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ABSTRACT

The project report compares
estimates for monthly panel
locations and sample valuss
information regularised %o

the effectiveness of. two methods of kriged

valuation.

The one methad uses individual sample

for kriging and the second method uses sample

a 10 metre grid for kriging.

Four duta sets with different spatial chacacteristics were simulated to test

the effectiveness of the two methods.

The method utilising individual samples proved to result in marginally better

estimates comparad to the method Lsing regularised samples. The marginal

improvement obtained from the individual samples is considered to be more than

offset by the additional computer pracessing required for this method.

The actual results from the four data sets are also compared against the

exgected results based on geostatistical theory.
canform closely with the theoretical results,

Results from two of the sets

However, the ather two sets

showed markedly different ercor variances to the thearetical error variances,

The ceasan for this is that the two sets had distinct high and low grade

sub-areas 2nd the errors are proportionsl to the mean grade of the sub-areas,
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Problen Statement

Geostatistical methods have been used on South African Gold
Mines for the past 30 years. The moat common applications hava
been the analysis of borchole results for global estimation
(Krige, 1961, Sichel, 1966) and the calculation of ore reserve
estimates. (Miller 1983, Magri 1983),

To date use of geostatistical methods for monthly

valustion, monthly gold accounting and shart term planning has

been limited to a few isolated studies. {Krige 1962).

The routine use of geostatistics for monthly gold accounting
purposes and short term decision making is becoming more
important. The main reasons for obtaining more accurate
estimates of stope values is that because of increasing costs
and generally detsriorating grades the ability to mine
selectively is or will be of paramount importance to ensure

profitability.

Because the main spplicstion of geostatistics on gold mines has
bean for ore reserve valustion, and as a result of the large
number of samples to be considered, computer systems have been
developed to use regularised data as input to the kriging

process (Auges User Manual, Miller 1983),

2,
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In regularisation, all sample values falling within a cell of a
predefined grid are averaged, The averaged sample vilues are then

treated as individual values Jocated at the centre of the cell, This

aethod has proven to be adequate in ore reserve estimation (Miller
1983) and not only simplifies the camputing process but also leads to
netter semi-variogram mod:ls as "the averaging process removes a lot

of the variability witnessed in chip sampling” (Miller et al 1087)

Although the method of regularisation has proved itself in vre
reserve estimation, no research has been done on whether the method
is satisfactory for estimating gold production from stoping panels on
a monthly basis. This report thus compares the traditional method of

using regularised data with a method whereby individual samples are

used to obtain kriged estimates of gold values for stope production.

In addition, the use of ics for establishi

limits for Jocal estimates has recently been criticised (Philip and
Watson 1986), They state “that estimation variance is meaningless in
terms of local estimation™ because the estimation variance depends
not on local variation but on sampling density, This report thus
investigates the applicability and accuracy of using knf “ng variance
for calculating cenfidence Limits for the two methods describew

previously,

L=l — N - =R = i -~
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Preview of Praject Report

1.2.1 Chapter 2 ~ Methodology

The chapter gives a detailed accoust of the methodology used in
comparing the method of kriging with individusl sample data

with that of kriging using regularised data.

In order to caleulate the actual values of stope panels it was

necessary to simulate sample values. The wethod of simulation

used is explained, The characteristics of the faur simulated

deposits are presented and the basis for comparing the two

wethods is coversd in more detail.

The choice of a sampling canfiguration for uss in estimating
stope panel values 1s giscussed. Based on the sampling
configuration the calculation of kriging weights and their use

in calculating estimates of stope panel values is explained.

Finally the method of analysing the results '+ oriefly
discussed as a preview to Chapter 3.

1.2.2 Chapter 3 - Analyais of Results

This chapter compares the semi-variogram models obtained from
sanpling data with the theoretical semi-variogram models used

in the simulation, X
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A comparison of the actual stope panel values with the
estimated stope panel values is presented with specific
attention given to the accuracy of estimates and the analysis

of ercors.
Finally, the analysis of the results of the simslation ape
compared with the expected results based on geastatistical

theory,

1.2.3 Chapter 4 - Conclusion

The findings of the Study are summarised in this chapter ang

specific recor 4vs ns are made,
1.3 Summary of the . of_the Study °

The primary purpose of the study is to:

Compare the effectivensss of using regularised sampling
data with that of individual sample data in the local

estimation of gold values using kriging.

Compare the results obtained in the study with the

expected results based on geostatistical theory.

Make recommendations regarding the practical
implementation of geostatistical methods for local

(monthly production) valuation.




2.1 Gemeral Approach

To compare the two methods, referred to as Regularised Mothod
and Ingividual Method, it is necessary to have actual values of
parvls for comparieon purposes. As stope sampling on goid mines
15 rarely more dense than a 5 metre by § metre grid, accurate
measures of actual monthly stope panel values cannot be
obtained from real data. For this reason sampling results were
sipulated on a 1 metre by 1 metre grid to facilitate the

caleulation of actual individual panel values.

Feur data sets were simulated (see section 2.2} to analyse the

effect of different semi-variog on the

procedure. Each simulated data set covers an arsa of 600 metres

by 150 metres which is assumed to cover sixty months of

production at a ten metre face advance and five stope pantls

each of thirty metres face length.

Samples on a regular 5 metre by 5 metre grid were extracted

from the simulated samples to represent resl sampling oractice

on gold mines. The cal ion of exps 1 semi-variog,

models for each data set were based on samples from a 200 metre N

B S s En s

by 150 metre portion of each set, L




The models were then used to estinate monthly panel valuss for the

remaining 400 metre by 150 metre arsa, wtilising additional
sampling information as it would become available in practice.

Figire 2,1,1 illustrates the above.

8asod on the semi-variogram models, kriging waights were
calculated far chosen data configurations for estimating the
various panels. The respective data configurations used for

estimating the various panels are giscussed in section 2.7.

PANEL 1 | PANEL 2 l PANEL 3 | PANEL 4 | PANEL S
T Each
| panel is
| 30m long
1 m sampling used to valculate -
actual panel value
| 1om per
! month.
| 400m
4\
Sm sampling used for estimation | L
procedures. | .
Face
Advance : E
hen
estimat— )
ing row
N data up
to row &
. N1 may
be used ®
Sampling on a Sm x 5m grid used to calculate
experimental semi-variogram models For subw 200m . . T
sequent estimation of panal values. .
)
150m " -
Figure 2.1.1. 11 of layout of each data aet - " ;.;




L= -

OER RN D RN a0 o3R

L ES B B O E = B2 OB g

j o

Two sets of estimates of panels were calculated, The first estimate
of each panel represents the estimate of planned production (i.e. a
forscast of gold to be mined in the follewing month) whilst the
second estimate represents an estimate of the gold expected o reach
the plant (i.e. the gold cailed for based on the manths production

and utilising the latest sampling informaticn available).

Both sets of estimates were compared against the actual panel values
to determine the effectiveness of the two methods (Regularised Method
and Individual Method) in estimating the next months planned

eroduction (Planned estinates) and accounting for the current manths

gold production (Called estimates).

A disgrammatic sketch of the various estimates produced is shown in

Figure 2,1.2,

[
I Each simulated data set ) 4 Sets
I
I |
| Use Regularized Method and | 2 Methods
| Individual Method |
I -
Produca estimates for: I 2 estimates
. | = Planned gold production
from each panel, = 16 Sets of Results
~ Called gold production for 400 Pansls
from each panel

Figure 2.1.2. Illustration of the estimstes produced
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The 18 sets of estimates were then compared with the actual panel

values to evaluate the effectiveness of the two mathods under variaus

conditions (i.e, different semi-variogram structures and estimating .

Planned goid production and Called gold production).

2.2 Sigulation of the Data Sets

A computer program, SIMJL (Journel and Huijbregts 1978) was

used to simulate Standard Gaussian distributions with 3 =

prescribed covariance models, The program uses the “turning

bands" methad developed by @ Matheron to simulats realisations

of a regionalised variable with a given covariance, “y

In order to analyse the effect of different semi-variogram .
structures an the offectiveness of the two methoda of

estimation, four data sets were generated.

Characteristics of the four sete are contained in Table 2,2.1.

The four sets cover combinations of short and long ranges (25

metres and 100 metres) and different nugget effect to total

111 ratlos (0,33 and 0,5).




Data Set 1|Data Set 2|Data Set 3{Data Set 4

{Logarithmic)

Total Sill

{Logarithnic) 0,8 0,6 0,6 0,6

Range {metras) 25 100 25 109

ﬁ:’d":;“"“’g'"" Spherical |Spherical |Spherical |Spherical

Mean Grade (cmg/t)| 1 000 1000 1,000

| 1000

Distribution of

elues Lognormal |togrormal [Lognormal {Lognormal

E Nugget Effect 0, 0, 0.2 0,2

Tuble 2,2.1. Characteristics of the Data Sets

[ >3

To obtain the variaus model combinations, the SIMUL program was

used to gensrate three independent simulations:

Simulation 1 u Standarc Gaussian variable with a Nugget effect

model.

Simulation 2 « Standard Gaussian variable with a covariance
nodel that is Spherical with a rangs of 25
metres.

Simulatien 3 = Standard Gaussian varimble with a govariance
model that is Spherical with a range of 100

metres.
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of the above were then used to gensrate the

four data sets as described in Table 2.2.1.

The appropriate weighting of the simulations to maintain a Standard
Gavssian distribution and to result in the required data sete is

presented in Appendix A,

Using the weighting factors as per Appendix A results in weightings

of the various simulations as shown in Table 2.2.2.

#smuunw 1 X TMULATION 2 | SIMULATION 3
{
Data Set 1 0,707% 09,7071 -
Data Set 2 90,7074 - 0,7071
Data Set 3 0,4472 0,8044
Data Set 4 90,2472 0,8044
Tabla 2.2.2. Reguired Factors of

Using the above weightings results in data sets with the required
covarisnce models. However, the bistograms of values at this

stege ane still Standard Gaussian histograms,

By maane of a transform function the data sets were then
converted to follow a Lagaormal distribution with a mean of 1000

cmg/t and 2 logarithmic variance of 0,6.
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The appropriate transform function was derived as follows:

If Z is the regionalised variable that follnws a Standard

Gaussian distribution and

B = 1000 cmg/t (the required mean value)

ol =06 (the required logarithmic variance)

then a transform function that results in a vaciable X that

follows a Lognormal distribution ia required. From Legnormal

distribution theary:

¥ =10 () " NLE,

Therefore (Y = §)/ o TN, =2,

But exp (€ + 07/2) « ¥ = 1000 {(Rendu, 1678)

Therefore € = 1n(1000) - o /2

From {1) Y s 924 ¢

Therefors ¥ = oz + 1n{1000) - o */2
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Therefare the reauired transform function to gonerate the

Lognormally distributed regionalised variable is:

% = axp [0, + 1n(3000) - o, * /2]

or X = 1000 exp [gZ ~ 9,%/2) suiersianis
After combining the sipulations according to Table 2.2,2 each
combined set of data follows a Standardised Gaussien disteibution
with the appropriate coveriance model. Applying the transform
function (3}, results in the mequired lognormally distributed
data sets sach with a mean value of 1000 cmg/t, a logarithmic

variance of 0,6 and the appropriate covariance model.

A total of 90 000 valuas (600 rows and 150 columns} per set were

generated to represent valuas on a 1 metre by 1 metre grid,

2.3  Generation of Sswpling Results

Each set of 90 000 simulated values was reduced to a subset
of data representing the traditional sampling practice on
gold mines of sampling on a 5 metre by 5 metre grid, This
raduction resulved in 3 50D sample valuss (120 rows and 30

columns) .

2.4 Regularisation of Sampling Results

The 3 600 samples an a 5 metre by & metre grid mentioned in

2.3 were used as the data input for the Inoividual Method

of kriging.




For the Regularised Method, the 3 600 samples were regularised

into a 10 metre grid. The regularisation process resulted in four
sample values from the § metre grid being averaged ta form a
single sample point for the 10 metre regularised data set. The

cowordinates of the 10 metre sample paints were centred in the

er Figure 2.4.1

25 7.5 125 175 225 215
X=SAMPLE POSITIONS ON 5 METRE GRID @< REGULARISED SAMPLE POSITIONS
FIGURE 2.4.1 SAMPLE POSITIONING FOR REGULARISED DATA

2.5 Calculation of Sewi-Varioarams

g
§
&
&
&
i
i
]
g
i

The bottom one third of the sampling subsets (as per Figure

]

2,1.1} were uysed to calculate experimental semi-variograms for

each data set.

As the cata sets followed a Lognormal distribution, the sample

subsets were log~transformed and the variograms were calculated

on the log transformed subsets of data.

In ‘the case of regularized data, sample values were averaged - N
inte 10 metre by 10 metre cells on a regular grid, The . )
semi-variograns for regularised data were also calculated on * -
log transformed data. The results of the semi~variogram o . '\‘

calculations and the fitted models are given in Chapter 3.

D B B K ER £
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Calculation of Actual Panel Values

The actual panel valoes wers caleulate using the 1 metre by 1
metre siulated data points, Thus, sach panel value was
calculated as the arithmetic average of 300 values (30 metre
face length and 10 metre face advance). Using 300 sample
values to calculate the value of a 300 n* area provides a good

estimate of the valus of the area.
The reliability of this estimate was checked by using the

PLAYKRIG program (See Section 2.7} and found to be adequate,

Kriging Weights of Samples for Estimation

A computer program, PLAYKRIG, developed at Centre de
Geostatistigue, Fontainebleau, France was used to detecmine
suitable data configurations for estimating the various stope
panels. The program allows rapid calculation of kriging weights
for all samples used in kriging @ specific block for a given

semi-variogram model,

I mddition, the program caleulates the kriging variance and

the expe

ted regression slope based on geostatistical theory,

The o slope is celeulated by the farmula

given in Appendix B. {Rivoirard 1967, Matheron 1970),

The program was thus used to determine suitable data
configurations (presented as Figures 2.7.1 to 2,7,12) by
considering which sample positions had significant kriging
weights and by examining the kriging variance and regression

slope, {Rivoirard, 1987).
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PANEL. TO BE ESTIMATED

J' 38 2

X X X X X X[¥x x X X X X
X X X X X XiX X X %X X X
X X X X X X% x X x x X
X X X X X X[X X X X X X
X X X X X X[x x x

X X X X X X[x x x

X X X X X X

X X X X 4 %
XX X XX X

X X X X X X

R s R moR R BSK RSl MGE

FIGURE 2.7.3 SAMPLING POSITIONS FOR KRIGING ACTUAL
GOLG PRODUCED IN COLUMN |

PANEL TO BE ESTIMATED

38 60

X X X X X X[X X X X X X
X X X X X X|X X X X X X
X X X X X XX X X X X X
X X X X X X|X X X X X X
X X X X X XX X X
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PANEL TQ BE ESTIMATED

FIGURE 2.7.9 SAMPLING PDSITIONS OF REGULARISED DATA FOR
KRIGING ACTUAL, GOLU PRODUCED IN COLUMN 1
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The caleulati

of ancillary such as the kriging vdriance
and regression slope is also used in Chapter 8 to compare the
accuracy of the thesreticelly calculated parameters with the obaerved

results,

2.8 Analysis of Compsrisons between the Methoda

Chapter 3 contains a full description of the resulta obtainad
from the study and the various comparisons of the results that

are carried out.

The accuracy of the Planmed panel sstimates and Called penel
estimates are compared with the actual pane} values, A Full
analysis of the errors is presented with specific regard to
investigating whether enpors and estimates are corralated and

whether the five columng of panels exhibit different results.

The experimental semi-variogran models are compared against the
theoretical models used in the sinulation bt ascartain whuther
the diffecent methods require a different arca to be sampled
before reliable semi-varjogram models can be obtained.

The observed results are also compared with the expected
theoretical results based on using gesstatistical theory. In
goostatistical thoory, knowledge of the semi-variegram modsl,
ample positions and the block to be ostimatad are suffioient
{without knowing the actual sample vaiuss) to calculate the
expected regresaien effect and canfidence intervals of

estimates,

7
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ANALYSIS OF RESILTS
Introduction

This chapter covers the dotailed analysis of the results of

the four simulated data sets,
The primary objectives of the analysis are to:

{a) Compara the eatimates of the Individual Method and
Regularised Method with the actual values to determine

whether either of the two methods is supecior.

(b) Calculate the expected thooretical results and compare

thesa with the results obtained from the tws methode.

o) Examine the results of the two methods in sach data =et
to determine the effectivaness of the twe methods for
different structural relationships (ranges, nugget

effects and sill values).

An unalysis of the oxperimental semi-variograms is glscussed
in section 3,2 together with the models fitted o the results.
The models are then used to determine the expected results

based an guostatistical theary,

The analysis of sach data set is conducted separately in

sections 3.4 to 3.7.
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Finally, a comparison between the rasults for the 5 culumn positions

19 discussed in section 3,8,

3.2

$emi-vapiogram ais

Experimental sami-variograme were caleulated for each data set
based on the sample values being log-transformed because the

samples were from s Lognormal distribution.

For each data aet, semi-variograms were calculated for the
individuel sample values {based on & bp by 5m grid) as well aa

for the regulanised sample valusa (based on & 10m x 10m grid).

The semi-variograms, together with the Fitted models are

presented in Figures 3.2,9 to 3.2.8.

The paramoters of the Fitted modals are presented in Table
3.2.1. The thepratical models {as used in the simulations)
for each data sat are also included in the tahlas. From the
table it ia evident that in general the fitted models are
reasanably clase to the theoretical models. Previous work has
shown that this ia not a necessary ieault and that the
axperdmental temi-variagram can be markedly different feom the

actual model used in the simulation (Erooker 1983).

i
i
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DATA SET 1

Nugget effect
5412 value
Range

Model type
DATA SET 2
Nugget offect
5111 value
Range

Model type
DATA SET 3
Nugget effect
§111 valve
Range

Model type

DATA, SET 4

Nugget effact

8111 value

Range

Model type

INDIVIDUAL

REGULARISED
SANPLES SANPLES THEORETICAL
0,32 0,08 0,3
0,35 0,2 0,3
270 £ 250
Spherical Spharical Sphenical
0,30 0,05 0,3
0,24 0,25 0,3
&om &om 100m
Spherical | Spitorical | Spherioal
0,17 0,04 0,2
0,50 6,40 a4
25m 30m 25m
Spherical | Sphecical | Spharical
0,12 0,01 0,2
0,3 0,35 0,4
80m &5m 100m
Sphenical | Sphurdcal | Spherdical

Table 3.2.1. Parametars of the Logarithmic Semi-variogram Modely




oge g X

1 R01LD3Y

208 = |33403 L3007
10

3 HUQOTHUAINGS.

FIGURE 3.2.1 SEMI-VARIOGRAM FOR DATA SET 1

25m C@=.3 C1=.3 )
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The following differences betwsen the theoreticel modele and the

fitted modsls were observed:

(a)  The ranges of the fitted models for data set 2 and data set &
were all approximately 60 metres compared with the thesretical
fango of 100 metres. However, the range has a relatively
small impact on the determination of the kriging weights

(Ravenscroft 1985).

(b)  The ranges for the ragularised data tand to increase by
spproximately five metres. This i3 as » result of

regulandsing to a 10 metre grid,

te)  The pugget sffects for the regularissd data should be
approximately one quarter of the nugget effects far individual
sample models (Rendu 1978), This result is wvident in the
first three data sets but the nugget sffect for data set 4

(0,01) is very low,

From Figures 3.2,1 to 3.2.8 it is also evident that the models of
the individual semple semi-variograms fit the results better than
the models of the regularised semi-vardograms. This is primarily
dus to & small area (150m X 200m) being used to calculate the

experimental semi-variogrene, For the small ares used, the number

of sample pairs that are ussd in the calculation of the semi-
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variogram values at specific distances are significantly less for
the regularised samples than for the individual samples, Although
the regularisation smooths the variability of the data, the results

suggest that in practice a larger sampling area may be necessary o

Accurataly a i gram model than the

area requined to construct a point semi-varicgram accurately,

In order to work in the original units the logaritbmic

g were med via the following formula:

"
Ty (0w “Lx[s-. "'L"‘U

Where W {h) = the semi~varicgram in original unlts
¥, (h] = the log transformed semi-variogran
H:‘ = the logarithmic variance of the data set used to
generate the semi-variogram

m = the mean value {cmg/t) of the data set.
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Using the above formula the models in Table 3.2.1 were

back-transformed and new models in the original units were ttrem

calculated. R

The p: of the b: : gram models appoar T

in Table 3,2.2.

The back-transformed models were then used in the PLAYKRIG program

o calculate the appropriate kriging weights Foo the various date

configueations (Figures 2,7.1 to 2,7.12).

2.2 The expected theoretical results

Expected theoretical results can ba calculated as the theory

of geostatistics shows that quality of estimation is

independent of the actual sample values used, Mure

specifically the quality of estimation depands upon: i <

{a) The relative diatances between the block to be ostimated 5

(the stope panel} and the positions of samples used to

estimate the block.

(b)' The stze and geamstry of the blogk ta be estinated.
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DATA SET 3
Nugget effect
8113 value
Range

Model type

DATA SET 2

Nugget effect
5422 valve
Range

Model type

DATA SET 3

Nugget effect
81l valus
Range

Moded type
DATA SET ¢
Nugget effect
Sill valve
Range

Model type

INDIVIDUAL | REGULARISED
SAVPLES SAMPLES
|
56z 578 | 118 184
440 831 357 212

27m 32m
Spherical | Spherical
501 984 75 807
308 156 327 053
60 60m
Spherical | Spherical
307 795 61 853
883 562 500 474
25m 30m
Spherical | Spherdcal
208 110 16 405
493 475 482 030
£0m 85m
Spherical | Spherdeal

Table 3.2,2 Faramaters of the Back-transformec Semi-

yariogram Models




{e}

the quantity and epatial arrangement of the samples.
{d}  the degree of continuity of the deposit which is conveyed by

its semi-variogram,

. The PLAYKRIG program was used with the appropriate semi-variogram

" models and data configurations to calculate the expected theoretical
resulta, The results ace presented in Table 3.3.71 (Individual
'»mplsﬁ) and Table 3.3.2 (Regularised samples). The results for the
end pansts (panel 4 and pancl 53 are presented separately to the
middle panels becawvse of the diffgrent data configurations, The

results in the tables clearly illustrate that there is an

insigai in the of end panels compared

th the estimation of the middle panels.

v Foir all data sets, the kedging of Flanned production has &
significantly lower confidence level than the kriging of the Called
production. This result is axpected as kriging 13 not a good
extrapalator, dnd the Called estimates include the additional

sampling corresponding to the current months production,




PANELS 2, 3 OR 4 PANELS 1 OR 5
KRIGING | REGRESSION | KRIGING | REGRESSION
VARTANGE SLOPE VARIANCE SLOPE.
DATA SET 1
Called 30 483 0,963 | 31 707 0,955
Planned 136 342 0,762 139 437 0,746
DATA SET 2
Called 22 933 0,975 25 216 0,955
Planned 76 505 0,871 a3 262 0,843
DATA SET 3
Called 18 4B6 0,985 19 109 0,981 I
Piannec 165 26% 814 171 284 0,801 !
OATA SET 4
Called 1% 793 0,991 12 575 0,988
Planned 83 564 0,913 | 88 544 0,901
-

Tabie 3.3.1 Expected theorstical rosults of krigin based
on ;nﬁivﬂdull sampies




3 PANELS 2, 3 OR 4 PANELS 1 GR 5
i
KRIGING REGRESSION | KRIGING REGRESSTON
E VARIANCE stope VARIANGE SLOPE
i OATA SET 1
3 Called 31 754 0,948 33 052 0,939
n Planned 129 969 0,738 133 616 0,716
DATA SET 2
ﬂ Called 18 726 0,077 | 20 470 0,961
ﬂ Planned 81 456 0,868 | &7 88 0,843
DATA SET 3
ﬁ Called 26 756 0,967 | 27 695 0,961
Paaaned 186 524 0,763 | 170 568 0,744
DATA SET 4
"Catied ¢ 642 0,980 | 10 362 0,983
E Planned 89 343 0,904 ] 95 648 0,985

e EE D ER R ES Ry RS e XD R

on Tegularized sumple

Table 3.2.2 Expected theoretical rosllltu of kriging pancls based
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A comparisen of theoretical results between the different data sets

led to the following interesting results:

e}

(b}

Using kriging for caleulating the Called gold shaws that the

kriging varisnce drops significantly for data sets 3 and 4
when the ratio between the nugget effect and sill value drops.
This is consistent with previous work (Ravenscroft 1985). The
results also show that the nugget effect to sill ratdo has a

far greater impact on the kriging variance than what the range

fas.

Using kriging far calculating the Planned gold productinn
shows that the regression slope increases, as can be expected,
when the range increases or when the nugget effect to sill

ratio decreases. However, the kriging variance increased with
& reduction in tha nugget effect to sill ratio (data set 1 ve

data set ¥ and data set 2 vs data set 4).

The validity of the expected theoretical results is tested in the

subsequent sections of this chapter.
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Analysis of Results of Data Set 1

Results ysing Individual Samples for Kriging

To compare the results of the estimatod panel values (Planned
values and Called values) with the actual panel values, only
the top 400 metres of the simulated data set is used. This is
because the bottom 200 metres were used to calculate the
semi~varsogram model, There are consequently 200 panels used

in the comparison (5 adjacent panels mined for 40 mofths).

A colour coded diagram of the results for Planned panel values,
Called panel values and actual panel values is presented in

Figure 3.4.1.

A summary of the statistics of the three suts of values is

given in Table 3.4.1,

PLANNED PANEL | CALLED PANEL | AGTUAL PANEL
VALUES VALUES VALUES

Mean Valve . + 057 omp/t 1047 amgst | 993 emg/t
Vvardance 106 085 138 724 150 825
Log Variance 0,10 0,13 0,15

Table 3.4.1. Statistics of Results of Data Set 1 {
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FIGURE 3.4.i: COLOUR CODED PLOTS OF THE PANEL VALLES USING
INDIVIDUAL SAMPLES
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From the above tasle it appears that both the Planned values and
Called values are biased, but this is as a result of the § metre
samples averaging 1 043 cmy/t a3 opposed to the 1 metre sawples

averaging 993 cmg/t,

The smoathing effect of Kriging is also evident where the variances
of Planned panel values and Called panel valuss are 108 085 and
138 724 respaectively, compared to the actual panel varlance of

150 825,

The errors in estimation {Planned panel values ~ actual ..:. yalues
and Called panel values ~ actual panel values) are shown 1 ° ..re
3.4.2. The plots indicate that the errors are randomly distributed.
There is no pattern in the distribution of errors nor are thers

clusters of small eprors or clusters of lange errors.

The statistics of the errors are given in Table 8.4.2. The
statistics illusteate a 5iight improvement in the mean error far
called values as opposed }o planned values and there is a significant
ceductaon in the vardance of tha errors of called valves. This
rasult is expected as the called values in:lude 12 addizional samples

within the panal boundary being estimated.




ABSOLUTE ERRORS OF PANELS
PLANNED ¥S. ACTUAL

g < 50 oMs/T
BT@ 50 - 100 OMG/T

100 - 200 OMG/T

ABSOLUTE ERRORS OF PANELS
CALLED VS. ACTUAL

MEgR 200 - 300 CMG/T

[ <300 CMG/T

FIGURE 3.4.2 : ABSOLUTE ERRORS (omg/1) OF PANEL VALUES
FOR DATA SET {- INDIVIDUAL SAMPLES
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ACTUAL ERROR | THEORETICAL
MEAN ERROR VARTANCE | ERROR VARIANCE

[ Planned Values 54 cmo/t 121 560 136 542 o, P

! Called Values 54 smg/t 21 248 30 483

Table 3.4.2, ics_of Errors of Data Set 1 ¢ Sampirs) "

The actual errar vaciances of both the Plapned and Called estimates

compare favourably with the theoretical error variances, although the o

ercop variance of Galled values is 30% lower than the theoretical

ercor variance,

Histograms of the g¢rrors (Figure 3.4.3) indicate that the errora of
the Called estimates follow a Normal distribution, However, the
errors of the Planned estimates appear to follow a Uniform
distribution. This obviously affects the calculation of confidence
Limits, where'traditionally the errors are assumed to be either

Normelly distributed or Lognormally distributed.

L B 2 RE B bu G Gl EE oAl el
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In Figunre 3.4.4 the estimated panel values (Planned and Called) are

plotted against the actusl panel values. The <e3-ten plot of Planned

j v

values versus the actual valves, indicates the presence of the

rogression effect whereby the low estimates are generally

T

underestimated and the high estimates are overestimated < N

B

The Called estimates show a very high degree of correlation with the

j oy

actual values, and the regression effect is not evident.

j &4

E Aoy
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FIG 3.4.9 HISTOGRAMS OF ERRORS (SET 1, INDIVIDUAL SAMPLES)
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PLANNED V8, AGTUAL PAMEL WALUES
AGTUAL VRLUES {omg/t}

2600

o 500 1ooo 1500 2000 2600
PLANNED WLUEB (omg/t}
CALLED V8, ACTUAL PANEL VALUES

AGTUAL VALUE {omg/t)

o

] 800

1000 500 2000 2600
CALLED VALUE {omg/t}

FIGURE 8.4,4 SCATTER PLOTS OF ESTIMATED VALUES VS. AGTUAL
VALUES (SET 1 , INDIVIDUAL SAMPLES)




The statistics of the regression lines for the plots {Table 3.4.2)

indicate that the actual results obtained ane what could be expected E

based on the use of geostatistical theory for the particular data

configuration and semi-variogram madel.

ACTUAL RESULTS THEORETICAL § S
SLOPE OF S
SLOPE OF LINE | Y INTERCEPT LIne .
Planned va Actusl
Panel Values 0,638 319 o702
Called vs Actual
Panel Values 0,978 -1 »963
|

Table 3.4,3. Statistics of Regression Lines of Tet 1 - (Individual

In Figure 3.4.5, the errors of the estimates (Planned - Actual and

Called - Actual) are plotted against the actual panel values.

The plot of Planned errors indicates that the panols which actuslly
iave low values are generally overestimated and that the panols with
actual high valuss are genecally underestimated The regression line
Pitte¢ to the scatter plot of Planned srrors versus Actual values has
2 slope of - 0,554, The reason for the oversstimation of low panel

values and the underestimation of high panel values is best explained
by refeering to Figure 3.4.5 a. The top graph in the Figure oo
indioates that tha reasone for the negative slaps of the errors

varsus the plannad values are:
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ERRORS VB, AGTUAL PANEL VALUES
ERROR {PLANNID-ACTUALY

500 1000 1500 2000 2800
AGTUAL PANEL WWLUE {amg/th

ERROR V8, ACTUAL PANEL VALUED

ERROR (CALLEU-ACTUAL)

) so0 2800

1000 1800 2000
ACTUAL PANEL VALUE fomg/t}

FIGURE 3.4.5 SCATTER PLOTS OF ERRORS VS, ACTUAL VALUES
{SET 1, INDIVIDUAL SAMPLES)
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PLANNED V8, AGTUAL PANEL WALUES
AGTUAL WALUES (omg/t)

° 500 2000

1000 1600
PLAHNED WLUES {cmg/th

ERPOR VAPLANNED PANEL WALUES

ERRIA (PLANNED - ACTUAL)

1600

1000

800

~1600

KIGG 1400
PLANNED YALUES (omg/1)

FIGURE 3.4.5A ACTUAL VALUES AND SLANNED ERRORS VS. PLANNED

VALUES (SET 1 . INDIVIDUAL SAMPLES)




(2} Where the actual panel values are below 1 000 omg/t {the mean
value) the number of panels that are overestimated (Black A)
far exceeds the number of panels that are underestinated (Slack

B),

(b} Similarly, where the actual panel values are above 1 000 cmg/t,
the number of panels that are underestimatec (Block C) exceeds

the number of panels that are overestimated (Block D).

The bottom graph in Figure 3.4.5 a, is a scatter plot of the ecrars
{Planned - Actual} versus the Planned values. The positive
correlation between the errors and the Planned values illustrates the

regression effect.

The figures illustrate that the regression effect ie:

- that low estimates are generally underestimated and high estimates
are generally overestimated
and pot that low actual valves are underestimated and high actual

values are overestimated.

3.4.2 Results using Regularised Samples for Kriging

In this section, the estimates are based on kriging data that

has been regularised to a 10 metre grid. (See Figure 2.4.1).

A colour cuded diagram of the resuits for Planned valuss,
Called pansl values and actual panel values is presented in

Figure 3.4.6.
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three sets of values.

Table 3.4.4 contains the aummary statistics of the results of the

T
PLANNED PANEL | CALLED PANEL | ACTUAL PANEL

LUES | VALUES VALUES
|
| Mean valve 1 051 emg/t 4 044 cmg/t 9903 cmg/t
| Variance 102 837 127 549 150 825
|
1 Log Variance 0,00 0,12 0,15

Table 3.4.

Statistics of Results of Data Set 1 {Regularised

Sempies]

As in the previous section, the apparent overestimation of panel

values is as a result of the 5m sampling results averaging 1 043

emg/t as opposed to the im sampling results averaging 993 cmg/t.

The smoothing effect of keiging is again avident where the variances

of planned and called pan:l values are 102 837 and 127 549

respectively, versus the actual panel variance of 150 825.

The panel estimates have slightly

lower varisnces than the

corresponding estimates using individual samples. The panel

estimates have thus been further smoothed using regularised data.

The absolute ercors in estimstion

{Planned panel values - actual

pansl values and Called panel values - actual panel values) are shown

in Figure 3.4.7.
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The plots again indicate that the errors are randomly distributed and

that there are no clusters of high or’ low errors,

The statistics of the errors ace shown in Table 3.4.5. There is a
significant reduction in the variance of the errors for Called values

s would be expected.

. ACTUAL ERROR | THEORETICAL
AN ERROR VARIANGE ERROR VARTANGE
| {
| Planned values 568 emg/t 136 822 12¢ 069 z
|
| Called Values 51 cmg/t 23 743 31 754
I
Table 3.4.5 of Errors of Uata Set 1 {Regultrised Sauples)

The actual eeror vanjances are similar to the cornesponding
theoretical srro variances, although as before, the Called error
variance is appreximately 30% lowsr than the theoretical error

variance.

The error variances based on regularised samples are marginally
higher (for both Called and Planned errars} than the srror variances

based on ingividual samples.

Histograms of the enrors (Figure 3.4.8) indicate that the arrors of

the Called panel estimates follow a Normal .
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Howaver, the distribution of the Planned estimates again appesr to be

Uniformly distributed.

The estimated panel values (Planned and Called) ace plotted against
the actual .alves in Figure 3.4.9. The &catter plot of Plannad panel
values versus the actual panel values indicates the presence of the
regression effect, The Called panel values show a high dagree of
correlation with the actual values and the regression effect is not

evident,

Table 3.4.6 compares the statistics of the regression lines for the
plote with the theoratical regression line slopes. The actual slapes
obtained for the regression lines compare favourably with the

theoretical slopes.

ACTUAL RESULTS THEORETICAL
sLoPE oF
SLOPE OF LINE | Y INTERCEPT e
Planned vs Actual 4
Panel Values 0,568 3908 0,748
Called va Actual "
Fanel Values aee -8 0,948
Table 3.6.6. Statistics of Lines of Set 1 (Reg
Sorplss)

The slope of the regression line for Planned estimates (0,568) is

lower than the ponding slope based on individual samples

(0,638).
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The plot of Called estimates versus the actual panel values also
shows that the errors tend to get larger as .che ba’nel values
increase. This proportional effect (Rendu 1978) is as a result of
the variance of valuen being related to the mean value in Lognormal
distributions. This aspect is discussed in detail in sections 3.5

and 3.7,

In Figure 3.4.10, the errons of the estimates are plotted against the
actual panel values. The plot of Planned errors again shows that the
panels with low value are generally overestimated and the high value
panels are generally undsiwotimated The regression llne fitted to
the scatter plot of planned errors versus actual values has a slope
of - 0,613, This slope is steeper than the slope of = 0,551 obtained

when using individual samples.

The reasons for the over and undereatimation of 1o Ang high value
panels respaotively, are the same as discussed for the results based

on individual samples.

3.4.3 Summary of flesultn of Data Set 1

3.4,3.17The quality. of the eatimates for both Planned and Called panel
values ara not significantly different for individual samples

and regularised samples.

A e
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3.4.3.2Tne results obtained from using both individual samples and
regularised samples for estimation compare Favourably with the

sxpected theoreticsl results.

Both methods show a slight deterioration in the regression
effect for Planned values compared to the expected regression

effect based on geostatistical theory.

The actual error variances of Called minus actual valugs are
lower than the expected error variances for both the

Ingividual Method ang Regularised Method.

3.4.3.3The ercor variances obtained from using individual samples are
less than those obtained when regularised sampies are used,
The Individual Methad shows a reduction of approximately 17%

in error variances compared to the Regularised Method.
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Analysig of Results of Data Set 2

Results using Individual Sasples for Kriging

A colour coded diagram of the results of Planned, Called and

actual panel values is presented in Figure 3.5.1,

The plot of the actual panel values clearly illustrates that
the upper balf of the panels have a significani 'y lower average
value than that of the bottom half, In addition, the
variabicity of the upper Section is also lower than that of the

battom section. Lognosmal distribution theory states that the

variance of the is directly proportional to the

mean value of the distribution according to the formula:

o
Van et - 1)

Where v = Variance in natural units
m = Mean value
%L = Logarithmic variance
Although there is a difference in mean values between the upper
and lower sestions of the simulated dats set, the analysis was

conducted by treating the entire set as ane homogenous area.

The experimental semi-variogram calculated from the entire set
compared favourably with the theoretical semi-variogram used to

simulate the data set, (See Section 3.2),
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The experimental semi-variogram thus confirmed that the spatial

characteristics of the simulated data corresponded to what was
required from the simelation, Consequently, the entire set could be
considered to be a single population of values with the desired

variability and spetial characteristics.

The statistics of the Plapned, Galled and actual panel values are

given in Table 3.5.%,

PLANNED PANEL | CALLED PANEL | AGTUAL PANEL
VALUES VALUES

VALUES
|
[ Mean value 806 emg/t 593 emgst B4 cmg/t
|
[ variance 178 B8O 178 341 o au
J
| tog variance 0,24 0,28 .58
! —
Taisle 3.5.7. of Results of Dats Set 2 ( Samples)

The Planned panel values and Called panel values both appear to be

i
|
g
1
i
g
il
g
a
i

bissed, This however, is as a result of the § metre samples

averaging 888 cmg/t as opposed to the 1 metre sample resulis

L]

sveraging B40 amg/t.

BZ3

3
The amoothing effect of kriging is pot evident in the estimated panel

Lk

values, The variances of the Planned and Called values are 178 860

and 179 241 respectively, compared to the actual panel variance af

fasy

164 465,

Jieza
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A possible reason for this s that the keiging estimates also use the
samples from the region used to calculate the semi-variogram. {i.e.

the bottom 200 metre sectioh of the 600 metres simulated).

The overall actual panel variance of the entire 600 metre region is
242 082, The varisbility of the entire ds 1 set ie thus
substantially higher than the variability of the uppen 400 metres of
the data set. As kriging usea samples from the entire set, the
varlability of the estimates are higher than the actual variability
of the upper 400 metrea,

1
The errors in estimation are shows in Figure 3.5.2. Both the Planned
ecrors and Callsd errors show & distinct clustering of different
magnitudes of errors. The uppar half of the area has far smaller

errors than the lowsr half of the area.

Table 3.5.2 shows the statiatics of the errons for diffecent subsets

of the area.
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FIGURE 3.5.2 : ABSOLUTE ERRORS ( cmg/t ) OF PANEL VALUES
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FLANNED VALUES CALLED VALUES
ENTIRE AREA
Mean Error 66 cmg/t 53 cmg/t
Error Variance 46 577 11 495
Theoretical Error Variance 76 508 22 933
Mean Absolute Error 172 omg/t 88 cmg/t
Absolute Ervor Varlance 21 181 6 424
JOP_200 METRES
Mean Error 43 cmg/t 7 cmg/t
Error Variance 22 969 5 609
Hean Ausolute Error 197 emg/t 61 cmg/t
Absolute Error Variance 11 061 3 470
BOTTOM 200 METRES
Mean Error 89 omg/t 69 cmg/t
Error Variance 69 576 16 802
Hean Absolute Errop 228 cmg/t 116 emg/t
Absolute Error Variance 25 323 7 890
Table 3.5.2. of Errors of Data Set 2 { Samples)

The statistics in the Table show that the mean absolute errors of the

bottom 200 metre area are approximately twice the size of the mean

absolute errors of the t

op 200 petre arsas.

This ratio of errors

applies to both Planned and Called panel values. The absolute error

variance of the bottom 200 metre area are also approximately double

tne value of tha correspanding error variances in the upper 200 metre

area,
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The theoretical error varisnces, based on the semi~variogram model
and the chosen deta configurations, are approximately twice the size
of the actual error variances for Planned estimates and Called
estimates. The statistics in Table 3.5.2 show that the error
variances of the bottom 200 metre area are spproximately equal to the
expected theoretical ervor variances. The reason far the large
discrepancy between the theoratical error variances and the observed
error variances for the entire area is that the ercors in the upper
balf are very small, The errors in this section are small because
the samples in this section ame highly continuous and have low
variability. This low variability results in more accurate

estimation,

l.istograme of the ¢>rors are presented in Figure 3.5.3. The errors
of the Called estimates appear to be Normally distributed but the

errors of Planned estimatss are erratic

In Figurs 3.5.4 the estimated panel values are platted against the
actual panel values. The Planned panel valuce show evidence of the
regression effect. The Called panel values show & very close
relation to the actual pane} values, Although the slope of the
ragression line for Called values 15 approximately equal to 1,
further evidence of the proportianal effect is shown by the magnituds

of ennors inereasing with the actual valuss of the panels.

of the fitted reg lines are ined in Table

3.5.3,
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ACTUAL RESULTS THEORETICAL
SLOPE OF LINE | Y INTERCEPT LINE

| ,

Planned vs Actua.
| Panel values 0,83 88 0,871
|
| Called vs Actual ‘
| Panel vaives 2,926 13 0,975 |
|

Table 3,5.3. Statistics of Regreasion tines of Data Set 2
i Sipios]

The 1 slopes of the reg inea are appr y
equal to the actual slopes obtained, where the actusl slopea are

within 5% of the theoretical slapes.

Figure 7.5.5 shows the errors of the esiimates plotted against the
actual panel values. No specific trends exist in either plot, but
evidence of the proportional effect is again illustrated where the
magnitude of eerors tende to increase as the actual panel values

inerease,

3.5.2 Results using Regularised Samples Tor Kriging

4 calour coded plot of the panel values based on Planned
estimates, Called estimates and actual values ia shown in

Figure 3,5.6,

The statistice of the panel values are givan in Table 3.5,4,
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The reason for the apparent overestimation of values is hecause the 5

metre sampling results averaged 888 cmg/t opposed to the 1 metre

samples averaging 840 omg/t,

PLANNED PAMEL | CALLED PANEL | ACTUAL PANEL
VALUES VALUES VALUES

| g

| Mean value 903 emg/t 891 emg/t 840 cmg/t

I

| variance 183 669 185 121 164 465

|

| Log variance 0,24 0,26 0,26

1

of Results of Data Set 2 {(Regularised

Table 3,5.4. Statistics
Samples]

The reason for the higher variances of the estimated panel values is

the same as discussed in the previous section.

The estimates use

samples from the 200 metre section used to construct the

semi-variogram model. These samples add to the overall variability

of the data set where the actual panel variance is 242 082 for the

entire set and only 164 465 for the 400 metre area which is compared

with the panel estimates.

The panel errors for Planned values and Called values are shown in

Figure 3.9,7. The plots again show a distinct clustering of

different sized errors.

The upper section has mainly small errors

whereas the bottom section has errors of larger magnitude. The

reason for this is again the same as that explained in section 3,5.1,

where the sample results in the upper section are mainly of low value

and the samples have low variability, leading to more accurate

eatimating.
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Table 3.5.5 summarises the statistice of the errors for the different

estimates and for different sul

areas of the data set.

£ PLANNED VALUES CALLED VALUES

ENTIRE AREA

. Mean Error 63 cmg/t 50 cmg/t
i Error Variance 47 093 12 699
+ Theoretical Error Variance 87 816 20 470

‘ Msan Avsolute Error 174 cmg/t 90 cmg/t
1 Absolute Error Variance 20 590 7 077

TOP_200 METRES

Mean Error 41 cmg/t 35 cmg/t
Error Variance 20 268 5 181

Mean Absolute Error 112 cmg/t 58 omg/t
' Absolute Error Variance e 2 982

BOTYOM 200 METRES

R..

Mean Error 85 cmg/t 66 cng/t
&rror Variance 73 388 19 619

Mean Absolute Error 237 emg/t 121 cmgrt
Absolute Error Variance 24 087 8 231

Table 3.5.5. of Errora of Data Set 2 {Regularised Samples)

The analysis of the ernors for the Regularised Method shows that the
results ape almost identical to those of the Individual Metnod, The
average ernons for the Regularised Method show a slight improvement

{3%) compared to the Individual Method.

[N

i

A




The error variances are similar for both methods, whers generally the

error variances of the Individual Method arc slightly lower, but the

absalute error variances of the Regularised Method are slightly

lower.

The error variances over the entira data set for both Flanned and
Called estimates are significantly less than tha theoretical error
variances. (47 083 va 87 B16 for Planned errars and 12 591 va 20 470

for Called errors).

The reasons for this are as discussed in 3.5.1, where tha area

eseentially consists of a high value sub-area and a low value

sub-area.

Histograns, showing the distribution of erroes for Planned and Called
estimates based on regularised sample results are presented in Figure

3.5.8. The Called errors follow a Normal gistribution but the

Planped errors although not as erratic as the Planred serors fon the

Indiyidual Method ace not Normally distributed.

In Figure 3.5.9, the estimated panel values ars plotted against the
actual panel valuss. The Plapned panel values show evidence of the .
regresaion effect where the slope of the rogression line ia smaller
than 1,0, The Called panel values are again highly correlated with i .
the motual values and the slape of the regression line ie

approximately 1. Both diagrams illustrate that the magnitude of

errors increase as the actual values increase. Tha atatistics of the 2

regression lines are contained in Table 3.5.6. Y
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The slopes of the nregression lines for Planned and Called estimates

are both slightly less than the cerresponding slopes for the

Individual Method.

The slopes are also less than the thearetical slopes by approximately -

%,

|

ACTUAL RESULTS THEORETICAL |

SLOPE oF |

SLOPE OF LINE ‘ ¥ INTERCEPT LINE |

|

| T !

I I;:lnned vs Actual 0,819 ; 100 o0 |
|

| Called vs Actual 1

| Panel values o 29 | o017

' i

Table 3.5.6 Statistica of Regression Lines of Data Set 2 {Regularised
Saay

Figure 3,5,10, shows the errors of the two estimates plotted against

the sctual values, No specific trend in the plots is evident, but T

the srrors in both cases inGrease as the actual values of the panels
get larger, This proportional effest for the errere ls evident for : .
both the Individual and Regularised methods,

3.5.3 Summary of Results of Data Set 2

3.5.3.1The quality of the estimates of Planned values and Called
valugs is inaignificantly differsnt for the Individual Mathod

and Regularised Method,
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3.5.2.2The results ebtained for both methods are significantly

gifferent from the theoretical results.

The theoretical error variances are approximately twica as oy

large ar the actual arror variamces.

Both methods show a deterioration in the regression effact

compared to the theorstical regression slopes. G e

3,5.3,3The simulated data set resulted in a low value sub.

ea. (top &
200 metres) and & high value sub-area (bottom 200 metras).
The errors for both methods wene substantially different in
the tWo sub-areas whers the errors ware small in the low value

area and large in the high value area.

These results illustrate the well known propontional effect of

Lognormal distributions where the vardance 1a a function of

the mean value,

3.5.3.47hs large differences betwesn the actwal and theoretical - i
rosults illustrate the importance of subdividing areas into
statistically homogenous sub-areas, These sub-areas eho‘uld
then be analysed separately resulting in mere representative ]
semd-variogram nodels for sach mrea. The theonetical ereor
variances of the sub-aress should -then be approximataly the b
same 23 the srron vardances of the restlts beceuse models with B

different ai2l values {veriances) would be used.




3.6.1 Results of using Individual Samples for Kriging

Anmlyais of Results of Data Set 3

The results of Data Sets 3 and 4 are similar to the results of

Data Sets 1 and 2, respectively.

Gonsequently, the

explanations of differences in results are not covered in

detail in this section and section 3,7 as they are discussed in

detail in sections 3.4 and 3.5.

Figure 3,6.7 contains colour coded diagrams of the Planned

panal values, Called panel values and actual panel values. A

summary of the statistics of the three 2ets of values is given

in Table 3.6.1.

i
$
|
|

PLANNED PANEL CALLED PANEL ACTUAL PANEL
VALUES VALUES VALUES
Mean value 1028 emg/t 1018 emg/t 988 cmg/t
variance 137 248 194 014 206 203
Log Varimnce 0,13 0,19 9,20
Fable 3.6.1. of Results of Data Set 3 { Samples)

The reason for the apparent overestimation of pancl values is that

the 5 metre sumpling averaged 1 016 cmg/t opposed to the 1 metre

sample average of 968 cmp/t.

i
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FIGURE 3.6.1: COLOUR CODED PLOTS OF PANEL VALUES

{SET 3 ,INDIVIDUAL SAMPLES )
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A colour coded plot of the absolute errocs (Planned vs Actual and
Called ve Actual) is shown in Figure 3.6.2, The magnitude of the
errors are randomly distributed over the simulated area and there is

no specific clustering of high or low errors.

Figure 3.6.3. shows the histcgrams of the errors for Planned and
Called estimates. The Called errors follow a Normal distribution but
the Planned srrors appear to be Uniformly distributed with a large

variance. The statistics of the errors are given in Table 3.6.2.

The actual error variances are lower than the expected theorstical
error variances, The error variance of planned estimates is 10%
lower than the theoretical error variance, while the error vari:se

of called estimates is 28% lower than the theorsticel error varimce.

ACTUAL ERROR LAEQRETICAL
MEAN ERROR VARTANCE ERROR VARTANGE

|

| Planned values 40 cmgrt 160 963 168 285

{

| Called values 30 cmg/t 13 150 18 486

1

Table 2.6.2. i of Errors of Data Set 3 ( Samples)

Figurs 3.8.4. shows the scatter plot of actual panel values versus

the Planned and Called estimates.
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The scatter plots illustrate that the Planned estimates show the

regression effect whereby low estimates are underestimated and high

timates are of the lines are
given in Table 3,6,3, The Called estimates have a regresaion siope

af 0,098 showing no evidence of the regression effect.

ACTUAL RESULTS THEORETIGAL
SLOPE
SLOPE OF LINE Y INTERCEPT OF LINE
Plarned vs Actual
Canes Valyes 0,701 267 cmg/t 814
|
! g:iz:‘v;:u::““ 9,998 28 omg/t ,985
1

Table $.6.3 Statistics of Regression Lines for Data Set 3 (:
Sawpies)

The slope of the regression for Called estimates is almost identical
to the theoretical slope, but the slope for Planned estipates is

siynificantly lower than the theoretical slopa.

Figure 3.6.5, shows the errors of the estimatea [(Planned and Called}
plotted xgainst the actual panel values. As for Data Set 1, the
Planned arcors show hat the low pansl values ane gensraily
overestimated and the panels of high value are generally

underestinated

The slope of the regression line (Planned errors on Actual values) is

- 0,533,
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3.6.2 Results of using Regularised Samples for Kriging

Figure 3,8.5. shows colour coded diagrame of the Planned,
Called and Actual panel values, A summary of the statistics of

the thres sets of values is given in Table 3.6.4.

The apparent overestimation of the Planned and Calied estimates
iu because the 5 metre sampling results averaged 28 cmg/t more

than the 1 metre sampling results.

PLANNED PANEL | CALLED PANEL | ACTUAL PANEL
VALUES VALUES
! Mean Value 4 023 cmg/t 1 017 emg/t 988 cmg/t
{ variance 130 §74 170 813 206 203
Log Variance 0,12 0,16 0,20

Table 3.6.4. Statistics of Results of Data Set 3 Regularised

The variances of both Planned and Called panel estimates are 37% and

17% lowsr than the actual panel variances, respectively,

The variances of the estimates anre also lower than the cornesponding
variances using Individual camples (5% and 12%, respectively) showing

that Regularised sampling leads to & larger smoothing effact.

A colour ooded plat of the absolute errors (Planned vs Actusl and

Called vs Actual) is shown in Figure 3.8.7.

R e
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The magnitude of the errors are randomly distributed over the

simulated area.

Figure 3.8.8, shows the histograms of the errors for the Pianned and

Called¢ estimates.

The Planned esrors have a large variance and appear to be Uniformly
distributed whereas the Called errors follow a Normel distribution(

The statistics of the errors are given in Table 3.6.5.

The Planned error variance is 11% higher than the theoreticel error
variafce byt the Called error vardance is 37% lower than the
theorrtical error variance. The mean erron for Planned and Called
eatimates show a slight improvement compared to the errors for

Ingividual samples (5 omg/t and 1 omg/t respectively).

AGTUAL ERROR | THEORETICAL
WEAN ERROR VARIANGE ~ |ERROR VARIANCE
] Planned Values 35 emg/t 185 838 166 624
E Called Values * 29 emg/t 16 946 26 756
Table 3.6.5 of Errors of Data Set 3 (Regularised Samplea)

However, the error variance for the Regularised Wethod are

significantly higher than the ¢rror variances of the Individual

Method.
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The Planned error variance is 23% higher and the Called error

variance 20% nigher than the corresponding error variances for the

Individual Method.

Figure 3.6.9, shows ihe conditionsl bias for the Planned estimates

where the low cstimates are underestimated and the high sstimates are

overestimated.

The Called estimates have no conditional bias and the slope of the

regression line for Actual panel values on Called panel values is

cloge ta 1. The statistics of the regression lines for the scatter

plots are given in Table 3,6.6.

ACTUAL RESULTS THEQRETICAL
SUoPE oF
SLOPE OF LINE ¥ INTERCEPT LINE
-
I L::g’c_;:e:“"“ 0,578 397 cmgrt 0,763
!
} o s el I 1,054 -84 cmg/t 0,967
I

Table 3.6.6, Statistics of Regression Lines of Dats Set 3
Reéguiarized Sampies)

The slope of the regression line for Planned estimates (0,578) is

significantly worse than the theoretical slope (0,763) of the

regresaion line. Thie slape s also worse than the corresponding

slepe for the Individual Mothod {0,578 versus 0,701),
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Estimating anead of the available sampling thus appears to be worse
when using the Regularised Method as the conditional bias has
increased and the error variance increased by 23%.

Figure 3.6.10., shows the Planned and Called errors plotted against
the Actual panel velues. The Planned errors show that the panels of
low values are overestimated and the panels of high values are

underestimated

The slope of the regression line for Planned srrors on Actual panel

values fs - 0,633,

3.6.3 Summary of Hesults of Dats Set 3

3.6.3,1The quality of the estinates for the Regularised Hethod are

slightly worse than the estimates using the Individual Method.
The Regularised Methad resulted in:

{a) Larger error variances.

(b} More conditional bias of the Planned estimates.

{c) & more pronounced smoothing effect of kriging.
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3.6.3.2The results of both methods compare favourably with the

theoretical results for the Called estimstes, but statistics
OF the Planned estimates are significantly different from the

theoratical results.

The error variances of Flanned estimates are 11% lower than
the theoretical errar variance for the Individual Method and
23% higher than the theoretical error variance for the

Regularised Method,

Both methods show a deterioration i the slope of the
fegression line for Planned estimates. Compared to the
theonetical slapes, the Individual Method and Regularised

Methad show a deterioraticn of 14% and 24%, respectiveiy,

Al
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3.7  Analysis of Results of Data Set 4

3.7,1 Reaults of using Individual Samplas for Kriging

Figure 3.7.1. contains colour Ced!d’plot! of the Flanned panel
valuss, Called pane: aluts and Actul penel velues. The plots
clearly illustrate that the upper Falf of the sinulated data
set is low grade and has low variability and the bottom half is
high grage and more varisble., Data Set 4 is thus similar to
Oata Set 2 and similar results wers obtained whers the
"prapartional effect™ o “tributions is evident,
A summary of the statistics of t,. three sets of panel values
is given in Table 3.7.%. The rosults show that the mema valus
of the estimates are higher then the actual mean value, This
is as a result of the 5 metre sampling results averaging 27

cmg/t more than the 1 metre sampling resulta.

|

PLANNED PANEL | GALLED PANEL | AGTUAL PANEL
VALUES VALUES
Hean Valy- 840 omg/t 29 emg/t 801 emg/t
Vardancs 221 271 224 973 200 366
Log Variance 0,38 0,40 0,40

Tabls 3.7.1. Statistics of Results of Data Set 4 {Individual Saspls

The variances of the Planned and Called sutimates mre appraximately

the came s the vardance for the actual panel values.
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The reason for the non-presonce of the smoothing effect of kriging ia
the same as that explained in 3.5, where the variance of the entire
600 metre simulated set is 337 445. The estimates se sampling
results from the additional 200 metre area (used for calculating the
semi-vaniogram) and because of the distinct high and low grade
aub-aneas the vardance of the kriged estimates are higher than would

ba expected.

A colour toded plat of the absolute arrors is given in Figure 3.7.2.
The clustering of low crrore in the upper poaition of the set and
high errors in the lower portion clearly illustrates the proportional
effect whereby the vardance is related to the mean value. The
sampling results in the upper portion have a low mean value and a
relatively low variance compared to the high mean valus and high
variability of the lower section. The estimmtod values 3n the upper
portion ace thus more consistent with the actual valves because the
sampling results throughout the area are similar, ang consequently
the errors in estimation sre small, Conversely, the sampling results
in the lower suction are highly variable and the resulting errors

between estimated and actusl values are thus higher,

Geostatistical thesry 1a normally used te caiculate error variances
bagsed only an the sampling positions relative to one another and
relative to the block being sstimated, the size and geometry of the
slock being eatimated, and the semi-variopram model, The actusl

sampling nesults do not affect the estimation of error variances.
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However, the results in this Set and nata Set 2, clearly illuatrate
that the errors and error variances are lower in the uppen sction
which has a low mean value and higher in the lower section which has
a high mean value, The importance of modelling areas which are

statistically homogeneous is thus evident.

Data Sets 2 and 4 would produce results that are more consistent with
geostatistical theory if the upper and lower sectiona of the
simulatad areas had been modelled separately. The model for the
uppen section wiuld have a relatively low sill value and this would

lead to lower theoretical error veriances.

Gonversely, the model for the lower section would have a relatively
high sill value (hecause the variance of samples is high), and the

theoretical error variance would be higher.

Statistics of the ercors for various sub-areas of the simulated area

are shown in Table 3.7.2.
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PLANNED VALUES |  CALLED VALUES
ENTIRE_AREA
Mean Error 39 emg/t 26 cmg/t
Error Varianc 45 357 6 156
Thearetical Error Variance a3 584 11 793
Mean Absolute Error 150 emg/t 58 cmg/t
Avsolute Error Variance 21 581 a 582
TOP_200 METRES
Mean Error 32 emg/t 24 cmg/t
Error Variance 18 528 2 998
Mean Absolute Erpor 93 cmp/t 38 cmo/t
Absalute Error Vapiance 10 827 2 163
BUYTOM_200 METRES
#emn Error 48 cmg/t 31 emg/t
Ervar Varisnce 72 534 9 355
Mean Absolute Error 224 omg/t 78 omg/t
Abgolute &rrar Variance 23 810 4 214
Table 3.7.2. of Errors for Data Set 4 (: Samples)

The mean absolute errors of the battom 200 metre area are twice the
s128 of the corpesponding mean absclute arrors for the top 200 matre
area, The absolute error variances of the bottom sub-area are also

double the value of the corresponding error vapiances of the upper

sitb~area.
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The theoretical error variances, based on the semi-variogram medel
and chosen data configurations, are approximately twice the size of
the actual error variances of the entire area for both Flanned
estimates and Called estimates, The primary reason for this is
because the top 200 metre Sub-area | is very low error variances. The
error variances in this sub-area are lods than 50K of the theoretical
ecror variances. This sub-area has swall errors because the sampled
in this section are highly continucus and M‘:le low variability. The
low variability of sample values corresponds with the low mean value
(propertional effect of lognormal distributions) and the low

variability results in more accurate estimatiom

Histograms of the errors are presented in Figure 3,7.3. Both the
Planned errors and Called errors are Normally distributed but the
variance of Planned errors is seven times larger than the varianca of

Calleqd errors.

In Figure 3.7.4. the estimated panel values are plotted against the
actual panel values. The Called panel values correspond closely to
the actual panel values but the errars increase in magnitude as the
actual panel values increase, Further evidence of the propurtional
effect 1s thus present. The statistics of the fitted regression

lines are shown in Table 3.7.3.
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|
| ACTUAL RESULTS THEOREYICAL
SLOPE

SLOPE OF LINE | Y INTERCEPT OF LINE

I

| Eannned ve oot 0,811 wemgre | 0,91

i Called v8 perual 0,953 1 cmgrt 0,091

i

Table 3.7.3. Statistics of Regression Lines for Data Set 4 (.

Reauits,

The theoretical slopes of the regression lines are approximatsly
equal to the actual slopes obtained. The Planned papel valuss show
evidence of the regression effect whersby on average the low
estimates are underestimated and the high estimates are
overestimated.

Figure 3.7.5. shows the errors of the estimates plotted against the
actual panel v lues. No specific Lrends exist in either graph, but
evidence of tn ,ropartional effect is clearly illustrated by the
increase in the mgnitude of errars a8 the actusl panel values

increase.

3.7.2 Results of using Regularized Samples for Kriging

A colour coded plot of the panel values based on Flanned
estimates, Called estimates and actual values is shown in

Figure 3.7,6. The statistics of the panel values are given in

Table 3.7.4.

5
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DATA SET 4 USING REGULARISED SAMPLES
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The variances for Planned ang Called panel values ace approximately
equal to the actual panel variance. The reason for the nonepressnce
of the smoothing effect of kriging is the sams as that explained in

section 3.5.1. and section 3.7.1.

|
| PLANNED PANEL | CALLED PANEL:| ACTUAL PANEL
VALUES VALUES

VALUES
{

| Mean Value 843 omg/t 828 cmg/t 801 cmg/t
5 Vardance 223 318 225 900 208 368

i Log Variance 0,37 0,40 0,40

Table 3.7.4. Statistics of Results of Data Sct 4 (Regularised
pies.

The panel ercors for Planfied Values and Called values are shown in
Figure 3.7.7. The plots again show a distinct clustering of
differont sized errors, The upper section has predominantly small
errors which correspand to the lower mean grade and Iower variability
of this section, The Dottom zection has larger errors which
correspond to the higher mean grade and higher variance of sampling

results in this section.

Table 3.7,5. summarises the statistics of the errors for the

different, estimatea within the sub-arsas of the data set.
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E PLANNED VALUES |  CALLED VALUES
ENTIRE AREA

E Mean Error 41 cngrt 26 ang/t
Error Veriance 42 900 8 817

m Theoretical Ernor Varianse 8 342 9 642
Nean Absolite Error 189 emg/t 0 cnart

a Absolute Error Variance 19 365 4 048

. TP 200 WETRES

Mean Eppor 27 cmg/t 22 cmg/t
Errar Vandance 15 450 2 545

i Moan Absolute Error 85 ome/t 36 cmart
Absalute Error Variance & 186 178

ﬁ BOTYOM 200 METRES

Mean Error 56 cmg/t 34 emgst
Error Vardance 70 384 14 080
Moan Absolute Epror 228 cng/t &3 engrt
Absoluts Error Variance 20 566 5 301

Table 3.7.5. Statistics of Errors for Bata Set 4 (Regularised

The analysis of the errors for the Regularised Method shows that the

resulta ace almagt identical to those of the Individual Method,

The error variances of the Planned eatimates using the Regularised
Method are smaller (3X to 2%} than the corresponding error variances

usioy the, Individual Method,

The error variances over the entire data set ane signiffcantly lesa
than the theoretical enror variances fap both .-lanned and Called

estimates (42 909 vs 89 343 and 6 817 vs © 642).
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The reasons for this are as discussed in 3.7.1, where the ares
essentially cansists of a high value sub-area and a low value

subarea.

grame, showing the of Planned and Called errcrhs
are shown in Figure 3.7.8, The errors ere Normally distributed for

both sets of estimetes.

In Figure 3.7.9, the estimated pancl values ave plotted against the
actual panel values, The statistics of the regresaion lines for the
two sets of estimates are shown in Table 3.7.6. Both graphs
illustrate that the magnitude of errars increase as the actual values
increasa, The Called panel valves are highly correlated with the
actual panel values but the Planned panel values show evidence of the

regression effect where the slope of the regressicn line is 0,873.

AGTUAL RESULTS THEORETICAL

T sLope
SLOPE OF LINE | ¥ INTERCEPT oF LINE

|

I e ol 0,873 66 cmg/t 0,904

|

Galled vo Actual .
; Panel Values 0,548 15 emg/t 0,99
! "

Table 3.7.6. Statistics of Regrassion Lines for Data Set 4 (Regularieed
Sawples)

The siopes of the regression linge are approximately squal to the
theoretical slopes and are almost identical to the slopes obtained

using the Individual Method,
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Figure 3.7.10. shows the errors of the two estimates plotted against
the actual values. These graghs again illustrate that the errors

increase as the actual panel values increase.

3.7.3 Summary of Results of Data Set 4

3.7.3.1The quality of the estimates of Planned vaiues and Called
values, is insignificantly different for the Individual Method

and the Regularised method.

3.7.3.280th methods resulted in error variances which were

significantly lower than the theoretical error variances.

The siopes of regression lines for both methods are marginally

lower than the theoretical slopes.

3.7.3.3The errors of both methods increaged as the actual panel values
increased. This illustrates the proportiopal effect of
Lognormal distributions where the variance is a function of the

mean value.

3.7.3.4The large differences between the actual error variances and
theoretical, variances are as a result of the simulated data set
having distinct high and low grade sub-areas. fThe results
11lustrate the impartance of subdividing an area into
statistically homoggneous areas befors 2pplying geostatistical

analysis.
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Results of the 5 Column Positions

The accuracy of the estimates differ for the column positiuns
I’
(l because different data configurations are used for end panels
VI (1 and 5) and middle panels (2, 3 and 4), A summary of the

results for thé Individual Methad is given in Table 3,8.1.

I
xI CALLED ESTIMATES PLANNED_ESTINATES
!I MEAN ERROR | ERROR VAR | MEAN ERROR| ERROR VAR
d
\l DATA SET 1
i €nd Panels .. 61 emg/t | . 28, 084 78 emg/t | 132 826
Middle Panels 49 emg/t | 187600 54 cagst | 117 217
5
i
DATA SET 2
i
EE &nd Panels 66 cmg/t | 16 585 59 ompst | 63 214
. Middle Panels 44 cmgrt | B 027 71 emg/t | 36 743
E DATA SET 3
ﬂ €nd Panels 20 cmg/t | 16 406 0 cug/t | 159 853
Middle Panels 3 emg/t | 11 241 34 cngrt | 149 191
@ DATA SET 4
. End Panels 46 emgrt | 9 116 34 cmgst | 63 873
ﬁ Middle panels 15 amg/t | 3 79t 42 omgst | 34 447

Table 3.8.1. Summary of Panel Errars {Individual Methods)




The results for the Regularised Method are given

in Table 3.8,2

CALLED ESTIMATES PLANNED ESTIMATES
MEAN ERROR | ERROR VAR | MEAN ERROR| ERROR VAR
{
| DATA SET 1
{
| End Paneis 6% cmg/t | 27 282 73 emg/t | 148 102
| Middie Panels 45 cmg/t 21 999 49 cmg/t 132 932
i M
1
| DATA SET 2
|
| End panels 73 cog/t | 17 214 67 cng/t | 62 575
| Middle Panels 35 omg/t 9 205 65 cng/t 38 310
I
!
| DATA SET 3
|
| End Panels 30 cmg/t 20 281 43 emg/t 205 196
| middle Panels . 28 omg/t | . 15,228 30 emg/t | 178 233
DATS 3T 4
wnels 49 cmgst | 9 435 32 emg/t | 55 728
sle Panels 14 cmg/t | 4 7852 48 emg/t | 35 707
1

Table 3.8.2, Summary of Panel Errors (Regularized Methad)

the end panels.

scror variances (sse Table 3,3,1, and Table 3.3.2),

The results for both methods clearly illustrate that the error

variances of the middle panels are significantly lower than those of

The error variances are also lower than the expected theoretical
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The error variances of the Regularised Method are also higher than

thoss of the Individual Method in 14 of the 16 cases.

The error variances of the Regularised Method are 11,2% higher on

average than those of the Individual Methad.

This analysis confirms the earlier results that indicate that the
error variances of the Regularised MeHod are generally higher than

those of the Individual Method for all 4 data sets.




Regularisod Methad yargus

Method

g, the Regularised Method was 11,5%.

methods s given in Table 4.1.1,

betten than those of the Regularised Method,

The results of the Individual Method were generally marginally

The arror variances of the Regularised Method were hiqher than
those of the Individual Method in seven out of the eight sete

of estimates. The average increase in the error variances for

A susmary of the slopes of the regression lines for the two

PLANNED ESTIMATES CALLED ESTIMATES
INOIVIDUAL |REGULARISED | INDIVIDUAL |REGULARISED
METHOD METHOD METHOD HETHOD
| ;
| oata set 1 ,630 1568 ,976 ,908
5 | Data Set 2 .83 ,818 1926 191
L | pata set 3 701 578 ,908 1,054
o |
m | Data Set 4 871 873 ,853 1848
i

3 Table 4,1.1, Slopes of Regression Lines for the 2 Methada

virtually no differences for the two methods.

E; The alopes of the regression lines for the Called estimates show
|




However, far the Planned estimates, the slopes of the regression
lines for the Individual Method are generally better than those for

the Reguiarised Method.

Although the Individual Method shows marginally better results then
the Regularised Method, computer processing raquirements also need to

be considered,

The nuber of samples used in kriging, the camputer processing time
and the programming effort are all significantly reduced when

regularised data is used.

In the authors opinion, tl ) marginal improvements obtained from the
Individual Method do not justify the Use of this method in preference
to the Regularised Method - when the additional coat of computer

prog g and computer p

¢ is taken into i .

Hawever, the grid size into which sampling data will be regularised
needs to be carefully deterpined. An acceptable grid size will
depend not anly on the spatial characteristics of the orebody but
also on the application, An application for monthly panel valuation
will probabdly need. a smaller grid size than the application for ore

flock valuation or global valuation.




Expected Theoretical Resuits

The results for data sets 1 and 3 were approximately equal ta
the expected theoretical results. The error variances of

Called estimates were hawever sally lower than the

theoretical error variances for both methods. The error
variances of Planned estimates are within 10% of the

theorstical error variances,

The regression line slopes for sets 1 and 3 for Called
estimates are almost identical to the theoretical slopes of the
regression lines but bath methods had lower slopes than the
theoretical alopes for Planned eatimates,

The enror variances for data set 2 and 4 were aignificantly
different to the theoretical error variances for hoth methods,
The reason for these marked differences is because the
simulated data sets had distinct high grade and low grade
sub-areas. The proportional effect for Lognoemal distributiona
rosulted in distinct clustering of high errors and low errors

corresponding to the high and low grade sub-arsss.

The importance of ensuring that areas are statistically
homogeneous when using geostatistical techniques for valuation
ia thus highlighted. This aspect is discussed in more detail

in 4.3,




4.3 Confidence Intervals

As discussed in the previous section, the error variances for
data set 2 end 4 showed marked differences compared to the v
theoretical error variances. The anror variances calculated
for kriged estimates ara based on the semi-variogram model, the
sampling configuration and the block to be estimated and not on Tu
the sample results. However, the spatial characterdstics of
sampling results are incerporated by theip ase in the

calculation of the experimental semi-variogram.

The variability of sempling results is thus built into the

semi-variogram wodel. In order to obtain meaningful and

o 4 models it is imp that, the
sampling data used in the calculation of the semi-varisgeam and
the remaining ersa whers the model will be used, are from &

statintically lomogenesus area.

This condition is one of the major sasumptions uaed in L

geostatistics and is stressed in all text books on the subject.

However, in practice, the monitoring of sampling results, to
ensure that:this condition is satisfied and that semi-variogram

models are representative, is a time consuming task.

The imp of ensuring is clearly .

illustrated in the results of data sets 2 and 4. e
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Both data sets had distinct high and low grade sub-areas with high
and low variability respectively (the Lagno’mu‘ p;‘uportlannl offect
where variance is directly proportional to mean grads). Although the
distinct sub-areas exdsted, the semi-variogram madels obtained for
both sets, were well behaved and could be modelled with parineters
which were very ciose to the parameters used in the simulation of the

data sets.

Applying the nodels to the entire data sets resulted dn distinct
sub-areas of low errors and high errars cornesponding directly to the
low and high variability of sampling results. The theoretical ecror
variances are thus substantially different from the error varlances

for the entire area, the low grade sub-area and the high grade

sub a.

Consequently, if the theoretical error variances were used to

intervals of estimates, they would differ
substantially from the actual distribution of errors. This problem
can be overcome by ersuring that areas being analysed are homogeneaus

and the sampling results exhibit statlonarity.

A Further licating factor in the calculation of confidence

intervals is the actual distribution of ercors. Traditicnally, the
distribution of errors have been assumed to be either Normally
distnibuted of Lognarmally distributed, in the case of gold, The
histograms of eppars given in chaptar 3 appaared to he Nermally
distributed for Called eotimates but the distributions were very
arral s for the Planned estimates, Frobability plots of the errars

are given in Appendix O.
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Conditignal Bias

A measure of the conditional bias in tne estimates can be

obtained from the slopes of the fitted ragression lines.

The slopes (Table 4.1.7.) clearly illustrate that the Planned
estimates are conditionally biased, The slopes ranged from
0,668 to 0,873 indicating that low value estimates are under—
estimated on average and high value estimates are aver-

estimated,

The Called estimates had slopes which were generally very close

to unity.

The slopes obtained for the Planned estimates are surprisingly
low when one consideres that the blocks to be estimated were
only a distance of 10 metees from the nearest sampling
information. Simpla kriging could be Used to overcome this
conditional blas if the mean value could be sstimated with

confidence.
Reconmandations

This project report only dealt With the comparison of & 10

netre with using sanples for kriging.
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In addition, an excellent sampling coverage on a five metre grid was

assumed,

Adoitional work is required to determine the effectivensss of
¢ifferent sized regularisatiens for gifferent sampling densities.
Also, the applicability of différent sized regularisations for the
applications of monthly valuation and'ore reserve block valuation

noed additional research.
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INING SIMAATED RESIATS

In arder to obtain a simulated deposit that exhibits characteristics
of more than ore structural model it is aecessacy to be able to

combine independently simulated resulis.

€ach separate simulation follows the standard Gaussian distribution
and is regionally distributed according to @ chosen semi-varigrem

model.

As an example, the combining of two simulations is illustrated below;

Simulation 1 : Z, "N (0,1} Nugget Effect Model

Simulation 2 :

' TN 10,1) Spherical Model

The combining of the two simulations needs to result in a standard
Gaussian distribution in order to apply a Gaussian transform function
to arrive at the required distribution of values,

A linear combination of the two simulations is obtained as follows:

a7, + 8,2, follows a Gaussian distribution with

Mean =a0+a0 =0

Variance = &,f1 + a
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To follow a standard Gaussian distribution this implies:

+a7 R T e e AT

The two simulations can also be weighted in such a way so as to
ensure that a certain percentage of the total sill value can be
attributed to one of the models.

This weighting can be represented as:

a,/8; = R (a desired ratio} veeevieriinniieies A

Therefore,

Substituting Ay in Ay implies:
3 R ) =

2

i1+ RY

2,k

Therefore,

The above weighting ensures that the combined simulation results
follew a standard Gaussian distribution, Specified proportions of

overall variance can also be ascribed to particular models.
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APPENDIX B - THEORETICAL CALCR ATION OF REGRESSION SLOPE

For an estimator to be conditionally unbiased then:

* *
E {Zw/zv) = zv

where,

Zv = true grade of block
Zv = estimate of block
If ok and ov are the respective vardances of 2V and Zv, then if o¥ ia
larger than ov, Z5 exaggerates the frequency of both high and low

values.,
The shape of the regression curve E [Zv/Zy] is seldom known, but to
ensuce thet the estimator is not too far from being conditionally
Unbi&sﬂvd. the slope of the regression line should be close to 1.
This requires that:

Cov (2v, ZV) = Var (ZV)
For sinple kriging this relationship is satistied, but for ordinary
kriging (0K}t

var (28 = cov (zv, ) 4 x

The regression slope P is given by:

P W Cov 2zv, 28%var (31

therefore,

P o= Cov (zv, Z¥)/L0ovizy, 88 + 11

Algo y = Tm po where:

*
vo = Var (m - m)
tm = weight of mean in simple kriging
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APPENDIX € :

NORMAL PROBABILITY PLOTS
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