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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a characteristic dys-
regulated metabolism. Abnormal clinicopathological features linked to defective metabolic and
inflammatory response pathways can induce PDAC development and progression. In this study, we
investigated the metabolites and lipoproteins profiles of PDAC patients of African ancestry. Nuclear
Magnetic Resonance (NMR) spectroscopy was conducted on serum obtained from consenting in-
dividuals (34 PDAC, 6 Chronic Pancreatitis, and 6 healthy participants). Seventy-five signals were
quantified from each NMR spectrum. The Liposcale test was used for lipoprotein characterization.
Spearman’s correlation and Kapan Meier tests were conducted for correlation and survival analyses,
respectively. In our patient cohort, the results demonstrated that levels of metabolites involved in
the glycolytic pathway increased with the tumour stage. Raised ethanol and 3-hydroxybutyrate
were independently correlated with a shorter patient survival time, irrespective of tumour stage.
Furthermore, increased levels of bilirubin resulted in an abnormal lipoprotein profile in PDAC pa-
tients. Additionally, we observed that the levels of a panel of metabolites (such as glucose and lactate)
and lipoproteins correlated with those of inflammatory markers. Taken together, the metabolic
phenotype can help distinguish PDAC severity and be used to predict patient survival and inform
treatment intervention.

Keywords: pancreatic ductal adenocarcinoma; metabolites; cholestatic (obstructive) jaundice; lipopro-
tein; inflammation; tumour stages

1. Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most fatal cancers, primarily
due to its late-stage presentation and resistance to therapy [1]. Over the past two decades,
the number of deaths caused by pancreatic cancer has doubled to over 441,000 cases
globally [2]. Surgery remains the only curative treatment strategy. However, over 80% of
PDAC patients are diagnosed with locally advanced or metastatic disease and, therefore,
cannot undergo surgery [3]. The 5-year survival rate stands at about 10%, despite advances
in management [4,5]. Classic symptoms of PDAC include weight loss, anorexia, abdominal
pain, and obstructive jaundice [6]. Some of the risk factors of PDAC include age, obesity,
smoking, excessive alcohol intake, chronic pancreatitis (CP), and Type 2 Diabetes Mellitus
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(T2DM) [7]. Although there is very little biological information on PDAC in the African
population, they have been shown to have increased incidence and mortality, attributed
to a combination of social (such as excessive smoking and alcohol intake) and genetic
factors [8–10].

As a hallmark of cancer, tumour cells reprogram their metabolism, such as promoting
glycolysis to maintain cell survival and increase proliferation rate [11–13]. Metabolites are
products of the metabolism that navigate important biological functions such as energy
conversion [14,15] and signalling [16,17]. Blood metabolite concentrations can reflect the
metabolic adaptation of tumour or highlight the host response to the tumour [18]. In this
sense, Nuclear Magnetic Resonance (NMR) spectroscopy was shown to be a powerful
technique for the high-throughput analysis of blood samples [19,20]. NMR spectroscopy
has been used to investigate the serum metabolome of patients with PDAC to distin-
guish malignant and benign diseased states and some metabolites, such as leucine, valine,
isoleucine, tyrosine, lysine, creatinine, triglycerides, and 3-hydroxybutyrate, were dysregu-
lated [21–24]. Although these authors reported the blood-based metabolomics biomarkers
of PDAC, their findings did not make associations to outcomes and were conducted in
other population groups [25,26].

PDAC is a complex and heterogeneous disease. Maladies associated with biological
and metabolic processes, such as obstructive jaundice, diabetes, and inflammation, can
result in complications that could alter the course of the disease [27]. These maladies
could also lead to changes in both metabolic and lipoprotein profiles. For instance, over
70% of PDAC patients, at the time of their diagnosis, presented symptoms of cholestatic
jaundice [28], a reduction in or stoppage of bile flow. An abnormal lipoprotein profile
has been linked to patients that present with cholestatic jaundice due to the increased bile
acid and cholesterol levels [29,30]. T2DM is another common comorbidity that is well
known to reflect changes in the serum metabolome. In PDAC, T2DM can promote tumour
progression via changes in the transcriptome and metabolome [31]. Its close association
with chronic inflammation adds an extra layer to the complexity of this disease [32].

To our knowledge, for the first time, this pilot study shows the links between
metabolomic and lipoprotein profiles in PDAC patients of African ancestry with disease
stage and patient survival. Additionally, the impact of the metabolic and lipoprotein
profile on T2DM, cholestatic jaundice, and inflammation is reported.

2. Results
2.1. Patients’ Demographic and Clinicopathological Characteristics

Six CP and thirty-four patients with PDAC, including 22 with Resectable Pancreatic
Adenocarcinoma (RPC), 8 with Locally Advanced Adenocarcinoma (LAPC) and 4 with
Metastatic Adenocarcinoma (MPC), were recruited. Six age-matched healthy controls
(HC) were also recruited in this cohort. The demographic features and comorbidities
of the patients with PDAC, and CP are reported in Table 1. The demographic features
were matched across the four patient groups (i.e., CP, RPC, LAPC and MPC). About 50%
(n = 21) of the patients are smokers (≥1 packet a day) and 18 patients are alcohol consumers
(>100 g of alcohol, which corresponds to six bottles of beer, per day). The frequency of
cholestatic jaundice was statistically significant, with a high prevalence in PDAC patients
while being absent in all of the CP patients. Of note, five of the PDAC patients developed
cholangitis, an inflammation of the bile duct system often caused by bacterial infection,
and this was higher in patients with more advanced stages of PDAC. As an expected
consequence of cholestatic jaundice, abnormal bilirubin values were observed in PDAC
groups compared to the CP group, as reported in Table 2 and shown in Figure S1. Although
not statistically significant, the PDAC groups also displayed the typical profile associated
with cholestatic jaundice, including increased alkaline phosphatase and gamma-glutamyl
transferase activity and a lesser increase in the transaminase enzymes, when compared
to the CP patients. Interestingly, T2DM tended to be more frequent amongst CP patients
when compared to PDAC patients, although statistical significance was not achieved.
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Table 1. Demographic features and clinicopathological of Chronic Pancreatitis and Pancreatic Ductal
Adenocarcinoma patients.

Feature HC
(n = 6)

CP
(n = 6)

RPC
(n = 22)

LAPC
(n = 8)

MPC
(n = 4) p-Value

HIV status 0.831
Negative, n (%) 6 (100.0) 5 (83.3) 19 (86.4) 6 (75.0) 4 (100.0)
Positive, n (%) 0 (0.0) 1 (16.7) 3 (13.6) 2 (25.0) 0 (0.0)

Gender 0.286
female, n (%) 3 (50.0) 0 (0.0) 8 (36.4) 2 (25.0) 2 (50.0)

male, n (%) 3 (50.0) 6 (100.0) 14 (63.6) 6 (75.0) 2 (50.0)
Smoking 0.450

no, n (%) 6 (100.0) 1 (16.7) 12 (54.5) 4 (50.0) 2 (50.0)
yes, n (%) 0 (0.0) 5 (83.3) 10 (45.5) 4 (50.0) 2 (50.0)

Alcohol 0.962
no, n (%) 4 (66.67) 3 (50.0) 13 (59.1) 4 (50.0) 2 (50.0)
yes, n (%) 2 (33.33) 3 (50.0) 9 (40.9) 4 (50.0) 2 (50.0)

Age, median (IQR) 37 (24–54) 51 (46–57) 63 (50–67) 56 (48–62) 56 (46–70) 0.439
Obstructive jaundice 0.013

no, n (%) 6 (100.0) 6 (100.0) 8 (36.4) 2 (25.0) 1 (25.0)
yes, n (%) 0 (0.0) 0 (0.0) 14 (63.6) 6 (75.0) 3 (75.0)

Cholangitis 0.145
no, n (%) 6 (100.0) 6 (100.0) 20 (90.9) 7 (87.5) 2 (50.0)
yes, n (%) 0 (0.0) 0 (0.0) 2 (9.1) 1 (12.5) 2 (50.0)

T2DM 0.322
no, n (%) 6 (100.0) 3 (50.0) 16 (72.7) 7 (87.5) 4 (100.0)
yes, n (%) 0 (0.0) 3 (50.0) 6 (27.3) 1 (12.5) 0 (0.0)

Hypertension 0.560
no, n (%) 6 (100.0) 6 (100.0) 17 (77.3) 6 (75.0) 4 (100.0)
yes, n (%) 0 (0.0) 0 (0.0) 5 (22.7) 2 (25.0) 0 (0.0)

Healthy Controls (HC) are not included in statistical analysis IQR: interquartile range; T2DM: Type 2 Diabetes
Mellitus; CP: chronic pancreatitis; RPC: Resectable Pancreatic Ductal Adenocarcinoma; LAPC: Locally Advanced
Pancreatic Ductal Adenocarcinoma; MPC: Metastatic Pancreatic Ductal Adenocarcinoma.

Table 2. Liver Function Tests of the Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma groups.

Feature * Physiological
Range

CP
Median

RPC
Median

LAPC
Median

MPC
Median p-Value FDR

Total Protein (g/L) 60–78 66.0 59.0 66.0 69.0 0.289 0.330
Albumin (g/L) 35–52 36.5 30.0 27.0 32.5 0.361 0.361

Total Bilirubin (µmol/L) 5–21 5.0 154.0 120.0 58.0 0.006 0.030
Conjugated Bilirubin (µmol/L) 0–3 2.0 141.0 112.5 45.0 0.008 0.030

Alanine transaminase (U/L) 10–40 18.0 88.0 29.5 38.0 0.051 0.082
Aspartate transaminase (U/L) 15–40 28.5 104.0 55.0 75.0 0.019 0.052
Alkaline phosphatase (U/L) 53–128 74.0 615.0 337.0 314.5 0.025 0.052

Gamma glutamyl transferase (U/L) <68 61.5 751.0 301.0 483.0 0.151 0.201

FDR: false discovery rate; CP: chronic pancreatitis; RPC: Resectable Pancreatic Ductal Adenocarcinoma; LAPC: Locally Advanced Pancreatic
Ductal Adenocarcinoma; MPC: Metastatic Pancreatic Ductal Adenocarcinoma. * Physiological range calculated by Bio Analytical Research
Corporation South Africa (https://www.barcsa.co.za/test-directory/test-reference-ranges/, accessed on 6 September 2021).

From the routinely collected clinical data, no statistical significance was observed for
either routine haematological (Table S1) or chemistry-parameters (Table S2) between the
PDAC and CP groups.

2.2. Metabolic and Lipoprotein Signatures in the Different Tumour Stages

In this study, a serum sample analysis of the cohort was conducted using NMR
spectroscopy. Three different sets of NMR experiments were conducted to collect a broad
range of information (Figure 1).

To delineate the metabolic signatures of PDAC, Spearman correlation’s test was
performed to link metabolic values to the different PDAC groups in the following rank
order: HC, CP = 1, RPC = 2, LAPC = 3, and MPC = 4. A total of 75 signals were quan-
tified from the NMR spectra of serum samples and lipid extracts (Table S3), including
29 metabolites, 19 lipid classes, inflammatory markers, GlycA and GlycB, and 1 signal
that correlated with protein concentration. The analysis of metabolites concentrations
in serum samples (Table S4) and lipid extracts (Table S5) revealed that lactate, the end-

https://www.barcsa.co.za/test-directory/test-reference-ranges/
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product of glycolysis under anaerobic conditions, was strongly correlated with the disease
stage (rho = 0.50; p-value < 0.001; FDR = 0.012). Although not significant, pyruvate, the
precursor of lactate, showed a positive correlation with the tumour stage (rho = 0.28,
p-value = 0.060, FDR = 0.294). Lactate and glucose concentrations were not correlated
(rho = 0.06; p-value = 0.688). A strong positive correlation with tumour stage was noted
with the glycine concentration (rho = 0.52; p-value < 0.001, FDR = 0.012). On the other
hand, ascorbate (rho = −0.47; p-value = 0.001, FDR = 0.021) seems to be depleted or present
in a reduced concentration in patients with PDAC. A comparison of the concentrations of
lactate, glycine, ascorbate, and pyruvate across the groups HC, CP, RPC, LAPC, and MPC
is shown in Figure 2.
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Figure 1. Nuclear Magnetic Resonance experiments showing their relative metabolic measures extracts.

A selected number of ratios between metabolite concentrations was selected and
associated to one or more enzymatic reaction (Table S6). The analysis of the metabolite ratios
(Table S7) showed no association with disease stage. The lipoprotein parameters, including
the size, number of particles and concentration of lipids (cholesterol and triglycerides) in
the main classes of lipoproteins very-low-density lipoprotein (VLDL), intermediate-density
lipoprotein (IDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL),
were estimated using Liposcale test. Negative correlations of some parameters were
reported, such as number of HDL particles with disease stage (Table S8). Gamma-glutamyl
transferase and the ratio between aspartate transaminase and alanine transaminase were
not associated with the disease stage (result not included).



Metabolites 2021, 11, 663 5 of 16

Metabolites 2021, 11, x FOR PEER REVIEW 5 of 16 
 

 

a positive correlation with the tumour stage (rho = 0.28, p-value = 0.060, FDR = 0.294). 

Lactate and glucose concentrations were not correlated (rho = 0.06; p-value = 0.688). A 

strong positive correlation with tumour stage was noted with the glycine concentration 

(rho = 0.52; p-value < 0.001, FDR = 0.012). On the other hand, ascorbate (rho = −0.47; p-

value = 0.001, FDR = 0.021) seems to be depleted or present in a reduced concentration in 

patients with PDAC. A comparison of the concentrations of lactate, glycine, ascorbate, and 

pyruvate across the groups HC, CP, RPC, LAPC, and MPC is shown in Figure 2. 

. 

Figure 2. Boxplots showing the comparison of the concentration of (A) Lactate, (B) Glycine, (C) Ascorbate and (D) Py-

ruvate for HC, CP, RPC, LAPC, and MPC. Lactate is shown to be significantly elevated across the groups, glycine was 

significantly elevated in MPC when compared with CP. Ascorbate was significantly downregulated in CP, RPC, LAPC, 

and MPC when compared to HC, while pyruvate was significantly upregulated in MPC when compared to HC, CP, HC, 

RPC, and LAPC. Black squares represent patients with Type 2 Diabetes Mellitus. HC: Healthy controls; CP: Chronic Pan-

creatitis; RPC: Resectable Pancreatic Adenocarcinoma; LAPC: Locally Advanced Pancreatic Adenocarcinoma; MPC: Met-

astatic Pancreatic Adenocarcinoma. 

A selected number of ratios between metabolite concentrations was selected and as-

sociated to one or more enzymatic reaction (Table S6). The analysis of the metabolite ratios 

(Table S7) showed no association with disease stage. The lipoprotein parameters, includ-

ing the size, number of particles and concentration of lipids (cholesterol and triglycerides) 

in the main classes of lipoproteins very-low-density lipoprotein (VLDL), intermediate-

density lipoprotein (IDL), low-density lipoprotein (LDL) and high-density lipoprotein 

(HDL), were estimated using Liposcale test. Negative correlations of some parameters 

were reported, such as number of HDL particles with disease stage (Table S8). Gamma-

glutamyl transferase and the ratio between aspartate transaminase and alanine transami-

nase were not associated with the disease stage (result not included). 

2.3. Dysregulated Metabolites in Patient Survival 

Wald test, after adjusting for age, was used to identify the metabolites in serum sam-

ples as shown in Table S9, the lipid extracts (Table S10), the metabolite ratios (Table S11), 

and the lipoprotein parameters (Table S12) that correlated with the time of survival. Both 

3-hydroxybutyrate (p-value = 0.015; FDR = 0.370) and ethanol (p-value = 0.002; FDR = 

0.126) were independently correlated with the survival time in patients with PDAC. Cox 

hazard analysis showed that a statistically significant higher hazard ratio (HR) exists be-

tween the patients with the 20% highest concentration of ethanol compared to the rest 

(HR = 4.22 [95%CI: 1.44–12.32]; p-value = 0.009) and between the patients with 20% highest 

concentration of 3-hydroxybutyrate compared to the rest (HR = 2.88 [95%CI: 1.02–8.11]; p-

value = 0.045). Gamma-glutamyl transferase and the ratio between aspartate transaminase 

and alanine transaminase was not associated with the survival time (result not included). 

Figure 2. Boxplots showing the comparison of the concentration of (A) Lactate, (B) Glycine, (C) Ascorbate and (D) Pyruvate
for HC, CP, RPC, LAPC, and MPC. Lactate is shown to be significantly elevated across the groups, glycine was significantly
elevated in MPC when compared with CP. Ascorbate was significantly downregulated in CP, RPC, LAPC, and MPC
when compared to HC, while pyruvate was significantly upregulated in MPC when compared to HC, CP, HC, RPC, and
LAPC. Black squares represent patients with Type 2 Diabetes Mellitus. HC: Healthy controls; CP: Chronic Pancreatitis;
RPC: Resectable Pancreatic Adenocarcinoma; LAPC: Locally Advanced Pancreatic Adenocarcinoma; MPC: Metastatic
Pancreatic Adenocarcinoma.

2.3. Dysregulated Metabolites in Patient Survival

Wald test, after adjusting for age, was used to identify the metabolites in serum sam-
ples as shown in Table S9, the lipid extracts (Table S10), the metabolite ratios (Table S11),
and the lipoprotein parameters (Table S12) that correlated with the time of survival.
Both 3-hydroxybutyrate (p-value = 0.015; FDR = 0.370) and ethanol (p-value = 0.002;
FDR = 0.126) were independently correlated with the survival time in patients with PDAC.
Cox hazard analysis showed that a statistically significant higher hazard ratio (HR) ex-
ists between the patients with the 20% highest concentration of ethanol compared to
the rest (HR = 4.22 [95%CI: 1.44–12.32]; p-value = 0.009) and between the patients with
20% highest concentration of 3-hydroxybutyrate compared to the rest (HR = 2.88 [95%CI:
1.02–8.11]; p-value = 0.045). Gamma-glutamyl transferase and the ratio between aspartate
transaminase and alanine transaminase was not associated with the survival time (result
not included).

Patients with 20% highest concentrations of ethanol and 3-hydroxybutyrate were
grouped. This combined group showed significantly poorer survival than the remaining
patients (HR = 5.87 [95%CI: 1.92–17.92]; p-value = 0.002). No correlation was observed
between PDAC stages, lipid extracts, metabolite and lipoprotein levels, and survival time.
Figure 3 shows Kaplan–Meier plots of the survival time, segregated according to the value
of ethanol, 3-hydroxybutyrate, and a combination of them, as described earlier.

2.4. Impact of Raised Bilirubin Levels on Metabolites and Lipoproteins in PDAC

PAM clustering was performed on the KODAMA scores to identify any distinct
lipoprotein phenotype (Figure 4A). Three distinct clusters were identified. All HC and
CP patients were classified in the largest cluster (N). The lipoprotein parameters of the
individuals classified in the cluster N showed values similar to those of the general popu-
lation [33]. The patients classified in one of the other two clusters (A and B) showed an
atypical lipoprotein profile. To verify if patients belonging to clusters A or B showed signs
of cholestatic jaundice, as suggested by Lamiquiz-Moneo et al. [34], the concentration of
cholesterol ester and free cholesterol was evaluated in the lipid extracts (Figure 4B). The
ratio between free cholesterol and cholesterol ester was used as a marker to identify the
presence of an abnormal lipoprotein produced in patients with cholestatic jaundice [29].
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Figure 4C shows that patients belonging to the clusters A and B have a higher ratio in-
dicative of the possible presence of abnormal lipoprotein. Using the ratio between free
cholesterol and cholesterol ester, a threshold of 0.45 was identified to discriminate clusters
A and B from cluster N. All patients belonging to clusters A and B had values above 0.45.
All patients belonging to cluster N had values below 0.45, except for three patients.

Supervised PLS analysis was then performed to identify variance in the metabolic
profiles of DIFF spectra associated with the ratio between free cholesterol and cholesterol
ester; the resulting model demonstrated a clear and robust discrimination between patient’s
ratio values below and above 0.45 (R2 = 0.81, 95% CI 0.81–0.86; Q2 = 0.70, 95% CI 0.69–0.72;
p-value < 0.001). The cross-validated model was able to discriminate the two groups with
an accuracy of 90%, a sensitivity of 93.75%, and a specificity of 87.50%.

Both A and B clusters showed atypical lipoprotein expression and were then grouped
as “AB”, to understand the effects of the altered ratio (free cholesterol/cholesterol es-
ter) in lipoproteins, a comparison of the N versus AB clusters was performed for full
blood count features (Table S13), blood chemistry features (Table S14) and liver func-
tion parameters (Table S15). As expected, most of the liver function parameters were
significantly altered; total bilirubin (p-value = 0.003, FDR = 0.012), conjugated bilirubin
(p-value = 0.006, FDR = 0.016) and aspartate transaminase (p-value = 0.009, FDR = 0.018)
increased in clusters AB. Furthermore, some metabolites (Table S16), such as total protein
(p-value < 0.001, FDR < 0.001), glutamine (p-value < 0.001, FDR = 0.007) reduced in concen-
tration, whereas lipid levels (p-value < 0.001, FDR = 0.001) were elevated in clusters AB.
Lipid extracts (Table S17), metabolite ratios (Table S18) and lipoproteins (Table S19) were
significantly altered.
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Figure 3. Impact of tumour stages and metabolites concentration on patient survival. Kaplan–Meier survival curves showing
effect of (A) Tumour stage, (B) Ethanol, (C) 3-hydroxybutyrate, and (D) combination of ethanol and 3-hydroxybutyrate
with survival time. There was no significant link between tumour stages and patient survival. PDAC patients with low
levels of both ethanol and 3-hydroxybutyrate survived longer. RPC: Resectable Pancreatic Adenocarcinoma; LAPC: Locally
Advanced Pancreatic Adenocarcinoma; MPC: Metastatic Pancreatic Adenocarcinoma.
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Figure 4. Measurement of Lipoprotein concentration in patient groups. (A) Lipoprotein particle concentrations were
measured from the NMR spectra using LipoScale test and were separated into 3 clusters. Cluster N, which is made up of all
the controls and some PDAC patients, has a normal lipoprotein profile, while clusters A and B have atypical lipoprotein
profiles with high bilirubin levels. (B) Spectra showing the abnormal lipoprotein profile associated with clusters A (yellow)
and B (red) with a high concentration of free cholesterol, which could be indicative of an abnormal lipoprotein profile
while cluster N (green) all have a normal lipoprotein profile; higher levels of esterified cholesterol, except for one outlier.
(C) Boxplot of the ratio of free cholesterol to esterified cholesterol was calculated for the three clusters to comprehend the
level of lipoprotein abnormality in the serum. Cluster N has the least ratio. PDAC: Pancreatic Ductal Adenocarcinoma.

2.5. Impact of Diabetes and Inflammation on Metabolites and Lipoproteins Levels

In order to determine the impact of diabetes and inflammation on the metabolic
signatures of PDAC patients and their link with the tumour stages, the serum metabolite
concentrations between patients with and without T2DM were compared using Wilcoxon
rank-sum test. With regards to patients with T2DM, no statistically significant difference
between the CP and PDAC groups in the metabolite and lipoprotein concentrations was
detected (results not included).

Then, the inflammatory status of the patients using both the Glasgow Prognostic
Score (GPS) and the NMR inflammatory biomarkers, GlycA and GlycB were compared
(Figure 5). GPS is a cumulative inflammation-based cancer prognostic marker based on
elevated serum CRP and decreased albumin concentration [35]. The percentage of patients
with GPS = 2 is higher in PDAC than CP. The NMR inflammatory marker GlycA and GlycB
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were lower in HC compared to the pathology groups (Figure 5B,C). Slightly higher values
of GlycA and GlycB were observed in CP compared to PDAC. Over 14% of the PDAC
patients had cholangitis and showed only slightly higher values of CRP (p-value = 0.064),
which were not significant.
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Figure 5. Inflammation status in patient groups (A) shows the inflammation levels of PDAC and CP groups using Glasgow
Prognostic Score (GPS), CP (6) has the least inflammation and PDAC (RPC:22; LAPC: 8; MPC: 4.) groups are all highly
inflamed. GlycA (B) and GlycB (C) show the comparison of the inflammatory status of PDAC and control groups (HC
and CP) using GlycA and GlycB biomarkers, respectively. There was no difference observed across the groups for both
GlycA and GlycB levels except when compared with the HC. The black square boxes represent T2DM patients. T2DM:
Type 2 Diabetes Mellitus; PDAC: Pancreatic Ductal Adenocarcinoma; HC: Healthy controls; CP: Chronic Pancreatitis;
RPC: Resectable Pancreatic Adenocarcinoma; LAPC: Locally Advanced Pancreatic Adenocarcinoma; MPC: Metastatic
Pancreatic Adenocarcinoma.

However, we identified metabolites (Table S20) such as glucose, lactate, histidine, phos-
phorous, lipid extracts (Table S21), glucose/lactate, threonine/glycine ratios (Table S22)
and lipoproteins (Table S23) that correlated with inflammatory markers: GlycA, GlycB,
CRP, and Albumin. Glucose was shown to correlate directly with GlycB (Figure S2).

3. Discussion

PDAC has an almost equal number of new cases and deaths annually. Hence, there
is a need for further investigation of underlying molecular underpinnings, especially in
under-studied patient groups. Although patients of African descent have an elevated
risk and poor survival rates of PDAC, there is little molecular and clinical information for
this group. The combination of an analysis of metabolites and lipoproteins profiles with
clinical parameters may improve management decisions and outcomes [36]. In this study,
preliminary data showing metabolomic and lipoprotein perturbations in our patient group
were observed at different stages of PDAC.

As the severity of PDAC increased from resectable to metastatic, there was an ob-
served elevation of levels of lactate and glycine and reduced levels of ascorbate. Thus,
these metabolite profiles could help to distinguish PDAC severity. In PDAC cells, there is
an increased uptake of glucose to produce lactate and ATP under aerobic conditions, a phe-
nomenon known as the Warburg effect [37]. Warburg effect promotes PDAC progression
by providing a constant energy source for cellular growth and proliferation. Additionally,
enhanced glycolysis leads to the generation of substrates such as pyruvate and, subse-
quently, lactate, which promote tumour growth [38]. Furthermore, the correlation between
glucose/lactate ratio with CRP, which was observed in this study, could suggest that
glycolysis is elevated with inflammation.
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Glycine is formed from 3-phosphoglycerate an intermediate of glycolysis pathway [39],
thus upregulated glycolysis could result in elevated glycine levels. Glycine is also the main
substrate in glutathione and collagen production [40,41], which are essential in PDAC
progression. The activation of serine/glycine biosynthesis promotes tumorigenesis by
delivering a single carbon for 1-carbon metabolism of proteins, lipids, nucleic acids, and
other biological macromolecules to support tumour growth [42]. Furthermore, this study
observed that the Threonine/Glycine ratio has a direct association with albumin, inferring
an increase in glycine levels with inflammation.

This study also showed a link between reduced levels of ascorbate (vitamin C) and
the severity of PDAC. Oxidized ascorbate (dehydroascorbate) is transported into cells
via glucose transporters, after which it is reduced to ascorbate using glutathione [43]. It
acts as a pro-oxidant triggering reactive oxygen species activities, which inhibit a key
glycolytic enzyme, Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), in cancer
cells [44]. Reduced levels of ascorbate may imply a deregulation of the glycolysis rate,
resulting in the Warburg effect, which, in turn, may favour PDAC progression. This
hypothesis is supported by various studies that have identified the therapeutic roles of
ascorbate in PDAC. A combination of ascorbate and gemcitabine achieved a more signifi-
cant tumour growth inhibition in the mouse model than gemcitabine alone; additionally,
pharmaceutic doses of vitamin C act as a pro-oxidant and reduce tumour growth in mice
xenografts [45,46]. The anti-tumour effect was further observed when ascorbate inhibited
epithelial-to-mesenchymal transition and, consequently, metastasis in both in vitro and
in vivo models [45]. The administration of ascorbate was also demonstrated to improve
survival in a stage IV PDAC patient with little toxicity observed [47].

Interestingly, this study showed that ethanol and 3-hydroxybutyrate (3-HB) have a
negative correlation with survival time and are independent of the disease stage. Sev-
eral studies have contradictory results on the role of 3-hydroxybutyrate in pancreatic
cancer [24,26]. PDAC cells adapt their metabolism to the environment they are exposed to
by utilizing the diverse fuels that are available [48]. Excessive amounts of ketone bodies
are usually found in individuals with diabetic ketoacidosis (DKA) or alcoholic ketoacidosis
(AKA) [49]. This study suggests that high 3-HB levels could be linked to alcohol consump-
tion or T2DM and not necessarily to the pathology. In DKA, a lack of insulin contributes to
ketogenesis in the liver. DKA is also linked to an altered ratio of 3-HB to acetoacetate [49],
although there was no association with staging and survival in our cohort. One study
showed that heavy alcohol consumption was a contributing risk factor of PDAC, especially
in black women [8]. Indeed, it is well-known that high concentrations of ethanol inhibit
lipolysis, while a substantial production of ketone bodies such as 3-hydroxybutyrate occurs
with its decrease [50]. In liver cells, AKA causes a change in redox potential induced by
alcohol and reduces oxaloacetate levels [50]. Although the mechanism leading to early
deaths in PDAC patients who are alcohol consumers is unclear, one theory is that the use
of 3-hydroxybutyrate by oxidative mitochondrial metabolism can induce the proliferation
and migration of cancer cells [51,52]. In addition, ascorbate depletion in PDAC patients due
to heavy alcohol consumption could both increase glycolysis rate, thereby promoting the
severity of the disease and inhibit glycogen synthesis in the tumour microenvironment [53].
The analysis of the metabolic profile could be used to understand the potential role of
alcohol consumption in predicting patient outcomes.

Most of the PDAC patients in this study have elevated bilirubin levels, reflecting
an obstruction in the bile duct by the tumour. Clinically, cholestatic jaundice can be
diagnosed when the ratio of total bilirubin to conjugated bilirubin is greater than 50% and
there are elevated levels of other clinical liver parameters, such as alkaline phosphatase
(ALP) and gamma-glutamyl transferase (GGT) [54]. Since these parameters are used to
assess liver function, they can also be linked to liver diseases or injury [55]. Furthermore,
chronic inflammation induces a variety of alterations in lipid metabolism, which are
accompanied by an altered ratio of free cholesterol to cholesterol ester and associated
with an abnormal lipoprotein profile [29]. This study confirms the previously reported
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association between an atypical lipoprotein profile with cholestatic jaundice [34], suggesting
that the detection of abnormal lipoprotein profile might be used to identify cholestatic
jaundice in PDAC patients. We hypothesize that altered lipid metabolism observed in
PDAC patients [56] could be due to the effects of cholestatic jaundice in these patients. In
the clinical setting, analysis of the lipoprotein profile could be used to understand the need
for a stent placement to relieve obstruction and evaluate the success of this treatment.

Although inflammation has emerged as an important player in pancreatic cancer
development and progression [57], NMR inflammatory markers, GlycA and GlycB, were
not able to discriminate between CP and PDAC. Although few PDAC patients developed
cholangitis, which is an inflammation of the biliary tract, they presented a generally high
level of inflammation, as expected. GlycA and GlycB were not able to stratify the patients
based on the tumour staging. However, a fingerprint of the inflammatory processes was
observed in the metabolic profile. Interestingly, the positive correlation between GlycB
and glucose concentration could enrich the long-standing debate on the link between
inflammation and diabetes. The higher level of glucose detected in the blood could be due
to the effect of chronic inflammation on decreasing insulin secretion and sensitivity [58].

Despite some of the statistically significant data, the small number of recruited patients
in each stage might be a limitation. Furthermore, although several findings were identified,
the study is descriptive in nature. This pilot study is part of an ongoing project and a future
study would aim to validate these findings in a larger patient cohort.

4. Materials and Methods
4.1. Sample Collection and Processing

The study was approved by the University of Witwatersrand Human Research Ethics
Committee (Medical) (Study number—M190681). All participants gave written informed
consent. Patient clinical data were collected using the REDCap v9.0 [59]. Sample and
data collection were conducted between March 2019 and March 2020. The study site was
the Hepatopancreatobiliary Unit at Chris Hani Baragwanath Academic Hospital, Soweto
Johannesburg, South Africa.

Only patients with clinically and histologically proven PDAC were recruited for this
study. Inclusion criteria included patients from 18 years old and above, of African ancestry,
and diagnosed with one of the three stages of PDAC. African ancestry in this cohort are
black patients who self-reported to belong to one of the ethnic groups of South Africa. Pa-
tients undergoing chemotherapy at the time of the study were excluded. Stratification into
resectable, borderline resectable, locally advanced, and metastatic disease was conducted
with a contrast-enhanced triple-phased CT-scan of the abdomen following the National
Comprehensive Cancer Network (NCCN) guidelines [60]. For this study, both resectable
and borderline resectable were categorized as RPC. In this group, the tumour either had
not invaded any vessel or had invaded the portal vein to 90◦, in which case neoadjuvant
chemotherapy may be necessary before surgery. The LAPC group included cases where
the tumour had invaded the superior mesenteric artery and/or portal vein to more than
180◦. Lastly, in the MPC, the tumour had spread to other organs such as the liver [61]. CP
patients and HC patients, also of African ancestry, were recruited as the control arm of
the study. To be eligible, all the healthy participants confirmed that they were in good
health and were not taking any regular medication. Blood samples were collected during
fasting by venepuncture in clear vacutainer tubes (BD Biosciences, Franklin Lakes, NJ,
USA) without anti-coagulant. The blood was centrifuged at 3000 rpm, 4 ◦C for 10 min after
allowing it to clot for 30–60 min at room temperature. All samples were processed within
2 h of collection and immediately stored at −80 ◦C until analysis.

4.2. Serum Sample Preparation

Three hundred microliters of thawed serum samples were aliquoted into a microcen-
trifuge tube and followed by 300 µL of a solution containing 0.75 M potassium phosphate
buffer (pH 7.4), 5.81 mM of trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP; Sigma-
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Aldrich, St. Louis, MO, USA) and a trace amount of sodium azide dissolved in deuterium
oxide. Samples were vortexed to ensure complete homogeneity and a final volume of
540 µL of each sample was transferred to a 5 mm NMR tube (Wilmad Lab Glass, Vineland,
NJ, USA) and analysed.

4.3. Lipid Extracts Preparation

Lipids were extracted using the protocol described by Lamiquiz Moneo et al. [34].
Three hundred microliters of BUME (butanol:methanol—2:1) was added to a 100 µL serum
aliquots in glass GC vials followed by 300 µL DIPE (diisopropyl ether:ethyl acetate—
3:1) and 300 µL H2O. Samples were vortexed for one minute after addition of BUME
and H2O and incubated on a shaker for 10 min after DIPE addition to allow for lipid
extraction. The samples were then centrifuged at 4000 rpm for 5 min, after which the top
layer was transferred to clean vials, dried under N2 at 37 ◦C and then resuspended in
600 µL solution of CDCl3:CD3OD:D2O (chloroform-d:methanol-d:water-d; 16:7:1, v/v/v)
containing 1.18 mMTSP. Five hundred and forty microlitres of this final solution was then
transferred to 5 mm NMR tube (Wilmad Lab Glass) for analyses.

4.4. Nuclear Magnetic Resonance Spectroscopic Analysis

One-dimensional (1D) proton (1H)-NMR spectra was acquired using different pulse
sequences on a 500 MHz Bruker Avance III HD NMR spectrometer equipped with a triple-
resonance inverse 1H probe head and x, y, z gradient coils. A standard nuclear overhauser
effect spectroscopy (NOESY) pulse sequence presat (noesygppr1d.comp) was used on both
serum and lipid extract samples. On serum samples, NOESY was used to detect both signals
of small metabolites and high-molecular-weight macromolecules such as lipoproteins.
Additionally, a standard diffusion-edited (DIFF) pulse sequence (ledbpgppr2s1d) was
used on serum samples to detect only high-molecular-weight macromolecules, such as
lipoproteins. Pooled samples were used as a quality control sample and were included in
each batch for qualitative assessment of repeatability by overlaying the raw spectra.

4.5. Nuclear Magnetic Resonance Profiling

NMR spectroscopy was used to quantify a panel of 75 signals. The peaks of the
identified metabolites were fitted by combining a local baseline and Voigt functions based
on the multiplicity of the NMR signal [62]. The assignment of quantified signals is reported
in Table S3. To validate the efficacy of the different deconvolution models, the root-mean-
square deviation was determined. The absolute concentration of each metabolite was
calculated according to the previously reported equation [63]. The number of protons
contributing to the unknown signals was imputed to 1. The concentration of carbohydrates
was also estimated by considering the equilibrium between their cyclic forms.

GlycA and GlycB signals were quantified by integrating the areas between 2.00 and
2.05 ppm and between 2.09 and 2.05 ppm, respectively, above a local baseline, aiming to
remove the signal of lipoproteins. The Liposcale test (Biosfer TesLab, Reus, Spain) was then
used to determine lipoprotein parameters, HDL, LDL, and VLDL particle number, size,
and lipid concentration of each subtype [64]. Each DIFF spectrum in the range between
0.1 and 9.5 ppm, excluding the regions corresponding to the water signals between 4.40
and 5.00 ppm, was segmented into 0.001-ppm chemical shift bins, and the corresponding
spectral areas under the curve, giving a total of 8800 variables.

4.6. Statistic and Data Analysis

Statistical analysis and graphical illustrations of the data were generated in R (version
3.6.1) and R studio (version 1.1.456) software using scripts developed in-house. Wilcoxon
and Kruskal–Wallis rank-sum test was used to compare differences in numerical covariates
(e.g., age and metabolite concentration). Fisher’s exact test was used to assess differences
between categorical variables (e.g., gender). Spearman’s rank test was used to calculate
the correlation coefficient (rho) between variables. The Wald test was used to calculate
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the statistical significance (p-value) of the differences between the Kaplan–Meier survival
curves. Prognostic factors for overall survival were analysed using the Cox proportional
hazard regression. p-values < 0.05 were considered significant. To account for multiple
testing, a false discovery rate (FDR) of <10% was applied.

The KODAMA algorithm [65] was used to identify of patterns that demonstrate
metabolic phenotypes across all samples [66]. Using the partition around medoids (PAM)
clustering [67] was applied to the KODAMA scores using the silhouette algorithm 10 [68]
to verify the obtained results. The silhouette median value was utilized to assess the ideal
number of clusters, ranging from 2 to 10.

Using partial least-squares (PLS) analysis, regression was performed on DIFF spectra
metabolic profiles. Furthermore, a 10-fold cross-validation was performed to evaluate
the predictive efficacy of the model [19]. Both the goodness of fit parameter (R2) and the
predictive ability parameter (Q2) were also calculated using standard formulas [69]. The
Q2 value was calculated from p-value to assess the performance of the PLS regression
model [70]. A p-value < 0.05 was regarded as significant.

5. Conclusions

In our cohort, we demonstrated that obstructive jaundice, T2DM, and inflammation
can contribute to defining the metabolic phenotype in PDAC, thus evaluating that their
patterns could help to predict prognosis, whereby patients at high risk of late-stage disease
may benefit from better management decisions. The depletion of vitamin C in PDAC
patients with a high alcohol consumption rate reiterates its therapeutic role. Furthermore,
evaluating the lipoprotein profiles in patients could help to more accurately identify
those with obstructive jaundice that may require urgent treatment; however, this has to
be verified.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11100663/s1, Figure S1: Boxplot of Total Bilirubin across all the groups with p-values,
Figure S2: Correlation of Glucose and Inflammatory markers, Table S1: Haematological parameters
of the Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis patient groups, Table S2: Blood
chemistry of the Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis patient groups, Table S3:
List of the quantified signal and their relative assignment and multiplicity, Table S4: Correlation
of concentration of metabolites with the stages of Pancreatic Ductal Adenocarcinoma, Table S5:
Correlation of concentration of lipid extracts with the stages of Pancreatic Ductal Adenocarcinoma,
Table S6: Selected metabolites ratios and their catalysing enzymes, Table S7: Correlation of metabolites
ratios with the stages of Pancreatic Ductal Adenocarcinoma, Table S8: Correlation of concentration
of lipoproteins with the stages of Pancreatic Ductal Adenocarcinoma, Table S9: Correlation of
metabolites with survival time, Table S10: Correlation of the lipid extracts with survival time,
Table S11: Correlation of metabolite concentration ratios with survival time, Table S12: Correlation
of lipoproteins with survival time, Table S13: Comparison of the Full Blood Count of N versus AB
Clusters, Table S14: Comparison of the Blood chemistry of N versus AB components, Table S15:
Comparison of the Liver function tests of N versus AB components, Table S16: Comparison of
the metabolite concentration of N versus AB clusters, Table S17: Comparison of the lipid extracts
concentration of N versus AB clusters, Table S18: Comparison of the metabolite concentration ratios
of N versus AB clusters, Table S19: Comparison of the lipoprotein profile for N versus AB clusters,
Table S20: Correlation of metabolites with GlycA, GlycB, CRP, and Albumin intensity value, Table S21:
Correlation of lipid extracts with GlycA, GlycB, CRP, and Albumin intensity value, Table S22:
Correlation of metabolite concentration ratios with GlycA, GlycB, CRP, and Albumin intensity value,
Table S23: Correlation of lipoproteins with GlycA, GlycB, CRP, and Albumin intensity value.
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