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Abstract

The traditional failure time analysis method has been proven to be less effective in assessing reliability
of highly reliable products. It is a prerequisite that failures are recorded or observed when one con-
siders the traditional censored failure time analysis approach. As for degradation data, with few or no
failures, it is possible to obtain useful and significant reliability information, on condition that there
is a strong correlation between the underlying degradation process and the product’s failure. This
research study seeks to demonstrate the advantages of using degradation data via the data on GaAs
(Gallium Arsenide) lasers adopted from Meeker and Escobar (1998). In particular, to illustrate that
with degradation data, meaningful conclusions can be reached much earlier. It does this by propos-
ing the general degradation path model and infers the time to failure distribution from the registered
degradation data. The lognormal distribution is deemed to be the appropriate failure time model from
experience with the lasers and this information is taken into account in a simulation procedure. The
laser is regarded to have failed the first time a 10% increase in current is required to maintain the
constant light output. Lasers whose degradation paths have not reached the failure threshold are ex-
trapolated to failure (generating pseudo-failure times) or to 5000 hours, the desired years of operation
for the laser. Parameter estimation for the best ranked lifetime distribution is done via the median rank
regression method. Important pieces of reliability information are derived from the inferred failure
time distribution. Shorter and longer simulated test data were found to be comparable with respect
to most of the reliability metrics and their confidence bounds. This demonstrates the advantages of
using degradation data when assessing product reliability.

Keywords: Degradation data; Traditional failure time analysis; Product reliability.
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Chapter 1

Introduction

1.1 Background

Manufacturing companies are constantly in search of new ideas to improve the performance of their
products. The main variable of interest when assessing product performance is product failure time
(also known as lifetime) and the main objective is to infer the failure time distribution of products
under inspection. Today’s products are however generally too well-made, with little or no failures
observed in life tests of practical length or operational phases, even under accelerated conditions. The
resulting failure time data will likely be highly censored, providing little information about product
reliability which significantly limits the accuracy and precision of the conclusions.

An alternative approach (see for example Freitas, Toledo, Colosimo and Pires, 2010) and numerous
references therein is to make use of degradation data. The idea is that failure mechanisms of most
manufactured products are often linked to an underlying degradation process. For example, light
intensity of a light emitting diode (LED) drops with usage. Industrial standards define failure as oc-
curring when either the observable physical degradation (in tyre wear for example) or performance
degradation reaches either a random or a specified failure threshold denoted here by Df . The regis-
tered degradation signals reflecting the health status of the product are then used to infer the failure
time distribution from which important pieces of information on reliability which include the mean
time to failure (MTTF) or some specified percentiles can be derived (Ye and Xie, 2014).

Over the past 40 years, it has been possible for numerous high reliability products to have degradation
data available. For example, sensors and smart chips are now inserted in products to record vital in-
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1.2 Characteristics of Degradation Data

formation on degradation. Warranty databases are used to store this kind of information. Specialised
commercial software has also been developed to analyse degradation data (Meeker, 2009). As a result,
this has necessitated the need amongst industrial statisticians and engineers to continuously research
and develop statistical methods to analyse degradation data (Meeker, 2009). A lot of attention is being
given to degradation data because of several advantages associated with it, which authors such as dos
Santos and Colosimo (2015), Ferreira, Freitas and Colosimo (2012), Lu and Meeker (1993), Meeker,
Doganaksoy and Hahn (2001) and Shi, Meeker and Escobar (2009) highlight in their work.

1.2 Characteristics of Degradation Data

The following characteristics are synonymous with degradation data:

1. The time sequence in which degradation data are recorded is indicated by a subscript, t.

2. A measurable product parameter (characteristic) drifts monotonically (upwards or downwards)
with time towards a specified failure level. When it reaches the failure level, the product is said
to have failed.

3. The drift, measured in terms of the product parameter is linear (or can be transformed to become
linear) over time with a slope (rate of degradation) that depends on the random characteristics
of the product being measured and the stress under which it is operating.

Thus, the value of degradation analysis lies in how closely related the level of degradation is to product
failure. If there is no strong correlation between the level of degradation and product failure, little
is gained by using degradation data instead of traditional censored failure time data. Additionally,
degradation paths must be well behaved with little measurement error in order for pseudo-failure times
to be reasonably extrapolated. According to Chiao and Hamada (2001), Crowder and Lane (2014),
Lu, Meeker and Escobar (1996), Meeker and Escobar (1998) and Nelson (1990), the degradation
model for the product under consideration must also be correctly specified for degradation analysis
results to hold.

2



1.3 Aim and Objectives of the Study

1.3 Aim and Objectives of the Study

Aim

The main aim of this investigation is to demonstrate some of the perceived practical advantages as-
sociated with using degradation data when assessing the reliability of a product. In particular, to
demonstrate an important practical advantage that conclusions are reached earlier with degradation
analysis.

Objectives

1. To infer the product’s failure time distribution based on the full simulated degradation data set.

2. To derive important pieces of reliability information from the inferred failure time distribution
and quantify their uncertainty.

3. Repeat (2) for a shorter test (inspection) and compare the results of this analysis to those from
the full simulated data set in order to check if similar conclusions can be reached earlier.

4. Apply the methods to a real data set and draw conclusions.

3



Chapter 2

Theoretical Background

The idea of degradation-threshold failures connects degradation and product failure nicely (Ye and
Xie, 2014). This motivates the use of degradation data to assess product reliability. In particular, the
failure time distribution and its associated parameters can be inferred from the analysis of the degra-
dation mechanism and the data.

2.1 Degradation Data Models

Degradation models can be classified into two broad categories, namely stochastic process models
and general path models. A discussion of the two degradation model classes is given next, together
with a comparison and choice of the degradation model to be adopted in this study.

2.1.1 Stochastic Process Models

Degradation processes are governed by some kind of random mechanism that is represented by a
stochastic process, say {X(t); t ∈ T} for convenience where t is the time parameter and the index
set T is the set of all possible time points (Ye and Xie, 2014). Examples of stochastic process models
for degradation include the well-studied Wiener process (and its variants), Gamma process and the
inverse Gaussian process.
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2.1 Degradation Data Models

2.1.1.1 The Wiener Process Model

The motivation for the Wiener process (or Brownian motion) {B(t); t ∈ R+} (where R+ is a set
of non-negative real numbers including 0) as a degradation model is that the degradation increment
B(t+ h)−B(t) as h→ 0 may be viewed as the sum of a large number of small random external ef-
fects (additive superposition) (Ye and Xie, 2014). Since the external effects (usually shocks) are often
independent, it follows that the increments B(tn)−B(tn−1), · · · , B(t4)−B(t3), B(t2)−B(t1) over
disjoint time intervals [t1, t2], [t3, t4], · · · , [tn−1, tn] for arbitrary n ∈ Z∗ (where Z∗ is a set of positive
integers excluding 0) are independent and normally distributed with zero mean (Ye and Xie, 2014). In
many applications, physical degradation is assumed to be a continuous process. The Wiener process
is often assumed as the basic model for degradation since its sample paths are continuous functions.

The Wiener process model has certain limitations associated with it. For example, it is not recom-
mended when considering cumulative damage processes such as fatigue growth (Shahraki, Yadav and
Liao, 2017). Fatigue growth requires a degradation process model that is time heterogeneous since
the rate of crack growth varies during the course of crack propagation. The Wiener process is inap-
propriate in this case since it is a time homogeneous process (Zhang, 2015). More importantly, the
Wiener process cannot model a monotone degradation process since it is not non-decreasing in its
argument.

2.1.1.2 The Wiener Process Model with Drift

In general, product degradation has a non-zero mean. To ensure non-zero mean degradation, the
Wiener process is improved by including a mean (drift measure) ν > 0. This results in a Wiener
process with drift {W (t); t ∈ R+} represented as

W (t) = νΛ(t) + σB(Λ(t))

where Λ(·) is the monotone increasing function, σ is the volatility parameter, B(·) is the Wiener
process and consequently W (t) ∼ N

(
νΛ(t), σ2Λ(t)

)
. The Wiener process with a linear drift is only

taken into account when the mean of the degradation path is increasing in a linear fashion (Shahraki
et al., 2017). Applications of the Wiener process with drift as a degradation model follows from its
mathematically tractable first passage time distributions. In particular (Folks and Chhikara, 1989),
the first passage time of a Wiener process with drift to a fixed threshold is distributed as an inverse

5



2.1 Degradation Data Models

Gaussian with density function

f(t, µ, λ) =

√
λ

2πt3
exp

[
− λ

2µ2

(t− µ)2

t

]
, t > 0

where it is assumed that µ ∈ R+ and λ ∈ R+.

2.1.1.3 The Wiener Maximum Process Model

The Wiener process with drift applies when the only requirement on the degradation process is to have
continuous sample paths. If a monotone degradation process is to be assumed, then the maximum
process

W+(u) =

{
sup

0≤u≤t
W (u), u ≥ 0

}
would be preferred as it is non-decreasing in its argument (Hove and Beichelt, 2016). Its first passage
times are also distributed as inverse Gaussian.

2.1.1.4 Gamma Process

The Gamma process is a model that works very well especially when temporal variability and unit to
unit variability are a large part of the degradation process. It is suitable to use when the degradation
process is either increasing or decreasing monotonically over time, for example crack growth. Based
on Shahraki et al. (2017), the Gamma process {Y (t); t ≥ 0} with a shape function η(t) > 0 and scale
parameter µ∗ > 0 is a continuous stochastic process with the following properties:

• Y (0) = 0 almost surely

• Y (t+ u)− Y (u) and Y (s+ v)− Y (v) are independent for∞ > t+ u > u ≥ s+ v > v ≥ 0

• Y (t+u)−Y (u) ∼ Gamma
(
η(t+u)−η(u), µ∗

)
where η(t) is a monotone increasing function

with η(0) = 0

As a consequence of the sample paths of the Gamma process being monotone, it is an appropriate
model for gradual damage accumulating over time.
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2.1 Degradation Data Models

2.1.1.5 Inverse Gaussian Process

A simple inverse Gaussian process, {U(t); t ≥ 0} has the following properties (Shahraki et al., 2017):

• U(0) = 0

• U(t2)− U(t1) is independent of U(t4)− U(t3) for t4 > t3 ≥ t2 > t1 ≥ 0

• U(t) − U(s) ∼ IG

(
µ
(

Λ(t) − Λ(s)
)
, λ
(

Λ(t) − Λ(s)
)2
)

for t > s ≥ 0, where Λ(t) is

nonnegative and a monotone increasing function of time

It is usually used as an alternative when other stochastic processes fail to fit the monotone degradation
data under consideration (Shahraki et al., 2017; Ye and Xie, 2014).

2.1.2 The Degradation Path Model

The degradation path models assume a path model and infer the time to failure distribution from the
registered degradation data. Consider n randomly selected test products from a production process or
a population of test products. For each ith (i = 1, · · · , n) sample product, assume degradation mea-
surements are registered at prespecified inspection times tij

(
i = 1, · · · , n; j = 1, · · · ,mi

)
the jth

time that measurements from product i are taken where mi is the number of inspection times for the
ith product. The inspection times tij could be real time, operating time or some appropriate measure
of use such as distance or the number of cycles depending on the test. They do not necessarily need
to have the same value for all products, neither are they required to be equidistant.

Denote by yij the observed sample degradation measurement taken on the ith product at inspection
time tij . Accordingly, the path of degradation measurements is the pairs(
ti1, yi1

)
,
(
ti2, yi2

)
,· · · ,

(
timi , yimi

)
for i = 1, · · · , n. The observed sample response yij is the prod-

uct’s actual degradation value at time tij plus a random residual deviation term. Thus, the general
degradation model (Ferreira et al., 2012) is

yij = D
(
tij;α,βi

)
+ εij; i = 1, · · · , n; j = 1, · · · ,mi (2.1)

where

• D
(
tij;α,βi

)
is the ith product’s actual degradation value at time tij

7



2.1 Degradation Data Models

• α =
(
α1, · · · , αp

)T
is a p×1 vector of fixed effects which describes characteristics of the

population of products. These are considered to be common across all products

• βi =
(
βi1, · · · , βik

)T
is the k×1 vector of the ith product random effects. They represent the

characteristics which are specific to the product

• εij is the ith product random error term at time tij . They are assumed to be independent and
identically distributed with zero mean and variance σ2

ε

Thus, the degradation path model requires the path to be specified together with fixed and random
effects. An empirical analysis of the degradation process under consideration may help establish
the deterministic form of D

(
tij;α,βi

)
. Otherwise, and when known from past experience for ex-

ample, the physical-chemical phenomenon associated with the degradation process should be used.

Values of the random vectors βi =
(
βi1, · · · , βik

)T
would be of interest in applications where for

instance the future degradation of a particular product is to be predicted on the basis of a few regis-
tered degradation measurements. Since the interest here is in making inferences about the population
of products (or a production process), it is the probability distribution of the random effects and its

associated parameters that are of interest. Accordingly, the random vectors βi =
(
βi1, · · · , βik

)T
are assumed to be independent and identically distributed as the multivariate distribution function
Gβ(b;θ) (where b, can be any specific value of βi), which may depend on an unknown (fixed) pa-

rameter vector θ =
(
θ1, · · · , θq

)T
that must be estimated from the registered degradation data. The

random vectors βi are further assumed to be independent of the residual deviations εij . The underly-
ing model parameters are therefore α, θ and σ2

ε (Ferreira et al., 2012).

2.1.3 Degradation Model Choice

Theoretical justification of stochastic process models is based on the observation that degradation
stems from enduring stress. The product has a degradation threshold and fails when it experiences a
certain amount of cumulative damage. They are a natural choice when the physics behind a degra-
dation process can be captured and has clear interpretations. Often, stochastic process models are
complex and therefore not easy to understand and use in practice. In addition, the resulting distribu-
tion for the first passage time to a failure threshold may not be expressed in a closed form.
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2.2 Distribution Function of the Failure Time, FT (t)

The data driven degradation path model is adopted in this research report because it is applicable
in situations where physical explanations of the degradation process are not obvious. Some of the
advantages of degradation path models over stochastic process models (Ye and Xie, 2014) include:

• Flexibility in incorporating random effects. This is a consequence of the fact that degradation
path models are essentially mixed effects regression models.

• They are more robust in that deviations of registered degradation data from the true degradation
path may be accounted for by adjusting the error term distribution for the model to apply to
specific degradation data.

• Resulting distributions for the first passage time to a failure threshold often have closed form
expressions. Otherwise, numerical methods are applied.

In the case where the randomness of degradation is intrinsically due to random environmental factors
such as temperature, usage pattern etc., it can at least be reduced by incorporating such environmental
factors as time varying covariates in the degradation process. Otherwise, randomness in environmen-
tal factors will manifest itself in the registered degradation data (Ye and Xie, 2014).

2.2 Distribution Function of the Failure Time, FT (t)

The product’s failure time determines its reliability and therefore, inferences in the product’s failure
time distribution are required. By definition, product failure in a degradation analysis occurs at time
T when the actual degradation D

(
tij,α,βi

)
reaches a failure threshold Df . The failure time T is

unique since degradation changes with time along a definite direction (monotone). Consequently,
specifying the model for D

(
tij,α,βi

)
and the failure threshold Df defines the product’s failure time

distribution. In particular, and without loss of generality, consider the case when
D
(
tij,α,βi

)
= βitij , giving the simple linear random effects degradation model

yij = βitij + εij (2.2)

where the common initial amount of degradation α = (0, · · · , 0) for all products. Assume that the
product monotonically degrades in time and that D(t) is an increasing function since degradation is
irreversible. For the linear random effects model in Equation (2.2), failure occurs when Df = βT

and the distribution function of the failure time is
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2.3 Commonly Used Lifetime Distributions

FT (t) = P (T ≤ t)

= P

(
Df

β
≤ t

)
= P

(
β ≥ Df

t

)
= 1−Gβ

(
Df

t

)
, t > 0 (2.3)

It follows from Equation (2.3) that for a fixed failure threshold Df , the unknown distribution function
of the random effects β, Gβ(·) determines the failure time distribution of the product. Denote the
100uth percentile of FT (t) by tu. The percentile or quantile function tu is the inverse of FT (t) and it
is defined as the period or time at which a specified proportion u of the products fails (Hong, Meeker
and Escobar; 2008). According to Dakhn, Ebrahem and Eidous (2017), the required percentile is
determined by solving

u = FT (tu) = 1−Gβ

(
Df

tu

)
for tu, yielding

tu =
Df

G−1
β (1− u)

As is the case with the distribution of T , the determination of the 100uth percentile also relies on
the distribution function of the random effects β. It is possible to express FT (t) in a closed form in
instances where path models are simple. However, path models are often not simple and the problem
is particularly complicated when the number of random parameters exceeds one. Where possible,
FT (t) can be obtained using integral transformations. Otherwise, FT (t) may be obtained numerically
using Monte Carlo simulations (Meeker and Escobar, 1998).

2.3 Commonly Used Lifetime Distributions

The term lifetime distributions refers to a collection of statistical probability distributions that better
describe life data and have wide applications in reliability and life data analysis. The extent to which
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2.3 Commonly Used Lifetime Distributions

the assumed lifetime distribution fits the times-to-failure data depends on the behaviour of its hazard
function (also known as instantaneous failure rate). Recall that in terms of the unreliability function,
the probability of a product failing in some interval, say [t1, t2] is given by∫ t2

t1

f(t)dt =

∫ t2

−∞
f(t)dt−

∫ t1

−∞
f(t)dt = F (t2)− F (t1)

The failure rate (FR) is the probability of a failure occurring per unit time in the interval given that no
failure occurred prior to the beginning of the interval. That is, the failure rate is given by

Failure Rate =
F (t2)− F (t1)

(t2 − t1)F̄ (t1)

Redefining the interval as [t, t+ δt], the expression for the failure rate becomes F (t+δt)−F (t)

δtF̄ (t)
and it is a

function of time. The limit as the interval approaches zero is the hazard function (hence instantaneous
failure rate). It is expressed as

λ(t) = lim
δt→0

P (t < T ≤ t+ δt)

δtF̄T (t)

=
1

F̄T (t)
lim
δt→0

F (t+ δt)− F (t)

δt

=
f(t)

F̄T (t)
(2.4)

where T is a continuous random variable and F̄T (t1) = 1−FT (t1) is the reliability function. It allows
for the determination of the number of failures among survivors occurring per unit time. Essentially,
the instantaneous failure rate characterises typical failure patterns of products over time. A plot of
the failure rate against a continuous time scale for an entire product population yields the so called
“bathtub curve” (see Beichelt and Tittmann (2012) and numerous references therein). The shape of
the bathtub curve is generally characterised by three phases as follows:

• Decreasing failure rate: Also called early “infant mortality” failure, this phase is characterised
by a high failure rate which decreases as the survival time of products increases. Failures in
this phase are largely due to poor quality control; errors in design, installations or defects in
manufacturing or material etc. They can be reduced by adopting best design approaches, better
quality control and proof tests before releasing the product population into the market.
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• Constant failure rate: This is the phase when products are described to have normal or useful
life. It is characterised by a low and approximately constant failure rate. Failures are considered
to be random and occuring due to random faults and overloads with no apparent pattern. Often,
product warrant periods fall in this phase.

• Increasing failure rate: Significant increase in failure rate is observed during this phase. This is
when products wear-out (age) thereby rapidly increasing the failure rate.

The most commonly used lifetime distributions in reliability and life data analysis include the expo-
nential, Weibull, lognormal and Gamma distributions. A brief discussion about them is given next.

2.3.1 Exponential Distribution

The exponential distribution is widely used due to its simplicity and constant failure rate property.
The two-parameter exponential probability density function (pdf)

f(t) =
1

η
exp

[
−
(
t− γ
η

)]
has a constant hazard function given by

λ(t) =
1

η

where t ≥ 0, t > γ, γ is the location parameter (also termed guarantee time in the sense that fail-
ure is deemed to occur only when t > γ) and η is the scale parameter (known as the characteristic
product life). When γ = 0, the two-parameter exponential distribution reduces to the well-known
one-parameter exponential distribution expressed as

f(t) =
1

η
exp

[
− t
η

]

The one-parameter exponential form is the one which is commonly used in analysing product reli-
ability data due to its simpler form. The constant hazard function implies that the probability of a
product failing is independent of its age and this scenario is not practical for most products (Meeker
and Escobar, 1998). For example, it is not suitable to model the life of electronic and mechanical
products such as lasers, filament devices and bearings since they are prone to wear-out, fatigue and
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corrosion. Meeker and Escobar (1998) state that there are special circumstances under which the ex-
ponential distribution is useful, for instance the times between system failures and arrivals in a queue.

2.3.2 Weibull Distribution

The Weibull distribution is widely used in modelling lifetimes of products, mainly based on theoretical
(i.e., extreme value theory) and practical (i.e., provides a good fit to the lifetimes of many products)
considerations (Doganaksoy, Hahn and Meeker, 2010). The more general three-parameter Weibull
distribution has the cumulative distribution function (cdf)

FT (t) = 1− exp

[
−
(
t− γ
η

)β]
, η > 0, β > 0 (2.5)

where t > γ, γ is the location parameter. With regard to product reliability, γ is termed the guarantee
time. The scale parameter η is the characteristic product life and β is the shape parameter. Its ability
to describe failure distributions with many varied shapes is highlighted as one of its major strengths
(Meeker and Escobar, 1998).

Its hazard function is given by

λ(t) =
β

η

(
t− γ
η

)β−1

(2.6)

which reduces to

λ(t) =
β

η

(
t

η

)β−1

with corresponding distribution function

FT (t) = P (T ≤ t)

= 1− exp

[
−
(
t

η

)β]
, t > 0 (2.7)

for the commonly used two-parameter Weibull distribution when the location parameter (fault free
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2.3 Commonly Used Lifetime Distributions

life) γ = 0. The flexibility of the Weibull distribution as a model in life data analysis stems from the
behaviour of its hazard function depending on its parameter values. That is:

• If β = 1, the two-parameter Weibull distribution takes the form of the exponential distribution
(constant failure rate)

• If β < 1, there is a decreasing failure rate. In real life there are very few situations which can
be related to this type of failure rate

• If β > 1, there is an increasing failure rate (aging or wearing out of a product)

2.3.3 Lognormal Distribution

The lognormal distribution has two parameters µ′ and σ′. Its pdf is given by (Reliasoft Corporation,
2015):

f(t;µ′, σ′) =
1

tσ′
√

2π
e
− 1

2

(
t′−µ′
σ′

)2

where µ′ ∈ (−∞,∞) is the mean of the natural logarithms of the failure times, σ′ > 0 is the standard
deviation of the natural logarithms of the failure times and t′ is the natural logarithm of the failure
time of a product. Its hazard function is expressed as

λ(t) =

1
tσ′
√

2π
e
− 1

2

(
t′−µ′
σ′

)2

∫∞
t′

1
σ′
√

2π
e
− 1

2

(
x−µ′
σ′

)2

dx

To solve the hazard function, the use of standard normal tables is required.

The lognormal distribution has an unusual hazard function behaviour which monotonically increases
to a peak and then eventually decreases to zero. However, many electronic products such as GaAs
lasers have a hazard function which behaves in such a manner. This explains why the lognormal
distribution is usually chosen to model the lifetimes of electronic products. Fatigue crack growth is
also usually modelled using the lognormal distribution (Meeker and Escobar, 1998).
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2.3.4 Gamma Distribution

The Gamma distribution is a very flexible distribution which provides a good fit to certain failure-time
data (Meeker and Escobar, 1998; Reliasoft Corporation, 2015). Its pdf is given by

f(t) =
ekz−e

z

tΓ(k)

where t > 0, z = ln(t) − µ∗, −∞ < µ∗ < ∞ and k > 0. eµ∗ and k are the scale and shape parame-
ters respectively. In reliability applications, the shape parameter k represents the number of shocks a
product experiences until failure.

Its hazard function is expressed as

λ(t) =
ekz−e

z

tΓ(k)(1− ΓI(k; ez))

where ΓI(k; ez) is an incomplete Gamma function defined by

ΓI(k; ez) =

∫ z
0
xk−1e−xdx

Γ(k)
, z > 0

The hazard function can either be decreasing (when k < 1) or increasing (when k > 1). If k = 1, the
Gamma distribution reduces to an exponential distribution.

2.4 Parameter Estimation Methods for the Degradation Path Model

The degradation path model parameters can be estimated by common parametric methods which in-
clude the maximum likelihood estimation (MLE) and the median rank regression (MRR) method
amongst others. Overall, the MLE method is regarded to be the most robust parameter estimation
technique. The MRR method is based on the popular ordinary least squares method, which is quite
easy to understand, interpret and use. In reliability applications, especially with regard to degradation
data of highly reliable products, small data samples are usually available. The MLE procedure works
very well for large samples. It is asymptotically unbiased or efficient, meaning that the precision of
the parameter estimates greatly improves as the sample size gets larger (Reliasoft Corporation, 2015).
The MRR method tends to handle small sample sizes much better than the MLE method in terms of
statistical accuracy.
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2.4.1 Maximum Likelihood Estimation

As mentioned previously, maximum likelihood estimators are usually preferred due to their optimum
properties in large samples. Discussed next, is the theory behind the MLE method in relation to
degradation data.

Let Yi =
(
Yi1, Yi2, · · · , Yim

)T
represent themi×1 random vector for the degradation measures of the

ith product and yi =
(
yi1, yi2, · · · , yim

)T
be the actual registered degradation data. The complete set

of degradation measurements is represented by an N × 1 random vector Y =
(
Y1, Y2, · · · , Yn

)T
where N =

∑n
i=1 mi. The complete set of the registered degradation data values is thus y =(

y1, y2, · · · , yn
)T

. Also let β = (β1, · · · ,βn)T be the nk × 1 vector that combines the n βi vec-

tors. Denote the probability density function of Yi by f
(
y;α, βi, θ, σ

2
ε

)
and that of βi by g

(
βi;θ

)
.

Then the respective probability density functions of the complete set of actual degradation measures

Y =
(
Y1, Y2, · · · , Yn

)T
and β = (β1, · · · ,βn)T are (Ferreira et al., 2012);

f
(
y;α,βi,θ, σ

2
ε

)
=

n∏
i=1

f
(
yi;α, βi, θ, σ

2
ε

)
(2.8)

and

g
(
β;θ

)
=

n∏
i=1

g
(
βi;θ

)
(2.9)

For the underlying model parameters α, θ and σ2
ε of the degradation path model in Equation (2.2), the

maximum likelihood gives parameter estimates that maximize the probability (likelihood) of getting
the observed degradation data. Thus, the likelihood function is the joint probability density of the

data. For the complete set of actual degradation measures y =
(
y1, · · · , yn

)T
, it is expressed as

L
(
α,β, σ2

ε |y
)

= f
(
y|α,θ, σ2

ε

)
=

∫
Ξβ

f
(
y,β|α,θ, σ2

ε

)
dβ

=

∫
Ξβ1

· · ·
∫

Ξβn

f
(
y|α,β,θ, σ2

ε

)
f
(
β|θ
)
dβ1 · · · βn

=

∫
Ξβ1

· · ·
∫

Ξβn

[
n∏
i=1

f
(
yi|α, βi, θ, σ2

ε

)][ n∏
i=1

f
(
βi|θ

)]
dβ1 · · · βn

=
n∏
i=1

{∫
Ξβi

f
(
yi|α, βi, θ, σ2

ε

)
f
(
βi|θ

)
dβi

}
(2.10)
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where Ξβi is a real argument for the random effect parameter. Maximizing the likelihood function in
Equation (2.10) with respect to α, θ and σ2

ε is very complex unless D
(
tij,α,βi

)
is a linear function.

When a simple linear degradation path model is considered, ML estimates of model parameters can
be easily obtained. Otherwise, numerical approximations to the likelihood function would be required
(Ferreira et al., 2012).

2.4.2 Median Rank Regression

The rank regression method is a better alternative to MLE when a small sample is involved, as it
produces parameter estimation results with much less bias. The median rank regression method is
essentially an ordinary least squares approach which uses median rank plotting positions (Genschel
and Meeker, 2010). MRR basically linearizes the cdf of the failure time distribution, that is putting
it in a linear form expressed in Equation (2.2). To see how MRR linearizes (Reliasoft Corporation,
2015) the cdf, consider the two-parameter Weibull distribution

F (t) = 1− exp

[
−
(
t

η

)β]
, t > 0

Rearranging and taking natural logarithms gives

ln
[
1− F (t)

]
= ln

[
e
−
(
t
η

)β]
= −

(
t

η

)β

Taking the natural logarithms for the second time yields

ln

[
− ln

(
1− F (t)

)]
= β

[
ln
(
t

η

)]

which after rearranging becomes

ln

[
ln
(

1

1− F (t)

)]
= βlnt− βln(η) (2.11)

Equation (2.11) is now in the general form
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yi = bxi + a

such that

yi = ln
[

ln
(

1

1− F (ti)

)]

and

xi = ln(ti).

The simple linear random effects degradation model can then be rewritten as

yi = bxi + a

where a and b are regression coefficients. Similarly, this linearisation of the cdf can be done for any
assumed lifetime distribution.

The MRR method basically works by first ordering the failure and censoring times from smallest to
largest and assigning ranks denoted by i (i = 1, 2, · · · , n). The respective estimates of probability of
failure F̂ (ti)’s for products are determined by the use of median ranks. The Bernard’s approximation
method is one of the most common type of median ranks; its estimator is defined by

F̂ (ti) =
i− 0.3

n+ 0.4

with n being the sample size and the failure order number from the ranking is denoted by i. When
using statistical software such as Weibull ++, MRR is either implemented in the vertical or horizontal
direction (RRY or RRX). Rank regression based on X produces more accurate results than RRY
when a small sample size is involved. The time to failure X is generally associated with much more
variability than the median ranks, hence this study shall consider analysis based on RRX . RRY is
suitable for free-form data such as warranty data (HBM United Kindom Limited , 2017).
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2.5 Estimation of the Target Reliability Metrics

2.5 Estimation of the Target Reliability Metrics

The primary aim of this research report is to estimate the probability of failure at 5000 hours (desired
lifetime of the motivational GaAs laser data set to be used in the methodology section) and other
important reliability metrics such as mean time to failure, reliable life, BX% life, failure rate and
some specified percentiles. The reliability metrics to be considered in this study are defined as follows
(HBM United Kindom Limited , 2017):

• Probability of failure - probability of failure at a specified time

• Mean Time to Failure - average time a population of products is expected to operate before
failure

• Reliable Life (Warranty time) - estimated time for a specified target reliability

• BX% Life - estimated time when the probability of failure reaches a specified percentage point,
for example, if the expectation is that 30% of the products will fail in 6 years time then B30%
is equal to 6 years

• Failure Rate - the expected number of product failures per unit time

2.5.1 Confidence Bounds for FT (t)

Confidence intervals (CIs) are used to quantify the uncertainty of estimates of reliability metrics in-
cluding lifetime quantiles (Hong et al., 2008). In reliability applications, the uncertainty usually
arises from degradation measurement errors. Genschel and Meeker (2010) highlight the importance
of quantifying uncertainty to do with product reliability, particularly in instances where safety issues
could be of great concern and where small to moderate samples are available. Lu and Meeker (1993)
and Lu, Park and Yang (1997) state that there are many methods of constructing confidence bounds
or intervals and these include the normal approximation, the bootstrap and the likelihood ratio (LR)
methods. Since degradation data is associated with a few observations or limited data, it is highly
recommended to employ the bootstrap method or the LR pointwise confidence intervals instead of
those based on the normal approximation methods which effectively deal with large sample sizes.
The bootstrap confidence intervals perform on par with LR based CIs and both are actually better
than normal approximation methods based CIs in terms of accuracy.

Only two types of CIs, namely the LR and bootstrap based CIs are discussed in greater detail in this
research report.
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2.5.1.1 Bootstrap based Confidence Intervals from degradation data

The following steps describe how the uncertainty associated with F̂T (t) is quantified (Crowder and
Lane, 2014):

1. Generate bootstrap samples in such a way that they mimic the degradation data which consists
of n sample paths. Sampling is done with replacement.

2. For all the n degradation sample paths, fit the degradation path model shown in Equation (2.2)
and then estimate the models parameters for each path using methods such as MRR, MLE and
so on.

3. If the underlying distribution of the random effect parameters from the degradation path model
is not known, determine it using the estimates from the n sample paths.

4. Determine the failure time distribution FT (t) of bootstrap samples by substituting their respec-
tive estimated parameter values in Equation (2.3) on condition that FT (t) has a closed form
expression. Otherwise, use the parametric distribution from step 3 to generate a large number
N of random degradation paths.

5. Repeat steps 1-4 many times, for example 1000 times, in order to obtain a distribution of values
for FT (t). The central 100(1 − α)% of this distribution represents the pointwise approximate
100(1− α)% confidence interval for FT (t), which in other words is the uncertainty interval for
FT (t).

2.5.1.2 Likelihood Ratio based Confidence Intervals

The 100(1−α)% LR based confidence interval for FT (t) of the percentile tu is based on the inversion
of the likelihood ratio statistic Λ. The LR CI is only applicable when there is a closed form expression
for FT (t). The LR based intervals make use of the following hypothesis

H0 : FT (t) = u vs. H1 : FT (t) 6= u where u is the uth quantile of FT (t).

Based on Lu et al. (1997), the decision rule for the hypothesis test is that the null hypothesis H0 is
rejected if the LR statistic Λ is greater than χ2

1,α (upper α quantile of the chi-square distribution with 1
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degree of freedom). The inversion of the test of H0 : FT (t) = u is based on the asymptotic normality
of

V (t) = ln

(
− ln(FT (t))

)
(2.12)

It should be noted that the quantity of V (t) is unrestricted in that it can either be greater than 1 or less
than 0. The confidence interval for the estimate of the failure distribution function must strictly lie
between 0 and 1. Transformation is done such that

FT (t) = exp

(
− exp(V (t))

)
(2.13)

so as to get the correct CI restriction. The 100(1 − α)% CI for V (t) based on V̂ (t) is constructed as
follows[
V̂ (t)− z × SE

(
V̂ (t)

)
, V̂ (t) + z × SE

(
V̂ (t)

)]
and this CI is equivalent to

[
exp{−eV̂ (t)+z×SE(V̂ (t))}, exp{−eV̂ (t)−z×SE(V̂ (t))}

]

Substituting V̂ (t) = ln

(
− ln(F̂T (t))

)
into the above CI, yields[

V̂ (t)− z × SE
(
V̂ (t)

)
, V̂ (t) + z × SE

(
V̂ (t)

)]
=

[(
F̂T (t)

)eB
,
(
F̂T (t)

)e−B ]
(2.14)

whereB = z×SE
(
V̂ (t)

)
and SE is the standard error of V̂ (t). To determineB, the variance of V̂ (t)

has to be calculated; the z value (the two-sided critical z-value is usually denoted as z1−α/2, where α
is the level of statistical significance) and it is easily found in the statistical tables.

2.6 Mean Squared Error

An estimator’s accuracy and precision can be evaluated by determining its bias and standard error re-
spectively. Besides the use of confidence bounds, determining the MSE associated with the estimates
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of reliability metrics is another effective way of quantifying uncertainty. The mean squared error of
an estimator t̂u is the most commonly used measure to evaluate its accuracy. It is denoted by

MSE = E[(t̂u − tu)2] = [SE(t̂u)]
2 + [Bias(t̂u)]2 = Var(t̂u) + [Bias(t̂u)]2

where Bias(t̂u) = E(t̂u − tu), Var(t̂u) is the variance of the estimate t̂u and SE is the standard er-
ror (Genschel and Meeker, 2010). The formulae that are used to compute sample bias and sample
variance are as follows

Bias =

∑j=1
n

(
tu − t̂u

)
n

Variance(t̂u) =

∑n
j=1

[
t̂u −mean(t̂u)

]2
n− 1

=
[
SE(t̂u)

]2
where t̂u denotes the specified percentile or some other reliability metrics and n represents the number
of simulated degradation data sets.
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Chapter 3

Literature Review

Over the past 40 years, it has been possible for numerous high reliability products to have degradation
data available (Meeker, 2009). At the same time, many researchers and reliability engineers have
also developed a huge interest in degradation analysis (DA). Hence, numerous valuable DA studies
(as shall be seen in the following literature review) have been conducted to explore the multiple
benefits associated with degradation data analysis, particularly over traditional failure time analysis
in assessing product reliability. Included in these various investigations or studies are conditions
which need to be met for DA to optimally perform as desired, the different forms of degradation
processes, the degradation modelling approaches and parameter estimation methods. The review of
literature will cover important aspects of DA under the following headings: why degradation analysis,
forms of degradation, modelling approaches and estimation methods.

3.1 Why degradation data analysis?

Over recent years, DA in relation to product reliability has become quite popular in the manufacturing
and industrial sector. This is mostly due to the fact that today’s products are too well-made (as previ-
ously mentioned in section 1.1) and they take ages to fail (Lu et al., 1997). This makes failure-time
data less useful in tests meant for assessing the reliability of highly reliable products. Degradation is
deemed to be more attractive because it utilises all the test information including scenarios where no
failures occur. This is demonstrated by authors such as Hamada (2005) and Meeker et al. (2001) that
use a laser data example adapted from Meeker and Escobar (1998). Shahraki et al. (2017) note that
it is imperative to have a thorough understanding of degradation analysis, since the knowledge of a
product’s degradation behaviour can significantly help prevent potential failures in order to effectively
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avoid subsequent losses. Again, if DA is implemented correctly, a valid degradation model can be
used for forecasting and decision making, for example, the estimation of the failure time distribution,
forecasting of warranty costs and remaining useful life prediction during field use and condition-based
maintenance (Ye and Xie, 2014).

There are many other practical advantages associated with using degradation data. For example,
meaningful and accurate product reliability information can be obtained from degradation data much
earlier compared to when using traditional censored failure time data. The data collection process of
failure time data for products that are highly reliable can be very expensive and not practical because
they tend to take a long time to fail (Ferreira et al., 2012). In such a case, DA is a much better solution
than traditional FTA. This benefit is of immense value (for highly reliable products), especially when
there are severe time constraints for product reliability testing and when other quick logistic decisions
need to be made (Shahraki et al., 2017). With few or no failures, it is also possible to extract sub-
stantial information on product reliability from the use of DA (Chiao and Hamada, 2001; Crowder
and Lane, 2014; Ferreira et al., 2012; Freitas et al., 2010; Lu and Meeker, 1993; Meeker et al., 1998;
Nelson, 1990; Oliveira and Colosimo, 2004; Park and Padgett, 2006; Shi et al., 2009). Statistical
techniques such as DA are a very important factor for companies, in that they guarantee a competitive
position in the consumer market and also reduce the overall product development time (Oliveira and
Colosimo, 2004; Shahraki et al., 2017).

Statistically designed DA experiments can be used to enhance the reliability and achieve robust re-
liability for highly reliable products (Chiao and Hamada, 2001). With DA, it is possible to truncate
paths whereas with failure time data, complete sample paths are required to carry out an analysis
which results in obtaining meaningful information on product reliability (Crowder and Lane, 2014;
Meeker et al., 2001). Degradation data yields more accurate life estimates than accelerated life tests,
with few or no failures (Ferreira et al., 2012). Another strength of DA pertains to its ability to estimate
quantiles of failure probabilities beyond the range of available data (Lu et al., 1996).

Degradation data has certain limitations to it. Admittedly, for results from DA to be statistically
valid (Chiao and Hamada, 2001; Meeker et al., 2001), there must be no significant measurement er-
rors. Hence there is need to ensure a high level of accuracy when recording a product’s degradation
measures over time. The actual degradation of a product at time tij is observed with error εij . The
degradation measurements must have minimal measurement errors, otherwise benefits of DA can be
hugely compromised (Chiao and Hamada, 2001; Ferreira et al., 2012; Hamada, 2005; Lu et al., 1996;
Meeker and Escobar, 1998; Meeker et al., 2001). However, even with inherent measurement errors
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3.2 Forms of Degradation

(Lu et al., 1996), DA performs better than FTA as long as there are enough inspections to cater for the
measurement error variance. In addition, situations could arise where data collection of degradation
measurements for some products is expensive. For instance, (Lu et al., 1996; Meeker, 2009), the
scientific study of measurements (metrology) is very costly and a lot of capital resources are needed
to record the measurements. In such cases, it is vital to strike an optimal balance between the bene-
fits of taking degradation measurements and their cost effectiveness (Lu and Meeker, 1993). In the
main however, the data collection process is not expensive since smart chips are generally inserted
for the purpose of recording useful degradation information over time (Lu et al., 1996; Meeker, 2009).

Furthermore, for one to be able to reap maximum benefits from degradation analysis, quite a number
of strict conditions have to be met, especially the presence of a strong correlation between the underly-
ing degradation process and the product’s failure. Determining the correct variables which are closely
related to a product’s failure time is important but also a very difficult engineering challenge of DA
(Meeker and Escobar, 1998). Results obtained from degradation analysis based on an inappropriate
model are of no significance. It is therefore of paramount importance to specify an appropriate model
which adequately describes the degradation process of a product. The threshold level of degradation
also has to be prespecified (Chiao and Hamada, 2001; Ferreira et al., 2012; Lu et al., 1996; Meeker
and Escobar, 1998). In cases whereby accelerated conditions have been used, it is necessary that one
applies physical models that relate the degradation rate to stress when extrapolating and estimating
FT (t) at a design stress (Ferreira et al., 2012; Meeker et al., 1998; Park and Padgett, 2006).

3.2 Forms of Degradation

There are in general two forms of degradation, namely physical degradation which depends on direct
observation and a degradation process based on the performance output of a component or subsys-
tem. Meeker et al. (1998) and Meeker and Escobar (1998) explain that modelling degradation based
on direct observation such as tyre tread wear and crack growth is much easier and less complicated
compared to modelling a performance degradation process, such as a change in output voltage or
decrease in light intensity of LEDs, for example. Due to its simplicity, the physical degradation form
tends to provide more credible and precise reliability estimates and a firmer basis for extrapolation.
Performance degradation is complex in the sense that there is always a possibility that the performance
of a product may be affected by more than one underlying degradation process (Meeker and Escobar,
1998). In such a case, the National Institute of Standards and Technology (2003) recommends that a
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standard failure time analysis be carried out if possible, in order to check if the parameter estimates
obtained from standard FTA are comparable with those obtained from the predictions of DA, just as
a “reality” check.

It is also crucial that the correct form of degradation is taken into account in any DA experiment.
For example, not much is gained from DA when one is incorrectly recording degradation measures
from a performance variable instead of the actual physical degradation. Various studies done (see for
example Meeker and Escobar (1998)) explore both forms of degradation with different kinds of data,
such as the fatigue crack size, distance to failure for car shock absorbers, battery life data, GaAs laser
data examples and so on. The experiments by Meeker et al. (2001) and Hamada (2005) also consider
performance degradation using the GaAs laser data. Other studies apply DA using the physical form
of degradation by making use of the train wheel degradation data (discussed further in sections 3.3
and 3.4), crack growth data (Ferreira et al., 2012; Freitas et al., 2010; Lawless and Crowder, 2004;
Meeker et al., 1998). Pan and Crispin (2011) investigate the degradation process of light emitting
diodes. Oliveira and Colosimo (2004) focus on a degradation process related to an automobile’s tyre
and the response of interest is the tyre tread reduction.

3.3 Modelling Approaches

Degradation models can be classified into two broad categories, namely stochastic process models and
general path models. Ye and Xie (2014) extensively discuss and elaborate on the theories, strengths
and weaknesses associated with both the stochastic process models and general path models. General
path models are usually preferred because of their simplicity in modelling continuous processes for
degradation data. There are several degradation studies which assume the general degradation path
model (Ebrahem et al., 2009; Ferreira et al., 2012; Freitas et al., 2010; Lu and Meeker, 1993; Meeker
et al., 2001; Oliveira and Colosimo, 2004; Pan and Crispin, 2011). They have the modelling flexibility
of incorporating both fixed and random effects into the degradation path function (Pan and Crispin,
2011; Shahraki et al., 2017; Ye and Xie, 2014).

Ferreira et al. (2012) and Freitas et al. (2010) assume a simple linear degradation path model in mod-
elling train wheel degradation data. Common distributions used to model the product’s lifetime such
as the Weibull and lognormal are considered in modelling the train wheel data. Oliveira and Colosimo
(2004) use the simple linear model as well, in a degradation process related to an automobile’s tyre.
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Lu et al. (1997) consider a linear degradation model in modelling the degradation process of a semi-
conductor. Work is also done which includes covariates into the general path model, to ensure that
external factors such as environmental conditions are taken into account in modelling the degradation
behaviour of a product (Lu et al., 1997; Lu and Meeker, 1993; Meeker et al., 1998; Pan and Crispin,
2011).

Pan and Crispin (2011)’s approach in modelling and analysing LED degradation data is to some extent
different from that of Chiao and Hamada (2001). Pan and Crispin (2011) propose a hierarchical mod-
elling technique (that is, the degradation model is determined at two levels) based on a general path
model suggested by Meeker et al. (1998). The first model involves a simple linear function whereas
for the second one, the path is modeled by a nonlinear function. Both Chiao and Hamada (2001) and
Pan and Crispin (2011) assume that the degradation path is nonlinear and take into account the unit
to unit variability. Freitas et al. (2010) and Shahraki et al. (2017) highlight that for many degradation
processes in practice, the models are nonlinear in nature with more than one random effect. Using a
simple linear random effects model is not ideal in such cases, as it does not have the ability to ade-
quately describe the actual degradation path. A nonlinear degradation model is the perfect candidate
for such processes.

Several efforts have also been made to apply stochastic process models namely the Wiener process
models, Gamma and inverse Gaussian processes in many degradation studies. The common argument
presented is that degradation is usually a complex phenomenon, that is better described and captured
adequately by stochastic process models instead of the general degradation path models. Peng et al.
(2014) use the GaAs laser data and apply the inverse Gaussian process models. Doksum and Hoy-
land (1992) consider a variable stress accelerated life test in which the degradation characteristic is
described by the Wiener process model with drift and the failure time distribution is inverse Gaus-
sian. It is demonstrated that the Wiener process with drift is a very flexible model which captures
very well an accumulated decay process. Lim and Yum (2011) also take into account the Wiener
process in modelling an accelerated degradation test, with the goal of designing an optimal test plan
using a constant stress loading method. Whitmore (1995) discusses the estimation of degradation by
a Wiener diffusion process in the presence of measurement errors. The Wiener process presents a
difficult challenge in practice, in that it requires several assumptions, such as a linear degradation rate
and a single source of variation (Pan and Crispin, 2011).

Additionally, Tseng, Balakrishnan and Tsai (2009) work on an accelerated degradation test with a
path described by the Gamma process. Lawless and Crowder (2004) also present the Gamma pro-
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cess, focusing on its covariates and random effects with regard to crack growth degradation data.
Advantages of using the Gamma process are highlighted, for example the random effects’ ability to
incorporate the heterogeneity across products, its monotonicity and independent increments property.
Park and Padgett (2006) develop stochastic process models which take into account several accelerat-
ing variables. This study points out that in most cases the exact degradation value at the first passage
time is not observable. As a remedy to this issue, Park and Padgett (2006) suggest the interpolation
of the first passage times or the adjustment of the failure threshold. A stochastic process model is
beneficial in how it takes into account the correlation of several performance measures for a product,
but the manner in which it handles the nonlinear degradation functions and random effects is very
complex, whereas the general degradation path model is easy to use and straightforward (Pan and
Crispin, 2011).

3.4 Estimation Methods

In estimating degradation model parameters, one can consider parametric or non-parametric methods.
Parametric approaches include the MLE and MRR methods, whereas the non-parametric approaches
include methods such as the kernel density estimation (KDE). Studies such as of Chiao and Hamada
(2001), Dakhn et al. (2017), Doksum and Hoyland (1992), Freitas et al. (2010), Lu and Meeker
(1993), Lu et al. (1996), Pan and Crispin (2011) and Whitmore (1995) make use of MLE. Chiao and
Hamada (2001) propose a two stage maximum likelihood method just as Lu et al. (1996) did to anal-
yse the degradation path of a fluorescent lamp’s luminosity.

Freitas et al. (2010) also apply the two stage MLE method in analysing train wheel degradation data.
Before performing the two stage method, the one stage MLE approach is implemented on the data.
This entails forming the appropriate likelihood function and then obtaining estimates from it. The
random effects degradation model parameter estimates of the sample degradation paths are obtained
using the least squares estimation method in the first stage. Lu and Meeker (1993) propose a two
stage method to estimate a mixed effect path model parameters in a case study involving fatigue
growth data. It is shown that both approaches for MLE have drawbacks in degradation analysis even
though there are certain advantages to them. For the one stage method, it is shown that the likelihood
function may not have a closed form, thereby making it necessary to use numerical approximation
methods, whereas the second stage depends on asymptotic normality properties and it is generally
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computationally intensive (Chiao and Hamada, 2001; Freitas et al., 2010).

Due to the fact that MLE is a parametric procedure, this implies that it can only be employed if the
stochastic component (random effect parameter βi) of the degradation model has valid assumptions on
it, otherwise non-parametric methods such as KDE are a better option (Dakhn et al., 2017; Ebrahem
et al., 2009). KDE is one of the best non-parametric methods to consider when there is lack of prior
information pertaining to the underlying distribution of the random effects in the field of degradation
data (Ebrahem et al., 2009). Ebrahem et al. (2009) use the GaAs laser example to compare the per-
formance of KDE with that of the MLE and ordinary least squares methods in estimating degradation
model parameters.

On the other hand, some authors are of the opinion that the Bayesian approach offers a practical
advantage over MLE in that it allows for subjective information to be included in the degradation
analysis (Hamada (2005) and Peng, Li, Yang, Huang and Zuo, 2014). This is very beneficial when
observations are very few and Freitas et al. (2010) allude to these advantages too in a study whereby
the Bayesian method is compared to four classical methods in the analysis of train wheel degradation
data. The Bayesian method is found to handle nonlinear models with more than one random parame-
ter and mixed parameter models much better than classical approaches.

The Bayesian approach also provides a natural approach to degradation data in how it combines prior
information (about the unknown model parameters) and information contained in the actual data about
the same parameters forming a pdf called the posterior (Freitas et al., 2010; Hamada, 2005; Peng et al.,
2014). Nelson (1990) notes that there is a certain level of difficulty in the specification of the prior
distribution for the Bayesian method. Efron (2001)’s work also criticises the Bayesian method by
pointing out that it is a statistical method that does not interpret data fairly (with regard to issues such
as unbiasedness, confidence intervals and significance levels) due to its subjective nature.

Other popular statistical methods for degradation data analysis which fall under the category of "clas-
sic" inference methods with MLE, include the approximate, analytical and numerical methods. These
classic methods are extensively discussed by Freitas et al. (2010) and Oliveira and Colosimo (2004).
Freitas et al. (2010) proposes modelling and analysing degradation data using the approximate, an-
alytical and numerical methods on train wheel degradation data. Point estimates (such as MTTF,
median distance, specified percentiles, reliability at certain chosen distances) and confidence inter-
vals are obtained using all the three methods. In the end, it is proven that both the approximation
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and numerical estimates derived from degradation measurements are more precise than those of tra-
ditional failure time data.

Oliveira and Colosimo (2004) carry out a similar study to that of Freitas et al. (2010) with the excep-
tion that the degradation process in this case is pertaining to an automobile’s tyre. The approximation
and analytical methods were found to produce similar results and it was also established that the
numerical method has the best results since it has narrower confidence intervals, implying better ac-
curacy and precision. It was possible to apply all three methods to the tyre wear degradation data,
since the degradation path is simple in that it has one random effect. If the degradation path had been
nonlinear, only the numerical method would have been appropriate in this case. Freitas et al. (2010)
deliberately leave out the analytical method since the view is that for simple models, the approxima-
tion and analytical methods tend to produce similar results. The results from these methods are also
compared to those of traditional FTA and the conclusion was that CIs obtained from the two classic
methods are narrower and have less bias, implying better precision. The numerical method was found
to be most affected by the misspecification of the random parameter distribution (Freitas et al., 2010).
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Chapter 4

Methodology

4.1 Motivating Data Example

A GaAs laser (for telecommunications systems) example from Meeker and Escobar (1998) is used
in this research study to demonstrate the practical advantages of degradation data analysis through
a simulation procedure. This type of laser has a life time of 200 000 hours (slightly over 20 years)
when operated at the normal use temperature of 20◦C. It has a built-in feedback circuit which ensures
that constant light output is maintained. As the laser ages, it needs more electric current to maintain
the required constant light output. The laser is regarded to have failed the first time a 10% increase in
current is required to maintain the constant light output. The engineers estimated from experience that
when tested at an accelerated temperature of 80◦C to obtain failure data quickly, the time to failure
would be accelerated by a factor of approximately 40. Accordingly, a lifetime of 200 000/40=5000
hours was desired. A sample of 15 lasers are tested at 80◦C and degradation measurements are taken
every 250 hours within a time frame of 4000 hours. The real data set simply has two variables under
consideration (percent increase in operating current and time (in hours)) for a sample of 15 GaAs
lasers. There are no missing values in the data.

4.2 Simulation Procedure

A simulation study motivated by the GaAs laser data example is conducted to demonstrate the ad-
vantage of assessing product reliability from degradation data. Degradation paths for the laser data
are linear with an initial amount of degradation equal to zero. Accordingly, the linear random effects
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model in Equation (2.2) is assumed with Df set at 10% increase in operating current. Additionally,
Meeker et al. (2001) deemed the lognormal distribution to be the appropriate failure time model from
experience with the lasers. Hence, the simulation is generated according to the following model:

yij = βitij + εij

εij ∼ N(0;σ2
ε)

βi ∼ Lognormal(µ′β;σ′β)

for i = 1, · · · , 15 (n = 15), j = 1, · · · , 16 and ti1 = 250, ti2 = 500, · · · , ti16 = 4000 with a censoring
time of 5000 hours, which is equivalent to the desired lifetime for the lasers at a temperature of 80◦C.
Two simulated data sets considered are namely:

• Simulated GaAs laser degradation paths at 4000 hours extrapolated to failure or 5000 hours as
is the case with the actual data set

• Simulated GaAs laser degradation paths at 2500 hours extrapolated to failure or 5000 hours

The shorter test is essentially a subset of the longer test and the 2500-hour data is selected to ensure
that standard or traditional failure time analysis does not apply since no failures are recorded at 2500
hours. The simulated degradation data for the 15 GaAs lasers are then used to assess their reliability
as follows:

1. If there are failures for the 4000-hour degradation data, a failure time analysis is carried out.

2. For the ith laser, the model in Equation (2.1) is used to determine the least squares estimate of
βi based on the simulated degradation data(
ti1, yi1

)
,
(
ti2, yi2

)
, · · · ,

(
timi , yimi

)
.

3. For lasers that have not failed by 4000 hours, pseudo-failure times t̂1, t̂2, · · · , t̂n are established
by solving the Equation D

(
ti, β̂i

)
= Df .

4. Perform degradation analysis to a combination of observed failure times, pseudo-failure times
and suspensions and compare results to failure time data analysis.

5. Repeat for the 2500-hour data set and compare results to the 4000-hour data set.

6. Carry out a FTA on a data set where all GaAs lasers are allowed to fail and compare the results
to the 4000-hour degradation data.
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If the results of the analysis of the 4000-hour and 2500-hour test data are comparable, then the per-
ceived advantage of degradation data analysis that conclusions are arrived at earlier would have been
demonstrated. In particular, the goal is to estimate the 5000-hour failure probability from 2500-hour
and 4000-hour degradation data. Other reliability metrics which will be derived include mean time
to failure, reliable life, BX% life and failure rate. The uncertainty of these reliability metrics will be
quantified using confidence bounds, bias and standard error.

An application to the real data set similar to the approach adopted by Meeker et al. (2001) will also
be carried out. Meeker et al. (2001) admit that the MLE method does not seem to provide a good fit
to the GaAs laser data and this is supported by their lognormal probability plot. This research study
seeks to employ both the median rank regression method and MLE in order to find out if the results
are comparable.
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Chapter 5

Data Analysis and Results

5.1 Introduction

Data analysis and results for the simulated data set and the real GaAs laser data are presented in this
chapter. Specifically, standard failure time analysis applied to the simulated 4000-hour degradation
data is presented in Appendix C. These data show three failures (products P5, P8 and P12) and 12
unfailed units. Results from the failure time analysis are compared to the 4000-hour degradation data
analysis which entails generating pseudo-failure times for the surviving products by extrapolating
their degradation paths to 5000 hours and including them in the analysis. An extension of the analysis
is achieved by running the simulations beyond 5000 hours to allow all products to “fail”. Traditional
failure time analysis based on all products failing is then compared to the 4000-hour degradation
data analysis. Benefits of assessing product reliability from degradation data are demonstrated by
analysing the degradation data available after only 2500 hours and comparing the results to those
from the analysis of the 4000-hour degradation data. It is important to note that standard failure time
analysis fails for the 2500-hour degradation data since there are no product failures. The statistical
performance of two parameter estimation methods (that is, MRR and MLE) is also compared in
analysing the simulated GaAs laser degradation data.

5.2 Simulation of the GaAs Laser Data

Simulation is implemented in R, an open source software by RStudio Team (2015) (see Appendix
A for the R simulation code) according to the model in Equation (2.2). The selection of the indices
for the simulation is as follows:
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1. The sample size is n = 15, corresponding to 15 GaAs lasers as in the real data set.

2. The critical degradation threshold Df is set to 10, corresponding to the failure definition of 10%
increase in operating current for the lasers.

3. βi ∼ lognormal(−6.21334129; 0.20405874). These parameter values are obtained by fitting
the lognormal distribution to the n = 15 rates of degradation (slopes) for the lasers (shown in
Appendix E) derived from the regression analysis of the real degradation data in Appendix
F.

4. εij ∼ N(0; 1.05). The error variance is selected through a visual inspection aimed at approxi-
mating the linearity assumption while ensuring that the degradation data are monotone.

5. ti1 = 250, ti2 = 500, · · · , ti16 = 4000 are the fixed times at which degradation measures are
simulated.

As a result, a 16 by 15 matrix representing the simulated laser degradation data in Appendix C is
generated and Figure 5.1 gives a plot of these data (see R code which generated the plot in Appendix
B). This particular data set also has 3 observed product failures (similar to the real data set - see
Appendix F) using the 10% current increase failure definition. The three failure times are at 3319
hours, 3764 hours, 3870 hours and 12 unfailed units at 4000 hours (see Table 5.1). The degradation
paths of the 15 GaAs lasers are approximately linear. Therefore, there is no need for transforming the
data.

5.3 Simulated 4000-hour Data Analysis

5.3.1 Failure Time Analysis

The 15 GaAs lasers are ID coded as P1, P2, P3, P4,· · · , P15 as can be seen in Table 5.1 which indi-
cates that at 4000 hours, three products have failed, namely P5, P8 and P12 and the other 12 lasers
have not failed. The observed failure times are 3319 hours, 3764 hours and 3870 hours for P8, P5
and P12 respectively. It is possible to implement FTA in this particular instance due to the presence
of observed failure times.
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Table 5.1: Failure times for the simulated 4000-hour data

GaAs Laser ID State (F or S) Time to F or S (hr)

P8 F 3319

P5 F 3764

P12 F 3870

P1 S 4000
...

...
...

P15 S 4000

The column labelled State shows either a failure time denoted by F or a suspension time denoted by
S. Figure 5.1 gives a plot of the 4000-hour simulated degradation data.

5.3.1.1 Graphical Methods

Figure 5.1: Percent Increase In Operating Current vs. Time (Simulated 4000 hour degradation data)
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These data were simulated using the R code in Appendix A and are presented in Appendix C.

Figure 5.2: Lognormal Probability Plot (Simulated 4000-hour FTA data)

The Weibull ++ software is used for the analysis and the lognormal distribution was found to best fit
the simulated 4000-hour degradation data. Presented in Figure 5.2 is the lognormal probability plot
for these failure time data. The straight line represents the least squares estimate of F (t) based on the
assumed lognormal distribution taking into account the 3 observed failures and the 12 suspensions.
The least squares line in Figure 5.2 seems to fit the plotted points well regardless of there being a
high proportion of suspensions. Approximate two sided 95% likelihood ratio confidence bounds are
included in the plot.

37



5.3 Simulated 4000-hour Data Analysis

5.3.1.2 Numerical Methods

Goodness of fits tests are performed to find out which specific distribution(s) provide the best fit for
the simulated 4000-hour data set. Three common distributions for modelling lifetimes are considered,
namely the one-parameter exponential, two-parameter Weibull and lognormal. A brief description of
the three goodness fits of tests considered in this study is as follows:

• The Kolmogorov-Smirnov (K-S) test is based on the maximum difference between an empirical
cumulative distribution function F (t) and a fitted cdf F̂ (t) in order to assess fit (Massey , 1951).
The values labelled the K-S test are p-values.

• The normalized correlation coefficient test measures the extent to which plotted values fit on a
straight line.

• The likelihood ratio test calculates the value of the log-likelihood function based on specific
parameters given on a distribution.

The following results are obtained:

Table 5.2: Goodness of fit tests for 4000-hour data (FTA)

Criteria 1P Exponential Lognormal 2P Weibull

Kolmogorov-Smirnov test 9.99E-11 9.99E-11 2.98E-07

Normalized correlation coefficient (ρ) test 4.61 1.27 1.14

Likelihood ratio test -32.75 -27.99 -28.05

DESV 250 150 210

Ranking 3 1 2

With respect to the K-S test, the 1P exponential and lognormal distributions have the same ranking
since they have the same values and the 2P Weibull is ranked last based on that criteria because it
has the highest value. With regard to the normalized correlation coefficient test, the 2P Weibull has
the lowest value and is ranked the best in that respect. As for the likelihood ratio test, the lognormal
distribution is the best since it has the highest value. Ultimately, the final ranking is determined by
summing the weighted values of the three criteria, giving the overall weighted decision variable value
denoted by DESV (HBM United Kindom Limited , 2017). For these data, the lognormal is ranked
the best based on it having the smallest DESV value. The obtained results are consistent with those of
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Meeker et al. (2001) who argue its suitability based on past experience with the GaAs lasers. Accord-
ingly, the lognormal distribution is chosen to perform data analysis for the 4000-hour failure time data.

Table 5.3 shows the lognormal distribution parameter estimates for the 4000-hour failure-time data.

Table 5.3: Lognormal parameter estimates for the 4000-hour failure-time data

4000-hour failure-time data

Lognormal Log-Mean (hr) 8.47

Log (σ) 0.21

ρ 0.98

Fail/Susp 3/12

where σ is the standard deviation and ρ is the correlation coefficient.

5.3.2 4000-hour Degradation Data Analysis

It is clear from the plot in Figure 5.1 that the degradation path belonging to one of the GaAs lasers is
about to reach the critical threshold level (the horizontal line at 10% which represents failure). In or-
der to extract more useful reliability information pertaining to this particular laser and other unfailed
lasers, the process of extrapolation is considered up to failure or to 5000 hours. Meeker et al. (2001)
state that extrapolation must be carried out for a reasonable time as products stop functioning at some
point. Failure times well beyond are not statistically useful. The laser degradation paths may have a
huge probability of not being reasonably linear if the degree of extrapolation is too much.

After extrapolation is implemented to failure or 5000 hours, three more lasers (P15, P14 and P11) fail.
The resulting pseudo-failure times for the respective lasers are 4308 hours, 4564 hours and 4749 hours
and are displayed in Table 5.4 showing 3 observed failures, 3 pseudo-failures and 9 suspensions.
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Table 5.4: Failure times for the 4000-hour degradation data

GaAs Laser ID State F or S Time to F or S (hr)

P8 F 3319

P5 F 3764

P12 F 3870

P15 F 4308

P14 F 4564

P11 F 4749

P1 S 5000

P2 S 5000

P3 S 5000

P4 S 5000

P6 S 5000

P7 S 5000

P9 S 5000

P10 S 5000

P13 S 5000

Combining these pseudo-failure times with the observed failure times in the analysis constitutes
degradation data analysis. As with failure time analysis, the lognormal distribution was found to
be the best fitting distribution for the 4000-hour degradation data. The lognormal probability plot in
Figure 5.3 for the 4000-hour degradation data is intended to assess fit and it provides a good fit to the
data.

40



5.3 Simulated 4000-hour Data Analysis

5.3.2.1 Graphical Methods

Figure 5.3: Lognormal Probability Plot (Simulated 4000-hour degradation data)

5.3.2.2 Numerical Methods

In the same vein with the numerical methods under failure time analysis, the lognormal distribution
is ranked the best based on the smallest DESV value (see Table 5.5) for the 4000-hour degradation
data. The best ranked distribution is thus chosen to perform data analysis.
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Table 5.5: Goodness of fit tests for the 4000-hour degradation data

Criteria 1P Exponential Lognormal 2P Weibull

Kolmogorov-Smirnov test 1.35 9.99E-11 9.99E-11

Normalized correlation coefficient (ρ) test 8.45 1.24 1.82

Likelihood ratio test -62.21 -55.90 -56.62

DESV 300 120 200

Ranking 3 1 2

Parameter estimation for the lognormal distribution is presented in Table 5.6.

Table 5.6: Lognormal distribution parameters (4000-hour degradation data)

Parameter Estimates

Log-Mean (hr) 8.55

Log (σ) 0.27

ρ 0.99

Fail/Susp 6/9

where σ is the standard deviation and ρ is the correlation coefficient.

5.3.3 Comparison of 4000-hour Failure Time and Degradation Data Analyses

The comparison of the 4000-hour FTA and 4000-hour DA for the specified reliability metrics is based
on the 95% two-sided CI lengths as indicated in Table 5.7.
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Table 5.7: Results based on the lognormal distribution (4000-hour failure-time data vs. 4000-hour

degradation data)

Analysis Point estimate 95% C.I Length

Prob. of Failure DA Q(t=5000) 0.45 (0.19 , 0.67) 0.48

FTA Q(t=5000) 0.59 (0.18 , 0.99) 0.81

Mean time to failure DA MTTF1 5355 (4690 , 7834) 3144

(hr) FTA MTTF2 4874 (4099 , 8306) 4207

Reliable Life(hr) DA t(R=0.85) 3923 (3088 , 4746) 1658

FTA t(R=0.85) 3839 (3219 , 4772) 1553

BX% Life(hr) DA B10% Life 3675 (2739 , 4426) 1687

FTA B10% Life 3647 (2908 , 4380) 1472

Failure Rate DA FR(t=5000) 0.00432 (0.000141 , 0.001139) 0.000998

(no. of failures/hr) FTA FR(t=5000) 0.000907 (0.000131 , 0.007793) 0.007662

The results in Table 5.7 are based on the MRR method at this stage. Overall, the CIs derived from
the 4000-hour DA are narrower than those of the 4000-hour FTA with the exception of two instances,
reliable life at t(R=0.85) and BX% life at 10%. Narrower CI lengths imply better statistical precision
and accuracy. Results based on FTA are depending on only three observed failures, whereas DA
incorporates extra information in form of pseudo-failure times, thereby leading to narrower CIs. The
advantage of degradation analysis over FTA in terms of incorporating extra information in form of
pseudo-failure times is also reflected in the parameter bounds for the model estimates in Table 5.8.

Table 5.8: Parameter bounds based on the lognormal distribution (4000-hour DA vs. 4000-hour FTA)

Analysis Parameter Point estimate 95% C.I Length

DA Log-Mean (hr) 8.55 (8.42 , 8.90) 0.48

Log-Standard Deviation 0.27 (0.15 , 0.59) 0.44

FTA Log-Mean (hr) 8.47 (8.31 , 8.97) 0.66

Log-Standard Deviation 0.21 (0.07 , 0.60) 0.53

That is, CI lengths for the former are slightly narrower than for the latter.
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5.4 Failure Time Analysis when all lasers are run to failure

A further analysis where all lasers are run to failure is also carried out and the results are compared
to the 4000-hour degradation data analysis. The rationale behind running all lasers to failure is to
establish the trade-off between testing time and the level of statistical accuracy. Running all the lasers
to failure is expensive in terms of both testing time and cost in terms of losing the lasers themselves.
Its advantage is in the form of more failure time information. On the other hand, DA has less observed
failure times but is cheaper in terms of testing time and resources since lasers do not necessarily need
to be run to failure. Assuming the results are comparable, then an advantage of DA would have been
demonstrated. The failure time of the lasers after running them all to failure are given in Table 5.9.

Table 5.9: Failure times (when all lasers are run to failure)

FTA

GaAs Laser ID State F or S Time to F or S (hr)

P8 F 3319

P5 F 3764

P12 F 3870

P15 F 4308

P14 F 4564

P11 F 4749

P13 F 5113

P9 F 5576

P6 F 5630

P10 F 5735

P3 F 5843

P2 F 6239

P7 F 6280

P1 F 6857

P4 F 6881

Continuing with the lognormal distribution as the assumed model for the lasers (Meeker et al., 2001),
the lognormal probability plot is given in Figure 5.4.
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Figure 5.4: Lognormal Probability Plot (when all lasers are run to failure)

The lognormal probability plot provides a fairly good fit to the data, based on the least squares straight
line. Admittedly, there are some points that affect the fit. This is because, although the expected
lifetime for these lasers is 5000 hours, a couple of them have failure times close to 7000 hours when
they are run to failure. Parameter estimates for the assumed lognormal distribution are presented in
Table 5.10.
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Table 5.10: Lognormal distribution parameters (when all lasers are run to failure)

Parameter Estimates

Log-Mean (hr) 8.54

Log (σ) 0.23

ρ 0.98

Fail/Susp 15/0

5.4.1 Comparison with 4000-hour Degradation Data Analysis

A comparison of the 4000-hour DA and FTA when all lasers are run to failure is given in Table 5.11.

Table 5.11: A comparison between 4000-hour degradation data analysis and a FTA when all lasers

are run to failure (results based on the lognormal distribution and the MRR method)

Test Point estimate 95% C.I Length

Prob. of Failure FTA Q(t=5000) 0.46 (0.26 , 0.66) 0.40

DA Q(t=5000) 0.45 (0.19 , 0.67) 0.48

Mean time to failure FTA MTTF-FTA 5274 (4681 , 5961) 1280

(hr) DA MTTF-DA 5355 (4690 , 7834) 3144

Reliable Life(hr) FTA t(R=0.85) 4022 (3421 , 4613) 1192

DA t(R=0.85) 3923 (3088 , 4746) 1658

BX% Life(hr) FTA B10% Life 3797 (3179 , 4405) 1226

DA B10% Life 3675 (2739 , 4426) 1687

Failure Rate FTA FR(t=5000) 0.000621 (0.000367 , 0.001101) 0.000734

(no. of failures/hr) DA FR(t=5000) 0.00541 (0.000153 , 0.001264) 0.001111

All the confidence intervals derived from the 4000-hour degradation data are a bit wider than those
from the traditional failure time analysis in which all GaAs lasers are run to failure, as presented in
Table 5.12. However, the point estimates and the CI lengths of the two approaches are comparable
with respect to all the reliability metrics. These results are consistent with what Genschel and Meeker
(2010) and Meeker et al. (2001) established with regard to this particular comparison. Traditional FTA
generally has narrower CIs because its results are based on a greater number of failures compared to
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those of DA. When there are few or no failures observed, this widens the CIs. This is also reflected in
the parameter bounds depending on the analysis as indicated in Table 5.12.

Table 5.12: Parameter bounds based on the lognormal distribution (4000-hour DA vs. FTA (when all

lasers are run to failure))

Analysis Parameter Point estimate 95% C.I Length

DA Log-Mean (hr) 8.55 (8.42 , 8.90) 0.48

Log-Standard Deviation 0.27 (0.15 , 0.59) 0.44

FTA Log-Mean (hr) 8.54 (8.42 , 8.66) 0.24

Log-Standard Deviation 0.23 (0.16 , 0.33) 0.17

However, it cannot be ignored that the DA option is much advantageous in that plenty of testing time
is saved and a whole lot of unnecessary expenses are avoided in assessing product reliability since not
all products are required to have failed.

5.5 Simulated 2500-hour Degradation Data Analysis

Standard failure time analysis is not applicable to the 2500-hour degradation data due to the fact that
there are no observed failures in that particular test duration.This leaves degradation data analysis
as the only applicable approach, since it has the ability to also assess product reliability when there
are no observed failures. It does this by relying on the extra information contained in the observed
degradation measures about the product’s failure time. Valid results can only be obtained provided
there is a strong correlation between the underlying degradation process and the product’s failure.
Other prerequisites for the degradation path model have been discussed in previous chapters.

5.5.1 Graphical Methods

For the 2500-hour degradation data, none of the 15 lasers have failed (reached the failure threshold
level) at 2500 hours. The corresponding 15 simple linear regression lines representing the degradation
paths for the lasers are shown in Figure 5.5. These lines appear to satisfactorily fit the plotted points
in a linear fashion for all the lasers.
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5.5 Simulated 2500-hour Degradation Data Analysis

Figure 5.5: Degradation vs. Time Plot (Simulated 2500-hour degradation data)

A total of six pseudo-failure times are generated when the 2500-hour degradation data are extrapolated
to failure or to 5000 hours. These data are shown in Table 5.13.
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5.5 Simulated 2500-hour Degradation Data Analysis

Table 5.13: Failure times for the 4000-hour and 2500-hour degradation tests

4000-hour test 2500-hour test

GaAs Laser ID State F or S Time to F or S (hr) Time to F or S (hr)

P8 F 3319 3330

P5 F 3764 3756

P12 F 3870 3858

P15 F 4308 4360

P14 F 4564 4506

P11 F 4749 4785

P1 S 5000 5000

P2 S 5000 5000

P3 S 5000 5000

P4 S 5000 5000

P6 S 5000 5000

P7 S 5000 5000

P9 S 5000 5000

P10 S 5000 5000

P13 S 5000 5000

The lognormal probability plot for the simulated 2500-hour degradation data is given in Figure 5.6.
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5.5 Simulated 2500-hour Degradation Data Analysis

Figure 5.6: Lognormal Probability Plot (Simulated 2500-hour degradation data)

It follows from Figure 5.6 that the lognormal distribution provides a good fit to the data based on the
least squares straight line.

5.5.2 Numerical Methods

From Table 5.14, the lognormal distribution is the best ranked among all the distributions under
consideration based on the smallest DESV value.
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5.5 Simulated 2500-hour Degradation Data Analysis

Table 5.14: Goodness of fit tests for 2500-hour degradation data

Criteria 1P Exponential Lognormal 2P Weibull

Kolmogorov-Smirnov test 1.39 9.99E-11 9.99E-11

Normalized correlation coefficient (ρ) 8.50 1.44 2.03

Likelihood ratio test -62.22 -55.89 -56.60

DESV 300 100 200

Ranking 3 1 2

The lognormal parameter estimates for the 2500-hour degradation data are presented in Table 5.15.

Table 5.15: Lognormal parameter estimates for the 2500-hour degradation data

2500-hour data (simulated)

Lognormal Log-Mean (hr) 8.55

Log (σ) 0.27

ρ 0.99

Fail/Susp 6/9

where σ is the standard deviation and ρ is the correlation coefficient.

5.5.3 Comparison of the 2500-hour and 4000-hour Degradation Data Analyses

To demonstrate the practical advantage of using DA to assess product reliability, results of the 2500-
hour and 4000-hour degradation data analyses are compared. In addition, an extension of the study
by Meeker et al. (2001) is considered by incorporating both MLE and MRR methods in analysing
the degradation data. The MRR and MLE methods are applied on both the 2500-hour and 4000-hour
degradation data with the objective of comparing the estimated reliability metrics. If the results of
the 2500-hour and 4000-hour degradation data analyses are comparable, then the implication is that
with degradation analysis, conclusions are reached earlier. This will in turn allow an earlier release
of highly reliable products.

In addition to quantifying the uncertainty associated with the estimates of the reliability metrics,
standard errors and bias are also reported for precision and accuracy respectively. To compute the
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5.5 Simulated 2500-hour Degradation Data Analysis

bias, the true value for tu and β must be known. The true value for the former is based on data
obtained by running all lasers to failure as this gives the actual failure times, whilst that of β is from
the simulation design. The estimates t̂u of a specified percentile or some other reliability metrics
are based on the results from the simulated degradation data sets in Appendix G and Appendix
H. Recall that the main objective is to estimate the failure probability at 5000 hours. Hence for
comparison purposes, bias and standard error values are established for probability of failure at 5000
hours and a few other metrics namely MTTF and failure rate at 5000 hours. Table 5.16 reports the
confidence bounds and bias based on the two estimation methods.
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5.5 Simulated 2500-hour Degradation Data Analysis

TEST 1 represents the 4000-hour DA and TEST 2 represents the 2500-hour DA.

Table 5.16: MRR and MLE results based on the lognormal distribution (4000-hour DA vs. 2500-hour

DA)

MRR

Test Point estimate 95% C.I Length |Bias|

Prob. of Failure 1 Q(t=5000) 0.450 (0.190 , 0.666) 0.476 0.090

2 Q(t=5000) 0.449 (0.190 , 0.666) 0.476 0.088

Mean time to failure 1 MTTF1 5355 (4690 , 7834) 3144 38

(hr) 2 MTTF2 5358 (4692 , 7827) 3135 286

Failure Rate 1 FR(t=5000) 0.000541 (0.000153 , 0.001264) 0.001111 0.000478

(no. of failures/hr) 2 FR(t=5000) 0.000541 (0.000153 , 0.001265) 0.001112 0.000486

MLE

Prob. of Failure 1 Q(t=5000) 0.4148 (0.1922 , 0.6631) 0.4709 0.0810

2 Q(t=5000) 0.4146 (0.1920 , 0.6627) 0.4707 0.0759

Mean time to failure 1 MTTF1 5479 (4697 , 7769) 3072 131

(hr) 2 MTTF2 5479 (4699 , 7762) 3064 17

Failure Rate 1 FR(t=5000) 0.000505 (0.000156 , 0.001251) 0.001095 0.000517

(no. of failures/hr) 2 FR(t=5000) 0.000506 (0.000156 , 0.001252) 0.001096 0.000508

From Table 5.16, CI lengths for the considered reliability metrics under the two estimation methods
are largely comparable. In addition, the absolute bias values for the same metrics are very low and
comparable for the two estimation methods with the exception of MTTF values. This is however due
to the fact that the product under consideration has a very high lifetime.

Results obtained from the 2500-hour and 4000-hour degradation tests with respect to the parameter
bounds are comparable to a very large extent as shown in Table 5.17.
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Table 5.17: Parameter bounds based on the lognormal distribution (4000-hour DA vs. 2500-hour

DA)

Estimation Method Test Parameter Point estimate 95% C.I Length

MRR 1 Log-Mean (hr) 8.55 (8.42 , 8.90) 0.48

Log-Standard Deviation 0.27 (0.15 , 0.59) 0.44

2 Log-Mean (hr) 8.55 (8.42 , 8.90) 0.48

Log-Standard Deviation 0.27 (0.15 , 0.59) 0.44

MLE 1 Log-Mean (hr) 8.57 (8.42 , 8.89) 0.47

Log-Standard Deviation 0.26 (0.15 , 0.58) 0.43

2 Log-Mean (hr) 8.57 (8.42 , 8.89) 0.47

Log-Standard Deviation 0.26 (0.15 , 0.58) 0.43

This also provides motivation for one to opt for the 2500-hour degradation data test in assessing prod-
uct reliability.

Since the results from the two degradation tests are comparable, this then confirms the advantage of
degradation data with regard to the crucial aspect of time. In other words, degradation data available
after the 2500-hour test allows for an earlier release of a reliable product or swifter redesign of an
unreliable one. Although, the 2500-hour test data consists of just pseudo-failure times and does not
have observed GaAs laser failures, it is possible to extract meaningful and important product reliabil-
ity information from it. This strongly proves both the effectiveness and efficiency of DA.

The estimates of the MRR method almost have the same level of accuracy with those of MLE (see
Table 5.16), based on the absolute bias values obtained (pertaining to estimates for probability of
failure at 5000 hours, MTTF and failure rate at 5000 hours). However, estimates based on MLE,
are more precise (due to the lower standard error values with respect to estimates for probability of
failure at 5000 hours and MTTF) than those belonging to the MRR method (see Appendix G and
Appendix H). The MLE method is generally considered to be a more powerful and robust method
than several methods including MRR. In product reliability applications though, the MRR method is
usually preferred mostly because it is based on the well known least squares method which is easy to
grasp, use and interpret. In most cases, it also provides a good fit to degradation data.
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However, a study which compares MRR and MLE based on the Weibull distribution by Genschel and
Meeker (2010), to some extent suggests otherwise. This particular study argues that emphasis should
not only be given to bias properties of an estimator but to variability properties as well. Results ob-
tained in this research study are in agreement with this line of thought, since the MLE technique was
found to offer better precision. The view is that the amount of variance in the MRR method dominates
the bias such that when the overall accuracy of MLE is evaluated against that of MRR, the MLE is a
better method in practice. It further goes on to mention that the MRR method has a habit of passing
through data points even when it should not, consequently producing misleading results. The other
argument presented in Genschel and Meeker (2010)’s study in providing a strong basis for using MLE
over MRR is that the MLE method is based on a very solid theory which provides multiple ways of
CI computation (Wald method CIs, likelihood based CIs and parametric bootstrap CIs).

Other additional plots are produced, the reliability vs. time plots (for the 4000-hour and 2500-hour
DA) shown in Appendix I and they indicate that as time goes by, product reliability decreases as
expected. One can also use these plots to identify the specific reliability values of the six failed lasers
at the plotted time points. However, the plots only show reliability information within the range of
0 to 5000 hours since the degradation experiment was stopped at 5000 hours. The failure rate vs.
time plots are also determined (see Appendix J) including two-sided 95% confidence bounds. The
lognormal failure rate reaches a peak very early in the lifetime of the GaAs lasers and then decreases
to zero (typical behaviour of the lognormal distribution failure rate). Mean remaining life (MRL)
plots are obtained as well (see Appendix K). The MRL function and the failure rate function are
essentially a complement of each other.
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5.6 Application to Real Data

In this section, the analysis is applied to the laser degradation data adopted from Meeker and Escobar
(1998), Table C.17, p.642. Work by Meeker and Escobar (1998) is only based on the MLE method.
This research study seeks to take a different approach by applying two parameter estimation tech-
niques (MLE and MRR) on the laser data and then comparing their statistical performance. Failure
time analysis data is not considered, as it has been demonstrated to be inferior to DA on the basis of
the simulation study.

Graphical methods based on the analysis of real data are not included in this section since they are
similar to those under the simulation study. Rather, only numerical results are presented. The failure
data from the degradation analysis (observed failures, pseudo-failures and suspensions) for both the
4000-hour and 2500-hour data are displayed in Table 5.18.

Table 5.18: Failure times derived from real data

4000-hour DA 2500-hour DA

GaAs Laser ID State F or S Time to F or S (hr) Time to F or S (hr)

P10 F 3308 3241

P6 F 3613 3767

P1 F 3707 3667

P2 F 4173 4078

P13 F 4780 4830

P12 F 4949 4617

P9 F/S 5000 (S) 4904 (F)

P4 S 5000 5000

P5 S 5000 5000

P7 S 5000 5000

P8 S 5000 5000

P9 S 5000 5000

P11 S 5000 5000

P14 S 5000 5000

P15 S 5000 5000
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5.6.1 Distribution selection and ranking results based on real data

Based on the failure time data in Table 5.18, goodness of fit tests are first carried out using the MRR
method. Four lifetime distributions are considered, namely 1P exponential, lognormal, 2P Weibull
and Gamma.

Table 5.19: Goodness of fit tests for real data using the MRR Method

Criteria 1P Exponential Lognormal 2P Weibull Gamma

4000-hour DA Kolmogorov-Smirnov test 1.10 2.34E-08 9.99E-11 1.04E-07

Normalized ρ test 7.59 3.22 4.75 2.48

Likelihood ratio test -62.22 -56.24 -56.65 -56.66

DESV 400 170 170 260

Ranking 4 1 1 3

2500-hour DA Kolmogorov-Smirnov test 9.45 9.99E-11 9.99E-11 1.84E-07

Normalized ρ test 9.61 2.48 3.40 2.55

Likelihood ratio test -71.45 -63.90 -64.11 -64.19

DESV 350 100 170 230

Ranking 4 1 2 3

As was the case under the simulation study, the best fitting distribution for both the 4000-hour and
2500-hour degradation data is the lognormal although there is a tie with the 2P Weibull for the former.

The same four distributions considered in Table 5.19 are also considered for the MLE method as
indicated in Table 5.20.
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Table 5.20: Goodness of fit tests for real data using the MLE Method

Criteria 1P Exponential Lognormal 2P Weibull Gamma

4000-hour DA Kolmogorov-Smirnov test 5.95 3.72E-08 6.48E-08 2.08E-08

Normalized ρ test 9.66 3.57 3.56 3.64

Likelihood ratio test -62.15 -56.20 -56.53 -56.28

DESV 400 150 280 170

Ranking 4 1 3 2

2500-hour DA Kolmogorov-Smirnov test 22.17 9.99E-11 9.99E-11 4.98E-08

Normalized ρ test 11.53 3.25 2.91 3.23

Likelihood ratio test -71.38 -63.80 -64.08 -63.86

DESV 360 120 200 200

Ranking 4 1 3 2

Similarly, the lognormal distribution is best ranked. These results are consistent with those established
by Meeker and Escobar (1998) and Meeker et al. (2001) with regard to the chosen distribution for data
analysis. The lognormal parameters obtained from the MRR and MLE methods are displayed in Table
5.21.

Table 5.21: Lognormal parameters for real data

Estimation Method 4000-hour DA 2500-hour DA

MRR Log-Mean (hr) 8.58 8.55

Log (σ) 0.31 0.29

Fail/Susp 6/9 7/8

MLE Log-Mean (hr) 8.58 8.54

Log (σ) 0.28 0.25

Fail/Susp 6/9 7/8

where σ is the standard deviation.

The comparison of the 4000-hour and 2500-hour DA for the specified reliability metrics is based on
the 95% two-sided CI lengths using the MRR method first and thereafter, the MLE method. Table
5.22 contains results obtained from MRR for both the 4000-hour (denoted Test 1) and the 2500-hour
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(denoted Test 2). Overall, point estimates and CI lengths for the reliability metrics under consid-
eration are largely comparable. Therefore, using degradation data from the 2500-hour DA is more
advantageous in terms of one being able to cut back on testing time and financial resources in assess-
ing product reliability.

Table 5.22: MRR results based on the lognormal distribution (real data)

Test Point estimate 95% C.I Length

Prob. of Failure 1 Q(t=5000) 0.42 (0.19 , 0.66) 0.47

2 Q(t=5000) 0.45 (0.23 , 0.71) 0.48

Mean time to failure 1 MTTF1 5602 (4719 , 8232) 3513

(hr) 2 MTTF2 5393 (4576 , 7040) 2464

Reliable Life(hr) 1 t(R=0.85) 3880 (2998 , 4755) 1757

2 t(R=0.85) 3840 (3068 , 4565) 1497

BX% Life (hr) 1 B10% Life 3597 (2636 , 4409) 1773

2 B10% Life 3578.886 (2754 , 4293) 1539

Failure Rate 1 FR(t=5000) 0.000432 (0.000141 , 0.001139) 0.000998

(no. of failures/hr) 2 FR(t=5000) 0.000503 (0.00200 , 0.001394) 0.001194

The comparison of the 4000-hour and 2500-hour DA for the specified reliability metrics is based on
the 95% two-sided CI lengths using the MLE method as indicated in Table 5.23.
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Table 5.23: MLE results based on the lognormal distribution (real data)

Test Point estimate 95% C.I Length

Prob. of Failure 1 Q(t=5000) 0.41 (0.19 , 0.65) 0.46

2 Q(t=5000) 0.47 (0.24 , 0.71) 0.47

Mean time to failure 1 MTTF1 5568 (4713 , 8118) 3405

(hr) 2 MTTF2 5263 (4571 , 6906) 2335

Reliable Life (hr) 1 t(R=0.85) 3981 (3013 , 4743) 1730

2 t(R=0.85) 3932 (3097 , 4546) 1449

BX% Life (hr) 1 B10% Life 3713 (2653 , 4401) 1748

2 B10% Life 3697 (2786 , 4279) 1493

Failure Rate 1 FR(t=5000) 0.000460 (0.000143 , 0.001128) 0.000985

(no. of failures/hr) 2 FR(t=5000) 0.000597 (0.000206 , 0.001369) 0.001163

The results based on the MLE method are comparable to those of MRR with respect to all the relia-
bility metrics considered.

Overall, the analysis of both the simulated and real GaAs laser data demonstrates the practical benefits
of using DA (especially saving testing time and prevention of product loss).
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Chapter 6

Summary, Conclusions and Remarks

Failures have to be recorded or observed for traditional censored failure time analysis to provide use-
ful reliability information. As for degradation data, with few or no failures, it is possible to obtain
useful and significant reliability information, on condition that there is a strong correlation between
the underlying degradation process and the product’s failure. In order for one to realise maximum
possible benefits from DA, valid models which describe the physical/chemical phenomenon of the
underlying degradation process have to be applied in degradation data analysis.

This research study adopts the general degradation path model to analyse the GaAs laser degradation
data. A linear random effects model is assumed. The lognormal distribution is assumed to be the
appropriate failure time model from experience with the lasers. Simulation is implemented in R to
generate data which exhibits similar characteristics to the real data set. In order to demonstrate the
advantages of degradation data, especially that of reaching meaningful conclusions earlier, simulated
data is used to create two data sets (the 2500-hour and 4000-hour degradation data). For the longer
test, the lasers whose degradation paths have not reached the failure threshold Df are extrapolated
from 4000 hours to failure or 5000 hours. As for the shorter test, the extrapolation begins from 2500
hours to failure or 5000 hours. At 2500 hours, there are no observed failures, due to this, standard fail-
ure time analysis does not apply to the shorter test. This (lack of observed failures for highly reliable
products) makes the shorter test design ideal for demonstrating the advantages of using degradation
data.

The four most common distributions for modelling lifetimes are considered and also on the basis of
the distribution selection and ranking results obtained. Goodness of fits tests are conducted to assess
fit (for the shorter and longer test datasets). The best ranked failure time distribution is chosen for
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analysis in both the longer and shorter tests. The median rank regression and maximum likelihood
estimation methods are employed in estimating parameters of the fitted distributions. Due to its ex-
cellent asymptotic properties and high level of robustness, the MLE method is usually preferred in
practice. On the other hand, the MRR technique is usually favoured in reliability applications because
it is based on the least squares method which is fairly easy to comprehend and use. In most cases, it
also provides a very good fit to degradation data. It has to be noted that other authors such as Genschel
and Meeker (2010) are of the view that the MRR method has a tendency of producing misleading re-
sults in terms of providing a good fit to data (as previously stated in section 5.5). In this research
study, the MRR procedure achieved an accuracy level which is comparable to that of MLE. However,
MLE fared much better on precision than MRR due to the lower standard error values realised for its
reliability metrics estimates.

Degradation paths of the lasers are found to be approximately linear and hence, the least squares ap-
proximation method is used to perform the extrapolation process which results in the generation of
pseudo-failure times in both the longer and shorter tests. Some specified percentiles of the inferred
failure time distribution and important reliability metrics such as probability of failure, reliability,
mean time to failure, reliable life, BX% life and failure rate are derived. The uncertainty associated
with these metrics is quantified using two sided 95% likelihood ratio confidence bounds, bias and
standard error values. Results obtained from the 4000-hour and 2500-hour degradation data tests
using the proposed statistical methods and reliability metrics are found to be comparable to a larger
extent. Hence, the shorter test is a better alternative to the longer test, implying that with degradation
data, substantive conclusions are reached much earlier. It is not necessary to have observed failures
for one to be able to objectively and effectively assess product reliability. Failure time analysis results
(when all lasers are run to failure) are also compared to those of the 4000-hour degradation data. It is
concluded that DA is a better choice than FTA. Analysis performed on simulated data is also applied
to the real dataset.

It is important that non-parametric methods are also considered in analysing degradation data. This
study employed parametric procedures which are appropriate for use when the underlying distribution
of the random effects is known. Most existing literature pertaining to degradation data employs
parametric methods such as MLE and regression. There is still need for non-parametric methods such
as the kernel density estimation method (in relation to degradation data) to be further explored. A few
authors such as Ebrahem et al. (2009) and Dakhn et al. (2017) are able to demonstrate the advantages
of using non-parametric methods in the area of degradation data. However, more research can still be
done with regard to applying the non-parametric approach to DA.
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Appendix A

R Code for Simulation

1 > GaAsLaser <- read.table("http://www.public.iastate.edu/~wqmeeker/anonymous/Stat533_data/

2 Splida_text_data/GaAsLaser.txt", header=T)

3 > View(GaAsLaser)

4

5 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==101) # R code for determining the slopes for

15 lasers

6 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==102) # Slopes established in dat23 for

simulation

7 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==103)

8 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==104)

9 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==105)

10 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==106)

11 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==107)

12 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==108)

13 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==109)

14 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==110)

15 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==111)

16 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==112)

17 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==113)

18 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==114)

19 > lm(Current~Hours -1, data=GaAsLaser, subset = Unit==115)

20

21 dat23<-c(0.002698,0.002396,0.001779,0.001672,0.001840,0.002768,0.001628,0.001559,

22 0.001974,0.003023,0.001898,0.002021,0.002091,0.001718,0.001634)

23 fit_par23<-fitdistr(dat23,"lognormal")

24 fit_par23

25 t<-seq(250, 4000, by = 250)

26 y<-matrix(c(rep(0,240)),nrow=16,ncol=15)

27 beta92<-rlnorm(15,meanlog = -6.21334129, sdlog = 0.20405874 )
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28 set.seed(2307)

29 par(mfrow=c(1,4))

30 for(j in 1:15)

31 {err<-rnorm(length(t), mean = 0, sd = 0.105)

32 for(i in 1:16)

33 {

34 y[i,j]<- beta92[j]*t[i]+err[i]

35 plot(t, y[,j], type = "b", main = "Simulated degradation data, n=15", xlab = "Time (Hours)",

36 ylab = "Percentage increase in operating current")

37 abline(h=10, col=’red’)

38 }

39 }

40 y

41 beta92

42

43 #plot(t, y, type = "b", main = "Simulated degradation data", xlab = "Time (Hours)",

44 ylab = "Percentage increase in operating current")

45

46 #abline(h=10, col=’red’)
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Appendix B

Percent Increase in Operating Current vs.

time Plot (R code)

1 > library(readxl)

2 > MySimData <- read_excel("C:/Users/Farirai/Desktop/WITS/DEGRADATION DATA ANALYSIS/MySimData.xlsx")

3 > View(MySimData)

4 ggplot(MySimData, aes(x=Hours, y=Current, col=unit)) + geom_point() + geom_hline(yintercept = 10)+

xlab("Time (Hours)") + ylab("Percent Increase in Operating Current")
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Appendix C

Simulated Data set

1 >beta92

2 [1] 0.001463091 0.001600194 0.001715645 0.001449674 0.002651708 0.001772731 0.001576745 0.003023429

3 [9] 0.001791070 0.001739588 0.002084772 0.002588885 0.001953490 0.002182549 0.002332988

4 >y

5 [P1] [P2] [P3] [P4] [P5]

6 [1,] 0.5031778 0.4063067 0.4893000 0.2129914 0.7118515

7 [2,] 0.6253099 0.8143402 0.8291647 0.8759981 1.3509607

8 [3,] 1.2645975 1.1874497 1.2930581 1.2210960 1.8741758

9 [4,] 1.5696605 1.5663282 1.6583207 1.4859330 2.5742261

10 [5,] 1.9050335 1.9982239 2.1015634 1.8007892 3.2966858

11 [6,] 2.1059546 2.4273716 2.6906388 2.0720952 4.1473525

12 [7,] 2.6114110 2.8423726 2.7057525 2.4924075 4.7026444

13 [8,] 2.9239198 3.2078552 3.2647548 2.9520573 5.2755185

14 [9,] 3.6613469 3.6443428 3.8604704 3.1793492 6.0203075

15 [10,] 3.6470081 3.9733249 4.2524679 3.6188137 6.6223663

16 [11,] 3.9912746 4.2480853 4.5895552 3.9313512 7.2126762

17 [12,] 4.1632669 4.7541281 5.1191335 4.4558099 7.9464456

18 [13,] 4.7035302 5.2620665 5.4121355 4.7932797 8.6248072

19 [14,] 5.2236493 5.6691164 6.0725997 5.1588302 9.4111145

20 [15,] 5.3586848 6.0821879 6.6386602 5.3760887 9.8582072

21 [16,] 5.7379460 6.3862663 6.9705897 5.7968211 10.6880051

22

23 [P6] [P7] [P8] [P9] [P10]

24 [1,] 0.4930188 0.4145042 0.7725358 0.5101476 0.5133291

25 [2,] 0.7464775 1.0413780 1.3985248 0.8222317 0.8360910

26 [3,] 1.3495959 1.1999883 2.3481812 1.5493131 1.1961489

27 [4,] 1.6329968 1.6828650 3.0556277 1.6746922 1.8629928

28 [5,] 2.2948240 2.0479664 3.6646257 2.3135972 2.1323093

29 [6,] 2.5799512 2.3726444 4.4455999 2.7012501 2.6104574
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30 [7,] 3.1043035 2.6189540 5.2417414 2.9836202 3.0857725

31 [8,] 3.6161574 3.1463091 6.1483712 3.6040676 3.4757662

32 [9,] 4.1060917 3.6827787 6.7078013 3.9994974 3.9864567

33 [10,] 4.4284792 3.8618346 7.4940603 4.4541627 4.3674634

34 [11,] 4.9116861 4.3530273 8.2372908 5.0471280 4.7756709

35 [12,] 5.2620003 4.6411377 9.0518438 5.3099424 5.2819294

36 [13,] 5.7460281 5.1412329 9.7116063 5.8383770 5.7250771

37 [14,] 6.3254396 5.6075966 10.4969402 6.2356776 6.2489085

38 [15,] 6.4548814 5.9690763 11.4597928 6.6796804 6.3631788

39 [16,] 7.2250738 6.5347698 12.0829419 7.2872448 6.9005264

40

41 [P11] [P12] [P13] [P14] [P15]

42 [1,] 0.3934595 0.4983867 0.5164553 0.4442241 0.5036568

43 [2,] 1.0893656 1.2322294 0.8791314 1.0691620 1.2226644

44 [3,] 1.4516329 1.8819584 1.2670888 1.6724077 1.5975886

45 [4,] 1.9305761 2.6309786 1.9829291 2.3814043 2.1467501

46 [5,] 2.5664213 3.2104236 2.3643805 2.7388444 2.9845127

47 [6,] 3.1295352 4.0142909 2.9806114 3.3774728 3.4121184

48 [7,] 3.7780850 4.6451724 3.4281627 3.9990712 3.9968861

49 [8,] 4.1769019 5.3796282 3.8215751 4.4046598 4.4968903

50 [9,] 4.6366626 5.6962463 4.4946562 4.8636950 5.2133331

51 [10,] 5.3298154 6.3403113 4.7993816 5.5506231 5.8178673

52 [11,] 5.7984534 7.0205601 5.5440927 6.1082448 6.2777698

53 [12,] 6.2063340 7.8184831 5.9123696 6.5636467 7.0220026

54 [13,] 6.8375508 8.4348111 6.4757597 7.0349198 7.4147552

55 [14,] 7.4660775 9.1293356 6.8406529 7.6475975 8.2248089

56 [15,] 7.9875592 9.5702257 7.2904339 8.0654086 8.8148864

57 [16,] 8.4270009 10.2990201 7.7227045 8.7717541 9.3891722
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Appendix D

Rates of degradation for 15 lasers (simulated

data)

Table D.1: Rates of degradation for 15 lasers (simulated data)

GaAs Laser ID 4000-hour degradation data 2500-hour degradation data

P1 0.001463 0.001509

P2 0.001600 0.001606

P3 0.001716 0.001679

P4 0.001450 0.001443

P5 0.002652 0.002662

P6 0.001773 0.001781

P7 0.001577 0.001585

P8 0.003023 0.003003

P9 0.001791 0.001782

P10 0.001740 0.001751

P11 0.002085 0.002090

P12 0.002589 0.002592

P13 0.001953 0.001940

P14 0.002183 0.002220

P15 0.002333 0.002294
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Appendix E

Rates of degradation for 15 lasers (real data)

Table E.1: Rates of degradation for 15 lasers (simulated data)

GaAs Laser ID 4000-hour degradation data 2500-hour degradation data

P1 0.002698 0.002727

P2 0.002396 0.002452

P3 0.001779 0.001904

P4 0.001672 0.001857

P5 0.001840 0.001750

P6 0.002768 0.002654

P7 0.001628 0.001554

P8 0.001559 0.001554

P9 0.001974 0.002039

P10 0.003023 0.003086

P11 0.001898 0.001969

P12 0.002021 0.002166

P13 0.002091 0.002071

P14 0.001718 0.001621

P15 0.001634 0.001634
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Appendix F

Real data set

Figure F.1: Real data set
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Appendix G

MRR results: Absolute bias and SE values

based on 10 simulated data sets

Table G.1: MRR results: Determination of absolute bias and SE using 10 simulated data sets

Test Data set no. Prob. of failure estimate (at 5000hrs) MTTF estimate FR estimate (at 5000hrs)

4000 hrs. 1 0.638634 4838.68835 0.001898

2 0.607030 4877.326529 0.001681

3 0.152934 8102.221297 0.000141

4 0.776182 4476.921549 0.001639

5 0.647013 4718.568624 0.000981

6 0.580885 4896.917134 0.000896

7 0.481822 5286.382313 0.000528

8 0.407893 5411.295341 0.000576

9 0.411827 5416.866985 0.000563

10 0.763595 4333.052901 0.002087

SE = 0.188487 SE = 1071.96254 SE = 0.000675

|Bias| = 0.0904225 |Bias| = 37.958 |Bias| = 0.000478

2500 hrs. 1 0.642937 4831.696860 0.001900

2 0.614599 4867.997296 0.001737

3 0.119743 11018.042154 0.000083

4 0.776932 4481.844673 0.001667

5 0.649580 4712.668579 0.000992

6 0.578272 4903.827176 0.000884

7 0.466596 5363.848166 0.000496

8 0.411863 5403.809217 0.000575

9 0.410055 5412.136796 0.000571

10 0.771294 4600.712512 0.002169

SE = 0.198439 SE = 1946.947341 SE = 0.000709

|Bias| = 0.0878281 |Bias| = 285.876 |Bias| = 0.0004864
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Appendix H

MLE results: Absolute bias and SE values

based on 10 simulated data sets

Table H.1: MLE results: Determination of absolute bias and SE using 10 simulated data sets

Test Data set no. Prob. of failure estimate (at 5000hrs) MTTF estimate FR estimate (at 5000hrs)

4000 hrs. 1 0.689656 4792.234871 0.002398

2 0.656502 4825.250705 0.002122

3 0.191587 6189.74678 0.000310

4 0.711331 4596.940189 0.001316

5 0.66565 4687.574509 0.001115

6 0.599400 4854.040104 0.001030

7 0.353325 6134.308505 0.000314

8 0.452431 5194.755942 0.000796

9 0.407926 5374.420871 0.000616

10 0.64544 4777.482878 0.001366

SE = 0.175448 SE = 585.121041 SE = 0.000699

|Bias| = 0.0809658 |Bias| = 131.106 |Bias| = 0.0005173

2500 hrs. 1 0.691941 4786.731082 0.002375

2 0.662033 4820.101647 0.002174

3 0.133819 7341.415894 0.000164

4 0.711418 4601.045733 0.001335

5 0.666369 4686.062955 0.001118

6 0.597881 4857.285194 0.001021

7 0.352487 6133.152887 0.000315

8 0.453935 5196.303356 0.000785

9 0.407216 5366.293600 0.000628

10 0.645915 4777.637865 0.001376

SE = 0.189294 SE = 861.903528 SE = 0.000724

|Bias| = 0.0759424 |Bias| = 17.179 |Bias| = 0.0005081
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Appendix I

Reliability vs. Time Plots (Lognormal)

(a) 4000-hour DA (b) 2500-hour DA
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Appendix J

Failure Rate vs. Time (Lognormal)

(a) 4000-hour DA (b) 2500-hour DA
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Appendix K

Mean Remaining Life (Lognormal)

(a) 4000-hour DA (b) 2500-hour DA
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