invalid to use normal statistics to 

determine confidence limits for the mutation rate (Stewart, 1994). Unfortunately, 

statistical methods to compare results of fluctuation assays that did not use the 

same Nt’s, or to compare mutations rates themselves, have not been developed. 

Relevant differences can be observed from standard deviations of multiple 

experiments compared to one another. The mutation rates were calculated from  
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three independent fluctuation assay experiments, each containing seven 

independent cultures tubes, for each condition studied. 
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3.0  RESULTS 

 

3.1 Growth characteristics of M. smegmatis mc2155 

 

In order to investigate gene expression profiles and to undertake mutagenesis 

studies, the results that were generated need to be normalised to the growth stages 

of M. smegmatis. To characterise the different growth stages of M. smegmatis and 

relate OD units to the number of CFU, a growth curve was generated. The 

increase in OD as well as the number of CFU was determined at different time 

points (Figure 3.1). A generation time of 3 hours was observed during the 

logarithmic phase of growth. For all experiments conducted with M. smegmatis, 

the logarithmic phase was determined to be between an OD600 of 1.0 to 1.5 and 

stationary phase was determined to be at an OD600 of greater than 2.0.  
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Figure 3.1: Growth characteristics of M. smegmatis mc2155. Growth curves were taken 

over a period of 24 hours. Optical density reading was taken every third hour and samples 

were plated in triplicate to determine CFU/mL. CFU/mL, colony-forming units per 

millilitre. 
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3.2 Sequence homology of DinP3 to the Y-family polymerases 

 

3.2.1 Classification of DinP3 by protein sequence alignment 

 

To date, the key players in mycobacterial mutagenesis, other than DnaE2 (Boshoff 

et al., 2003), remain to be elucidated. Mutagenesis occurs when a low-fidelity 

polymerase introduces a mutation into the genome, a process for which the Y-

family of polymerases has been demonstrated to play an integral role (Yang, 

2005). Clearly, a better understanding of the mutagenesis process can be 

determined by characterising the key polymerases involved. However, before any 

polymerase/s can be characterised, putative candidates need to be identified. The 

two M. tuberculosis genes that show homology to the Y-family error-prone 

polymerases, dinP (Rv3056) and dinX (Rv1537), were identified when the 

genome was fully sequenced and annotated (Cole et al., 1998). Additionally, the 

genome sequence of M. smegmatis strain mc2155 has recently been determined 

and fully annotated by The Institute for Genomic Research (TIGR) 

(http://www.tigr.org). Further analysis of the genome revealed conserved loci for 

dinP (MSMEG1002), found to be duplicated in the genome, and dinX 

(MSMEG3178) and revealed another homologue, dinP3 (MSMEG6405). These 

genes have been classified by TIGR (http://www.tigr.org) as being part of the 

ImpB/MucB/SamB family of proteins, which fall under the Y-family of 

polymerases (Ohmori et al., 2001) (see Section 1.4.2).   

 

Classification of DinP3 as a possible DNA damage inducible protein was 

achieved by comparing it to all proteins represented in the TIGR Comprehensive  

http://www.tiger.org/
http://www.tigr.org/
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Microbial Resource. Alignments were generated using the program Praze (G. 

Sutton, unpublished data) at the TIGR comprehensive microbial resource 

(http://www.tigr.org/tigr-scripts/CMR2/CMRHomePage.spl). Praze produces an 

optimal gapped alignment using an implementation of the Smith-Waterman 

algorithm (Smith et al., 1981) which compares protein sequence segments of all 

possible lengths, location and size and assigns a hierarchical score to the 

sequences, thereby maximising the optimal alignment. The first ten alignments, as 

ranked by Praze, are represented in Table 3.1.  

 

The results highlight the likelihood of DinP3 being classified as a damage 

inducible protein by showing homology to the damage inducible protein P (known 

as either DinP or Pol IV). Interestingly, the alignment revealed a homologue of 

DinP3 in Mycobacterium avium paratuberculosis, showing a similarity of 88.4 % 

between amino acid sequences. However, the role of this protein in M. avium 

paratuberculosis remains unknown. Alignment of DinP3 to the M. smegmatis and 

M. tuberculosis Y-family polymerases was performed with MegAlign (DNAstar, 

Inc, USA) using the clustal method with the PAM250 residue weight table (Figure 

3.2). This analysis shows that amino acid sequence conservation is observed 

amongst the din polymerases in M. smegmatis and M. tuberculosis, with a high 

degree of conservation in the N-terminus of the protein sequences (Figure 3.2). 

The N-terminus of polymerases contains the five highly conserved regions and is 

involved in nucleic acid binding and catalysis (Goodman et al., 2000 and Zhou et 

al., 2001). The similarity between the protein sequences was estimated using 

Praze. The M. smegmatis and M. tuberculosis DinX protein sequences show a    

54 % and 53 % similarity, respectively, to DinP3. The M. smegmatis and  

http://www.tigr.org/tigr-scripts/CMR2/CMRHomePage.spl
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M. tuberculosis DinP protein sequences show a 48 % and 45 % similarity, 

respectively, in amino acid composition to DinP3. 

 

 

Table 3.1: Similarity of DinP3 to TIGR comprehensive microbial resource 

proteins 

Organism Identification TIGR Locus Identity Similarity p-valuea

Mycobacterium smegmatis 
MC2 

ImpB/MucB/SamB family 
protein MSMEG6405 100.0% 100.0% 1.4e-205

Mycobacterium avium 
paratuberculosis Hypothetical Protein NT03MA0182 81.8% 88.4% 2.4e-164

Mesorhizobium loti 
MAFF303099 

DNA damage inducible 
protein P NT02ML1533 43.11% 61.4% 2.4e-77 

Pirellula sp strain 1 DNA damage inducible 
protein P NT02PS1983 41.9% 57.0% 6.6e-66 

Desulfovibrio vulgaris 
Hildenborough DNA polymerase IV DVU0071 41.4% 56.8% 4.2e-64 

Rhodopseudomonas 
palustris CGA009 

DNA damage inducible 
protein P NT02RP3258 37.2% 55.9% 2.8e-58 

Bacteroides 
thetaiotaomicron VPI-
5482 

DNA damage inducible NT01BT4585 41.2% 58.5% 1.2e-57 

Sinorhizobium meliloti 
1021 

Putative DNA damage 
inducible NT01SMA1810 40.4% 58.8% 1.2e-57 

Geobacter sulfurreducens 
PCA 

ImpB/MucB/SamB family 
protein GSU1616 36.5% 56.4% 2e-57 

Bordetella pertussis 
Tohama I 

DNA damage inducible 
protein P NT03BP0928 41.8% 56.7% 3.2e-57 

Bordetella bronchiseptica 
RB50 

DNA damage inducible 
protein P NT01B3052 41.8% 56.7% 3.2e-57 

a p-values based on alignments between DinP3 and all the Comprehensive Microbial Resource 

proteins at TIGR using Praze.

http://www.tigr.org/tigr-scripts/CMR2/GenePage.spl?locus=MSMEG6405
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http://www.tigr.org/tigr-scripts/CMR2/GenePage.spl?locus=NTL03MA0178
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MTB DinP -----MPTAAPRWILHVDLDQFLASVELLRHPELAGLPVIVGGNGDPTEPRKVVTCASYEARAYGVRAGMPLRTAAR-RCPEATFLPSNPAAYNAASEEVVALL 98 
MS DinP ---------MTKWVLHVDLDQFLASVELRRRPDLRGQPVIVGGSGDPSEPRKVVTCASYEAREFGVHAGMPLRAAAR-RCPDATFLPSDPAAYDEASEQVMGLL 94 
MTB DinX -------------VLHLDMDAFFASVEQLTRPTLRGRPVLVGG----LGGRGVVAGASYEARAYGARSAMPMHQARRLIGVTAVVLPPRGVVYGIASRRVFDTV 87 
MS DinX MEGTVARTASRRWVLHLDMDAFFASVEQLTRPTLRGRPVLVGG----LGGRGVVAGASYEARRYGARSAMPMHQARRLVGAPAVVLPPRGAVYGVASRRALDTV 100 
MS DinP3 ---MFVSAAESASILHADLDSFYASVEQRDDPALRGRPVIVGG--------GVVLAASYEAKAYGVRTAMSGGQARA-LCPQAIVVPPRMAAYTQASRDVFAVF 92 

  ♦ ♦   
MTB DinP  RDLGYPVEVWGWDEAYLAVAP---GTPDDPIEVAEEIRKVILSQTGLSCSIGISDNKQRAKIATGLAKPAGIYQLTDANWMAIMGDRTVEALWGVGPKTTKRLA 199 
MS DinP  RDLGHPLEVWGWDEAYLGADLPDESDPVE---VAERIRTVVAAETGLSCSVGISDNKQRAKVATGFAKPAGIYVLTEANWMTVMGDRPPDALWGVGPKTTKKLA 195 
MTB DinX  RGLVPVVEQLSFDEAFAEPPQLAGAVAEDVETFCERLRRRVRDETGLIASVGAGSGKQIAKIASGLAKPDGIRVVRHAEEQALLSGLPVRRLWGIGPVAEEKLH 191 
MS DinX  RSVVPVLEQLSFDEAFGEPSELAGAEAADVEAFCERLRAKVLEHTGLVASVGAGSGKQIAKIASGLAKPDGIRVVRREEEXVLLHGLPVRKLWGIGPVAEDRLH 204 
MS DinP3 HDTTPLVEPLSVDEAFLDVSGLARVSGTPVE-IAARLRARVREQVGLPITVGIARTKFLAKVASQEGKPDGLLLVPPDRELAFLHPLPVRRLWGVGAKTAEKLR 195 
 
MTB DinP KLGINTVYQLAHTDSGLLMSTFG-PRTALWLLL-AKGGGDTEVSAQ-AWVPRSRSHAVTFPRDLTCRSEMESAVTELAQRTLNEVVASSRTVTRVAVTVRTATF 300 
MS DinP  AMGITTVADLAVTDPSVLTTAFG-PSTGLWLLLLAKGGGDTEVSSE-PWVPRSRSHVVTFPQDLTERREMDSAVRDLALQTLAEIVEQGRIVTRVAVTVRTSTF 297 
MTB DinX  RLGIETIGQLAALSDAEAANILGATIGPALHRLARGIDDRPVVER---AEAKQISAESTFAVDLTTMEQLHEAIDSIAEHAHQRLLRDGRGARTITVKLKKSDM 292 
MS DinX  RIGIETIGAFAALTEAEAANVLGSTIGPALHRLARGIDDRPVAER---AEAKQISAESTFPEDLTTLAQLQDAIVPIGEHAHRRLEKDGRGARTVTVKLKKSDM 305 
MS DinP3 AHGIETVADVAELSEATLGSMVG-GAMGRQLFTLSRNIDRRRVTTGVRRSSVGAQRALGRRGNSMSAAEVDAVVVNLVDRITRRMRAAGRTGRTVVLRLRFDDF 298 
 
MTB DinP  YTRTKIRKLQAPSTDPDVITAAARHVLDLFELDRPVRLLGVRLELA*             346 
MS DinP  YTRTKIRKLPAPSTDAGQIVDTALAVLDQFELDRPVRLLGVRLELAMDDVPRPAVTAGT*          356 
MTB DinX  STLTRSATMPYPTTDAGALFTVARRLLPDPLQIGPIRLLGVGFSGLSDI-------------RQESLFADSDLTQETAAAHYVETPGAVVPAAHDATMWRVGDD 383 
MS DinX  STLTRSATLAYATTEASTLIGTARRLLLDPVEIGPIRLVGVGFSGLSDI-------------RQESLFPDLE-QPEEFPDAAPQVESVQTGPSSPTTQWRVGDD 395 
MS DinP3 GRATRSHTMPWATASTDVILCAARELVAAAAPLIAERGLTLIGFAVSNI--------DRGGTQQLELPFAEQ-PDPVAIDSAIDQVRQRFGNAVLTRGVLVGRD 393 
 
MTB DinP  
MS DinP  
MTB DinX  VAHP--ELGHGWVQGAGHGVVTVRFETRGSGPGSARTFPVDTGDISNASPLDSLDWPDYIGQLSVEGSAGASAPTVDDVGDR*       463 
MS DinX  VAHT--ELGHGWVQGAGHGVMTVRFETRASGPGPARTFPEDSPEISRADPVDSLDWAEYLSSLADYQSTP*         463 
MS DinP3 PGLEMPMLPD*                   403 

Figure 3.2: Sequence alignments of the various Y-family polymerases in M. tuberculosis (MTB) and M. smegmatis (MS) using MegAlign (DNAStar, Inc, USA). Identical amino 

acids amongst all sequences are shown in red. Identical amino acids between DinP3 and both M. tuberculosis and M. smegmatis DinX shown in blue. Identical amino acids between 

DinP3 and both M. tuberculosis and M. smegmatis DinP is shown in green. * indicates terminal amino acid in protein sequence. ♦denotes highly conserved, catalytic residues for 

DNA polymerase activity (Gerlach et al., 1999).

 

 ♦   ♦ 
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3.2.2 Putative structure of DinP3 

 

Classification of proteins can also be determined from their 3D/tertiary protein 

structure. The putative 3D/tertiary protein structure of DinP3 was predicted using 

PredictProtein (Rost, 1996) (http://cubic.bioc.columbia.edu/).The overall structure 

shows a similarity in the folding patterns to that observed in the DinB subfamily 

of polymerases, confirming the alignment observations. Amino acid alignments of 

the UmuC and DinB orthologues show that five conserved motifs are present in 

the N-terminus (Zhou et al., 2001).   

 

These five conserved motifs were identified in DinP3 and are shown in Figure 

3.3A. Motifs I and III supply three invariant carboxylates in the active site (shown 

in red in Figure 3.3B). Motifs II and IV interact with the incoming nucleotide and 

motif V interacts with the primer strand (Ling et al., 2001). These five motifs are 

distributed within the first three structural domains of the polymerase. The 

structural domains are termed the “palm”, “finger” and “thumb” (Yang, 2003). A 

unique fourth domain is found in the Y-family of polymerases and is termed the 

“little finger”. In the predicted structure from PredictProtein the sequence that 

makes up the little finger was not included but sequence similarities between 

DinP3 and the other Y-family polymerases indicates that the finger domain should 

appear the same.  

 

 

 

 

http://cubic.bioc.columbia.edu/
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Figure 3.3: Analysis of protein sequence and predicted tertiary structure of DinP3. (A) 

Amino acid sequence of DinP3 showing predicted conserved motifs in the N-terminal 

domain. The five conserved sequence motifs are represented as follows: motif I – pink, 

motif II – yellow, motif III – green, motif IV – blue and motif V – orange. (B) Predicted 

3D/tertiary protein structure of DinP3. The protein is coloured as described in (A). The 

structure was predicted using PredictProtein programme (Rost, 1996). The different 

structural domains have been labelled. Not all amino acids in the little finger domain are 

represented. 
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Mycobacteria appear to have Y-family polymerases that are homologous to the E. 

coli Pol IV based on the observed protein similarities. The possible function and 

role of these mycobacterial polymerases remains to be elucidated. Additionally, it 

remains intriguing that three copies of a Y-family polymerases exist with high 

amino acid sequence homology in M. smegmatis opposed to two copies in M. 

tuberculosis. To provide clarity on this question, the response of DinP3 to stress 

and its role in mutagenesis were tested. 

 

3.3 Expression analysis of dinP3 

 

To assess the mutagenic ability of a polymerase, the stress conditions that induce 

each polymerase need to be determined. The Y-family polymerases, dinP and 

dinX, in M. tuberculosis are not up-regulated in response to DNA damage by UV, 

Hydrogen Peroxide and Mitomycin C (Brooks et al., 2001, Boshoff et al., 2003). 

Unpublished experiments conducted in our laboratory suggest that the M. 

smegmatis counterparts, dinP and dinX, are also not up-regulated after DNA 

damage by UV irradiation (D.F. Warner, unpublished data). The expression 

pattern of the third M. smegmatis Y-family polymerase, dinP3, was explored in 

response to DNA damaging agents. This was accomplished by UV irradiation of 

M. smegmatis and testing for DNA damage-mediated induction by detecting 

increased dinP3 gene expression. M. smegmatis cultures were grown to 

exponential growth phase and were UV irradiated at 40 mJ/cm2. The cultures were 

incubated for 90 min before total RNA was extracted. High expression levels of 

dnaE2 in response to UV irradiation have been reported at 90 minutes (Boshoff et 

al., 2003). The dinP3 and dnaE2 expression levels were simultaneously evaluated  
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by using the extracted total RNA as template to synthesise cDNA. The amount of 

cDNA produced is a function of the amount of transcript present in the RNA 

sample and was determined semi-quantitatively by PCR.  

 

3.3.1 Evaluation of RT-PCR procedure 

 

A PCR contains multiple variables that need to be optimised in order to obtain 

efficient amplification. Initially, the sensitivity of amplification of each primer set 

was tested on purified M. smegmatis genomic DNA. As the copy numbers of the 

genes being assessed was unknown, the primers need to detect at least 100 copies 

per μL. All primer sets used for RT-PCR showed efficient amplification over a 

range of genomic DNA standards (102-106 copies/μL)(Figure 3.4A). Evaluation of 

PCR conditions then followed. The M. smegmatis genome contains a high GC 

rich genome (approximately 67 %). DMSO reduces secondary structures that may 

form in the template DNA, especially in GC rich DNA. It was observed that 

optimal amplification occurred in the presence of both BSA and DMSO (Figure 

3.4B). No amplification was observed when BSA and DMSO were not present.  

 

In order to estimate mRNA levels, the RNA samples must be assessed for all 

contaminating DNA. The purity of the RNA extraction, in terms of contaminating 

DNA, was determined for each sample by including a control that lacked the 

AMV RT enzyme during cDNA synthesis. Samples that showed no amplification 

in the negative RT enzyme control but amplification in the positive RT enzyme 

control were used in the PCR reactions. 
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Figure 3.4: Sensitivity and specificity of primers used for all RT-PCR experiments.  

Agarose gels are representative for sigA amplification. (A) Agarose gel of sigA 

amplification on a range of genomic DNA standards (102-106). (B) Amplification of sigA 

amplicon either in the presence of both BSA and DMSO, or in the absence of both BSA 

and DMSO. Results were compared to 1 μg of Marker VI (Roche Applied Science, 

Germany), which was used as a molecular weight marker. 

 

 

3.3.2 DinP3 is DNA damage inducible 

 

Expression analysis was conducted on mRNA purified from UV irradiated and 

non-UV irradiated M. smegmatis cultures upon optimisation of the RT-PCR 

procedure. Up-regulation of dinP3 was observed in samples of M. smegmatis that 

had been UV irradiated (Figure 3.5).  
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Figure 3.5: Expression of dinP3 and dnaE2 genes in response to UV irradiation. RT-PCR 

assays were performed on four independent M. smegmatis (mc2155) cultures that were 

either subjected to UV-irradiation or grown under normal growth conditions. (A) 

Difference in expression of dinP3, dnaE2 and sigA are shown in comparison to genomic 

DNA (105 copies/μL) on a 2 % agarose gel. The gel represents two of the four 

experiments that were used in the semi-quantification analysis. (B) The relative 

differences in expression due to UV irradiation are shown for dinP3 and dnaE2. The 

values have been normalised to sigA expression levels. Black bars, non-irradiated and red 

bars, UV irradiated cultures. 
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Correct RT-PCR amplicons sizes were observed in all RT-PCR experiments (sizes 

were determined as described in section 2.2.5). Semi-quantitative RT-PCR was 

used to observe differences between the UV irradiated and non-UV irradiated 

cultures. The constant expression levels of sigA with and without UV irradiation 

were confirmed (Figure 3.5A). The M. smegmatis dnaE2 gene, which is up-

regulated after UV irradiation, served as a positive control (Figure 3.5A) (Boshoff 

et al., 2003). The differences in expression levels were determined using the 

Discovery Series Quantity One 1D Analysis software (BioRad, USA). All PCR 

reactions included a 105-copies/μL genomic DNA control that was used for 

quantification (Figure 3.5A). The observed differences in expression were 

confirmed from four independent M. smegmatis cultures that were split and either 

subjected to UV irradiation or not. The actual copy number cannot be determined 

using semi-quantitative RT-PCR. However, relative differences between the UV 

irradiated and the non-UV irradiated cultures were determined.  

 

The values determined for dinP3 and dnaE2 expression were normalized to the 

sigA gene, which has been shown to be expressed at a constant level under a range 

of growth and stress conditions in mycobacteria (Manganelli et al., 1999; Boshoff 

et al., 2004). The relative differences between the dinP3 and dnaE2 UV irradiated 

and non-irradiated cultures are shown in Figure 3.5B. The observable difference 

in dinP3 expression after UV irradiation as compared to the non-irradiated 

cultures indicates that it may be involved in a damage inducible system in M. 

smegmatis. 
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The M. smegmatis din genes show a high degree of sequence similarity. To 

determine if the results observed for dinP3 amplification in the RT-PCR are 

represent the induction of the dinP3 gene, the amplicon was cut with the 

restriction endonuclease, SmaI that was uniquely located in the dinP3 amplicon. 

Since the amplicon was digested with SmaI, this implies that the results observed 

from the RT-PCR represent the expression of dinP3 gene and not any of the other 

din gene in M. smegmatis (Figure 3.6).  

 

 

 

 
Figure 3.6: Digestion of the dinP3 amplicon with SmaI. (A) Cleavage map of dinP3 

amplicon showing expected sizes after digestion with SmaI. (B) Digestion of the dinP3 

amplicon by SmaI was observed. 

 

 

The expression analysis results show that the mRNA levels of dinP3 were up-

regulated after exposure to UV irradiation. In M. tuberculosis, damage induced 

mutagenesis appears to be primarily mediated by DnaE2 which is also induced in 

response to UV irradiation. The results of Boshoff et al. (2003) demonstrated that 

DnaE2 is the major mediator of DNA damage-induced mutagenesis in 

mycobacteria. However, the induction of DinP3 in response to UV irradiation  
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suggests that in M. smegmatis, this polymerase may also be involved in DNA 

damage induced mutagenesis. Moreover, the induction of DinP3 in response to 

DNA damage suggests it may be under the control of the SOS damage response 

system. 

 

3.4 Identification and analysis of dinP3 Cheo box 

 

As DinP3 is induced in response to DNA damage by UV irradiation, it was 

explored whether dinP3 expression is under control of the SOS response. LexA 

has been shown to be a repressor of many SOS response genes that possess the 

LexA binding sequence (Friedberg et al., 1995). In gram-positive bacteria the 

LexA homologue was shown to bind a different sequence to that of the archetypal 

E. coli. This SOS response regulatory sequence is known as the Cheo box and is 

comprised of a palindrome 5’-GAAC(N)4GTTC-3’ to which the SOS repressor, 

LexA can bind (Cheo et al., 1991).  

 

3.4.1 Identification of Cheo box in dinP3 promoter  

 

The M. smegmatis lexA promoter contains a Cheo box that was shown to bind 

LexA (Durbach et al., 1997; Movahedzadeh et al., 1997). Analysis of the 

promoter region of dinP3 led to the identification of a Cheo box, 5′-

GAACatatGTTC-3′ (Figure 3.7). The sequence identified shows high 

conservation to Cheo boxes in gram-positive bacteria, B. subtilis lexA gene 5′-

GAACtcatGTTC-3′, and to other Cheo boxes identified in mycobacteria, M. 

smegmatis recA gene 5′-GAACaggtGTTC-3′. The similarity between the Cheo  
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box sequences suggests that the binding specificities of LexA to the Cheo box 

may exist for DinP3. 

 

 

 

 
Figure 3.7: Identification of a putative LexA binding site (Cheo box) in the promoter 

region of dinP3. The Cheo box is highlighted in red and shown in relation to the predicted 

translation start site of the dinP3 gene. 

 

 

3.4.2 Binding to dinP3 Cheo box by cell lysate 

 

Regulatory sequences in promoters bind protein regulators that control the 

expression of the gene. Upon identification of a Cheo box in the dinP3 promoter a 

GMS assay was used to explore protein binding to this sequence (Figure 3.8). A 

gel electrophoretic mobility shift indicative of the formation of a protein-DNA 

complex was observed when the soluble fraction of a whole-cell extract of M. 

smegmatis mc2155 was added to labelled dinP3 probe containing the Cheo box 

(first panel Figure 3.8B). Competition experiments were performed to determine 

whether the observed protein-DNA complex was due to the sequence of the dinP3 

probe. The protein-DNA complex formation disappeared upon addition of 

unlabelled dinP3 probe indicating that the observed complex is specific for the 

dinP3 probe (second panel Figure 3.8B). 
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Figure 3.8: Gel mobility shift assay suggesting LexA binding to the dinP3 Cheo box. (A) 

Schematic representation of probe used in GMSA. Position of the Cheo box is indicated 

in relation to start of dinP3 gene. (B) Confirmation and specificity of complex formation. 

protein-DNA complex formation was observed in the presence of cell lysate and 

disappeared upon addition of unlabelled dinP3 probe.  

 

 

Partial protein-DNA complex formation was observed when labelled probe was 

mixed with unlabelled probe in a ratio of 2:1, respectively. Complete 

disappearance of the protein-DNA complex was observed when labelled probe 

was mixed with unlabelled probe in a ratio of 1:1. The specificity of the complex 

formation was confirmed when non-specific DNA was tested with the cell lysate.  
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The dinP RT-PCR amplicon was used as random DNA since this sequence does 

not contain any distinguishable Cheo boxes. No protein-DNA complex formed in 

the presence of cell lysate (third panel Figure 3.8B). Protein-DNA complex 

formation was only observed when a region containing the SOS regulatory 

sequence was incubated with cell lysate. This is highly suggestive of LexA 

binding to the Cheo box since binding has been demonstrated in mycobacteria 

(Movahedzadeh et al., 1997 and Durbach et al., 1997).  

 

3.4.3 RecA-dependent induction of dinP3  

 

Binding of LexA to the Cheo box is controlled by RecA. Upon activation of the 

SOS response, RecA causes the autodigestion of LexA and genes under LexA 

control are transcribed. Expression of SOS controlled genes occurs in a RecA-

dependent manner. Expression of dinP3, in response to DNA damage by UV 

irradiation, was assessed for RecA-dependent induction. A mutant strain carrying 

an inactivated copy of RecA was used in a DNA damage gene expression 

experiment as described in section 2.2. The ΔrecA strain was previously generated 

by homologous recombination (E.E. Machowski, unpublished data). The absence 

of a functional copy of recA in the ΔrecA strain was confirmed by a lack of 

amplification of an internal region of the RecA gene. The up-regulation of dinP3 

was found to be dependent on the presence of RecA (Figure 3.9). The dependence 

of dnaE2 expression on RecA has been confirmed and was used as a positive 

control (Boshoff et al., 2003). No difference in expression of sigA was observed 

between the UV irradiated and non-UV irradiated samples.  
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Figure 3.9: Dependence of dinP3 expression on the presence of RecA. Cultures of 

mc2155 ΔrecA were either UV irradiated or grown under normal growth conditions and 

extracted RNA was subjected to RT-PCR as described under Experimental Procedures. 

No induction of dinP3 or dnaE2 was observed after DNA damaging UV irradiation.  

 

 

Expression of dinP3 in a RecA-dependent manner confirms the involvement of 

DinP3 in the SOS response to DNA damage in M. smegmatis. The fact that DinP3 

is under control of RecA corroborates earlier findings that showed possible 

involvement of LexA. These findings strongly suggest a role for DinP3 in the 

damage inducible SOS response system in M. smegmatis. Moreover, this is the 

first example of a Y-family polymerase from mycobacteria that forms part of the 

SOS regulon. Therefore, although neither dinP nor dinX is damage-inducible in 

M. smegmatis or M. tuberculosis, the latter organism is distinguished by the fact 

that it possesses a third Y-family polymerase-encoding gene that is damage 

inducible in a lexA/recA-regulated manner. The identification of SOS response  
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control of DinP3 suggests that it might play a role in DNA damaged mutagenesis. 

 

3.5 Genotype confirmation of mutant strains 

 

To perform characterisation studies into the DNA damage induced mutagenesis of 

DinP3, a mutant strain containing a non-functional copy of the dinP3 gene was 

needed. Assessment of both the DinP3 and DinP roles in mutagenesis were 

chosen in light of their differing DNA damage-induction responses. Confirmation 

of the absence of dinP3 and dinP in their relevant mutant strains was determined 

prior to examining their role in mutagenesis. 

 

3.5.1 Southern blot analysis of ΔdinP3 strain 

 

Single crossover mutants of dinP3 were created by homologous recombination 

(E.E. Machowski, unpublished data) using an allelic exchange technique (Parish 

and Stoker et al., 2000). The restriction sites used to confirm double crossover 

complete knockout mutants of dinP3 are shown along with the Southern blot 

analysis in Figure 3.10. Double crossover mutants of dinP3 were distinguished 

from wild-type mc2155 by differing fragment lengths on the Southern blot, 

fragment lengths were determined as described in section 2.4.2. Complete 

knockout of the dinP3 gene resulted in the loss of a MluI site, which is present in 

the dinP3 gene, resulting in a fragment of approximately 5500 bp in length 

compared to 2832 bp for the wild-type (Figure 3.10B). Assessing restriction of the  

dinP3 gene by PstI again confirmed complete dinP3 knockout. An approximately 

1108 bp difference was observed on the Southern blot, confirming deletion of the  
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dinP3 gene (Figure 3.10C). A mutant strain containing an inactivated copy of 

DinP3 was confirmed, allowing characterisation of DinP3 by comparing 

mutational responses between mc2155 and ΔdinP3. 

 

 

 

 

Figure 3.10:  Confirmation of ΔdinP3 and ΔdinP3 (his5T) strains in M. smegmatis. (A) 

Cleavage map showing the relevant positions of the restriction endonuclease sites in 

relation to the dinP3 gene. (B) Southern blot analysis of the ΔdinP3 mutant strains in 

comparison to mc2155 after restriction with MluI. (C) Southern blot analysis of the same 

ΔdinP3 mutant strains in comparison to mc2155 after restriction with PstI. 
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3.5.2 Confirmation of the ΔdinP strain 

 

DinP was included in further studies to provide a comparison between a UV 

induced Y-family polymerase, DinP3, and non-UV induced Y-family polymerase. 

The ΔdinP strain (knockout of both dinP genes in the M. smegmatis genome) was 

previously generated by homologous recombination (D.F. Warner, unpublished 

data) and was confirmed before use to be a dinP complete knockout. The ΔdinP 

strain is hygromycin resistant (Figure 3.11A). An alternative procedure was used 

to determine complete knockout of the dinP by amplification of an internal region 

of the gene. Absence of dinP amplification was observed in the ΔdinP strain after 

PCR (Figure 3.11B). 

 

3.6 UV survival analysis 

 

The SOS response is induced to help the bacterium tolerate DNA damage. As a 

result, the involvement of DinP3 in tolerating UV irradiation was investigated. 

Strains carrying inactivated copies of dinP3 and dinP were examined for 

sensitivity to UV irradiation. To test the effect that absence of Y-family 

polymerases have on the UV tolerance of M. smegmatis, mutant strains were UV 

irradiated and viable colony forming units were counted. Direct exposure of wild-

type M. smegmatis mc2155 to UV light was determined to be lethal (Figure 3.12; 

mc2155); at UV fluences of 40 mJ/cm2, approximately 0.01% of the bacteria 

survived. It has recently been shown that by removing DnaE2 from M. smegmatis, 

tolerance of DNA damage by UV irradiation was reduced to approximately 

0.0001% of wild-type at 40 mJ/cm2 (Boshoff et al., 2003). 
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Figure 3.11: Genotypic confirmation of dinP mutant of M. smegmatis mc2155. (A) 

Growth of wild-type mc2155 and ΔdinP on 7H9 plates and 7H9 with hygromycin plates. 

(B) Amplification products after PCR of an internal segment of the dinP gene in ΔdinP 

and ΔdinP (his5T) strains. Upper panel shows expected dinP amplicon size. Lower panel 

shows observed PCR products on 2 % agarose gel. 

 

 

The UV tolerance of the ΔdinP3 strain was shown not to vary significantly from 

that of wild-type mc2155, suggesting that ΔdinP3 does not have a greater 

sensitivity to the cytotoxic effects of UV induced DNA damage (Figure 3.12; 

ΔdinP3). No overall UV tolerance for ΔdinP was observed (Figure 3.12; ΔdinP).  
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It appears that ΔdinP was no more sensitive to UV irradiation than mc2155 and  

ΔdinP3. The absence of RecA greatly diminishes the ability of M. smegmatis to 

tolerate UV irradiation. The ΔrecA mutant barely survived at UV fluences above 

10 mJ/cm2 (Figure 3.12; ΔrecA). The difference in the UV tolerance between 

wild-type mc2155 and ΔrecA strains clearly indicates that M. smegmatis tolerates 

UV irradiation by induction of the SOS response. 

 

 

 

Figure 3.12: Effect of UV irradiation on survival of M. smegmatis. Dilutions of M. 

smegmatis were plated in triplicate and UV irradiated at different UV fluences. No 

overall difference in UV tolerance was observed for mc2155, ΔdinP and ΔdinP3. 

Diamonds: mc2155 (wild type); squares: ΔdinP; triangles: ΔdinP3; and circles: ΔrecA. 

Results represent two independent experiments. 
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The lack of effect of DinP3 loss on UV sensitivity of M. smegmatis contrasts with 

the damage hypersensitivity associated with loss of DnaE2 (Boshoff et al., 2003). 

Like DnaE2, DinP3 is induced by UV irradiation in a recA/lexA-dependent 

manner, but unlike DnaE2, DinP3 does not contribute tolerance of damage to 

DNA, such as TT cyclobutane dimers or 6-4 photoproducts, induced by UV 

irradiation. Therefore, although both polymerases are induced as part of the SOS 

response, DinP3 may be involved in tolerance of a different type of DNA damage.  

 

3.7 Mutation rate analysis  

 

To understand how DinP3 functions in response to UV irradiation, its ability to 

introduce mutations needed to be determined. The involvement of DinP3 in a 

damage-inducible mutagenesis system in response to UV irradiation was therefore 

explored. Mutation rates in strains lacking either DinP3 or DinP were assessed in 

parallel in order to compare the contributions of the damage-inducible dinP3 and 

the dinP genes to UV-induced mutagenesis. The UV-induced mutagenesis was 

examined by measuring –1 frameshift mutations in the hisD gene that resulted in 

reversion to histidine prototrophy in M. smegmatis.  

 

Mutation rates in M. smegmatis were measured using a fluctuation assay. The M. 

smegmatis strains were either grown under normal growth conditions or UV 

irradiated and then plated on selective media to determine the number of histidine 

revertants. Often under biologically relevant circumstances models describing the 

distribution of mutant numbers do not meet the Lea-Coulson assumptions (see 

section 2.6.2) (Rosche and Foster, 2000). To describe if any deviations affecting  
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the mutation rate calculations were present, log (Pr) was plotted as a function of 

log (r). Curves were plotted for all fluctuation assays and the slope was calculated. 

No distortions in the slope of the curves were observed in any of the fluctuation 

assays (Figure 3.13). The MSS maximum likelihood method was used to calculate 

mutation rates (see section 2.6.2). 

 

 

 

 

Figure 3.13: Curve showing log (Pr) versus log (r) for the mc2155 mutation rate analysis. 

Curves are representative of both the UV irradiated and non-UV irradiated mc2155 

fluctuation assays. Curves were plotted for the ΔdinP3 (hisD5T) and ΔdinP (hisD5T) 

fluctuation assays, and show similar findings. 
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Unexpectedly, no difference in the mutation rate of M. smegmatis mc2155 was 

observed before and after UV irradiation (Table 3.2; Figure 3.14). Previously, 

studies investigating mutagenesis induced by UV irradiation in mycobacteria and 

other organisms have shown an increase in the number of mutants following UV 

irradiation (Radman, 1975; Sedgwick, 1975; Wagner et al., 2002; Boshoff et al., 

2003 and Duigou et al., 2004). However, these studies were carried out using 

different reporter strains measuring base substitutions that conferred antibiotic 

resistance to rifampicin or tetracycline. The lack of effect of UV irradiation on the 

rate of frameshift mutagenesis using the hisD5T reporter may be a function of the 

mutational event being monitored. The histidine reporter only detects –1 

frameshifts in a homopolymeric (5T) tract. The results observed for mc2155 

suggest that M. smegmatis tolerates UV induced DNA lesions and replicates past 

the lesion without introducing –1 frameshift mutations. The ability of 

mycobacteria to protect against frameshift hypermutability at homopolymeric runs 

is noteworthy, since these organisms do not possess homologues of the highly 

conserved mutS-based MMR system (Mizrahi and Andersen, 1998; Mizrahi et al., 

2000). Introduction of –1 frameshift errors could be deleterious to the organism, 

and thus very strict control measures are needed. Boshoff’s (2003) assessment of 

damage induced mutagenesis by DnaE2 was limited to base substitutions, one 

triplet deletion and a hexanucleotide insertion. The observed results appear to rule 

out the ability of DnaE2 in the presence of the Y-family polymerases to introduce 

a –1 frameshift in the hisD5T reporter strain after UV irradiation in M. smegmatis.  
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Table 3.2: Mutation rates of M. smegmatis strains before and after UV irradiation

Bacterial 
strain Treatment 

No. 
independent 

cultures 

No.  cells per 
culture 

Mutation rate per 
cell division (μ)a

Untreated 21 8.2 ×108 (1.70 ± 1.11) × 10-8

mc2155 
UV 21 1.0 ×108 (1.80 ± 1.81) × 10-8

Untreated 21 5.1 ×108 (26.3 ± 1.46) × 10-8

ΔdinP3 
UV 21 4.8 ×108 (3.10 ± 1.18) × 10-8

Untreated 21 9.9 ×108 (2.60± 0.83) × 10-8

ΔdinP 
UV 21 3.2 ×108 (14.0 ± 0.38) × 10-8

a Breakdown of values used to calculate mutation rate is reported in Appendix C6. 
 
 
 
 

 
 

Figure 3.14: Effect of DinP3 and DinP absence on mutagenesis. The mutation rate was 

determined using fluctuation analysis of cultures either untreated or exposed to UV 

irradiation (40 mJ/cm2). Values represent three independent fluctuation assays for each 

strain investigated.  
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Interestingly the rates of mutation to histidine prototrophy, with or without UV 

irradiation, changed considerably when either DinP3 or DinP was inactivated 

(Table3.2; Figure 3.14). When DinP3 is removed, an increased number of 

histidine revertants were observed under normal growth conditions (Figure 3.15). 

The difference in the mutation rates was approximately 8-fold, with the mutation 

being 26.3 ×10-8 under normal growth conditions and 3.6 ×10-8 following UV 

irradiation. However, as shown in Table 3.2 and Figure 3.14, loss of DinP had the 

opposite effect on the rate of reversion to histidine prototrophy. 

 

The number of histidine revertants was greater following UV irradiation (Figure 

3.15). The mutation rate increases from 2.6 ×10-8 under normal growth conditions 

to 14 ×10-8 following UV irradiation. This is an approximately 5.5-fold difference 

in the mutation rates. In the absence of DinP3, the high mutation rate under 

growth conditions suggests that the ability of M. smegmatis to generate 

spontaneous –1 frameshifts is increased. However, in the absence of DinP, the 

increased mutation rate following UV irradiation suggests that when one member 

of the Y-family of polymerases is missing, the ability of M. smegmatis to 

introduce –1 frameshifts is increased. The increase in mutation rate associated 

with loss of a Y-family polymerase is noteworthy, since mutational studies 

characterising mutator polymerases in other organisms have shown a decrease in 

the introduction of mutations when the investigated polymerase is removed 

(Napolitano et al., 2000; Pol II, Pol IV and Pol V in E. coli, Wagner et al., 2002; 

Pol IV in E. coli, Boshoff et al., 2003; DnaE2 in M. tuberculosis and Duigou et 

al., 2004; YgjW in B. subtilis). 
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Figure 3.15: Differences in numbers of histidine revertants observed for the various 

strains in the fluctuation analysis. Plates represent the number of histidine revertants per 

500 μL on 7H10 agar plates. 

 

 

The Y-family polymerases in M. smegmatis appear to co-ordinate the prevention 

of  -1 frameshift mutations. Removal of one of these members allows error-prone 

replication to occur. Characterisation of the mutagenic spectra of the Y-family 

polymerases opens an interesting avenue of investigation. The mycobacterial Y-

family polymerases appear to exhibit distinctive features from the E. coli and B. 

subtilis Y-family polymerases, and may be due to the existence of a DNA damage 

inducible mutagenesis system mediated by DnaE2. Despite the overall protein 

sequence similarities between the Y-family polymerases, it appears that different 

bacteria have adapted different solutions to deal with lesions in their genetic 

material. 
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4.0   DISCUSSION AND CONCLUSIONS 

 

The ability of the Y-family polymerases to synthesize DNA with a lower fidelity 

than that of the replicative polymerases requires that they be tightly regulated. 

Understanding how Y-family polymerases function should help in understanding 

the mechanisms of mutagenesis. However, mycobacteria may induce genetic 

variation differently from other bacteria through the action of the C-family 

polymerase, DnaE2. Nevertheless, mycobacteria provide an ideal system for 

investigating the individual and collective roles of these Y-family polymerases 

under circumstances in which their principal function may be performed by an 

alternative error-prone polymerase. The studies presented in this dissertation add 

to the growing body of information on Y-family polymerases in mycobacteria, 

and their role in the response of these organisms to DNA damage. 

 

4.1 Biochemical characterisation of DinP3  

 

Results presented in this study demonstrate the presence of an additional Y-family 

polymerase in M. smegmatis, which belongs to the DinB subfamily of the Y-

family polymerases. To better understand the role of the dinP3 gene in M. 

smegmatis, UV-mediated DNA damage was explored as a possible regulator of its 

expression. DinP3 was shown to be up-regulated in a RecA-dependent manner in 

response to DNA damage by UV irradiation (see section 3.4.3), confirming that 

its encoding gene forms part of the SOS-inducible response in mycobacteria. This 

finding is significant, since DinP3 is the first Y-family polymerase shown to be 

under the control of the SOS response in mycobacteria. Induction of DinP3 as part  
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of the SOS response is similar to observations found in other bacteria including  

E. coli, in which Pol II, IV and V are induced, and B. subtilis, in which YgjW is 

induced as part of the SOS response (Napolitano et al., 2000 and Duigou et al., 

2004). A difference between M. smegmatis and M. tuberculosis is observed since 

M. smegmatis contains a Y-family polymerase, DinP3, which is induced as part of 

the SOS response. The SOS response is induced in response to many different 

DNA-damaging agents, suggesting that M. smegmatis may utilise more than one 

specialised polymerase to bypass lesions caused by different DNA-damaging 

agents. 

 

The possible role of DinP3 in mutagenesis was assessed by analysing the effect of 

dinP3 gene loss on the rates of mutagenesis of normal vs. UV-treated cultures of 

M. smegmatis. Although DinP3 was shown to be induced by the SOS response, it 

does not contribute to UV tolerance in M. smegmatis. This could suggest that 

DinP3 does not play a direct role in bypassing lesions that are introduced into the 

DNA by UV irradiation, such as thymine dimers. DinP3 may bypass other types 

of lesions that also cause the induction of the SOS response. Since the SOS 

response is a general DNA damage response mechanism, a more specific 

understanding on how DinP3 functions in bypassing synthesis remains to be 

determined.  

 

The role of DinP3 in mutagenesis as a result of UV induced DNA damage was 

explored. The mutagenesis studies lead to very interesting observations. It appears 

that in mycobacteria the role of the Y-family polymerases is not the same as that 

observed in other bacterial species. Upon removal one of the Y-family  
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polymerases, M. smegmatis acquired an increased ability to introduce –1 

frameshift mutations (see section 3.7). This suggests a possible role of the Y-

family polymerases in M. smegmatis in preventing mutations from occurring and 

working in an “anti-mutator” fashion. Observations from the mutagenesis studies 

do not clearly highlight whether DinP3 acts as an error-prone polymerase or as an 

“anti-mutator”. As DinP3 and DinP both show protein sequence (see section 3.2) 

and folding similarities (section 4.3.2) to error-prone polymerases, it is not 

surprising that they should act as error-prone polymerases. However, the observed 

increase in –1 frameshift mutations in the mutagenesis studies for DinP3 and DinP 

do not correlate with previous studies of inactivated error-prone polymerases. 

When DinP3 is inactivated, increased mutagenesis is observed under normal 

growth conditions. However, since DinP3 is part of the SOS regulon, an increase 

in mutagenic events would be expected after UV irradiation. Interestingly, the 

opposite occurs for DinP. A putative model of how DinP3 and DinP may function 

in M. smegmatis is discussed in the next section. 

  

4.2 Putative roles of DinP3 and DinP in mutagenesis 

 

It is intriguing that multiple DNA polymerases involved in translesion synthesis 

are present in a single organism. Even though the actual process of translesion 

synthesis catalysed by DNA polymerases appears to be similar between different 

organisms, mechanisms of regulation and the type of lesions they can bypass vary 

greatly. It is becoming more apparent that translesion synthesis is achieved by 

either a specific DNA polymerase or a combination thereof, depending on the type 

of lesion and sequence context of the DNA. It is therefore unlikely that a  
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generalised model can explain how translesion polymerases function and when 

they are needed. However, models that are specific to a particular organism could 

be designed to explain how DNA polymerases interact with one another to bypass 

DNA lesions.  

 

4.2.1  Proposed model for frameshift mutagenesis in M. smegmatis 

 

In order to put the findings of this study in context, I outline a model of how the 

investigated polymerases may modulate their activity in M. smegmatis in Figure 

4.1. This model proposes that both DinP3 and DinP act as error-prone 

polymerases (mutators) but that their mutagenic ability is masked in wild-type M. 

smegmatis. Exactly how this occurs remains unresolved. In mycobacteria it has 

been shown that DnaE2 is the major mediator of damage-induced base 

substitution mutagenesis (Boshoff et al., 2003). However, the lack of UV-induced 

–1 frameshift mutations in wild-type M. smegmatis suggests that DnaE2 may be 

unable to produce targeted frameshift mutations in the hisD5T reporter, as no 

difference in the mutation rate was observed in wild-type M. smegmatis before 

and after UV irradiation (see Figure 3.14 in section 3.7). The model proposed that 

in wild-type M. smegmatis, after UV irradiation, DnaE2 is up regulated as part of 

the SOS response and out-competes the other error-prone polymerases for access 

to the damaged DNA but does not introduce –1 frameshift mutations. By contrast, 

when either DinP3 or DinP are removed, the rates of –1 frameshift mutagenesis 

under normal growth conditions and following UV irradiation are altered. In the 

absence of DinP3, the spontaneous mutation rate was shown to increase (see 

Figure 3.14 in section 3.7) suggesting that DinP may gain access to the DNA.  
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Assuming that DinP is error-prone, -1 frameshift mutagenesis may be facilitated 

under normal growth conditions (see Figure 3.14 in section 3.7). However, since 

an increased mutation rate is not observed after UV irradiation, it is proposed that 

DnaE2, induced as part of the SOS response, gains access to the DNA instead of 

DinP. Based on the assumption that DnaE2 is unable to produce targeted 

frameshift mutations, preventing access of DinP to the replication fork by DnaE2 

would moderate frameshift mutagenesis. 

 

When DinP was removed in this study, an increase in –1 frameshift mutations was 

observed after UV irradiation (see Figure 3.14 in section 3.7). This suggests that 

DinP3 gains access to the replication fork after UV irradiation and is able to 

introduce mutations. This agrees with the observations that DinP3 is induced as 

part of the DNA damage mediated SOS response. DinP3 may be able to out-

compete DnaE2 at the replication fork for access to the damaged DNA when DinP 

is absent. This model pre-supposes that polymerase switching occurs at the 

replication fork. It is not known yet whether this process is tightly co-ordinated or 

simply involves competition among the different DNA polymerases based on the 

ability to gain access to the replication fork. The contribution of DinX is not 

discussed as its involvement in frameshift mutagenesis was not established. 

However, the role of DinX in mutagenesis cannot be discounted and further 

investigations into how DinX interacts with the other Y family polymerases needs 

to be established. 

 

 

 



 82

 

 
 

Figure 4.1: A model for –1 frameshift mutagenesis and DNA polymerase interactions in 

M. smegmatis using the HisD5T reporter. During normal growth, the replicative 

polymerase traverses the DNA. In the absence of DinP3, however, DinP gains access to 

the DNA and introduces –1 frameshift mutations, as highlighted in blue. This suggests 

that the presence of DinP and DinP3 in wild-type M. smegmatis prevents –1 frameshift 

mutations from occurring. After UV irradiation the DNA becomes damaged and thus 

blocking the replication fork. In wild-type M. smegmatis DnaE2 gains access to the DNA 

and bypasses the lesion introducing base substitution mutations. However, when DinP is 

removed, DinP3 out-competes DnaE2 and gains access to the damaged DNA. DinP3 then 

introduces –1 frameshift mutations, as highlighted in green. 
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4.3 Tertiary sequence characteristics of the DNA polymerase 

DinP3 

 

4.3.1  Polymerase switching and the processivity β-clamp 

 

Protein clamps play a critical role in DNA metabolism, either as processivity 

factors or to manage multi-enzymatic reactions. The β-processivity clamp in 

bacteria communicates with multiple proteins and can regulate which polymerase 

gains access to the replication fork. All DNA polymerases interact with the β-

clamp on the same locus, suggesting that they compete for the β-clamp at sites of 

DNA damage (López de Saro et al., 2003). Control of polymerase selection may 

be exercised at the level of their affinity for the β-clamp. Dalrymple et al. (2001) 

identified a pentapeptide motif, with the consensus QL[SD]LF that allows 

protein-protein interactions between polymerases and the β-clamp to occur. 

Analysis of the C-terminal domain of DinP3 revealed a hexapeptide, 354-

QLELPF-359, that showed similarity to the β-clamp consensus sequence 

(Dalrymple et al., 2003). This may explain the ability of DinP3 to out-compete 

DnaE2 and gain access to the replication fork when DinP is not present. Analysis 

of the C-terminal domain of DinP did not reveal any β-clamp consensus sequence. 

However, in the proposed model, it appears that in the absence of DinP3, DinP 

gains access to the replication fork and introduces –1 frameshift mutations. DinP 

may gain access to the replication fork even in the absence of a recognisable β-

clamp consensus sequence due to the amount of DinP available (levels of DinP) 

and its ability to localise near the replication fork when DinP3 is absent.  
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Different polymerases may be recruited differently at the replication fork, which 

may affect their ability to act as a translesion polymerase. Low processivity tends 

to correlate with low frameshift fidelity, possibly by allowing rearrangements in 

the base pairing of the primer/template (Kunkel et al., 2000). The ability of DinP3 

or DinP to gain access to the replication fork may suggest that due to low 

processivity, –1 frameshift mutations are introduced. It remains to be seen how 

the M. smegmatis polymerases interact with the β-clamp in order to gain access to 

the replication fork. 

 

4.3.2 Possible substrates and site specificity 

 

It has been proposed that the ability of Y-family polymerases to introduce 

mutations was a result of a relaxed geometric selection of the incoming 

nucleotide, or due to there being a more flexible active site (Ohashi et al., 2000 

and Johnson et al., 2000). By assessing the Y-family polymerases, it appears that 

each may have an active site that is optimised to accommodate a particular subset 

of DNA lesions. The active site of DinP3 and one of its homologues, Dpo4, is 

positioned at different locations (Figure 4.2). This suggests that each polymerase 

has the ability to bypass a specific type of lesion. DinP3 may able to 

accommodate bulky lesions or an abasic bulge in the template strain.  

 

It is interesting to observe the overall folding similarities between the two 

homologues. Despite this, the Y-family polymerases display remarkably different 

abilities to replicate pass different lesions that are present on the template DNA.  
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Figure 4.2: Model structure comparing the predicted 3D protein structures of DinP3 to 

that of Dpo4. The predicted protein structure for DinP3 has been superimposed upon the 

crystal structure of Sulfolobus solfataricus Dpo4 complexed with DNA and an incoming 

nucleotide (PDB code 1JX4; Yang, 2003). The DinP3 protein backbone is multi-coloured 

and the Dpo4 protein backbone is represented in white. The conserved amino acids that 

are required for catalytic function have been enlarged, red for DinP3 and pink for Dpo4. 

 

 

Pol V tends to introduce base substitutions opposite thymine dimers but also  

introduce –1 frameshift mutations opposite an N-2-acetylaminofluorene adduct 

(Napolitano et al., 2000). In order to better understand DinP3's ability to 

accommodate DNA lesions, an accurate determination of the three-dimensional 

structure in contact with DNA would be required, for example by using NMR or 

X-ray crystallography. The “little finger” domain can interact with the DNA 

template, and may influence the outcome of replication. The “little finger” domain 

is the least conserved among the Y-family polymerase but may influence the 

catalytic efficiency and substrate specificity (Ling et al., 2004). The variation of 

residues in the active site that are in contact with the base pair being synthesized  
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may specify the type of polymerase that is required for a specific lesion (Yang, 

2003). 

 

4.4  Conclusions 

 

All organisms have evolved multiple mechanisms for protecting the fidelity of the 

genome during replication of both undamaged and damaged DNA (Friedberg et 

al., 1995). However, specialised DNA polymerases that can promote genetic 

heterogeneity in the presence of unrepaired base damage have been identified. 

One such class of DNA polymerases are the Y-family members, which are 

characterised by their low-fidelity of synthesis of undamaged DNA and their 

ability to bypass DNA lesions that would normally block replication. The 

transcriptional control of these polymerases, however, appears to vary greatly 

between different bacterial species. In E. coli, Pol IV is constitutively expressed, 

and both Pol IV and V are SOS induced (Courcelle et al., 2001 and Napolitano et 

al., 2000). In M. tuberculosis, DinP and DinX are not part of the SOS response 

(Brooks et al., 2001), and whereas dinP is up-regulated by inhibition of the 

ATPase activity of DNA gyrase (Boshoff et al., 2004), the conditions (if any) that 

lead to the induction of dinX have yet to be identified. In B. subtilis, YgjW is 

expressed upon SOS induction whereas YgjH is expressed constitutively during 

growth and is not SOS controlled (Duigou et al., 2004). In M. smegmatis, DinP3 

is induced as part of the SOS response but like M. tuberculosis, DinP and DinX 

are not. The results observed in this study reiterate the growing notion that the 

mechanisms by which error-prone polymerase action leads to genetic variation 

differ greatly between bacterial species. 
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TB remains a leading cause of death by an infectious agent regardless of the 

advances that have been made in discovering therapies to treat the disease. A 

hallmark feature of M. tuberculosis is its ability to acquire multi-drug resistance 

through the introduction of genomic mutations (Ramaswamy et al., 1998). The 

rate at which M. tuberculosis introduces mutations depends on a variety of 

environmental and host responses.  The ability of M. tuberculosis to become drug-

resistant poses a major threat to the effective treatment of this disease using 

available drugs. An understanding of the mechanisms for genetic diversification 

that enable this organism to become resistant to one or more drugs by mutation of 

chromosomal genes associated with drug action is therefore required. 

 

The results presented in this study have provided some insight into the role of 

error-prone DNA polymerase in –1 frameshift mutagenesis in M. smegmatis under 

normal growth conditions and following UV irradiation. Mycobacteria appear to 

have adopted a novel way of introducing base substitution mutations in response 

to DNA damage by primarily utilising a C-family error-prone polymerase instead 

of the Y-family polymerases. Since M. tuberculosis lacks a DinP3 homologue, the 

DinP3 mutant of M. smegmatis may model the situation of M. tuberculosis. The 

balance between error-prone versus error-free replication under a variety of 

environmental conditions provides an interesting avenue of investigation in 

mycobacterial species. The results presented in this dissertation highlight the 

differences in control and mutational profiles of the Y-family polymerases and 

add to the understanding of the key participants in lesion bypass synthesis. 
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5.0  APPENDICES 

 

A. Media, Reagents and Solutions 

 

Final volume of media (made up with distilled H2O) is one litre. Media was 

sterilized by autoclaving at 121oC for 10 min. 

 

1. Luria-Bertani Agar (LA) plates 

10 g tryptone powder (Oxoid, Ltd, UK), 5 g yeast extract (Oxoid, Ltd, UK), 10 g 

sodium chloride (Associated Chemical Enterprises, South Africa) and 15 g agar 

powder (Difco, USA). 

  

2. Middlebrook 7H9 liquid media 

4.7 g 7H9 broth base (Difco, USA) was dissolved in 900 mL distilled H2O and 2 

mL glycerol (Merck, Germany) was added. After being autoclaved, 100 mL ADC 

enrichment media was added along with 5 mL 20 % Tween 80. 

 

3. Middlebrook 7H10 agar plates 

19 g of 7H10 agar powder (Difco, USA) was dissolved in 900 mL distilled H2O 

and 5 mL glycerol (Merck, Germany) was added. After being autoclaved, 100 mL 

OADC enrichment media was added. 

 

4. 0.5 % Tween 80 

Dilute 25 mL of 20 % Tween 80 (see Appendix A14) into 975 mL distilled H2O. 
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5. 75 % Ethanol 

Dilute 750 mL 100% Ethanol (BDH, UK) into 250 mL distilled H2O. This 

solution was not autoclaved. 

 

6. DEPC-treated H20 

Add 0.1% diethylpyrocarbonate (DEPC) to water; mix overnight, and then 

autoclave for 20 min. 

 

7. GMS Assay Buffer 

Combine 12 % Glycerol, 12 mM 2-[4-(2-hydroxyethyl)-1-piperazinyl] 

ethanesulphonic acid (HEPES) (pH 7.9), 4 mM Tris-HCl (pH7.9), 60 mM KCl 

and 1 mM ethylenediaminetetraacetic acid (EDTA). 

 

8. GMS Binding Buffer 

Combine 20% glycerol, 100 mM Tris-HCl (pH 8.0), 300 mM KCl, 0.5 mg/mL 

BSA with 100 mM HEPES. 

 

9. 10 × Tris-Borate (TBE) Buffer 

Dissolve 108g Tris base (Sigma-Aldrich, USA) and 55 g Boric Acid (Merck, 

Germany) in 800 mL distilled H2O. Add 20 mL 0.5 M EDTA and bring final 

volume to 1 L with distilled H2O. 

 

10.  2 × SSC; 0.1 % SDS 

Make a 1:10 dilution of 20 × SSC (see Appendix A20) solution and add 0.1% 

SDS. 
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11. 0.5 × SSC; 0.1 % SDS 

Make a 1:40 dilution of 20 × SSC solution (see Appendix A20) and add 0.1% 

SDS. 

 

12. Middlebrook 7H10 agar plates with His100 

7H10 agar plates were made as in Appendix A3 with 1 mL 100mg/mL L-

Histidine (Sigma-Aldrich, USA) being added before pouring agar plates. 

 

13. Middlebrook 7H9 liquid media with His100 

7H9 liquid media was made as in Appendix A2, finally 1 mL 100mg/mL L-

Histidine (Sigma-Aldrich, USA) was added. 

 

14. 20 % Tween 80 

Dilute 200 mL polyoxyethylenesorbitan monooleate (Tween 80) (Sigma-Aldrich, 

USA) in 800 mL distilled H2O. 

 

15. 50 × Tris-Acetate (TAE) buffer 

Dissolve 242g of Tris base (Sigma-Aldrich, USA) in 700 mL of distilled H2O and 

then add 100 mL 0.5 M EDTA, pH 8.0 and 57.1 mL glacial acetic acid (Merck, 

Germany). Bring the final volume to 1 L with distilled H2O.  

 

16. 1 × TE Buffer 

Add 10 mL 1 M Tris-HCl, pH8.0, to 400 μL 0.25 M EDTA. 

 

 



 91

 

17. CTAB Solution 

Dissolve 4.1g (0.7M) NaCl (Associated Chemical Enterprises, South Africa) in 

80mL dH2O. While stirring, add 10g (10 %) N-cetyl-N,N,N-trimethyl ammonium 

bromide (CTAB). If necessary, heat solution to 65oC. Adjust volume to 100mL 

with dH2O and filter sterilize. 

 

18. 6 × DNA Loading Buffer (250 mL) 

Add 0.3 g Bromophenol blue, 0.3 g Xylenol, 93.6 mL 80% glycerol, 3 mL 0.5 M 

EDTA, to 100 mL distilled H2O. Make up to 250 mL with distilled H2O. 

 

19. 10 × TGOE Buffer 

Dissolve 30.2 g 0.25M Tris (Sigma-Aldrich, USA) and 142.6 g 1.9 M Glycine 

(Merck, Germany) in 800 mL distilled H2O. Adjust pH to 8.3 with Acetic acid 

(Merck, Germany) and bring volume to 1 L with distilled H2O. 

 

20. 20 × SSC  

Dissolve 175.3 g NaCl (Associated Chemical Enterprises, South Africa) and   

88.2 g Sodium citrate (BDH, UK) in 800 mL distilled H2O. Adjust the pH to 7.0 

with 1M HCl and bring final volume to 1L with distilled H2O. 
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B. General Laboratory Methods 

 

1. Dilution series (100 μL) 

In order to calculate the number of cells present in a culture a dilution series was 

created. A 10 × dilution was generated by consecutively diluting 100 μL aliquots 

into 900 μL 0.5 % Tween 80 (see Appendix A4). The first 100 μL aliquot was 

taken from the culture of interest and diluted. A dilution range of 10-1 to 10-8 was 

created. 

 

2. RNA gel electrophoresis 

The quality of extracted RNA was analysed by resolving RNA samples on an 

agarose gel. For a 2 % agarose gel, 0.6 g of normal melting point agarose (FMC 

BioProducts, USA) was dissolved in 30 mL 1x TAE buffer (see Appendix A15) 

and 0.1 % SDS was added. Samples were resolved until dye front had migrated 

three quarters down the gel. The gel was stained for 10 min in 0.0001:1 Ethidium 

Bromide:H2O whilst being agitated. 

 

3. Mycobacterial genomic DNA extraction 

All mycobacterial genomic DNA was isolated using the CTAB genomic DNA 

extraction method. Cells were grown in 7H9 liquid media (see Appendix A2) until 

well grown, before being heat killed at 75oC for 35 min. Following centrifugation 

(5415D, Eppendorf International) for 30 s at 13 000 rpm the cell pellets were re-

suspended in 500 μL TE buffer (see Appendix A16). To the suspension, 50 μL of 

10 mg/mL lysoyme (Sigma-Aldrich, USA) was added before incubating at 65oC 

for 1 and half hours. Next 100 μL 5M NaCl (Associated Chemical Enterprises,  
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South Africa) was added and mixed and then 80 μL CTAB solution (see 

Appendix A17) was added to the sample and mixed well. The sample was 

incubated for 10 min at 65oC before an equal volume of CHCl3/isoamyl alcohol 

was added, mixed and centrifuged (5415D, Eppendorf international) for 5 min at 

13 000 rpm. The aqueous phase was removed and to this 0.6 volumes of 

isopropanol (Labchem, South Africa) was added and placed on ice for 30 min. 

After centrifugation (5415D, Eppendorf international) at 13 000 rpm for 20 min at 

4oC the pellet was washed with cold 70 % Ethanol and re-centrifuged for 5 min at 

4oC. The pellet was dried and re-suspended in distilled H2O. 

 

4. DNA Gel Electrophoresis  

All PCR products were analysed on agarose gels. For a 2 % agarose gel, 0.6 g of 

normal melting point agarose (FMC BioProducts, USA) was dissolved in 30 mL  

1 × TAE buffer (see Appendix A15) with 1 mL Ethidium Bromide per 30 mL 

buffer. Samples were loaded with DNA loading buffer (see Appendix A18) and 

resolved until dye front was three quarters the length of the gel. The product sizes 

were compared to the 1 μg DNA marker III (Roche Applied Science, Germany) 

 

5. DNA Gel Electrophoresis (low melting point agarase) 

For 1 % low melting point agarose gel dissolve 0.3 g low melting point agarose 

(FMC BioProducts, USA) in 30 mL 1× TAE buffer with 1 mL Ethidium Bromide 

per 30 mL buffer. Samples were loaded with DNA loading buffer (see Appendix 

A18) and resolved until dye front was three quarters the length of the gel. 
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6. β-Agarase procedure 

The required DNA band was cut out of a 1 % low melting point agarose gel (see 

Appendix B4) and to this 0.04 volumes of 25 × Agarase buffer (Sigma-Aldrich, 

USA) was added. The sample was then incubated at 65oC for 15 min until agarose 

had completely melted. Samples were cooled to 42oC and 1 unit Agarase (Sigma-

Aldrich, USA) per 100 mg agarose was added. The samples were then incubated 

for 1 hr at 42oC before Ethanol precipitation of the DNA fragments was 

performed (see Appendix B7). 

 

7. Ethanol precipitation of DNA 

To a measured sample, one tenth volume of 3M NaOAc, pH 5.2 and at least two 

volumes of cold 100 % Ethanol (Merck, Germany) were added. The sample was 

then allowed to stand for more than 30 min at –20oC and centrifuged (5415D, 

Eppendorf International) at 4oC for 15 min at 12 000 rpm. The supernatant was 

discarded and the pellet was washed with cold 75 % Ethanol (see Appendix A5) 

and centrifuged (5415D, Eppendorf International) for 5 min at 4oC at 12 000 rpm. 

The DNA pellets were air dried for 5 min and re-suspended in distilled H2O. 

 

8. Bradford Assay 

The Bradford assay was used to determine the protein concentration in the cell 

free extracts. GMS assay buffer (see Appendix A7), 600 μL, was added to 200 μL 

of cell free extract and mixed gently. To this 200 μL of Bradford Reagent 

(BioRad, USA) was added and mixed gently by inverting the tubes. The samples 

were left at room temperature for 10 min and then the absorbance at 595 nm was 

recorded. BSA (Roche Applied Science, Germany) was used to generate a  
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standard protein concentration curve. BSA (Roche Applied Science, Germany) 

was diluted with GMS assay buffer (see Appendix A7) to give known protein 

concentrations in a volume of 800 μL. To this 200 μL of the Bradford Reagent 

(BioRad, USA) was also added and left at room temperature for 10 min. The 

absorbance at 595 nm for the known standards was recorded and a standard curve 

was generated. The protein concentration of the sample was then determined from 

the standard curve. 

 

9. Non-denaturing Polyacrylamide Electrophoresis 

Nucleic acid/protein complexes were separated using non-denaturing 

electrophoresis. A 4 % polyacrylamide gel was made by combining together 9.25 

mL (20 %/0.33 %) acrylamide/bisacrylamide (both from BioRad, USA), 3.5 mL 

10 × TGOE buffer (see Appendix A19), 1.75 mL 50 % Glycerol, 35 μL 0.5 M 

DTT (Roche Applied Science, Germany), 300 μL 10 % Ammonium persulphate 

and 30 μL N,N,N’,N’,-tetramethylethylenediamine (TEMED)(BioRad, USA). The 

volume was made up to 37 mL with distilled H2O. 

 

10. Histidine removal washes 

To test for histidine reversion, cultures were plated on 7H10 plates (see Appendix 

A12) but were grown in liquid media containing histidine. Removal of all 

histidine from solution is necessary to prevent colonies from growing in the 

presence of histidine. The bacterial cultures were subjected to three rounds of 

washing with 0.5 % Tween 80 (see Appendix A4) to remove the media containing 

the histidine. Bacterial cells were pelleted by centrifuging (5415D, Eppendorf 

International) for 1 min at 10 000 rpm. The pellets were suspended in 0.5 %  
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Tween 80 and then re-centrifuged (5415D, Eppendorf International) for 1 min at 

10 000 rpm. This was repeated two more times. 

 

11. Dilution series (100 mL) 

To dilute the pre-culture down to 102 CFU/mL a dilution series was established. 

The pre-culture was diluted down in 100 mL volumes. A 1 mL aliquot from the 

pre-culture was diluted in 99 mL 7H9 liquid media with histidine (see Appendix 

A13), followed by a 1 mL aliquot from this being diluted in a further 99 mL 7H9 

liquid media with histidine (see Appendix A13). A 10 mL aliquot was then taken 

from this dilution and suspended in 90 mL 7H9 liquid media with histidine (see 

Appendix A13). The last dilution was used as the initial inoculum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

The primers were designed to amplify a region internal to the coding sequence of 

each gene. Amplicons are shown relative to the start of the gene and primer 

positions are indicated in red. 

 

1. Primer position for RT-PCR 

 

C. Other Appendices 
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The dinP3 Cheo box was investigated for putative LexA binding. A 149 bp region of the dinP3 promoter, containing the Cheo box, was amplified. The 

primer positions are indicated in red and the Cheo box is highlighted in turquoise. 

 

2. Cheo box regulator sequence in dinP3 promoter 
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3. Probe for Southern analysis of ΔdinP3 strain 

 

Digesting a vector generated the probe for southern analysis, 

pGEMdinP35′probe2, containing the 5′ region of the dinP3 gene (Figure 5.1). The 

vector was digested simultaneously with HindIII (AEC Amersham International) 

and XbaI (Roche Applied Science, Germany) at 37oC for 1 hr in a 20 μL reaction 

with the digestion buffer consisting of 100 mM Tris-HCl, 1 M NaCI, 50 mM 

MgCl2, 10 mM 2-mercaptoethanol, pH 8.0. An 859 bp probe, the turquoise region 

in the map below, was resolved on a 1% Agarose gel (see Appendix B5), 

extracted using β-Agarase (see Appendix B6) and purified with Ethanol 

precipitation (see Appendix B7). This probe was used to determine the complete 

knockout of dinP3 gene. 

 

 

Figure 5.1: Schematic representation of probe generation for Southern analysis. 

 

 

                                                 
2 S.S. Dawes in our laboratory designed the pGEMdinP35′probe vector. 
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4. HisD5T auxotrophy and sequencing 

 

 

 

 

Figure 5.2: Analysis of 5T homopolymeric tract for histidine reversion assays. (A) 

Schematic representation of hisD gene. Histidine auxotrophs contain a 5T 

homopolymeric tract that is reverted to a 4T homopolymeric tract after a –1 frameshift 

mutation has been introduced. (B) Sequence analysis of hisD5T gene from histidine 

auxotroph colonies. 

 

 

 

 



Equation name Equation Reference. 

MSS algorithm 
 

Ma et al., 
1992 

Likelihood function 
 

Roche et al., 
2000 

Mutation rate  
Roche et al., 

2000 
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5. Equations for mutation rate calculation 

 

Listed below are the equations for the calculation of m, which is needed to 

calculate the mutation rate. 

 

Table 5.1: MSS maximum likelihood method used to calculate the mutation rate
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All mutation rates were determined using the MSS Maximum likelihood method. The mutation rates indicate –1 frameshift mutations occurring in a polythymine run 
in the hisD gene. The mutation rate is the probability of a cell sustaining a mutation during its lifetime, and is calculated by dividing the mean number of mutations 
per culture by the number of divisions occurred. 

 

 

 

 

 

 

 

 

 

 

  Non-UV irradiated UV irradiated 

  mc2155 ΔdinP3

Table 5.2: Breakdown of individual mutation rates observed for the various fluctuation assays 

6. Breakdown of experimental values used to determine mutation rates 

 

 

 

  ΔdinP mc2155 ΔdinP3 ΔdinP 

Mutation rate (μ) 1.17E-08 3.83E-07 2.23E-08 2.51E-08 3.24E-08 1.32E-07 

Mutations per culture (m) 28 225 8.5 36.5 27.5 58 #1 

Nt value 1.66E+09 4.08E+08 2.65E+08 1.01E+09 5.90E+08 3.05E+08 

Mutation rate (μ) 9.54E-09 1.01E-07 1.95E-08 1.04E-08 2.28E-08 1.07E-07 

Mutations per culture (m) 9.2 95 9.1 23 10.5 26 #2 

Nt value 6.70E+08 6.51E+08 3.24E+08 1.54E+09 3.20E+08 1.69E+08 

Mutation rate (μ) 2.98E-08 3.05E-07 3.50E-08 1.88E-08 4.62E-08 1.81E-07 

Mutations per culture (m) 5.5 210 121 14.6 35 130 #3 

Nt value 1.31E+08 4.79E+08 2.40E+09 5.39E+08 5.26E+08 4.99E+08 
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