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RESPONSE OF DYNAMIC SYSTEMS TO A CLASS OF RENEWAL 

IMPULSE PROCESS EXCITATIONS:  
NON-DIFFUSIVE MARKOV PROCESSES APPROACH 

 
ABSTRACT 

 
 
The most suitable model that idealizes random sequences of shock and impacts on 
vibratory systems is that of a random train of pulses (or impulses), whose arrivals are 
characterized in terms of stochastic point processes. Most of the existing methods of 
stochastic dynamics are relevant to random impulsive excitations driven by Poisson 
processes and there exist some methods for Erlang renewal-driven impulse processes. 
Herein, two classes of random impulse processes are considered. The first one is the train 
of impulses whose interarrival timesare driven by an Erlang renewal process. The second 
class is obtained by selecting some impulses from the train driven by an Erlang renewal 
process. The selection is performed with the aid of the jump, zero-one, stochastic process 
governed by the stochastic differential equation driven by the independent Erlang 
renewal processes. The underlying counting process, driving the arrival times of the 
impulses, is fully characterized. The expressions for the probability density functions of 
the first and second waiting times are derived and by means of these functions it is 
proved that the underlying counting process is a renewal (non-Erlang) process. The 
probability density functions of the interarrival times are evaluated for four different 
cases of the driving process and the results obtained for some example sets of parameters 
are shown graphically. 
The advantage of modeling the interarrival times using the class of non-Erlang renewal 
processes analyzed in the present dissertation, rather than the Poisson or Erlang 
distributions is that it is possible to deal with a broader class of the interarrival probability 
density functions. The non-Erlang renewal processes considered herein, obtained from 
two independent Erlang renewal processes, are characterized by four parameters that can 
be chosen to fit more closely the actual data on the distribution of the interarrival times. 
As the renewal counting process is not the one with independent increments, the state 
vector of  the dynamic system under a renewal impulse process excitation is not a 
Markov process. The non-Markov problem may be then converted into a Markov one at 
the expense of augmenting the state vector by auxiliary discrete stochastic variables 
driven by a Poisson process. Other than the existing in literature (Iwankiewicz and 
Nielsen), a novel technique of conversion is devised here, where the auxiliary variables 
are all zero-one processes. In a considered class of non-Erlang renewal impulse processes 
each of the driving Erlang processes is recast in terms of the Poisson process, the 
augmented state vector driven by two independent Poisson processes becomes a non-
diffusive Markov process. 
For a linear oscillator, under a considered class of non-Erlang renewal impulse process, 
the equations for response moments are obtained from the generalized Ito’s differential 
rule and the mean value and variance of the response are evaluated and shown 
graphically for some selected sets of parameters. 
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For a non-linear oscillator under both Erlang renewal-driven impulses and the considered 
class of non-Erlang renewal impulse processes, the technique of equations for moments 
together with a modified closure technique is devised. 
The specific physical properties of an impulsive load process allow to modify the 
classical cumulant-neglect closure scheme and to develop a more efficient technique for 
the class of excitations considered. The joint probability density of the augmented state 
vector is expressed as sum of contributions conditioned on the ‘on’ and ‘off’ states of the 
auxiliary variables. A discrete part of the joint probability density function accounts for 
the fact that there is a finite probability of the system being in a deterministic state  (for 
example at rest) from the initial time to the occurrence of the first impulse. The 
continuous part, which is the conditional probability given that the first impulse has 
occurred, can be expressed in terms of functions of the displacement and velocity of the 
system. These functions can be viewed as unknown probability densities of a bi-variate 
stochastic process, each of which originates a set of ‘conditional moments’. The set of 
relationships between unconditional and conditional moments is derived. The ordinary 
cumulant neglect closure is then performed on the conditional moments pertinent to the 
continuous part only. The closure scheme is then formulated by expressing the 
‘unconditional’ moments of order greater then the order of closure, in terms of 
unconditional moments of lower order. 
The stochastic analysis of a Duffing oscillator under the the random train of impulses 
driven by an Erlang renewal processes and a non-Erlang renewal process R(t), is 
performed by applying the second order ordinary cumulant neglect closure and the 
modified second order closure approximation and the approximate analytical results are 
verified against direct Monte Carlo simulation. The modified closure scheme proves to 
give better results for highly non-Gaussian train of impulses, characterized by  low mean 
arrival rate. 
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1. INTRODUCTION AND PRELIMINARY CONCEPTS 
 

 1.1 PROBABILISTIC THEORY OF  VIBRATIONS 
 

‘..It is remarkable that a science which began with the 
consideration of games of chance should have become 

 the most important object of human knowledge’ 
 

Pierre-Simon Laplace, Theorie Analytique des Probabilites, 1812 
 

The interest in the quantitative aspects of ‘uncertainty’ that led to quantify the idea of 
probability was initially confined to random events connected with games of chance. 
Soon, it was realized that randomness characterizes the physical features of all natural 
phenomena and environment, so the probability theory found application in a wide 
variety of physical problems and developed as a rigorous mathematical discipline with 
the advances in science and engineering. A considerable amount of knowledge has been 
hinerited from the work of physicists on the Brownian motion (Einstein (1905)). The 
most significant engineering applications of the theory of random processes have 
occurred in the area of communication theory and control theory since the early 1930s 
(Rice (1944), Rice (1945), Middleton (1960)).  It was soon realized that the theory 
provides a powerful tool for a more realistic treatment of a large class of engineering 
problems, including analysis and design of vibratory structural/mechanical systems 
(Bolotin (1969)). The primary incentive for the adaptation of the probabilistic approach to 
structural dynamics was the modelling of random excitations in aerospace engineering 
applications (Lin (1967), Press and Houbolt (1955), Clarkson and Mead (1973), Bendat 
et al. (1961)). When an airplane flies in gusty regions, the irregularly fluctuating lifting 
loads due to turbulence produce high stresses in the wing structure that, for certain wing 
configurations, may significantly influence the structural design. This kind of excitation 
is irregular, lacks repeatability and cannot be treated on a conventional ‘deterministic 
basis’. The probabilistic approach provides a rational and realistic basis for system 
analysis and design in a mathematical framework, through systematic treatment of 
uncertainty, where both the excitation and the response are modelled as “stochastic” or 
“random” processes, which can be viewed as an infinite “ensemble” of possible “sample 
functions” or “realizations”. 
There is a large measure of uncertainty in the analysis and design of structural and 
mechanical systems. The loads acting upon a ship hull in rough sea is similar to that of an 
airplane in a gusty atmosphere. Civil engineering structures are exposed to natural forces. 
An offshore structure is subjected to wind loads, ocean waves and, if in a seismic region, 
to earthquakes. Due to random fluctuations in wind velocity and direction and to flow 
separation, the loads induced by wind are random in space and time (St Denis and 
Pierson (1953)). The sea waves’ height, velocity and direction are random in space and 
time (Davenport and Novak (1976)). In comparison with wind and waves, earthquakes 
loads are rare events produced by seismic events, random in nature (Vanmarke (1976)). 
The most significant feature of the analytical method to the analysis and design of 
systems is the process of idealization. Most real structural/mechanical systems have 
complex geometrical and material properties and operate under complex environmental 
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conditions. The process of idealization involves simplifying assumptions for constructing 
analytically tractable mathematical models for the system, its environment and the 
interaction between them. In order to verify the suitability of a probabilistic model it is 
necessary to resort to measurements and statistical inference (Bendat (1966)) The central 
feature of the “probabilistic approach” is a systematic treatment of uncertainty, where 
both the excitation and the response are modelled as “stochastic” or “random” processes, 
that can be viewed as an infinite “ensemble” of possible “sample functions ” or 
“realizations”. 
The complete solution of a random vibration problem implies the probabilistic 
characterization of the response process of the dynamical system, given the probabilistic 
structure of the loads. 
In the case of Gaussian excitation acting on linear systems, the response process is also 
Gaussian and the probabilistic theory of structural dynamics enables all the statistical 
parameters of the response to be directly related to the corresponding parameters of the 
excitation. A class of important non-Gaussian excitation is that of randomly occurring 
short-duration loads. The random train of pulses (with arbitrary pulse shape function) is a 
model of loading in the cases where the system is subjected to a train of shock and 
impacts. Also, the problem of moving loads on a bridge is reduced to that of a random 
pulse train. 
 

1.1.1 The Markov Approach equation 
 

The probabilistic law governing the future state of a system, can be determined if its 
present state is known, irrespective of how the system arrived at the present state, if the 
corresponding random process has the so-called Markov property. The class of the 
Markov processes is characterized by the property that the ‘future’ behavior of the 
process is independent of the ‘past ‘when the ‘present’ is known (Barucha-Reid (1960), 
Stratonovich (1963), Arnold (1974), Sobczyk (1991)). All the relevant predictions on the 
future depend on the most recent known state and can neglect the past. A random process 

( ) ,X t t T∈ is said to be Markov if the conditional probability satisfies the following 
equation 
 

( ) ( ) ( )

( ) ( )
1 1 1 1

1 1

,...n n n n

n n n n

P X t x X t x X t x

P X t x X t x

− −

− −

⎡ ⎤≤ = =⎣ ⎦
⎡ ⎤≤ =⎣ ⎦

=
              (1.1.1) 

 
for any n  and it , with 1 2... nt t t< < . The set of all possible values x is the state space that 
can be discrete or continuous. The Markov process is fully described in terms of its 
transition probability function ( ) ( )[P X t E X s x∈ = ]⎡ ⎤⎣ ⎦ which is the conditional 
probability that the system at the time t belongs to the set E[] given that it is in a state x at 
a previous time s. The Markov process has ‘one-step memory’. Any process with 
independent increments and for which the initial value is stochastically independent of 
any increment, is a Markov process. For this class of processes a wide variety of 
analytical methods of analysis are available. The probabilistic characterization of the 
response to random loads can be formulated in terms of its transition probability density 
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function, which is the solution of the Fokker-Plank-Kolmorov differential equation 
(Gikhman and Skorohod,1972, Risken, (1985)). In order to remain within the framework 
of the Markov approach, when the excitation process does not have independent 
increments, it can be regarded as the rth order differential form of an auxiliary process, 
which in turn is the result of filtering the generating source process with independent 
increments through sth order filter (s>r).The state vector of the system, augmented by the 
state variables of a filter, governed by a set of first order differential equations driven by 
the process with independent increments, is a Markov vector process.  
 
 

1.1.2 Poisson driven stochastic differential equstion and Ito’s rule. 
 

Differential equations represent a basic tool in the application of mathematics to natural 
and engineering science. A more realistic formulation of the differential equations arising 
in applied science, in the attempt to investigate quantitatively the regularities of 
phenomena that cannot be uniquely characterized, involves stochastic differential 
equations. The intuitive concept of randomness is formed by the mere observation that 
the outcomes of experiments carried out under the same conditions do not coincide. 
 The theory of stochastic processes, initiated in mathematics as a method of 
representation of the Brownian motion in terms of Markov processes, was systematically 
formulated by Ito (Ito (1951)). The stochastic differential equations have been recently 
recognized as an important mathematical tool for the analysis of a great variety of 
engineering processes. A very extensive literature exists dealing with the mathematical 
formulation and applications of stochastic differential equations (Arnold (1974), 
Oksendal (1995), Sobczyk (1991), Friedman (1975), Gihman and Skorohod (1972)). The 
usual rules of integration and differentiation of the ordinary differential calculus fail. 
For random impulse process excitations, the response vector of a stochastic 
dynamic systems is governed by a stochastic differential equation of the following type 

( )tX

 
( ) ( )( ) ( ) ( )( ) ( ),d t t dt P t t d t= +X c X b X N                                     (1.1.2)  

 
where  indicates the increment of the source vector process in the time interval 

[t,t+dt[,
( )d tN

( )P t  denotes a random variable assigned to the event occurring in the time 

interval , while [ , ]t t dt+ ( ) ( )( ,P t tb X )  carries information of the source process up to 

but not including the time instant t and is stochastically independent of . ( )d tN

Consider a function ( ),V t X  of the state vector of the system. A jump of unit magnitude 

of theα th component of the vector ( )d tN produces a jump of magnitude 

( ) ( ) ( )( ),d t b P t tα=X X  of the state vector  and a jump of magnitude (Iwankiewicz 
and Nielsen (1999)) 

X

 
( ) ( ) ( ) ( )( )( ) ( )( ), , , ,dV t V t t b P t t V t tα= + −X X X X                                                 (1.1.3) 
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Considering the Taylor expansion of the increment 
( ),dV t =X ( )( ) ( )( ),V t dt t dt V t t+ + −X , X and the fact that any increment is sum of the 

increments due to the continuous motion and the increment due to a possible jump 
(1.1.3), it follows (Iwankiewicz and Nielsen (1999)) 
 

( ) ( )

( ) ( ) ( )( )( ) ( )
1

,
,

,
, , , ,

N

j
j j

V t
dV t

t
V t

c V t b P t V t
X

α dNα
α=

∂
= +

∂
∂ ⎡ ⎤+ + −⎣ ⎦∂∑ ∑

X
X

X
X X X X X

                        (1.1.4) 

Equation (1.1.4) is the generalized Ito differential rule for system subjected to jump 
processes. It is an alternative of the integro-differential equations or of the partial 
differential equations.  
In general, the Ito’s differential rule originates from the dependence of ( ),V t X on the 

excitation that should be ‘non-anticipative’ (Di Paola (1993), Sobczyk (1991), 

Snyder (1975), Gikhman and, Skorokhod (1972)). 
( )tN

( ),V t X  can depend at most on the 

present and past values of , in other words is independent of the increments 

, with  two successive time instants in an infinitesimal interval. 
( )tN

( ) (1k kt + −N N )t 1,k kt t +

 
 
 

 1.2  RANDOMLY OCCURRING SHORT DURATION LOADS 
 

The dynamic excitation on structural and mechanical system may consist of short 
duration loads occurring at random times, with random magnitudes. 
Typical examples of this kind of excitations occur in structural, mechanical and industrial 
engineering: 
Dynamic actions on vehicles due to the irregularity of the road surface (Lingren (1981), 
Schielen (1985)); Dynamic behavior of crushing machines; Loads due to the atmospheric 
turbulence; Random train of vehicles crossing highway bridges (Tung (1967), Tung 
(1969), Gerlough (1955)); Strong earthquake phenomena seen as impulsive change of 
ground motion acceleration (Cornell (1964)). 
The most suitable model of excitations that simulates random train of shock and impacts 
is that of a random train of pulses (with arbitrary pulse shape function). 
The random impulsive excitations are characterized in terms of stochastic point 
processes. 

 
 
 1.2.1 Stochastic Point Processes 
 

Stochastic point processes, whose realizations consist of point events in time and space, 
arise in many fields of application such as statistical physics, astrophysics, astronomy, 
biology, communication theory, management science and mechanics. Typical problems 
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in which the point process models are used are e. g. stochastic and non-linear response 
problems, theory of queues, renewal theory, reliability theory (Srinivasan (1974), Snyder 
(1975), Cox (1962), Cox and Isham (1980), Gross and Harris (1985), Iwankiewicz 
(1995), Iwankiewicz and Nielsen (1999)). 
The central idea, in the study of this particular class of random process, is the analysis of 
random collections of point occurrences. Consider the points occurring along a time axis, 
although it is possible to consider that the points occur in some region of space. In road 
traffic studies, we may consider the sequence of time points at which vehicles pass a 
reference point. Alternatively, examining the length of road at a certain time instant, we 
can specify the position of a vehicle by a point, having a point process in one/dimensional 
space rather than in time. 
A random counting process  is an index continuous state discrete stochastic variable 
specifying the number of events  in the interval [0 , with the assumption 

( )N t

it , [t

( ){ }Pr 0 0 1N = = . The expected number of events in every finite time interval is finite. 

The increment ( ) ( ) ( )dN t N t dt N t= + − of the counting process in the time interval 
 is regular if  [ , [t t dt+

 
( ){ } ( ) ( )
( ){ } ( )
( ){ } ( ) ( )

2

2

2

Pr 1

Pr 1

Pr 0 1

dN t t dt o dt

dN t o dt

dN t t dt o dt

ν

ν

= = +

> =

= = − +

                                                                          (1.2.1) 

  
These properties mean that the probability of occurrence of one event in the infinitesimal 
interval  is proportional to  and the probability of occurrence of more than 
one event is negligibly small. It follows that for any n 

[ , [t t dt+ dt

 
( ) ( ) ( ) ( )2nE dN t E dN t t dt o dtν⎡ ⎤= = +⎡ ⎤⎣ ⎦ ⎣ ⎦                                                               (1.2.2) 

 
where is the mean arrival rate of events. ( )tν
Let us choose from the interval , the disjoint infinitesimal time intervals 

, . The probability of occurrence of n events in the interval (0  can 
be evaluated as follows 

(0, [t
[ , [i i it t dt+ 1, 2...i = n , [t

 

( ){ } ( ) ( )1 2 1 2
0 0

1Pr .. , ,... ...
!

t t

n nN t n t t t dt dt dt
n

π= = ∫ ∫ n

)k

                                                        (1.2.3) 

 
where is the joint density function defined as (Srinivasan (1974), 
Iwankiewicz (1995), Iwankiewicz and Nielsen (1999)) 

( 1 2, ,..k t t tπ
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( ) ( )
( ) ( )1 2 1 2 1 1

0 0

1
, ,.. .. , ,.. , ... ..

!

n k t t

k k n k k n k
n k

t t t f t t t t t dt dt
n k

π
−∞

+ +
=

−
=

−∑ ∫ ∫ n                                         (1.2.4) 

  
where the n-th degree product density function ( )1 2, ,..n nf t t t represent the probability that 
one event occurs in each of the intervals [ , [i i it t dt+ , irrespective of other events in the 
interval , that is (0, [t
 

( ) ( ) ( ) ( ){ }1 2 1 2

1 2

, ,.. Pr 1 1 ... 1

..
n n n

n

f t t t dN t dN t dN t

t t t

= = ∧ = ∧

≠ ≠

=
                                        (1.2.5) 

 
 1.2.3 Poisson process 

 
The simplest point process is one in which points occur totally randomly. The probability 
of finding a point in the time interval (t, t + δ] does not depend on whether there have 
been few or many points just before t, or whether there is a point exactly at t. This 
property virtually excludes the possibility of multiple simultaneous occurrences. 
The Poisson process is a point process whose increments defined on disjoint intervals are 
independent, and is completely characterized by its first order product density function 
 

( ) ( )1f t ν= t                                                                                                                  (1.2.6) 
 
called the intensity of the Poisson process. For a homogeneous Poisson process 
( ), it is ( ) cost tν ν= =
 

( )
( ) ( )

( ){ } ( ) ( )

1 2

1 2

, ,..

, ,.. exp

Pr exp
!

n
n n

n
n n

n

f t t t

t t t t

t
N t n t

n

ν

π ν ν

ν
ν

=

= −

= = −

                                                                                 (1.2.7) 

 
 1.2.4 Renewal processes 

 
An important class of point processes, generalising the Poisson process, is obtained 
assuming that the intervals are independent but not necessarily exponential distributed. 
A renewal process is a random sequence of points , the intervals  (  and 

, with ) between the successive points, called interarrival times 
being positive, independent and  identically distributed random variables. 

1 2, ,..., nt t t iT 1t T= 1

i1i it t T−− = 2,3,...i =

The point process is an ordinary renewal process if the first waiting time  has the 
distribution as the other intervals . In this case the origin is placed in the initial event 
that is not counted. If the origin is placed arbitrarily, the first waiting time has another 
distribution than other intervals and the point process is called a delayed renewal process. 

1T

iT
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An ordinary renewal density ( )0h t  is defined as the probability that a random point 
occurs in the interval[ , , given that an event occurs at the origin. A modified 
renewal density  is defined as the probability that a random point occurs in the 
interval[ , ,  with arbitrarily placed origin and coincide with the first-order product 
density: 

[t t dt+

( )mh t
[t t dt+

 
( ) ( ){ } ( )1Pr 1mh t dt dN t f t dt= = =                                                                              (1.2.8) 

 
 Due to the fact that an event occurring in the interval [ , [t t dt+  can be either the first 
point or one of the subsequent, the renewal densities satisfy the renewal equations (Cox 
(1962), Cox and Isham (1980), Srinivasan (1974)).: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
0

0

t

m m

t

o o

h t g t h t u g u du

h t g t h t u g u du

= + −

= + −

∫

∫
                                                                             (1.2..9) 

where  denote the probability of occurrence of the first event, and ( )1g t ( )g t  the 
probability density of the subsequent intervals  . iT
The renewal densities can be evaluated by taking the Laplace transforms of the equations 
(1.2..9)  as follows 
 

( ) ( )
( )

( ) ( )
( )

*
11

*
1

*
1

*

1

1

m

o

g s
h t L

g s

g s
h t L

g s

−

−

⎧ ⎫⎪ ⎪= ⎨ ⎬−⎪ ⎪⎩
⎧ ⎫⎪ ⎪= ⎨ ⎬−⎪ ⎪⎩ ⎭

⎭                                                                                              (1.2.10) 

 
If the probability density of the interarrival times is a gamma function, with integer 
parameter ,  k
 

( ) ( ) ( )1 exp , 0
1 !

k
kg t t t t

k
ν ν−= −
−

>

>

                                                                    (1.2.11) 

 
the corresponding renewal process is an Erlang renewal process. Letting , the 
interarrival times are negative exponential distributed  

1k =

 
( ) ( )exp , 0g t t tν ν= −                                                                                     (1.2.12) 

 
and the corresponding renewal process is a Poisson process. 
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The distribution with probability density (1.2.11) is the distribution of the sum of  
independent negative-exponential distributed variables, with parameter

k
ν . The events 

driven by an Erlang renewal process with parameter k , can be viewed as every th event 
of the generating Poisson process with parameter

k
ν . 

 
 
2. EXTENSIVE SUMMARY OF CONTENTS AND OBJECTIVES OF 

RESEARCH 
 
 
2.1  CONVERSION OF AN ERLANG RENEWAL PROCESS INTO A POISSON 

ONE 
 
 
One of the main contributions of the present thesis is the derivation of a transformation 
rule that allows to express any Erlang renewal process in terms of the corresponding 
Poisson one (see Tellier and Iwankiewicz (2006)). This is an alternative formulation to 
the one given in (Nielsen, Iwankiewicz and Skjaerbaek (1995), Iwankiewicz and Nielsen 
(1999),  Iwankiewicz and Nielsen (2000)). 
An Erlang renewal process ( )R tν with parameters and k ν can be exactly expressed in 

terms of the corresponding Poisson process ( )N t with parameter ν  through the following 
transformation 
 

( ) ( ) ( )
( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1

1 2 1

2 3 2

2 1 2

2

1 1
1

..

1 2

k k k

k

k j k
j

dR t t dN t

d t t t dN t

d t t t dN t

d t t t dN t

d t t t dN

ν
ν ν

ν ν ν
ν

ν ν ν
ν

ν ν ν
ν

ν ν ν
ν

ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

− − −

−

− −
=

=

= −

= −

= −

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ t

                                                            (2.1.1)  

In chapter III, the expectation of the renewal process ( )R tν is found to be the solution of 
a linear differential equation of order 1k −  with constant coefficients, which is equivalent 
to a set of first order equations, in terms of stepwise stochastic variables. Those variables 
are exactly recast in terms of the zero-one stochastic functions ( )1 tνρ , ,.,( )2 tνρ ( )1k tνρ −  

appearing in eq. (2.1.1). The variable ( )1 tνρ  equals 1 in the time interval between the (n-
1)st arrival of the Poisson process ( )N tν  and the n-th arrival. A sample function of the 
process ( )R tν and the correspondent zero-one variables ( )j tνρ ( 1,.. 1j k= − ), are depicted 

in Fig. 2.1.1. The variable  equals 1 in the time interval between the (n-2)nd arrival ( )2 tνρ
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of the Poisson process ( )N tν  and the (n-1)st arrival. The variable  equals 1 in the 
time interval between the 1st and the second arrivals of the Poisson process

( )1k tνρ −

( )N tν . 
If the impulsive excitation is driven by an Erlang renewal process, it can be recast in 
terms of a Poisson process through the transformation (2.1.1) and the original non-
Markov problem is converted into a Markov one. 

 
Figure 2.1.1 

 
Sample function of an impulse process driven by an Erlang renewal process with generic parameters k  and 
ν and auxiliary zero-one variables appearing in expressions (2.1.1). 
 
 

Rν(t) 

ρν
1(t) 

1

ρν
2(t) 
1

ρν
κ−1(t) 

1

t 

 2.2 A SPECIAL CLASS OF RENEWAL PROCESSES 
  

Most of the existing methods of stochastic dynamics are relevant to random pulses driven 
by Poisson processes or Erlang renewal processes. This class of pulse problems is quite 
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narrow. If random occurrences of impulses are assumed to be independent, the 
occurrence times are described by the Poisson process. The question arises whether, and 
if so, to what extent the Poisson process is an adequate model of actual trains of events. 
In this regard, best investigated are the traffic highway phenomena. 
Let us consider a road in which vehicles are driving in one direction only and all with the 
same constant velocity. The ‘events’ can be  

- time instants when vehicles pass a certain point on the road 
- considering the time scale as map of the road, the position of the vehicles at 

certain instant 
In both cases, the form of the interarrival distribution is expected to depend on the traffic 
volume on the road. In a rural road the probability distribution may be taken as 
exponential, while on a main street in a city the vehicles tend to be equally spaced and the 
probability distribution should be concentrated at one point. 
Gerlough paper (Gerlough (1955)) describes some of the applications of the Poisson 
distribution in highway traffic which include the analysis of arrival rates at a given point, 
determination of the probability of finding a vacant parking space and studies of certain 
accident locations. 
The assumption inherent in the Poisson law, that the probability of an event remains 
constant, is seldom true in traffic practice. Intersection counts have shown that arrivals 
through the entire peak hour are not Poisson (only arrivals during the peak period within 
the peak hour are Poisson). The failure of the chi-square test (non acceptability of fit) 
indicates that the distribution of arrivals does not conform to a Poisson distribution. 
Gerlough concludes that the Poisson distribution cannot be assumed as an adequate 
description of the data. 
More general is the modeling in terms of renewal processes which are defined as 
sequences of independent, identically distributed random variables (inter-arrival times). 
Different probability distributions can be assumed for the inter-arrival times, thus 
resorting to renewal processes allows accounting for more realistic, unimodal probability 
density functions of the interarrival times. One of the renewal processes widely used in 
traffic engineering is the Erlang process. It affords the opportunity of considering the 
distribution of vehicles for all the cases from independency (the special case of negative 
exponential distribution, the time spacing distribution between Poisson arrivals for which 
k=1) and complete uniformity ( k = ∞ ). While the negative exponential distribution is 
characterized by only one parameter, the Erlang distribution has two parameters that can 
be estimated from the mean and the variance of the field measurements.  
The advantage of modeling the interarrival times using the class of renewal processes 
analyzed in the present dissertation, rather than the Poisson or Erlang distributions is that 
it is possible to deal with a broader class of the interarrival probability density functions. 
The non-Erlang renewal processes considered herein, obtained from two independent 
Erlang renewal processes, are characterized by four parameters that can be chosen to fit 
more closely the actual data on the distribution of the interarrival times. 
 

2.2.1 Characterization of the non-Erlang renewal process R(t) 
 

The class of impulse processes here considered is obtained by selecting the events from 
an Erlang renewal process ( )R tν with parameters ν  and , with the aid of the k
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Rµ

( )R tν

( )Z t

t

( )R t

1aTw
2aT

replacement
( )

( ) ( )
( )

(,
, 1 1

R t R t

i R i i i i
i R i

P t t Z t P t t
ν

δ
= =

− = −∑ ∑ )δ , where the zero-one stochastic variable 

( )Z t  is governed by the following stochastic differential equation: 
 

( ) ( ) ( ) ( )1dZ t Z dR t ZdR tµ ν= − −                                                                              (2.2.1) 
  
The variable ( )Z t , a left continuous variable with right limits (see Figure 2.2.1) is zero 

except in the time interval between the first ( )R tµ  driven event occurring after a  ( )R tν  

driven event and the first subsequent ( )tνℜ  driven event. In other words, ( )iZ t is zero at 

all instants  driven by it ( )R tν  except the first ones occurring after ( )R tµ  driven events. 
 The increment of this class of non-Erlang processes becomes 
 

( ) ( )dR t Z t dRν= .         (2.2.2) 
                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2.2. 
Sample function of the process ( )Z t  governed by the equation (2.2.1) and the correspondent renewal 
process governed by the equation (2.2.2). 
 
 

2.3 ANALYSIS OF LINEAR SYSTEMS UNDER RANDOM TRAINS OF 
IMPULSES 

 
For any stochastic point process, the statistical moments of the response of a linear 
system may be evaluated in the form of explicit integral expressions in terms of the 
product densities of the underlying point process (Iwankiewicz (1995), Iwankiewicz and 
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Nielsen (1999)). However, the drawback of this approach is that the evaluation of higher 
order response moments requires the cumbersome evaluation of multifold integrals.  
Computationally more effective and applicable to non-linear systems as well, is the 
approach that leads to differential equations. Such an approach requires the formulation 
of the problem in terms of stochastic differential equations and the use of the theory of 
Markov processes. If the dynamic system is excited by a Poisson distributed train of 
impulses, the state vector of the system is a non-diffusive Markov process and the tools 
of the theory of Markov processes can be directly used. If however, the point process 
generating the impulse train is not a Poisson process the state vector of the dynamic 
system is not a Markov process. 
One of the most effective approaches to deal with linear and non-linear systems subjected 
to non-Poisson trains of impulses is to convert the original problems into Markov ones. 
For a Poisson train of overlapping pulses, an auxiliary filter under a Poisson impulse 
process may be used to transform the original non-Markov problem to a Markov one 
(Ricciardi (1994)). When the excitation is a filtered Poisson process of polynomial form 
(Grigoriu and Waisman (1986)), the state vector, augmented by Poisson driven stochastic 
variables, is a Markov process. An exact converting technique was developed for trains 
of impulses driven by Erlang renewal processes (Nielsen et al. (1995)). The original, 
Erlang-driven, train of impulses is recast into a Poisson-driven one with the aid of 
auxiliary stochastic variables driven by a Poisson process. A random train of impulses 
driven by a generalised Erlang renewal process, where the interarrival times are sum of 
two independent, negative exponential distributed random variables, was dealt with in 
(Iwankiewicz (2002)). Recasting the original train of impulses driven by a generalised 
Erlang renewal process is performed with the aid of a zero-one valued auxiliary variable 
governed by two independent Poisson processes. Extension of this approach to more 
general, non-Erlang renewal processes can be done by introducing an auxiliary variable 
governed by a stochastic equation driven by auxiliary processes: one Poisson process and 
one Erlang renewal process (Iwankiewicz, 2003). 
In the present dissertation, the response of a linear oscillator under a random train of 
impulses driven by the process ( )R t  defined by equations (2.2.1) and (2.2.2) is analyzed. 
The underlying process defines a  class of non-Erlang renewal processes obtained by 
multiplying the random impulses magnitudes of an Erlang renewal process ( )R tν , by a 

zero-one stochastic variable ( )Z t . This variable is driven by two independent Erlang 
renewal processes that are, in turn, exactly expressed, with the aid of auxiliary 
variables 1 2.. NZ Z Z , in terms of Poisson processes. In this way, the state vector of the 
dynamic system augmented by auxiliary variables becomes a non-diffusive Markov 
process. 
The stochastic equations governing the augmented state vector 

 can be written as 1 2 ..
T

NX X Z Z Z⎡ ⎤= ⎣ ⎦X
 

( ) ( )( ) ( ) ( )( ) ( ),d t t dt P t t d t= +X c X b X N                                     (2.3.1)  
          
 One of the major contributions of the present thesis is the development of the Markov 
approach to non-Markov problems arising when the special class of renewal processes 
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here considered is used in modeling impulsive loading phenomena. The use of this class 
of renewal counting processes also allows a better fitting to the actual data on the 
distribution of interarrival times than the classical models using Poisson and Erlang 
processes. 
 The equation governing the evolution of the mean values of the auxiliary variables are 
derived and the renewal densities of the underlying renewal process are evaluated for 
different excitation processes or different cases of the driving process. The general 
expression for the probability density of the first waiting time is derived. The probability 
density functions of the interarrival times are found for different cases and analyzed for 
various sets of parameters. Equations for the response mean values are obtained by direct 
averaging of the governing stochastic equations. Equations for the response variance are 
derived with the aid of the generalized Ito’s rule. Mean value and variance of the 
transient response of a linear oscillator are evaluated numerically and analyzed. 
 
 

 2.4 NON-LINEAR SYSTEMS  
 

2.4.1 Review of closure techniques 
 
In engineering applications, linear models are usually accurate to reproduce the dynamic 
behaviour of structures under small-amplitude vibrations. However, no real system is 
linear and a non-linear model of analysis is certainly more adequate under large 
amplitude levels. The structural response to natural hazard loads may exhibit strongly 
non-linear characteristics.  
The methods based on the Ito differential rule allow to characterize the probabilistic 
structure of the response of systems subjected to random loadings. When the probabilistic 
method is applied to non-linear systems, it is necessary to introduce some approximations 
in order to evaluate the statistics of the response process. Since the system is non-linear, 
the equations for moments involve unknown expectations of non-linear transformations 
of the state variables. When the non-linearity is a polynomial (of degree>1), the equations 
for moments form an infinite hierarchy. For non-linearities other than polynomial, the 
expectations appearing in the equations for moments cannot be explicitly expressed in 
terms of moments, but must be evaluated as integrals respect to the unknown probability 
density of the system. 
The most natural technique consists in replacing the set of non-linear differential 
equations governing the non-linear problem by an equivalent set of linear equations 
whose parameters are obtained minimizing in a convenient way the difference between 
the two sets or ‘error’. The statistical linearization method provides a useful analytical 
tool in the analysis of physical systems with weak non-linearities (Roberts and Spanos 
(1990)). Non-Gaussian closure methods have been developed in order to evaluate the 
stochastic response of strongly non-linear systems. The cumulant neglect closure is based 
on the truncation of the Taylor series expansion of the log-characteristic function 
(Stratonovich,(1963)). The quasi-moment neglect closure originates from the truncation 
of the A-type Gram-Charlier expansion of the probability density function of the response 
(Ibrahim (1985), Wu and Lin. (1984)). The coefficients of a given order of the two series 

 15



expansions are related to the moments of the response by algebraic relationships 
(Muscolino (1993), Kenney and Keeping (1951), Abramowitz and Stegun (1972)). 

 
 

2.4.2 Analysis of non-linear systems under random trains of impulses 
 

The use of a non-linear model becomes fundamental in modeling natural impact loads 
such as strong ground motion acceleration due to earthquakes (Lin (1963), Cornell 
(1964)), loading caused by wind gusts associated with eddies (Merchant (1964)), 
dynamic action due to waves on offshore structures (Madsen (1988)), intermittent ‘down-
wash’ exciting an airplain tail, the motion of vehicles on rough ground (Roberts (1966)).  
The simplest model of such excitations is a Poisson-distributed train of impulses. Roberts 
in (Roberts (1972)) analysed the problem of non-linear dynamical systems under such 
excitation, devising a perturbation solution to the Fokker-Planc-Kolmogorov equation 
governing the probability density function of the response. Cai and Lin proposed an 
improved perturbation technique (Cai and Lin (1982), Lin and Cai (1995)). Tylikowski 
and Marowski in (Tylikowski and Marowski (1986)) applied the equivalent linearization 
to such a problem. 
Another approach,  to the  problem of a non-linear system under a Poisson driven train of 
impulses based on closure approximations of the equations for moments was formulated 
in (Iwankiewicz and Nielsen (1990), Iwankiewicz and Nielsen (1992), Iwankiewicz 
(1995)). The same approach was then applied to the case of renewal driven impulses 
(Iwankiewicz and Nielsen (1994), Nielsen et al.(1995), Nielsen and Iwankiewicz (1997)). 
A cell-to-cell mapping technique for Poisson impulses, renewal impulses and Poisson 
pulses was developed in (Koyluoglu et al.(1994), Koyluoglu et al.(1995), (Iwankiewicz 
and Nielsen (1996), Di Paola and Falsone (1993)). Grigoriu in (Grigoriu (1996)) applied 
the equivalent linearization technique to solve the equation governing the characteristic 
function of the response of a non-linear system to a Poisson impulse process. 
 

2.4.3 Modified closure scheme 
 
Let us assume that the excitation is a random train of impulses driven by an Erlang 
renewal process or driven by the non-Erlang renewal process ( )R t  defined in equation 
(2.2.2). The load process can be exactly expressed, with the aid of a suitable set of 
auxiliary variables, in terms of Poisson processes. Thus the augmented state vector, 
consisting of the original state vector and of auxiliary variables, is driven by two 
independent Poisson processes, and becomes a Markov process. The Ito’s differential 
rule is used to derive the differential equations governing the response statistical 
moments.  
A novel closure scheme is here developed that takes into account the specific physical 
properties of impulsive load processes. The joint probability density of the augmented 
state vector is expressed as sum of contributions conditioned on the ‘on’ and ‘off’ states 
of the auxiliary variables. A discrete part accounts for the fact that there is a finite 
probability of the system being in a deterministic state from the initial time to the 
occurrence of the first impulse, the continuous part, which is the conditional probability 
given that the first impulse has occurred, can be expressed in terms of functions of the 
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displacement and velocity of the system. These functions can be viewed as unknown 
probability densities of a bi-variate stochastic process, each of which originates a set of 
‘conditional moments’. The ordinary cumulant neglect closure is then performed on the 
conditional moments pertinent to the continuous part only. From the expression of the 
joint probability density function the relationships between unconditional and conditional 
moments are derived. The closure scheme is then formulated by expressing the 
‘unconditional’ moments of order greater then the order of closure, in terms of 
unconditional moments of lower order. 
The stochastic analysis of a Duffing oscillator under the the random train of impulses 
driven by an Erlang renewal processes or a non-Erlang renewal process R(t), is 
performed by applying the ordinary cumulant neglect closure and the modified closure 
approximation and the approximate analytical results are verified against direct Monte 
Carlo simulation. Departure of the excitation process from Gaussianity depends on the 
ratio between the mean arrival rate of the impulses and the system natural frequency. As 
the ratio decreases, the departure from Gaussianity increases. The modified closure 
scheme proves to give better results for highly non-Gaussian train of impulses, 
characterized by  low mean arrival rate. 
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3. DYNAMIC RESPONSE OF LINEAR SYSTEMS 
 

A novel transformation rule that allows recasting any Erlang renewal process in terms of the 
corresponding Poisson one is here devised. A more general class of renewal processes is then 
considered, obtained by selecting impulses from an Erlang-driven train with the aid of an auxiliary 
jump, zero-one, stochastic variable driven by two independent Erlang processes.  
The analysis of linear systems under such excitations is then performed by using the tools of the 
theory of the Markov processes. Conversion of the original non-Markov problem for the original 
state vector driven by a renewal impulse process into a Markov problem is performed by means of 
augmenting the state vector by auxiliary variables which are the jump stochastic processes. 
 

3.1  ERLANG RENEWAL IMPULSE PROCESS 
 

3.1.1 Statement of the problem 
 
Consider a linear oscillator governed by the equation 
 

( ) ( ) ( )
( )

(2
,

, 1
2

R t

i R i R
i R

),X t X t X t P t tζω ω δ
=

+ + = −∑   (3.1.1) 

where the excitation is a random train of impulses whose interarrival times  are driven by an 

Erlang renewal process
,i Rt

( )R t . The impulses magnitudes  are independent, identically distributed 
random variables. Each of the variables  is assigned to a random point . It is assumed that the 

counting process 

,i RP

,i RP ,i Rt

( )R t  gives the number of events in the time interval (0,t), excluding the one that 

possibly occurs at t. The possibility of an event at the origin is excluded, which implies ( )0 0R =  

with probability 1. Hence, the sample paths of  ( )R t  are left-continuous with right limits. 

If  ( )R t  is an Erlang renewal process, with parameters α  and k , the original train of impulses may 

be replaced by a Poisson driven one with the aid of an auxiliary variable ( )tρ , as 
( )

( ) ( )
( )

(, ,
, 1 1

R t N t

i R i R i i i
i R i

P t t t P t tδ ρ δ
= =

− = −∑ ∑ ) ,  where ( )tρ  is a jump zero-one stochastic process with 

 with probability 1 , whose sample paths are left-continuous with right limits. 

Therefore  at every n

( ) ( )( )0 0Nρ ρ= 0=

=( ) ( ) 1i i
t tρ ρ −= k⋅ -th Poisson driven event ( ), otherwise1n ≥ ( ) 0itρ = . 

Then 
 

( ) ( ) ( )dR t t dN tρ=                                          (3.1.2) 
 
where . The impulses magnitudes  are independent random variables, 
identically distributed as the variables . Each of the variables  is assigned to a random point.  

( ) ( ) ( )dN t N t dt N t= + − iP

,i RP iP
 
 

3.1.2 Conversion of an Erlang renewal impulse process into a Poisson one 
 
 

If an Erlang renewal process ( )R t   has parametersα and , the time intervals between events have 
gamma distribution, with density function 

k
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( ) ( )
1

;
1 !

k k
ttg t e

k
αα −
−=

−
  (3.1.3) 

 
The renewal density of an ordinary renewal process, defined as ( ) ( )E dR t h t dt=⎡ ⎤⎣ ⎦ , can be 
evaluated as [Srivanisan (1974); Cox (1962); Cox and Isham (1980)] 
 

( )h t =L
( )
( )

1 ;
1

g s
g s

∗
−

∗

⎧ ⎫⎪
⎨ −⎪ ⎪⎩ ⎭

⎪
⎬   (3.1.4) 

 
 
From (3.1.3) it follows that 
 

( )
( )

;
k

kg s
s

α
α

∗ =
+

  (3.1.5) 

 
then (3.1.4) becomes 
 

( )h t =  L 
( )

1 ;
k

k ks
α

α α
−
⎧ ⎫⎪
⎨

+ −⎪ ⎪⎩ ⎭

⎪
⎬   (3.1.6) 

 
hence (cf. Srivanisan (1974); Cox (1962); Cox and Isham (1980)]) 
 

( ) 2

2 2
th t e αα α −= −  ,         ,   2k =

 

( ) ( ) ( )1 13 3 3 3
2 2

3
2

1 1
3 2 3 2 33 3

3 33 sin cos
3 3 2 2

i t i t

t

i ih t e e

e t t

α α

α

α α α

α α α α

− + − −

−

⎛ ⎞ ⎛= − + − −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎛ ⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎞
⎟
⎠

⎞
,         3k = ,  

 

( ) ( ) ( )

( )( )

1 12

2

4 4 4 4

1 2sin
4

i t i tt

t t

h t e i e i e

t e e

α αα

α α

α α α α

α α

− + − −−

− −

= − − +

= − −
 ,     4k = . (3.1.7) 

 
It can be shown that for an arbitrary  we obtain k
 

( )
( )

1

11

1
1

1

j

k

l
lk

t l j
k

j
j l

l
l j

h t e
k k

λ

λ
α α

λ λ

−

=−
≠

−
=

=
≠

= +
−

∏
∑

∑
  (3.1.8) 
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where jλ  is the j th root of the following polynomial of order 1k −   
 

( ) ( )( ) ( )
1

1
1 1 2 1

1

...
k

k j j k
k k

j

k 1p x x x x x x
j

λ λ λ α
−

− −
− −

=

⎛ ⎞
= − − − = +⎜ ⎟

⎝ ⎠
∑ −  (3.1.9) 

 
Noting that the solution of a kth order differential equations is the sum of a constant term and of k-1 
exponentials whose arguments are given by t times the corresponding root of the polynomial 
(3.1.9), it can be proved that the renewal density (3.1.8) is a solution of the linear differential 
equation of order  with constant coefficients 1k −
 

( ) ( ) ( ) ( ) ( )1 11

1 1
1

0 0
, 0 ..

k j kk
k j k

k j
j

kd h t d h t dh d h
h

jdt dt dt dt
α α

− − −−
−

− −
=

⎛ ⎞
+ = = =⎜ ⎟

⎝ ⎠
∑

2

2 0k− =  (3.1.10) 

 
Performing the Laplace transform of both sides of eqn. (3.1.10), and observing that 
 

L ( ) ( ) ( )* 0
dh t

sh s h
dt

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
   

L
( ) ( ) ( ) ( )2

2 *
2

0
0

..

d h t dh
s h s sh

dt dt
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

  (3.1.11) 

 

L ( ) ( ) ( )1
*

1
1

0n jn
n n j

n j
j

d h t d h
s h s s

dt dt

−
−

−
=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

 
we obtain 
 

( )1 *

1

kk
k j j

j

k
s h s

j s
αα − −

=

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟
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∑   (3.1.12) 

 
 
hence 
 

( )
( )

*

1 0

k k

k kk k
k j j k j j k

j j

h s
k k ss s
j j

α α kα
α αα α α− −

= =

= = =
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ + −

−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑
 (3.1.13) 

 
which is indeed the Laplace transform of the renewal density ( )h t  (cf.(3.1.6)). 
The renewal density can also be obtained, from the identity (3.1.2), as  
 
( ) ( ) ( )h t dt E dR t E t dtαρ α⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎣ ⎦   (3.1.14) 

 
hence, it follows that the differential equation governing ( )E tαρ⎡ ⎤⎣ ⎦  obtained by dividing the 
equation (3.1.10) through by α , is 
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 (3.1.15) 

 
Equation (3.1.15) is equivalent to the set of first order equations 
 

1 2

2 3

2 1

1
1

1
1

,
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..
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.
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k
k k

k j
j

x x
x x

x x
k
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j

α α

− −

−
− −

−
=

=
=

=
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⎝ ⎠
∑

                                                                                                        (3.1.16) 

 
where ( )1x E tαρ⎡= ⎣ ⎤⎦ . After the change of variables 1/ j

j jy x α −= , the differential system (3.1.16) 
becomes 
 

1 2

2 3

2 1

1

1
1

,
,

..
,

1 .

k k

k
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j

y y
y y

y y

k
y y

j

α
α

α

α

− −

−

−
=

=
=

=

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

                                                                                                          (3.1.17) 

 
Equations (3.1.17) govern the time evolution of the expectation ( )E tαρ⎡ ⎤⎣ ⎦ , which is also the 
solution to equation (3.1.15) and which equals (cf. equation (3.1.8)) 
 

( )
( )

1

11

1
1

1

1 1 j
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l
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k
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l
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λ λ

−

=−
≠

−
=

=
≠

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎡ ⎤ = +⎜⎣ ⎦
⎜ ⎟−
⎜ ⎟
⎝ ⎠

∏
∑

∑
⎟    (3.1.18) 

 
The form of equations (3.1.17) implies that the auxiliary variable ( ) (1tα αρ ρ= )t

t

is governed by the 
following stochastic differential equations 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2

2 1

1

1
1

......

1

k k

k

k j
j

d t t dN t

d t t dN t

k
d t t dN

j

α α
α

α α
α

α α
α

ρ ρ

ρ ρ

ρ ρ

− −

−

−
=

=

=

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

  (3.1.19) 
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For , equations (3.1.19) become (cf. Nielsen, Iwankiewicz and Skjaerbaek (1995)) 2k =
 

( ) ( )( ) ( )1 11 2d t t dN tα α
αρ ρ= −  

 
 This is an alternative formulation to the one given in Iwankiewicz and Nielsen (1999), Nielsen, 
Iwankiewicz and Skjaerbaek (1995), Iwankiewicz and Nielsen (2000). 
 
For example, for   equation (3.1.19) becomes (the superscripts3k = α  are dropped out for the sake 
of simplicity of notation) 
 

( ) ( ) ( )
( ) ( ) ( )( ) ( )

1 2

2 1 21 3 3

d t t dN t

d t t t dN t
α

α

ρ ρ

ρ ρ ρ

=

= − −
              (3.1.20)

               
It can be observed from Figure 3.1.1 that 
 

( ) ( ) ( )
( ) ( ) ( )

*
2 2 1

*
2 2 1

t t t

d t d t d t

ρ ρ ρ

ρ ρ ρ

= −

= −
                         (3.1.21) 

R(t) 

ρ1(t) 
1 

 
Figure 3.1.1 

Sample function of the process ( )R t defined in (3.1.2) for k=3 and auxiliary stochastic variables governed by (3.1.20) 
and (3.1.21) 
 
and from (3.1.20) it follows 
 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

*
1 2 1

* *
2 2 1 1 21 2

d t t t dN

d t d t d t t t dN

α

α

ρ ρ ρ

ρ ρ ρ ρ ρ

= −

= + = − −
           (3.1.21) 

 
Hence, equation (3.1.20) may be written as 
 

ρ2(t) 1 

ρ2∗(t) 

−1 

1 
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( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

1 2 1

2 1 21 2

d t t t dN t

d t t t dN t

α

α

ρ ρ ρ

ρ ρ ρ

∗

∗ ∗

= −

= − −
             (3.1.22) 

 
where the variables are all zero-one stochastic variables (see Figure 3.1.2). 
 
 

R(t) 

ρ1(t) 
1 

ρ ∗
2(t) 1 

 
Figure 3.1.2 

Sample function of the process ( )R t defined in (3.1.2) for k=3 and auxiliary stochastic variables governed by (3.1.22)  
 

For , the renewal process can be expressed as follows 4k =
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

1 2

2 3

3 1 2 31 4 6 4

d t t dN t

d t t dN t

d t t t t dN t

α

α

α

ρ ρ

ρ ρ

ρ ρ ρ ρ

=

=

= − − −

      (3.1.23) 

 
where the auxiliary variables ,( )1 tρ ( )2 tρ  and ( )3 tρ  are depicted in Figure 3.1.3. 
 It can be observed that 
 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

*
2 2 1

* *
3 3 2 1

*
2 2 1

* *
3 3 2 1

2

2

t t t

t t t t

d t d t d t

d t d t d t d t

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

= −

= − +

= −

= − +

                  (3.1.24) 

 
and from (3.1.23) and (3.1.24)  it follows 
 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

*
1 2 1

* * *
2 2 1 3 2

* * * *
3 3 2 1 1 2 32 1 2

d t t t dN

d t d t d t t t dN

d t d t d t d t t t t dN

α

α

α

ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ

= −

= + = −

= + − = − − −

               (3.1.25) 

 
where , , ( )1 tρ ( )2 tρ∗ ( )3 tρ∗ , as depicted in figure 3.1.4, are zero-one stochastic variables 
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R(t) 

1 

 
Figure 3.1.3 

Sample function of the process ( )R t defined in (3.1.2) for k=4 and auxiliary stochastic variables governed by (3.1.23) 
and (3.1.24) 
 
 
 

 
Figure 3.1.4 

Sample function of the process ( )R t defined in (3.1.2) for k=4 and auxiliary stochastic variables governed by (3.1.25) 
 

In general, an Erlang renewal process characterized by an arbitrary couple of   parameters α  and  
can be expressed in terms of the correspondent Poisson process, through the following 
transformation: 

k

 

R(t) 

ρ1(t) 

ρ ∗
2(t) 

1 

1 

1ρ ∗

 3 (t) 

ρ1(t) 

1 
ρ2(t) 

−1 

1 

ρ3 (t) 
−2 
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( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 2 1

2 3 2

2 1 2

2

1 1
1
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1 2
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k
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j
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α

α α α
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ρ ρ ρ
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−

− −
=

= −

= −

= −

⎛ ⎞
= − −⎜ ⎟
⎝ ⎠

∑ t

                                                                           (3.1.26) 

 
where the stars have been dropped for the sake of simplicity. 
The variables , ,…..,  only take values 0 or 1. The variable  equals 1 in the 
time interval between the (n-1)st arrival of the Poisson process 

( )1 tαρ ( )2 tαρ ( )1k tαρ − ( )1 tρ
( )tNα  and the n-th arrival. The 

variable  equals 1 in the time interval between the (n-2)nd arrival of the Poisson process 
 and the (n-1)st arrival. ….. 

( )2 tαρ
( )tNα

The variable  equals 1 in the time interval between the 1st and the second arrivals of the 
Poisson process . 

( )1k tαρ −

( )tNα

 
 
 

3.2 A CLASS OF NON-ERLANG RENEWAL IMPULSE PROCESSES 
 

3.2.1 Statement of the problem 
 

 
The class of impulse processes here considered is obtained by selecting the events from an Erlang 
renewal process ( )R tν with parameters ν  and k , with the aid of the 

replacement
( )

( ) ( )
( )

(,
, 1 1

R t R t

i R i i i i
i R i

P t t Z t P t t
ν

δ
= =

− = −∑ ∑ )δ , where the zero-one stochastic variable ( )Z t  is 

governed by the following stochastic differential equation: 
 

( ) ( ) ( ) ( )1dZ t Z dR t ZdR tµ ν= − −   (3.2.1) 
 
The variable ( )Z t , a left continuous variable with right limits (see Figure 3.2.1) is zero except in the 

time interval between the first ( )R tµ  driven event occurring after a  ( )R tν  driven event and the 

first subsequent  driven event. In other words, ( )tνℜ ( )iZ t is zero at all instants  driven by it ( )R tν  

except the first ones occurring after ( )R tµ  driven events. 
 The increment of this class of non-Erlang processes becomes 
 

( ) ( )dR t Z t dRν= .                             (3.2.2) 
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Rµ

( )R tν

( )Z t

t

( )R t

1aTw
2aT

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2.1. 
 

Sample function of the process ( )Z t  governed by the equation (3.2.1) and the correspondent renewal process 
governed by the equation (3.2.2). 
 
If the interarrival times between events are sum of two independent, exponential distributed variates 
with parameters µ , ν  the counting process ( )R t  can be exactly obtained by selecting the events 

from the Poisson process , with the aid of a zero-one stochastic variable ( )N tν ( )Z t  governed by 
the following stochastic differential equation (Iwankiewicz (2002), Iwankiewicz (2003)): 
 

( ) ( ) ( ) ( )1dZ t Z dN t ZdN tµ= − − ν   (3.2.3) 
 
where  and  ( )N tµ ( )N tν  are two homogeneous Poisson processes with parameters µ  and ν  
respectively. The increment of the renewal process becomes 
 

( ) ( )dR t Z t dNν=   (3.2.4) 
 
 

3.2.2 Probability density function of the first and second waiting time 
 
First waiting time  
 
Let us consider the impulse process generated with the aid of the stochastic equation (3.2.1) driven 
by Erlang processes ( )R tµ , with parameters , lµ  and ( )R tν , with parameters ,kν  and let Tµ  and 
Tν  be the corresponding interarrival times. The probability density of the first waiting time , that 
is the time elapsed from the origin to the first impulse driven by

1w

( )R t , is expressed as (see Figure 
3.2.2). 
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µ ν

µ ν ν
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ξ ξ ξ ξ ξ

ξ ξ ξ
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= ∈ + = ∈ + ∧ ∈ + +

⎧ ⎫
∈ + ∧ ∈ + ∧ ∈ − − + =⎨ ⎬

⎩ ⎭

+ −

∑

∑ ∑

∫ ∫ ∫

                         (3.2.5) 

t t d t+

u u du+
ξ dξ ξ+

t ξ−
t u−

dRν
dRµ dRν

Tµ

t

1w 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2.2. 
 

Definition of the variables appearing in the expression of the probability function of the waiting time (equation (3.2.5)) 
 
The contributions at the right hand side of equation (3.2.5) account for the probabilities that the first 

( )R tν  driven event occurring after the first ( )R tµ  driven event has occurred, may be either the first 

( )R tν  driven event at all, or the subsequent event.  

Then the probability density ( )
1wf t  of the waiting time  is given by the following expression: 1w

 

( ) ( ) ( ) ( ) ( )
1

0 0

t u

T T Tw
f t dt g u g t h g t d dudt

µ ν νν ξ ξ ξ
⎛ ⎞

= + −⎜
⎝ ⎠

∫ ∫ ⎟  (3.2.6) 

 
where  is the probability density function of the interarrival times T( )Tg t

α α  and  is the 

renewal density function of the process 
( )h tν

( )R tν . 
 

Second waiting time 
 
Let us consider the impulse process generated with the aid of the stochastic equation (3.2.1) driven 
by Erlang processes ( )R tµ , with parameters , lµ  and ( )R tν , with parameters ,kν  and let Tµ  and 
Tν  be the corresponding interarrival times. The probability density of the second arrival, that is the 
time elapsed from the origin to the second event, is expressed as (see Figure 3.2.3). 
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                         (3.2.7) 
 
The contributions at the right hand side of equation (3.2.7) account for the probabilities that the 
second impulse, a ( )R tν  driven event, may be either the second ( )R tν  driven event occurring after 
the first impulse, or a subsequent event. 
 
 
 
 

uξ
1u t

1ξ
τ

1t

1w

2w
 
 
 
 
 
 
 
 
 

Figure 3.2.3 
 

Definition of the variables appearing in the expression of the probability function of the time elapsed between the origin 
and the second impulse (equation (3.2.7)) 
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Then the probability density ( )
2

1w
f t  of the time elapsed between the origin and the second event is 

given by the following expression: 
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  (3.2.8) 
 
where  is the probability density function of the interarrival times T( )Tg t

α α  and  is the 

renewal density function of the process 
( )h tα

( )R tα . 
 
Characterization of the excitation process 
 
In the derivations that follow the analytical expressions of the probability density of the first and 
second arrival for the process defined by (3.2.2) will be found.  
Then, four different processes obtained from (3.2.2) by substituting in (3.2.1) Poisson or Erlang 
processes, will be analysed 
 
Process I - ( ) ( ) ( ) ( )1dZ t Z dN t ZdN tµ ν= − − , 

Process II - ( ) ( ) ( ) ( )1dZ t Z dR t ZdN tµ ν= − −  

Process III - ( ) ( ) ( ) ( )1dZ t Z dN t ZdR tµ ν= − − ,  

Process IV- ( ) ( ) ( ) ( )1dZ t Z dR t ZdR tµ ν= − −  
 
It will be assessed weather or not their interarrival times are identically distributed and weather or 
not the underlying processes ( )R t are renewal.  
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3.2.3 Characterization of the Process I : ( ) ( )R t Pµ µ= = and ( ) ( )R t Pν ν= . 
 
Let us consider the process obtained from equation (3.2.1), when ( ) (R t Pµ )µ=  and ( ) ( )R t Pν ν=  

(two Poisson processes with parametersµ  and ν  respectively). In Iwankiewicz (2002) it was 
proved that the generated renewal process is an ordinary renewal process with interarrival times 
which are the sum of two independent negative exponential distributed variables with parametersµ  
and ν   The equation for the mean value of the stochastic variable ( )Z t  is 
 

( ) ( ) ( )[ ] [ ]d E Z t E Z t
dt

;µ ν= − + + µ   (3.2.9) 

 
The renewal density is given by 
 

( ) ( ) ( ) ( )((1 exph t dt E dR t E Z t dt t dt))νµν ν
ν µ

= = = − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ +
µ  (3.2.10) 

 
This is exactly the renewal density of the process above mentioned. Let us perform the 
demonstration in an alternative way from (3.3.8). The probability density of the first waiting time is 
obtained as: 
 

( ) ( ;t t
wf t e eν µ )νµ

µ ν
− −= −

−
  (3.2.11) 

 
and it is the probability density function of the sum of two independent negative-exponential 
distributed variables Tµ  and Tν  with parameters µ  and ν . Let us assume that the underlying 
process is renewal and let us use of the relationship  
 

( ) ( )
( )1

a

w

T

f s
h s

g s

∗
∗

∗=
−

  (3.2.12) 

inserting 
 

( )h s∗ =  L ( ){ } ( ) 2

1h t
s s

µν
µ ν

=
+ +

  (3.2.13) 

and 
 

( )wf s∗ =  L ( ){ } ( )( )wf t
s s
µν

µ ν
=

+ +
                                   (3.2.14) 

 
and solving for  we find ( )

aTg s∗

 

( ) ( )( )aTg s
s s
µν

µ ν
∗ =

+ +
  (3.2.15) 

and 
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( ) (a

t t
Tg t e e )ν µνµ

µ ν
− −= −

−
  (3.2.16) 

 
which means that the interarrival times have the same distribution as the first waiting time.  
The probability density of the time elapsed from the origin to the second event is obtained from eq 
(3.2.8) as: 
 

( )
( ) ( )( ) ( )( )( )

( )2

2 2

3

2 2
;

t t t

w

e e t e t
f t

µ ν µ νν µ µ ν µ ν

µ ν

− + − + − + + −
=

−
 (3.2.17) 

 
If the underlying counting process is a renewal process, with a probability density of the interarrival 
time as given by equation (3.2.16), then the probability density ( )

2wf t  can be found as 
 

( )
2wf t =L�1 ( ) ( ){ }

( ) ( )( ) ( )( )( )
( )1

2 2

3

2 2
a

t t t

w T

e e t e t
f s g s

µ ν µ νν µ µ ν µ ν

µ ν

− +

∗ ∗
− + − + + −

=
−

                (3.2.18) 

 
Since the expressions of the probability density ( )

2wf t , independently obtained, coincide, as it was 

stated, the underlying counting process is indeed an ordinary renewal process. From (3.2.16) it 

follows that the stationary mean value and variance of the interarrival times are given, respectively, 

by  
2 2

2
2 2[ ] ; ;

aa TE T ν µ σ
νµ ν µ
+ +

= =
ν µ                         (3.2.19) 

 
 

3.2.3 Characterization of the Process II : ( ) ( ),R t E lµ µ=  and ( ) ( )R t Pν ν= . 
 

 
If ( ) ( ),R t E lµ µ=  and ( ) ( )R t Pν ν= , where  ( ),E lµ is an Erlang process with parameters µ  and 

, while l ( )P ν  is a Poisson process with mean arrival rate ν , the increment of the process ( )dR t  is 
 

( ) ( ) ( )dR t Z t dN tν=   (3.2.20) 
 
where the variable  ( )Z t  is governed by the equation: 
 

( ) ( ) ( ) ( )1dZ t Z dR t ZdN tµ= − − ν   (3.2.21) 
 
The Erlang renewal process ( )R tµ  can be expressed in terms of the Poisson process ( )N tµ  as 
follows  
 

( ) ( ) ( )dR t t dN tµ µ µρ=   (3.2.22) 
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If  , the equation governing the auxiliary variable 2k = ( )tµρ becomes 
 

( ) ( )( ) ( )1 2d t t dN tµ µρ ρ= − µ   (3.2.23) 
 
Introducing new stochastic variables: ( )1Z t Z=  and ( )2Z t Z µρ= , the equations for the mean 
values become: 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2

2 1 2

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] 2 ;

d E Z t E Z t E Z t E
dt
d E Z t E Z t E Z t
dt

µ ;ν µ ρ

µ ν µ

= − − +

= − +

µ
  (3.2.24) 

 
Let us assume that the process ( )R t  is a renewal process. The renewal density is obtained as: 

( ) ( ) ( )1[ ] [ ]h t dt E dR t E Z t dtν= =   (3.2.25) 
 
hence 
 
( ) ( )

( )
( ) ( )

( )

( ) ( )

1

2
2

2 2 2 2 2 2

[ ]

2 2( e e 1
2 2

tt

h t E Z t

tµ νµ

ν

µ ν µ νµ µ νµ ) ;µ ν
µ ν µ νν µ µ ν

− +−

= =

⎛+
⎜ ⎟− + + −
⎜ ⎟− −+ − ⎝ ⎠

⎞                                   (3.2.26) 

 
From equation (3.2.6) the probability density of the first waiting time , which is the sum of an 
Erlang variable with parameter k=2 and a negative exponential distributed variable, is obtained as  

1w

 

( )
( )

( ) ( )( )( )
2

2 1 ;t t t
wf t e e e tµ ν µ ννµ µ ν

µ ν
− += − +

−
−   (3.2.27) 

 
Under the assumption that the underlying counting process is renewal, the probability density of the 
interarrival times is obtained as: 
 

( )
aTg t =L

( )
( )

1 1 wf s
h s

∗
− ⎧ ⎫⎪ ⎪− =⎨ ⎬
⎪ ⎪⎩ ⎭

  

( )
( )

( )
( )

( ) ( )( )
( ) ( )

2 3 2
2

2 2 2

22 2
e e

2 2
tt t

t tµ ν
2 eν µ

µ ν ν µ νµν µ ν µν µ ν

µ ν ν µ µ ν ν µ
− +− −

− +− +
+ +

− + − +
          (3.2.28) 

 
The probability density of the time elapsed from the origin to the second event is obtained from eq 
(3.2.8) as: 
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fw2 HtL =

1
12 m4 n2 i

k-
3 ‰-t H2 m+nL H2 m + nL

m2 Hm + nL4 +
3 ‰-t n H4 t m3 - n2 + m n H7 + 2 t nL - 2 m2 H7 + 3 t nLL

m2 Hm - nL5 +

1
Hm - nL5 Hm + nL4  

H2 ‰-t m H3 m n3 H-2 + t nL2 + 3 t m5 H4 + t nL + t2 m6 H6 + t nL + m3 H60 n - 6 t2 n3L + 3 m2 n2 H36 - 16 t n + t3 n3L -

n4 H12 - 3 t2 n2 + t3 n3L - 3 m4 H-8 - 16 t n + 3 t2 n2 + t3 n3LLLy{;  
      (3.2.29) 
 

If the underlying counting process is renewal, with probability density of the interarrival time 
given by (3.2.28), the probability density of the second waiting time ( )

aTg t ( )
2wf t can be obtained 

through the inverse Laplace transform L�1 ( ) ( ){ }1 aw Tf s g s∗ ∗ as 

 
( )

2wf t =L�1 ( ) ( ){ }1 aw Tf s g s∗ ∗ = 

:
m2 n

Hs + mL2 Hs + nL
 

m2 n H2s + 2 m + nL
Hs + mL2 Hs + nL Hs + 2 m + nL

> =

1
12

m4 n2

i

k
-

3‰- t H2 m+n L H2 m + nL
m2 Hm + nL4

+

3‰- t n H4t m3 - n2 + m n H7 + 2t nL - 2 m2 H7+ 3t nLL
m2 Hm - nL5

+

1
Hm - nL5 Hm + nL4

 

I2‰- t m I3 m n3 H-2 + t nL2 + 3t m5 H4 + t nL + t2 m6 H6+ t nL +

m3 I60n - 6t2 n3M + 3 m2 n2 I36- 16t n + t3 n3M -

n4 I12 - 3t2 n2 + t3 n3M - 3 m4 I-8 - 16t n + 3t2 n2 + t3 n3MMM
y

 

L�1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 

   (3.2.30) 
This is the same probability density function as in (3.2.29), hence the underlying counting process 
( )R t  is renewal. Moreover, since ( )

aTg t  is different from ( )wf t , ( )R t is a delayed renewal 
process. 
From (3.2.28) it follows that the expression for the stationary mean value and variance of the 

interarrival times take on, respectively, he forms: 

( )
( )

( )
( )

2 4 3 2 2 3 4
2

2 2 2

2 4 3 2 22
[ ] ; ;

2 2aa TE T
µ µ ν µ ν µν νν µ

σ
µ ν µν µ ν µ ν

+ + + ++
= =

+ +
                  (3.2.31) 

 
 

 33



3.2.3 Characterization of the Process III : ( ) ( )R t Pµ µ=  and ( ) ( ),R t E kν ν= . 
 
If in equations (3.2.1) and (3.2.2) ( ) ( )R t Pµ µ=  and ( ) ( ),R t E kν ν= , the increment of the renewal 

process  becomes ( )dR t
 

( ) ( ) ( )dR t Z t dN tν=   (3.2.32) 
 
where the variable  ( )Z t  is governed by the equation: 
 

( ) ( ) ( ) ( )1dZ t Z dN t ZdR tµ= − − ν   (3.2.33) 
 
If ( )R tν  is an Erlang renewal process with parameter 2k = , it can be expressed in terms of the 

Poisson process  as follows  ( )N tν

 
( ) ( ) ( )dR t t dN tν ν νρ=   (3.2.34) 

 
with 
 

( ) ( )( ) ( )1 2d t t dN tν νρ ρ= − ν                                                                                                     (3.2.35) 
 
The equations for the mean values of the stochastic variables ( )1Z t Z=  and ( )2Z t Z νρ=  are 
 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2

2 1 2

[ ] [ ] [ ] ;

[ ] [ ] [ ] 2 [

d E Z t E Z t E Z t
dt
d E Z t E Z t E Z t E t
dt ν

µ ν µ

ν ν µ µ ρ

= − − +

= − + + ];
 (3.2.36) 

 
Let us assume that the underlying process is renewal. The renewal density is obtained as: 
 
( ) ( ) ( )2[ ] [ ]h t dt E dR t E Z t dtν= =   (3.2.37) 

 
hence 

( ) ( ) ( )
( )

( )
( )

( )

( ) ( )
3

2
2 2 2 2 2 2 2

2 2 2[ ] e e
2 2

tth t E Z t tµ ννµ ν µ µ ν µ µ ν ;ν µ ν
µ ν µ νν µ µ ν

− +−
⎛ ⎞⎛ ⎞+ −⎜ ⎟⎜= = − − +

⎜⎜ ⎟− −+ − ⎝ ⎠⎝ ⎠
⎟
⎟

     (3.2.38) 

 
From equation (3.2.6) the probability density of the waiting time is obtained as  
 

( ) ( )
( )

( )
( )

( ) ( )( )
( ) ( )1

2 3 2
2

2 2 2 2

22 2
e e

2 2
tt t

w

t t
f t ν µ e ;µ ν

µν µ ν µµν ν µ µν µ ν

µ ν ν µ µ ν ν µ
− +− −

− +− +
= + +

− + − +
 (3.2.39) 

 
Under the assumption that the underlying counting process is renewal, the probability density of the 
interarrival times is given by: 
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( )
aTg t = L

( )
( )

1 1 wf s
h s

∗
− ⎧ ⎫⎪ ⎪− =⎨ ⎬
⎪ ⎪⎩ ⎭

 

( )
( )

( )
( )

( ) ( )( )
( ) ( )

( )
1

2 3 2
2

2 2 2 2

22 2
e e e

2 2
tt t

w

t t
f tν µµ ν

µν µ ν µµν ν µ µν µ ν

µ ν ν µ µ ν ν µ
− +− −

− +− +
+ +

− + − +
=  (3.2.40) 

 
The probability density of the time elapsed from the origin to the second event is obtained from eq 
(3.2.8) as: 
 

 
      (3.2.41) 
 

If the underlying counting process is renewal, with probability density of the interarrival time 
given by (3.2.40), the probability density of the second waiting time ( )

aTg t ( )
2wf t can be obtained 

through the inverse Laplace transform L�1 ( ) ( ){ }1 aw Tf s g s∗ ∗ as 

( )
2wf t =L�1 ( ) ( ){ }1 aw Tf s g s∗ ∗ = 

                        (3.2.42) 
 
This probability density function is exactly the same as (3.2.41) hence the underlying counting 
process ( )R t  is renewal. As ( ) ( )

1aT wg t f t= this renewal process is an ordinary one. 
The stationary values of mean and variance of the interarrival times take on the form: 
 

( )
( )

( )
( )

22 4 3 2 2 3 4
2

22 2

2 2 2 3 42
[ ] ; ;

2 2aa TE T
µ µ ν µ ν µν νν µ

σ
νµ ν µ ν µ ν µ

+ + + ++
= =

+ +
                                         (3.2.43)                       
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3.2.3 Characterization of the Process IV : ( ) ( ),R t E lµ µ=  and ( ) ( ),R t E kν ν= . 
 
If in equations (3.2.1) and (3.2.2) ( ) ( ),R t E lµ µ= and ( ) ( ),R t E kν ν= , the increment of the non-
Erlang renewal process is expressed as 
 

( ) ( ) ( )dR t Z t dR tν=   (3.2.44) 
 
and the variable  ( )Z t  is governed by the equation: 
 

( ) ( ) ( ) ( )1dZ t Z dR t ZdR tµ ν= − − ,  (3.2.45) 
 
if ( )R tµ  and ( )R tν  are Erlang renewal processes with parameter 2k = , they can be expressed in 

terms of the Poisson processes  and  ( )N tν ( )N tµ  as follows 
 

( ) ( ) ( )dR t t dN tν ν νρ= , ( ) ( ) ( )dR t t dN tµ µ µρ=   (3.2.46) 
 
with 
 

( ) ( )( ) ( )1 2d t t dN tν ν νρ ρ= − ( ), ( )( ) ( )1 2d t t dN tµ µ µρ ρ= −  (3.2.47) 
 
Introducing the stochastic variables ( )1Z t Z= , ( )2Z t Z νρ= , ( )3Z t Z µρ= and ( )4Z t Z ν µρ ρ=  the 
corresponding equations for the mean values are 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 3 2

2 1 2 4

[ ] [ ] [ ] [ ] ;

[ ] [ ] 2 [ ] [ ] [ ] [ ]

d E Z t E Z t E Z t E
dt
d E Z t E Z t E Z t E Z t E E
dt

µ

µ ν

µ ν ρ µ

;ν ν µ ρ

= − − +

= − − + ρ µ

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 1 3 4

4 2 3 4

[ ] [ ] 2 [ ] [ ] ;

[ ] [ ] [ ] 2 [ ] ;

d E Z t E Z t E Z t E Z t
dt
d E Z t E Z t E Z t E Z t
dt

µ µ ν

µ ν ν µ

= − −

= + − +
                                                      (3.2.48) 

 
Let us assume that the underlying process is a renewal one. The renewal density is obtained as: 
 
( ) ( ) ( )2[ ] [ ]h t dt E dR t E Z t dtν= =   (3.2.49) 

 
hence 
 

( ) ( ) ( )
( )

( )

( )

( )
( )

( )
( )

( ) ( )
( )

2 2 2
2

2 3 3

2 22 2
2 2

3 3 2 2 2 2

3
[ ] e

2 2

3 8e e e 1
2 2

t

tt t

h t E Z t

t t

ν µ

ν µµ ν

µ µν ν µ µνν
ν µ µ ν

µ µν ν µµν µ ν µνµ
µ νµ ν µ ν µ ν

− +

− +− −

+ +
= = − +

+ +

⎛− + ⎜ ⎟+ − − + +
⎜ ⎟−− − −⎝ ⎠

2

2 ;
⎞

 (3.2.50) 
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From equation (3.2.6) the probability density of the waiting time is obtained as  
 

( )
( ) ( )( ) ( )( ) ( )( )( )

( ) ( )

1

2 2 3 2 2 3 2

2 2

e 2 1 e 2e 3 3e 2e 1 e 2e

2

w

t t tt t t

f t

t tν µ ν µ ν µ ν µν ν ν tµν ν µν ν µ

µ ν ν µ

− + + + +

=

+ − − − + + − +

− +

ν  (3.2.51) 

 
Under the assumption that the underlying process is a renewal one, the probability density of the 
interarrival times can be obtained through the following relationship: 
 

( )
aTg t = L

( )
( )

1 1 wf s
h s

∗
− ⎧ ⎫⎪ ⎪− =⎨ ⎬
⎪ ⎪⎩ ⎭

 

 
L  1−

 
L  1−

                 
                
 
 

 
     (3.2.52) 
 

where the coefficients iB  ( i ) and b ( k1, 2,..9= 3k 1,2,= ) are functions of the parameters µ  and ν  
and their expressions are reported in Appendix. 
The probability density of the time elapsed from the origin to the second event can be obtained from 
eq (3.2.8) 
 

 
                                                                                                                                                 (3.2.53) 
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Under the assumption that the underlying process is renewal, the probability density of the second 
arrival can be obtained through the inverse Laplace transform 
  

( )
2wg t =L�1 ( ) ( ){ }1 aw Tf s g s∗ ∗ = 

 
L�1

 
 
 
L�1 
 

 
      (3.2.54) 
 

The coefficients  ( ) are functions of the parameters iC 1,2,..15i = µ  and ν . Expressions (3.2.53) 
and (3.2.54) are identical (the symbolic difference between the two functions has been evaluated as 
the null function with the aid of the program Mathematica) and can be proved by comparing them 
for one set of parameters ν  andµ , e.g.  10ν = 1µ = : 
 

                       (3.2.55) 
 
It follows that the underlying counting process is a renewal process. Since ( ) ( )

1 aw Tf t g t≠ (here 
again the difference between the two functions has been symbolically evaluated with the aid of 
Mathematica and it results different from the null function)  
 

( ) ( )
1 aw Tf t g t− =  

 38



                          
                                                                                                                                                  (3.2.56) 
it follows that the renewal process is a delayed one. 
The stationary values of mean and variance of the interarrival times take on the form: 
 

( )
( )

( ) ( )
( ) ( )

3

2 2

2 6 5 4 2 3 3 2 4 5 6
2

222 2 2 2

2
[ ] ;

3

2 8 20 21 17 20 4
;

2 3a

a

T

E T
ν µ

µν µ µν ν

ν µ µ µ ν µ ν µ ν µ ν µν ν
σ

µ ν ν µ µ µν ν

+
=

+ +

+ + + + + + +
=

+ + +

                                     (3.2.57) 

 
 
 

3.3 LINEAR OSCILLATOR UNDER A RANDOM TRAIN OF IMPULSES DRIVEN BY A 
SPECIAL CLASS OF NON-ERLANG RENEWAL PROCESSES 

 
3.3.1 Equations for moments 

 
 

Consider a linear oscillator governed by the equation 
 

 ( ) ( ) ( ) ( ) ( )
( )

2

1
2

R t

i i i
i

X t X t X t Z t P t
ν

ζω ω δ
=

+ + = ∑ t−                        (3.3.1)    

 
where the arrival times it are driven by an Erlang renewal process ( )tRν  with parameters ν  and k  
and ( )itZ  is a value at −it  of an intermittent, zero-one stochastic variable ( )tZ  governed by the 
stochastic equation  
 

( ) ( ) ( ) ( )tZdRtdRZtdZ νµ −−= 1                                      (3.3.2)           
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The stochastic equations governing the system state vector X  can be written as 
 

( ) ( )( ) ( )d t t dt dR t= +X c X b                                      (3.3.3)           
 

where ,
T

X X⎡ ⎤= ⎣ ⎦X , ( )( ) ( ) ( )( )2, 2X t X X t X tζω ω= − −c , ( )( )0, P t=b . 

As explained in section 3.1, an Erlang renewal process ( )tRα  ( )νµα ,=  may be expressed in terms 
of the Poisson process ( )tNα ( )νµα ,=  at the expense of introducing auxiliary variables, for any 
integer parameter k  or l . For anyα the following replacement is valid (cf. 3.1.2) 
 

( ) ( ) ( )dR t t dN tα
α αρ=                                      (3.3.4)          

       
where the αρ is a variable which only takes values 0 or 1 and is governed by 
 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 2 1

2 3 2

2 1 2

2

1 1
1

..

1 2

k k k

k

k j k
j

d t t t dN t

d t t t dN t

d t t t dN t

d t t t dN

α α α
α

α α α
α

α α α
α

α α α
α

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

− − −

−

− −
=

= −

= −

= −

⎛ ⎞
= − −⎜ ⎟
⎝ ⎠

∑ t

1

ν µ

                                   (3.3.5)      

where . ( ) ( )1 t tα αρ ρ=

The variables , ..  only take values 0 or 1 (see chapter ..).  ( )1 tαρ ( )2 tαρ ( )1k tαρ −

It is convenient to augment the state vector by new combined variables 
 

1 2 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 2 1 1 1 1 2 1 1

, ,.. , ,.. ,
,.. , ,.. ,
,.. , ,.. .

k k k k l l

k l kl k l kl kl k k

kl k kl k l l kl k l kl k l

Z Z Z Z Z Z
Z Z Z Z Z Z
Z Z Z Z Z Z Z Z

ν ν µ µ

ν µ ν µ ν ν

µ µ ν µ

ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ

− + + − −

+ − − + + − −

+ + + − − + + − −

= = = = =
= = = =
= = = = ρ

− −

 

 

The stochastic equations governing the augmented state vector 1 2 2 1..
T

klX X Z Z Z −⎡ ⎤= ⎣ ⎦X  
can be written as 
 

( ) ( )( ) ( ) ( )( ) ( ),d t t dt P t t d t= +X c X b X N                                  (3.3.6)          
   
where  
 
( )

( )( ) ( ) ( )
[ ]
[ ]
( )

1 2 2 1

2

1 2 2 1

1 2 2 1

.. ;

, 2 0 0 ..

.. ;

.. ;

T

kl

T

T

kl

T

kl

t X X Z Z Z

t t X X t X t

b b b b

b b b b

d t dN dN

ν ν ν ν

µ µ µ µ

ν µ

ζω ω

−

+

+

⎡ ⎤= ⎣ ⎦

⎡ ⎤= − −⎣ ⎦

=

=

= ⎡ ⎤⎣ ⎦

X

c X

N

0 ;

                                                     (3.3.7)       
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with 
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−
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−

+ + + + − − − − − −=

∑

∑
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The number of auxiliary zero-one stochastic variables is 2kl 1− .  
While the original state vector consisting of X and X  is not a Markov process, the augmented state 
vector , governed by eq. (3.3.7) driven by two independent Poisson processes X Nν  and Nµ  , is a 
non-diffusive Markov process. 
By means of the generalized Ito’s differential rule (see section 1.1.2) the equations for the mean 
values and for 2nd, 3rd and 4th order moments can be written as  
 

( )

( )

( ) { }

,

, ,

, ,

,

,

2 ,

3 3

i i i

ij i j j i j

s

ijk i j k k i j k s
s

i j k

m t E c E b

t E X c E b E b b

t E X X c E b E X b b

E b b b

α

α ν µ

α α α

α ν µ α ν µ

α α α

α ν µ α ν µ

α α α

α ν µ

α

µ α α

µ α α

α

=

= =

= =

=

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎡ ⎤ ⎡ ⎤= + +⎢ ⎥⎨ ⎬⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥⎨ ⎬⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎡

∑

∑ ∑

∑ ∑

∑

( ) { }

{ }
, ,

, ,

,

4 4 6

4 ,

ijkl i j k l l i j k l s
s

i j k l i j k ls

t E X X X c E b E X X b b

E X b b b E b b b b

α α

α ν µ α ν µ

α α α α α α α

α ν µ α ν µ

µ α α

α α

= =

= =

⎤⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎡ ⎤ ⎡ ⎤= + +⎢ ⎥⎨ ⎬⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑

α +

⎤⎦

                         (3.3.8)     
 
where  and .and where ( ) [ ]i im t E X= ( )ij i jt E X Xµ ⎡= ⎣ { }.. s

denotes the Stratonovich symmetrizing 

operator ( e.g. { } ( )1 .
3i j k i j k j k i k i js

a a a a a a a a a a a a= + + ) 
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3.3.2 Process I (Generalised Erlang renewal process): ( ) ( )R t Pµ µ=  and ( ) ( )R t Pν ν=  
 
 
Consider the system excited by the renewal train of impulses (3.1.1), where the renewal counting 
process is given by (3.2.1) and (3.2.2), with ( ) ( )R t Pµ µ=  and ( ) ( )R t Pν ν= , ( )P µ and 

( )P ν being Poisson processes with mean arrival rates µ  and ν  respectively. The stochastic 
equation of motion (3.3.7) becomes 
 

 

( )
( )
( )
( )

( )( )
( )

( ) ( )

( ) ( )( ) ( ) ( )
( ) ( )

( )

2; 2
0

0 0
,

1

;T

X t X t
t X t t X t X t

Z t

P t t b b P t Z t
Z t Z t

d t dN dN

ν µ

ν µ

ω ζω
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢⎡ ⎤= =⎣ ⎦ ⎢
⎢ ⎥− −⎣ ⎦

⎡ ⎤= ⎣ ⎦

X c X

b X

N

;

0 ;⎥⎥                                            (3.3.9) 

 
The equations for the mean values  ( ) ( ) ( )1 2 3, ,m E X t m E X t m E Z t⎡ ⎤= ⎡ ⎤ = = ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

;

 are (cf. Iwankiewicz 
(2002)) 
 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2

2
2 1 2 3

3 3

;

2 [ ]

;

m t m t

m t m t m t E P t m t

m t m t

ω ζω ν

µ ν µ

=

= − − +

= − + +

  (3.3.10) 

 
The stochastic equations for centralised variables ( ) ( ) ( )t t E t= − ⎡ ⎤⎣ ⎦Y X X  are  
 

( ) ( )( ) ( ) ( )( ) ( )0 ,d t c t dt b P t t d t= +Y Y Y N   (3.3.11) 
 
where 
 

( )( )
( )

( ) ( ) ( ) ( )
( ) ( )

2
0 2

1 22
Y t

t Y t Y t E P t E Z t

E Z t E Z t

ω ζω ν

ν µ µ

⎡ ⎤
⎢ ⎥

= − − − ⎡ ⎤ ⎡ ⎤⎢ ⎣ ⎦ ⎣ ⎦
⎢ ⎥− +⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

c X ;⎥  (3.3.12) 

 
The equations for the second-order central moments of the response, are derived from Ito’s rule as 
(cf. Iwankiewicz (2002)) 
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

11 12

2
12 22 11 12 13

2 2
22 12 22 3 23

13 23 13

22
23 13 23 3

2

2 ;

2 4 2

;

2

t t

t t t t E P t t

t t t E P t m t E P t

t t t

t t t E P t m t

µ µ

µ µ ω µ ζωµ ν µ

µ ω µ ζωµ ν ν µ

µ µ µ ν µ

µ ω µ µ ζω ν µ ν

=

= − − + ⎡ ⎤⎣ ⎦
⎡ ⎤= − − + + ⎡ ⎤⎣ ⎦⎣ ⎦

= − +

= − − + + − ⎡ ⎤⎣ ⎦

;t         (3.3.13) 

 
The stationary solutions for  [ ]1m E X=  and 2

11 1E Yµ ⎡ ⎤= ⎣ ⎦  give the stationary mean value and the 
steady-state variance of the response, respectively: (cf. Iwankiewicz (2002)) 
 
 

1 2

[ ] ;E Pm νµ
ν µ ω

=
+ ( ) ( )

( ) ( )
( )( )

22 2 2

11 23 3 2

[ ] 2[ ] ;
4 2 2

E PE P ζω ν µνµ ν µµ
ν µ ζω ζω ω ν µ ζω ν µν µ

+ +
= −

+ ⎡ ⎤+ + + ++ ⎣ ⎦
            (3.3.14) 

 
 

3.3.3 Process II : ( ) ( ),R t E lµ µ=  and ( ) ( )R t Pν ν= . 
 
Consider the system excited by the renewal train of impulses (3.1.1), where the renewal counting 
process is given by (3.2.1) and  (3.2.2), with ( ) ( ),R t E lµ µ=  and ( ) ( )R t Pν ν= , where 

( ,E l )µ denotes an Erlang process with parameters µ  and l . The stochastic equation of motion 
(3.3.7) is specified by (cf. Tellier and Iwankiewicz (2005)) 
 

( )

( )
( )
( )
( )

( )( )
( )

( ) ( )2

1

2

2
; ;

0
0

X t X t
X t X t X t

t t
Z t
Z t

ω ζω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

X c X  

( ) ( )( ) ( ) ( )
( ) ( )
( ) ( ) ( )

1 2

2 1 2

0 0
0

,

2

P t Z t
P t t b b

Z t Z t
;

Z t Z t Z t

ν µ

µρ

⎡ ⎤
⎢ ⎥
⎢⎡ ⎤= =⎣ ⎦ ⎢ − −
⎢ ⎥− −⎢ ⎥⎣ ⎦

b X ⎥
⎥

 (3.3.15) 

where ( )1Z t Z=  and ( )2Z t Z µρ= .  

The equations for the mean values ( ( ) ( ) ( ) (1 2 3 1 4, , ,m E X t m E X t m E Z t m E Z t⎡ ⎤= ⎡ ⎤ = = ⎡ ⎤ = ⎡ )2 ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

;

) are 
 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )

1 2

2
2 1 2 3

3 3 4

4 3 4

;

2 [ ]

[ ] ;

2 ;

m t m t

m t m t m t E P t m t

m t m t m t E

m t m t m t
µ

ω ζω ν

ν µ ρ µ

µ ν µ

=

= − − +

= − − +

= − +

  (3.3.16) 

 
In the stochastic equations for centralised variables the vector ( )( )0 tc X  is given by 
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( )( )

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2
2

1 2 1
0

1 2

2 1 2

2
;

2

Y t
Y t Y t E P t E Z t

t
E Z t E E Z t

E Z t E Z t E Z t
µ

ω ζω ν

ν µ ρ µ

ν µ µ

⎡ ⎤
⎢ ⎥− − − ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢

= ⎢ ⎡ ⎤− +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥
⎢ ⎥− +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

c X
⎥
⎥  (3.3.17) 

 
The equations for the second-order central moments of the response are  
 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

11 11

2
12 22 11 12 13

13 23 13 14

14 24 14 13 14

2 2
22 12 22 3 23

22
23 13 23 24 3

24

2

2 ;

;

2 ;

2 4 2 ;

2 ;

t t

t t t t E P t t

t t t t

t t t t t

t t t E P t m t E P t t

t t t t E P t m t

µ µ

µ µ ω µ ζωµ ν µ

µ µ µ ν µ µ

µ µ µ ν µ µ µ µ

µ ω µ ζωµ ν ν µ

µ ω µ µ ζω ν µ µ ν

µ

=

= − − + ⎡ ⎤⎣ ⎦
= − −

= − + −

⎡ ⎤= − − + + ⎡ ⎤⎣ ⎦⎣ ⎦

= − − + − − ⎡ ⎤⎣ ⎦

( ) ( ) ( )( ) ( ) ( ) ( ) ( )2
14 24 23 3 42 2t t t t E P t m t mω µ µ ζω ν µ µ µ ν= − − + + + − ⎡ ⎤⎣ ⎦ ;t

                       (3.3.18)                   

                        
The stationary solution for  [ ]1m E X=  and 2

11 1E Yµ ⎡ ⎤= ⎣ ⎦  give the stationary mean value and the 
steady-state variance of the response, respectively 
 

( )
( )1 2 2

2 [ ] ;
2

E Pm
νµ ν µ

ων µ

+
=

+
   

 
( )
( )

( )( ) ( ) ( ) ( )( )( ) (( )
( )( ) ( )

)

2

11 2 3

2 3 23 2 2 3

2 43 2

2 [ ]
8

2 [ ] 4 3 4 4 2 2

8 2

E P

E P

νµ ν µ
µ

ζων µ

ν µ ν µ µ ν µ ζµω ν µ ζ µ ν ν µ ω ζω ν ν µ

ζω ω ν µ ζω ν µ ν µ

+
= +

+

+ − + − + − − + − + + +

⎡ ⎤+ + + + +⎣ ⎦

+

                 (3.3.19)     
 

3.3.4 Process III: ( ) ( )R t Pµ µ=  and ( ) ( ),R t E kν ν= . 
 

Consider the system excited by the renewal train of impulses (3.1.1), where the renewal counting 
process is given by (3.2.1) and (3.2.2), with ( ) ( )R t Pµ µ=  and ( ) ( , )R t E kν ν= . The stochastic 
equation of motion (3.3.7) is specified by (cf. Tellier and Iwankiewicz (2005), Iwankiewicz (2003 ) 
 

( )

( )
( )
( )
( )

( )( )
( )

( ) ( )2

1

2

2
; ;

0
0

X t X t
X t X t X t

t t
Z t
Z t

ω ζω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

X c X  
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( ) ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( )

2

2 1

1 2 2

0 0
0

,
1

2

P t Z t
P t t b b

Z t Z t
;

Z t Z t Z t

ν µ

νρ

⎡ ⎤
⎢ ⎥
⎢⎡ ⎤= =⎣ ⎦ ⎢ − −
⎢ ⎥− −⎣ ⎦

b X ⎥
⎥

 (3.3.20) 

 
where ( ) ( )1 2,Z t Z Z t Z νρ= = . 

The equations for the mean values ( ( ) ( ) ( ) (1 2 3 1 4, , ,m E X t m E X t m E Z t m E Z t⎡ ⎤= ⎡ ⎤ = = ⎡ ⎤ = ⎡ )2 ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

;

) are 
 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )

1 2

2
2 1 2 4

3 3 4

4 3 4

;

2 [ ]

;

2 [ ] ;

m t m t

m t m t m t E P t m t

m t m t m t

m t m t m t E ν

ω ζω ν

µ ν µ

ν ν µ ρ µ

=

= − − +

= − − +

= − + +

  (3.3.21) 

 
In the stochastic equations for centralised variables the vector ( )( )0 tc X  is given by 
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2

2
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ν µ ρ ν µ

⎡ ⎤
⎢ ⎥− − − ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢= ⎢ + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥− − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

c X ⎥
⎥  (3.3.22) 

 
The equations for the second-order central moments of the response are  
 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
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µ
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14 24 23 42 2t t t E P t m tω µ µ ζω ν µ µ ν ν− + + + − ⎡ ⎤⎣ ⎦

;t

;

                                       (3.3.23) 

 
The stationary solution for  [ ]1m E X=  and 2

11 1E Yµ ⎡ ⎤= ⎣ ⎦  give the stationary mean value and the 
steady-state variance of the response, respectively 
 

( )
( )1 2 2

2 [ ] ;
2

E Pm
νµ ν µ

ων µ

+
=
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  (3.3.24) 
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3.3.5 Process IV: ( ) ( ),R t E lµ µ=  and ( ) ( ),R t E kν ν= . 
 
Consider the system excited by the train of impulses (3.1.1), where the driving counting process is 
given by (3.3.1) and (3.3.2), with ( ) ( ),R t E lµ µ=  and ( ) ( ),R t E lµ µ= .The stochastic equation of 
motion (3.3.7) is specified by 
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X c X
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          (3.3.25) 

 
where ( ) ( ) ( ) ( )1 2 3 4, , ,Z t Z Z t Z Z t Z Z t Zν µ ν µρ ρ ρ= = = = ρ . 
The equations for the mean values 
( ( ) ( ) ( )1 2 3 1 ,⎤⎦, ,m E X t m E X t m E Z t⎡ ⎤= ⎡ ⎤ = = ⎡⎣ ⎦ ⎣⎣ ⎦ ( )4 2 ,m E Z t= ⎡ ⎤⎣ ⎦ ( )5 3m E Z t= ⎡ ⎤⎣ ⎦ ( )6 4m E Z t= ⎡ ⎤⎣ ⎦

;

) are 
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µ
 (3.3.26) 

 
In the stochastic equations for centralised variables the vector ( )( )0 tc X  is given by 
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 (3.3.27) 
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The equations for the second-order central moments of the response are  
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( ) ( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

24

2
23 13 23 24 34 4

2
24 14 24 23 4 3 4

2
25 15 25 26 45

46 24 4 6

26

;

2 ;

2 2 1

2 2

;

P t t

t t t t E P t t E P t m t

t t t t E P t m t m t m t

t t t t t E P t

t E P t t E P t m t m t

µ

µ ω µ ζωµ µ ν µ µ ν

µ ω µ µ ζω ν µ µ ν ν

µ ω µ µ ζω µ ν µ νµ

νµ µ µ ν

µ

⎡ ⎤⎣ ⎦

= − − − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= − − + + + + − −⎡ ⎤⎣ ⎦
= − − − + + ⎡ ⎤⎣ ⎦

− + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( )

2
16 26 25 45 46

24 4 5 6

2 2 2

2 ;

t t t t t t E P t

t E P t m t m t m t

ω µ µ ζω µ ν µ ν ν µ µ

µ µ ν

= − − + + − + − ⎡ ⎤⎣ ⎦
+ − +⎡ ⎤⎣ ⎦

;

      (3.3.28) 

 
The stationary solution for [ ]1m E X=  and 2

11 1E Yµ ⎡ ⎤= ⎣ ⎦  give the stationary mean value and the 
steady-state variance of the response, respectively 
 

( )
( )

2 2

1 32

3 [
;

2

E P
m

µ µν ν µν

ω ν µ

+ +
=

+

]
   

( )
( )

( ) ( )
( )( ) ( )

( )

2 2 2

11 3 3

2 2 2 2 2

3 63 2

3 [ ]
8

[ ] 3
* ,

16 2

E P

E P
P

µ µν ν µν
µ

ζων µ

ν µ µ µν ν
;µ ν

ζω ω ν µ ζω ν µ ν µ

+ +
= +

+

+ +

⎡ ⎤+ + + + +⎣ ⎦

                                                         (3.3.29) 

 
where 
 
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( )

5 42 2 2 2

32 2 2 2 2

23 2 2 2 2

4 2 2 2 2 2

2 2 5

,

3 4 18 4

2 2 1 9 2 1 9 3 1 24

6 3 4 3 4 8 1 2

1 20 1 20 2 1 32

4 3

P µ ν

ν µ µ µν ν ζω ν µ µ µν ν

ω ν µ ζ µ ζ ν µν ζ

ζω ν µ ζ µ ζ ν µν ζ

ν µ ω ζ µ ζ ν µν ζ

ζ µ µν ν ω

=

− + + + − + + + −

+ + + + + +

+ + + + + + −

+ + + + + +

+ +

2

2

−

−

                                         (3.3.30) 
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3.3.6 Numerical analysis 
 
In order to illustrate the stochastic behaviour of a linear system under a non-Erlang renewal train of 
impulses, using the method developed, consider a linear oscillator governed by the differential 
equation (3.1.1). 
In order for the four different cases of renewal processes examined to be comparable, the couples of 
parameters lµ and lν  with  are chosen in such a way as to maintain the same stationary 
mean value 

,..l I IV=

[ ]E T  of the interarrival times and hence the same stationary mean value of the 
response. In fact, from equations (3.2.19), (3.2.31), (3.2.43), (3.2.57), (3.3.14), (3.3.19), (3.3.24) 
and (3.3.29), it appears that the stationary mean response of a linear oscillator under the three types 
of renewal driven impulsive excitations considered in this paper is 
 

[ ] [ ]
[ ] 2 ,..,

l

E P
E X l I IV

E T ω
= =   (3.3.31) 

 
where [ ]E T is the stationary mean value of the interarrival times. 
Assuming the first process as reference, for different choices of parameters ( 1Iµ = , 0.1Iν = ; 

1Iµ = , 1Iν = ; 1Iµ = , 10Iν = ), the corresponding values of the parameter lν  with ,..l II IV= , 
arbitrarily fixing lµ  ( ), are derived from the condition (see tab 1): ,..l II IV=
 
[ ] [ ] ,..l IE T E T l II IV= =   (3.3.32) 

 
The data assumed for the oscillator is: 11sω −= , 0.05ζ = . The impulses magnitudes are assumed to 

be Gaussian distributed random variables with [ ] 11 mE P
s−

=   and 2
22 mE P

s−
⎡ ⎤ =⎣ ⎦ . 

In fig. 3.3.1 are depicted the probability density functions of the interarrival times for the different 
types of impulse processes considered. It should be noted that, although the mean values are the 
same, due to the different shapes of the probability density functions of the processes II,.. IV, the 
corresponding peaks are shifted to the right with respect to that of the first one, and the tails go 
rapidly below that of the first process. 
The stochastic response of a linear oscillator under a train of impulses driven by the renewal 
processes I,..IV is analysed.  
The results for the mean values and the variances of the response are shown in figures 3.3.2 and 
3.3.3.  
The mean responses of the linear oscillator for the different processes show slight differences in the 
transient phase, except when the ratio /I Ir Iν µ=  of the reference process parameters is small. 
From equations equations (3.2.19), (3.2.31), (3.2.43), (3.2.57), (3.3.14), (3.3.19), (3.3.24) and 
(3.3.29), it appears that the stationary variance of the response is composed of two contributions, 
respectively proportional to the second order moment 2E P⎡ ⎤⎣ ⎦  and the square of the mean value 

of the impulses amplitudes. The first contribution, for all the processes considered, is [ ]( 2
E P )

[ ](2 3/ 4 l )E P Eζω⎡ ⎤⎣ ⎦ T , considering that the parameters lµ and lν  with ,..l I IV=  are chosen in such 

a way as to maintain the same stationary mean value [ ]E T  of the interarrival times (cf. equation 
(3.3.31) ), the differences in the behaviour of the variances of the responses are due to the second 
contribution. 
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It may be noted that in the transient phase, for each of the three examples considered the curve 
corresponding to the reference process is always above all the others. However the stationary 
behaviour, parameters kµ  being equal, seems to be influenced by the parameters kν , with 

, in such a way that , ,k II III IV= 2
k jX

2
Xσ σ>  if k jν ν> , with , ,k II III IV=  and , ,j II III IV= , 

except when the ratio /I Ir Iν µ=  of the reference process parameters is small. 
 
µ1 ν1 µ2 ν2 µ3 ν3 µ4 ν4

1 1 1.2 1.73939 1.2 1.41343 1.2 2.61617 

1 10 5 1.26783 5 1.9769 5 2.14774 

1 0.1 0.2 0.463325 0.2 0.272379 0.2 0.683394 

 
Tab.1 

 
 Parameters iµ  and iν  ( , ,i II III IV= ) derived choosing the process I as reference 

( 1Iµ = , 1Iν = ; 1Iµ = , 10Iν = ; 1Iµ = 0.1Iν = ), arbitrarily fixing iµ  and using the condition 

[ ] [ ]i IE T E T=  

              

Fig.3.3.1-(a) 

Probability density of the interarrival times- non-Erlang renewal processes with  [ ] 2E T =
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Fig.3.3.1-(b) 

Probability density of the interarrival times- non-Erlang renewal processes with  [ ] 1.1E T =

             

Fig.3.3.1-(c) 

Probability density of the interarrival times- non-Erlang renewal processes with  [ ] 11E T =
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Fig. 3.3.2-(a) 

Evolutionary mean of the response of a linear oscillator( [ ] 2E T = ) 

              

Fig. .3.3.2-(b) 

Evolutionary mean of the response of a linear oscillator ( [ ] 1.1E T = ) 
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Fig. .3.3.2-(c) 

Evolutionary mean of the response of a linear oscillator ( [ ] 11E T = ) 

               

Fig. .3.3.3-(a) 

Evolutionary variance of the response of a linear oscillator ( [ ] 2E T = ) 
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Fig. .3.3.3-(b) 

Evolutionary variance of the response of a linear oscillator ( [ ] 1.1E T = ) 

    

Fig. .3.5.3-(c) 

Evolutionary variance of the response of a linear oscillator ( [ ] 11E T = ) 
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4.  DYNAMIC RESPONSE OF NON-LINEAR SYSTEMS 

 
4.1 NON-LINEAR OSCILLATOR UNDER AN ERLANG 

RENEWAL DRIVEN TRAIN OF IMPULSES 
 

4.1.1 Statement of the problem 
 

 
Consider a non-linear, non-hysteretic oscillator under purely external excitation, 
governed by the equation 
 

 ( ) ( ) ( )( ) (
(

)
)

,
, 1

,
R t

i R i R
i R

,X t f X t X t P t t
ν

δ
=

+ = ∑ −                (4.1.1) 

                    
where ( ) ( )( )tXtXf ,  is the function of instantaneous values of  ( )tX  and ( )tX and 
the stochastic excitation is the random train of impulses whose arrival times Rit ,  
are driven by an Erlang renewal process ( )R tν  with parameters k

ν

and ν . 

The stochastic equations governing the system state vector ,
T

X X⎡= ⎣X ⎤⎦  can be 
written as 
 

( ) ( )( ) ( )d t X t dt dR tν= +X c b       (4.1.2)           
 

where ( )( ) ( ), ,
T

X t X f X X⎡ ⎤= −⎣ ⎦c , ( )0,
T

P t⎡ ⎤= ⎣ ⎦b . 

 
As before, the process ( )R tν can be expressed in terms of the Poisson process 

( )N tν

 as 
 

( ) ( )1dR t dN tν
ν ρ= ν         (4.1.3)  

      
where the 1

νρ is a variable which only takes values 0 or 1 and is governed by (cf. 
equation (3.1.26) 
 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 2 1

2 3 2

2 1 2

2

1 1
1

...

1 2

k k k

k

k j k
j

d t t t dN t

d t t t dN t

d t t t dN t

d t t t dN

ν ν ν
ν

ν ν ν
ν

ν ν ν
ν

ν ν ν
ν

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

− − −

−

− −
=

= −

= −

= −

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ t

     (4.1.4)  

 
The auxiliary variables ( )1 tνρ , ( )2 tνρ .. ( )1k tνρ −  only take values 0 or 1. The 
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variable 1
νρ  is equal to 1 in the time interval between the (n-1)st arrival of the 

Poisson process and the n-th arrival. The variable ( )N tν ( )2 tνρ  is equal to 1 in the 

time interval between the (k-2)nd arrival of the Poisson process and the (k-
1)st arrival.  

( )N tν

The variable  is different from zero in the time interval between the 1st and 

the second arrivals of the Poisson process
( )1k tνρ −

( )N tν  (see Figure 4.1.1). 

The time evolution of the augmented state vector 1 2 1..
T

kX X ν ν νρ ρ ρ −⎡ ⎤= ⎣ ⎦X  is 
governed by the stochastic equation 
 

( ) ( )( ) ( ) ( )( ) ( ),d t t dt P t t dN tν= +X c X b X                (4.1.5) 
 
with 

( )

( )
( )
( )
( )

( )

( )
( )
( )
( )

( )

( )( )

( )
( ) ( ) ( )

1 2
2 2

2 1 2 1

1 3

2 4

1 1

2
0

; ;
0

.. .. ...
0k k

X t X t X t
X t X t 3X t X t X t

t X t
t t

t X t

t X t

ν

ν

ν

ω ζω εω
ρ
ρ

ρ − +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

X c X  

and ( ) ( )( )

( ) 1

2

2

1
1

0

, ...
...

1 2
k

j k
j

P t

P t t

ν

ν

ν ν

ρ
ρ

ρ ρ
−

−
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢= ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

∑

b X ;⎥
⎥                                                         (4.1.6) 

 
While the original state vector consisting of X and X  is not a Markov process, 
the augmented state vector is a non-diffusive Markov process. X
With the aid of the generalized Ito’s differential rule (cf. section 2), that becomes 
 

( )
( ) ( ) ( ) ( )( ) ( )

1

1

,

, ,
, , , ,

k

j
j j

dV t

V t V t
c V t b t V t

t X
ν dNν

+

=

=

∂ ∂ ⎡ ⎤+ + + −⎣ ⎦∂ ∂∑

X

X X
X X X X X

          (4.1.7) 

 
it is possible to derive the equations for the mean values ( ) [im t E X= ]i and for 2nd, 
3rd and 4th order moments as 
( ( ) ( ) ( ), ,ij i j ijk i j k ijkl i j k lt E X X t E X X X t E X X X Xµ µ µ⎡ ⎤ ⎡ ⎤ ⎡= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦ ) 
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( )

( ) ( ){ }
( ) ( ){ } { }

( ) ( ){ } { }
{ }

,

2 ,

3 3

,

4 4 6

4

i i i

ij i j j i j
s

ijk i j k k i j k ss

i j k

ijkl i j k l l i j k l ss

i j k l

m t E c E b

t E X c E b E b b

t E X X c E b E X b b

E b b b

t E X X X c E b E X X b b

E X b b b

ν

ν ν ν

ν ν ν

ν ν ν

ν ν

ν ν ν

ν

µ ν ν

µ ν ν

ν

ν

µ ν ν

ν

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎣ ⎦ ,i j k ls
E b b b bν ν ν νν ⎡ ⎤+ ⎣ ⎦

+

             (4.1.8) 

 
where { }..

s
denotes the Stratonovich symmetrizing operator, e.g. 

{ } ( )1 .
3i j k i j k j k i k i js

a a a a a a a a a a a a= + +
                                                              (4.1.9)                                

For the non-linear oscillators with terms ( ),f X X  which are polynomials in X  

and X , the right-hand sides of the equations for moments (4.1.8) involve the 
unknown expectations of the non-linear transformations of state variables. If the 
non-linearities are polynomial the equations for moments form an infinite 
hierarchy and cannot be directly solved. The unknown moments can only be 
evaluated approximately, using suitable closure approximations. 
For example, for the 3rd order polynomial non linearity (Duffing oscillator), if the 
set of moments equations is truncated at the 4th order moments level, the redundant 
moments are of the 5th and 6th order.  
If the non-linearities are other than polynomial, the expectation of the non-linear 
transformations of the state variables cannot be expressed directly in terms of 
moments. 

4.1.2 Modified closure scheme 
 
A novel closure scheme is here developed that takes into account the specific 
physical properties of impulsive load processes (Iwankiewicz, Nielsen and 
Christensen (1990), Iwankiewicz and Nielsen, (1999)). Assume that the system, 
subjected to a random train of impulses and to zero initial conditions, has been at 
rest in the time interval [0,t[ where no impulse has yet occurred. The joint 
probability density of the augmented state vector is expressed as sum of 
contributions conditioned on the ‘on’ and ‘off’ states of the auxiliary variables. A 
discrete part account for the fact that there is a finite probability of the system 
being at rest from the initial time to the occurrence of the first impulse with Dirac 
delta spike. The continuous part which is the conditional probability given that the 
first impulse has occurred, can be expressed in terms of functions depending only 
on  displacement and velocity . 
Before the first impulse occurrence, the variables ( )1 tνρ , ( )2 tνρ .. ( )1k tνρ −  can be in 

their first ‘off’ state with probability ( )( ){ }
1 2 1

1
, ..

Pr 0
k

t
off off off

P N tν ν ν e ν
νρ ρ ρ −

−= = = . 
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Rν(t) 

ρν
1(t) 

1

ρν
2(t) 
1

ρν
k-1(t) 
1

t

Figure 4.1.1 
 

Sample function of an impulse process driven by an Erlang renewal process with generic 
parameters k  and ν and auxiliary zero-one variables appearing in expressions (4.1.4). 
 
 
 
Let us consider the following events. 
The variable ( )1k tνρ −  is in its first ‘on’ state while the remaining variables are 

‘off’, with probability ( )( ){ }
1 2 2 1

1
, .. ,

Pr 1
k k

t
off off off on

P N tν ν ν ν te ν
νρ ρ ρ ρ

ν
− −

−= = = . 

The variable ( )2k tνρ − can be in its first ‘on’ state while the remaining variables are 

‘off’ with probability  ( )( ){ } ( )
1 2 2 1

2
1

, .. ,
Pr 2

2k k

t
off off on off

t
P N tν ν ν ν e ν

νρ ρ ρ ρ

ν
− −

−= = = . 

. 

. 
 
etc. 
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The variable ( )1 tνρ can be in its first ‘on’ state while the remaining variables are 

‘off’ with probability ( )( ){ } ( )
( )1 2 1

1
1

, ..
Pr 1

1 !k

k
t

on off off

t
P N t k

kν ν ν e ν
νρ ρ ρ

ν
−

−
−= = − =

−
. 

Consequently, the joint probability density function of the state variables can be 
expressed as 
 

( ) ( ) ( ) ( ) ( )1 *
1 1 1 1 1, , ,.., , , ,.., , , ,..,k kp x x p x x p x xν ν ν ν ν νρ ρ ρ ρ ρ ρ− −= + 1k −              (4.1.10) 

       
The function ( ) (1

1, , ,.., kp x x ν νρ ρ − )1 is expressed in terms of the state distribution 

probabilities 1
jP  of the auxiliary variables given that the first Erlang driven 

impulse has not occurred, multiplied by the pertinent conditional probability 
densities 
 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1

1 1
1 1 1 2 1

1
1 1

, , ,..,

.. .. 1

.. 1 ..

k

k k

k k

p x x

P x x P x x

P x x

ν ν

ν ν ν ν

ν ν

ρ ρ

δ δ δ ρ δ ρ δ δ δ ρ δ ρ

δ δ δ ρ δ ρ

−

− −

−

=

1+ − +

+ −

             (4.1.11) 

 
with 
 

( )
( )

1 2 1

1 2 1

1 2 1

1 1
1 , ..

1 1
2 , ..

1
1 1

, ..

;

;

...

;
1 !

k

k

k

t
off off off

t
off off on

k
t

k on off off

P P e

P P te

t
P P e

k

ν ν ν

ν ν ν

ν ν ν

ν
ρ ρ ρ

ν
ρ ρ ρ

ν
ρ ρ ρ

ν

ν

−

−

−

−

−

−
−

= =

= =

= =
−

                                                                  (4.1.12)                               

 
The function ( ) (*

1, , ,.., kp x x ν νρ ρ )1− is expressed in terms of the conditional state 

probabilities *
jP  of the auxiliary variables given the first Erlang driven impulse has  

occurred,  multiplied by the pertinent conditional probability densities 
 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

*
1 1

* 1 * 2
1 1 1 2 1 1

*
1 1

, , ,..,

, .. , ..

.. , 1 .. .

k

k

k
k k

p x x

P f x x P f x x

P f x x

ν ν

ν ν ν ν

ν ν

ρ ρ

δ ρ δ ρ δ ρ δ ρ

δ ρ δ ρ

−

−

−

=

+

+ −

1k − − +              (4.1.13)   

 
with 
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* 1
1 1 1

1

* 1
2 2 2

1

* 1
1

1

;

;

..

;

j
k

j

j
k

j

j
k k k

j

P P E P

P P E P

P P E P

ν

ν

ν

ρ

ρ

ρ

−
>

−
>

>

⎡ ⎤= = −⎣ ⎦

⎡ ⎤= = −⎣ ⎦

⎡ ⎤= = −⎣ ⎦

∑

∑

∑

1

2
                                                                           (4.1.14)                               

 
The joint probability density function has to satisfy the equation 

( )

( ) ( )

1 1 1 1

1 *

1 1

, , ,.. ..

, 1

k k

k k
j

j j
j j

p x x dxdxd d

P P f x x dxdx

ν ν ν νρ ρ ρ ρ
∞

− −
−∞

∞

= = −∞

=

+ =

∫

∑ ∑ ∫
                                                           (4.1.15)     

 
considering that 
 

1 *

1 1
;

k k

j R j
j j

P P P P
= =

= =∑ ∑ 1 .R−                                                                       (4.1.16)                              

                                                                                     
the following relationships hold 
 

( ) ( ) ( ) ( )1 , 1,.... , 1kf x x dxdx f x x dxdx
∞ ∞

−∞ −∞

=∫ ∫ =                                                   (4.1.17)                              

 
It can also be proved that the following identities hold 
 

( ) ( )( )( )( ) ( )

( )( ) ( )( )

( ) ( )( )( )( ) ( )

( )( ) ( )( )

1 1 1 2

1 1 1 1

1 1 1 1

1 1 1 1

, , ,.. ..

1 1 ,

...

, , ,.. ..

1 1

k k

k k

k k k k

p p x x dx dx

E E

p p x x dx dx

E E

ν ν ν ν

ν ν ν ν

ν ν ν ν

ν ν ν ν

ρ ρ ρ ρ ρ

δ ρ ρ δ ρ ρ

ρ ρ ρ ρ

δ ρ ρ δ ρ ρ

∞

− −
−∞

∞

− −
−∞

− − − −

= =

⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦

= =

⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦

∫

∫

1

2

.

k

ν

νρ −

                                 (4.1.18)    

     
Taking for instance the marginal probability density ( )1p νρ , it can be derived as 

( ) ( )

( ) ( ) ( ) (

1 1 1 2 1

1 1
1 1 * *

1 1 1 1
1 1

, , ,.. ..

1 1

k k

k k

j k j k
j j

p p x x dxdxd d

P P P P

ν ν ν ν ν

ν ν ν ν

ρ ρ ρ ρ ρ

δ ρ δ ρ δ ρ δ ρ

∞

− −
−∞

− −

= =

= =

+ − + +

∫

∑ ∑ )−
                                (4.1.19)    

 
observing that 
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1 *

1

1 1
1 *

1
1 1

;

1

k k

k k

j j
j j

P P E

P P E

ν

ν

ρ

ρ
− −

= =

⎡ ⎤+ = ⎣ ⎦

⎡ ⎤+ = − ⎣ ⎦∑ ∑
                                                                             (4.1.20)    

 
equation (4.1.19) becomes 
 

( ) ( )( ) ( )( )1 1 1 1 11 1p Eν ν ν νρ δ ρ ρ δ ρ ρ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦E ν

⎤⎦

⎤⎦

                                        (4.1.21)    

Since the auxiliary variables are zero-one processes, the following relationships 
hold 

 

1 1

1 1

...

0

m n o m n

m n o m n
k k

m n o p
i j

E X X E X X

E X X E X X

E X X

ν ν

ν ν

ν ν

ρ ρ

ρ ρ

ρ ρ

− −

⎡ ⎤ ⎡=⎣ ⎦ ⎣

⎡ ⎤ ⎡=⎣ ⎦ ⎣
⎡ ⎤ =⎣ ⎦

                                      (4.1.22) 

 
The unconditional moment of order p m n= +   involving displacements and 
velocity can be expressed in terms of the conditional moments of the same order 
as follows 
 

* (1) * (2) * ( )
1 2[ ] [ ] [ ] ... [m n m n m n k m n

kE X X P E X X P E X X P E X X= + + ]

1

                    (4.1.23)   
 
where the conditional moments are evaluated respect to the conditional p.d.f. 
(4.1.13).  
The unconditional moment of order 1p m n+ = + +  involving also the auxiliary 
variables can be expressed in terms of the conditional moments of order p as 
follows 
 

* ( )
1

* ( 1)
2 1

* (2)
1 2

[ ] [

[ ] [
..

[ ] [

m n k m n
k

m n k m n
k

m n m n
k

E X X P E X X

E X X P E X X

E X X P E X X

ν

ν

ν

ρ

ρ

ρ

−
−

−

=

=

=

];

];

].

                                                                  (4.1.24)            

                  
The following relationships relating the conditional moments of order  
to the unconditional ones can also be derived: 

p m n= +
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                                                                                           (4.1.25)                               
The Gram-Charlier expansion can be applied to the conditional density 
functions ( ) ( )1 ,f x x ,.. ( ) ( ,k )f x x (cf. (4.1.13)) that can be viewed as probability 
densities of a bi-dimensional  stochastic variable.  
The conditional cumulants are related to the conditional moments by the following 
formula (Abramowitz and Stegun (1972), Kenney and Keeping (1951)): 

( ) [ ] ( ) ( ) ( )1
1... 1 ! 1 Bk k

s i
B i B

X X B E
π π

κ −

∈ ∈

X⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦
∑∏ ∏                    (4.1.26) 

Where π  runs through the list of all partitions of { }1, 2,...s  , B runs through the 

list of blocks of the partition π and B  is the size of the set B. 

The conditional moments are related to the conditional cumulants through the 
following formula 

 
( ) [ ] ( ) [ ]1.. :k k

s i
B

E X X X i B
π π

κ
∈

= ∈∑∏                 (4.1.27) 

Applying a cumulant neglect closure of order r, the conditional moments of order 
s>r can be expressed in terms of the lower order conditional moments through the 
following equation 
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( ) ( ) ( )

1

1

.. :
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r r r
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B E

π π

π ππ π

κ
∈

−

∈ ∈ ∈
∈

⎡ ⎤= ∈⎣ ⎦

⎛ ⎞
X

⎡ ⎤⎜ ⎟= − − ⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∑ ∏

∑ ∑∏ ∏ ∏
              (4.1.28)   

Where rπ  runs through the list of the partitions of { }1, 2,...s in blocks of maximum 

dimension r and rB  runs through the list of blocks of the partition rπ . 

Inserting equations (4.1.28) in (4.1.25), the conditional moments of order s>r are 
expressed in terms of the unconditional moments of lower order through the 
following relations 
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                                                                                                                       (4.1.29) 

The unconditional moments of order s involving displacement and velocity only 
can be expressed in terms of unconditional moments of order up to r, by inserting 
equations (4.1.29) in (4.1.23), as follows 
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                                                                                                                        (4.1.30)  

The unconditional moments of order s+1 involving also the auxiliary variables can 
be expressed in terms of unconditional moments of order up to r, by inserting 
equations (4.1.29) in (4.1.24), as follows 
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                                                                                                                        (4.1.31)                       

 

4.1.3 Erlang driven train of impulses (k=2,ν ) 
  
 
Consider the response of a Duffing oscillator to the random train of impulses 
driven by an Erlang renewal process with k=2,ν ( ) ( ) (1dR t t dN tν

ν νρ= ) , with 

, (see Figure 4.1.2). ( ) ( )( ) ( )1 11 2d t t dN tν ν
νρ ρ= −

The stochastic equation of motion is specified by 
 

( ) ( )( ) ( ) ( )( ) ( ),d t t dt P t t dN tν= +X c X b X                  (4.1.32) 
 
with 
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⎢ ⎥−⎣ ⎦

X c X

b X

3
1 ;

            (4.1.33) 

 
Before the first impulse occurrence, the variable 1

νρ   can be in its first ‘off’ state 

with probability ( )1
1offPρ  or in its first ‘on’ state with probability ( )1

1onPρ  . After the first 

impulse occurrence the variable 1
νρ  can be ‘off’ with probability ( ) ( )*

2

j
off off

j
P Pρ ρ

≥

= ∑  or 

‘with probability ( ) ( )*

2

j
on on

j
P Pρ ρ

≥

= ∑ . 
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P(1)
ρ,off 

1-PR 1st impulse

P(2)
ρ,on  P(2)

ρ,off  P(1)
ρ on  

P R 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.2 
Sample function of an impulse process driven by an Erlang renewal process with parameters 

2k =  and ν and the auxiliary zero-one variable appearing in expressions (4.1.33). 
 

The equations governing the state probabilities of the auxiliary variable are 
 

( ) ( )

( ) ( )

1 *
1

1 *
1

1off off

on on

P P E

P P E

ν
ρ ρ

ν
ρ ρ

ρ

ρ

⎡ ⎤+ = − ⎣ ⎦
⎡ ⎤+ = ⎣ ⎦

                                                             (4.1.34) 

 
Therefore 
 

( ) ( ) ( ) ( )* 1 *
1 ; 1on on off offP E P P E Pν

ρ ρ ρρ⎡ ⎤ ⎡ ⎤= − = − −⎣ ⎦ ⎣ ⎦
1

1
ν

ρρ                                      (4.1.35) 
Considering that the probability that the number of Poisson events in the time 

interval (0,t) is n is ( ){ } ( )Pr
!

n
tt

dN t n e
n

ν
ν

ν −= = , it follows that 

 
( ) ( )1 1; .t t
off onP e P teν ν

ρ ρ ν− −= =                                         (4.1.36) 
 
Let us express the unknown joint probability density of the state vector  in 
terms of the conditional probability functions: 

X

• 
( )

( ) ( ){ }

1
1

1

, ,

Pr , , ' '

p x x dxdx

X x x dx X x x dx is in its first off phase

ν

ν

ρ

ρ

=

∈ + ∧ ∈ + ∧
  

given that no impulses have occurred and the variable 1
νρ  is in its first      

‘off’ phase. 
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 given that after the first impulse occurrence the variable 1
νρ  is ‘on’. 

Hence, the expression for the probability density function becomes 
 

( ) ( )
4

1 1
1

, , , ,j

j
p x x p x xν νρ ρ

=

= ∑                                      (4.1.37) 

Due to the fact that there is a finite probability of the system being in a 
deterministic state from the initial time to the first impulse, the probability 
densities given that no impulse have occurred ( ( )1

1, ,p x x νρ  and ( )2
1, ,p x x νρ  ) can 

be expressed as 
 

( ) ( ) ( ) ( ) ( )11
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( ) ( ) ( ) ( ) ( )12
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ν −                                     (4.1.38) 

 
Let us express the contribution taking into account that the first Erlang impulse 
has occurred as 
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               (4.1.39)                               

Considering that the joint probability density function has to satisfy the equation 
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∫ ∫
           (4.1.40)                             

and that it is possible to write the following relationships between the state 
probabilities of the auxiliary variable 

 
( ) ( ) ( ) ( )1 1 * *;off on R off on RP P P P Pρ ρ ρ ρ+ = + = −1 P                                                                (4.1.41)                               
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where  is the probability that no Erlang driven impulse has occurred. From 
(4.1.40) and (4.1.41) it follows that 

RP

 
( ) ( ) ( ) ( )1 2, 1; ,f x x dxdx f x x dxdx

+∞ +∞

−∞ −∞

=∫ ∫ 1.=                                                 (4.1.42)      

                                                             
The marginal probability density of the variable 1

νρ  can be derived as follows 
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              (4.1.43) 

 
Taking into account equation (4.1.34) it follows 
 

( ) ( ) ( )( ) ( )1 1 1 1 1, , 1 1p p x x dxdx E Eν ν ν ν ν νρ ρ δ ρ ρ δ ρ
+∞

−∞
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           (4.1.44)                              

 
Since the auxiliary variable is a zero-one process, the following relationship holds 
 
 1

m n o m nE X X E X Xν νρ ρ⎡ ⎤ ⎡=⎣ ⎦ ⎣ ⎤⎦                    (4.1.45)       
 
The unconditional moments of order p m n= +  involving displacement and 
velocity and the moments of order 1p +  involving the auxiliary variable, can be 
expressed in terms of the conditional moments of the same order, as follows 
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The conditional moments can be expressed in terms of unconditional ones as 
follows 
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                                                (4.1.47)    

Applying a cumulant neglect closure of order r, the conditional moments of order 
s>r can be expressed in terms of the lower order conditional moments. The 
conditional moments of order s>r are then expressed in terms of the unconditional 
moments of lower order through the following relations 
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                     (4.1.48)                               

The unconditional moments of order s involving displacement and velocity only 
and the moments of order s+1 involving also the auxiliary variables can be 
expressed in terms of unconditional moments of order up to r, by inserting 
equations (4.1.48) in (4.1.46), as follows 
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        (4.1.49)     

4.1.4 Erlang driven train of impulses (k=3,ν ) 
 
Consider the response of a Duffing oscillator to the random train of impulses 
driven by an Erlang renewal process with k=3,ν ( ) ( ) (1dR t t dN tν

ν νρ= ) , with 

( ) ( ) ( )( ) ( )1 2 1d t t t dN tν ν ν
νρ ρ ρ= − , ( ) ( ) ( )( ) ( )2 1 21 2d t t t dN tν ν ν

νρ ρ ρ= − − (see figure 
4.1.3). The stochastic equation of motion is given as 
 

( ) ( )( ) ( ) ( )( ) ( ),d t t dt P t t dN tν= +X c X b X                      (4.1.50) 
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with 

( ) ( )( )

( ) ( )( )

1 2
2 2

2 1 2
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2 4
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3 4
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0
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1 3 3

X X X
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X
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X
X X

ν
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ω ζω εω
ρ
ρ

⎡ ⎤ ⎡ ⎤
3
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⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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⎢ ⎥
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⎢ ⎥
⎢ ⎥− −⎣ ⎦

X c X

b X

      (4.1.51) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.3 

P(1)
ρ1,off ρ2,off 

P R 1-PR 1st impulse

P(2)
ρ1,off ρ2,on P(2)

ρ1,on ρ2,off P(2)
ρ1,off ρ2,off P(1)

ρ1,on ρ2,off P(1)
ρ1,off ρ2,on 

Z 

ρ1
ν 

ρ2
ν 

Sample function of an impulse process driven by an Erlang renewal process with parameters 
3k =  and ν and the auxiliary zero-one variables appearing in expressions (4.1.51). 

 
Before the first impulse occurrence, the variables 1

νρ  and  2
νρ  can be in their first 

‘off’ state with probability ( )1
1 , 2off offPρ ρ . The variable 2

νρ  can be in its first ‘on’ state, 

while  1
νρ  is still ‘off’ with probability ( )1

1 , 2off onPρ ρ . The variable 1
νρ  can be in its 

first ‘on’ state, while  2
νρ  is ‘off’ with probability ( )1

1 , 2off onPρ ρ . After the first impulse 

occurrence the variables 1
νρ  and  2

νρ  can be simultaneously ‘off’ with 

 68



probability ( ) ( )*
1 , 2 1 , 2

2

j
off off off off

j
P Pρ ρ ρ ρ

≥

= ∑ , 2
νρ  can be ‘on’ while 1

νρ  is ‘off’ with 

probability ( ) ( )*
1 , 2 1 , 2

2

j
off on off on

j
P Pρ ρ ρ ρ

≥

= ∑ , 1
νρ  can be ‘on’ while 2

νρ  is ‘off’ with 

probability ( ) ( )*
1 , 2 1 , 2

2

j
on off on off

j
P Pρ ρ ρ ρ

≥

= ∑ . 

 
The equations governing the state probabilities of the auxiliary variables are 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 1 * *
1 , 2 1 , 2 1 , 2 1 , 2 1

1 1 * *
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on off off on off off off on

off off on off off off on off

on off on off

off on off on

P P P P E

P P P P E

P P E

P P E

ν
ρ ρ ρ ρ ρ ρ ρ ρ

ν
ρ ρ ρ ρ ρ ρ ρ ρ

ν
ρ ρ ρ ρ

ν
ρ ρ ρ ρ

ρ

ρ

ρ

ρ

⎡ ⎤+ + + = − ⎣ ⎦
⎡ ⎤+ + + = − ⎣ ⎦

⎡ ⎤+ = ⎣ ⎦
⎡ ⎤+ = ⎣ ⎦

            (4.1.52) 

 

From the Poisson law ( ){ } ( )Pr ,
!

n
tt

dN t n e
n

ν
ν

ν −= =  it follows that 

( ) ( ) ( ) ( )2
1 1 1
1 , 2 1 , 2 1 , 2; ;

2
t t

off off off on on off

t
P e P te P .teν ν

ρ ρ ρ ρ ρ ρ

ν
ν− −= = = ν−                        (4.1.53) 

 
Therefore 
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( ) ( )

( ) ( )

* 1
1 , 2 1 1 , 2

* 1
1 , 2 2 1 , 2

* 1
1 , 2 2 1 1 , 21
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ν
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ν ν
ρ ρ ρ ρ

ρ
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ρ ρ

⎡ ⎤= −⎣ ⎦
⎡ ⎤= −⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦

              (4.1.54) 

 
Let us express the unknown joint probability density of the state vector  in 
terms of the conditional  probability functions 

X

• 

( )
( ) ( ){ }

1
1 2

1

2

, , ,

Pr , , ' '

' '

p x x dxdx

X x x dx X x x dx is in its first off phase

is in its first off phase

ν ν

ν

ν

ρ ρ

ρ

ρ

=

∈ + ∧ ∈ + ∧

∧

  

given that no impulses have occurred and the variables 1
νρ  and  2

νρ  are in 
their first ‘off’ phase. 

• 

( )
( ) ( ){ }

2
1 2

1

2

, , ,

Pr , , ' '

' '

p x x dxdx

X x x dx X x x dx is in its first off phase

is in its first on phase

ν ν

ν

ν

ρ ρ

ρ

ρ

=

∈ + ∧ ∈ + ∧

∧

  

given that no impulses have occurred and the variable 1
νρ  is still ‘off’ 

while 2
νρ  is in its first ‘on’ phase. 
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• 

( )
( ) ( ){ }

3
1 2

1
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, , ,

Pr , , ' '

' '

p x x dxdx

X x x dx X x x dx is in its first on phase

is off

ν ν

ν

ν

ρ ρ

ρ

ρ

=

∈ + ∧ ∈ + ∧

∧

 

given that no impulses have occurred and the variable 1
νρ  is in its first 

‘on’ phase while 2
νρ  is ‘off’. 

•   

( )
( ) ( ){ }

4
1 2

1

2

, , ,

Pr , ,

' '

' '

p x x dxdx

X x x dx X x x dx

is in any off phase following the first

is in any off phase following the first

ν ν

ν

ν

ρ ρ

ρ

ρ

=

∈ + ∧ ∈ +

∧

∧

given that after the first impulse occurrence the variables 1
νρ  and 2

νρ  are 
simultaneously ‘off’. 

•   

( )
( ) ( ){ }

5
1 2

1 2
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Pr , ,
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p x x dxdx

X x x dx X x x dx
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ν ν

ν ν

ρ ρ

ρ ρ

=

∈ + ∧ ∈ +

∧ ∧ '
given that after the first impulse occurrence the variable 1

νρ  is ‘off’ and 2
νρ  

is ‘on’. 

• 

( )
( ) ( ){ }

5
1 2

1

2

, , ,

Pr , , ' '

' '

p x x dxdx

X x x dx X x x dx is on

is in any off phase following the first

ν ν

ν

ν

ρ ρ

ρ

ρ

=

∈ + ∧ ∈ + ∧

∧

  

given that after the first impulse occurrence the variable 1
νρ  is ‘on’ and 2

νρ  
is ‘off’. 

Hence, the joint probability density function can be expressed as 

( ) ( )
6

1 2 1 2
1

, , , , , ,j

j
p x x p x xν ν ν νρ ρ ρ

=

= ∑ ρ                       (4.1.55) 

 
Due to the fact that there is a finite probability of the system being in a 
deterministic state from the initial time to the first impulse, the contributions 
accounting for the fact that no impulse have occurred ( ( )1

1 2, , ,p x x ν νρ ρ  

to (3
1 2, , ,p x x )ν νρ ρ  ) can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )11
1 2 1 , 2 1 2, , , off offp x x P x xν ν ν

ρ ρ
νρ ρ δ δ δ ρ= δ ρ  

( ) ( ) ( ) ( ) ( ) ( )12
1 2 1 , 2 1 2, , , 1off onp x x P x xν ν ν ν

ρ ρρ ρ δ δ δ ρ δ ρ= −                    (4.1.56)      

( ) ( ) ( ) ( ) ( ) ( )13
1 2 1 , 2 1 2, , , 1on offp x x P x xν ν ν

ρ ρ
νρ ρ δ δ δ ρ δ ρ= −  

 
Let us express the conditional probabilities given that the first Erlang impulse has 
occurred as 
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( ) ( ) ( ) ( ) ( ) ( )* 14
1 2 1 , 2 1 2, , , ,off offp x x P f x xν ν ν

ρ ρ
νρ ρ δ=

( ) (

ρ δ ρ
) ( ) ( ) ( ) ( )* 25

1 2 1 , 2 1 2, , , , 1off onp x x P f x xν ν ν ν
ρ ρρ ρ δ ρ δ ρ= −           (4.1.57)        

( ) ( ) ( ) ( ) ( ) ( )* 36
1 2 1 , 2 1 2, , , , 1on offp x x P f x xν ν ν

ρ ρ
νρ ρ δ ρ= − δ ρ  

 
Considering that the joint probability density function has to satisfy the equation 
 

( ) ( ) ( ) ( )
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∫ ∫
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+          (4.1.58)                                   

and the following equations relating the state probabilities of the auxiliary 
variables 
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it follows that 
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             (4.1.59)      

 
It can also be proved that the following identities hold 
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Let us consider for instance the marginal probability density of the variable 1

νρ  
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              (4.1.61) 
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Taking into account the following relationships between the state probabilities of 
the variable 1

νρ  
 

( ) ( ) ( ) ( )

( ) ( )

1 1 * *
1 , 2 1 , 2 1 , 2 1 , 2

1 *
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                          (4.1.62) 

 
it follows 
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                                      (4.1.63) 

 
Since the auxiliary variables are zero-one processes, the following relationships 
hold 
 

 

1 1
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1 2 0
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⎤⎦                    (4.1.64)       

 
The unconditional moments of order p m n= +  involving displacement and 
velocity and the moments of order 1p +  involving the auxiliary variables, can be 
expressed in terms of the conditional moments of the same order, as follows 
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The conditional moments can be expressed in terms of unconditional ones as 
follows 

 

( )
( )

( )
( )

( )
( )

1 21
*
1 , 2

12
*
1 , 2

23
*
1 , 2

m n m n m n
m n

off off

m n
m n

on off

m n
m n

off on

E X X E X X E X X
E X X

P

E X X
E X X

P

E X X
E X X

P

ν ν

ρ ρ

ν

ρ ρ

ν

ρ ρ

ρ ρ

ρ

ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎡ ⎤ =⎣ ⎦

⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦

⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦

                    (4.1.66)    
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Applying a cumulant neglect closure of order r, the conditional moments of order 
s>r can be expressed in terms of the lower order conditional moments. The 
conditional moments of order s>r are then expressed in terms of the unconditional 
moments of lower order through the following relations 
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(4.1.67) 

 

The unconditional moments of order s involving displacement and velocity only 
and the moments of order s+1 involving also the auxiliary variables can be 
expressed in terms of unconditional moments of order up to r, by inserting 
equations (4.1.67) in (4.1.65), as follows 
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4.1.5 Erlang driven train of impulses (k=4,ν ) 
 
Consider the response of a Duffing oscillator to the random train of impulses 
driven by an Erlang renewal process with k=3,ν ( ) ( ) (1dR t t dN tν

ν νρ= ) , with 

( ) ( ) ( )( ) ( )1 2 1d t t t dN tν ν ν
νρ ρ ρ= − , ( ) ( ) ( )( ) ( )2 3 2d t t t dN tν ν ν

νρ ρ ρ= − ,

( ) ( ) ( ) ( )( ) ( )3 1 2 31 2d t t t t dN tν ν ν ν
νρ ρ ρ ρ= − − −  (see figure 4.1.4). The stochastic 

equation of motion is given as 
 

( ) ( )( ) ( ) ( )( ) ( ),d t t dt P t t dN tν= +X c X b X                      (4.1.69) 
 
with 
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X c X

b X

      (4.1.70) 

 
Before the first impulse occurrence, the auxiliary variables can be in their first 
‘off’ state with probability ( )1

1 , 2 , 3off off offPρ ρ ρ . The variable 3
νρ  can be in its first ‘on’ 

state, while  1
νρ  and 2

νρ  are still ‘off’ with probability ( )1
1 , 2 , 3off off onPρ ρ ρ . The variable 

2
νρ   can be in its first ‘on’ state, while 2

νρ and 3
νρ  are ‘off’ with 

probability ( )1
1 , 2 , 3off on offPρ ρ ρ . After the first impulse occurrence all the variables can be 

simultaneously ‘off’ with probability ( ) ( )*
1 , 2 , 3 1 , 2 , 3

2

j
off off off off off off

j
P Pρ ρ ρ ρ ρ ρ

≥

= ∑ , 3
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j
off off on off off on

j
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2
νρ  can be ‘on’ while 1

νρ  and 3
νρ  are ‘off’ with probability 

( ) ( )*
1 , 2 , 3 1 , 2 , 3
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j
off on off off on off

j
P Pρ ρ ρ ρ ρ ρ

≥

= ∑ ; 1
νρ  can be ‘on’ while 2

νρ  and 3
νρ  are ‘off’ with 

probability ( ) ( )*
1 , 2 , 3 1 , 2 , 3

2

j
on off off on off off

j
P Pρ ρ ρ ρ ρ ρ

≥

= ∑ . The equations governing the state 

probabilities of the auxiliary variables are 
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Figure 4.1.4 

Sample function of an impulse process driven by an Erlang renewal process with parameters 
4k =  and ν and the auxiliary zero-one variables appearing in expressions (4.1.70). 
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From the Poisson law ( ){ } ( )Pr ,
!

n
tt

dN t n e
n

ν
ν

ν −= =  it follows that 
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Therefore 
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           (4.1.73) 

 
Let us express the unknown joint probability density of the state vector  in 
terms of the conditional probability functions 

X

• 
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2 3

, , , ,
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p x x dxdx
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given that no impulses have occurred and all the auxiliary are in their first 
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given that no impulses have occurred and the variable 3
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given that no impulses have occurred and the variable 2
νρ  is in its first 

‘on’ phase. 

• 

( )
( ) ( ){ }

4
1 2 3

1

2 3

, , , ,

Pr , , ' '

' ' ' '

p x x dxdx

X x x dx X x x dx is in its first on phase

is off is off

ν ν ν

ν

ν ν

ρ ρ ρ

ρ

ρ ρ

=

∈ + ∧ ∈ + ∧

∧ ∧
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νρ  is in its first 

‘on’ phase. 
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given that after the first impulse occurrence the auxiliary variables are 
simultaneously ‘off’. 
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given that after the first impulse occurrence the variable 1
νρ  is ‘on’. 

 
Hence, the joint probability density function can be expressed as 
 

( ) ( )
8

1 2 3 1 2 3
1

, , , , , , , ,j

j
p x x p x xν ν ν ν ν νρ ρ ρ ρ ρ ρ

=

= ∑                          (4.1.74) 

 
Due to the fact that there is a finite probability of the system being in a 
deterministic state from the initial time to the first impulse, the contributions 
accounting for the fact that no impulse have occurred ( ( )1

1 2 3, , , ,p x x ν ν νρ ρ ρ  

to (4
1 2 3, , , ,p x x )ν ν νρ ρ ρ  ) can be expressed as 
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Let us express the conditional probabilities given that the first Erlang impulse has 
occurred as 
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Considering that the joint probability density function has to satisfy the equation 
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           (4.1.77)                                   

and the following equations relating the state probabilities of the auxiliary 
variables 
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it follows that 
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It can also be proved that the following identities hold 
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Let us consider for instance the marginal probability density of the variable 1

νρ  
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Taking into account the relationships between the state probabilities of the variable 

1
νρ  in (4.1.71), it follows 
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                                   (4.1.81)                            

 
Since the auxiliary variables are zero-one processes, the following relationships 
hold 
 

                   (4.1.82)       
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The unconditional moments of order p m n= +  involving displacement and 
velocity and the moments of order 1p +  involving the auxiliary variables, can be 
expressed in terms of the conditional moments of the same order, as follows 
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The conditional moments can be expressed in terms of unconditional ones as 
follows 
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Applying a cumulant neglect closure of order r, the conditional moments of order 
s>r can be expressed in terms of the lower order conditional moments. The 
conditional moments of order s>r are then expressed in terms of the unconditional 
moments of lower order through the following relationships 
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The unconditional moments of order s involving displacement and velocity only 
and the moments of order s+1 involving also the auxiliary variables can be 
expressed in terms of unconditional moments of order up to r, by inserting 
equations (4.1.67) in (4.1.65), as follows 
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4.1.6 Numerical analysis 
 
In order to illustrate the modified moment closure scheme devised, consider a 
Duffing oscillator under a train of impulses driven by an Erlang renewal process 

( , )E kν . The response is governed by the stochastic differential equation (4.1.5). 

The data assumed for the Duffing oscillator is: 1
0 1sω −= , 0.05ζ = . A substantial 

non linear effect has been taken into account by assuming the non-linearity 
coefficient to be 0.5ε =  (cf. Wen (1975)). 
Departure of the excitation process from Gaussianity depends on the value of the 
mean arrival rate of the impulses, compared to the system natural frequency oω . 
When the mean arrival rate is 0.1 oω or lower, the departure from Gaussianity is 
expected to be substantial (cf. Iwankiewicz and Nielsen (1989), Janssen and 
Lambert (1967)).  
Computations have been performed for the cases 2k = , 3k =  and . The 
values of the parameter 

4k =
ν   have been assumed in such a way that the mean arrival 

rate of the correspondent Poisson process is 0.1 ok
ν ω=  ( 0.2 oν ω= , 0.3 oν ω=  and 

0.4 oν ω= , respectively). 
The random magnitudes of impulses have been assumed as centralized, Rayleigh 
distributed random variables. The values of the parameter 2 / 2r E Pσ ⎡ ⎤= ⎣ ⎦   for 
each case have been chosen so that the stationary value of the variance of the 

response of the corresponding linear oscillator
2

2
34X
o

E P
k
νσ

ζω

⎡ ⎤⎣ ⎦=  has a unit value. 

Therefore it  results 
34

2
o

r
kζωσ

ν
= . 

To verify the approximate analytical results, the response moments have been 
obtained from Monte Carlo simulations based on the ensemble of 30000 of the 
response sample functions, obtained by numerical integration of the equation of 
motion (4.1.1) with the aid of the computer program Mathematica. 
Transient response statistics of the non-linear oscillator are shown in Figures 
4.1.5.to 4.1.7. The analytical results are obtained by applying the ordinary and the 
modified cumulant-neglect closure techniques, neglecting in both schemes the 
cumulants above the second order. 
It is seen that the agreement between the analytical and simulation results is very 
good in the first part of the transient mean value and variance of the response. 
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. 

 
Figure 4.1.5 (a) 

Mean value of the response of a Duffing oscillator to a random train of impulses driven by an 
Erlang process with parameters k=2 and ν=0.2 

 
 

 
Figure 4.1.5 (b) 

Variance of the response of a Duffing oscillator to a random train of impulses driven by an Erlang 
process with parameters k=2 and ν=0.2 

 

 85



 
Figure 4.1.6 (a) 

Mean value of the response of a Duffing oscillator to a random train of impulses driven by an 
Erlang process with parameters k=3 and ν=0.3 

 

 
Figure 4.1.6 (b) 

Variance of the response of a Duffing oscillator to a random train of impulses driven by an Erlang 
process with parameters k=3 and ν=0.3 
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Figure 4.1.7 (a) 

Mean value of the response of a Duffing oscillator to a random train of impulses driven by an 
Erlang process with parameters k=4 and ν=0.4 

 
 

 
 

Figure 4.1.7 (b) 
Variance of the response of a Duffing oscillator to a random train of impulses driven by an Erlang 

process with parameters k=4 and ν=0.4 
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4.2. NON-LINEAR OSCILLATOR UNDER TRAINS OF IMPULSES DRIVEN 
BY A SPECIAL CLASS OF NON-ERLANG RENEWAL PROCESSES 

 
4.2.1 Statement of the problem 

 
Consider a non-linear, non-hysteretic oscillator governed by the equation 
 

 ( ) ( ) ( )( ) (
( )

,,
1,

,,∑
=

−=+
tR

Ri
RiRi ttPtXtXftX δ )       (4.2.1)          

                      
where ( ) ( )( )tXtXf ,  is the function of instantaneous values of  ( )tX  and ( )tX  
and the stochastic excitation is the random train of impulses whose arrival times Rit ,  
are driven by the renewal process ( )tR . The stochastic equations governing the 
system state vector X  can be written as 
 

( ) ( )( ) ( )d t X t dt dR t= +X c b        (4.2.2)           
 

where ,
T

X X⎡ ⎤= ⎣ ⎦X , ( )( ) ( ), ,
T

X t X f X X⎡ ⎤= −⎣ ⎦c , ( )0,
T

P t⎡ ⎤= ⎣ ⎦b , 

 
Let us consider a class of impulse processes which may be represented as follows 
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( ) ( )
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, 1 1

R t R t

i R i R i i i
i R i

P t t Z t P t t
ν

δ
= =

− = −∑ ∑ δ         (4.2.3)              

                      
where the arrival times it are driven by an Erlang renewal process ( )tRν  with 
parameters ν  and k  and ( )itZ  is a value at −it  of an intermittent, zero-one stochastic 
variable ( )tZ  governed by the stochastic equation  
 

( ) ( ) ( ) (tZdRtdRZtdZ νµ −−= 1 )       (4.2.4)           
       
sample functions of the counting process ( )tZ  are assumed to be left continuous with 
right limits. ( )tRµ  is an Erlang renewal process with parameters µ  and l . The 
processes ( )tRµ  and  ( )tRν  are assumed to be independent. 
The following replacement is used (cf. section 3.1.1) 
 

( ) ( ) ( )dR t t dN tα
α αρ=        (4.2.5)          

       
where the is a variable which only takes values 0 or 1 and is governed by ( )tαρ
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where ( ) ( )1 t tα αρ ρ= . 

The variables , ..( )tαρ ( )2 tαρ ( )1k tαρ −  only take values 0 or 1 (see chapter ..).  
It is convenient to augment the state vector by new combined variables 
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The stochastic equations governing the augmented state vector 

 can be written as 1 2 2 1..
T

klX X Z Z Z −⎡ ⎤= ⎣ ⎦X
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The number of auxiliary zero-one stochastic variables is 2kl 1− .  
While the original state vector consisting of X and X  and governed by (4.2.2) is not 
a Markov process, the augmented state vector , governed by equation (4.2.7) driven 
by two independent Poisson processes 

X
Nν  and Nµ  , is a non-diffusive Markov 

process. 
By applying the Ito differential rule, the equations for the mean values and for 2nd, 3rd 

and 4th order moments are obtained as (cf. Iwankiewicz and Nielsen (1999)) 
 

( )

( )

( ) { }

,

, ,

, ,

,

,

2 ,

3 3

i i i

ij i j j i j

s

ijk i j k k i j k s
s

i j k

m t E c E b

t E X c E b E b b

t E X X c E b E X b b

E b b b

α

α ν µ

α α α

α ν µ α ν µ

α α α

α ν µ α ν µ

α α α

α ν µ

α

µ α α

µ α α

α

=

= =

= =

=

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎡ ⎤ ⎡ ⎤= + +⎢ ⎥⎨ ⎬⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥⎨ ⎬⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎡

∑

∑ ∑

∑ ∑

∑

( ) { }

{ }
, ,

, ,

,

4 4 6

4 ,

ijkl i j k l l i j k l s
s

i j k l i j k ls

t E X X X c E b E X X b b

E X b b b E b b b b

α α

α ν µ α ν µ

α α α α α α α

α ν µ α ν µ

µ α α

α α

= =

= =

⎤⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎡ ⎤ ⎡ ⎤= + +⎢ ⎥⎨ ⎬⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑
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     (4.2.9) 
     
where  and ( ) [i im t E X= ( )ij i jt E X Xµ ⎡ ⎤= ⎣ ⎦ . 
The right-hand sides of the equations for moments (4.2.9) involve expectations of 
non-linear transformations of state variables respect to the unknown joint probability 
density function. For polynomial non-linearities, the equations for moments form an 
infinite hierarchy and cannot be directly solved. The unknown moments can only be 
evaluated approximately, using suitable closure approximations. 
If the non-linearities are other than polynomial, the expectation of the non-linear 
transformations of the state variables cannot be expressed directly in terms of 
moments. 
 

4.2.2 Modified closure scheme 
 
As before (see section 4.1.2) the modified cumulant-neglect closure technique can be 
devised by expressing the joint probability density function of the state vector as the 
sum of discrete and continuous parts. Let us assume that the system is at rest at t=0. 
In the discrete parts, Dirac delta functions represent the finite probability that the 
system is at rest before the occurrence of the first impulse, while the auxiliary 
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variables can take the values zero or one. 
The continuous parts are expressed in terms of the conditional probabilities of the 
system vector, given that the first impulse has occurred. 
Before the occurrence of the first impulse, the variable Z  can be in its first ‘off’ state 
with probability ( )1

,Z offP    or in its first ‘on’ state with probability  ( )1
,Z onP  . Meanwhile the 

variables 2Z .. NZ  can be ‘off’ or ‘on’ with probabilities 
         

( ) ( ) ( )

( ) ( ) ( )

1 1 1
, , / , , /

1 1 1
, , / , , / ,

;

.
i i i

i i i

,Z off Z off Z off Z off Z on

Z on Z on Z off Z on Z on

P P P

P P P

= +

= +
                                                                             (4.2.10) 

 
with . 2,...,i N=
After the occurrence of the first impulse the variable Z  can be ‘off’ with probability 

( )#
,

2
,
j

Z off Z off
j

P P
≥

= ∑    or ‘on’ with probability ( )#
,

2
,
j

Z on Z on
j

P P
≥

= ∑ .The variables 2Z .. NZ  can 

be ‘off’ or ‘on’ with probabilities 
 

( ) ( )
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#
, , / , , /

2 2

#
, , / , , /

2 2

;

.

i i i

i i i

j j
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,
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j j

j j
Z on Z on Z off Z on Z on

j j

P P P

P P P
≥ ≥

≥ ≥

= +

= +

∑ ∑

∑ ∑
                                                                  (4.2.11) 

 
The following equations governing the state probabilities of the auxiliary variables 
can be written 
 

( ) ( )1 1
, ,i iZ on Z off RP P+ = P                                                                                                (4.2.12) 

 
where  is the probability that no impulse has occurred, and RP
 

( ) [ ]1 #
, ,i iZ on Z on iP P E Z+ =                                                                                          (4.2.13) 

 
with . It is also possible mutually relate the conditional probabilities of 
different auxiliary variables. 

1,...,i = N

⎤⎦

The conditional probabilities governing the ‘on’ and ‘off’ states of the auxiliary 
variables, before and after the occurrence of the first impulse, can always be found in 
closed form. 
Let us express the unknown probability density of the augmented state vector 

 in terms of joint probabilities, as follows ..
T

NX X X Z Z⎡= ⎣
 

( ) ( ) (, , ,.. , , ,..j
N

j
)Np x x z z p x x z z= ∑                                                                   (4.2.14) 

 
Due to the fact that there is a finite probability of the system being in a deterministic 
state from the initial time to the occurrence of the first impulse, the joint densities 
given that no impulse has occurred can be expressed as 
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(4.2.15) 

 the joint probabilities given that the first impulse has occurred are expressed as  
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             (4.2.16)                                

he joint probability density function has to satisfy the equation 
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                                                        (4.2.17)           

y observing that  
 

 
B

4

1
1

kl

j
j

P
=

=∑                                                                                                             (4.2.18)     

It follows that 
 

 
  

( ) ( ), 1 1,...2jf x x dxdx j kl
∞

−∞
∫ = =                                                                   (4.2.19)                   
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It is possible to prove that the following identity holds 
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                                              (4.2.20)   

or j=1, for instance, equation (4.2.20) becomes 
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bserving that 
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nd from equations (4.2.12) and (4.2.13),it follows that 
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                                                                               (4.2.23)   

herefore the equation (4.2.21) becomes 
 

 
T

( ) [ ]( ) ( ) [ ]( ) ( )1 1p z E z z E z zδ δ= − + −                                                       (4.2.24)   

ce the auxiliary variables are 
ero-one processes, the following relationships hold 

 

 
Let us consider the case of zero initial conditions. Sin
z
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     (4.2.25)                                    

                                                                                                                                               
The unconditional moment of order p m n= +  involving displacements and velocity 
can be expressed in terms of the conditional moments of the same order as follows 
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The unconditional moment of order 1p m n 1+ = + +  involving also the auxiliary 
variables can be expressed in terms of the conditional moments of order p as follows 
 

2
( )

2
1

(2) ( 1)
1 2 2 3 2

(2 )
1 1 4

[ ] [ ],

[ ] [ ] [
..

[ ] [ ].

kl
m n j m n

j kl
j kl

m n m n kl m n
kl kl

m n kl m n
k l kl

E X X Z P E X X

],E X X P E X X P E X X

E X X Z P E X X

ν

ν µ

ρ

ρ ρ

+
= +

+
+ +

− −

=

= +

=

∑
                                  (4.2.27)                                   

                                                   
The following relationships between the conditional moments of order p=m+n and the 
unconditional ones can be derived: 
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                          (4.2.28)                             
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The Gram-Charlier expansion can be applied to the conditional density functions 
( ) ( )1 ,f x x .. ( ) (2 ,kl )f x x that can be viewed as probability densities of a bi-dimensional  

stochastic variable.  
A modified closure scheme can be constructed by performing the ordinary cumulant 
neglect closure on each set of conditional moments. The conditional moments of 
order s higher than the closure order r are expressed in terms of conditional moments 
of order lower than r through the following relationships 
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The conditional moments of order up to r appearing at the right hand side of equation 
(4.2.29) can be expressed in terms of unconditional ones through equation (4.2.28) as 
follows 
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(4.2.30) 

 the 
nconditional moments of order up to the rth through the following relationships 

 

 
From equations (4.2.26) and (4.2.27) the unconditional moments of order s>r 
containing displacement and velocity only and the unconditional moments of order 
s+1 containing each of the auxiliary variables, are expressed in terms of
u
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Where rπ  runs through the list of the partitions of { }1,2,...s in blocks of maximum 

dimension r , rB  runs through the list of blocks of the partition rπ . 

For cubic non-linearity, performing a cumulant neglect closure of order r on the 2kl 
sets of conditional moments, the conditional moments of the order r+1 and r+2 
involving displacement and velocity only and the moments of order r+2 and r+3 
involving also each of the auxiliary variables are expressed in terms of moments up to 
the order r.  

 

4.2.3 Process I: (Generalised Erlang renewal process)  
( ) ( )R t Pµ µ=  and ( ) ( )R t Pν ν=

( )N tν ( )N tν

 
 
Consider the response of a Duffing oscillator ( ) 2, 2 3f X X X X Xζω ω ε= − − −  to the 
random train of impulse ( )R t , defined by equation (4.2.5) where the stochastic 

process ( )Z t  in (4.2.4) is obtained by choosing ( ) ( )R t Pµ µ=  (a Poisson process with 

parameter µ ) and ( ) ( )R t Pν ν=  (a Poisson process with parameter ν ). 
The stochastic equation of motion (4.2.7) is specified by 
 

( )
( )
( )
( )

( )
( )
( )

1

2

3

;
X t X t

t X t X t
Z t X t

⎡ ⎤ ⎡
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

X
⎤
⎥
⎥
⎥⎦
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( )( )
( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( )

2
2 2 3

1 2 1

3

3 3

2 ;
0

0 0
, 0

1

X t
t X t X t X t

P t t b b P t X t
X t X t

µ ν

ω ζω εω
⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎡ ⎤= =⎣ ⎦ ⎢ ⎥
⎢ ⎥− −⎣ ⎦

c X

b X ;

                                   (4.2.32)          

        
Before the occurrence of the first impulse, the variable Z can be in its first ‘off’ state 
(with probability ( )1

,Z offP  ) or in its first ‘on’ state (with probability ( )1
,Z onP ). After the first 

impulse occurrence, the auxiliary variable can be ‘on’ or ‘off’ with probabilities 
( )#

, ,
2

j
Z on Z on

j
P P

≥

= ∑ , ( )#
,

2

j
,Z off Z off

j
P P

≥

= ∑ ,  respectively (see Fig.4.2.1). 

For the variable Z the following equations governing the state probabilities can be 
written: 
 

( ) ( )

( ) ( )

1 1 # #
, , , ,

1 1# #
, , , ,

; 1

1 [ ]; [
z off z on R z off z on R

z off z off z on z on

P P P P P P

P P E Z P P E Z

+ = + = −

+ = − + = ]
         (4.2.33)          

       
with  
 

( ) ( )

( ) ( )

1 1
, ,

1 1# #
, , ,

; ;

[ ] ; 1 [ ] .

z off N z on R N

z on z on z off z off

P P P P P

P E Z P P E Z P
µ µ

= = −

= − = − − ,

                                                          (4.2.34)           

                                                        
where t

NP e
µ

µ−=  is the probability that the first Nµ  driven event has not occurred, 

1
(1 )RP F= − w , with ( )

1 1
0

t

w wF f x= ∫ dx , is the probability that the first event driven by 

the process ( )R t  has not occurred. 
 
 P R 1-PR 1st impulse

PΖ
(1)

off PΖ
(1)

on PΖ
(2)

onPΖ
(2)

off

 
 
 
 
 Z 
 
 
 
 
 

 
Figure 4.2.1 

Sample function of the train of impulses driven by the non-Erlang renewal process ( )R t  
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Let us express the unknown probability density of the state vector X  in terms of  the 
conditional probabilities  
 

• 
( ) ( )

( ) ( ){ }

1 , ,

Pr , , ' '

p x x z dxdx

X x x dx X x x dx Z is in its first off phase

=

∈ + ∧ ∈ + ∧
,  

given that no impulses have occurred and the variable Z is in its first “off”     
state.                           
  

• 
( ) ( )

( ) ( ){ }

2 , ,

Pr , , ' '

p x x z dxdx

X x x dx X x x dx Z is in its first on phase

=

∈ + ∧ ∈ + ∧
 

given that no impulses have occurred and the variable Z is in its first “on” 
state.          
                   

• 

( ) ( )
( ) ( ){ }

3 , ,

Pr , ,

' '

p x x z dxdx

X x x dx X x x dx

Z is in any off phase following the first

=

∈ + ∧ ∈ +

∧

 

       given that no impulses have occurred and the variable Z  is ‘off’” . 
 

• 

( ) ( )
( ) ( ){ }

4 , ,

Pr , ,

' '

p x x z dxdx

X x x dx X x x dx

Z is in any on phase following the first

=

∈ + ∧ ∈ +

∧

 

       given that no impulses have occurred and the variable Z  is “on”. 
 

The joint probability density function can be expressed as 
 

( ) ( ) ( )
4

1
, , , ,j

j
p x x z p x x z

=

= ∑        (4.2.35)          

       
Due to the fact that there is a finite probability of the system being in a deterministic 
state from the initial time to the first impulse, the terms ( ) ( )1 , ,p x x z  and ( ) ( )2 , ,p x x z  
that contain the conditional probability of the state vector given that no impulses have 
occurred, can be respectively expressed as 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) (

1 1
, 0 0

2 1
, 0 0

, , ,

, , 1 .
z off

z on

p x x z P x x x x z

p x x z P x x x x z

δ δ δ

δ δ δ

= − −

= − − − )
                 (4.2.36)           

 
Let us express the terms ( ) (3 , , )p x x z  and ( ) ( )4 , ,p x x z containing the conditional 
probabilities of the state vector given that the first impulse has occurred as follows 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) (

3 1#
,

4 2#
,

, , ,

, , , 1
z off

z on

p x x z P f x x z

p x x z P f x x z

δ

δ

=

= − )
      (4.2.37)           
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Considering that the joint probability density function has to satisfy the equation 
 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 # 1 # 2
, , , ,

, ,

, ,Z off Z on Z off Z on

p x x z dxdxdz

P P P f x x dxdx P f x x dxdx

∞

−∞

∞ ∞

−∞ −∞

=

+ + + =

∫

∫ ∫ 1
                    (4.2.38)                                    

                                                                                            
from equations (4.2.34) it follows that the functions ( ) ( )1 ,f x x  and ( ) (2 , )f x x  have to 
satisfy the following relationships  
 

( ) ( ) ( ) ( )1 2, 1, , 1f x x dxdx f x x dxdx
∞ ∞

−∞ −∞

=∫ ∫ =                                                        (4.2.39)                   

                                                                                         
By integrating the joint probability density function (4.2.35), together with (4.2.36) 
and (4.2.37), with respect to the variables displacement and velocity, the marginal 
probability density of the auxiliary variable Z is derived as follows 
 

( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) [ ]( ) ( ) [ ]( )

1 1 # #
, , , ,

, ,

1

1 1
Z off Z on Z off Z on

p Z p x x z dx dx

P z P z P z P z

z E z z E z

δ δ δ δ

δ δ

∞

−∞

= =

+ − + + −

− + −

∫
1 =                                     (4.2.40)  

 
which is the known expression of the probability density of a zero-one stochastic 
variable.                         
Let us consider the case of zero initial conditions. Since the variable Z is a zero-one 
process, the following relationships hold 

 
k l m k lE X X Z E X X Z⎡ ⎤ ⎡=⎣ ⎦ ⎣ ⎤⎦                                                                             (4.2.41)  

                                                                                                                                              
The unconditional moment of order p m n= +  involving displacements and velocity 
only can be expressed in terms of the conditional moments of the same order as 
follows 
 

# (1) # (2)
, ,[ ] [ ] [m n m n m n

z off z onE X X P E X X P E X X= + ].                                              (4.2.42)           
 
The unconditional moment of order 1p m n 1+ = + +  involving also the auxiliary 
variable can be expressed in terms of the conditional moments of order p as follows 
 

# (2)
,[ ] [m n m n

z onE X X Z P E X X= ].                                                                         (4.2.43)                                
                                                   
The following relationships between the conditional moments of order p=m+n to the 
unconditional ones can be derived: 

 99



( )

( )

1
#
,

2
#
,

;

;

m n m n
m n

z off

m n
m n

z on

E X X E X X Z
E X X

P

E X X Z
E X X

P

⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦⎡ ⎤ =⎣ ⎦

⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦

                                                    (4.2.44)           

                                  
Let us perform the ordinary cumulant neglect closure on the two sets of conditional 
moments. The conditional moments of order s higher than the closure order r are 
expressed in terms of conditional moments of order lower than r through the 
following relationships 
 

( ) [ ]

( ) ( ) ( )

1

1

....

1 ! 1 ,

1,2

rr r r

i

r ir r i i i
r

k
s i

i BB

B ki
j

B B j B
i B

E X X X

B E X

k

π π

π ππ π

κ
∈∈

−

∈ ∈ ∈
∈

⎛ ⎞= =⎜ ⎟
⎝ ⎠

⎧ ⎫⎡ ⎤⎛ ⎞⎡ ⎤⎪ ⎢ ⎜− − ⎢ ⎥⎨ ⎜⎢ ⎥⎢ ⎥⎪ ⎪⎣ ⎦⎝ ⎠⎣ ⎦⎩ ⎭
=

∑ ∏

∑ ∑∏ ∏ ∏ ⎪⎥⎟ ⎬⎟
                                              (4.2.45) 

 
The conditional moments of order up to r appearing at the right hand side of equation 
(4.2.45) can be expressed in terms of unconditional ones through equation (4.2.44) as  
follows 
 

( ) [ ]

( ) ( )

( ) [ ]

( ) ( )

1
1

1
#
,

2
1

1
#
,

....

1 ! 1 ,

....

1 ! 1

i i i

r ir r i i
r

i i

r ir r i i
r

s

j j
B j B j Bi

B B z off
i B

s

j
B j Bi

B B z on
i B

E X X

E X E X Z
B

P

E X X

E X Z
B

P

π ππ π

π ππ π

− ∈ ∈

∈ ∈
∈

− ∈

∈ ∈
∈

=

⎧ ⎫⎡ ⎤⎛ ⎞⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥⎜ ⎟−⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦− −⎨ ⎬⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

=

⎛ ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦− −

∏ ∏
∑ ∑∏ ∏

∏
∑ ∑∏ ∏ .

⎧ ⎫⎡ ⎤⎞
⎪ ⎪⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟⎪ ⎪
⎨ ⎬⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

                            (4.2.46) 

 
From equations (4.2.42) and (4.2.43) the unconditional moments of order s>r 
containing displacement and velocity only and the unconditional moments of order 
s+1 containing each of the auxiliary variables, are expressed in terms of the 
unconditional moments of order up to the rth through the following relationships 
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[ ]

( ) ( )

( ) ( )

1

1#
, #

,

1#
, #

,

....

1 ! 1

1 ! 1

i i i

r ir r i i
r

i i

r ir r i i
r

s

j j
B j B j Bi

z off
B B z off

i B

j
B j Bi

z on
B B z on

i B

E X X

E X E X Z
P B

P

E X Z

P B
P

π ππ π

π ππ π

− ∈ ∈

∈ ∈
∈

− ∈

∈ ∈
∈

=

⎧ ⎫⎡ ⎤⎛ ⎞⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥⎜ ⎟−⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥⎜ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦− −⎨ ⎬⎢ ⎥⎜
⎪ ⎪⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦− −

∏ ∏
∑ ∑∏ ∏

∏
∑ ∑∏ ∏ ,

⎧ ⎫⎡ ⎤⎛ ⎞
⎪ ⎪⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟⎪ ⎪
⎨ ⎬⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎟
+⎟                                

[ ] ( ) ( ) 1#
1 , #

,

.... 1 ! 1 .
i i

r ir r i i
r

j
B j Bi

s z on
B B z on

i B

E X Z

E X X Z P B
Pπ ππ π

− ∈

∈ ∈
∈

⎧ ⎫⎡ ⎤⎛ ⎞⎡ ⎤
⎪ ⎪⎢ ⎥⎜ ⎟⎢ ⎥
⎪ ⎪⎢ ⎥⎜ ⎢ ⎥⎪ ⎪⎣ ⎦= − −⎨ ⎬

⎟
⎢ ⎥⎜

⎪ ⎪
⎟

⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∏
∑ ∑∏ ∏                (4.2.47)           

Where rπ  runs through the list of the partitions of { }1,2,...s in blocks of maximum 

dimension r, rB  runs through the list of blocks of the partition rπ . 

 
4.2.4 Process II: ( ) ( ),R t E lµ µ=  and ( ) ( )R t Pν ν=

( )N tν ( )N tν

 
 
Consider the response of a Duffing oscillator ( ) 2, 2 3f X X X X Xζω ω ε= − − −  to the 
random train of impulses ( )R t , derived from equations (4.2.4) and (4.2.5) with 

( ) ( ),R t E lµ µ=  (an Erlang process with parameters µ  and l  ) and ( ) ( )R t Pν ν= (a 
Poisson process with parameter ν ). 
Let us assume that the Erlang renewal process ( )R tµ  is defined by the parameters µ  
and 2l = . Equations (4.2.5) and (4.2.6) become 
  

( ) ( ) ( )
( ) ( )( ) ( )1 2

dR t t dN t

d t t dN t
µ µ µ

µ µ

ρ

ρ ρ

=

= − µ

        (4.2.48)           

 
The stochastic equation of motion (4.2.7) is specified by 
 

( )

( )
( )
( )
( )

( ) ( )

( )
( )
( )
( )
( )

1

2

3

4

5

;

X t X t
X t X t
Z tt X

t
t

X t
Z t t X t

µ

µ

ρ
ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

X  
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( )( )

( )
( ) ( ) ( )

( ) ( )( )
( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

2
2 2 3

1 2 1

3

4 5 3

4

3 5 5

2
;0

0
0

0 0
0

, ;
1 2 0

2

X t
X t X t X t

t

P t X t
Z t X t X tP t t b b

X t
X t X t X t

µ ν

ω ζω εω
⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ − −= =⎣ ⎦ ⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

c X

b X

⎦      (4.2.49)                    

        
Before the occurrence of the first impulse, the variable Z can be 

• in its first ‘off’ state with probability ( )1
,Z offP  (while the variable µρ  can be in 

its first ‘off’ phase or in its first  ‘on’ phase with probabilities, respectively 
 and ( )1

, / ,off Z offP
µρ

( )1
, / ,on Z offP

µρ  and the variable  Z µρ  is in its first ‘off’ phase with 

probability ( )1
, / ,Z off Z offP

µρ ) 
or 
•  or in its first ‘on’ state with probability ( )1

,Z onP  (while the variable µρ  can be 

‘off’ or ‘on’ with probabilities, respectively ( )1
, / ,off Z onP

µρ  and ( )1
, / ,on Z onP

µρ  and the 

variable  Z µρ  can be ‘off’ or ‘on’ with probabilities ( )1
, / ,Z off Z onP

µρ  and 
( )1

, / ,Z on Z onP
µρ ). 

After the first impulse occurrence, the auxiliary variables can be ‘on’ or ‘off’ with 
probabilities (see Figure 4.2.2) 
 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

# #
, , , , , / , , /

2 2 2

#
, , , / , , / ,

2 2

; ;j j j j
Z on Z on on on on Z off on Z on

j j j

j j j
Z on Z on Z on Z off Z on Z on

j j

P P P P P P

P P P P

µ µ µ µ

µ µ µ µ

ρ ρ ρ ρ

ρ ρ ρ ρ

≥ ≥ ≥

≥ ≥

= = = +

= = +

∑ ∑ ∑

∑ ∑

,

    (4.2.50)      

  
The state probabilities for the variable Z satisfy the following equations: 
 

1 1
, ,

# #
, ,

1 #
, ,

1 #
, ,

1

1 [

[ ]

z off z on R

z off z on R

z off z off

z on z on

P P P

P P P

P P E Z

P P E Z

+ =

+ = −

+ = −

+ =

]
         (4.2.51)    

       
with  
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1
,

1
,

#
,

#
,

,

[ ] ,

1 [ ] .

z off R

z on R R

z on R R

z off R

P P

P P P

P E Z P P

P E Z P

µ

µ

µ

µ

=

= −

= − +

= − −

                                                                                   (4.2.52)         
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ρµ 

P R 1-PR 
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onPΖ
(2)

off

Figure 4.2.2 
Sample functions of the train of impulses driven by the non-Erlang renewal process R , and the zero-

one processes Z , µρ  and Z µρ  appearing in the stochastic equation (4.2.49). 

 
          
where t

NP e
µ

µ−=  is the probability that the first Nµ  driven event has not occurred, 

( )1 t
RP t t

µ
e µµ −= +  is the probability that the first Rµ  driven event has not occurred 

and  
1

1RP = − wF , with ( )
1 1

0

t

w wF f x= ∫ dx , is the probability that no impulse driven by 

( )R t  has occurred.                                                                                      
The equations governing the state probabilities of the variable µρ  are: 
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( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1 # #
, / , , / , , / , , / ,

1 1 # #
, / , , / , , / , , / ,

1 1 1 1
, / , , / , , / , , / ,

1 [

[ ]

off Z off off Z on off Z off off Z on

on Z off on Z on on Z off on Z on

off Z off off Z on on Z off on Z on R

P P P P E

P P P P E

P P P P P

µ µ µ µ

µ µ µ µ

µ µ µ µ

]ρ ρ ρ ρ µ

ρ ρ ρ ρ µ

ρ ρ ρ ρ

ρ

ρ

+ + + = −

+ + + =

+ + + =

      (4.2.53)                  

 
where 
 

( ) ( )

( ) ( )

1 1
, / , , / ,

1 1
, / , 1 , / , 2

# #
, / , 3 , / , 4

# #
, / , 5 , / , 6

; ;

; ;

; ;

; .

off Z off N on Z off R N

off Z on on Z on

off Z off on Z off

off Z on on Z on

P P P P

P P P P

P P P P

P P P P

µ µ µ µ

µ µ

µ µ

µ µ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

= =

= =

= =

= =

P
µ

−

                                                              (4.2.54)                                

 
The equations governing the state probabilities of the variable  Z µρ can be written as 
 

( ) ( )

( )

( ) ( ) ( )

1 1 # #
, / , , / , , / , , / ,

1 #
, / , , / ,

1 1 1
, / , , / , , / ,

1 [

[ ]

Z off Z off Z off Z on Z off Z off Z off Z on

Z on Z on Z on Z on

Z off Z off Z on Z on Z off Z on R

P P P P E

P P E Z

P P P P

µ µ µ µ

µ µ

µ µ µ

ρ ρ ρ ρ

ρ ρ

ρ ρ ρ

]Z ρ

ρ

+ + + = −

+ =

+ + =

       (4.2.55)                  

   
where 
 

( ) ( ) ( ) ( ) ( )

[ ]

1 1 1 1 1
, / , , / , , / , 1 , / , , / , 2

# # # #
, / , , , / , , / , 5

# #
, / , , / , 6

, ,

1 , ,

.

Z off Z off R Z off Z on off Z on Z on Z on on Z on

Z off Z off Z off R Z off Z on off Z on

Z on Z on on Z on

P P P P P P P

P P E Z P P P P

P P P

µ µ µ µ µ µ

µ µ µ µ

µ µ

ρ ρ ρ ρ ρ

ρ ρ ρ

ρ ρ

= = = =

= = − − = =

= =

,P=

                                        

een the state probabilities of the 
ariable Z and the state probabilities of the variable 

          

(4.2.56)         
                     
The following equations show the relationships betw
v µρ  
 

( ) ( )

( ) ( )

1 1 # #
, / , , / , , / , , / ,

1 1 # #
, , , , ,on on off o ofP P P

µρ / / , , / / ,

1 [ ]

[ ]

off Z off on Z off off Z off on Z off

Z Z on on Z n f Z on

P P P P E Z

P E Z
µ µ µ µ

µ µ µ

ρ ρ ρ ρ

ρ ρ ρ

+ + + = −

+ + + =
                                   (4.2.57)  

quations in the unknowns P1,..P6. The state probabilities P3 and P4 can be resolved 
s 

 

             
It can be proved that equations (4.2.53), (4.2.55) and (4.2.57) lead to the linear system 
of e
a

3

4 [ ] [ ]P E Z E

1 [ ] [ ] [ ] ,

.
N

R N

P E Z E Z E P

P P
µ

µ µ

ρ ρ= − + − −

+
                                                                     (4.2.58)    

e remaining unknowns can be expressed in terms of  P1 as follows 

ρ ρ= − + −

                                 
th
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2 1

5 1

6 1

,

[ ] [ ] ,
[ ]

R R

R R

P P P P

P E Z E Z P
.Z P P P

µ

µ

ρ
ρ

= − −

= − −
= + − +

                                                   (4.2.59)                 

State probability 

density  that the variable

P E
 

( )1
P t  

 
The probability  1P  ρ  is ‘off’ during Z first ‘on’ phase can 
e expressed as 

 
b

( )

( ) ( ){ }

( ) ( ){ } ( )

1

0

0 0

Pr , 0,2,4,..

Pr , 0,2,4,.. ,

t

u

t

u
ν ν

ξ

P t dt

T u u du N t u T t

T u u du N t u dR d T t

µ µ ν

µ

µ µ ξ ξ ξ ξ

=

= =

=

∈ + ∧ − = ∧ > +

∈ + ∧ − = ∧ ∈ + ∧ > −

∑

∑ ∑

 

                                                  (4.2.60) 

 p

 
 
where the terms at the right hand side account for the robability that the variable Z is 
‘on’, that is the time variable t is between the first  Rµ  event and the subsequent Nν  
event and simultaneously between an ev en-number and the subsequent odd-number 
Poisson-driven event with parameter µ . 
The probability density  can be expressed as 
 

1P

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

2
1

0

2

0 2T Tµ

0

1 1 1
2

1 1 1 ;

t
t u

T T

t u
t u

P t g u e du F t du

g u e h F t d du

µ ν

ν

µ

µ
ν ξ ξ ξ

− −

− −

= + − +

+ − −

∫

∫ ∫
                                          (4.2.61)      

 appearing at the right hand side of the equation above are defined in 

    
                                         

Definition of the variables appearing in the expression of the probability function

                
The variables
Figure 4.2.3. 
                                                 

R driveneventµ

N driveneventν

tuξ

Figure 4.2.3 
 ( )1P t  
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Let us express the unknown probability density of the state vector X  in terms of the 
onditional probabilities  

 

• 

c

( ) ( )
( ) ( ){ }

1 , , , ,

Pr , ,

' ' ' ' ' '

p x x z z dxdx

X x x dx X x x dx

Z is in its first off phase is off Z is offµ µρ ρ∧ ∧ ∧

ven t no impulses have occurred and the 

µ µρ ρ =

∈ + ∧ ∈ +  

gi hat variables µρ  is ‘off’ while 
Z and Z µρ  are in their first “off” state.               
              

• 

( ) ( )
( ) ( ){ }

2 , , , ,

Pr , ,

' ' ' ' ' 'Z is in its first off phase is in its first on phase

p x x z z dxdx

X x x dx X x x dx

Z is offµ µρ ρ∧ ∧ ∧

given that no mpulses have occurred and the variable 

µ µρ ρ =

∈ + ∧ ∈ +  

 i µρ  is in its first  ‘on’    
hase whilep  Z  and Z µρ  are still in their first “off” state.  

 

• 

( ) ( )
( ) ( ){ }

3 , , , ,

Pr , ,

' ' ' ' ' '

p x x z z dxdx

X x x dx X x x dx

Z is in its first on phase is off Z is offµ µρ ρ∧ ∧ ∧
 given at no i

µ µρ ρ =

∈ + ∧ ∈ +    

th mpulses have occurred and the variable Z  is in its first on state    
while µρ  and Z µρ  are “off”.  

 

• 

( ) ( )
( ) ( ){ }

4 , , , ,

Pr , ,

' ' ' ' ' '

p x x z z dxdx

X x x dx X x x dx

Z is in its first on phase is on Z is onµ µρ ρ∧ ∧ ∧

given that no impulse

µ µρ ρ =

∈ + ∧ ∈ +  

s have occurred and the variables Z , µρ  and Z µρ are   
simultaneously “on”. 

 

• 

( ) ( )
( ) ( ){ }

5 , , , ,

Pr , ,

' '
' '

' '

p x x z z dxdx

X x x dx X x x dx

Z is in any off phase following the first impulse
is in any off phase following the first impulse

Z is in any off phase following the first impulseµρ∧
 given that the first

µ µ

µ

ρ ρ

ρ

=

∈ + ∧ ∈ +

∧
∧

  

 impulse has occurred and the three variables are        
simultaneously ‘off’. 
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• 

( ) ( )
( ) ( ){ }

6 , , , ,

Pr , ,

' '
' '

' '

p x x z z dxdx

X x x dx X x x dx

Z is in any off phase following the first impulse
is in any on phase following the first impulse

Z is in any off phase following the first impulse

µ µ

µ

µ

ρ ρ

ρ

ρ

=

∈ + ∧ ∈ +

∧
∧

∧

 

 given that the first impulse has occurred and µρ  is ‘on’ while Z  and Z µρ  are  
“off”. 

 

• 

( ) ( )
( ) ( ){ }

7 , , , ,

Pr , ,

' '
' '

' '

p x x z z dxdx

X x x dx X x x dx

Z is in any on phase following the first impulse
is in any off phase following the first impulse

Z is in any off phase following the first impulse

µ µ

µ

µ

ρ ρ

ρ

ρ

=

∈ + ∧ ∈ +

∧
∧

∧

  

given that the first impulse has occurred and Z  is in an ‘on’ state while µρ    
and  Z µρ  are “off”. 

 

•  

( ) ( )
( ) ( ){ }

8 , , , ,

Pr , ,

' '
' '

' '

p x x z z dxdx

X x x dx X x x dx

Z is in any on phase following the first impulse
is in any on phase following the first impulse

Z is in any on phase following the first impulse

µ µ

µ

µ

ρ ρ

ρ

ρ

=

∈ + ∧ ∈ +

∧
∧

∧

 

given that the first impulse has occurred and the variables Z , µρ  and Z µρ  are   
simultaneously “on”. 
 

Hence, the joint probability density function can be expressed as 
 

( ) ( ) ( )
8

1
, , , , , , , ,j

j
p x x z z p x x z zµ µ µ µρ ρ ρ

=

= ∑ ρ                    (3.2.62)

           
Due to the fact that there is a finite probability of the system being in a deterministic 
state from the initial time to the first impulse, the terms ( ) ( )1 , , , ,p x x z zµ µρ ρ  to 

( ) (4 , , , ,p x x z z )µ µρ ρ containing the conditional probability densities given that no 
impulses have occurred, can be respectively expressed as 
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )

1

1
, / , 0 0

2

1
, / , 0 0

3

1
, / , 0 0

4

1
, / , 0

, , , ,

,

, , , ,

1 ,

, , , ,

1 1

, , , ,

off Z off

on Z off

off Z on

on Z on

p x x z z

P t x x x x z z

p x x z z

P t x x x x z z

p x x z z

P t x x x x z z

p x x z z

P t x x x

µ

µ

µ

µ

µ µ

ρ µ

µ µ

ρ

µ µ

ρ µ

µ µ

ρ

ρ ρ

δ δ δ δ ρ δ ρ

ρ ρ

δ δ δ δ ρ δ ρ

ρ ρ

δ δ δ δ ρ δ ρ

ρ ρ

δ δ

=

− −

=

− − −

=

− − − −

=

− ( ) ( ) ( ) (0 1 1x z z µ µδ δ ρ δ ρ− − − −

,

µ

µ µ

µ

)1 .

                  (4.2.63)

   
Let us express the terms 

( ) ( )5 , , , ,p x x z zρ ρ  to 
( ) ( )8 , , , ,p x x z zρ ρ corresponding to the 

conditional probabilities given that the first impulse has occurred as follows 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) (

5 1
3

2 2
4

3 3
5

3 4
6

, , , , ,

, , , , , 1

, , , , , 1

, , , , , 1 1 1

p x x z z P f x x z z

p x x z z P f x x z z

p x x z z P f x x z z

p x x z z P f x x z z

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

ρ ρ δ δ ρ δ ρ

ρ ρ δ δ ρ δ ρ

ρ ρ δ δ ρ δ ρ

ρ ρ δ δ ρ δ ρ

=

= −

= −

= − − )−

                (4.2.64) 

 
The joint probability density function has to satisfy the equation 
 

( )
( ) ( ) ( ) ( )

( ) ( )

1 1 1 1
, / , , / , , / , , / ,

4

2
1

, , , ,

, 1

off Z off off Z off off Z off off Z off

j
j

j

p x x z z dxdxdzd dz

P P P P

P f x x dxdx

µ µ µ µ

µ µ µ µ

ρ ρ ρ ρ

ρ ρ ρ ρ
∞

−∞

∞

+
= −∞

=

+ + +

=

∫

∑ ∫

+                                               (4.2.65) 

 
observing that 
 

( ) ( ) ( ) ( )1 1 1 1
, / , , / , , / , , / ,

4

2
1

,

1 .

off Z off off Z off off Z off off Z off R

j R
j

P P P P

P P

µ µ µ µρ ρ ρ ρ

+
=

+ + + =

= −∑

P
                                         (4.2.66) 

 
the functions ( ) ( )1 ,f x x  to ( ) (4 , )f x x  satisfy the following relationships  
 

( ) ( ) ( ) ( )1 4, 1,... , 1f x x dxdx f x x dxdx
∞ ∞

−∞ −∞

=∫ ∫ =                                                         (4.2.67)               

                                                                                         
It can also be proved that the following identities hold 
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( ) ( )( )( )( )( )

( ) [ ]( ) ( ) [ ]( )( )
( ) ( )( )( )( )( )

( )( ) ( )( )( )
( ) ( )( )( )( )( )

( )( ) ( )( )( )

, , , ,

1 1

, , , ,

1 1

, , , ,

1 1

p Z p x x z z dx dx dz d

z E Z z E Z

p p x x z z dx dx dz dz

E E

p Z p x x z z dx dx dz d

z E Z z E Z

µ µ µ µ

µ µ µ

µ µ µ µ

µ µ µ

µ µ µ µ

ρ ρ ρ ρ

δ δ

ρ ρ ρ

δ ρ ρ δ ρ ρ

ρ ρ ρ

δ ρ ρ δ ρ ρ

∞

−∞

∞

−∞

∞

−∞

= =

− + −

= =

⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦

= =

⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦

∫

∫

∫

µ

µ

ρ

ρ

                                      (4.2.68) 

 
Considering as an example the marginal density of the variable µρ  
 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
, / , , / ,

1 1
, / , , / ,

3 4 5 6

, , , ,

1

1

1 1

off Z off off Z off

off Z off off Z off

p p x x z z dxdxdzdz

P P

P P

P P P P

µ µ

µ µ

µ µ µ

ρ µ ρ µ

ρ µ ρ µ

µ µ µ µ

ρ ρ ρ ρ

δ ρ δ ρ

δ ρ δ ρ

δ ρ δ ρ δ ρ δ ρ

∞

−∞

= =

+ − +

+ − +

+ − + + −

∫

.

µ

                                              (4.2.69) 

 
and observing that 
 

( ) ( )

( ) ( )

1 1
, / , , / , 3 5

1 1
, / , , / , 4 6

1 ;

.

off Z off off Z off

off Z off off Z off

P P P P E

P P P P E
µ µ

µ µ

ρ ρ

ρ ρ µ

ρ

ρ

µ⎡ ⎤+ + + = − ⎣ ⎦

⎡ ⎤+ + + = ⎣ ⎦
                                                   (4.2.70) 

 
it follows 
 

( ) ( )

( ) ( ) ( )

, , , ,

1 1

p p x x z z dxdxdzdz

E E

µ µ µ

µ µ µ µ

ρ ρ ρ

ρ δ ρ ρ δ ρ

∞

−∞

= =

⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦

∫ µρ
                                                   (4.2.71) 

 
Let us consider the case of zero initial conditions. Since the variables Z , µρ  and Z µρ  
are zero-one processes, the following relationships hold 

 

( )
; ;

;

k l m k l k l m k l

mk l k l

E X X Z E X X Z E X X E X X

E X X Z E X X Z

µ µ

µ µ

ρ ρ

ρ ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎢ ⎥⎣ ⎦

⎤⎦
                           (4.2.72) 

 109



                                                                                        
                                                                                
The unconditional moment of order p m n= +  involving displacements and velocity 
can be expressed in terms of the conditional moments of the same order as follows 
 

(1) (2) (3) (4)
3 4 5 6

[ ]
[ ] [ ] [ ] [ ]

m n

m n m n m n m n

E X X
P E X X P E X X P E X X P E X X

=

+ + +
                     (4.2.73) 

 
The unconditional moment of order 1 1p m n+ = + +  involving also the auxiliary 
variables can be expressed in terms of the conditional moments of order p as follows 
 

(3) (4)
5 6

(2) (4)
4 6

(4)
6

[ ] [ ] [ ]

[ ] [ ] [

[ ] [ ];

m n m n m n

m n m n m n

m n m n

E X X Z P E X X P E X X

E X X P E X X P E X X

E X X Z P E X X
µ

µ

ρ

ρ

= +

= +

=

;

];                                                (4.2.74)                                  

                                
The following relationships between the conditional moments of order p=m+n and the 
unconditional ones can be derived: 
 

( )

( )

( )

( )

1

3

2

4

3

5

4

6

;

;

;

.

m n m n m n m n
m n

m n m n
m n

m n m n
m n

m n
m n

E X X E X X E X X Z E X X Z
E X X

P

E X X E X X Z
E X X

P

E X X Z E X X Z
E X X

P

E X X Z
E X X

P

µ µ

µ µ

µ

µ

ρ ρ

ρ ρ

ρ

ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎡ ⎤ =⎣ ⎦

⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦⎡ ⎤ =⎣ ⎦

⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦⎡ ⎤ =⎣ ⎦

⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦

  (4.2.75)                               

                                
Let us perform the ordinary cumulant neglect closure on the two sets of conditional 
moments. The conditional moments of order s higher than the closure order r are 
expressed in terms of conditional moments of order lower than r through the 
following relationships 
 

( ) [ ]

( ) ( ) ( )

1

1

....

1 ! 1 ,

1,..4

rr r r

i

r ir r i i i
r

k
s i

i BB

B ki
j

B B j B
i B

E X X X

B E X

k

π π

π ππ π

κ
∈∈

−

∈ ∈ ∈
∈

⎛ ⎞= =⎜ ⎟
⎝ ⎠

⎧ ⎫⎡ ⎤⎛ ⎞⎡ ⎤⎪ ⎢ − − ⎜ ⎢ ⎥⎨ ⎜⎢ ⎥⎢ ⎥⎪ ⎪⎣ ⎦⎝ ⎠⎣ ⎦⎩ ⎭
=

∑ ∏

∑ ∑∏ ∏ ∏ ⎪⎥⎟ ⎬⎟
                                      (4.2.76)                                

 
The conditional moments of order up to r appearing at the right hand side of equation 
(4.2.76) can be expressed in terms of unconditional ones through equation (4.2.75) as  
follows 
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( ) [ ]1
1.... sE X X =  

( ) ( )

( ) [ ] ( ) ( )

1
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2
1

1 ! 1 ;

.... 1 ! 1

i i i ii

r ir r i i
r

i

r ir r i i
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j j j j
j B j B j B j BBi

B B
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B
P
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∈

−

∈ ∈
∈

⎧ ⎫⎡ ⎤⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥⎜ ⎟− + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦− −⎢ ⎥⎨ ⎬⎜ ⎟
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∈ ∈
∈
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⎪ ⎪⎢ ⎥⎜ ⎟−⎢ ⎥ ⎢ ⎥
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                                                                                                                             (4.2.77) 
The closure scheme for the unconditional moments becomes   
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    (4.2.78)                               

Where rπ  runs through the list of the partitions of { }1, 2,...s in blocks of maximum 

dimension r, rB  runs through the list of blocks of the partition rπ . 

 
4.2.5 Process III: ( ) ( )R t Pµ µ= and ( ) ( ),R t E kν ν=

( )N tν ( )N tν

 
 

Consider the response of a Duffing oscillator ( ) 2, 2 3f X X X X Xζω ω ε= − − −  to the 
random train of impulses ( )R t , obtained from equations (4.2.4) and (4.2.5) with 

( ) ( )R t Pµ µ=  (a Poisson process with parameter µ ), ( ) ( , )R t E kν ν= (an Erlang 
process with parameters ν  and 2k = ), with 

( ) ( )dR t dN tν ν νρ=  , 

( ) ( ) ( )1 2d t dN tν νρ ρ= − ν . 
The stochastic equation of motion (4.2.7) is specified by 
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⎡ ⎤ ⎡
⎢ ⎥ ⎢
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X t X t X t X t
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ω ζω εω
⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ − −= =⎣ ⎦ ⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

c X

b X

               (4.2.79)      

        
Before the occurrence of the first impulse, the variable Z can be in its first ‘off’ state 
(with probability ( )1

,Z offP  ) or in its first ‘on’ state (with probability ( )1
,Z onP ). Meanwhile the 

variable νρ  can be in any ‘off’ state or in any ‘on’ state before the occurrence of the 

first impulse (with probabilities ( ) ( ) ( )1 1 1
, , ; , , ;on on Z off on Z onP P P

ν ν νρ ρ ρ= + ,  and 
( ) ( ) ( )1 1 1

, , ; , , ;off off Z off off Z onP P P
ν ν νρ ρ ρ= + ,  respectively). In a similar way, the variable Z νρ  can be 

found in its first ‘off’ state or in its first ‘on’ state before the occurrence of the first 
impulse with probabilities ( )1

,Z offP
νρ   and  ( )1

,Z onP
νρ  respectively. 

After the first impulse occurrence, the auxiliary variables can be ‘on’ or ‘off’ with 
probabilities ( )#

, ,
2

j
Z on Z on

j
P P

≥

= ∑ , ( )#
, ,

2

j
Z off Z off

j
P P

≥

= ∑ , ( )#
, ,

2

j
on on

j
P P

ν νρ ρ
≥

= ∑ , ( )#
, ,

2

j
off off

j
P P

ν νρ ρ
≥

= ∑ or 

( )#
, ,

2

j
Z on Z on

j

P P
ν νρ ρ

≥

= ∑ , ( )#
,

2

j
,Z off Z off

j

P P
νρ

≥

= ∑ νρ  respectively (see Fig.4.2.4). 

For the variable Z the following equations governing the state probabilities can be 
written: 
 

( ) ( )

( ) ( )

1 1 # #
, , , ,

1 1# #
, , , ,

; 1

1 [ ]; [
z off z on R z off z on R

z off z off z on z on

P P P P P P

P P E Z P P E Z

+ = + = −

+ = − + = ]
                                                      (4.2.80)

               
with  
 

( ) ( )

( ) ( )

1 1
, ,

1# #
, , ,

; ;

[ ] ; 1 [ ] .

z off N z on R N

z on z on z off z off

P P P P P

P E Z P P E Z P
µ µ

= = −

= − = − − 1
,

                                                          (4.2.81) 
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where t
NP e

µ

µ−=  is the probability that the first Nµ  driven event has not occurred, 

1
(1 )R wP F= − (with ( )

1 1
0

t

w wF f x= ∫ dx ) is the probability that the first event driven by 

the process ( )R t  has not occurred. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.2.4 
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Sample functions of the train of impulses driven by the non-Erlang renewal process R , and the zero-
one processes Z , νρ  and Z νρ  appearing in the stochastic equation (4.2.79). 

 
                                                                    
The equations governing the state probabilities of the variable νρ  are: 
 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1 # #
, / , , / , , / , , / ,

1 1 # #
, / , , / , , / , , / ,

1 1 1 1
, / , , / , , / , , / ,

1 [

[ ]

off Z off off Z on off Z off off Z on

on Z off on Z on on Z off on Z on

off Z off off Z on on Z off on Z on R

P P P P E

P P P P E

P P P P P

ν ν ν ν

ν ν ν ν

ν ν ν ν

]ρ ρ ρ ρ

ρ ρ ρ ρ ν

ρ ρ ρ ρ

νρ

ρ

+ + + = −

+ + + =

+ + + =

      (4.2.82)

  
where 
 

 114



( ) ( )

( ) ( ) ( )

1 1
, / , 1 , / , 2

# #
, / , 3 , / , 4

1 1 (1)
, / , 1 , / , 2 ,

# # # #
, / , , 3 , / , , 4

; ;

; ;

; ;

; ;

off Z off off Z on

off Z off off Z on

on Z off Z off on Z on Z on

on Z off Z off on Z on Z on

P P P P

P P P P

P P P P P

P P P P P P

ν ν

ν ν

ν ν

ν ν

ρ ρ

ρ ρ

ρ ρ

ρ ρ

= =

= =

= − + = − +

= − = −

1P
                                                  (4.2.83)                                 

 
the equations governing the state probabilities of the variable Z νρ can be written as 
 

( ) ( )

( )

( ) ( )

1 1# #
, , , / , , / ,

1 #
, / , , / ,

1 1
, ,

1 [

[ ]
Z off Z off Z off Z on Z off Z on

Z on Z on Z on Z on

Z on Z off R

P P P P E Z

P P E Z

P P P

]ρ ρ ν

ρ ρ ν

ρ ρ

ρ

ρ

+ + + = −

+ =

+ =

                              (4.2.84)

                 
 
where 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 #
, , , / , , ,

1 1 1
, , / , 2 ,

# # #
, , / , , 4

# # # # #
, , , / , , ,

,

,

,

,

Z off Z off on Z on Z off Z on

Z on on Z on Z on

Z on on Z on Z on

Z off Z off on Z on Z off Z on

P P P P P

P P P P

P P P P

P P P P P

ν

ν

ν

ν

ρ ρ

ρ ρ

ρ ρ

ρ ρ

= + = + −

= = − +

= = −

= − = − +

2

4

P

P

                                                     (4.2.85) 

 
It can be proved that the equations above lead to the linear system of equations in the 
unknown P1,..P4 

 

1 2 3 4

4 2

1 [
[ ] [ ]

P P P P E
P P E Z E Z

]ν

ν

ρ
ρ

+ + + = −
+ = −

                                                                                (4.2.86)                                 

 
The unknowns P3, P4 can be expressed in terms of P1 and P2 as follows 
 

3

4 2

1 [ ] [ ] [ ]
[ ] [ ] ;

P E Z E E Z
P E Z E Z P

ν ν

ν

1;Pρ ρ
ρ

= − − + −
= − −

                                                  (4.2.87)      

 
State probability ( )1P t  

 
The probability 1P  that the variable νρ  is ‘off’ during Z first ‘off’ state can be 
expressed as 
 

( ) ( ){ }1 Pr 0,2,..P t T t N tµ ν= > ∧ =                                                                    (4.2.88) 
   
 
where the terms at the right hand side account for the probability that the variable Z is 
‘off’, that is the time variable t is before the first  Rµ  event event and simultaneously 
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between an even-number and the subsequent odd-number Poisson-driven event with 
parameter ν . The probability 1P  can be expressed as 
 

( ) ( )( ) ( )2
1

11 1
2

t
TP t F t e

µ

ν−= − + ;                                                                            (4.2.89)        

                                         
State probability ( )2P t  

 
The probability 2P  that the variable νρ  is ‘off’ during Z first ‘on’ state can be 
expressed as 
 

( )

( ) ( ){ }

( ) ( ) ( )

2

0

0 0

Pr , 0

Pr , , 0

t

u

t u

u

P t

T u u du N t T t

T u u du dR d N t T t

µ ν ν

µ ν ν
ξ

νξ ξ ξ ξ ξ

=

= =

=

∈ + ∧ = ∧ > +

⎧ ⎫
∈ + ∧ ∈ + ∧ − = ∧ > −⎨ ⎬

⎩ ⎭

∑

∑ ∑

 

                                                (4.2.100)  
 
where the terms at the right hand side account for the probability that the variable Z is 
‘on’, that is the time variable t is between the first  Rµ  event and the subsequent Rν  
event and simultaneously between an even-number and the subsequent odd-number 
Poisson-driven event with parameter ν . The probability 2P  can be expressed as 

( )

( ) ( )( )

( ) ( ) ( )( ) ( )

2

0

0 0

1

1 ;

t
t

T T

t u
t

T T

P t

g u e du F t du

g u h F t e d du

µ ν

µ ν

ν

ν ξ
ν ξ ξ

−

− −

=

− +

− −

∫

∫ ∫ ξ

                                                   (4.2.101)        

                                         
The variables appearing at the right hand side of the expression above are defined in 
Figure 4.2.5 
 

N driveneventµ

R driveneventν

tuξ

 
Figure 4.2.5 

Definition of the variables appearing in the expression of the state probability  ( )2P t
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Let us express the unknown probability density of the state vector X  in terms of the 
conditional probabilities  
 

• 

( ) ( )
( ) ( ){ }

1 , , , ,

Pr , ,

' ' ' ' ' '

p x x z z dxdx

X x x dx X x x dx

Z is in its first off phase is off Z is off

ν ν

ν ν

ρ ρ

ρ ρ

=

∈ + ∧ ∈ +

∧ ∧ ∧

 

given that no impulses have occurred and the variables νρ  is ‘off’ while Z and 
Z νρ  are in their first “off” state.               
              

• 

( ) ( )
( ) ( ){ }

2 , , , ,

Pr , ,

' ' ' ' ' '

p x x z z dxdx

X x x dx X x x dx

Z is in its first off phase is in its first on phase Z is off

ν ν

ν ν

ρ ρ

ρ ρ

=

∈ + ∧ ∈ +

∧ ∧ ∧

 

given that no impulses have occurred and the variable νρ  is in its first  ‘on’    
phase while Z  and Z νρ  are still in their first “off” state.  
 

• 

( ) ( )
( ) ( ){ }

3 , , , ,

Pr , ,

' ' ' ' ' '

p x x z z dxdx

X x x dx X x x dx

Z is in its first on phase is off Z is off

ν ν

ν ν

ρ ρ

ρ ρ

=

∈ + ∧ ∈ +

∧ ∧ ∧

   

 given that no impulses have occurred and the variable Z  is in its first on state    
while νρ  and Z νρ  are “off”.  

• 

( ) ( )
( ) ( ){ }

4 , , , ,

Pr , ,

' ' ' ' ' '

p x x z z dxdx

X x x dx X x x dx

Z is in its first on phase is on Z is on

ν ν

ν ν

ρ ρ

ρ ρ

=

∈ + ∧ ∈ +

∧ ∧ ∧

 

given that no impulses have occurred and the variables Z , νρ  and Z νρ are   
simultaneously “on”. 

 

• 

( ) ( )
( ) ( ){ }

5 , , , ,

Pr , ,

' '
' '

' '

p x x z z dxdx

X x x dx X x x dx
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ν ν

ν

ν

ρ ρ

ρ
ρ

=

∈ + ∧ ∈ +

∧
∧
∧

  

 given that the first impulse has occurred and the three variables are        
simultaneously ‘off’. 
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 given that the first impulse has occurred and νρ  is ‘on’ while Z  and Z νρ  are  
“off”. 

 

• 
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given that the first impulse has occurred and Z  is in an ‘on’ state while νρ    
and  Z νρ  are “off”. 

 

•  
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X x x dx X x x dx

Z is in any on phase following the first impulse
is in any on phase following the first impulse

Z is in any on phase following the first impulse

ν ν

ν

ν

ρ ρ

ρ
ρ

=

∈ + ∧ ∈ +

∧
∧
∧

 

given that the first impulse has occurred and the variables Z , νρ  and Z νρ  are   
simultaneously “on”. 

 
Hence, the joint probability density function can be expressed as 
 

( ) ( ) ( )
8

1
, , , , , , , ,j

j
p x x z z p x x z zν ν ν νρ ρ ρ

=

= ∑ ρ                    (4.2.102) 

Due to the fact that there is a finite probability of the system being in a deterministic 
state from the initial time to the first impulse, the terms ( ) ( )1 , , , ,p x x z zν νρ ρ  to 

( ) (4 , , , ,p x x z z )ν νρ ρ corresponding to the conditional probability densities given that 
no impulses have occurred, can be respectively expressed as 
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)
)

−

−

                    

                                                                                                                          (4.2.103) 
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The terms 
( ) ( )5 , , , ,p x x z zρ ρ  to 

( ) ( )8 , , , ,p x x z zρ ρ  corresponding to the conditional 
probabilities given that the first impulse has occurred are expressed as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) (
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= − − )−

     (4.2.104) 

 
The joint probability density function has to satisfy the equation 
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Considering that 
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the following relationships hold 
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It can also be proved that the following identities hold 
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Let us consider the case of zero initial conditions. Since the variables Z , νρ  and Z νρ  
are zero-one processes, the following relationships hold 
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The unconditional moment of order p m n= +  involving displacements and velocity 
can be expressed in terms of the conditional moments of the same order as follows 
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                    (4.2.110)  

 
The unconditional moment of order 1 1p m n+ = + +  involving also the auxiliary 
variables can be expressed in terms of the conditional moments of order p as follows 
 

(3) (4)
7 8

(2) (4)
6 8

(4)
8

[ ] [ ] [ ]

[ ] [ ] [

[ ] [ ];

m n m n m n

m n m n m n

m n m n

E X X Z P E X X P E X X

E X X P E X X P E X X

E X X Z P E X X
ν

ν

ρ

ρ

= +

= +

=

;

];                                                 (4.2.111)                                

                                                   
The following relationships relating the conditional moments of order p=m+n to the 
unconditional ones can be derived: 
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Let us perform the ordinary cumulant neglect closure on the four sets of conditional 
moments. The conditional moments of order s higher than the closure order r are 
expressed in terms of conditional moments of order lower than r, which in turn can be 
derived as functions of the unconditional moments of order lower than r through 
equation (4.2.112). From equations (4.2.110) and (4.2.111), the modified closure 
scheme for the unconditional moments becomes 
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Where rπ  runs through the list of the partitions of { }1, 2,...s in blocks of maximum 

dimension r, rB  runs through the list of blocks of the partition rπ . 

 
4.2.6 Process IV: ( ) ( ),R t E lµ µ= and ( ) ( ),R t E kν ν=

( )N tν ( )N tν

 
 

Consider the response of a Duffing oscillator ( ) 2, 2 3f X X X X Xζω ω ε= − − −  to the 
random train of impulses ( )R t , derived from equations (3.2.4) and (3.2.5) with 

( ) ( ),R t E lµ µ=  and ( ) ( ),R t E kν ν=  ( Erlang processes with parameters , l 2µ =  and 
,k 2ν = , respectively) and with  

 
( ) ( )dR t dN tµ µ µρ= , 

( ) ( ) ( )1 2d t dN tµ µρ ρ= − µ   
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and 
 

( ) ( )dR t dN tν ν νρ= ,  

( ) ( ) ( )1 2d t dN tν νρ ρ= − ν . 
 
The stochastic equation of motion (4.2.7) is specified by 
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Before the occurrence of the first impulse, the variable Z can be in its first ‘off’ state 
(with probability ( )1

,Z offP  ) or in its first ‘on’ state (with probability ( )1
,Z onP ). Meanwhile the 

variable νρ  can be in any ‘off’ state or in any ‘on’ state before the occurrence of the 
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first impulse (with probabilities ( ) ( ) ( )1 1 1
, , ; , , ;on on Z off on Z onP P P

ν ν νρ ρ ρ= + ,  and 
( ) ( ) ( )1 1 1

, , ; , , ;off off Z off off Z onP P P
ν ν νρ ρ ρ= + ,  respectively). The variable µρ  can be in its first ‘off’ 

state or in its first  ‘on’ state while Z is in its first ‘off’ state before the occurrence of 
the first impulse (with probabilities ( )1

, ; ,off Z offP
µρ  and ( )1

, ; ,on Z offP
µρ  respectively) or can be in 

any subsequent ‘off’ state or ‘on’ state during Z first ‘on’ state (with probabilities 
( )1

, ; ,off Z onP
µρ  and ( )1

, ; ,on Z offP
µρ  respectively).  In a similar way, the variables µ νρ ρ , Z µρ  

Z νρ  and Z µ νρ ρ can be found in the ‘off’ or ‘on’ states shown in Figure 4.2.6 with the 
correspondent probabilities in Table 4.1. 
After the first impulse occurrence, the auxiliary variables can be ‘on’ or ‘off’ with 
probabilities ( )#
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The following equations governing the state probabilities for the variable Z can be 
written: 
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with  
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where t

RP te
µ

µµ −=  is the probability that the first Rµ  driven event has not occurred,  
t

NP e
µ

µ−=  is the probability that the first Nµ  driven event has not occurred, 

1
(1 )R wP F= − (with ( )

1 1
0

t

w wF f x= ∫ dx ) is the probability that the first event driven by 

the process ( )R t  has not occurred. 
The equations governing the state probabilities of the variable νρ  are: 
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Figure 4.2.6 
Sample functions of the train of impulses driven by the non-Erlang renewal process R , and the zero-

one processes Z, νρ , µρ , µ νρ ρ , Z µρ  , Z νρ  and Z µ νρ ρ appearing in the stochastic equation (4.2.102). 
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The equations governing the state probabilities of the variable µρ  are: 
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where 
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The equations governing the state probabilities of the variable ν µρ ρ  are: 
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where 
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The equations governing the state probabilities of the variable Z νρ  are: 
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where 
 

( ) ( )

( ) ( )

( )

( ) ( ) ( )

1 1
, / , ,

1 1
, / , , / , 2

# #
, / , ,

# #
, / , , / , 4

1
, / ,

1 1 1
, / , , / , , 2

#
, / ,

#
, / , , / ,

0

0

Z off Z off Z off

Z off Z on off Z on

Z off Z off Z off

Z off Z on off Z on

Z on Z off

Z on Z on on Z on Z on

Z on Z off

Z on Z on on Z o

P P

P P P

P P

P P P

P

P P P

P

P P

ν

ν ν

ν

ν ν

ν

ν ν

ν

ν ν

ρ

ρ ρ

ρ

ρ ρ

ρ

ρ ρ

ρ

ρ ρ

=

= =

=

= =

=

= =

=

= # #
, 4n Z onP P= −

P−

                                                                      (4.2.124)   

 
The equations governing the state probabilities of the variable Z µρ  are: 
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where 
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The equations governing the state probabilities of the variable Z µ νρ ρ  are: 
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The conditional probability P6 can be directly determined from the equations above, 
he others can be expressed in terms of the probabilities P1, P2, P5, P8, P9 as follows t 
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                                                        (4.2.129) 
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Z ρν ρµ ρν ρµ Ζρν Ζρµ Ζρν ρµ

P(1) ρν off, Z off P(1) ρµ  off, Z off P(1)  ρν ρµ  off, Z off P(1)  Ζρν  off, Z off P(1)  Ζρµ  off, Z off P(1)  Ζρν ρµ  off, Z offP(1)
Z off P(1) ρν on, Z off P(1)

 ρµ  on, Z off P(1)
 ρν ρµ  on, Z off P(1)  Ζρν  on, Z off P(1)  Ζρµ  on, Z off P(1)

 Ζρν ρµ  on, Z off

P(1) ρν off, Z on P(1)  ρµ  off, Z on P(1)  ρν ρµ  off, Z on P(1)  Ζρν  off, Z on P(1)  Ζρµ   off, Z on P(1)  Ζρν ρµ  off, Z onP(1)
Z on P(1) ρν on, Z on P(1)  ρµ  on, Z on P(1) ρν ρµ  on, Z on P(1)  Ζρν  on, Z on P(1)  Ζρµ   on, Z on P(1)  Ζρν ρµ  on, Z on

P# ρν off, Z off P# ρµ  off, Z off P#  ρν ρµ  off, Z off P#  Ζρν  off, Z off P#  Ζρµ   off, Z off P#   Ζρνρµ  off, Z offP#
Z off P# ρν on, Z off P# ρµ  on, Z off P#  ρν ρµ  on, Z off P#  Ζρν  on, Z off P#  Ζρµ   on, Z off P#   Ζρνρµ  on, Z off

P# ρν off, Z on P# ρµ  off, Z on P#
 ρν ρµ  off, Z on P#  Ζρν off, Z on P#  Ζρµ  off, Z on P#

  Ζρν ρµ  off, Z onP#
Z on P# ρν on, Z on P# ρµ  on, Z on P#  ρν ρµ  on, Z on P#  Ζρν  on, Z on P#  Ζ µ   on, Z on P#   Ζρν ρµ  on, Z on

 
Table 4.1 

State probabilities of the variables Z, νρ , µρ , µ νρ ρ , Z µρ  , Z νρ  and Z µ νρ ρ . 

 
State Probability ( )1P t   

 
The probability  ( )1

1 , / ,off Z offP P
νρ=  that the variable νρ  is ‘off’ during Z first ‘off’ state 

can be expressed as 
 

( ) ( ){ }1 Pr 0,2,4,...P t T t N tµ ν= > ∧ =                                                              (4.2.130) 
   
where the term at the right hand side accounts for the probability that the variable Z is 
‘off’, that is the time variable t is before the first  Rµ  driven event and simultaneously 
between an even-number and the subsequent odd-number Poisson-driven event with 
parameter ν . 
The probability density 1P  can be expressed as 
 

( ) ( )( ) ( )2
1

11 1
2

t
TP t F t e

µ

ν−= − +                           (4.2.131)                               

                                          
The variables appearing at the right hand side of the above expression are defined in 
Figure 4.2.7 
 

t

R driveneventµ

R driveneventν

N driveneventν

 
 

Figure 4.2.7 
Definition of the variable t appearing in equation (4.2.131). 
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State Probability ( )2P t   
 

The probability  ( )1
2 , /off Z onP P

νρ= ,  that the variable νρ  is ‘off’ during Z first ‘on’ state 
can be expressed as 
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∈ + ∧ ∈ + ∧ − = ∧ > −⎨ ⎬

⎩ ⎭

∑

∑ ∑

     

                                                                                                                           (4.2.132) 
 
                                                    
where the terms at the right hand side account for the probability that the variable Z is 
in its first ‘on’ state, that is the time variable t is between the first  Rµ  event and the 
subsequent Rν  event and simultaneously no events driven by the Poisson process with 
parameter ν  has occurred.  
The probability density 2P  can be expressed as 
 

( )
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ν
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−

− −
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− +

− −

∫

∫ ∫ ξ

                                                 (4.2.133)        

                                          
The variables appearing at the right hand side of the above expression are defined in 
Figure 4.2.8 
 

u tξ

R driveneventµ

R driveneventν

N driveneventν

 
 

Figure 4.2.8 
Definition of the variables appearing in equation (4.2.133). 
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State Probability ( )5P t  
 

The probability  ( )1
5 , /off Z onP P

µρ= ,  that the variable µρ  is ‘off’ during Z first ‘on’ state 
can be derived as 
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                                                                                                                           (4.2.134) 
                                                      
where the terms at the right hand side account for the probability that the variable Z is 
in its first ‘on’ state, that is the time variable t is between the first  Rµ  driven event 
and the subsequent Rν  event and simultaneously between an even–number and the 
subsequent odd-number Poisson-driven event with parameter µ . 
The state probability 5P  can be expressed as 
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              (4.2.135)        

                                          
The variables appearing at the right hand side of the expression above are defined in 
Figure 4.2.9 
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R driveneventν
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Figure 4.2.9 

 
Definition of the variables appearing in equation (4.2.135). 
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State Probability ( )8P t  

 
The probability  ( )1

8 , /off Z offP P
µ νρ ρ= ,  that the variable µ νρ ρ  is ‘off’ during Z first ‘off’ 

state can be expressed as 
 

( ) ( ) ( )1 1 1
7 , / , , , / ,off Z off Z off on Z offP P P P

µ ν µ νρ ρ ρ ρ= = −                                                                 (4.2.136) 
 
The conditional probability ( )1

, / ,on Z offP
µ νρ ρ  can be found as 
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   (4.2.137) 

                                                      
where the terms at the right hand side account for the probability that the variable Z is 
in its first ‘off’ state and simultaneously µ νρ ρ  is ‘on’, that is the time variable t is 
between the first  Nµ  driven event and the subsequent Rµ  event and simultaneously 
between an odd-number and the subsequent even-number Poisson-driven event with 
parameter ν . 
The probability density ( )1

, / ,on Z offP
µ νρ ρ  can be expressed as 
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                                           (4.2.138)        

                                          
The variables appearing at the right hand side of the expression above are defined in 
Figure 4.2.10 
 
 

 132



u tξ

R driveneventµ

R driveneventν

N driveneventµ

 
 

 
Figure 4.2.10 

 
Definition of the variables appearing in equation (4.2.138). 

 
 

State Probability ( )9P t  
 

The state probability ( )1
9 , /off Z onP P

µ νρ ρ= ,  that the variable µ νρ ρ  is ‘off’ during Z first 
‘on’ state can be expressed as 

( ) ( ) ( )1 1 1
8 , / , , , /off Z on Z on on Z onP P P P

µ ν µ νρ ρ ρ ρ= = − ,                                                   (4.2.139) 
 
the state probability ( )1

, / ,on Z onP
µ νρ ρ  can be found as 

 
( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1

1

1

1
, / ,

0 1 1 1 1 1 1 1

1 1 1
0

0
1 1 1 1

,
Pr

, ,

, , ,
Pr

, 1,3,..

on Z on

t

u N
u u

u

Nt

u

u u

P t

T u u du

dR u u du T d T t N t u

T u u du dR d T d

dR u u du T t N t u

µ ν

ν

ν

ρ ρ

µ

ξ

µ ν µ

µ ν
ξ

ξ

µ ν µ

ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ

ξ

=
=

=

=

=

=

⎧ ⎫∈ + ∧
⎪ ⎪

+⎨ ⎬
∈ + ∧ + ∧ > ∧ − =⎪ ⎪

⎩ ⎭
⎧ ⎫

∈ + ∧ ∈ + ∧ − − +⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪∈ + ∧ > − ∧ − =⎪ ⎪⎩ ⎭

∑ ∑

∑
∑

∑
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                                                 (4.2.140) 
 
where the terms at the right hand side account for the probability that the time 
variable t is between the first  Nν driven event following the first Rµ  driven event and 
the subsequent Nν  event and simultaneously between an even-number and the 
subsequent odd-number Poisson-driven event with parameter µ . 
The probability density ( )1

, / ,on Z onP
µ νρ ρ  can be expressed as 
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The variables appearing at the right hand side of the expression above are defined in 
Figure 4.2.11 
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N driveneventµ

N driveneventν

R driven eventν

1ξ
1u

 
 

Figure 4.2.11 
Definition of the variables appearing in equation (4.2.129). 

Let us express the joint probability density of the state vector X  in terms of the joint 
probabilities  
 

( ) ( ) ( )
16

1
, , , ,j

j
p x x p x x

=

= ∑z z           (4.2.142)                              

where ( , , , , , ,z z z z )ν µ ν µ ν µ ν µρ ρ ρ ρ ρ ρ ρ ρ=z  .      
Due to the fact that there is a finite probability of the system being in a deterministic 
state from the initial time to the first impulse, the joint probabilities ( ) ( )1 , ,p x x z  to 

( ) (8 , , )p x x z  given that no impulses have occurred, can be expressed as 
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If the joint probabilities ( ) ( )9 , ,p x x z  to ( ) ( )16 , ,p x x z  given that the first impulse has 
occurred are expressed as 
 

 135



( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

9 1
9

10 2
10

11 3
11

12 4
12

, , ,

,

, , ,

1 ,

, , ,

1 ,

, , ,

1 1 1 ,

p x x P t f x x

z z z z

p x x P t f x x

z z z z

p x x P t f x x

z z z z

p x x P t f x x

z z z z

ν µ µ ν ν µ µ ν

ν µ µ ν ν µ µ ν

ν µ µ ν ν µ µ ν

ν µ µ ν ν µ µ ν

δ δ ρ δ ρ δ ρ ρ δ ρ δ ρ δ ρ ρ

δ δ ρ δ ρ δ ρ ρ δ ρ δ ρ δ ρ ρ

δ δ ρ δ ρ δ ρ ρ δ ρ δ ρ δ ρ ρ

δ δ ρ δ ρ δ ρ ρ δ ρ δ ρ δ ρ ρ

=

=

−

=

−

=

− − −

z

z

z

z

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

13 5
13

14 6
14

15 7
15

16 8
16

, , ,

1 ,

, , ,

1 1 1 ,

, , ,

1 1 1 ,

, , ,

1 1 1 1

p x x P t f x x

z z z z

p x x P t f x x

z z z z

p x x P t f x x

z z z z

p x x P t f x x

z

ν µ µ ν ν µ µ ν

ν µ µ ν ν µ µ ν

ν µ µ ν ν µ µ ν

ν µ µ ν

δ δ ρ δ ρ δ ρ ρ δ ρ δ ρ δ ρ ρ

δ δ ρ δ ρ δ ρ ρ δ ρ δ ρ δ ρ ρ

δ δ ρ δ ρ δ ρ ρ δ ρ δ ρ δ ρ ρ

δ δ ρ δ ρ δ ρ ρ δ

=

−

=

− − −

=

− − −

=

− − − −

z

z

z

z

( ) ( ) (1 1z z zν µ µ νρ δ ρ δ ρ ρ )1 ,− − −

 (4.2.145)
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Let us consider the case of zero initial conditions. Since the auxiliary variables are 
zero-one processes, the following relationships hold 
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                                                                                                                           (4.2.147)                              
The unconditional moment of order p m n= +  involving displacements and velocity 
can be expressed in terms of the conditional moments of the same order as follows 
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The unconditional moment of order 1 1p m n+ = + +  involving also the auxiliary 
variables can be expressed in terms of the conditional moments of order p as follows 
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                                          (4.2.149)                              

                                                                                             
                                                   
The following relationships between the conditional moments of order p=m+n and the 
unconditional ones can be derived: 
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                                                                                                      (4.2.150) 
Let us perform the ordinary cumulant neglect closure on the eight sets of conditional 
moments. The conditional moments of order s higher than the closure order r are 
expressed in terms of conditional moments of order lower than r, which in turn can be 
derived as functions of the unconditional moments of order lower than r through 
equation (4.2.150). From equations (4.2.148) and (4.2.149), the modified closure 
scheme for the unconditional moments becomes 
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4.2.7 Numerical analysis 
 
Consider a Duffing oscillator governed by the stochastic differential equation (4.2.1). 
The data assumed for the Duffing oscillator is: 1

0 1sω −= , 0.05ζ =  and 0.5ε = . 
Computations have been performed for the load processes I and II characterized in 
sections (4.2.3) and (4.2.4). The values of the parameters of the driving Erlang and 
Poisson processes  have been assumed in such a way that the mean arrival rate of the 

impulses 
[ ]
1 20.008

oE T
π

ω
=  . 

The random magnitudes of impulses have been assumed as centralized, Rayleigh 
distributed random variables. The values of the parameter 2 / 2r E Pσ ⎡ ⎤= ⎣ ⎦   for each 
case have been chosen so that the stationary value of the variance of the response of 
the corresponding linear oscillator has a unit value. 
To verify the approximate analytical results, the response moments have been 
obtained from Monte Carlo simulations based on averaging 30000 of the response 
sample functions, obtained by numerical integration of the equation of motion (4.2.1) 
with the aid of the computer program Mathematica. 
The analytical results are obtained by applying the ordinary and the modified 
cumulant-neglect closure techniques, neglecting in both schemes the cumulants above 
the second order. Transient response statistics of the non-linear oscillator are shown in 
Figures 4.2.12.and 4.2.13. 
In the case of low mean arrival rate of impulses, the application of higher order 
ordinary cumulant neglect closure does not lead to improved results since it becomes 
numerically unstable. The modified scheme, on the other hand, provides very good 
predictions of the transient mean value and variance with a second order closure. 
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Figure 4.2.12 (a) 

Mean value of the response of a Duffing oscillator to a random train of impulses driven by the non-
Erlang process I (section 4.2.3) driven by two Poisson processes with parameters µ=0.05 and ν=1 

 
 

 
Figure 4.2.12 (b) 

Variance of the response of a Duffing oscillator to a random train of impulses driven by the non-Erlang 
process I (section 4.2.3) driven by two Poisson processes with parameters µ=0.05 and ν=1 
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Figure 4.2.13 (a) 

Mean value of the response of a Duffing oscillator to a random train of impulses driven by the non-
Erlang process II (section 4.2.4) driven by an Erlang process with parameters µ=0.1 and l=2 and a  

Poisson process with parameter ν=1 
 
 

 
Figure 4.2.13 (b) 

Variance of the response of a Duffing oscillator to a random train of impulses driven by the non- 
Erlang process II (section 4.2.4) driven by an Erlang process with parameters µ=0.1 and l=2 and a  

Poisson process with parameter ν=1 
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CONCLUSIONS 
 
 

A non-diffusive Markov processes approach has been developed for dynamic systems 
under a class of renewal-driven trains of impulses. The considered class embraces 
Erlang-driven impulse processes as well as the impulse processes obtained by selecting 
impulses from an Erlang-driven train. In the latter model the impulses are selected with 
the aid of an auxiliary jump, zero-one, stochastic variable governed by a stochastic 
differential equation driven by two independent Erlang processes. The underlying 
counting process has been proved to be a renewal (non-Erlang) process. The proof hinges 
on the evaluated probability density functions of the first and second waiting times. 
Conversion of the non-Markov problem for the original state vector driven by a renewal 
impulse process into a Markov problem is performed by means of augmenting the state 
vector by auxiliary variables which are the jump stochastic processes. A novel technique 
of recasting an Erlang renewal process in terms of the Poisson process has been 
developed, where the jump processes are zero-one. Thus for the Erlang renewal impulse 
processes the augmented state vector is driven by single Poisson process and for the non-
Erlang impulse process it is driven by the independent Poisson processes. Consequently 
the augmented state vectors are non-diffusive Markov processes. 
For non-linear dynamic systems with polynomial non-linearities under both Erlang 
renewal impulses and the considered class of non-Erlang impulses the technique of 
equations for moments combined with a novel modified cumulant neglect closure 
technique has been devised. This technique is based on conditioning the joint probability 
density function of the augmented state vector on the ‘on’ and ‘off’ states of the auxiliary 
zero-one variables. The form of the joint probability density function allows to derive the 
relationships between the unconditional and conditional moments. Application of the 
ordinary cumulant neglect closure scheme to the conditional moments leads to the 
modified cumulant neglect closure technique. The validity and accuracy of the developed 
technique has been examined at the example of the Duffing oscillator. The equations for 
moments have been closed at the second-order moments level, with the aid of the 
ordinary and modified cumulant neglect closure techniques and the results have been 
verified against Monte Carlo simulations. The results have shown that for highly non-
Gaussian case of sparse trains of impulses (low mean arrival rate) the modified closure 
scheme provides more accurate results than the ordinary cumulant neglect closure. 

 143



APPENDIX 
 

 
 
The coefficients appearing in the equation (3.2.52), giving the probability density of the interarrival 
times for the non-Erlang renewal process IV, take on the following form 
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