SYSTOLIC CHAMBER FUNCTION IN RATS WITH EXERCISE-INDUCED COMPARED TO PATHOLOGICAL CARDIAC DILATATION

Christopher Anamourlis

A dissertation submitted to the Faculty of Medicine, University of the Witwatersrand, for the

degree of Master of Science in Medicine.

Johannesburg 2008

ABSTRACT

In pathological left ventricular hypertrophy (LVH) with a normal intrinsic myocardial function, eccentric chamber remodelling (cardiac dilatation) can produce a right shift in systolic pressure-volume (P-V) relations (systolic chamber dysfunction). Whether comparable degrees of cardiac dilatation in physiological (exercise-induced eccentric left ventricular remodelling) and pathological LVH produce similar effects on chamber function has not been determined. Hence, the aim of my thesis was to determine the impact of cardiac dilatation on systolic chamber function in chronically exercised rats with comparable increases in cardiac diastolic volumes as those produced by two rat models of pathological dilatation.

Methods: Two models of cardiac dilatation were used, namely: (1) a model of pathological cardiac hypertrophy and dilatation (induced by chronic β -adrenoreceptor agonist administration to either Sprague-Dawley or spontaneously hypertensive rats), and (2) a model of physiological cardiac hypertrophy and dilatation (induced in Sprague-Dawley rats by 4-5 months of voluntary running activity on exercise wheels). 33 Sprague-Dawley rats were placed on spontaneous running wheels for 4-5 months (Exer group) and 24 Sprague-Dawley sedentary control rats (Con group) were placed individually in normal rat cages. To induced pathological dilatation, the β -agonist, isoproterenol (ISO) was administered daily to Sprague-Dawley rats for 7 months (SD-ISO, n=10) and to spontaneously hypertensive rats (SHR) for 4-5 months (SHR+ISO, n=22). Saline was administered daily to controls (SD, n=10; SHR, n=21) and to normotensive Wistar Kyoto rats (WKY, n=17). In isolated, perfused heart preparations, left ventricular (LV) dilatation was determined from the diastolic pressure-volume (P-V)

relation and the volume intercept of the diastolic P-V relation (LV V_0). Systolic chamber function was assessed by comparing LV developed pressures at specific filling volumes. Intrinsic systolic myocardial function was determined from the slope of the LV systolic developed stress-strain relation (myocardial systolic elastance).

Results: ISO adminstered to SD and to SHR rats produced cardiac dilatation [LV V_0 (ml): SD 0.20±0.01, SD-ISO 0.27±0.02, p<0.005; SHR 0.21±0.01, SHR-ISO 0.30±0.01, p<0.001], systolic chamber dysfunction (decrease in left ventricular developed pressures at incremental filling volumes) but normal intrinsic systolic myocardial function. Habitual exercise resulted in a right shifted LV diastolic P-V relation and an increased LV V_0 (Exer 0.22±0.01, Con 0.18±0.01, p<0.005). In exercised rats (Exerdilated, n=10) with equivalent dilatation as SD-ISO and SHR-ISO (LV V_0 within 95% CI of SD-ISO and SHR-ISO), despite comparable LV diastolic P-V relations and LV V_0 values (0.28±0.01); both systolic chamber function and intrinsic systolic myocardial function were normal.

Conclusions: These data provide evidence to indicate that as compared to pathological dilatation, a similar extent of exercise-induced dilatation does not produce the same adverse effects on systolic chamber function.

DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for the degree of Master of Science in the Faculty of Medicine, University of the Witwatersrand, Johannesburg. The work contained in this thesis has not been submitted for any degree or examination in this university, or any other university.

.....

CHRISTOPHER ANAMOURLIS

......day of, 20.....

I certify that the studies contained in this thesis have the approval of the Animal Ethics Committee of the University of the Witwatersrand, Johannesburg. The ethics approval numbers are: 99:01:2b, 2002:37:5 and 2002:39:5.

.....

CHRISTOPHER ANAMOURLIS

......day of, 20.....

.....

.....

ANGELA WOODIWISS (Supervisor)

GAVIN R. NORTON (Supervisor)

TABLE OF CONTENTS

Page

Dedica	ation	vi		
Ackno	owledgements	vii		
List of	f abbreviations	viii		
List of	f tables	ix		
List of	f figures	х		
Prefac	e	xii		
Chap	ter 1: Introduction:	1		
1.1	Introduction	2		
1.2	Pathological versus physiological cardiac hypertrophy	4		
1.2.1	Pathological hypertrophy predicts adverse cardiovascular outcomes and cardiac dysfunction independent of blood pressure			
1.2.1.1	Mechanisms responsible for the development of progressive dysfunction in cardiac hypertrophy.	7		
1.2.1.2	Is physiological hypertrophy associated with cardiac dysfunction?	9		
1.2.1.3	Potential reasons why exercise-induced cardiac hypertrophy may not be associated with cardiac dysfunction	10		
1.2.1.4	Is advanced cardiac enlargement produced by exercise, a pathological condition?	16		
1.3	Cardiac dilatation: definition and physiological or pathophysiological relevance	17		
1.3.1	Cardiac chamber dilatation and pump dysfunction	18		
1.3.2	Mechanisms of the impact of cardiac dilatation on pump function	22		
1.4	Deleterious effects of chronic sympathetic activation on the heart	23		
1.4.1	Are the adverse effects of chronic sympathetic activation on pump function due to reductions in contractility or effects of cardiac dilatation?	24		
1.4.2	Potential cellular mechanisms of the impact of chronic β-adrenoreceptor activation on cardiac cavity dimensions	27		
1.5	Cardiac dilatation subsequent to chronic exercise	29		
1.6	Summary of problem statement and aims of the dissertation	36		

Chapter 2: Methods				
2.1	Animal models of cardiac dilatation	40		
2.1.1	β-adrenoreceptor agonist-induced cardiac dilatation	40		
2.1.2	Exercise model	43		
2.2	Isolated, perfused heart preparation	46		
2.2.1	Assessment of cardiac chamber dilatation and systolic function	51		
2.3	Cardiac weights	54		
2.4	Data analysis	54		
Chap	ter 3: Results	55		
3.1	Running distance and running speed	56		
3.2	Left ventricular weight	56		
3.3	Left ventricular diastolic pressure-volume relations	58		
3.4	Systolic chamber function	66		
3.5	Systolic myocardial function	70		
Chap	ter 4: Discussion	75		
4.1	Summary of main findings	76		
4.2	Comparison with previous studies	76		
4.2.1	Exercise conditioning and cardiac chamber dimensions	76		
4.2.2	Pump function and exercise conditioning	79		
4.2.3	Pathological cardiac dilatation and pump function	82		
4.3	Potential mechanisms that explain the lack of impact of exercise-induced cardiac dilatation on pump function	84		
4.4	Clinical relevance of the present study	86		
4.5	Strengths and limitations of the present study	87		
4.6	Insights gained regarding appropriate use of SD vs. SHR	89		
4.7	Conclusions	90		
Refer	ences	91		

DEDICATION

This thesis is dedicated to my family, especially my mother and father, who have always given us what we needed, so that we can have what we want.

ACKNOWLEDGEMENTS

Firstly I would like to thank my supervisors Prof. A Woodiwiss and Prof. G Norton for their patience, support and invaluable teaching.

I am very grateful to the following for their support during this dissertation: The School of Physiology particularly the Cardiovascular Research and Genomics Unit, without whom this research would never be possible. My extended gratitude also goes out to the Central Animal Services for all their help. I am very grateful for the funding from the Medical Research Council (MRC), National Research Foundation (NRF), Faculty Research Committee and the University Research Council.

LIST OF ABBREVIATIONS

ANOVA:	analysis of variance
ATP:	adenosine triphosphate
β:	beta
BP:	blood pressure
Ca ²⁺ :	calcium
CI:	confidence interval
CIBIS-II:	Cardiac Insufficiency BIsoprolol Study II
Con:	sedentary control group
Exer:	exercise group
h:	myocardial wall thickness
ISO:	isoproterenol
LVEDD:	left ventricular end diastolic diameter
LV V ₀ :	volume intercept of LV diastolic pressure-volume relation
LV:	left ventricle
LVH:	left ventricular hypertrophy
MERIT-HF:	Metoprolol CR/XL Randomized Intervention Trial in congestive Heart Failure
MMP:	matrix metalloproteinases
P:	pressure
r:	radius
SD:	group of Sprague-Dawley rats receiving vehicle
SD-ISO:	group of Sprague-Dawley rats receiving isoproterenol
SEM:	standard error of the mean
SHR:	spontaneously hypertensive rats and group of SHR receiving vehicle
SHR+ISO:	group of spontaneously hypertensive rats receiing isoproterenol
WKY:	Wistar Kyoto

LIST OF TABLES

Page

Chapter 1:

Table 1.1:	Summary of changes in indices of systolic (pump) function noted in
	human studies conducted in endurance athletes or after physical
	conditioning programs11&12
Table 1.2:	Summary of changes in measures of systolic (pump) function noted in
	studies conducted in animal models of exercise programs13 & 14
Table 1.3:	Summary of human studies assessing cardiac cavity dimensions in
	endurance athletes or subsequent to physical conditioning
	programs
Table 1.4:	Summary of studies assessing cardiac cavity dimensions in animal models
	of exercise programs

Chapter 2:

Table 2.1:	Constituents	of the	perfusion	solution	as	well	as	the	purpose	for	the
	inclusion of e	each in	gredient								48

LIST OF FIGURES

Chapter 1:

Figure 1.1:	The normal relationship between left ventricular end diastolic volume an
	stroke volume, and the change in the relationship when pump function
	either improves or declines1
Figure 1.2:	Left ventricular end diastolic pressure (LVEDP)-volume relationship
	showing a normal relationship, and the change in the relationship in the

Chapter 2:

Figure 2.1:	Flow chart showing random assignment of Sprague-Dawley, SHR and				
	WKY rats to study groups42				
Figure 2.2:	Photographs of voluntary running wheel44				
Figure 2.3: Photograph showing set up of voluntary running wheels in a room					
	Central Animal Services of the University of the Witwatersrand45				
Figure 2.4:	Photograph showing apparatus used in the isolated, perfused heart				
	system				
Figure 2.5:	Typical recordings obtained of left ventricular developed pressures and				
	left ventricular diastolic pressures in isolated, perfused heart				
	preparations				

Chapter 3:

Figure 3.1:	Left ventricular weight in study groups
Figure 3.2:	Effects of chronic exercise on left ventricular diastolic pressure-volume
	relations in Sprague Dawley rats
Figure 3.3:	Effects of chronic isoproterenol administration on left ventricular diastolic
	pressure-volume relations in Sprague Dawley rats
Figure 3.4a:	Effects of chronic isoproterenol administration on left ventricular diastolic
	pressure-volume relations in spontaneously hypertensive rats61

Page

Figure 3.4b.	Effects of chronic isoproterenol administration on the volume intercept of
	the left ventricular diastolic pressure-volume relations in spontaneously
	hypertensive rats
Figure 3.5a:	Left ventricular diastolic pressure-volume relations in exercised rats with
	volume intercepts within the 95% confidence intervals of rats with
	pathological dilatation
Figure 3.5b:	Volume intercept of the left ventricular diastolic pressure-volume relations
	shown in Figure 3.5a and of rats with pathological dilatation65
Figure 3.6:	Effects of chronic isoproterenol administration on left ventricular
	developed pressure-volume relations in Sprague Dawley rats67
Figure 3.7:	Effects of chronic isoproterenol administration on left ventricular
	developed pressure-volume relations in spontaneously hypertensive
	rats
Figure 3.8:	Left ventricular developed pressure-volume relations in exercised rats with
	diastolic volume intercepts within the 95% confidence intervals of rats
	with pathological dilatation
Figure 3.9:	Effect of chronic isoproterenol administration on left ventricular
	developed stress-strain relations in Sprague Dawley rats71
Figure 3.10:	Effects of chronic isoproterenol administration on left ventricular
	developed stress-strain relations in spontaneously hypertensive rats72
Figure 3.11:	Left ventricular developed stress-strain relations in exercised rats with
	diastolic volume intercepts within the 95% confidence intervals of rats
	with pathological dilatation73

PREFACE

It is generally perceived that regular exercise is beneficial to the cardiovascular system. However, as exercise is recognized as a factor that promotes the development of cardiac hypertrophy, a change that in pathological states such as hypertension has adverse prognostic implications, whether exercise has deleterious effects on the heart has in the past and is now again being questioned. It is presently acknowledged that exercise-induced cardiac hypertrophy does not appear to predict adverse cardiovascular outcomes and may not be associated with the progression to cardiac dysfunction. In contrast to cardiac hypertrophy which occurs in pathological states (pathological hypertrophy), exercise-induced cardiac hypertrophy is thought to be a compensatory response to the normal demands of activity and as such is called "physiological cardiac hypertrophy".

However, with respect to physiological cardiac hypertrophy, regular, sustained, medium-to-high intensity exercise programs may induce cardiac hypertrophy with a geometric change that may not maintain wall stress during exercise-induced increases in blood pressure and chamber filling. Indeed, in this form of exercise the cardiac chamber increases in size to accommodate continuously high pre- and after-loads and this cardiac geometric change is reminiscent of cardiac dilatation in chronic heart failure, where a greater cavity size predicts a worse clinical outcome. As cardiac chamber dilatation contributes to pump dysfunction in heart failure and subsequent end stage heart failure, the question that arises is whether increases in cardiac cavity size in exercise-induced cardiac hypertrophy also promote pump dysfunction?

In this regard, presently there is little understanding of the pathophysiological significance of increases in cardiac cavity size in exercise-induced cardiac hypertrophy. Although a reduced pump function has been noted to occur with increased cavity

dimensions in endurance athletes, whether the dilated chamber promotes pump dysfunction or is the consequence of alternative changes such as a reduced contractile function and heart rate or an increased preload, is unclear.

This dissertation is aimed at attempting to understand the pathophysiological relevance of increases in cardiac cavity size in exercise-induced cardiac hypertrophy. As a major pathophysiological change thought to be responsible for cardiac dilatation in heart failure is excessive sympathetic nervous system activation, in the present dissertation I compared the impact of exercise-induced cardiac dilatation on pump function to that of cardiac dilatation induced by sympathetic over-activation (pathological dilatation). Importantly, I assessed whether pump dysfunction occurs in rats with exercise-induced cardiac dilatation.