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RESPONSE OF DYNAMIC SYSTEMS TO A CLASS OF RENEWAL
IMPULSE PROCESS EXCITATIONS:
NON-DIFFUSIVE MARKOV PROCESSES APPROACH

ABSTRACT

The most suitable model that idealizes random sequences of shock and impacts on
vibratory systems is that of a random train of pulses (or impulses), whose arrivals are
characterized in terms of stochastic point processes. Most of the existing methods of
stochastic dynamics are relevant to random impulsive excitations driven by Poisson
processes and there exist some methods for Erlang renewal-driven impulse processes.
Herein, two classes of random impulse processes are considered. The first one is the train
of impulses whose interarrival timesare driven by an Erlang renewal process. The second
class is obtained by selecting some impulses from the train driven by an Erlang renewal
process. The selection is performed with the aid of the jump, zero-one, stochastic process
governed by the stochastic differential equation driven by the independent Erlang
renewal processes. The underlying counting process, driving the arrival times of the
impulses, is fully characterized. The expressions for the probability density functions of
the first and second waiting times are derived and by means of these functions it is
proved that the underlying counting process is a renewal (non-Erlang) process. The
probability density functions of the interarrival times are evaluated for four different
cases of the driving process and the results obtained for some example sets of parameters
are shown graphically.

The advantage of modeling the interarrival times using the class of non-Erlang renewal
processes analyzed in the present dissertation, rather than the Poisson or Erlang
distributions is that it is possible to deal with a broader class of the interarrival probability
density functions. The non-Erlang renewal processes considered herein, obtained from
two independent Erlang renewal processes, are characterized by four parameters that can
be chosen to fit more closely the actual data on the distribution of the interarrival times.
As the renewal counting process is not the one with independent increments, the state
vector of the dynamic system under a renewal impulse process excitation is not a
Markov process. The non-Markov problem may be then converted into a Markov one at
the expense of augmenting the state vector by auxiliary discrete stochastic variables
driven by a Poisson process. Other than the existing in literature (Iwankiewicz and
Nielsen), a novel technique of conversion is devised here, where the auxiliary variables
are all zero-one processes. In a considered class of non-Erlang renewal impulse processes
each of the driving Erlang processes is recast in terms of the Poisson process, the
augmented state vector driven by two independent Poisson processes becomes a non-
diffusive Markov process.

For a linear oscillator, under a considered class of non-Erlang renewal impulse process,
the equations for response moments are obtained from the generalized Ito’s differential
rule and the mean value and variance of the response are evaluated and shown
graphically for some selected sets of parameters.



For a non-linear oscillator under both Erlang renewal-driven impulses and the considered
class of non-Erlang renewal impulse processes, the technique of equations for moments
together with a modified closure technique is devised.

The specific physical properties of an impulsive load process allow to modify the
classical cumulant-neglect closure scheme and to develop a more efficient technique for
the class of excitations considered. The joint probability density of the augmented state
vector is expressed as sum of contributions conditioned on the ‘on’ and “off” states of the
auxiliary variables. A discrete part of the joint probability density function accounts for
the fact that there is a finite probability of the system being in a deterministic state (for
example at rest) from the initial time to the occurrence of the first impulse. The
continuous part, which is the conditional probability given that the first impulse has
occurred, can be expressed in terms of functions of the displacement and velocity of the
system. These functions can be viewed as unknown probability densities of a bi-variate
stochastic process, each of which originates a set of ‘conditional moments’. The set of
relationships between unconditional and conditional moments is derived. The ordinary
cumulant neglect closure is then performed on the conditional moments pertinent to the
continuous part only. The closure scheme is then formulated by expressing the
‘unconditional” moments of order greater then the order of closure, in terms of
unconditional moments of lower order.

The stochastic analysis of a Duffing oscillator under the the random train of impulses
driven by an Erlang renewal processes and a non-Erlang renewal process R(t), is
performed by applying the second order ordinary cumulant neglect closure and the
modified second order closure approximation and the approximate analytical results are
verified against direct Monte Carlo simulation. The modified closure scheme proves to
give better results for highly non-Gaussian train of impulses, characterized by low mean
arrival rate.



1. INTRODUCTION AND PRELIMINARY CONCEPTS
1.1 PROBABILISTIC THEORY OF VIBRATIONS

‘.1t is remarkable that a science which began with the
consideration of games of chance should have become
the most important object of human knowledge’

Pierre-Simon Laplace, Theorie Analytique des Probabilites, 1812

The interest in the quantitative aspects of ‘uncertainty’ that led to quantify the idea of
probability was initially confined to random events connected with games of chance.
Soon, it was realized that randomness characterizes the physical features of all natural
phenomena and environment, so the probability theory found application in a wide
variety of physical problems and developed as a rigorous mathematical discipline with
the advances in science and engineering. A considerable amount of knowledge has been
hinerited from the work of physicists on the Brownian motion (Einstein (1905)). The
most significant engineering applications of the theory of random processes have
occurred in the area of communication theory and control theory since the early 1930s
(Rice (1944), Rice (1945), Middleton (1960)). It was soon realized that the theory
provides a powerful tool for a more realistic treatment of a large class of engineering
problems, including analysis and design of vibratory structural/mechanical systems
(Bolotin (1969)). The primary incentive for the adaptation of the probabilistic approach to
structural dynamics was the modelling of random excitations in aerospace engineering
applications (Lin (1967), Press and Houbolt (1955), Clarkson and Mead (1973), Bendat
et al. (1961)). When an airplane flies in gusty regions, the irregularly fluctuating lifting
loads due to turbulence produce high stresses in the wing structure that, for certain wing
configurations, may significantly influence the structural design. This kind of excitation
is irregular, lacks repeatability and cannot be treated on a conventional ‘deterministic
basis’. The probabilistic approach provides a rational and realistic basis for system
analysis and design in a mathematical framework, through systematic treatment of
uncertainty, where both the excitation and the response are modelled as “stochastic” or
“random” processes, which can be viewed as an infinite “ensemble” of possible “sample
functions” or “realizations”.

There is a large measure of uncertainty in the analysis and design of structural and
mechanical systems. The loads acting upon a ship hull in rough sea is similar to that of an
airplane in a gusty atmosphere. Civil engineering structures are exposed to natural forces.
An offshore structure is subjected to wind loads, ocean waves and, if in a seismic region,
to earthquakes. Due to random fluctuations in wind velocity and direction and to flow
separation, the loads induced by wind are random in space and time (St Denis and
Pierson (1953)). The sea waves’ height, velocity and direction are random in space and
time (Davenport and Novak (1976)). In comparison with wind and waves, earthquakes
loads are rare events produced by seismic events, random in nature (Vanmarke (1976)).
The most significant feature of the analytical method to the analysis and design of
systems is the process of idealization. Most real structural/mechanical systems have
complex geometrical and material properties and operate under complex environmental



conditions. The process of idealization involves simplifying assumptions for constructing
analytically tractable mathematical models for the system, its environment and the
interaction between them. In order to verify the suitability of a probabilistic model it is
necessary to resort to measurements and statistical inference (Bendat (1966)) The central
feature of the “probabilistic approach” is a systematic treatment of uncertainty, where
both the excitation and the response are modelled as “stochastic” or “random” processes,
that can be viewed as an infinite “ensemble” of possible “sample functions ” or
“realizations”.

The complete solution of a random vibration problem implies the probabilistic
characterization of the response process of the dynamical system, given the probabilistic
structure of the loads.

In the case of Gaussian excitation acting on linear systems, the response process is also
Gaussian and the probabilistic theory of structural dynamics enables all the statistical
parameters of the response to be directly related to the corresponding parameters of the
excitation. A class of important non-Gaussian excitation is that of randomly occurring
short-duration loads. The random train of pulses (with arbitrary pulse shape function) is a
model of loading in the cases where the system is subjected to a train of shock and
impacts. Also, the problem of moving loads on a bridge is reduced to that of a random
pulse train.

1.1.1 The Markov Approach equation

The probabilistic law governing the future state of a system, can be determined if its
present state is known, irrespective of how the system arrived at the present state, if the
corresponding random process has the so-called Markov property. The class of the
Markov processes is characterized by the property that the “future’ behavior of the
process is independent of the ‘past ‘when the ‘present’ is known (Barucha-Reid (1960),
Stratonovich (1963), Arnold (1974), Sobczyk (1991)). All the relevant predictions on the
future depend on the most recent known state and can neglect the past. A random process

X(t),teT is said to be Markov if the conditional probability satisfies the following
equation

P[X(t,)<x

X ()= %X (1) = %, | =

1.1.1
PLX () <% X (1) =%, N

forany n and t,, with t, <t,...<t_. The set of all possible values xis the state space that
can be discrete or continuous. The Markov process is fully described in terms of its
transition probability function P[X (t)e E[ X (s)=x]]which is the conditional

probability that the system at the time t belongs to the set E[] given that it is in a state x at
a previous time s. The Markov process has ‘one-step memory’. Any process with
independent increments and for which the initial value is stochastically independent of
any increment, is a Markov process. For this class of processes a wide variety of
analytical methods of analysis are available. The probabilistic characterization of the
response to random loads can be formulated in terms of its transition probability density



function, which is the solution of the Fokker-Plank-Kolmorov differential equation
(Gikhman and Skorohod,1972, Risken, (1985)). In order to remain within the framework
of the Markov approach, when the excitation process does not have independent
increments, it can be regarded as the rth order differential form of an auxiliary process,
which in turn is the result of filtering the generating source process with independent
increments through sth order filter (s>r).The state vector of the system, augmented by the
state variables of a filter, governed by a set of first order differential equations driven by
the process with independent increments, is a Markov vector process.

1.1.2 Poisson driven stochastic differential equstion and Ito’s rule.

Differential equations represent a basic tool in the application of mathematics to natural
and engineering science. A more realistic formulation of the differential equations arising
in applied science, in the attempt to investigate quantitatively the regularities of
phenomena that cannot be uniquely characterized, involves stochastic differential
equations. The intuitive concept of randomness is formed by the mere observation that
the outcomes of experiments carried out under the same conditions do not coincide.

The theory of stochastic processes, initiated in mathematics as a method of
representation of the Brownian motion in terms of Markov processes, was systematically
formulated by Ito (Ito (1951)). The stochastic differential equations have been recently
recognized as an important mathematical tool for the analysis of a great variety of
engineering processes. A very extensive literature exists dealing with the mathematical
formulation and applications of stochastic differential equations (Arnold (1974),
Oksendal (1995), Sobczyk (1991), Friedman (1975), Gihman and Skorohod (1972)). The
usual rules of integration and differentiation of the ordinary differential calculus fail.

For random impulse process excitations, the response vector X(t)of a stochastic
dynamic systems is governed by a stochastic differential equation of the following type

dX(t)=c(X(t))dt+b(P(t),X(t))dN(t) (1.1.2)

where dN(t) indicates the increment of the source vector process in the time interval
[t,t+dt[, P(t) denotes a random variable assigned to the event occurring in the time
interval [t t+dt], while b(P(t),X(t)) carries information of the source process up to
but not including the time instant t and is stochastically independent of dN (t)

Consider a function V (t, X) of the state vector of the system. A jump of unit magnitude
of theath component of the vector dN(t)produces a jump of magnitude

dX(t):ba(P(t),X(t)) of the state vector X and a jump of magnitude (Iwankiewicz
and Nielsen (1999))

dV (1, X) =V (t,X(t)+b, (P(t), X(1)))-V (t. X(t)) (1.1.3)



Considering the Taylor expansion of the increment
dV (t,X) =V (t+dt, X(t+dt))-V (t,X(t))and the fact that any increment is sum of the

increments due to the continuous motion and the increment due to a possible jump
(1.1.3), it follows (Iwankiewicz and Nielsen (1999))

oV (t,X) N

ot
N OV (t, X)

27, (X’X)+§[V (£ XD (P(t), X)) =V (8, X) [4N,

Equation (1.1.4) is the generalized Ito differential rule for system subjected to jump
processes. It is an alternative of the integro-differential equations or of the partial
differential equations.

In general, the Ito’s differential rule originates from the dependence of V(t,X) on the
excitation N(t)that should be ‘non-anticipative’ (Di Paola (1993), Sobczyk (1991),
Snyder (1975), Gikhman and, Skorokhod (1972)). V(t,X) can depend at most on the
present and past values of N(t), in other words is independent of the increments

dv (t,X)=
(1.1.4)

N(t..)—N(t, ), with t,,t,., two successive time instants in an infinitesimal interval.

1.2 RANDOMLY OCCURRING SHORT DURATION LOADS

The dynamic excitation on structural and mechanical system may consist of short
duration loads occurring at random times, with random magnitudes.

Typical examples of this kind of excitations occur in structural, mechanical and industrial
engineering:

Dynamic actions on vehicles due to the irregularity of the road surface (Lingren (1981),
Schielen (1985)); Dynamic behavior of crushing machines; Loads due to the atmospheric
turbulence; Random train of vehicles crossing highway bridges (Tung (1967), Tung
(1969), Gerlough (1955)); Strong earthquake phenomena seen as impulsive change of
ground motion acceleration (Cornell (1964)).

The most suitable model of excitations that simulates random train of shock and impacts
is that of a random train of pulses (with arbitrary pulse shape function).

The random impulsive excitations are characterized in terms of stochastic point
processes.

1.2.1 Stochastic Point Processes
Stochastic point processes, whose realizations consist of point events in time and space,

arise in many fields of application such as statistical physics, astrophysics, astronomy,
biology, communication theory, management science and mechanics. Typical problems



in which the point process models are used are e. g. stochastic and non-linear response
problems, theory of queues, renewal theory, reliability theory (Srinivasan (1974), Snyder
(1975), Cox (1962), Cox and Isham (1980), Gross and Harris (1985), Iwankiewicz
(1995), Iwankiewicz and Nielsen (1999)).

The central idea, in the study of this particular class of random process, is the analysis of
random collections of point occurrences. Consider the points occurring along a time axis,
although it is possible to consider that the points occur in some region of space. In road
traffic studies, we may consider the sequence of time points at which vehicles pass a
reference point. Alternatively, examining the length of road at a certain time instant, we
can specify the position of a vehicle by a point, having a point process in one/dimensional
space rather than in time.

A random counting process N (t) is an index continuous state discrete stochastic variable
specifying the number of events t, in the interval [0,t[, with the assumption
Pr{N (0) = O} =1. The expected number of events in every finite time interval is finite.
The increment dN (t)=N(t+dt)—N(t)of the counting process in the time interval
[t,t+dt[ isregular if

Pr{dN (t)=1}=v(t)dt+o(dt?)
Pr{dN(t)>1}=o(dt) (1.2.1)
Pr{dN (t)=0}=1-v(t)dt+o(dt?)

These properties mean that the probability of occurrence of one event in the infinitesimal
interval [t,t+dt[ is proportional to dt and the probability of occurrence of more than

one event is negligibly small. It follows that for any n
E[dN (t)]=E[ dN(t)' | =v(t)dt+o(dt?) (1.2.2)

where v(t) is the mean arrival rate of events.

Let us choose from the interval (0,t[, the disjoint infinitesimal time intervals
[t.,t +dt[,i=12..n. The probability of occurrence of n events in the interval (0,t[ can
be evaluated as follows

Pr{N(t):n}:—

(n)!

where 7, (t,,t,,.4,)is the joint density function defined as (Srinivasan (1974),
Iwankiewicz (1995), Iwankiewicz and Nielsen (1999))

7, (t,t,,..1, )dt,dt,...dt, (1.2.3)

1

[
[



» (—1 n-k ¢
T (tl’tZ"'tk ) = Z ( ) II f, (t'l’tZ"'tk’tk+l"'tn )dtk+1"dtn (1.2.4)
"0 0

where the n-th degree product density function f, (t,,t,,.t,) represent the probability that

one event occurs in each of the intervals [t t, +dt,[, irrespective of other events in the
interval (O,t[, that is

fo(t,t,.t,)=Pr{dN(t)=1AdN(t,)=1A..dN(t, ) =1}

£t #.1,

(1.2.5)

1.2.3 Poisson process

The simplest point process is one in which points occur totally randomly. The probability
of finding a point in the time interval (t, t + 8] does not depend on whether there have
been few or many points just before t, or whether there is a point exactly at t. This
property virtually excludes the possibility of multiple simultaneous occurrences.

The Poisson process is a point process whose increments defined on disjoint intervals are
independent, and is completely characterized by its first order product density function

f.(t)=v(t) (1.2.6)

called the intensity of the Poisson process. For a homogeneous Poisson process
(v(t)=v=cost), itis

7, (1,88, ) =v" exp(-vt) (1.2.7)

1.2.4 Renewal processes

An important class of point processes, generalising the Poisson process, is obtained
assuming that the intervals are independent but not necessarily exponential distributed.
A renewal process is a random sequence of pointst,,t,,...,t , the intervals T, (t, =T, and

t—t , =T, with i=2,3,...) between the successive points, called interarrival times

being positive, independent and identically distributed random variables.
The point process is an ordinary renewal process if the first waiting time T, has the
distribution as the other intervalsT,. In this case the origin is placed in the initial event

that is not counted. If the origin is placed arbitrarily, the first waiting time has another
distribution than other intervals and the point process is called a delayed renewal process.



An ordinary renewal density h,(t) is defined as the probability that a random point
occurs in the interval[t,t+dt[, given that an event occurs at the origin. A modified
renewal densityh, (t) is defined as the probability that a random point occurs in the

interval[t,t +dt[, with arbitrarily placed origin and coincide with the first-order product
density:

h, (t)dt=Pr{dN(t)=1} = f,(t)dt (1.2.8)
Due to the fact that an event occurring in the interval [t,t+dt[ can be either the first

point or one of the subsequent, the renewal densities satisfy the renewal equations (Cox
(1962), Cox and Isham (1980), Srinivasan (1974)).:

ha(t)=0,(t)+

h, (t—u)g(u)du

—-
O ey

(1.2..9)
h, (t) = g(t)+_([ho (t—u)g(u)du

where gl(t) denote the probability of occurrence of the first event, and g(t) the
probability density of the subsequent intervals T,.
The renewal densities can be evaluated by taking the Laplace transforms of the equations
(1.2..9) asfollows

el
9°(s)

nO=t {1 g (s)}

If the probability density of the interarrival times is a gamma function, with integer
parameterk ,

(1.2.10)

g(t)= (kv_l)!t“exp(—vt), t>0 (1.2.11)

the corresponding renewal process is an Erlang renewal process. Lettingk =1, the
interarrival times are negative exponential distributed

g(t)=vexp(-1t), t>0 (1.2.12)

and the corresponding renewal process is a Poisson process.



The distribution with probability density (1.2.11) is the distribution of the sum of k
independent negative-exponential distributed variables, with parameterv. The events
driven by an Erlang renewal process with parameterk , can be viewed as every k th event
of the generating Poisson process with parameterv .

2. EXTENSIVE SUMMARY OF CONTENTS AND OBJECTIVES OF
RESEARCH

2.1 CONVERSION OF AN ERLANG RENEWAL PROCESS INTO A POISSON
ONE

One of the main contributions of the present thesis is the derivation of a transformation
rule that allows to express any Erlang renewal process in terms of the corresponding
Poisson one (see Tellier and Iwankiewicz (2006)). This is an alternative formulation to
the one given in (Nielsen, lwankiewicz and Skjaerbaek (1995), Iwankiewicz and Nielsen
(1999), Iwankiewicz and Nielsen (2000)).

An Erlang renewal process R, (t)with parameterskand vcan be exactly expressed in

terms of the corresponding Poisson process N (t)with parameter v through the following
transformation

(2.1.1)

55102010 v, (0

In chapter 111, the expectation of the renewal process R, (t)is found to be the solution of

a linear differential equation of order k —1 with constant coefficients, which is equivalent
to a set of first order equations, in terms of stepwise stochastic variables. Those variables

are exactly recast in terms of the zero-one stochastic functions p; (t), o5 (t).., pp (t)
appearing in eqg. (2.1.1). The variable p; (t) equals 1 in the time interval between the (n-
1)st arrival of the Poisson process N, (t) and the n-th arrival. A sample function of the
process R, (t)and the correspondent zero-one variables p! (t) (j =1,k -1), are depicted
in Fig. 2.1.1. The variable p; (t) equals 1 in the time interval between the (n-2)nd arrival

10



of the Poisson process N, (t) and the (n-1)st arrival. The variable p_, (t) equals 1 in the

time interval between the 1st and the second arrivals of the Poisson process N, (t).

If the impulsive excitation is driven by an Erlang renewal process, it can be recast in
terms of a Poisson process through the transformation (2.1.1) and the original non-
Markov problem is converted into a Markov one.

?

Ru(t)

v

p1(t)

p'a(t)

il
W

v

pVK—l (®

v

Figure 2.1.1

Sample function of an impulse process driven by an Erlang renewal process with generic parameters K and
v and auxiliary zero-one variables appearing in expressions (2.1.1).

2.2 ASPECIAL CLASS OF RENEWAL PROCESSES

Most of the existing methods of stochastic dynamics are relevant to random pulses driven
by Poisson processes or Erlang renewal processes. This class of pulse problems is quite

11



narrow. If random occurrences of impulses are assumed to be independent, the
occurrence times are described by the Poisson process. The question arises whether, and
if so, to what extent the Poisson process is an adequate model of actual trains of events.
In this regard, best investigated are the traffic highway phenomena.
Let us consider a road in which vehicles are driving in one direction only and all with the
same constant velocity. The ‘events’ can be

- time instants when vehicles pass a certain point on the road

- considering the time scale as map of the road, the position of the vehicles at

certain instant

In both cases, the form of the interarrival distribution is expected to depend on the traffic
volume on the road. In a rural road the probability distribution may be taken as
exponential, while on a main street in a city the vehicles tend to be equally spaced and the
probability distribution should be concentrated at one point.
Gerlough paper (Gerlough (1955)) describes some of the applications of the Poisson
distribution in highway traffic which include the analysis of arrival rates at a given point,
determination of the probability of finding a vacant parking space and studies of certain
accident locations.
The assumption inherent in the Poisson law, that the probability of an event remains
constant, is seldom true in traffic practice. Intersection counts have shown that arrivals
through the entire peak hour are not Poisson (only arrivals during the peak period within
the peak hour are Poisson). The failure of the chi-square test (non acceptability of fit)
indicates that the distribution of arrivals does not conform to a Poisson distribution.
Gerlough concludes that the Poisson distribution cannot be assumed as an adequate
description of the data.
More general is the modeling in terms of renewal processes which are defined as
sequences of independent, identically distributed random variables (inter-arrival times).
Different probability distributions can be assumed for the inter-arrival times, thus
resorting to renewal processes allows accounting for more realistic, unimodal probability
density functions of the interarrival times. One of the renewal processes widely used in
traffic engineering is the Erlang process. It affords the opportunity of considering the
distribution of vehicles for all the cases from independency (the special case of negative
exponential distribution, the time spacing distribution between Poisson arrivals for which
k=1) and complete uniformity (k = ). While the negative exponential distribution is
characterized by only one parameter, the Erlang distribution has two parameters that can
be estimated from the mean and the variance of the field measurements.
The advantage of modeling the interarrival times using the class of renewal processes
analyzed in the present dissertation, rather than the Poisson or Erlang distributions is that
it is possible to deal with a broader class of the interarrival probability density functions.
The non-Erlang renewal processes considered herein, obtained from two independent
Erlang renewal processes, are characterized by four parameters that can be chosen to fit
more closely the actual data on the distribution of the interarrival times.

2.2.1 Characterization of the non-Erlang renewal process R(t)

The class of impulse processes here considered is obtained by selecting the events from
an Erlang renewal process R, (t)with parameters v and k, with the aid of the
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R(t) R.(t)

replacement » P _.o(t—-t )= Z(t)Po(t—t ), where the zero-one stochastic variable
p ZI,R( l) Z (I)I( l)

i,R=1 i=1

VA (t) is governed by the following stochastic differential equation:
dZ(t)=(1-Z)dR,(t)-ZdR (t) (2.2.1)

The variable Z (t), a left continuous variable with right limits (see Figure 2.2.1) is zero
except in the time interval between the first R, (t) driven event occurring aftera R, (t)
driven event and the first subsequent %, (t) driven event. In other words, Z (t;)is zero at

all instants t, driven by R, (t) except the first ones occurring after R, (t) driven events.
The increment of this class of non-Erlang processes becomes

dR(t)=Z(t)dR, . (2.2.2)
Z(t)
A W Tai T

N ParN Va VaN Lt
R, (1)

o o o o o o R,LI
R(t)

7 X 7
Figure 2.2.2.

Sample function of the process Z (t) governed by the equation (2.2.1) and the correspondent renewal
process governed by the equation (2.2.2).

2.3 ANALYSIS OF LINEAR SYSTEMS UNDER RANDOM TRAINS OF
IMPULSES

For any stochastic point process, the statistical moments of the response of a linear

system may be evaluated in the form of explicit integral expressions in terms of the
product densities of the underlying point process (lwankiewicz (1995), Iwankiewicz and
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Nielsen (1999)). However, the drawback of this approach is that the evaluation of higher
order response moments requires the cumbersome evaluation of multifold integrals.
Computationally more effective and applicable to non-linear systems as well, is the
approach that leads to differential equations. Such an approach requires the formulation
of the problem in terms of stochastic differential equations and the use of the theory of
Markov processes. If the dynamic system is excited by a Poisson distributed train of
impulses, the state vector of the system is a non-diffusive Markov process and the tools
of the theory of Markov processes can be directly used. If however, the point process
generating the impulse train is not a Poisson process the state vector of the dynamic
system is not a Markov process.

One of the most effective approaches to deal with linear and non-linear systems subjected
to non-Poisson trains of impulses is to convert the original problems into Markov ones.
For a Poisson train of overlapping pulses, an auxiliary filter under a Poisson impulse
process may be used to transform the original non-Markov problem to a Markov one
(Ricciardi (1994)). When the excitation is a filtered Poisson process of polynomial form
(Grigoriu and Waisman (1986)), the state vector, augmented by Poisson driven stochastic
variables, is a Markov process. An exact converting technique was developed for trains
of impulses driven by Erlang renewal processes (Nielsen et al. (1995)). The original,
Erlang-driven, train of impulses is recast into a Poisson-driven one with the aid of
auxiliary stochastic variables driven by a Poisson process. A random train of impulses
driven by a generalised Erlang renewal process, where the interarrival times are sum of
two independent, negative exponential distributed random variables, was dealt with in
(lwankiewicz (2002)). Recasting the original train of impulses driven by a generalised
Erlang renewal process is performed with the aid of a zero-one valued auxiliary variable
governed by two independent Poisson processes. Extension of this approach to more
general, non-Erlang renewal processes can be done by introducing an auxiliary variable
governed by a stochastic equation driven by auxiliary processes: one Poisson process and
one Erlang renewal process (Iwankiewicz, 2003).

In the present dissertation, the response of a linear oscillator under a random train of

impulses driven by the process R(t) defined by equations (2.2.1) and (2.2.2) is analyzed.
The underlying process defines a class of non-Erlang renewal processes obtained by
multiplying the random impulses magnitudes of an Erlang renewal process R, (t) by a
zero-one stochastic variable Z(t). This variable is driven by two independent Erlang

renewal processes that are, in turn, exactly expressed, with the aid of auxiliary
variablesZ, Z,.. Z, , interms of Poisson processes. In this way, the state vector of the

dynamic system augmented by auxiliary variables becomes a non-diffusive Markov
process.
The  stochastic  equations  governing  the  augmented state  vector

X=[X X Z, Z,. ZN]T can be written as
dX(t)=c(X(t))dt+b(P(t),X(t))dN(t) (2.3.1)

One of the major contributions of the present thesis is the development of the Markov
approach to non-Markov problems arising when the special class of renewal processes
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here considered is used in modeling impulsive loading phenomena. The use of this class
of renewal counting processes also allows a better fitting to the actual data on the
distribution of interarrival times than the classical models using Poisson and Erlang
processes.

The equation governing the evolution of the mean values of the auxiliary variables are
derived and the renewal densities of the underlying renewal process are evaluated for
different excitation processes or different cases of the driving process. The general
expression for the probability density of the first waiting time is derived. The probability
density functions of the interarrival times are found for different cases and analyzed for
various sets of parameters. Equations for the response mean values are obtained by direct
averaging of the governing stochastic equations. Equations for the response variance are
derived with the aid of the generalized Ito’s rule. Mean value and variance of the
transient response of a linear oscillator are evaluated numerically and analyzed.

2.4 NON-LINEAR SYSTEMS
2.4.1 Review of closure techniques

In engineering applications, linear models are usually accurate to reproduce the dynamic
behaviour of structures under small-amplitude vibrations. However, no real system is
linear and a non-linear model of analysis is certainly more adequate under large
amplitude levels. The structural response to natural hazard loads may exhibit strongly
non-linear characteristics.

The methods based on the Ito differential rule allow to characterize the probabilistic
structure of the response of systems subjected to random loadings. When the probabilistic
method is applied to non-linear systems, it is necessary to introduce some approximations
in order to evaluate the statistics of the response process. Since the system is non-linear,
the equations for moments involve unknown expectations of non-linear transformations
of the state variables. When the non-linearity is a polynomial (of degree>1), the equations
for moments form an infinite hierarchy. For non-linearities other than polynomial, the
expectations appearing in the equations for moments cannot be explicitly expressed in
terms of moments, but must be evaluated as integrals respect to the unknown probability
density of the system.

The most natural technique consists in replacing the set of non-linear differential
equations governing the non-linear problem by an equivalent set of linear equations
whose parameters are obtained minimizing in a convenient way the difference between
the two sets or ‘error’. The statistical linearization method provides a useful analytical
tool in the analysis of physical systems with weak non-linearities (Roberts and Spanos
(1990)). Non-Gaussian closure methods have been developed in order to evaluate the
stochastic response of strongly non-linear systems. The cumulant neglect closure is based
on the truncation of the Taylor series expansion of the log-characteristic function
(Stratonovich,(1963)). The quasi-moment neglect closure originates from the truncation
of the A-type Gram-Charlier expansion of the probability density function of the response
(Ibrahim (1985), Wu and Lin. (1984)). The coefficients of a given order of the two series
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expansions are related to the moments of the response by algebraic relationships
(Muscolino (1993), Kenney and Keeping (1951), Abramowitz and Stegun (1972)).

2.4.2 Analysis of non-linear systems under random trains of impulses

The use of a non-linear model becomes fundamental in modeling natural impact loads
such as strong ground motion acceleration due to earthquakes (Lin (1963), Cornell
(1964)), loading caused by wind gusts associated with eddies (Merchant (1964)),
dynamic action due to waves on offshore structures (Madsen (1988)), intermittent “‘down-
wash’ exciting an airplain tail, the motion of vehicles on rough ground (Roberts (1966)).
The simplest model of such excitations is a Poisson-distributed train of impulses. Roberts
in (Roberts (1972)) analysed the problem of non-linear dynamical systems under such
excitation, devising a perturbation solution to the Fokker-Planc-Kolmogorov equation
governing the probability density function of the response. Cai and Lin proposed an
improved perturbation technique (Cai and Lin (1982), Lin and Cai (1995)). Tylikowski
and Marowski in (Tylikowski and Marowski (1986)) applied the equivalent linearization
to such a problem.

Another approach, to the problem of a non-linear system under a Poisson driven train of
impulses based on closure approximations of the equations for moments was formulated
in (Iwankiewicz and Nielsen (1990), Iwankiewicz and Nielsen (1992), Iwankiewicz
(1995)). The same approach was then applied to the case of renewal driven impulses
(Iwankiewicz and Nielsen (1994), Nielsen et al.(1995), Nielsen and Iwankiewicz (1997)).
A cell-to-cell mapping technique for Poisson impulses, renewal impulses and Poisson
pulses was developed in (Koyluoglu et al.(1994), Koyluoglu et al.(1995), (Iwankiewicz
and Nielsen (1996), Di Paola and Falsone (1993)). Grigoriu in (Grigoriu (1996)) applied
the equivalent linearization technique to solve the equation governing the characteristic
function of the response of a non-linear system to a Poisson impulse process.

2.4.3 Modified closure scheme

Let us assume that the excitation is a random train of impulses driven by an Erlang
renewal process or driven by the non-Erlang renewal process R(t) defined in equation

(2.2.2). The load process can be exactly expressed, with the aid of a suitable set of
auxiliary variables, in terms of Poisson processes. Thus the augmented state vector,
consisting of the original state vector and of auxiliary variables, is driven by two
independent Poisson processes, and becomes a Markov process. The Ito’s differential
rule is used to derive the differential equations governing the response statistical
moments.

A novel closure scheme is here developed that takes into account the specific physical
properties of impulsive load processes. The joint probability density of the augmented
state vector is expressed as sum of contributions conditioned on the ‘on’ and ‘off’ states
of the auxiliary variables. A discrete part accounts for the fact that there is a finite
probability of the system being in a deterministic state from the initial time to the
occurrence of the first impulse, the continuous part, which is the conditional probability
given that the first impulse has occurred, can be expressed in terms of functions of the
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displacement and velocity of the system. These functions can be viewed as unknown
probability densities of a bi-variate stochastic process, each of which originates a set of
‘conditional moments’. The ordinary cumulant neglect closure is then performed on the
conditional moments pertinent to the continuous part only. From the expression of the
joint probability density function the relationships between unconditional and conditional
moments are derived. The closure scheme is then formulated by expressing the
‘unconditional’ moments of order greater then the order of closure, in terms of
unconditional moments of lower order.

The stochastic analysis of a Duffing oscillator under the the random train of impulses
driven by an Erlang renewal processes or a non-Erlang renewal process R(t), is
performed by applying the ordinary cumulant neglect closure and the modified closure
approximation and the approximate analytical results are verified against direct Monte
Carlo simulation. Departure of the excitation process from Gaussianity depends on the
ratio between the mean arrival rate of the impulses and the system natural frequency. As
the ratio decreases, the departure from Gaussianity increases. The modified closure
scheme proves to give better results for highly non-Gaussian train of impulses,
characterized by low mean arrival rate.
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3. DYNAMIC RESPONSE OF LINEAR SYSTEMS

A novel transformation rule that allows recasting any Erlang renewal process in terms of the
corresponding Poisson one is here devised. A more general class of renewal processes is then
considered, obtained by selecting impulses from an Erlang-driven train with the aid of an auxiliary
jump, zero-one, stochastic variable driven by two independent Erlang processes.

The analysis of linear systems under such excitations is then performed by using the tools of the
theory of the Markov processes. Conversion of the original non-Markov problem for the original
state vector driven by a renewal impulse process into a Markov problem is performed by means of
augmenting the state vector by auxiliary variables which are the jump stochastic processes.

3.1 ERLANG RENEWAL IMPULSE PROCESS
3.1.1 Statement of the problem

Consider a linear oscillator governed by the equation

R(t

X (t)+2{wX (t)+o?X (t)= D Ro5(t—t ) (3.1.1)

i,R=1
where the excitation is a random train of impulses whose interarrival times t, . are driven by an

Erlang renewal process R(t). The impulses magnitudes P, , are independent, identically distributed
random variables. Each of the variables P, is assigned to a random pointt, . . It is assumed that the
counting process R(t) gives the number of events in the time interval (0,t), excluding the one that
possibly occurs at t. The possibility of an event at the origin is excluded, which implies R(O) =0
with probability 1. Hence, the sample paths of R(t) are left-continuous with right limits.

If R(t) is an Erlang renewal process, with parameters « and k , the original train of impulses may

be replaced by a Poisson driven one with the aid of an auxiliary variable p(t), as

R(t)
Z Pi'Ré(t ) Zp P5 t— t where p(t) IS @ jump zero-one stochastic process with

i,R=

p(0)= ( (0 )) 0 with probability 1 , whose sample paths are left-continuous with right limits.

Therefore p(t;)= ( ):1 at every n-k-th Poisson driven event (n>1), otherwise p(t,)=0.
Then

dR(t)=p(t)dN(t) (3.1.2)

where dN (t)=N(t+dt)—N(t). The impulses magnitudesP, are independent random variables,

identically distributed as the variables P, ; . Each of the variables P, is assigned to a random point.

i
3.1.2 Conversion of an Erlang renewal impulse process into a Poisson one

If an Erlang renewal process R(t) has parametersa and k , the time intervals between events have
gamma distribution, with density function

18



g(t)= e (3.1.3)

The renewal density of an ordinary renewal process, defined as E[dR(t)]:h(t)dt, can be
evaluated as [Srivanisan (1974); Cox (1962); Cox and Isham (1980)]

h(t) = c-l{L(s)}; (3.1.4)

1-97(s)

From (3.1.3) it follows that

9" (s)= ; (3.1.5)

then (3.1.4) becomes

k
h(t)= £ H4—25—1; (3.1.6)
(a+s) —a*
hence (cf. Srivanisan (1974); Cox (1962); Cox and Isham (1980)])
a o
h(t)=—=-=e2" | k=2,
(=23
a a Bl i) a —@EEm(1l i
h(t)=—-—e ? —+—|—-—e? -
(®) 3 2 3 J3) 2 3 V3 )
H :31
3,
A N NI ﬁat +C0s ﬁat
3 3 2 2
h(t)=Z-Lera_jLothilt &L gl
4 4 4 4

. k=4, (3.1.7)
= %(1—Zsin (at)e™ —e‘z“t)

It can be shown that for an arbitrary k we obtain

k-1
[14
a a'S 0
h(t):?‘f-F e ! k—lJ— (318)
=3 (4-4)

1=1
1#]
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where 4, is the j ™ root of the following polynomial of orderk —1

pk1(x>=<x—al><x—az>---<x—al>=§(k.}>kJ‘x“+x“ @.L9)

i\ J

Noting that the solution of a kth order differential equations is the sum of a constant term and of k-1
exponentials whose arguments are given by t times the corresponding root of the polynomial
(3.1.9), it can be proved that the renewal density (3.1.8) is a solution of the linear differential
equation of order k —1 with constant coefficients

d“th(t) &2(k) . dih(t dh(0)  d“*h(0
dtkg )+Z;(J]ak | o|tiS Lo, h(0)= d(t . dtkg = (4119
<

Performing the Laplace transform of both sides of egn. (3.1.10), and observing that

c[%t)j:sh*(s)_h(o)

L[d"h(t

dt"

~
N—
Il
w
=]
=
*
—
w
~
|
\'M:
(7]
>
1
o
T
N
=
—
o
~

we obtain

(i(ﬂa”s”}h’*(s)z%k (3.1.12)

hence

at a* at

- k (3 B kK «x
E0p] Ble-e)

which is indeed the Laplace transform of the renewal density h(t) (cf.(3.1.6)).
The renewal density can also be obtained, from the identity (3.1.2), as

h"(s (3.1.13)

h(t)dt=E[dR(t)]=E[ p"(t) |adt (3.1.14)

hence, it follows that the differential equation governing E[p“ (t)] obtained by dividing the
equation (3.1.10) through by « , is
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i DI R I

k-1 j-1 - !
t S e dE ] (3.1.15)
dE| p”(0) d“’E| p“(0)
E “ O = =.. = 0
Equation (3.1.15) is equivalent to the set of first order equations
X =Xy,
X, = Xg,
(3.1.16)

X = X

. w3k k-]
X =o' =1 X;.
=1\ J

where x, = E[p ] After the change of variables y; = X; /'™, the differential system (3.1.16)
becomes

Vi =ay,,

Y, =aYs,

. (3.1.17)
Yz =AY 1

e )

Equations (3.1.17) govern the time evolution of the expectationE[ p, (t)], which is also the
solution to equation (3.1.15) and which equals (cf. equation (3.1.8))

[14
1 3 5
E|p° (t)]:E 1+ et e —— (3.1.18)
o X(A4-4)

The form of equations (3.1.17) implies that the auxiliary variable p* (t) =p/ (t) is governed by the
following stochastic differential equations

dpf (t)=p5 (t)dN, (t)

dpt, (t)= pf, (t)dN, (1) (3.1.19)

oot 0={1- 5o 0. 0

j=1

21



For k =2, equations (3.1.19) become (cf. Nielsen, lwankiewicz and Skjaerbaek (1995))
dpf (1) = (1-2p (1))aN, (1)

This is an alternative formulation to the one given in Iwankiewicz and Nielsen (1999), Nielsen,
Iwankiewicz and Skjaerbaek (1995), Iwankiewicz and Nielsen (2000).

For example, for k =3 equation (3.1.19) becomes (the superscriptsa are dropped out for the sake
of simplicity of notation)

4, ()= pa (D), (1

(3.1.20)
dp, (t)=(1-3p,(t)=3p,(t))dN, (t)
It can be observed from Figure 3.1.1 that
t)=p, (t)-p,(t
pz( ) P2 ( ) :01( ) (3.1.21)

dp, (t) dp, (t)—dpl (t)

A

P G SR

pi(t) 1
T %. —+ + VA + W/ﬂ-—»

a7/ 2, 2

P2’ |
l W8 3 ZA + ‘32224 4+ >

Figure 3.1.1
Sample function of the process R (t) defined in (3.1.2) for k=3 and auxiliary stochastic variables governed by (3.1.20)
and (3.1.21)

R®

pa(t) 1.1

and from (3.1.20) it follows

do, (t) = (pz* (t)_p1 (t))dNa

(3.1.21)
dp, (t)=dp,(t)+dp (t)= (1—p1(t)— 2p, (t))dNa

Hence, equation (3.1.20) may be written as
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dpl(t)Z(,O* (t)- ( ))dN,, (t)

(3.1.22)
dp 2 (1 pl 2,0 2 t ) ( )

where the variables are all zero-one stochastic variables (see Figure 3.1.2).

R® I I I

pi(t)
1+

p a1

| zzzz, | 72, Z

+
\ 4

Figure 3.1.2
Sample function of the process R (t) defined in (3.1.2) for k=3 and auxiliary stochastic variables governed by (3.1.22)

For k =4, the renewal process can be expressed as follows

do, (t) =P (t)dNa (t)

dp,(t)=ps(t)dN, (1) (3.1.23)
dp, (t)=(1-4p,(t)—6p,(t)—4p;(t))dN, (t)

where the auxiliary variables p, (t), p, (t) and p;(t) are depicted in Figure 3.1.3.
It can be observed that

(3.1.24)

dp, (t)=dp, (t)+dp (t)=(p, (t)-p, (t))dN, (3.1.25)
(t)
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Figure 3.1.3
Sample function of the process R (t) defined in (3.1.2) for k=4 and auxiliary stochastic variables governed by (3.1.23)
and (3.1.24)

R(® I I I

pi(t)

P*z(t)l__ z g z

P*3(t)1_

Figure 3.1.4
Sample function of the process R (t) defined in (3.1.2) for k=4 and auxiliary stochastic variables governed by (3.1.25)

In general, an Erlang renewal process characterized by an arbitrary couple of parameters « and k
can be expressed in terms of the correspondent Poisson process, through the following
transformation:
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dpf’ (1) = (5 (t) = A" (1)) AN, (1)
dpg (t)=(p5 (t)-p5 (t))aN, (1)
. (3.1.26)
dp’, (t) = (plf!—l (t)_pliz—Z (t))dNa (t)

et 0)=(1- 5t (-2, 0. 9

where the stars have been dropped for the sake of simplicity.
The variables p;* (), p; (t),....., oy (t) only take values 0 or 1. The variable p, (t) equals 1 in the

time interval between the (n-1)st arrival of the Poisson process N (t) and the n-th arrival. The
variable p; (t) equals 1 in the time interval between the (n-2)nd arrival of the Poisson process
N, (t) and the (n-1)st arrival. ...

The variable p, (t) equals 1 in the time interval between the 1st and the second arrivals of the
Poisson process N (t).

3.2 A CLASS OF NON-ERLANG RENEWAL IMPULSE PROCESSES

3.2.1 Statement of the problem

The class of impulse processes here considered is obtained by selecting the events from an Erlang
renewal process R, (t)with parameters v and k, with the aid of the

R(t) R.(t)
replacement > P .5(t—t)= > Z(t;)P5(t—t;), where the zero-one stochastic variable Z(t) is
i,R=1 i=1

governed by the following stochastic differential equation:
dZ(t)=(1-Z)drR,(t)-ZdR, (t) (3.2.1)

The variable Z (t) a left continuous variable with right limits (see Figure 3.2.1) is zero except in the
time interval between the first R, (t) driven event occurring after a R, (t) driven event and the
first subsequent R, (t) driven event. In other words, Z (t;)is zero at all instants t; driven by R (t)

except the first ones occurring after R, (t) driven events.
The increment of this class of non-Erlang processes becomes

dR(t)=Z(t)dR (32.2)

v
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Figure 3.2.1.

Sample function of the process Z(t) governed by the equation (3.2.1) and the correspondent renewal process
governed by the equation (3.2.2).

If the interarrival times between events are sum of two independent, exponential distributed variates
with parameters x, v the counting process R(t) can be exactly obtained by selecting the events

from the Poisson process N, (t), with the aid of a zero-one stochastic variable Z(t) governed by
the following stochastic differential equation (Iwankiewicz (2002), Iwankiewicz (2003)):

dZ(t)=(1-Z)dN  (t)-ZdN, (t) (3.2.3)

where N (t) and N, (t) are two homogeneous Poisson processes with parameters x and v
respectively. The increment of the renewal process becomes

dR(t)=Z (t)dN (3.2.4)

3.2.2 Probability density function of the first and second waiting time

First waiting time

Let us consider the impulse process generated with the aid of the stochastic equation (3.2.1) driven
by Erlang processes R, (t), with parameters 4,1 and R (t), with parameters v,k and let T, and
T, be the corresponding interarrival times. The probability density of the first waiting time w, , that
is the time elapsed from the origin to the first impulse driven by R(t), is expressed as (see Figure
3.2.2).
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f Wl(t)dt:Pr{wl e(t,t+dt)}=iPr{Tﬂ € (U, u+du) AT, e(t,t+dt)}+

t
ZPr{T (u,u+du) ZdR e(&,¢ +d.§)/\TVe(t—§,t—§+dt)}= (3.2.5)
u=0
t u
J'gTy (u)du g, (t)dt+J.gTy (u)du J.hv(f)df gr (t—¢)dt
0 OW1 0
A A
- & M
R e eRER T AL EEEEEEEE >
t—u
R >
dR, dRr, dr,
[yel |~ I\el >
[7N] I~ 17N v
g If"'df t
Hl u Iu+du
1
t | t+dt
1
— T"
Figure 3.2.2.

Definition of the variables appearing in the expression of the probability function of the waiting time (equation (3.2.5))
The contributions at the right hand side of equation (3.2.5) account for the probabilities that the first
R, (t) driven event occurring after the first R, (t) driven event has occurred, may be either the first
R, (t) driven event at all, or the subsequent event.

Then the probability density f,, (t) of the waiting time w; is given by the following expression:

fwl(t)dtzj [ +jh &)g, (=& dg]dudt (3.2.6)

0

where g, (t) is the probability density function of the interarrival times T, and h,(t) is the

renewal density function of the process R, (t).

Second waiting time

Let us consider the impulse process generated with the aid of the stochastic equation (3.2.1) driven
by Erlang processes R, (t), with parameters 4,1 and R, (t), with parameters v,k and let T, and

T, be the corresponding interarrival times. The probability density of the second arrival, that is the
time elapsed from the origin to the second event, is expressed as (see Figure 3.2.3).
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f, (t)dt=Pr{w, e(t,t +dt )} =
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r +

.\.
Il
<)
-
I
<)
c
I
<)
e
I <
o
=
/_/%\

M- IM-
M- l:?

AT, e(r—u,z—u+dz)AT, e(t, —t,t, —t+dt,)
- r{Tﬂe(u,u+du)/\Tﬂe(r—u,z'—u+dz')/\Tve(t,t+dt)/\dRVe(§1,§1+d§1)}+
AT, e(t -8t —& +dt)
v r{Tye(u,u+du)/\Tﬂe(r—u,z'—u+dz')/\dRVe(§,§+d§)/\Tve(t—§,t—§+dt)}+
AR, € (&, & +dE)AT, e(t,—&,t,—¢ +dt)
= [T, e(uu+du)AT, e(t,t+dt)AdR, (u,u, +du,)
r{/\dee(fl,§1+d§1)/\Tve(tl—gl,tl—§1+dt1)
v Pr{Tﬂe(u,u+du)/\dee(§,§+d§)/\TVe(t—§,t—§+dt)/\dRﬂe(ul,u1+dul)}+
! /\Tﬂe(r—u,r—u+dr)/\dee(fl,§1+d§1)/\Tve(tl—fl,tl—fl+dtl)

M_.
Mc

}/\Tﬂ e(r—-u,7—u+dzr)+

MH
M,.

(3.2.7)

The contributions at the right hand side of equation (3.2.7) account for the probabilities that the
second impulse, a R, (t) driven event, may be either the second R, (t) driven event occurring after

the first impulse, or a subsequent event.

Ry
>
)

Figure 3.2.3

Definition of the variables appearing in the expression of the probability function of the time elapsed between the origin
and the second impulse (equation (3.2.7))
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Then the probability density f (tl) of the time elapsed between the origin and the second event is
given by the following expression:

IHQT )9; (z-u)g; (t)g; (t—t)dudtdz+

7=0t=0u=0

IHT 6, (4)0, (r—u)h, ()8, (1), (t —t)duddras +

r=0t=0u=0£=0

H j jgn,(u)gn (t)h, (4, -u)g, (z-u,)g, (t —t)dudtdudr+

7=0t=0u=0u;=u

t

]Ij ] TgT,,(U)hﬂ(ul—u)gn,(f—ul)hv(cf)gn (t-&)g, (t,—t)dudtdrdudé+

r=0t=0Uu=0u,=u £=0

t

11T o @, (=)o, (O (&-1)g, (1-)dudtdrz, +

r=0t=0u=0 &=t

T

tf j [ ] o (W)ar (7-0)h (£)g; (t-&)h, (4-1)9, (t—&)dudtdrdedé+

r=0t=0u=0 £=0 &=t

t T

]Jj [ ] o (uh, (u-u)g, (O, (&-t)g; (r-u,)gr (t,—&)dudtdrd&dE +
J

7=0t=0u=0u;=u &=t

H [ ] ] o (uh, (u-u)h (&g, (t-&)h,(&-1)g; (r—u) gy (t,—&)dudtdrdu,d&dé.

7=0t=0u=0u;=u =0 & =t

(3.2.8)

where g, (t) is the probability density function of the interarrival times T, and h,(t) is the
renewal density function of the process R, (t).

Characterization of the excitation process

In the derivations that follow the analytical expressions of the probability density of the first and
second arrival for the process defined by (3.2.2) will be found.

Then, four different processes obtained from (3.2.2) by substituting in (3.2.1) Poisson or Erlang
processes, will be analysed

Process Il -dZ (t) (1-
Process II - dZ (t):( )
Process IV- dZ (t)=(1-Z)dR,(t)-ZdR, (1)

It will be assessed weather or not their interarrival times are identically distributed and weather or
not the underlying processes R(t)are renewal.
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3.2.3 Characterization of the Process | : R, (t)=P(u)=and R, (t)=P(v).

Let us consider the process obtained from equation (3.2.1), when R, (t)=P(x) and R, (t)=P(v)

(two Poisson processes with parameters ¢ and v respectively). In Iwankiewicz (2002) it was

proved that the generated renewal process is an ordinary renewal process with interarrival times
which are the sum of two independent negative exponential distributed variables with parameters

and v The equation for the mean value of the stochastic variable Z (t) is

%E[Z (]=—(+v)E[Z()]+ (3.2.9)

The renewal density is given by

h(t)dt=E[dR(t)]=E[Z(t)]vdt = V”fﬂ (1-exp(—(v+p)t))dt (3.2.10)

This is exactly the renewal density of the process above mentioned. Let us perform the
demonstration in an alternative way from (3.3.8). The probability density of the first waiting time is
obtained as:

(1) =2 (e —e™); (3.2.11)

and it is the probability density function of the sum of two independent negative-exponential
distributed variables T, and T, with parameters x and v. Let us assume that the underlying

process is renewal and let us use of the relationship

ey fw(s)

h (S)_l—gqfa(s) (3.2.12)
inserting

. 1

h'(s)= £ {h(t)}:(::‘/) . (3.2.13)
and

fW*(S)= £ {fw(t)}zﬁ‘{v—}_s) (3214)

and solving for g; (s) we find

* _ y72%
gTa (S) - (/I+S)(V+S) (3215)

and
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(t)= %(e” —e ) (3.2.16)

Oy

a

which means that the interarrival times have the same distribution as the first waiting time.
The probability density of the time elapsed from the origin to the second event is obtained from eq
(3.2.8) as:

S () et .

(u-v)

If the underlying counting process is a renewal process, with a probability density of the interarrival
time as given by equation (3.2.16), then the probability density f,, (t) can be found as

e 2 2 (e (—2+t(u—v))+e” (2+t(u—v
fu, (8)=L£7{1,"(s)9," ()} = e (t;(fiv)s)) Giltn)) (3.2.18)

Since the expressions of the probability density f,, (t) independently obtained, coincide, as it was

stated, the underlying counting process is indeed an ordinary renewal process. From (3.2.16) it

follows that the stationary mean value and variance of the interarrival times are given, respectively,

by

2 2
VU, 2V tH
] O-Ta_ 2 2 ]

77 VU

ElT,]= (3.2.19)

3.2.3 Characterization of the Process Il : R, (t)=E(x,1) and R, (t)=P(v).
If R,(t)=E(ul) and R (t)=P(v), where E(u,I)is an Erlang process with parameters 4 and
I, while P(v) is a Poisson process with mean arrival rate v, the increment of the process dR(t) is
dR(t)=Z(t)dN, (t) (3.2.20)
where the variable Z(t) is governed by the equation:
dZ(t)=(1-2)dR, (t)-ZzdN,(t) (3.2.21)

The Erlang renewal process R, (t) can be expressed in terms of the Poisson process N ﬂ(t) as
follows

dr, (t)=p,(t)dN (1) (3.2.22)
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If k =2, the equation governing the auxiliary variable p, (t)becomes

dp,(t)=(1-2p,(t))dN,(t) (3.2.23)

Introducing new stochastic variables: Z,(t)=Z and Z,(t)=Zp,, the equations for the mean
values become:

SELZ, (0] = ~EL2, (1)l - 4ELZ, (V)] + Elp,Ju

%E[z2 (1)]=E[Z, ()] —E[Z, (t))(v +2u);

(3.2.24)

Let us assume that the process R(t) is a renewal process. The renewal density is obtained as:
h(t)dt = E[dR(t)]=E[Z, (t)]vdt (3.2.25)

hence

h(t)=E[Z,(t)lv =

2 2 3.2.26
(—( ﬂw)f —et et 1+w——22 v (3220)

2(v+u) 2(u-v) (,u —v ) (,u —-v )
From equation (3.2.6) the probability density of the first waiting timew,, which is the sum of an
Erlang variable with parameter k=2 and a negative exponential distributed variable, is obtained as

_ V/“lz —t(u+v) [ Atu tv .
f, (1) =———e"“") (" —e" (1+t(u-v))); (3.2.27)
(1=v)

Under the assumption that the underlying counting process is renewal, the probability density of the
interarrival times is obtained as:

O, (t)=£l{1_L(s)}:

h(s)
3 2 t 3,2 2 t
(2] o H2AY) e (0 20)) 3229
2(u-v) 2(v+u) (u=v) (v+u)

The probability density of the time elapsed from the origin to the second event is obtained from eq
(3.2.8) as:
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fue (H) =
1 4 o 3@ Q2u+y) e @tud —v2+uv(T+2ty) =22 (7+3ty)
2T 2t u2 (u—v)® *
1
(=P (u+v)?
Qe ™MBuvd (=2+tv?+3tu° G+t +P 8 G +tv) + 13 (60v - 61°) +3 4% (36 - 16ty +1°) -

1/4(12—3t2 v2+t3v3)—3,u4(—8—16tv+3t2v2 +t3v3)))1;

(3.2.29)

If the underlying counting process is renewal, with probability density of the interarrival time
9, (t)given by (3.2.28), the probability density of the second waiting time o, (t)can be obtained

through the inverse Laplace transform £'1{ fo (s) 9" (s)} as

f, (O =£{1,(s) 9, (s)f=

ra ,u2v ,uzv(28+2,u+v)
{(S+,u)2(s+v) (S+,u)2(s+v)(s+2;1+v)}_
1
L4
P

( 3et@um @2 u+v)

L M2 (1 +v)4
e @tpd —v2 + v (7+2ty)— 242 (7+ 3tv)
+
M2 (= v)°

1

(=P (u+v)

(2@‘“‘(3/11/3 (—2+tv)2+3t,u5 4 +tv) +t2y6 6+1tv) +
1360y —6t2v%) + 3u%V? (36— 16ty + t37°) -

)
v4(12 —3t%V% + t3v3) - 3,u4(—8 — 16ty + 322+ vg)))\
)

(3.2.30)
This is the same probability density function as in (3.2.29), hence the underlying counting process

R(t) is renewal. Moreover, since g, (t) is different from f, (t), R(t)is a delayed renewal
process.
From (3.2.28) it follows that the expression for the stationary mean value and variance of the

interarrival times take on, respectively, he forms:

2(V+,u)2 _ - 2(,u4 +4.1°% + 315+ 2uv° +2v4).

) = ; 3.2.31
(p+2v)uv . ( )

EfT. 1=
[T.] (,u + 21/)2 %
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3.2.3 Characterization of the Process Il : R, (t)=P(u) and R, (t)=E(v,k).

If in equations (3.2.1) and (3.2.2) R, (t)=P(u) and R, (t)=E(v,k), the increment of the renewal
process dR(t) becomes

dR(t)=Z(t)dN, (t) (3.2.32)
where the variable Z(t) is governed by the equation:
dZ (t)=(1-2)dN, (t)-ZdR, (t) (3.2.33)

If R, (t) is an Erlang renewal process with parameterk =2, it can be expressed in terms of the

Poisson process N, (t) as follows

dR, (t)=p, (t)dN, (1) (3.2.34)
with
dp, (t)=(1-2p,(t))dN, (t) (3.2.35)

The equations for the mean values of the stochastic variablesZ, (t)=Z and Z,(t)=Zp, are

%E[Zl (t)]=—EIZ, (t)]u—VvEIZ, (t)]+ 4,

d (3.2.36)
G ElZ (t)1=E[Z, (t)Iv—E[Z, (t)](2v+ 1)+ E[p, (1)];

Let us assume that the underlying process is renewal. The renewal density is obtained as:

h(t)dt = E[dR(t)]= E[Z, (t)]vdt (3.2.37)

hence

(/u + 2‘/) H -2ty (lu B ZV) H —t(u+v) H 2]/3 .
h(t)=ElZ, ()= —F -7 —5- T Wy || 3238
R 127 T S e | o v it

From equation (3.2.6) the probability density of the waiting time is obtained as

2 3 2
fw1 (t) _ /UV(ZV_IU) N /UV(/U+ 2‘/) e—t(2v+ﬂ)+ HYV (t:u i (2+tﬂ)) e v

2 2 2 > (3.2.39)
2(u=v) 2(v+p) (u=v) (v+n)

Under the assumption that the underlying counting process is renewal, the probability density of the
interarrival times is given by:
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B 2(t 12— 12 (2 +1
pv(2v—p) /:)e‘“‘+—ﬂv(#+2‘2/)6"(2”")+ﬂv (b zv 2+ zﬂ))e'”= f, (1)
2(u=v) 2(v+p) (u=v) (v+n) l

(3.2.40)

The probability density of the time elapsed from the origin to the second event is obtained from eq
(3.2.8) as:

1 34 St =201 2vd (3 el (=1 el =3 v (=1 4+t
fan 1= — u™v +
[ [;.I_v:]jv3

12
Tt BV (e 20 (@ 1t S el F )+ 2vE (3t
I+ )5 *
(2 (" 1 #2400 — 24,70 (23085 11247 (244507 4
3tp” (4 +t vgjl +12 0t (12 +t2v2:|—3t,cx4 e (24 12 vgzl gt I:36+t2 vgjljljl

Fll—g +) +vfj|]
(3.2.41)

If the underlying counting process is renewal, with probability density of the interarrival time
gr. (t)given by (3.2.40), the probability density of the second waiting time f,, (t)can be obtained

through the inverse Laplace transform £ {f,," (s) g, " (s)} as

fo, (0=L"11, ()9, (9)f=
1 a4 Fe =2 (2w (=3 ) + g (=1 vl =3 v =1+t
E’u v [ (g —v)d 3 -
St (4 20 e (1t 3 vl 1)+ 203 (3t
i 45 *
e (" 4 +2400° — 245750 (30 H1247 (24487 +
3t,cx'5|:4+t2v2:|+12;w4|:12 +t2v2:|—Et,cf‘1-,'2|:I!-4+t2vg:|+t,fx21-f'4 1:36+t2v2:|:|:|

Fll=g + ) +ij)]
(3.2.42)

This probability density function is exactly the same as (3.2.41) hence the underlying counting
process R(t) is renewal. As g, (t)= f, (t)this renewal process is an ordinary one.

The stationary values of mean and variance of the interarrival times take on the form:

2(v+u) 2(2u* +245°%v + 3V + v +v° ’
Eﬂa]:M; o? = ( — 2 ) : (3.2.43)
vi(v+2u) Vil (v+2u)
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3.2.3 Characterization of the Process IV : R, (t)=E(x,1) andR (t)=E(v.k).

If in equations (3.2.1) and (3.2.2) R, (t)=E(ul)and R, (t)=E(v,k), the increment of the non-
Erlang renewal process is expressed as

dR(t)=Z(t)dR, (t) (3.2.44)
and the variable Z(t) is governed by the equation:
dZ(t)=(1-Z)dR,(t)-ZdR,(t), (3.2.45)

ifR, (t) and R, (t) are Erlang renewal processes with parameterk =2, they can be expressed in
terms of the Poisson processes N, (t) and N, (t) as follows

dR, (t)=p, (t)dN, (t),dR,(t)=p,(t)dN (1) (3.2.46)
with
dp, (t)=(1-2p, (1)) AN, (t).dp, (t) = (L-2p, (1) AN, (1) (3:2.47)

Introducing the stochastic variablesZ,(t)=2,Z,(t)=Zp,,Z,(t)=Zp,and Z,(t)=Zp,p, the
corresponding equations for the mean values are

d

SLELZ, ()] = ~EL2, (1)l VEIZ, (1)1 + Elp, s
SLELZ, (1)1 = ELZ, (4~ 2E12, (O - EL2, (0)l+ Elp, JE, i
d

5 12, (01= EIZ, (1)}~ 2602, (1)~ ELZ, (1)}
(3.2.48)

SELZ, ()= EL2, (0)+ ELZ4 ()]~ 2612, (0] + )

Let us assume that the underlying process is a renewal one. The renewal density is obtained as:
h(t)dt = E[dR(t)]= E[Z, (t)]vdt (3.2.49)
hence

_(y2+3yv+v2)u Dy MV

h(t)=E[Z,(t)]v= —e e
()= BLZ. (1] 2(1/+,u)3 2(,u+v)3
2 _ 2 2
+e—2ty HV . _e—2tv (# ’LIV+: )ﬂ_e,(wr#)t ,Zu Vv : t(l-{-tﬂ)—{- 8,[11/ . .
2(u-v) 2(pu-v) (,u -v ) (ﬂZ_VZ)
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From equation (3.2.6) the probability density of the waiting time is obtained as
f, (t)=
e ®) v (2(1+ e =26 ) - p? (3-3¢ 4 260 )+ 4 (1-e™ 4 26 )] (325)

2(pu=v) (v+u)

Under the assumption that the underlying process is a renewal one, the probability density of the
interarrival times can be obtained through the following relationship:

o0 (9-¢ -

h(s)

£-1 . sE+2uE+a +vPE+2vIE+2 0 +v 32 + e +2viE +edu +6v)

{ B F+eliE+vPE+e+2vREs+u)E+2 0P +E +220 @5 +3 0lv+2 (55 +3 10w +4v3]}
4. By By By By

£ {Es +) " (s + a2 " (s +v) " (s +v)2

Elj Ellj El? EISS+BQ
+ + + }
(3 4+ +2) 5+ g+ 22 B—byl (32 +bys +hg)

= gty I:@m'VE-l +@ztvtEg +|:E'T'[""5+V]E-3 +|:E't[""5+V]tE4 +Bs5 +tBg +|:E't["'e+zv+h1]E-?:| +

1 2
_Et[h2+|lh—4h3] v vdoa b

o l+e (bzBg —2Bg)

1 2
1 -gt[b:ﬁ hz-“bz] t |'h§-4h3
1+ Baz —

2 24/ 1% - 4b,

(3.2.52)

where the coefficients B, (i=12,..9) and b, (k =1,2,3) are functions of the parameters x and v

and their expressions are reported in Appendix.
The probability density of the time elapsed from the origin to the second event can be obtained from
eq (3.2.8)

Fra () =
1
12 [ =) (g +v)7
[@'h['mwl;zgvle@wv3 |:_.f£2 —ngl2 (12;{5 +4'f,t.c6 +44_,f£3 w? —t,tz‘*vz —8;{\;4 —4t,tzzv4 +1v6)+
¥ (=l (3t (vl + 4 B otv etV 2 F [0 -0t v -2 ) 3t (C20 4 10m b #1780 - 28500 4
pv (120 480t + 6158 —tF T+ g v 5 -3t =200 12807 -3tV 36— 15t — 13887 418 P) 4
30 (58 -35tv —0tf v+t ) 4 v (-3 - 63t —30 0 E 4 200 43P (255 -0l b — 385 217 +
e e B (Lt 4 ® (B te et H 3t Loty 178 S 28 ) f (B0 ot — 2 o+
fTviE 3ty =208 -0 e (120 —60tw 46850 1007 =307 (=52 — 35 tw 49 4T 4
3pv? (<36 — 15tw+ 1385 6507 #3000 (255 — 0L tw 43800 428007 ) 4000 [3 63 tv #2048 4280 +
gtEend 3 |:2t3,rz12 +4831,usv2 +9|:It,cz2 W —apyl? —?8,&9 |:—2 1 v2:| +6;£v8 |:-4 12 v2] —36,:13\96 |:5+t2 sz —dlt,rz10 I:15 +12 vz] -
2tetv® (384 450 - 127 v (283 268 1 127 v (3T 102 ) 4 (258 0 4+ 460

(3.2.53)
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Under the assumption that the underlying process is renewal, the probability density of the second
arrival can be obtained through the inverse Laplace transform

0., (0=£"{ 1, ()9, (5)f=

E.l

[0 (352 +(a +2v) +5 @ +6)° (1767 +5* (75 +85v) +40a +9) (2 +2v07 (1 +30v +v2) 28 (2 +v) (e +2v) (16 4% +45 gv +2207) +
$ (123 % +300 v +172v%) +8% (93 47 +369 2P v +456 o +17647)))/
e+t e+t +a+2v (Bo+mE+20 +6+2) Ps+2)v +205s +2.V° +47))) =

Cy C, Cs Cy Cs C Cy Cq
+ + + + + + + +
B4+ (B4 F+aPF 5+t [z 4+ [z +v)? (3 +w]* (5 + w7
Cy Cig i Tz 1z Cras+C5
+ + + + + }:
(3 4+ +2) 5+ g+ 22 3+ +2v)3 5+ g+ 24 5 —hl) 32 +hys +bs)

£

Ge T 4 Ty +3e s e Ty 16 Y O e T 0 + 30 O +

=N

@_tvtE Cy +r5-E'_T'['I":+2 ¥l Cg +6@'t[*"+2"]tcm +327t e+ v] tgcll +-.‘E'_]"['I"H-2 L tECu +5@th1 Ciz +

bbby -4 by t i an t,[ba-4t L, bE-4t
3g [—[—1+@ T e [l e ¥ T Yl —dby Gl 2|l ¥ 27 |y
o B2 b,

(3.2.54)

The coefficients C, (i=12,..15) are functions of the parameters x and v. Expressions (3.2.53)

and (3.2.54) are identical (the symbolic difference between the two functions has been evaluated as
the null function with the aid of the program Mathematica) and can be proved by comparing them
for one set of parameters v and xz,e.g. v=10 p=1:

T () = gaa (i) =

0182027803 4 s a0t 16864131305 e 0P _qoman et t 00000 et E 2015 g VNI
—5.7520@ 7t 411934 1 +23386 0" 1t — 00493 1 —0.4411 e 40040607 (3.2.55)

It follows that the underlying counting process is a renewal process. Since f,, (t)= g, (t)(here

again the difference between the two functions has been symbolically evaluated with the aid of
Mathematica and it results different from the null function)

fu ()-8, (1) =
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g S e (e
4|:—1 +@2”:|t;£3 e +,uc4 (—1 +@2w—2@t["’+ﬂtvj —
20 [ tv 4@ T At o B2t £ 28 0 by 1A T -3 1 210) +
avt (-8 + 16 B _ 3ty 1Y (-8 +3tv))) —
g it [3@tvv3|:;zg —v:{:I2 [12,:;5 +-’-1t,:z'j +44;53v2 —t,:z“vg —8gv4 —4t,:zzv4 +tv'5:| +
e F et (=P B3te” (L +tv) + 68 B4 0tv 6t ) 0f (B0 -0t 268 ) +
3t (221 41000y 117850 20707 £ (120 460t 4615 1007 +
s E —3tw =208 07 — 307 (36— 151w — 13107 4 £ ) 4
30w (58 =35ty =0 v 4+ 50 ) 4 gt v —a a3ty 20 1200 4
300 (2255 o1 tv - 310 426807 +
BV e (3t (Lt (3ot —e ) 13t (20 1000w — 178 200+
VB0 40t v 22 ) 4 v (B 3t - 20 ) T (120 — B0t 4617 0P 4P -
30w (=58 =35 tv + 015 48w 4307 (36 — 15tv + 1388+t )+
300 (255 -0t 43850 #2007 )+ 0% (3 —63tw 430857 288 +
gt el |:2t3,uu +-’-133t,r18v2 +5'I:It,rz2 L T —?8;19[—2 1 vzjl +r5,cw8 [4 +t2v2:| -
36 50 (5 +t87) —at g (15 4480 — 21t 0 (3Ra 4t —12 07 v (283 4285 4
12673 (37 #1158 + 4 (253 0t 485V 0))))) 20

(3.2.56)
it follows that the renewal process is a delayed one.
The stationary values of mean and variance of the interarrival times take on the form:
2 3
| R CATC) N
,uv(u +3uv+v )

2(v+p) (1 +8u°v+ 204 + 21 + 1717V + 20uv° + 4v°) (3:257)

o = u) (p° +8u % y U % _

Ta% (2v+y)2 (/12 +3yv+v2)2

3.3 LINEAR OSCILLATOR UNDER A RANDOM TRAIN OF IMPULSES DRIVEN BY A
SPECIAL CLASS OF NON-ERLANG RENEWAL PROCESSES

3.3.1 Equations for moments

Consider a linear oscillator governed by the equation

X (t)+2{wX (t)+ o’ X (t) = sz(?z(ti)%(t_ti)

i=1

(3.3.1)

where the arrival times ti are driven by an Erlang renewal process R, (t) with parameters ¥ and K

and Z(t;) is a value at ti of an intermittent, zero-one stochastic variable Z(t) governed by the
stochastic equation

dZ(t)=@2-2z)dR,(t)- ZdR, (t) (3.3.2)
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The stochastic equations governing the system state vector X can be written as

dX(t)=c(X(t))dt+bdR(t) (3.3.3)

where X =[ X, X | ,¢(X (t))=(X,~2¢0X (t)-@’X (t)), b=(0,P(t)).
As explained in section 3.1, an Erlang renewal process R. (t) (05 = MV) may be expressed in terms

of the Poisson process Na(t) (05 = ﬂy‘/) at the expense of introducing auxiliary variables, for any
integer parameter K or |. For any « the following replacement is valid (cf. 3.1.2)

dR, (t) = p= (t)dN, (t) (3.3.4)
where the p”is a variable which only takes values 0 or 1 and is governed by

dpy (t)=(p5 (t)=p7 (t))dN, ()
dp; (t)=(p5 ()= p5 (t))dN, (1)
. (3.3.5)
dpi, (t)= (plix—l (t)-p (t))dNa (t)
6t 0-{ - S07 )28, 0 v, )
j=1
where pf (t)=p*(t).
The variables p” (t), p5 (t).. p¢ (t) only take values 0 or 1 (see chapter ..).
It is convenient to augment the state vector by new combined variables

Zl = Z'Zz = plv"'zk = p:—l' Zk+1 = pl”"'zkﬂ—l = pl‘il’
2, = PP Ly = PPl Ly = LPL L =L
Zkl+k = Zplﬂ ' "Zkl+k+l—2 = Zpl;il' Zkl+k+l—1 = Zp;plﬂ ' "ZZkI—l = Zplilpl/il'

The stochastic equations governing the augmented state vector xz[x X 7, Z,. ZZk,_lT
can be written as

dX(t)=c(X(t))dt+b(P(t),X(t))dN(t) (3.3.6)

where

o(X(t).t)=[X -2¢wX(1)-a'X(t) 0 0 . 0
b =[b b wobLT (3.3.7)
b* =[b; by b;,..] ;
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with

3 k+:

b =0,b; =PZp; by ==Zp b = p; = p/,.b., =15 p| =2},

bl, = pl = pl b, =1-5p =2p00) = pip! = PP,

bkLa = pltli - Jz;p,vpil - 2pkv4pltll' b»l;+4 = Zp; - Zplv v

b»:+k+3 =Z- Zplv - Zzpkv—l’ b»:+k+4 = _Zp;ply’ "bl<vl+k+l+3 = _Zpi’pil’

0 a =ZPP 2P P s = 2Pl = 2P Pl = 2 2P Pl = 2L P,
b’ =0,b =0,b! = p/ —Zp/,b/ =0,.b", =0,b", =0,.b" , =0,b" , =0,

bl =Pl —2 PP —2pLPl b = PPl = 2P P,
"b:+k+4 = pkv—lplﬂ - Zplilpf ) b:|l+k+5 = Z:D: - pr e
b =2+ o =22p — S Zp! —2Z 1,

kl+k+1+4

b:|[+k+l+5 = Zplvpzﬂ - Zp;plu 1 "b:kl+6 = Zpl:a _pl:—lplﬂ - Zzpkvap;l - ,Zz Zpl:—lpjﬂ - Zzpkv—lpl}il'

The number of auxiliary zero-one stochastic variables is 2kl —1.
While the original state vector consisting of X and X is not a Markov process, the augmented state
vector X, governed by eq. (3.3.7) driven by two independent Poisson processes N, andN , , is a

non-diffusive Markov process.
By means of the generalized Ito’s differential rule (see section 1.1.2) the equations for the mean
values and for 2", 3 and 4™ order moments can be written as

m (t)=E[c |+ > aE[bf],

a=v,u

£, (t)=2{E|:Xi[Cj + Y aE[b;’]mS+ > aE[bby ],

i (t)—s{E{x,x{c::#Z aE[bk“]H};; 2 a{E[Xbb Jj, +

= s
> aE bbby |,

Fig (t)=4{E{XinXk(C, +4y aE[b,“]ﬂ} +6 Y a{E[ XX b ]} +
a=v,u s a=v,u
4y afE[Xbbebi ]} + Y aE[bibybih ],
e (3.3.8)

where m,(t)=E[X;] and g (t)=E[ XX, ].and where {.}_denotes the Stratonovich symmetrizing

operator (e.g. {aa;a, | =%(aiajak +a,a,a +2,a3,).)
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3.3.2 Process | (Generalised Erlang renewal process): R, (t)=P(x) and R, (t)=P(v)

Consider the system excited by the renewal train of impulses (3.1.1), where the renewal counting
process is given by (3.2.1) and (3.2.2), with R, (t)=P(x) and R, (t)=P(v), P(u)and

P(v)being Poisson processes with mean arrival rates x# and v respectively. The stochastic
equation of motion (3.3.7) becomes

X (t) X (t)
X(t)=| X(t)[;  c(X(t))=| -w’X(t)-2{wX(t)|;
Z(t) 0
0 0
b(P(t),X(t))=[b" b*]=|P()Z(t) 0 |; (3.3.9)
-Z(t) 1-Z(t)

dN(t)' =[dN, dN,];

The equations for the mean values  m, =E[ X (t)],m, =E[ X (t)],m, =E[Z(t)] are (cf. Iwankiewicz
(2002))

m, (t) =m, (t);
m, (t) =—o’m, (t)—2lem, (t)+ E[P(t)Im,(t)v; (3.3.10)
my (t) =—(p+v)mg(t)+

The stochastic equations for centralised variables Y (t)=X(t)-E[ X(t) ] are

dY (t)=c®(Y(t))dt+b(P(t),Y(t))dN(t) (3.3.11)
where

Y2 (t)
¢’ (X(t))=| —@®, (t)— 25V, (t)-vE[ P(t) |[E[ Z(t)] |; (3.3.12)

VE[Z(0)]-u+ [ 2 (1]

The equations for the second-order central moments of the response, are derived from Ito’s rule as
(cf. Iwankiewicz (2002))
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i (t) = 248, (1)

Ly (1) = 1, (V) — 0% gy, (t) — 280, (t +vE|:P :|,u13

ity (1) = =200 1y, (1) — AL opsy, (1) + VE[ P? () my 8 +2vE[P(t)]yz3(t); (3.3.13)
s () = s () = s (1) (v 0);

fiy (£) =~ 5 ()= 415 (£) (20 + v + 1) ~vE[ P (1) | (my (1))

The stationary solutions for m, =E[X] and s, = E[Yf] give the stationary mean value and the
steady-state variance of the response, respectively: (cf. lwankiewicz (2002))

v EIPL v EPT] v (ELPY)" (24w +v+p) (3.3.14)
vip o TN (v p) A’ (v+,u)2 2(0)3[a)2+(v+y)(2§a)+v+y)]’ -

m, =

3.3.3Process Il : R, (t)=E (1) and R, (t)=P(v).

Consider the system excited by the renewal train of impulses (3.1.1), where the renewal counting
process is given by (3.2.1) and (3.2.2), with R (t)=E(uxl) and R (t)=P(v), where
E(,u,l)denotes an Erlang process with parameters x and |. The stochastic equation of motion
(3.3.7) is specified by (cf. Tellier and lwankiewicz (2005))

X (t) X (t)
X(0)=| ) iex()=| X0 X0
Z,(t) 0
0 0
b(P(t),X(t))=[b" b*]= Pftz)lz(t()t) pﬂ—OZZ(t) ; (3.3.15)
—Z,(t)  Z,(t)-2Z,(t)

whereZ,(t)=Z and Z,(t)=Zp,.
The equations for the mean values (m, = E[ X (t)],m, =E[ X (t) |, my=E[Z,(t)],m, =E[ Z,(t)]) are

ml(t):mz(t),

m, (t) = —e’m, (t) - 2wm, (t)+ E[P (t)Im, (t)

m, (t) =-m, (t)v—um, (t)+ Elp,]u (3.3.16)
i (£) =y (£) =, (£) (+ 200

In the stochastic equations for centralised variables the vector c° (X(t)) IS given by

43



| Yz(t)

O ~0™, (1) -24wY, (t)-vE[ P(1) JE[Z,(1)] |

(X(1)= VE[Z,(t ]—,uE[pﬂ]+,uE[Zz )] (3:3.17)
L VE[ZZ(t)]_”E[Zl(t)]JrZ”E[Zz(t)] i

The equations for the second-order central moments of the response are

o (t) =240, (t)

e (t):ﬂzz (t) 2 /“11( )_Zé’a’ﬂlz (t)+VE[P(t):|ﬂ13(t)

Fi (1) = g (1) = i (V) v = g1 (1) 25

[114('[):;124 t)_M4(t)V+M3(t)ﬂ_2M4(t),U; (3.3.18)

ﬂzz(t)z—sz,ulz(t)—4§a),uzz(t)+vE[P2(t)]m3(t)+2vE[P(t)],u23(t)

ﬂ23(t): wzﬂls(t)_ﬂzs(t)(2§w+V)_,U24(t)ﬂ_VE[P(t)](ms(t))z;

fas (1) = =% g1y, () = 0 (V) (260 + v+ 201) + 15 (1) = vE [ P (1) [, (t) m, (1);

The stationary solution for m, =E[X] and s, = E[ ] give the stationary mean value and the
steady-state variance of the response, respectively

_ vu(2v+ 1) E[P] |
1 2(V+/J)2 o

My = V,U(ZV"‘,il) E[st] +
(viu) 8w

VB,U(ZV+,U)(E[P])( (V+,u) 44’,ua)(v+,u)2—((—3+4§2),u—4v)(v+,u)a)2+2§a)3+v(2v+,u))
8w’ [a)z+(v+,u)(2§a)+v+,u)}2(v+,u)4

(3.3.19)
3.34 Process I11: R, (t)=P(u) andR, (t)=E(v,k).
Consider the system excited by the renewal train of impulses (3.1.1), where the renewal counting

process is given by (3.2.1) and (3.2.2), with R, (t)=P(x) and R, (t)=E(v,k). The stochastic
equation of motion (3.3.7) is specified by (cf. Tellier and Iwankiewicz (2005), Iwankiewicz (2003 )

X (t) X (t)
X(0)-| 1 ielx(= X0 X
Zz(t) 0
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0 0
b(P(t),X(t))=[b" b*] Pgtz)zz(ztgt) 1_2(t) ; (3.3.20)
Z,(1)-22,(t) p.-Z,(1)

where Z,(t)=2,Z,(t)=Zp,.
The equations for the mean values (m, = E[ X (t)],m, =E[ X (t) |, my=E[Z,(t)],m, =E[ Z,(t)]) are

(3.3.21)

)
) =-w’m, (t)—2¢eom, (t)+ E[P(t)Im, (t)v;
)=-my(t) g—vm, (t)+ g

)

In the stochastic equations for centralised variables the vector c° (X(t)) is given by

Y ()
0 -, (t)=2¢aY, (1) —vE[P(1) JE[Z,(1)]
¢ (X(1))= VE[Z,(t ]+u HE[Z,(1)]
| —VE[Z,(t)]-4E[p,]+(2v+u)E[Z,(t)]

(3.3.22)

The equations for the second-order central moments of the response are

iy (t
£, (1
t

(
(
Hag (t
(
(
(

=241, (t)
=t (1) = @ g1y, (V) = 2o, (1) + VE[ P (1) ] s (1)
tha (V) = 5 (t) 21

ts (D) V= 1 (1) (2v + 1)

(t

) - 4w, (1) +VE[ P (t ]m )+ 2vE[ P(t)] 4 (1);

)

) )~
;z:z( ;Jr (3.3.23)
) Hy

)=~

)=

fi (1) = —200°
)= (28 + p1) iy () = 110 () v — E[P }ma (t)m, (t);

fixs (1 s (1
~00° 1y, () = 1y (1) (2800 + 2v + p1) + g1y () v =vE[ P (1) ] (m, (1) )

A (1

The stationary solution for m, =E[X] and s, = E[le] give the stationary mean value and the
steady-state variance of the response, respectively

_vu(v+2p) E[P]. (3.3.24)
2(v+u)2 o

_ vu(2u+v) E[P?]
My (V+,U)2 80

,u3v(2,u+v)(E[P])2 (—v(v+,u)3 —44’1/60(1/+,u)2 —((—3+44’2)1/—4,11)(V+,u)a)2 +260° + p(v+ 2,u))
8w® [a)2 +(v+,u)(2§a)+v+,u)]2 (1/4—,11)4

1
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3.35 Process IV: R, (t)=E (1) and R, (t)=E(v,k).

Consider the system excited by the train of impulses (3.1.1), where the driving counting process is
given by (3.3.1) and (3.3.2), with R, (t)=E(x,1I) andR, (t)=E(s,1).The stochastic equation of
motion (3.3.7) is specified by

b (1)
X (1) —0” X (t)—2¢wX (t)
X(t)= 2((?) o(X(t))= 8
(1 .
1 Z,(1)] 0
0 0 (3.3.25)
P(t)ZZ(t) 0
b(P(t),X(t))=[b" b"]= ~Z,(t) pﬂ—_Zg(t

where Z,(t)=Z2,Z,(t)=2p,,Z,(t)=Zp,. Z,(t)=Zp,p,.
The equations for the mean values
(m,=E[ X (t)].m, = E[X (t)].m, = E[Z,(t)], m, =E[Z, (t)], m; = E[Z,(t)] m; =E[Z,(1)]) are

m, (t) =m, (t);

m, (t) = —’m, (t)—2Zom, (t)+ E[P(t)]m, (t)v;

m, (t) =—mg (t) u—vm, (t)+Elp,1u; (3.3.26)
m, (t)=m; (t)v—2m,(t)v-m,(t)u+E[p,IE[p,1u;

g (t) = m, (t) 4 —2mg (t) u—m, (t)v;

Mg (t)=m, (t) z+mg (t)v—2m, (t)(v+u);

In the stochastic equations for centralised variables the vector c° (X(t)) is given by

Yz(t)
~0%Y, (t) - 20oY, (t)-vE[ P(t) |[E[ Z,(1)]
i . vE[Z,(t ]+ﬂ HE[Z,(t)]
(X)) = ~vE[Z,(t)]-1E[p,]+(2v+u)E[Z,(1)] (3:3:27)
VE[Z,(t) |- #E[ Z,(t) |+ 2uE[ Z,(t)]
| VE[Z;(t)]-2(v-m)E[Z,(t) |- #E[ Z, (1) ]|
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The equations for the second-order central moments of the response are

g (8) = btz (8) = @ gty (1) — 280, (8) +VE[ P (1) e (1)
Fiig (1) = s (1) = ptyg (1) v = 1 (1) 13
Fa (1) = 130 (1) = 135 (1) v = 1 (1) (20 + 2);
Fiis (1) = s (1) = s (1) v = p1sa (1) 12 = 205 (1) 2
Frig (1) = ptag (V) + pi15 () + g1y (8) 12 = 2006 (1) (v + 1)
f1zy () = —200° 1y, (t) = Apty, (1) + VE[ P (1) | m, (1) + 2vE [ P(t) ] sy (1);
iy (1) = =" 15 (t) = 2600p155 () = p1e () v+ E[ P (1) ] 1 (1) = vE[ P (1) Jm, (1)
Lty (1) = =% g, (1) — 15, ()(2§a)+2v+,u)+,u23(t)v+vE[P ]m )(ms(t)—m4(t)—1);
£) = 125 (1) (26@) = 5 (1) (v + 212) + vaags (1 E[ P (1) ]
ms (

ity () E[ P (t) |+ 11, (t) u—vE[ P(t)]m, (t) mg (1);
— Mg (t)(2§a)+2,u+2v) Has (t)( )+V(:U45(t) Has (t))E[P(t)J
)]m, (£)(me (6)+2m, (1)): (3:3.28)

The stationary solution for m; =E[X] and s, = E[ } give the stationary mean value and the
steady-state variance of the response, respectively

~ (,u2 +3,uv+v2),qu[P] _

, =

20° (v+,u)3
(,uz +3uv +v2),uv E[P?]
(V+,u)3 8w’

M =

2 2 2( 2 2 (3'3'29)
(E[P]) v’u (,u +3uv+v ) “P(uv):
lGCaJS[a)Z+(v+,u)(2§a)+v+,u)]3(v+,u)6 o
where
P(uv)=
—3(v+,u)5(,uz+4,uv+v) —185w (v + p) (,u +4uv+v )
207 (v + 1) ( (1+9¢7) 1 +2(1+9¢ )v* + 3uv (1+24¢7) ) -
(3.3.30)

64w’ (v + 1) ((3+4§ )t +(3+4¢7)v? +8uv (1+2£7 ))-
(v+p)o ((1+2og )% + (142047 )v? + 2uv (14324 7)) -
4§(y2+3yv+v2)a)5
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3.3.6 Numerical analysis

In order to illustrate the stochastic behaviour of a linear system under a non-Erlang renewal train of
impulses, using the method developed, consider a linear oscillator governed by the differential
equation (3.1.1).

In order for the four different cases of renewal processes examined to be comparable, the couples of
parameters z and v, with 1 =1,..1V are chosen in such a way as to maintain the same stationary

mean value E[T] of the interarrival times and hence the same stationary mean value of the

response. In fact, from equations (3.2.19), (3.2.31), (3.2.43), (3.2.57), (3.3.14), (3.3.19), (3.3.24)
and (3.3.29), it appears that the stationary mean response of a linear oscillator under the three types
of renewal driven impulsive excitations considered in this paper is

E|P
[x]=[—]2 I=1,.,1V (3.3.31)
E[T]e

where E[T]is the stationary mean value of the interarrival times.

Assuming the first process as reference, for different choices of parameters (z, =1,v, =0.1;

i, =1,v,=1; u, =1,v,=10), the corresponding values of the parameter v, with I=1I,..1V,
arbitrarily fixing £ (l1=11,..1V ), are derived from the condition (see tab 1):
E[T]=E[T] [=1,.1V (3.3.32)

The data assumed for the oscillator is: @ =1s™,¢ =0.05. The impulses magnitudes are assumed to

be Gaussian distributed random variables with E[P] :1£ and E[Pz} = 28%.

In fig. 3.3.1 are depicted the probability density functions of the interarrival times for the different
types of impulse processes considered. It should be noted that, although the mean values are the
same, due to the different shapes of the probability density functions of the processes Il,.. 1V, the
corresponding peaks are shifted to the right with respect to that of the first one, and the tails go
rapidly below that of the first process.

The stochastic response of a linear oscillator under a train of impulses driven by the renewal
processes I,..1V is analysed.

The results for the mean values and the variances of the response are shown in figures 3.3.2 and
3.3.3.

The mean responses of the linear oscillator for the different processes show slight differences in the
transient phase, except when the ratio r, =v, / 4, of the reference process parameters is small.

From equations equations (3.2.19), (3.2.31), (3.2.43), (3.2.57), (3.3.14), (3.3.19), (3.3.24) and
(3.3.29), it appears that the stationary variance of the response is composed of two contributions,

respectively proportional to the second order moment E[PZJ and the square of the mean value

(E[P])Zof the impulses amplitudes. The first contribution, for all the processes considered, is
E[PZ}/(Ma)SE[T,]), considering that the parameters g and v, with 1 =1,..1V are chosen in such

a way as to maintain the same stationary mean value E[T] of the interarrival times (cf. equation

(3.3.31) ), the differences in the behaviour of the variances of the responses are due to the second
contribution.
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It may be noted that in the transient phase, for each of the three examples considered the curve
corresponding to the reference process is always above all the others. However the stationary
behaviour, parameters g, being equal, seems to be influenced by the parametersv,, with

k=1,111,1V, in such a way that o >oy if v, >v;, with k=11, 1,1V and j=11,111,1V,
except when the ratio r, = v, / g, of the reference process parameters is small.

M1 Vi M2 V2 M3 V3 M4 V4

1 1 1.2 1.73939 1.2 1.41343 1.2 2.61617

1 10 5 1.26783 5 1.9769 5 214774

1 0.1 0.2 0.463325 |0.2 0.272379 |0.2 0.683394
Tab.1

Parameters x and v, (i=11,111,1V ) derived choosing the process | as reference

(g, =1,v,=1; 4, =1,v, =10; i, =1 v, =0.1), arbitrarily fixing z and using the condition

E[T]=E[T]
0.5
e PR T v= ], =1
m——= Procesz IO, v=1.739, u=1.2
0.4 L
PN -=-  Process IT,v=1413,u=12
%
_E Process IV v=2.616, u=1.2
:E 0.3
B
- 0.2
=
i
=
B
0.1

Fig.3.3.1-(a)

Probability density of the interarrival times- non-Erlang renewal processes with E[T]=2
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p-d.f. of the interarriral fimes

p-d.f. of the interarriral times

i T T T T T T T T T T T T T T T T T T T T

e PR T = 100, =1

= ——— Process I, v=1.267, u=5
0.& L

=== Process OO0, v=1977,u=5

Process IV ,v=2.14T, u=5

0.8
0.4
0.2

Fig.3.3.1-(c)

Probability density of the interarrival times- non-Erlang renewal processes with E [T ] =11

1 2 3 4 5
time
Fig.3.3.1-(h)
Probability density of the interarrival times- non-Erlang renewal processes with E [T] =11
— Process I,v=0.1,1u=1
———— Process I, v=0463, p=0.2
.05 | i
=== Process I, w=0.272, =02
Process IV, v=0.683, p=0.2
0,08 -
0. 04 g
n. .oz g
-
T
e
1 1 1 = R ]
in 20 30 40 S0
time
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Evolutionary mean of the response

Evolutionary mean of the response

e PR Tov= 1 =1

m——= Process O, w=1.739, nu=12

===  Process OT,v=1413,u=12

Process IV v=2.616, u=1.2

L5

2 H

in 20 30 40 S0 &0
time
Fig. 3.3.2-(a)

Evolutionary mean of the response of a linear oscillator( E[T]=2)

o

&0

— Process I ov=1,u=1

m——= Procesz IO, v=1.739, u=1.2

===  Process OT,v=1413,pu=12

Process IV, v=2.616, u=1.2

10 20 30 40 50 &0

Fig. .3.3.2-(b)

Evolutionary mean of the response of a linear oscillator (E [T] =1.1)

Ta

&0
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Evolutionary mean of the response
N

(=1
(=1
o

Evolutionary mean of the response

e PrOCRES T w= 1 =1
———= Process O, v=1.739, u=1.2
===  Process OI,v=1413,u=12

Process IV w=2.616, p=1.2

Fig. .3.3.3-(a)

i
-}u 1 1 1 1 1 1 1
i0 20 30 40 50 &0 Ta &0
time
Fig. .3.3.2-(c)
Evolutionary mean of the response of a linear oscillator (E[T]=11)
e Pz I,v=1,u=1 E
———— Process 0,v=1.739, u=1.2
=== Process T, v=1413, =12
Process IV, v=2.616, u=1.2
50 &0 Ta &0

Evolutionary variance of the response of a linear oscillator (E[T]=2)
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Evolutionary mean of the response

Evohutionary mean of the resp onse

e Pz I,v=1,u=1

5o
b - Process T w=1738, u=13
===  Process II,v=1413,u=12
Process IV, v=2.616, u=1.2
1 1 1 n 1 1 1
i0 20 30 40 50 &0 Ta

Fig. .3.3.3-(b)

Evolutionary variance of the response of a linear oscillator (E[T ]=1.1)

&0

e Pz I,v=1,u=1

———— Process 0,v=1.739, u=1.2

===  Process II,v=1413,u=12

Process IV, v=2.616, u=1.2

10 20 30 40 50 &0 o

Fig. .3.5.3-(c)

Evolutionary variance of the response of a linear oscillator (E[T ]| =11)

&0
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4. DYNAMIC RESPONSE OF NON-LINEAR SYSTEMS

4.1 NON-LINEAR OSCILLATOR UNDER AN ERLANG
RENEWAL DRIVEN TRAIN OF IMPULSES

4.1.1 Statement of the problem

Consider a non-linear, non-hysteretic oscillator under purely external excitation,
governed by the equation

X (8)+ (X (£),X (1))=Y Prd(t-t) (4.1.1)

where f(x (t) X(t)) is the function of instantaneous values of X(t) and X(t)and

the stochastic excitation is the random train of impulses whose arrival times lir
are driven by an Erlang renewal process R, (t) with parameters k and v.

. . . . T
The stochastic equations governing the system state vector X :[X,X] can be
written as

dX(t)=c(X (t))dt+bdR, (t) (4.1.2)

where ¢ (X (t)):[X,—f (X, X)JT b=[0, P(t):|T .
As before, the process R, (t) can be expressed in terms of the Poisson process as
dR, = oy (t)dN, (1) (4.1.3)

where the p, is a variable which only takes values 0 or 1 and is governed by (cf.
equation (3.1.26)

(4.1.4)

The auxiliary variables py (t),p; (t).. o4 (t) only take values 0 or 1. The
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variable p/ is equal to 1 in the time interval between the (n-1)st arrival of the
Poisson process N, (t)and the n-th arrival. The variable p; (t) is equal to 1 in the
time interval between the (k-2)nd arrival of the Poisson process N, (t)and the (k-

1)st arrival.
The variable p_, (t) is different from zero in the time interval between the 1st and

the second arrivals of the Poisson process N, (t) (see Figure 4.1.1).

The time evolution of the augmented state vector X=[ X X p! p; ..pkv_l]T is
governed by the stochastic equation

dX(t)=c(X(t))dt+b(P(t),X(t))dN,(t) (4.1.5)
with

X | [ X(0) | [ X, (t) |

X (t) X, (t) —’ X, (t) - 200X, (t)— e’ X 2 (1)
ol B oS

) ) : _

) . -
P(t)p)
P;

and b(P(t),X(t))= ; (4.1.6)

k-2
l—Zp}/ —2p4
L= i
While the original state vector consisting of X and X is not a Markov process,
the augmented state vector X is a non-diffusive Markov process.

With the aid of the generalized Ito’s differential rule (cf. section 2), that becomes

dv (t,X) =
il (att’ X), kf, ava(;,jx)cj (X, X)+[V (t,X+b" (£, X)) =V (£, X) ]dN,

j=1

(4.1.7)

it is possible to derive the equations for the mean values m, (t)=E[X,]and for 2™,
3"and 4" order moments as
( H;j (t): EI:Xin:I'/uijk (t): El:xixjxk:l!:uijkl (t): E[XixjkaI])
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m, (t)=E[c ]+vE[b],
i (1) Z{E[Xi(cj+vE[bﬂ)}}s+vE[bivij],

i (0)=3{E[ %X, (c, +vE[0r]) | +av{E[x0j0i ]} +

(4.1.8)
vE[ bbby |,
g (t):4{E[XinXk(C, +4VE[b|v])J}S+6V{E[xiijkvblv]}s+
4v{E[ Xbybiby ]} +vE[ bbby ],
where {}s denotes the Stratonovich symmetrizing operator, e.g.
{aaa}, =%(aiajak +2;3,8 +3,3a,). @19

For the non-linear oscillators with terms f (X, X ) which are polynomials in X

and X , the right-hand sides of the equations for moments (4.1.8) involve the
unknown expectations of the non-linear transformations of state variables. If the
non-linearities are polynomial the equations for moments form an infinite
hierarchy and cannot be directly solved. The unknown moments can only be
evaluated approximately, using suitable closure approximations.

For example, for the 3 order polynomial non linearity (Duffing oscillator), if the
set of moments equations is truncated at the 4™ order moments level, the redundant
moments are of the 5" and 6™ order.

If the non-linearities are other than polynomial, the expectation of the non-linear
transformations of the state variables cannot be expressed directly in terms of
moments.

4.1.2 Modified closure scheme

A novel closure scheme is here developed that takes into account the specific
physical properties of impulsive load processes (Iwankiewicz, Nielsen and
Christensen (1990), lwankiewicz and Nielsen, (1999)). Assume that the system,
subjected to a random train of impulses and to zero initial conditions, has been at
rest in the time interval [0,t[ where no impulse has yet occurred. The joint
probability density of the augmented state vector is expressed as sum of
contributions conditioned on the ‘on’ and ‘off’ states of the auxiliary variables. A
discrete part account for the fact that there is a finite probability of the system
being at rest from the initial time to the occurrence of the first impulse with Dirac
delta spike. The continuous part which is the conditional probability given that the
first impulse has occurred, can be expressed in terms of functions depending only
on displacement and velocity .

Before the first impulse occurrence, the variables py (t), o5 (t) .. o, (t) can be in

their first ‘off” state with probability P, .. =Pr {( N, (t)= 0)} —e™M,

PL
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20 1
pi(1) .
| o
N .
p"a(t)
b}
kﬁ >

P k(t

v

t

Figure4.1.1

Sample function of an impulse process driven by an Erlang renewal process with generic
parameters K and v and auxiliary zero-one variables appearing in expressions (4.1.4).

Let us consider the following events.
The variable p;, (t) is in its first ‘on” state while the remaining variables are

1 ] H HH 1 —Vi
off’, with probability P, . . = Pr{(N, (t)=1)} =vte™.
The variable p,_, (t)can be in its first ‘on’ state while the remaining variables are

2
‘off” with probability Ppl{,off ottt ot ot = Pr{( N, (t)= 2)} = @e‘" .

etc.
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The variable p; (t)can be in its first ‘on’ state while the remaining variables are

(Vt)k_l —vt
——e".

(k-1)!

Consequently, the joint probability density function of the state variables can be
expressed as

‘off with probability P%,_ . =Pr{(N,(t)=k-1)f=

P(X %00 1o 1) = BV (X% 21 1o 1)+ D (XX 1 94 (4.1.10)

The function p(l)(x, X,pf,..,p{fl)is expressed in terms of the state distribution

probabilities le of the auxiliary variables given that the first Erlang driven
impulse has not occurred, multiplied by the pertinent conditional probability

densities

P (X%, 0} 1o £ ) =

P'5(x)3(X)5(p!)-3(prs)+ o (x)8(%)8(p) )0 (o —1)+ (4.1.11)
RS (x)8(X)8(py -1).5(p4)

with

1_pt _ AVt
R= PPI'Off Py 0ff .. pis0ff =€

1 1 — -vt
Pz = Pp{'off oot ol on vte ™,

(4.1.12)
k-1

Pl =Pt — (Vt) e—vt.
k - b

plon, pyoff.pf joff (k _1)|

The function p"(x,%,py,... o}, )is expressed in terms of the conditional state

probabilities Pj* of the auxiliary variables given the first Erlang driven impulse has
occurred, multiplied by the pertinent conditional probability densities

7 (X% 2l ) =

P (X, )5(;;;) (o) + P P2 (%) () ( 1y —1)+ (4.1.13)
AR (000086 -1)-0( L)
with
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= ) ' (4.1.14)

The joint probability density function has to satisfy the equation

0

[ p(x 5ol ol Jixedid o} .d oy, =

- o (4.1.15)
P+ P (x, x)dxdx =1

=1 =1 —00
considering that

Kk 1 k .

YPl=PR; P =1-R. (4.1.16)
j=1 j=1

the following relationships hold

[ 1900 x)axdx =1,.... [ 0 (x,x)dxdx =1 (4.1.17)

—00

It can also be proved that the following identities hold

Mqﬂ=iﬁqu:p@xwxwxﬁybiﬁ=
5(pr -1)(E[ ])+o () (1-E [} ]),

(4.1.18)

5(pa-1)(E[ A ])+ o (el ) (1-EL A1)

Taking for instance the marginal probability density p( ;") , it can be derived as
p(p!)=[ p(x% P01 Jixdid o} .dpy , =
= (4.1.19)

k-1

K=
i P'S(py )+ RS (oy —1)+ X Po(pl )+ RS (o -1)
j=1

=t

observing that
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k-1 kel (4.1.20)
2P+2P zl_E[plv]
-1 i-L

equation (4.1.19) becomes

p(p!)=5(p! -1)(E[ A ])+o(r!)(1-E[2]) (4.1.21)
Since the auxiliary variables are zero-one processes, the following relationships
hold

E[X"X"p° |=E[ X"X"p/ ]

E[X"X "ol |=E[X"X"p}, | (4.1.22)

E[X"X"p°p;"]|=0

The unconditional moment of order p=m+n involving displacements and
velocity can be expressed in terms of the conditional moments of the same order
as follows

E[X"X"]=P EY[X"X "]+ P E@[X"X " "]+..R ECX[X"X"] (4.1.23)

where the conditional moments are evaluated respect to the conditional p.d.f.

(4.1.13).
The unconditional moment of order p+1=m+n+1 involving also the auxiliary

variables can be expressed in terms of the conditional moments of order p as
follows

E[X"X"p/1=PEC[X"X"];
E[X"X"p;]=PRLE“[X"X"]; (4.1.24)
E[X"X"p/ ]=P E@[X™X"].

The following relationships relating the conditional moments of order p=m+n
to the unconditional ones can also be derived:
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E[X"X"]-E[X"X"p; |-E[ X"X"p; |-..E[X"X"p;, |

* ’

1

EV[X"X"]=

*

E(k)|:Xan:|: E[Xr;xnplvl
k

(4.1.25)
The Gram-Charlier expansion can be applied to the conditional density

functions f¥ (x.X) .. f(")(x,x)(cf. (4.1.13)) that can be viewed as probability

densities of a bi-dimensional stochastic variable.
The conditional cumulants are related to the conditional moments by the following
formula (Abramowitz and Stegun (1972), Kenney and Keeping (1951)):

X,]= S TT(Bl-2) (-2 E® {Hxi} (4.1.26)

7 Ber ieB
Where 7z runs through the list of all partitions of {1,2,...5} , B runs through the
list of blocks of the partition and |B| is the size of the set B.

The conditional moments are related to the conditional cumulants through the
following formula

X =2 [ [X;:ieB] (4.1.27)

7 Ber

Applying a cumulant neglect closure of order r, the conditional moments of order
s>r can be expressed in terms of the lower order conditional moments through the
following equation

EW[XX,]=> [T X :ieB"]

o . (4.1.28)
S 1| S TT (e - e [Hx}

7" B'ex"| 7' B'er' jeB'
ieB™

Where 7z" runs through the list of the partitions of {1,2,...5} in blocks of maximum
dimension r and B" runs through the list of blocks of the partition z".

Inserting equations (4.1.28) in (4.1.25), the conditional moments of order s>r are
expressed in terms of the unconditional moments of lower order through the
following relations
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2121 (\B‘\—l)!(_l)\B‘\-l Eh;[ixj}E{jl;[ixjpf}...ELl;[ixjpi_l}

r i i
z" B'ex" | 7' Ber
ieB'

*

R

ElTIXp!
ST T (B2 M

r i i
z' B'exr" | #' B'ex
ieB'

(4.1.29)

The unconditional moments of order s involving displacement and velocity only
can be expressed in terms of unconditional moments of order up to r, by inserting
equations (4.1.29) in (4.1.23), as follows

E[X,..X]=

PY T2 11 (\Bi\—l)!(_g\la'pl E{g“}E{jl;[ixjpf}—..f{jl;[ixjp{_l}

3 T Qi
7" B'exr” | 7' B'ex
ieB"

*

R

— | E{ijp;w
AT TS| (-1

r i i
z" B'exr" | ' Bex
ieB"

(4.1.30)

The unconditional moments of order s+1 involving also the auxiliary variables can
be expressed in terms of unconditional moments of order up to r, by inserting
equations (4.1.29) in (4.1.24), as follows
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E{ijplv}
jeB'

el =R T 2 T (] -p-n”

7" B'ex" | 7' Bex Pk
ieB"
i E|:ijp|:1:|
e Xl =P E TS T (B2 2
7" B'ex” | ©' Ber' )
ieB'

(4.1.31)
4.1.3 Erlang driven train of impulses (k=2,v)

Consider the response of a Duffing oscillator to the random train of impulses
driven by an Erlang renewal process with k=2,v dR, (t)=py (t)dN, (t), with

dpy (t)=(1-2p} (t))dN, (t), (see Figure 4.1.2).
The stochastic equation of motion is specified by

dX(t)=c(X(t))dt+b(P(t),X(t))dN, (t) (4.1.32)
with
X7 X X,
X(t)=| X |=| X, [ic(X(t))=| —0’X, —2lwX, -’ X} |;
Al ° 4.1.33
0 (4.1.33)
b(P(t),X(t))=| PX,
1-2X,

Before the first impulse occurrence, the variable p; can be in its first ‘off’ state
with probability Pp(ﬂﬁ or in its first “‘on’ state with probability P/ﬁgm . After the first

impulse occurrence the variable ! can be “off” with probability P(), = > PU} or
=2
‘with probability P{) =>" Pl

22
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Figure 4.1.2

Sample function of an impulse process driven by an Erlang renewal process with parameters
k =2 and v and the auxiliary zero-one variable appearing in expressions (4.1.33).

The equations governing the state probabilities of the auxiliary variable are

POk +Pok =1-E| g/ |

’ZJ f:;ﬂ (4.1.34)
Ppon + Ppon = E [pl :‘
Therefore

PO =E[ ol |-Phai Py =1-E[ o |- P, (4.1.35)

Considering that the probability that the number of Poisson events in the time

interval (0,t) is nisPr{dN, (t)=n} = %e‘” , it follows that

PO, —e;PY —vte™, (4.1.36)

' pon

Let us express the unknown joint probability density of the state vector X in
terms of the conditional probability functions:

p* (%, %, o) dxdx =

Pr{X e(x,x+dx)A X (% x+dX)} n o} isinits first'off ' phase

given that no impulses have occurred and the variable p; is in its first
‘off’ phase.
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p* (X, %, o} ) dxdlx =

Pr{x e (X x+dx) A X e()‘(,)’(+d>‘()}Ap1V isinits first'on' phase

given that no impulses have occurred and the variable o is in its first
‘on’ phase.

p* (X, %, oy ) dxdk =

Pr{X e(x,x+dx)A X (% x+dx)} A g isinanyoff ' phase following the first
given that after the first impulse occurrence the variable is‘off’.

p* (X %, o} ) dxdx =

Pr{X e(x,x+dx)A X (% x+dx)} A p isinanyon’ phase following the first

given that after the first impulse occurrence the variable p is ‘on’.
Hence, the expression for the probability density function becomes

p(x.% 0 )= Z p! (%% p)) (4.1.37)

Due to the fact that there is a finite probability of the system being in a
deterministic state from the initial time to the first impulse, the probability

densities given that no impulse have occurred ( pl(X,X,pf) and pz(x,X,pf) ) can
be expressed as

P (%%, 0 ) = P8 (x)5(%)5 (41 )
p* (X, %,y ) = Pas(x)8 (%) (o1 1) (4.1.38)

Let us express the contribution taking into account that the first Erlang impulse
has occurred as

p3(x,>'<,pf): P f(l)(x,x)é(pf);

p* (X%, oy ) =Por @ (x, %) (o1 1)
Considering that the joint probability density function has to satisfy the equation

(4.1.39)

400

[ p(x% ol Jixdxd pf =
- (4.1.40)
PO 4 pl pon poﬁJ‘ fO xxdxdx+PonJ' f2 (x, X)dxdx =1

yel

and that it is p055|ble to write the followmg relationships between the state
probabilities of the auxiliary variable

PS, +PY =p; P +PY) =1-P, (4.1.41)

p pon pon

65



where B, is the probability that no Erlang driven impulse has occurred. From
(4.1.40) and (4.1.41) it follows that

j £ O (x, X)dxdx =1; j £ 3 (x, X)dxdx = 1. (4.1.42)

The marginal probability density of the variable p;” can be derived as follows

:T p(X, X, oy Jdxdx =

(4.1.43)
POk (! )+Pad (pr —1)+PSo (o) )+ Poad (o1 —1).
Taking into account equation (4.1.34) it follows
p(p))= f p(x%, o} Yk =5 (o} )(1-E[ ! ])+ (! ~1)E[ ! ] (4.1.44)

—00

Since the auxiliary variable is a zero-one process, the following relationship holds
E[X"X"p° |=E[ X"X"p ] (4.1.45)

The unconditional moments of order p=m+n involving displacement and
velocity and the moments of order p+1 involving the auxiliary variable, can be
expressed in terms of the conditional moments of the same order, as follows

E[x X" ] p) EU[x NG }rp )E<z)[xmxn];

poff pon

E[X"X"p! |=POED[X"X"],

pon

(4.1.46)

The conditional moments can be expressed in terms of unconditional ones as
follows

£ XX ] E[X™X"|-E[X"X"p |

PG ’
. (4.1.47)
E(Z)[men]= EI:XP(i() pl}

pon

Applying a cumulant neglect closure of order r, the conditional moments of order
s>r can be expressed in terms of the lower order conditional moments. The
conditional moments of order s>r are then expressed in terms of the unconditional
moments of lower order through the following relations
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EY[X,.X,]=

211

7 Ber
ieB"

X ]

211

7 Ber
ieB'

]

ijplv

jeB'

|

E|:HXJ.
(‘Bi‘_l)!(_l)\s\fl L :

E ijplv:|
(‘Bi‘_l)’(—l)‘g“l L—

*

pC)

pon

(4.1.48)

The unconditional moments of order s involving displacement and velocity only
and the moments of order s+1 involving also the auxiliary variables can be
expressed in terms of unconditional moments of order up to r, by inserting
equations (4.1.48) in (4.1.46), as follows

E[X,.X,]=
I |
EITTX; |-E|[TX;A
" i B'|-1 jeB' jeB'
P % TSI (B 2| ’
7" B'ex" ”IiEBBIrE”I poff
1
, E{Hxi/"f }
" i B'|-1 jeB'
p/gogZBHr ZBH (1B'|-2)(-)°! U
Fd er ”iEB’E” pon

E[ X, X0 |=

1y

I

B'ex

211

7 Bler
ieB'

(B'|-2)(-n°" L

ijplv

jeB!

|

pl)

pon

(4.1.49)

4.1.4 Erlang driven train of impulses (k=3,v)

Consider the response of a Duffing oscillator to the random train of impulses
driven by an Erlang renewal process with k=3,v dR, (t)=py (t)dN, (t), with

dpy (t)=(p; (t)-p (1))dN, (t),d o} (t)=(1- o} (t)—2p; (t))dN, (t) (see figure
4.1.3). The stochastic equation of motion is given as

dX(t)=c(X(t))dt+b(P(t),X(t))dN, (t)

(4.1.50)
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0
PX
b(P(t),X(t))= ’
(POXW)=|
1-3X,-3X,
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AL 1st impulse AL
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Figure 4.1.3 ! ’ '

Sample function of an impulse process driven by an Erlang renewal process with parameters
k =3 and v and the auxiliary zero-one variables appearing in expressions (4.1.51).

Before the first impulse occurrence, the variables p; and p, can be in their first
‘off” state with probability Pp(ﬂ)ﬁ 20 - The variable p; can be in its first ‘on” state,
while p is still ‘off” with probability Pp(ﬂﬁ 2on+ 1NE variable p; can be in its
first ‘on’ state, while p; is ‘off” with probability Pﬁlﬁ o2on - After the first impulse
occurrence the variables p/ and p, can be simultaneously ‘off’ with
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probability PL, .. => P . oy can be ‘on” while p! is ‘off with
=2

probability PG . =>PY. .. ol can be ‘on’ while g is ‘off’ with

i>2

prObablllty P plon,p2off — Z plon p2off *

=2

The equations governing the state probabilities of the auxiliary variables are

Pp(i)on,pZOff + Pploff ,p20n + P(lt))ff ,p20ff + P,(Eloff ,p20n =1-E [plv}

P,ﬁlﬁ 2ot TP lZ)n p2off T P(lt)>ff p2off T Pp(lt))n poot =1—E [P;] (4.1.52)
P/ﬁ())n,pZOf Ppslc))n p20ff = E [pl }
P/ﬁZ)ff,pZOﬂ + Pp(l())ff ,p20n = E [,D;}

. ()" ..
From the Poisson law Pr{dNV (t)= n} =-——er, it follows that

n!
2

71/ —Vi vt —Vi
qu?)ff ,p20ff - t’ Pp(lf)ff p20n =vte t’ Pp(lz)n p20ff = %e t' (4153)
Therefore
I:)p(lon p20ff = E I:IO ] Pplon p20ff
P;Eloff p20n I:’D } ploff ,p20n (4154)

P(lgff oot =1—E [pz ]_ E [plv]_ Pp(B)ff p20ff

P
Let us express the unknown joint probability density of the state vector X in
terms of the conditional probability functions

p' (%% ', py ) dxdx =
. Pr{x e (X, x+dx)A X e()'(,)'(+d)'()}/\p1v isinits first'off ' phase
Ap, isinits first'off ' phase
given that no impulses have occurred and the variables p and p; are in
their first ‘off” phase.
p2 (X, )'(,plv,pzv)dxd)'( =
. Pr{X e (X, x+dx)A X e()’(,)’(+d>‘()}Ap1V isinits first'off ' phase
Ap, isinits first'on' phase
given that no impulses have occurred and the variable p; is still ‘off’

while p; isinits first ‘on’ phase.
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p° (X %, oy , py ) dxdlk =
o Pr{Xe(xx+dx)aX e(Xx+dX)} A ol isinits first'on’ phase
Ap, is'off !
given that no impulses have occurred and the variable p" is in its first
‘on’ phase while p; is “off’.
p4 (X, )'(,plv,pzv)dxd)'( =
Pr{X e(xx+dx)A X (X x+dx)}
~p; isinany 'off ' phase following the first
~p, isinany'off ' phase following the first
given that after the first impulse occurrence the variables p;” and p, are
simultaneously ‘off’.
p° (X %, oy , o} ) dxdlk =
° Pr{X e(X,X+dX)/\X e()'(,)'(+d)'()}
Apy isinany 'off ' phase following the first A p, is'on’
given that after the first impulse occurrence the variable p is ‘off’ and p,
Is ‘on’.
p° (X %, oy , p} ) dxdlk =
o Pr{Xe(xx+dx)aX e(Xx+dX)f A plis'on’
Ap, isinany'off ' phase following the first
given that after the first impulse occurrence the variable p;" is ‘on” and p,

is ‘off’.
Hence, the joint probability density function can be expressed as
6 .
(X% 00, 05 )= p* (X% ot , 2} ) (4.1.55)
=1

Due to the fact that there is a finite probability of the system being in a
deterministic state from the initial time to the first impulse, the contributions

accounting for the fact that no impulse have occurred (pl(x,)'(,pl",pzv)
to p* (X %, o}, o ) ) can be expressed as

P (X%, 21, 23 ) = Pl oo S(X) 8 (%) (1 ) 5 (105 )
p° (X%, 2y, 3 ) = Plibt poend (X)5(X) 8 (0 )8 ( 05 1) (4.1.56)
P° (X% 00 25 ) = Pl 2o 8 (X) 8 (X) 8 (01 =1) 5 (05 )

Let us express the conditional probabilities given that the first Erlang impulse has
occurred as
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p* (X% 2y 2 25 ) = Pl e T2 (X, %) (1) 5 (05
P° (X% L4 25 ) = Pl poen T2 (X, X) 3 (21 )3 (125 1) (4.1.57)
p° (X, %, 0/, p5 ) =P 13mp20ff f(s) (X, X)3(p -1)8(p;)

Considering that the joint probability density function has to satisfy the equation

400

J- p(x, X, Py 05 )dXdXdp dp, = pl())ff p2off T PpElZ)ff p2on T P(lgnn p2off T

—00

- j £ @ (x, X)dxdx + PG sznj f ) (x, x)dxdx + (4.1.58)

P pzort | T (% X)dxdk =1

and the following equations relating the state probabilities of the auxiliary
variables

P,ﬁlﬁ p2off T P/Elz)ff p2on T P,§12>n p2off — Pr;

Pp(;))ff ,p20ff + Ppl())ff p20n + Pp(ll))n p2off — =1- PR

it follows that

j £ O (x, x)dxdx =1; j £ (x, x)dxdk =1; [ £ (x, x)dxdx =1 (4.1.59)

It can also be proved that the following identities hold

+00

(4.1.60)

Let us consider for instance the marginal probability density of the variable p’
p(pl)= j p(x.% o, o} Jdxdxd o} =

P,ﬁ?)ﬁ ,pzoﬁ5(p )+ Pp(llff p20n5(/01 )+ P/Sl?)n pzoff5(PV _1) + (4.1.61)

Pp(lc))ff ,p20ff5(p )"‘ Pp(l())ff p20n5(p )"‘ Pp(lc))n p20ff5(plv _l)-
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Taking into account the following relationships between the state probabilities of

the variable p

(1) (1) (*) (*) -
Pploff,pzoff + Pploff ,p20n + Pploff ,p20ff + ploff ,p2on (4.1_62)

(1) *) —
Pplon,pZoff + Pplon,pZoff -

it follows

p(p! )= J p(x.%, 5} o, Yixcid p = ey
5ot )(1-ELa])+o (et -1E[A]
Since the auxiliary variables are zero-one processes, the following relationships
hold

E[X"X"p° |=E[ X"X"p ]
E[X"X"p,° |=E[ X"X"p; ]

E[X"X"p°p;" ]=0

(4.1.64)

The unconditional moments of order p=m+n involving displacement and
velocity and the moments of order p+1 involving the auxiliary variables, can be
expressed in terms of the conditional moments of the same order, as follows

E[X"X"]=
P/S;))ﬁ p20ff E(l) [X mX n :I + Pﬁgﬁ ,pzonE(Z) I:X m)'( n:'+ P/SI())n,pZOff E(a) [X mX ’ :I; (4165)

E[X"X" ;= Pl e E [ XX ],
E[menp;]: P;EIz))ff,pZOnE(Z)[XanjI'

The conditional moments can be expressed in terms of unconditional ones as

follows
non1 E[XTXT]-E[X"X"p |-E[X"X"p} |
=xex)- o |
Em[xmxn}zE—i?XWﬁ— (4.1.66)
I:)plon, p2off
. o E[X™X"p} |
EQX"X"|=—— -
[ } Pp(lc))ff ,p20n

72



Applying a cumulant neglect closure of order r, the conditional moments of order
s>r can be expressed in terms of the lower order conditional moments. The
conditional moments of order s>r are then expressed in terms of the unconditional
moments of lower order through the following relations

EYX,..X,]=

y E{HXJ—E{HXW@—E{HX]@}
Bi _1 !(_1)8' -1 jeB' jeB; jeBI ,
7" Brex ”ii:éligi (‘ ‘ ) Pploff,pZoff

E {ijp;}
jeB'

ST TT| (8] -2

*)
7" B'ex” | 7' Ber' Pplof‘f ,p20n

1| (-3 i1l

7" B'er’ | 7' Bler Pplon,pZOff
ieB"

* ’

(4.1.67)

The unconditional moments of order s involving displacement and velocity only
and the moments of order s+1 involving also the auxiliary variables can be
expressed in terms of unconditional moments of order up to r, by inserting
equations (4.1.67) in (4.1.65), as follows
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E[X,.X,]= _
Pl oot 2 LTI TT (‘Bi‘_l)!(_l)\s‘\—l E{ng}E{%xjpf}E{ngpg}

7" B'ex" | #' Blex ploff , p2off
ieB"

e
P [T Z T (820~ —

7" B'ex' | ' Birezr' ploff ,p2on
ieB

el ]
Pl e 2 [T T (820 —or—

7" B'er' | o' Birezr' plon, p2off
ieB

E{ijp{l

(X, Xt J= Pl e 3 TS TT | (- 2)1-0)" | 5 —
7" B'ex" ”IieBBI'E”I Pplon,pZOff

| E{ijpg}
E[ X, Xy | =P o 2 [T 1211 (\B‘\—l)!(—l)‘s"’1 P‘(f—

7z B'exr" | ©' Birezr' ploff , p20n
ieB

(4.1.68)
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4.1.5 Erlang driven train of impulses (k=4,v)

Consider the response of a Duffing oscillator to the random train of impulses
driven by an Erlang renewal process with k=3,v dR, (t)=p; (t)dN, (t), with

dpy (t)=(p; ()= o} (t)dN, (1), dp; () = (01 (1) - o5 (t))aN, (1),
dpy (t)=(1-p! (t)=p5 (t)—=20% (t))dN, (t) (see figure 4.1.4). The stochastic
equation of motion is given as

dX(t)=c(X(t))dt+b(P(t),X(t))dN, (t) (4.1.69)
with
(X7 %] [ X, ]
X X, ~0* X, —2wX, — e’ X}
X(t)=| o |=| X5 [i ¢(X(t))= 0 ,
P2 X, 0
SR 0
Ll L - - (4.1.70)
0
PX,
b(P(t),X(t))= X, — X,
Xs =X,
| 1- X, — X, —2X, |

Before the first impulse occurrence the auxiliary variables can be in their first
‘off” state with probability P') ot paoft 3ot + 1 NE Variable p; can be in its first ‘on’

state, while p! and p. are still ‘off” with probability P The variable

ploff , p2off ,p3on *

[1 7

e can be in its first ‘on’ state, whilep;andp;, are ‘off’ with

probability pY After the first impulse occurrence all the variables can be

ploff ,p2on, p3off *

simultaneously ‘off” with probabllltyP10ff p20ff poft = Z loﬁ p2off p3oft + P Can be
j22

‘on’ while p" and p; are ‘off” with probability P10ff p20ff p3on Z ploﬁ 20t p3on »
22

pzv can be ‘on’ while p’ and p; are ‘off’ with probability

ploff p2on,p3off — Z ploff ,p2on, p3off 1 pr can be ‘On’ Whlle ,D; and pl;, are ‘Off’ Wlth
i>2

probability P!

 on, p2off p3off = Z plon p20ff p3off * The equations governing the state

22
probabilities of the auxiliary variables are
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+pY +PY

ploff , p20ff , p3on ploff , p20on, p3off

pl

ploff , p2off , p3off

P,S;))ﬁ p20ff p3oft T Pp(lc))ff p20ff p3on T Pp(l()Jff p20np30t =1~ E [pf]’

P/ﬁ())ff ,p20ff , p3off P;El?)ff ,p20ff , p3on + P/Slt))n p2off , p3off +

P,Sn))ﬁ p20ff p3oft T Pp(lc))ff p20ff p3on T Ppl())n paoft paoft =1~ E [sz ]

P,Sn))ﬁ p20ff p3oft T P,§12>fr p2on,p3off T Pp(lt))n p20ff p3off T (4.1.71)
Pp(lc);ff p20ff , p30ff Pp(la)aff ,p20n, p3off Pp(u)m p20off p30off — 1-E [,D; ]

Pp(u))n p2off p3off T Pp(lon p20ff ,p3off =E [Plv ]’
P(lz)ff ,p20n, p3off + Pp(loff ,p2on, p3off =E I:p;:|’
1 v
P/Slt))ff p20ff p3on T P;Elt))ff p20ff ,p3on — E I:pz ]
1st
impulse
1 1
A . PRr 1 . 1-Pr 1
: AL ! : AL !
G) E NQZ) IOﬂ;pZOff p3,0ff \:
P pl,Off p2,0ff, p3,0ff T

P

: . U
| (1) ! |
! P pl,0ff p2,0n, p3, ¢ff : :
P2 | '/_A_\' | |
| I I
: ! :
: ﬂ | I \ I
| f ! 1 ! 1
i ! | I i I
v P:)p] off p2,0n, p3,0n :. : E :
' :. | I | I
| 1 ! 1
! 1 ' Ly
: | 1 : | o
: : ! ' : : ! '
! Figure 4.1.4

Sample function of an impulse process driven by an Erlang renewal process with parameters
k =4 and v and the auxiliary zero-one variables appearing in expressions (4.1.70).

From the Poisson law Pr{dN, (t)=n} :%e‘”, it follows that
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(1) _ Mt
Pploff ,p20ff ,p3off e,

Pﬁgzﬁ ,p20ff , p3on = Vte_Vt )
2
P(l) — (Vt) e—vt (4172)
ploff ,p2on, p3off —2 )
3
P(l) — (Vt) e
plon, p2off , p3off —
6
Therefore

P 1)

Pp(;ln,pZOff p30off — E |:p1v jl — Fplon,p2off ,p3off ?

Pp(;))fr ,p20on,p3off — E |:,0;/:|_ qulff ,p20n,p30off 1 (4 1 73)

pt) :E[pv:l_p(l) o
ploff , p20off , p3on 3 ploff ,p20ff ,p3on?

P;EI())ff p2oft p3oft =1~ E I:Plv ] -E I:pzv ] -E I:p; ] - P/Slff p20ff ,p30ff *

Let us express the unknown joint probability density of the state vector X in
terms of the conditional probability functions

p' (X%, 2}, 3, 3 ) X =
. Pr{X e (X, x+dx)A X e()‘(,)‘(+d>‘<)}Ap1V isinits first'off ' phase
Ap, isinits first'off ' phase A p; isinits first'off ' phase

given that no impulses have occurred and all the auxiliary are in their first
‘off” phase.

p* (X, %, 0}, 3, Py ) dxclX =
. Pr{X e (X, x+dx)A X e()‘(,)‘(+d>‘<)}Ap1V isinits first'off ' phase
Ap, isinits first'off ' phase A p; isinits first'on' phase
given that no impulses have occurred and the variable p; is in its first ‘on’
phase.
p° (X%, o', Py, Py ) dxlx =
. Pr{X e (X, x+dx)A X e()'(,)'(+d)'()}/\p1v isinits first'off ' phase
AP, Isinits first'on' phase A p5 is'off '
given that no impulses have occurred and the variable p; is in its first
‘on’ phase.
p* (X% o', o}, Py ) dxdx =
. Pr{X e (X, x+dx) A X e()‘(,)’(+d>‘()}Ap1V isinits first'on' phase
Ap, is'Off 'A py is'off '
given that no impulses have occurred and the variable p; is in its first
‘on’ phase.
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p* (X%, 0!, o5, py ) dxclX =

Pr{X e (x x+dx) A X (% x+dx)}

~p; isinany'off ' phase following the firstimpulse
Ap, Isinany'off ' phase following the firstimpulse

Ap; isinany 'off ' phase following the firstimpulse
given that after the first impulse occurrence the auxiliary variables are

simultaneously ‘off’.
p° (X%, 2, Py, Py ) dxlX =
Pr{x e (X x+dx) A X e()‘(,)‘(+d>‘()}
e Ap/isinany'off ' phase following the firstimpulse
~p, isinany'off ' phase following the firstimpulse
Apy isinany'on’ phase following the firstimpulse
given that after the first impulse occurrence the variable p; is ‘on’.
p’ (X%, 0}, Py, Py ) XX =
Pr{X e(X,X+dX)/\ X e()'(,)'(+d)'()}
e Ap/isinany'off ' phase following the firstimpulse
Ap, isinany'on’ phase following the firstimpulse
~py isinany 'off ' phase following the firstimpulse
given that after the first impulse occurrence the variable p; is ‘on’.
p° (X%, 0!, p5 py ) dxdX =
Pr{X e(xx+dx)A X (X x+dx)}
e Ap/isinany'on' phase following the firstimpulse
~p, isinany 'off ' phase following the firstimpulse

~p, Isinany'off ' phase following the firstimpulse
given that after the first impulse occurrence the variable p; is ‘on’.

Hence, the joint probability density function can be expressed as

8
P X2, 25, 05 ) =D P (XX, ot s 25 %) (4.1.74)

=t

Due to the fact that there is a finite probability of the system being in a
deterministic state from the initial time to the first impulse, the contributions

accounting for the fact that no impulse have occurred (pl(x,x,pf,pzv,pg)

to p* (x, X,pf,pzv,p;) ) can be expressed as
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pl(X X, 011 P31 P ) Pp(loff p2off p30ff5(x)5()'()5(pjl‘_/)5(pg)5(pg)’
p* (X%, 21 s 252 25 ) = Plibs ot 30 (X) 8 (X)3 (21 )8 (05 )5 (o5 ~1),
(4.1.75)
ps(x X, 001050 P ): Pploff p20n, psoﬁ5(x)5(x)5(Pf)5(P; _1)5(/0; ,
P* (X% 20 954 25 ) = Pt paott oot 8 (X) 8 (%) 8 (0 =1) 5 (5 )5 (4 )

Let us express the conditional probabilities given that the first Erlang impulse has
occurred as

ps(x X, P11 P5s P ) ploff p2oit pioft | £ (X'X)é‘(/)lv)é‘(/);)é‘(/);)’

P° (XX 20 054 25 ) = Pl paott pson T (%, %) 8 (1) 5 (125 ) 5 (105 —1),
o O V{5 { o T (@17e)

p’ (X, X, P05 P2 Ps ) = ploff p20n,poft | (X, X)a(pl )5(/)2 _1)5(/73 )’

ps(X'X’PLPz’ 5): plon, p20ft , p3off F9(x, x)5(pf _1)5(/3;)5(/);)

Considering that the joint probability density function has to satisfy the equation

pr(x,X,pf,pz”,ps Jdxdxd py'd pyd p; =

(@ @ @)
Pploff ,p20ff , p3off + PplOff ,p20ff ,p3on + P ploff ,p2on, p3off + P plon, p2off , p3off +

*) T (4.1.77)
Pploff,pZoff ,p30ff _[ f X X)dXdX+ Pploff ,p20ff , p3on j f X X dXdX+
Pp(IC))ff,pZOH,p3Off '[ f( (X X)dXdX+ Pplon p2off , p3off J‘ f X X dXdX 1

—0

and the following equations relating the state probabilities of the auxiliary
variables

P/ﬁz)ff ,p20ff , p3off + P;SlZ)ff ,p20ff , p3on + P(lz)ff ,p20n, p3off + Pp(lln p20ff , p3off = PR;

Pp(;))ff ,p20ff , p3off Pp(ll))ff ,p20ff , p3on + Ppl())ff p2on, p3off Pp(lon p20ff p3off — 1- I:)R

it follows that

j O (x, X)dxdx =1;.. j £ (x, X)dxdx =1 (4.1.78)

It can also be proved that the following identities hold

79



p(p!)=[ p(x%p\ P}, Py Jixdxd pyd o}

(p)=] Pl

(e[ ) (0t e[ ]
(p5)= pr(x X, Pl Py 3 Jixdxd p'd py
(er)
(#5)=
(#5)

14

)

i}
[EEN

5=
RS

(4.1.79)

4

S( P,

[N

(1-E[p:])+ (o -1E[:]

\4

Jo fp(x X, P 5. Py Jixdxd pd py =

©

5(p! (1—5[ ])+5(p3 ~1)E[ 5y |;

Let us consider for instance the marginal probability density of the variable p

p(py)= fp(x X005 Py Jixdxd pyd oy =
ploff p2off p30ﬁ5(101 ) ploff p20ff p30n5(plv)+
ploff ,p20n, p30f‘f5(pl 5( 1'/_1)+ (4180)

14
ploff p20ff p30ft O (/71 ) ploff p20ft p3on0 (Pl )"‘
14
) plon p2off ,030ff5(p1 _1)

plon p2off , p3off

ploff p20n, p3off o (Pl

Taking into account the relationships between the state probabilities of the variable
oy in(4.1.71), it follows

p(ﬁf)ZT p(X. % 0!, oy, p5 Jdxdid pyd p; =
5(t)(1-ELpi ])+o(pt -]

Since the auxiliary variables are zero-one processes, the following relationships
hold

(4.1.81)

E[X"X"p° |=E[ X"X"p} ],
E[X"X"p;° [=E[X"X"p; ],
E[X"X"p;° |=E[ X"X"py ],
E[X"X"p°p;"py% | =0

(4.1.82)

The unconditional moments of order p=m+n involving displacement and
velocity and the moments of order p+1 involving the auxiliary variables, can be
expressed in terms of the conditional moments of the same order, as follows
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E[X"X"]=

Pzt o B | XX [+ Poide oo paon B [ XX ]+
Pp(;))ff Jp20n, p3off E® [X "X ]+ Pfgl‘)’” p2off p3off E" )[X X! J
E[X "X"p, } P;S?m p20it paoff E [ ]
E [ X"X"p; } = Pt poon paort E [ ]
E[ X™X"0} | =P oot paanE | XX ];

(4.1.83)

The conditional moments can be expressed in terms of unconditional ones as
follows

EV[X"X"]|=

E[X™X"|-E[X™X"p! |-E[ X"X"p} |-E[ X"X"p} |

szoff ,p20ff , p3off |
Em[xmxn}:ELfmx”%]; (4.1.84)

ploff , p20ff , p30n

E@[xmx"]:Egiifgﬁl;
ploff , p2on, p3off

E[X"X"p) ]
pt) '

plon, p2on, p3off

EYVX"X" =

Applying a cumulant neglect closure of order r, the conditional moments of order
s>r can be expressed in terms of the lower order conditional moments. The
conditional moments of order s>r are then expressed in terms of the unconditional
moments of lower order through the following relationships

O[X,.X,]=
i B'|- eB' eB' jeB' jeB'
S ITZ T (B2 = L , ,
7" B'ex" H'IEBB'rezz' ploff , p2off , p3off

Ehjxﬁg}
Z H Z H (‘Bi‘_l)!(_l)‘B"—l (*)JEBI
7" B'ex" lrii BBirezri Pploff ,p20ff ,p3on
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EY[X,.X,]=

211

7 Ber
ieB"

EW[X,.X,]=

7 Ber
ieB'

ijp;

jeB'

ploff, p2on, p3off

ijplv

jeBi

(*)

plon, p20ff , p3off

(1 il

p(*)

!

E
3 I (g2 L

(4.1.85)

The unconditional moments of order s involving displacement and velocity only
and the moments of order s+1 involving also the auxiliary variables can be
expressed in terms of unconditional moments of order up to r, by inserting

equations (4.1.67) in (4.1.65), as follows

E[X,.X,]=P%

ploff , p2off , p3off

E
211211 (‘Bi‘_l)!(_l)\B‘\*l Lsi

7 B'er
ieB"

r
7" B'ex'

Pp(:()Jff ,p20ff ,p3on Z H

T
7" Blex"

*)
Pploff ,p20n, p3off Z H

7" B'ex"

Pp(;)nn,pZOff ,p3off Z H

T
7" B'ex"

211

7 Bler
ieB"

211

7 Bler
ieB"

211

7 Ber
ieB"

ij}E{ijp;

jeB!

I

e

(-2

1

p)

*

pt)

ploff , p2off , p3off

jeB'

ploff , p2off , p3on

1

*

p0)

HijZ}

jeB'

ploff , p2on, p3off

i

*

p)

HX,-/JI}

jeB'

plon, p2off , p3off

ijp;:l _
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E[ X, Xop |=

Pp(I()]n,pZOff,p30ff Z H Z H (‘Bi‘—l)!(—l)‘Bih

r r
7" B'ex

E[X,.X.05 |=

P;S?)ﬁ ,p2on, p3off z H

7" Bex"

E[X,. X0} |=

Pp(I()Jff ,p20ff , p3on Z H

r r
7" B'ex

7 B'er
ieB"

211

7 Bler
ieB"

211

7 Ber
ieB"

GRS

(\B‘\—l)!(—l)‘Bi‘*1

EI:Hijl'/:l

jeB'

*
plon, p2off , p3off

jeB'

P *

ploff , p2on, p3off

EI:HX jp;:l
jeB'

p)

ploff , p2off , p3on

EI:HijZV:l |

(4.1.86)
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4.1.6 Numerical analysis

In order to illustrate the modified moment closure scheme devised, consider a
Duffing oscillator under a train of impulses driven by an Erlang renewal process

E(v.k). The response is governed by the stochastic differential equation (4.1.5).

The data assumed for the Duffing oscillator is: @, =1s™,¢ =0.05. A substantial

non linear effect has been taken into account by assuming the non-linearity
coefficient to be £ =0.5 (cf. Wen (1975)).

Departure of the excitation process from Gaussianity depends on the value of the
mean arrival rate of the impulses, compared to the system natural frequency w, .

When the mean arrival rate is 0.1w,or lower, the departure from Gaussianity is

expected to be substantial (cf. Iwankiewicz and Nielsen (1989), Janssen and
Lambert (1967)).

Computations have been performed for the cases k=2,k=3 and k=4. The
values of the parameter v have been assumed in such a way that the mean arrival

rate of the correspondent Poisson process isE:O.lcoO (v=0.20,, v=0.3w, and

v =0.4am,, respectively).
The random magnitudes of impulses have been assumed as centralized, Rayleigh
distributed random variables. The values of the parameter o, = E[PZ}/\E for

each case have been chosen so that the stationary value of the variance of the

E[P°]

. . . 14 .
response of the corresponding linear oscillator o :E has a unit value.

VYaON
3
Therefore it results o, = ,/4k2ﬂ .
14

(o]
To verify the approximate analytical results, the response moments have been
obtained from Monte Carlo simulations based on the ensemble of 30000 of the
response sample functions, obtained by numerical integration of the equation of
motion (4.1.1) with the aid of the computer program Mathematica.
Transient response statistics of the non-linear oscillator are shown in Figures
4.1.5.to 4.1.7. The analytical results are obtained by applying the ordinary and the
modified cumulant-neglect closure techniques, neglecting in both schemes the
cumulants above the second order.
It is seen that the agreement between the analytical and simulation results is very
good in the first part of the transient mean value and variance of the response.
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Figure 4.1.5 (a)

Mean value of the response of a Duffing oscillator to a random train of impulses driven by an

Erlang process with parameters k=2 and v=0.2
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Figure 4.1.5 (b)

Variance of the response of a Duffing oscillator to a random train of impulses driven by an Erlang

process with parameters k=2 and v=0.2
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Figure 4.1.6 (a)
Mean value of the response of a Duffing oscillator to a random train of impulses driven by an
Erlang process with parameters k=3 and v=0.3
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Figure 4.1.6 (b)
Variance of the response of a Duffing oscillator to a random train of impulses driven by an Erlang
process with parameters k=3 and v=0.3
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Figure 4.1.7 (a)
Mean value of the response of a Duffing oscillator to a random train of impulses driven by an
Erlang process with parameters k=4 and v=0.4
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Figure 4.1.7 (b)
Variance of the response of a Duffing oscillator to a random train of impulses driven by an Erlang
process with parameters k=4 and v=0.4
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4.2. NON-LINEAR OSCILLATOR UNDER TRAINS OF IMPULSES DRIVEN
BY A SPECIAL CLASS OF NON-ERLANG RENEWAL PROCESSES

4.2.1 Statement of the problem

Consider a non-linear, non-hysteretic oscillator governed by the equation

X+ (X0 X0)= 3P0ttt (42.1)

i,R=1

where f (X (t ), X (t)) is the function of instantaneous values of X (t) and X (t)

and the stochastic excitation is the random train of impulses whose arrival times t

i,R
are driven by the renewal process R(t). The stochastic equations governing the
system state vector X can be written as

dX(t)=c(X (t))dt+bdR(t) (4.2.2)
where X =[ X, X ] .¢(X (1)) =[ X.~f (X.X)] . b=[0.P(1)] .

Let us consider a class of impulse processes which may be represented as follows

R(t

=

R, (t)

2 Ped(t-te)=2 Z(t)Rs(t-t) (4.2.3)

i,R=1 i=l1

where the arrival times liare driven by an Erlang renewal process R, (t) with
parameters ¥ and K and Z(ti) is a value at li- of an intermittent, zero-one stochastic
variable Z(t) governed by the stochastic equation

az(0) - (- 2R, (0~ ZeR () @24)

sample functions of the counting process Z(t) are assumed to be left continuous with
right limits. R, (t) is an Erlang renewal process with parameters # and |. The

processes R, (t) and R, (t) are assumed to be independent.
The following replacement is used (cf. section 3.1.1)

dR, (t) = p* (t)dN, (t) (4.2.5)

where the p“ (t) is a variable which only takes values 0 or 1 and is governed by
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(4.2.6)

dp, (t)= [1— 5 P (t)-2p¢, (t)JdNa (t)

where pf" (t)=p*(t).
The variables p® (t), p5 (t).. o, (t) only take values O or 1 (see chapter ..).

It is convenient to augment the state vector by new combined variables

Z] = Z’Z2 = Iol‘/"'zk = pkv—l’zkﬂ = p]#"'qu,] = Ioltll’
Zk+l = pl‘/plﬂ"'zkl = pkv—lpll—ll’zkm = Zplv’“zknk—l = Zpkv—l’
Zkl+k = Zp1ﬂ"‘zkl+k+l—2 = Zpl/il’zkmul—l = Zpl‘/plﬂ"'zzklfl = Zpkv—lpl;—ll‘

The  stochastic  equations  governing the  augmented state  vector
. T .
X= [X X Z Z,. szl_l] can be written as

dX(t)=c(X(t))dt+b(P(t),X(t))dN(t) (4.2.7)
where

X(t)=[x X z z, . z,];:

e(X(t).t)=[X —f(x.X) 0 0 . 0]:
b =[b b N (4.2.8)
b’ =[b’ b O

dN(t)=[dN, dN, ]
with

b =0,b; =PZp, bl ==Zp,b] = p - pl,. 0., =1-% p| =2},

1 k+2
b, = pl = pls- b, =1=2p) =2p!.b., . = pip = PPl

4 u 2 v u v v v
bk‘|+3 =P, JZ:; pj yon _2pk71plfl7bkl+4 = sz - Zpl e
b,..=2-2Zp =2Zp..b,, . =-Zp'p',. b, ..==Zp P,

b =200 =Zp P =2l = 2P Pl = 2 2P Pl =22 P
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b =0.by = 0,b = p ~Zpf b = 0.7, = 0,07, = 0.k, = 0,b7,. =0,

bl = pL = pLp] =2pLpL 00 = PP = 2P P!

bl:+k+4 Iokv—lpl/j _Zp:—lp 7bk/|+k+s = Zp; _Zplﬂ"‘
bl =Z+p —2Zp - ;pr —2Zp;,

Kl+k+1+4

bl =Zp Pl =Zp Pl =2 = PP —2Zp P = 2P P =22 PP

The number of auxiliary zero-one stochastic variables is 2kl —

While the original state vector consisting of X and X and governed by (4.2.2) is not
a Markov process, the augmented state vector X, governed by equation (4.2.7) driven
by two independent Poisson processes N, and N, , is a non-diffusive Markov

process.
By apEIying the Ito differential rule, the equations for the mean values and for 2", 3™

and 4" order moments are obtained as (cf. lwankiewicz and Nielsen (1999))
=E[c ]+ X B[],
a=v,u
N
a=v,u s a=v,u

ﬂi,-k(t)=3{E{xixj£ck+ > aE[bﬂm +3 3 a{E[Xpfbe ]} +

an el
> aE[bhihy ],

a=v,u
7y (t)=4{E{xixjxk{c, +4) aE[bIa]H} +6 { [Xiij;‘b,“]}er
e e
4 alE[Xbybby ]| + 3 oE[brbybby ],
s =y (4.2.9)

where m, (t)=E[X;] and g, (t)= E[Xixj] :

The right-hand sides of the equations for moments (4.2.9) involve expectations of
non-linear transformations of state variables respect to the unknown joint probability
density function. For polynomial non-linearities, the equations for moments form an
infinite hierarchy and cannot be directly solved. The unknown moments can only be
evaluated approximately, using suitable closure approximations.

If the non-linearities are other than polynomial, the expectation of the non-linear
transformations of the state variables cannot be expressed directly in terms of
moments.

4.2.2 Modified closure scheme

As before (see section 4.1.2) the modified cumulant-neglect closure technique can be
devised by expressing the joint probability density function of the state vector as the
sum of discrete and continuous parts. Let us assume that the system is at rest at t=0.

In the discrete parts, Dirac delta functions represent the finite probability that the
system is at rest before the occurrence of the first impulse, while the auxiliary
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variables can take the values zero or one.

The continuous parts are expressed in terms of the conditional probabilities of the
system vector, given that the first impulse has occurred.

Before the occurrence of the first impulse, the variable Z can be in its first ‘off” state

with probability PZ( ())ﬁ or in its first ‘on’ state with probability P\" . Meanwhile the

Z.,on

variables Z,..Z, can be ‘off’ or ‘on’ with probabilities

O _p0 (1) .
I:)Zi Joff — PZi,off/Z,off + I:)Zi,of'f/z,on’

p0) _pl)

(1)
Zi,on — ' Zon/Z,off + I:)Zi,on/Z,on'

(4.2.10)

with i=2,..,N.
After the occurrence of the first impulse the Variable VA can be ‘off” with probability
Pl =2, P} or ‘on’ with probability P}, => P!} The variables Z,..Z, can

j>2 j>2
be ‘off” or ‘on’ with probabilities

#o (1) (i) .
PZi,off - Z I:)Zi,off /Z ,off + z I:)Zi,off /Z.,0n°

j>2 j>2

: : (4.2.11)
Z ,on Z I:)Z ,on/Z ,off +Z I:)Z ,on/Z,on*

iz2 =2

The following equations governing the state probabilities of the auxiliary variables
can be written

p0) L pl _p 4.2.12
Z; ,off R

Zon

where P; is the probability that no impulse has occurred, and

P 4P

Z;,on Z;,on = E[ZI] (4213)
with i=1,..,N . It is also possible mutually relate the conditional probabilities of
different auxiliary variables.

The conditional probabilities governing the ‘on’ and ‘off” states of the auxiliary
variables, before and after the occurrence of the first impulse, can always be found in
closed form.

Let us express the unknown probability density of the augmented state vector

X =[X X zZ . Z, ]T in terms of joint probabilities, as follows

p(x%2,.2y) =Y. pV (X% 2,.2, ) (4.2.14)

i
Due to the fact that there is a finite probability of the system being in a deterministic

state from the initial time to the occurrence of the first impulse, the joint densities
given that no impulse has occurred can be expressed as
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Pud (X=%,)8(X=%)5(2-1)..8( 1oty —1).0 (200101, —1).
(4.2.15)

If the joint probabilities given that the first impulse has occurred are expressed as

]

p(zkl+1) (X’ X,Z,..2, ) _

p*) (x,%,2,.2, ) = P,

e T (X>X 5(2) 5(Zpk o 1)
kl+2 X’X)5(Z) ( 1) 5(2'0;—1'0'6‘)’

WUl

PO (x,%,2,..2,,) = Py £ ) (x,%)5(2)..8 (pLupts ~1)-8 (2011 )

G+ (o o 5 (KI+1) [ o v (4.2.16)

P (X, %, Z,..2y ) = Py f (x,x)5(z—1)..§(Zpk71p(il),

p ) (X, %,2,..2, ) =

P T2V (x.X)8(2-1)..5(p1pt, ~1).-.0 (2P0 —1)-

The joint probability density function has to satisfy the equation

J' P(X,%,2,..2y )(dx)(dx)(dz)=

- (4.2.17)
a2k m

P+ P j f 0 (x,x)(dx)(dx) =

j=1 j=t —o0
By observing that

4

Z P (4.2.18)
=

It follows that

j fO(x,x)dxdx =1 j=1,...2Kk (4.2.19)

—00
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It is possible to prove that the following identity holds

p(zj): T p(X,X,..zy Jdxdxdz,..dz, ,dz,,,..dz, =

jH1e

(6(2,)(1-E[z,])+ (2, -1)(E[2,])) (4.2.20)

j=1,.,N

For j=1, for instance, equation (4.2.20) becomes

p(2)= | P(%%..2, Jixcliclz,...dz, =

Ko 2k 3K 4kl (4.2.21)
Y. Ps(z)+ Y, Ps(z-1)+ > Ps(z)+ D Ps(z-1)

j=1 j=kl+1 j=2kI j=3Kl+1

Observing that

Ko oK 3Kl 4

P =P Y P=P.> P =Py, > P=F, (4.2.22)
j=1 j=kl+1 j=2kl j=3kl+1

kKl 3k
P+ . =1-E[Z];
U (4.2.23)
2kl 4k
_2 Pj+_z P.=E[Z].
j=kl+1 j=3kl+1

Therefore the equation (4.2.21) becomes

p(z)=(1-E[z])o(2)+(E[z])5(z-1)

(4.2.24)

Let us consider the case of zero initial conditions. Since the auxiliary variables are
zero-one processes, the following relationships hold

E[X*X'Z"|=E[X*X'Z;].j=1..N:

3

. L \M L\N E kalpiv ,|f |:j,
[ (o) 1) -0 S0 0T

oy ] E[XEX ] = s
E|:xkx| i,u H }: i
() () 0,if i#j;
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El x¥x'z m(p;)”}z E[X*X'Zp} ].j=1..k-1;
E| XX'z m(p;’)”}: E[X*X'Zp! ], =1l -1; (4.2.25)

E[X*X'2"(p) (p;f)"}: E[X*X'Zp!pt Ji=1k=1j=1.,1-1;

The unconditional moment of order p=m+n involving displacements and velocity
can be expressed in terms of the conditional moments of the same order as follows

2Kk ) .
E[X"X"=) P, EV[X"X"] (4.2.26)
j=1

The unconditional moment of order p+1=m+n+1 involving also the auxiliary
variables can be expressed in terms of the conditional moments of order p as follows

. 2kl . .
E[X"X"Z]= > P, EV[X"X"],

j=ki+1

E[X"X"p! 1= Py ,EPIX "X T4 Py ,EC VXX, (4.2.27)

E[X"X"Zp! pi]= P EX[X™X"].

The following relationships between the conditional moments of order p=m-+n and the
unconditional ones can be derived:

N
E[ X™"X"|-Y E[X"X"Z,
e TR
2kl
o E[X™X"p|-E[X"X"Zp}
E(Z)[X X ]: [ 1}F_)2kl+2|: 1};
2 X E[X"X"p/,p" ]F_)— E[ X"X "Zp:_lp.’ill (4.2.28)
3kl+1
E(kl+2)[Xan]: E[X;Xanf];
3kl+2
E(Zk')[xmxn]: E[XmXinuflpfl];

I:)4 Kl
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The Gram-Charlier expansion can be applied to the conditional density functions
U (x,%) £ (x,%) that can be viewed as probability densities of a bi-dimensional

stochastic variable.

A modified closure scheme can be constructed by performing the ordinary cumulant
neglect closure on each set of conditional moments. The conditional moments of
order s higher than the closure order r are expressed in terms of conditional moments
of order lower than r through the following relationships

EY XX )= HK( X, jz

H r
7" Bex" ieB

7" B'ex" | 7' Ber' jeB'

ieB"

k=1,..2kl

211 ZH[(\Bi\—1)!(—1)@'1[5(”{1_[)( ,m : (4.2.29)

The conditional moments of order up to r appearing at the right hand side of equation
(4.2.29) can be expressed in terms of unconditional ones through equation (4.2.28) as
follows

EV[X,...X,]=

Mz

E ij _
S IT{S T (8- e g

7" B'ex" | ' Ber
ieB"

E {Hx qu}
1 jeBi

kl

Ol §

ECVX,.. X, ]=

- 1 L
7" B'er" | 7' B'er

ieB"

E
SIS (- I

(4.2.30)

From equations (4.2.26) and (4.2.27) the unconditional moments of order s>r
containing displacement and velocity only and the unconditional moments of order
st1 containing each of the auxiliary variables, are expressed in terms of the
unconditional moments of order up to the rth through the following relationships
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E[X,..X,]=

P2 TS T (1™ E{HX}PZE{HXZ} ’

7" B'ex” | 7' Bex
ieB'

| E {HX ijlr—lpl!il:l
P [T TT| (8] -1 | = ’

7" B'exr’ | #' Bler 4Kkl
ieB"

E[ X,..X,Zp!p ] =
E {HX jzp:—lpl/il:|
P TTAZTT|(]-1p0™ | = 5 ' (4.231)

N BNer™N | 7' Bler
ieBN

Where 7" runs through the list of the partitions of {l, 2,...5} in blocks of maximum
dimension r, B" runs through the list of blocks of the partition 7" .

For cubic non-linearity, performing a cumulant neglect closure of order r on the 2kl
sets of conditional moments, the conditional moments of the order r+1 and r+2
involving displacement and velocity only and the moments of order r+2 and r+3
involving also each of the auxiliary variables are expressed in terms of moments up to
the order r.

4.2.3 Process I: (Generalised Erlang renewal process)

R, (t)=P(u) andR, (t)=P(v)

Consider the response of a Duffing oscillator f (X X ) = 200X —0’X =X’ {0 the
random train of impulse R (t) , defined by equation (4.2.5) where the stochastic

process Z (t) in (4.2.4) is obtained by choosing R, (t) =P () (a Poisson process with

parameter ) andR, (t)=P(v) (a Poisson process with parameter ).

The stochastic equation of motion (4.2.7) is specified by
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xz(t
c(X(t))=| @’ X, (t)- 250X, (t) -0’ X’
0

0
(4.2.32)

b(P(1).X(1)=[b* b"]=| 0 POX(1)];

1_X3(t) X3(t)

Before the occurrence of the first impulse, the variable Z can be in its first ‘oft” state
(with probability PZ of ) Or in its first ‘on’ state (with probability PZ ). After the first

1mpulse occurrence the aux111ary variable can be ‘on’ or ‘off’ with probabilities
Z on Z PZ on > PZ#off Z PZ off » respectively (see Fig.4.2.1).

J>2 J>2
For the variable Z the following equations governing the state probabilities can be
written:

P() Pz(t))n_PR’onff+P# _I_PR

z,on

(4.2.33)
PY + Py =1-E[Z;PY) + P/ =E[Z]
with
P) _PN 7Pz(on P_PN;

(4.2.34)

IDz on = E[Z] IDz(o)m Pz#off _1 E[Z] z off

where PN =e™* is the probability that the first N , driven event has not occurred,
=(1-F,), withF, —I f, dX is the probability that the first event driven by
the process R( ) has not occurred.

A | 1

1st impulse

PI

i P/ sr
, AL A \l \

Y

Figure 4.2.1

Sample function of the train of impulses driven by the non-Erlang renewal process R (t)
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Let us express the unknown probability density of the state vector X in terms of the
conditional probabilities

p(l)(x, X, ) dxdx =
Pr{X e (X, x+dx) A X e()‘(,)‘(+d>‘<)}/\z isinits first'off ' phase

given that no impulses have occurred and the variable Z is in its first “off”
state.

pt? (X, %,z)dxdx =

Pr{x e (%, x+dx)A X e()’(,)’(+d>‘<)}/\z isinits first'on' phase

given that no impulses have occurred and the variable Z is in its first “on”
state.

p® (x, %, 2) dxdx =

o Pr{X E(X,X+dX)/\ X e()’(,X+dX)}

AZisinany'off ' phase following the first
given that no impulses have occurred and the variable Z is ‘off”” .

p¥ (X, X, z)dxdx =
. Pr{X e (X, x+dx)A X e()’(,)‘(+d>‘()}
AZisinany'on' phase following the first

given that no impulses have occurred and the variable Z is “on”.

The joint probability density function can be expressed as

4 .
p(X,%,2)=) p" (x,%,2) (4.2.35)

[
Due to the fact that there is a finite probability of the system being in a deterministic
state from the initial time to the first impulse, the terms p(l) (X, X, Z) and p(z) (X, X, Z)

that contain the conditional probability of the state vector given that no impulses have
occurred, can be respectively expressed as

(4.2.36)

Let us express the terms p(3)(x, )'(,Z) and p(“)(x, )'(,Z)containing the conditional

probabilities of the state vector given that the first impulse has occurred as follows

p(3)(x, X,2) =Py f(l)(x,x)ﬁ(z)

p (x,%,2) =P, £ (x,%)8(2-1)

z,0n

(4.2.37)
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Considering that the joint probability density function has to satisfy the equation

J. p(X,%,z)dxdxdz =
- (4.2.38)

['e] 0

P+ PEo + P [ £ (o X)dxdic+ PYY, [ £ (x, x)dxdk =1

from equations (4.2.34) it follows that the functions f" (x,%) and £ (x,%) have to

satisfy the following relationships

j £ O (x,x)dxdx =1, j £ (x, x)dxdx =1 (4.2.39)

—00

By integrating the joint probability density function (4.2.35), together with (4.2.36)
and (4.2.37), with respect to the variables displacement and velocity, the marginal
probability density of the auxiliary variable Z is derived as follows

- j (%%, 2)(dx) (dk) =

)
PZOﬁ5(2)+PZ(l) §(z-1)+P%5(2)+ P 5(z2-1)= (4.2.40)

(2)(1-E[2) (- D(E[2)

which is the known expression of the probability density of a zero-one stochastic
variable.

Let us consider the case of zero initial conditions. Since the variable Z is a zero-one
process, the following relationships hold

p(Z
(1)

E[ X*X'z"[=E[ X*X'Z] (4.2.41)

The unconditional moment of order p=m+n involving displacements and velocity

only can be expressed in terms of the conditional moments of the same order as
follows
E[X"X"]=P

EOX"X "]+ P/ EP[X™X"]. (4.2.42)

zoff z

The unconditional moment of order p+1=m+n+1 involving also the auxiliary
variable can be expressed in terms of the conditional moments of order p as follows

E[X"X"Z]=P" E@[X"X"]. (4.2.43)

zZ,0n

The following relationships between the conditional moments of order p=m-+n to the
unconditional ones can be derived:
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EV[X"X"]=

e[x"xz] (4.2.44)

P

z,0n

EP[X"X"]=

Let us perform the ordinary cumulant neglect closure on the two sets of conditional
moments. The conditional moments of order s higher than the closure order r are
expressed in terms of conditional moments of order lower than r through the
following relationships

EYX,..X,]= ngrzc( X, j:

Pl ieB'

ST [(\B‘\—1)!(—1)BE‘I[E“{HX,-D] , (42.45)

7" B'ex" | #' Bex' jeB'
ieB'

k=12

The conditional moments of order up to r appearing at the right hand side of equation
(4.2.45) can be expressed in terms of unconditional ones through equation (4.2.44) as
follows

EV[X,...X,]=

ST (‘Bi‘_l)!(_l)\B‘\—l ELI;[X’LE{EX’Z} ,

7" B'exr’ | ' Bler z,0ff

ieB'

- (4.2.46)
EP[X,..X,]=

E HXJ-Z
> 11T (8- u

7" B'ex” | 7' Blex z,0n
ieB"

From equations (4.2.42) and (4.2.43) the unconditional moments of order s>r
containing displacement and velocity only and the unconditional moments of order
st1 containing each of the auxiliary variables, are expressed in terms of the
unconditional moments of order up to the rth through the following relationships
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E[X,...X,]=

[
Pfoﬂ;B]l ZBH (18| 1)) e P - ’
ieB"
E{ijz}
TR i N |
P THZ T (B1-11-) Eamis
ieB"
e[ x2)=PL S T ST (Bl | |l @2
7" B'ex" | 2 Bler non
ieB'

Where 7" runs through the list of the partitions of {1, 2,...8} in blocks of maximum

dimension r, B" runs through the list of blocks of the partition 7" .
4.2.4 Process I1: R, (t)=E(u1) andR, (t)=P(v)

Consider the response of a Duffing oscillator f (X X ) = 200X —0’X =X’ {0 the
random train of impulses R(t) , derived from equations (4.2.4) and (4.2.5) with
R, (t) = E(,u,l) (an Erlang process with parameters # and | ) and R, (t) = P(V) (a

Poisson process with parameter v).
Let us assume that the Erlang renewal process R, (t) is defined by the parameters u

and | =2. Equations (4.2.5) and (4.2.6) become

R, (1)=p, (1), (1

dp, (t)=(1-2p,(t))dN,,(t) (4.248)

The stochastic equation of motion (4.2.7) is specified by

LX) ] [X(O]
X(t) X, (1)

X(@O)= Z(t) |=[X (1)
p. (1) X, (t)
Z()p,(t)] [ Xs(1)]
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0
- (_) - i} (4.2.49)
0 0
0 P(t)X(t)
b(P(t),X(1))=[b" b']=| Z,()-X(t)  ~X,(t) [;
1-2X,(t) 0
_X3( )_ Xs(t) _Xs(t) i

Before the occurrence of the first impulse, the variable Z can be
e in its first ‘off’ state with probability Pz(jgﬁ (while the variable p, can be in
its first ‘off” phase or in its first ‘on’ phase with probabilities, respectively
Pp(i)’oﬁ 2.0 and PKS:),O” 2.0 and the variable Zp, is in its first ‘off” phase with

probability P})) 7 o )
or
e orin its first ‘on’ state with probability PZ (while the variable p, can be

‘off” or ‘on” with probabilities, respectively P )oﬁ/z on and P! and the

P,-0n/Z,0n

variable Zp, can be ‘off’ or ‘on’ with probabilities P and

p)

Zp,,on/Z,on )

p,-0ff /Z,0n

After the first impulse occurrence, the auxiliary variables can be ‘on’ or ‘off’ with
probabilities (see Figure 4.2.2)

# i)
Zon ZF)Zon’P ,on z pﬂon_Z( Pu on/Zoff+P on/Zon)’

=2 =2

0 (4.2.50)
Zp on = Z PZp on Z( Zp,,,on/Z off + PZp ,on/Z on)
J>2 >
The state probabilities for the variable Z satisfy the following equations:
le,off + le on — P
Pz#off + I:)z#on =1- PR
’ (4.2.51)
leoff + Pz#off =1- E[Z]
F>Z ,on + Pz#on E[Z]
with
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leoff = I:)R,
Pz ,on P I:>R H
(4.2.52)
onn =E[Z]-PF; + PR ,
PZ of =1—E[Z]— P
AP 1 : 1 1
! P : ! 1
E R Ist impulse + 1-Pr E
/ D M Y A —— '''''''
PZ ' PZ X \
' PZ(Z)Off ' PZ(2)0n !
, A A :
1 \a Y
A &_»
00—y c c ! C :c v :
Pp(l)off, Z off E P m on Z on i Pp(2)on, Zi off Pp(z)()m 7 on i
P L\ | i
E P (t Zon E E E
Pp(l)on Z:off P ' E Pp(z)off, Z off off Z on :
P i i) (2 ! P E
Zpu off, Z off : on Z on . Zp off,Z oflf Zp on Zon !
I off Z on I E off Z on E
Figure 4.2.2

Sample functions of the train of impulses driven by the non-Erlang renewal process R, and the zero-
one processes Z , p, and Zp, appearing in the stochastic equation (4.2.49).

where

P,

and P, =1-

P\,

F, . with F,

j f

R(t) has occurred.

The equations governing the state probabilities of the variable p,, are:

=e* is the probability that the first N , driven event has not occurred,

=(1+ ut)te™™ is the probability that the first R driven event has not occurred
2 p y y

dX is the probability that no impulse driven by
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) V) # # -
P ,,0ff /Z off +P + Ppy,off/Z,Off + Pp#,off/z,on =1- E[py]

P, p,-0ff /Z,0n
1) 1 # # _
Pp#,on/z,off + F)p;,,on/Z,on + Ppﬂ,on/Z,off + I:)pﬂ,on/z,on - E[p#] (4253)
1) 1) 1) 1) _
Ppﬂ ,off /Z ,off + Ppy,off/z,on + Pp# ,on/Z ,off + Ppﬂ ,on/Z,on — PR
where
(1) _ .p(M _ .
Ppy,off/Z,off - PN!, ’ Ppﬂ,on/Z,off - PR,, - PN!, ’
1) 1)
p! =P;P =P;
p,.,0ff /Z,0n 1>7 p,,on/Z,on 20
’ . (4.2.54)
Ppﬂ,off/Z,Off = P3; I:>pﬂ,on/z,off = I:>4;
# _ . p# —
Pp/,,off/z,on - PS’ F)p/,,on/Z,on - P6'

The equations governing the state probabilities of the variable Z p, can be written as

(1) U] # # _
PZp#,Of‘f/Z,Of‘f + PZpﬂ,off/Z,on + PZpy,Off/Z,Off + F)Zpﬂ,of“f/z,on =1- E[Zp]

(1 " B
I:)Zp“,on/z,on + I:)Zp#,on/z,on - E[ZP] (4255)
(1) (1) (1) _
PZp#,Of‘f/Z,Of‘f + I:)Zp”,on/z,on + F)Zp#,of“f/Z,on - PR
where
(1) _ (1) _ b _ (1) o) B
PZP;UOH /Z,0ff ™ PR,,’ PZp#,Off/Z,On - Ppﬂ,off /Z.on — P]: PZp;,,on/Z,on = Pp;,,on/z,on = P2?
# _ p# _ # o B
PZ/J#,Off/Z,Oﬁ =P s =1- E[Z]— PRN’ Pzpwoﬁ/z,on = Ppwoﬁ/z’on =P,
# _ p# _
F)Zp#,on/z,on - I:)p#,on/z,on - P6'
(4.2.56)

The following equations show the relationships between the state probabilities of the
variable Z and the state probabilities of the variable p,

(1) (1) # # _
P, ot 2.0t T P, i T Ppﬂ,off/Z,off + Ppwon/z,oﬁ =1-E[Z]

P ﬂ,on/Z,o (4 2 57)
1) 1) # # _ o
IDp/,,on/Z,on + Pp”,off/z,on + I:)pﬂ,on/Z,on + I:>p#,off/Z,on - E[Z]

It can be proved that equations (4.2.53), (4.2.55) and (4.2.57) lead to the linear system
of equations in the unknowns P,,..Ps The state probabilities P; and P4 can be resolved
as

P, =1-E[Z]+E[Zp]-E[p]-P, .

(4.2.58)
P, =—E[Zpl+E[p]-P; +P, .

the remaining unknowns can be expressed in terms of P; as follows
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P2=PR_PR“_P19
P, = E[Z]-E[Zp]-P, (42.59)
P, = E[Zp]+ P, ~ Py +P.

State probability P (t)

The probability density P, that the variable p is ‘oft” during Z first ‘on’ phase can

be expressed as

P(t)dt=
t
ZPr{T# e(u,u+du)/\ N, (t—u):O,2,4,..} AT >t+
u=0
t
> Pr{T, e(uu+du)aN, (t—u)=0,2,4,..}/\idRV e(&E+E)AT, >t-¢
£=0

u=0

(4.2.60)

where the terms at the right hand side account for the probability that the variable Z is
‘on’, that is the time variable t is between the first R, event and the subsequent N,

event and simultaneously between an even-number and the subsequent odd-number
Poisson-driven event with parameter s .

The probability density P, can be expressed as

t

R ()= gy, ()5 {1+ )du(1-F, (1))du+
0 (4.2.61)

h, (£)(1-F (t-¢&))d&du;

t

o, (w5 {1+

0

S e

The variables appearing at the right hand side of the equation above are defined in
Figure 4.2.3.

A

+ R, drivenevent
O

N  drivenevent

14

;
<4
O

Figure 4.2.3

Definition of the variables appearing in the expression of the probability function P, (t)
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Let us express the unknown probability density of the state vector X in terms of the

conditional probabilities

p(l)(X,)'(,Z,pﬂ,Zpﬂ)dXd)'(=
. Pr{X e (X, x+dx)A X e()’(,)’(+d>’()}
AZisinits first'off ' phase A p, is'off 'AZp  is'off '
given that no impulses have occurred and the variables p, is ‘off” while

Zand Zp, are in their first “off” state.

p? (x.%.2,p,.2p, ) dxdx =
° Pr{X e(X,X+dX)/\ X e()’(,)’(+d)’()}
AZisinits first'off ' phase A p, isinits first'on' phase AZ p,, is'off '
given that no impulses have occurred and the variable P, is in its first ‘on’

phase while Z and Zp, are still in their first “off” state.

pt (x.%.2,p,.2p, ) dxdk =
° Pr{X e(X,X+dX)/\ X e()’(,)’(+d)’()}
AZisinits first'on'phase A p, is'off 'AZp is'off !
given that no impulses have occurred and the variable Z is in its first on state

while p, and Zp, are “off”.

p(“)(x, X.2,p,.2p, ) dxdk =
° Pr{X e(X,X+dX)/\ X e()’(,)’(+d)’()}
AZisinits first'on'phase A p,is'on'AZp, is'on’
given that no impulses have occurred and the variablesZ, p, and Zp are

simultaneously “on”.

p(s)(x, X.2,p,.2p, ) dxdx =
Pr{X e (X, x+dx) A X e()’(,)’(+d>’()}

e aZisinany'off ' phase following the firstimpulse
~p,isinany'off ' phase following the firstimpulse

AZp, isinany'off ' phase following the firstimpulse
given that the first impulse has occurred and the three variables are

simultaneously ‘off’.
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P (x,%,2,p,.2p, ) dxdx =

Pr{X e (X, x+dx) A X e()’(,)’(+d>’()}

AZisinany'off ' phase following the firstimpulse

Ap,isinany'on' phase following the firstimpulse

AZp, isinany'off ' phase following the firstimpulse

given that the first impulse has occurred and p, is ‘on’ while Z and Zp, are

“off”.

p” (x.%,2,p,.2p, ) dxdx =

Pr{X e(xx+dx)A X € (% X+dx)}

AZisinany'on' phase following the firstimpulse

~p,isinany'off ' phase following the firstimpulse

AZp,isinany'off ' phase following the firstimpulse

given that the first impulse has occurred and Z is in an ‘on’ state while p,

and Zp, are “off”.

pt® (x, X,Z,pﬂ,Zpﬂ)dXdXz

Pr{X e(x,x+dx)A X (% X+dX)}

AZisinany'on' phase following the firstimpulse

Ap,isinany'on' phase following the firstimpulse

AZp,isinany'on' phase following the firstimpulse
given that the first impulse has occurred and the variables Z, p, and Zp, are

simultaneously “on”.

Hence, the joint probability density function can be expressed as

p(xaxazapyazpy)zz p(j)(x’x’z’pﬂ’zp/‘)

(3.2.62)

j=1

Due to the fact that there is a finite probability of the system being in a deterministic
state from the initial time to the first impulse, the terms p (X, X,Z,0,,2 py) to

p(4)(X,)'(,Z,pﬂ,Zpﬂ)containing the conditional probability densities given that no

impulses have occurred, can be respectively expressed as
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p" (x,%,2,p,.2p,) =

PY 2o (1) S (x=%) 8 (X=%)5(2)5(20,)5(p,).

p? (x.%,2,p,.2p,)=

Ppﬁ{on/z,oﬁ (1)5(x=%,)8(%x=%)5(2)8(2p,)5(p,~1),
p?(x.%,2,p,.2p,) =

Pt 20 ()3 (X=%,)3 (X~ %) 3 (2-1)3(20, -1)5(,).
0 (x,%,2,p,.20,)=

Ppﬂ{omz,m (t)5(x=%,)3(%=%,)8(z-1)5(zp,-1)5(p, ~1).

(4.2.63)

Let us express the terms p" (X% 2,0,2p) to p"* (X, %,Z,2,2p) corresponding to the
conditional probabilities given that the first impulse has occurred as follows

(4.2.64)

The joint probability density function has to satisfy the equation

p(x, X, 2, 0,,2P, )dXd)'(dde#de# =

é'—oS

Ppsj)oﬁ/z off + P( )off/Z ,off + P( )off/Z off + P( )off/Z off + (4265)

ZPHZJ- (%, X)dxdx =1

&

1= -0

observing that

Pp() off /Z ,off +P( )off/Z off +P( )off/Z off +P( )off/Z off — Pr

(4.2.66)
,=1-P..

M“

j=1
the functions f (X, X) to f¥ (X, X) satisty the following relationships

[ 1906 x)axdx =1,... [ £ (x,x)dxdx =1 (4.2.67)

—00

It can also be proved that the following identities hold
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00

P(2)= [ P(x%.2.0,02,) () () (20, ) () -
(6(2)(1-E[2])+8(z-1)(E[2]))

p(p.)= [ p(x 420,20, ) (dk)(d%)(d2)(dzp, ) =
(6(o )( e[, ])+o(pu-1)(E[2.]))
0(2p,)= [ P(x%2.p,.2p,)(dx)(d¥)(d2)(dp, ) =

(0 (Zp#)( E[2p,])+o(z0,-1)(E[25,]))

Considering as an example the marginal density of the variable p,

8'—.8

(4.2.68)

g'.:S

p(/’y)= T IO(X, X,Z,pﬂ,Zpy)ddedzdzpy =

Pp(l),off/z,off5( ) p off/Z off ( ) (4.2.69)
Pp(i),off/z off5( ) p off/Z off ( )
P(p,)+Pd(p,~1)+P5(p,)+PS(p,~1).

and observing that

Pﬁsj),off/z,off + P;Si),off/z,off +P+P=1-E [,0#];
() () (4.2.70)
P off /Z ,off +Pp”,off/z,off +P4+P6 = E[,D#}

Pu>

it follows

p(py): J. p(XaX,Z,pﬂ,Zpy)dXd)'(dzdzp# =

(1-€[n.])8(p.)+E[2.]5(p,-1)

Let us consider the case of zero initial conditions. Since the variablesZ , p, and Zp,

(4.2.71)

are zero-one processes, the following relationships hold

E[X*X'Z" |=E[ X*X'Z ;E[ X*X'p," |=E[ X*X'p, |;

E[XkXI(Zp#)m}:E[kalzpﬂ}; (4.2.72)
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The unconditional moment of order p =m+n involving displacements and velocity
can be expressed in terms of the conditional moments of the same order as follows

E[X"X"]=
. . . . (4.2.73)
PEVIX"X "+ PEP[X" X"+ PEP[X"X" "1+ PRLE“[X™X"]

The unconditional moment of order p+1=m+n+1 involving also the auxiliary
variables can be expressed in terms of the conditional moments of order p as follows

E[X"X"Z]=PE®[X"X" "]+ PEP[X™X"];
E[X"X"p,1=PEP[X"X"]+RE“[X"X"];
E[X"X"Zp,]1=REW[X"X"];

(4.2.74)

The following relationships between the conditional moments of order p=m+n and the
unconditional ones can be derived:

CE[X"X"|-E[X"X"p, [+E[ X"X"Zp, |-E[ X"X"Z |

EV[X"X"]= :

£ XX ] = E[menpy]—PE[me“zpﬂ];

E(s)[xmxn]_E[XmX”Z}—Pé[xmxnzpﬂ], (4.2.75)
X

EU[X™X"]= E[Xménzpﬂ

Let us perform the ordinary cumulant neglect closure on the two sets of conditional
moments. The conditional moments of order s higher than the closure order r are
expressed in terms of conditional moments of order lower than r through the

following relationships

EY[X,.. X ]=Y Hx(xij:

ieB"

ZBH Zy.[(‘Bi‘_l)!(_l)B'1(E(k){l:§[,xim , (4.2.76)
k=1,.4 IE

The conditional moments of order up to r appearing at the right hand side of equation
(4.2.76) can be expressed in terms of unconditional ones through equation (4.2.75) as

follows
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> 1S TT (] 1))
" B'ex" | 7' Blex'
ieB"
6 x =T T
7 B'er frieBBrezr
E(”[xl....xs]zz [1:211
7 B'er lrijsrerr
e[%.x]=% TT{Z 1T
" B'er" | ©' Bler
ieB"

o EL];[IXJ}—EL];[‘ijﬂ}+El:jl;[IXijﬂ}—ELl;[IXjZ}

(-
(-1

-yt L2

(4.2.77)

The closure scheme for the unconditional moments becomes

E[X,...X,]=

PYTI

r i
7" B'er" | 7' B'ex

P21

r 1
7" B'er" | 7' B'ex

R2TI

7" B'ex” | 7' Bex

R2TI1

7" B'ex” | ' B

(1™

(|B‘|—1)!(—1)‘B"’1

(|B‘|—1)!(—1)‘B"’1

| -5

e
jeBi

eltie e e e

E{ijpﬂ

+
P,

el
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(X X2]=R 3 [T ZBH( ) {ngz}Pf{ngzpﬂ} ¥
{HX Zp,
e ) e |
E[X,..Xp, |= p;g ZBH( 1)) {Exjpﬂ}a‘{ngzm} )
_ | | E{HXij#:l_
E[X,..X,Zp, |= P;B]l ZBH( ) \B\ LIE_B[;:JZP#}
(4.2.78)

Where 7" runs through the list of the partitions of {1,2,...5} in blocks of maximum

dimension r, B" runs through the list of blocks of the partition z".
4.25Process I11: R, (t)=P(u)andR, (t)=E(v,k)

Consider the response of a Duffing oscillator f (X X ) = 20X -’ X —£X? {4 the
random train of impulses R (t), obtained from equations (4.2.4) and (4.2.5) with

R, (t) =P (,u) (a Poisson process with parameter ), R, (t) =E (v, k) (an Erlang

process with parameters v andk =2), with
dR, (t)=p,dN, (1),

dp, (t)=(1-2p,)dN, (1).
The stochastic equation of motion (4.2.7) is specified by
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X(t) X (t)

X (t) X, (1)

X(t)= z(t) |=| X(t);
Pv(t) X4(t)
2(0)p.()] [ x.(0)]

0
- ° . _ (4.2.79)
0 0
0 P(t)X;(t)
b(P(t).X(t))=[b" b"]=| 1-X,(t) ~Xs(t) |;
0 1-2X,(t)
X4(t)—X5(t) X3('[)—2X5('[)

Before the occurrence of the first impulse, the variable Z can be in its first ‘off” state
(with probability PZ off ) orin its first ‘on’ state (with probability Pz ). Meanwhile the

variable p, can be in any ‘off’ state or in any ‘on’ state before the occurrence of the

first impulse (with probabilities Pp(l)On = P;l)on,z of T P(l) and
Pp(vl?off = Pp(vl?of'f ;2 off

,on;Z .,on
+ P( )Oﬁ z.on Tespectively). In a similar way, the variable Zp,. can be

found in its first ‘off” state or in its first ‘on’ state before the occurrence of the first

impulse with probabilities P() o and P() respectively.

,,0N

After the first impulse occurrence the aux1hary Variables can be ‘on’ or. ‘off’ with
#

probabilities P} | Z PZ P = z PZ it 2P on Z pli) D ,P# of Z pUi) i or

J>2 22 j22 j22
Zp on z Pzp on s Zp off z Pzp « respectively (see Fig.4.2.4).
j>2 j>2
For the variable Z the following equations governing the state probabilities can be
written:

Pz(lo)ff + I:)z(o)n = P I:)z#off + Pz#on =1- PR
# # (4.2.80)
Poff+onff_1_ E[Z]; Zon—i—P =E[Z]

Z z,0on
with

N’zon

PY =P ;PY =P, —Py ;
g (4.2.81)
P! =E[z]-PY.P" =1-E[Z]-P"

z,0n z,on? " z,off z,0ff *
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where B, = e is the probability that the first N, driven event has not occurred,
t

P =(1-F,)(withF, :I fy, (X)dx) is the probability that the first event driven by
0

the process R (t) has not occurred.

P .
R Ist impulse

W) /k W)
/ PZ off i PZ on YPZ(z)off

o—ob—4——— o440

A

1 2
Pp( )on,Zon PP off’

ST T

(&))
Pp on, Z off

1 o] 1
Pp( off, Z off Pp( )off,Zon |

2
Pp( )off, Z off Pp(Z)off, Z on

p, M P, 5
Zp Zijf zp PZIp(Z)off P,,?
- e B e )
Figure 4.2.4

Sample functions of the train of impulses driven by the non-Erlang renewal process R, and the zero-
one processes Z , p, and Zp, appearing in the stochastic equation (4.2.79).

The equations governing the state probabilities of the variable p, are:

() ) ’ ; B
Pp,,,off /Z ,off + Pp,,,off /Z,0n + va,off/z,off + va,off/Z,on =1- E[pv]

M 1 # # _

I:)pv,on/Z,off + I:),o‘,,on/z,on + va,on/z,off + I:),ov,on/z,on - E[pv] (4282)
1 1 1 0 _

va,off/z,off + va,off/z,on + I:),o‘,,on/z,off + p,,0n/Z,on I:)R

where
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Ppsj?off/z,off = Pl; P/Evl?off/z,on = PZ;

P,:V,off/z,off = P3; Pp#j,off/z,on = I:)4; (4 2 83)
Pp(:?on/z,off = _Pl + PZ(jc))ff ) Pp(:gn/z,on = _Pz + PZ(jc)m’ -
Pp#f,,on/z,oﬁ = F)Z#,off - PS; P/fv,on/z,on = I:)Z#,on - I:)4;

the equations governing the state probabilities of the variable Z p, can be written as

PZ(}) + PZ#,off + PZ(lp),off /Z,0n + PZ#p,off/Z,on =1- E[va]

off
PZ(,lo),on/Z,on + PZ#p,on/Z,on =E[Zp,] (4.2.84)
I:)Z(,lo),on + PZ(,lo),off = I:)R

where
N _pO U] _p #
PZp,off - PZ,off + Pp‘,,on/Z,on - PZ,off + I:)Z,on - P27
ph _pO —_p +pW
Zp,on p,,0n/Z,on 2 Z.,on?
; ' # (4.2.85)
PZp,on = F)pv,on/Z,on = F)Z,on - P4’
4 pH # _ pt "
PZp,off - PZ,off - I:)pv,on/z,on - PZ,off - I:)Z,on + P45

It can be proved that the equations above lead to the linear system of equations in the
unknown Py,..P4

P+P,+P+P =1-E[p,]

(4.2.86)
P,+P, =E[Z]-E[Zp,]
The unknowns Ps, P4 can be expressed in terms of P, and P, as follows
P,=1-E[Z]-E +E[Zp 1-P;

P,=E[Z]-E[Zp, ]-P,;
State probability P, (t)

The probability P that the variable p, is ‘off” during Z first ‘off” state can be
expressed as

R(t)=Pr{T,>tAN,(t)=0,2,] (4.2.88)

where the terms at the right hand side account for the probability that the variable Z is
‘off’, that is the time variable t is before the first R, event event and simultaneously
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between an even-number and the subsequent odd-number Poisson-driven event with
parameter v . The probability P, can be expressed as

P(t)= (1— Fr (t)) ; (1+e‘2”‘) (4.2.89)

State probability P, (t)

The probability P, that the variable p , is ‘off’ during Z first ‘on’ state can be

expressed as

P.(t)=

Zt:Pr{T# e(uu+du)AN, (t)=0AT, >t}+

ZPr{T e (u,u+du) ZdRV (& E+AE)AN, (t=&)=0AT, >t g}
(4.2.100)

where the terms at the right hand side account for the probability that the variable Z is
‘on’, that is the time variable t is between the first R, event and the subsequent R,

event and simultaneously between an even-number and the subsequent odd-number
Poisson-driven event with parameter v . The probability P, can be expressed as

gr (u)e™'du(1-F (t))du+ 4.2.101)

The variables appearing at the right hand side of the expression above are defined in
Figure 4.2.5

A

]

<C> N, drivenevent
O

R, drivenevent

A >

O_O T O »
£ u t
Figure 4.2.5

Definition of the variables appearing in the expression of the state probability P, (t)
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Let us express the unknown probability density of the state vector X in terms of the

conditional probabilities

pt (X, %,2,p,,2p, ) dxdx =
o Pr{Xe(xx+dx)aX e(Xx+dx)}
AZisinits first'off ' phase A p, is'off 'AZ p, is'off '
given that no impulses have occurred and the variables p, is ‘off” while Z and

Z p, are in their first “off” state.

p? (x,%,2,p,,2p, ) dxdx =
o Pr{Xe(xx+dx)aX e(XX+dx)}
AZisinits first'off ' phase A p, isinits first'on' phase A Z p, is'off '
given that no impulses have occurred and the variable p, is in its first ‘on’

phase while Z and Z p, are still in their first “off” state.

p(3)(x, X,Z,p,,2p,)dxdx =
o Pr{X e(X,X+dX)/\X e()'(,)'(+d)'()}

AZisinits first'on' phase A p, is'off 'AZ p, is'off '
given that no impulses have occurred and the variable Z is in its first on state

while p, and Z p, are “off”.
P (x,%,2,p,,2p, ) dxdx =
o Pr{Xe(xx+dx)aX e(Xx+dx)}
AZisinits first'on' phase A p,is'on'AZ p, is'on'
given that no impulses have occurred and the variablesZ , p, and Zp, are

simultaneously “on”.

p(S)(x, X,2,p,,2p,)dxdx =

Pr{X e (X, x+dx) A X e()’(,)’(+d>’()}
AZisinany'off ' phase following the firstimpulse
Ap, isinany'off ' phase following the firstimpulse

~Z p, isinany'off ' phase following the firstimpulse
given that the first impulse has occurred and the three variables are

simultaneously ‘off’.
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p(é)(x, X.2,p,,2p,)dxdx =
Pr{X e (X, x+dx) A X e()’(,)’(+d>’()}

e aZisinany'off ' phase following the firstimpulse
Ap,isinany'on' phase following the firstimpulse

~Z p,isinany'off ' phase following the firstimpulse
given that the first impulse has occurred and p, is ‘on’ while Z and Zp, are

“oft”.

P (x,%,2,p,,2p, ) dxdx =
Pr{X e(xx+dx)A X € (% X+dx)}

e AZisinany'on'phase following the firstimpulse
~p, isinany'off ' phase following the firstimpulse

AZ p, isinany'off ' phase following the firstimpulse
given that the first impulse has occurred and Z is in an ‘on’ state while p,

and Zp, are “off”.

p(g)(x,x,z,pv,va)dde=
Pr{X e(x,x+dx)A X € (% x+dx)}

e AZisinany'on' phase following the firstimpulse
Ap, isinany'on' phase following the firstimpulse

AZ p,isinany'on' phase following the firstimpulse
given that the first impulse has occurred and the variables Z, p, and Zp, are

simultaneously “on

Hence, the joint probability density function can be expressed as

8 -
p(x%2,p,.2p,)=>. PV (X%2,p,,2p,) (4.2.102)
j=1
Due to the fact that there is a finite probability of the system being in a deterministic
state from the initial time to the first impulse, the terms p' (X, %,2,p,,2p,) to
p(4) (X, X,2,p,,Z pv)corresponding to the conditional probability densities given that

no impulses have occurred, can be respectively expressed as

PV (%, %,2,p,,2p,) = P, (1) 5(x=%, )5 (x=%)5(2)8(zp,)5(p,),

PP (x,%,2,0,,2p,) =P, (1) (x=%, )5 (X=%,)8(2)8(zp,)5(p, -1),

P (%,%,2,9,,2p,) = P, (1)5 (X=X, )8 (x=%,)5(2-1)8(zp, =1)3 (p, 1),
P (x,%,2,,,2p,) =P, ()5 (x=%,)5 (X% )8 (z-1)5(zp, -1)S(p, - 1),

(4.2.103)
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The terms P" (%,X,2,0,2p) to p® (X,%,2,p,2p) corresponding to the conditional
probabilities given that the first impulse has occurred are expressed as

V(x,%,2,p,,2p,) =PtV (x,X)8(2)5(zp,)5(p,)
®(x,%,2,p,,2p,) =P, TP (x,%)8(2)8(zp,)5(p, 1) 42,108
V(x,%2,p,,2p,) =P TV (x,%)5(2-1)8(2p,)5(p,) B
V(x,%,2,p,,2p,) =R T (x,x)8(z-1)5(2p, ~1)5(p, 1)

The joint probability density function has to satisfy the equation

I p(x, X,2,p,,2p, )ddedzdpvdsz =
R (t)+ P, (t)+ P (t)+ P, (t)+P jf (x, X)dxcx + (4.2.105)

R | £ (x, x)dxdx+ P, j £ (%, X)dxdx+ By [ £ (%, X)dxax =1

Considering that

P, ()= Py (1), 2P, (6)=1- Py (1) (42.106)

i=4

the following relationships hold

[ 19 0x)axdx =1, [ £ (x, x)dxdx =1,
> - (4.2.107)

[ 1O x)dxdx =1, [ £ (x,X)dxdk=1

—o0

It can also be proved that the following identities hold
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0

p(Z)= I P(X.%,2,p,,2p,)(dx)(dx)(dzp, )(dp,) =

—00

(6(2)(1-E[2])+8(z-1)(E[Z]))

[e¢]

p(n.) :_L P(x.%.2,p,,20,)(dx)(dX)(dz)(dzp, ) = (4.2.108)

(5(p.)(1-E[p.])+5(p, ~1)(E[~.]))
p(va):]i p(x%,2. 5,20, )(dx)(dk)(dz)(dp, ) =
(5(va)(l— E[Zp,])+5(Zp, _1)(E[va]))

Let us consider the case of zero initial conditions. Since the variablesZ, p, and Zp,
are zero-one processes, the following relationships hold

E[X*X'Z"]|=E[X*X'Z];
E[X*X'p," |=E[X*X'p, ]; (4.2.109)
E[ XX (zp,)" |=E[X*X'2p, ];

The unconditional moment of order p =m+n involving displacements and velocity
can be expressed in terms of the conditional moments of the same order as follows

E[X"X"]=

. . . . (4.2.110)
PEV[X™X "+ PEP[X"X"]+P,EP[X"X "]+ PREW[X"X"]

The unconditional moment of order p+1=m+n+1 involving also the auxiliary
variables can be expressed in terms of the conditional moments of order p as follows

E[X"X"Z]=PEP[X"X"]+PRE®[X™X"];
E[X"X"p, 1= PEP[X"X"]+ RE®[X"X"]; (4.2.111)
E[X"X"Zp,]=PEW[X"X"];

The following relationships relating the conditional moments of order p=m+n to the
unconditional ones can be derived:
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CE[X"™X"]-E[

E“>[xm>'<“]

P

5

:me”pv}—E[me"sz]_

E<2>[xmx“]= =

P6

E[X"X"Z |-E[X"X"Zp, |

EV[X"X"]=

b

P7

X"X"Zp, ]

EV[X"X"]= -

R

2

X"X"p, |[+E[X"X"Zp, |-E[ X"X"Z |

(4.2.112)

Let us perform the ordinary cumulant neglect closure on the four sets of conditional
moments. The conditional moments of order s higher than the closure order r are
expressed in terms of conditional moments of order lower than r, which in turn can be
derived as functions of the unconditional moments of order lower than r through
equation (4.2.112). From equations (4.2.110) and (4.2.111), the modified closure
scheme for the unconditional moments becomes

E[X,..X,]=

211

- X
"| 7' Bex'
ieB'

211

7 Ber
ieB'

211

-~ A
"| 7' B'ex'
ieB'

211

- &
"| 7' Bex'
ieB'

-

E{ij

jeB'

el 2

HXijv:l—E{HXjZ}

jeB' jeB'

E{ijpv}

jeB'

P

—EI:HXijV

jeB'

5

|

jeB'

1]

P

6

E{ijzpv}

jeB!

E{ijva

jeB'

R

P

7

|
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E[X,..X,Z]=

211

- A
"| » Bex'
ieB'

211

~ A
| #' B'ex'
ieB'

E[X,..X.p, |=

211

- X
" #' B'ex
ieB"

211

| #' B'er
ieB"

E[X,..X.Zp, |=

RETTH2TT

r 1
7" B'er" | ' B'er
ieB'

(|6 —1)!(—1)‘”"1
(3 —1)!(—1)‘”‘1
(B! 1))
(e —1)!(—1)‘E‘i"1
(| —1)!(—1)‘”"1

i

jeB' jeB'

HXjZ}—E{HXijV}

i

i

HX,ZPV}

jeB'

HX,-pV}E{HX,-ZpV}

jeB' jeB'

i

i

HX,-Z/JV}

jeB'

HX,-ZPV}

jeB'

P

8

(4.2.113)

Where 7" runs through the list of the partitions of {1,2,...s} in blocks of maximum

dimension r, B" runs through the list of blocks of the partition 7" .

4.2.6 Process IV: R, (t)=E(ul)andR, (t)=E(v,k)

Consider the response of a Duffing oscillator f (X X ) =-2wX -’ X —eX’ to the
random train of impulsesR(t), derived from equations (3.2.4) and (3.2.5) with

R, (t)=E(u1) and R, (t)=E(v,k) (Erlang processes with parameters s,l =2 and
v,k =2, respectively) and with

R, ()= p, 0N, (1),
dp, (1)=(1-2p, )N, (1)
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and

dR, (t)= p,dN, (1),
dp, (t)=(1-2p,)dN, (t).

The stochastic equation of motion (4.2.7) is specified by

b(P(t).X(t))=[b* b"]=

(@]
—_
X
—~
—
i
N—
Il
T O O O O o o o XU

X, (t)]
X, (t)
X, (1)
X, (t)
Xs(1)];
Xq (1)
X4 ()
X, (1)
X, (1))
t) |
) (1) -’ X (t)

0 0

0 POX()
X, (1)=X, (1)  =X,(t)

1—2X4(t) 0

0 1—2X5(t)
XS('[)—2X6('[)X4('[) 2X6(t)
X3(t)—2X7 t) X9(t)
Xs t)_x9(t) X (t)—ZXS(
Xs(t)_2X9(t)x (t)_2X9(

(4.2.114)

Before the occurrence of the first impulse, the variable Z can be in its first ‘off” state

(with probability Pz(f())ff ) or in its first ‘on’ state (with probability PZ(’I(),n ). Meanwhile the

variable p, can be in any ‘off” state or in any ‘on’ state before the occurrence of the
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first impulse (with probabilities Pp( )On = Pp( )On 2 off P(l) and
ph _pW)

p,off — ' p, off ;Z,off

,on;Z,on
+ P( )Oﬁ z.on Tespectively). The variable p,. can be in its first ‘off’
state or in its first ‘on’ state while Z is in its first ‘off” state before the occurrence of
the first impulse (with probabilities P/S[)’Oﬁ 2.0 and Pp(i)’on;zyoﬁ respectively) or can be in
any subsequent ‘off’ state or ‘on’ state during Z first ‘on’ state (with probabilities
Pp(i),oﬁ z.on and P/fi{on;z,oﬁ respectively). In a similar way, the variables p,p,, Zp,

Zp, and Zp,p, can be found in the ‘off> or ‘on’ states shown in Figure 4.2.6 with the

correspondent probabilities in Table 4.1.
After the first impulse occurrence, the auxiliary variables can be on’ or off’ with
probabilities I:)Z#,on = Z F)Z(,jo)n ’ PZ#,off = Z PZ(,jo)ff ’ p ,on Z P ,,0n 2 p off Z ff or

j>2 j=2 j>2 j=2
P 5, on Z PZ 2 0n 3 P/ 1, off z PZ o oft Tespectively (see Fig.4.2.6 and Table 4.1)
jz2 j>2
The following equations governing the state probabilities for the variable Z can be
written:

PO + P =P P + P =1-P,

z,0n z,0n

() # # 4.2.115)
Pz,off +onff =1- [Z]= zon+onn_E[Z]
with
P() _PR ’Pz(o)n P_PR;
z (4.2.116)

= E[z]-PY;P? . =1-E[Z]-PY)

z,on> " z,off z,0ff *

P

z,on

where P, = ute™ is the probability that the first R, driven event has not occurred,

P, =e* is the probability that the first N , driven event has not occurred,

H

P =(1-F,)(withF, I f, dX) is the probability that the first event driven by

the process R(t) has not occurred.

The equations governing the state probabilities of the variable p, are:

Ppsjioff/z,off + P( )off/Z on + P# ,off /Z ,off + P# ,off /Z,on =1_ E[pv]

P + P( )on/Z on T P# on/zoff T P# onizon = ELP, ] (4.2.117)

P, ,on/Z off
— PR

P(l)off /Z ,off + P( )off /Z,0n + P( )on/Z off + P( )

Pys ,on/Z,on

124
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Figure 4.2.6
Sample functions of the train of impulses driven by the non-Erlang renewal process R, and the zero-
one processes Z, p,, 0, PP, » Lp,..Zp, and Zp, p, appearing in the stochastic equation (4.2.102).
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where

Pp:?off/z,off = P1
Ppsvl?off/z,on = PZ
P;i,off/z,off =P

# _
PP.;;off/Z,on - F)4(1) (421 18)
Pp,,,on/Z,off = F)Z,of“f - I:)l
Ppsj?on/z,on = Pz(lc))n - P2

p#v,on/z,off = I:)Z#,off - P3

Pp# on/Z,on — I:)Z#on - P4
The equations governing the state probabilities of the variable p,. are:

Pp(l),off/z,off + P( )off/Z ,on + P# ,off /Z ,off + P# ,off /Z ,on =1- E[pﬂ]

Pp(:,),on/z off P( )on/Z on T Pp# on/zoff Pj on/Z,on E[p,u] (421 19)
Pp(l),off/z,off + P( )off/Z ,on + P( )on/Z ,off + P( )on/Z on — I:)R
where

Pp(:,),oﬁ/z,oﬁ = I:)Nﬂ

Pp(:,),oﬁ/Z,on =P

P; off /Z ,off P6

Ppi,off /Z,0n P7

) " (4.2.120)
Pp#,On/Z,Off = PZ,off - I:)N!,

Ppsi),on/z,on = Pz(lt))n - PS

pt,on/z,off PZ#off P6

P# on/Zon — I:)Z#on - I:)7

The equations governing the state probabilities of the variable p, p,. are:

Pp(l?a Joff /Z off + P;E L Joff /Z,0n + P;ipv,off/z,off + P,:pv,off/z on — 1- E[pypv]

Pp(lLV,on/Z off + P;S ?0 on/Z.,on + Pp# p,,on/Z off + Pp#;lp on/Z,on E[p,upv] (42121)
Pp(lLV,off/Z,off + P;E ?0 off /Z,on + P( )p on/Z off + P;E‘,)pv,on/z on — I:)R
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where

1 _
Pp#pv,off /Z,0ff — P8

() _

pupy,0ff /Z,on T R)

# _
Pp#pv,of'f/Z,off - PlO

# _
Pp#pv,off/z,on - Pll

(4.2.122)

() _pl _p

p#pv,on/Z,off Z ,off 8

1 _pW
Pp#pv,on/z,on - I:)Z,on - P9

4 _ p#
Pp“pv,on/z,off - PZ,off - PIO

4 _ p#
Ppﬂpv,on/z,on - I:’Z,on - Pll

The equations governing the state probabilities of the variable Z p, are:

(1) (1) # # _
PZpV,off/Z,off +P + PZpV,off/Z,off + PZp‘,,off/Z,on =1-E[Zp,]

Zp, ,off /Z,on
1) (1) # # _
Pva,on/Z,off + I:’va,on/z,on + Pva,On/Z,Off + PZpV,on/Z,on - E[va] (42123)
(1) 1) (1) 1) _
PZpV,Off /Z ,off + Pva,off/Z,on + PZpV,on/Z,off + Pva,on/Z,on - PR
where
(1) _p
PZpV off /Z ,off = PZ,off
(1) _p) _p
Zp, ,off /Z,0on p,,0ff /Z,0n 2
# _ pt#
PZpV,Off/Z,Off - PZ,off
Py = p? =P
Zp, ,off /Z,0n p,,0ff /Z,on 4
' ' (4.2.124)
P =0
Zp, ,on/Z,off
(1) _p® _p®
I:)Zp‘,,on/Z,on - I:)pv,on/Z,on - I:)Z,on - P2
# _
I:)Zp,,,on/Z,of'f - 0
# _ pt _p*
PZpV .on/Z,on Ppl, ,on/Z.,on I:)Z,on I:)4

The equations governing the state probabilities of the variable Z p, are:

(1) (1) # # -
PZp#,off/Z,off + PZpﬂ,off/Z,on + PZp“,off/Z,off + PZpﬂ,off/Z,on =1-E[Zp,]
p0) +pW +P* + P! =E[Zp,] (4.2.125)
Zp,,on/Z off Zp,.on/Z,on Zp,,,on/Z off Zp,,on/Z,on 7] e
(1) (1) (1) (1) —
PZp#,Off/Z,Off + PZpﬂ,Off /Z.,on + PZp“,on/Z,off + I:)Zpﬂ,on/Z,on - I:>R
where
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—pW

p) _
Zp# ,off / Z ,off Z ,off

Q) — p —
PZp#,off/Z,on - Pp#,off/Z,on - PS
# _ p#
PZp“,Off/Z,Off - PZ,off
# _ Dt _
PZp#,off/Z,on - Ppﬂ,off/Z,on - P7
(4.2.126)
P =0
Zpﬂ,on/Z,off
(1) _p _p®
I:)Zp#,on/z,on - Pp“,on/z,on - I:’Z,on - PS
# —
PZp#,on/Z,off - O
# _ p# _pt
I:)Z,oy,on/z,on - I:),o”,on/z,on - I:)Z,on P7
The equations governing the state probabilities of the variable Zp ,p,. are:
(‘> +P + P + P =1-E[Zp,p,]
Zp,p,0ff 12,06 T ¥ Z2p.p, 0t 1Z,0on T FZp,p, 0ff 1Z,0ff T FZp,p, 0ff 1Z,0n = PP,
(1) 1 # # _
PZp“pv,On/Z,Off + PZpypv,on/Z,on + PZpﬂpV,On/Z,Off + PZpﬂpV,On/Z,On - E[Zp,upv] (42127)
(1) 1 1 1 _
Zp,p,off /Z,off + PZp“pV,Off/Z,On + PZp“pV,on/Z,off + PZp“pV,On/Z,On - I:)R
where
Q) —p®
PZp#pV,Off/Z,Off - I:)Z,off
Q) —p® —
PZp#pV,Off/Z,On - Pp/,pl,,off/z,on - P9
# _ p#
Zp,p,,0ff /Z,0ff — PZ,off
# _ D# _
PZp#pV,Off/Z,Or‘I - Ppﬂp‘,,off /Z,on Pll
(4.2.128)
P =0
Zpﬂpv,on/z,off
(1) _p0 _p®
PZpﬂpV,on/Z,on ~ Tpup0n/Zon T I:>Z,0n - P9
# —
PZp#p,,,on/Z,off - 0
# _ p# _pt
I:)Z,o#pv,on/z,on - Pp/,,ov,on/z,on - I:)Z,on Pll

The conditional probability P can be directly determined from the equations above,
the others can be expressed in terms of the probabilities Py, P», Ps, Pg, Py as follows

P, =1-E[Z]-E[p,]1+E[Zp,]-R;
P, =—E[Zp,]+E[Z]-P,;

P, =1-Elp,]1-E[Z]+E[Zp,]- R,
P, =E[Zp,]-E[Z]+P;
Po=1+E[Zp,p,1-Elp,p,1-E[Z]- Ry
P =ElZ]I-ElZp,p,1-R;

a (4.2.129)
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Z Pv Pu Pv Pu Zp, Zpy Zpy Py
P(l)z off P“) pv off, Z off P(l) pu off, Z off P“) pv pu off, Z off P(l) Zpv_off, Z off P(l) Zpy off, Z off P(l) Zpv py off, Z off
P“) pv on, Z off P(l) pu on, Z off P“) pv pu on, Z off’ P(l) Zpv_on, Z off P(l) Zpyp on, Z off P(I)va pu on, Z off

P(I)Z on P“) pv off, Z on P(l) pu off, Z on P“) pv pu off, Z on P(l) Zpv off, Z on P(l) Zpp off, Z on P(l) Zpv pu off, Z on
P(l) pvon, Z on P(l) pu_on, Z on P(l) pv pu on, Z on P(l) Zpv_on, Z on P(l) Zpp _on, Z on P(l) Zpv pu on, Zon

- P: DV off, Z off P: P off, Z off P: PV ol off, Z off P: Zpv off, Z off P: Zpu_ off, Z off P: Zpvpu off, Z off
P" ovon zofr P" ou onzofr P” pvou on.zofr P" zov on.zofr P" zou on.zofr P" Zpvpu on.zoft

P#Z " P: pv off, Z on P: pu off, Z on Pz pv pu off, Z on P: Zpv off, Z on P: Zpy off, Z on P: Zpv pu off, Z on
P pvon, Z on P pu on, Z on P pv pu on, Z on P Zpv on,Zon P Zp on,Zon P Zpv pu on, Zon

Table 4.1

State probabilities of the variables Z, p,, p,, p,p,, Zp,..Zp, and Zp,p, .

State Probability P (t)

The probability P = p that the variable p, is ‘off” during Z first ‘off” state

1 p, ,off /Z off

can be expressed as
R (t)=Pr{T,>tAN,(t)=0,2,4,..] (4.2.130)

where the term at the right hand side accounts for the probability that the variable Z is
‘off’, that is the time variable t is before the first R, driven event and simultaneously

between an even-number and the subsequent odd-number Poisson-driven event with

parameter v .
The probability density P, can be expressed as

R(0)=(1-F, ()3 (1+¢™) 42130

The variables appearing at the right hand side of the above expression are defined in
Figure 4.2.7

4 + R, drivenevent

b ld

O R drivenevent

v

© N, drivenevent

O—

[
»

Figure 4.2.7
Definition of the variable t appearing in equation (4.2.131).
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State Probability P, (t)

The probability P, = Pp( )Off jz.on that the variable p, is ‘off’ during Z first ‘on’ state

can be expressed as

Pr{T# e(uu+du)AN, (t)=0AT, >t}+

M- 10

PrqT, e(u,u-+du) ZdRV (&E+AE)AN, (t=&)=0AT, >t g}

[
Il
=]

(4.2.132)

where the terms at the right hand side account for the probability that the variable Z is
in its first ‘on’ state, that is the time variable t is between the first R# event and the

subsequent R, event and simultaneously no events driven by the Poisson process with

parameter v has occurred.
The probability density P, can be expressed as

g, (u)e™du(1-F (t))du+ (4.2.133)

o, () ()¢9 (1-F (t-¢))dzdu,

The variables appearing at the right hand side of the above expression are defined in
Figure 4.2.8

4 + R, drivenevent

O R drivenevent

|4

© N, drivenevent

L4 14 \,

»
»

O

Figure 4.2.8

Definition of the variables appearing in equation (4.2.133).
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State Probability P, (t)

The probability P, = Pp( )Oﬁ jz.0n that the variable p, is ‘off” during Z first ‘on’ state

can be derived as

P

5(t)=

t
ZPr{T# e(U,u+du) AT, >tA N#(t—u):0,2,4..}+

ZPr{T e (u,u+du) ZdRV rf§+d§)/\TV>t—§/\Nﬂ(t—U)=O,2,4.}
(4.2.134)

where the terms at the right hand side account for the probability that the variable Z is
in its first ‘on’ state, that is the time variable t is between the first R, driven event

and the subsequent R, event and simultaneously between an even—number and the
subsequent odd-number Poisson-driven event with parameter x .
The state probability P, can be expressed as

P.(t)=

(1+e‘2”(t )(1-F, (1)) du+ (4.2.135)
j E(1-F (t—§))%(1+e‘2“(“u))d§du.

o
o

The variables appearing at the right hand side of the expression above are defined in
Figure 4.2.9

+ 4 R, drivenevent
o R, drivenevent
+ Nﬂ drivenevent
@) 0O JJ Jap n
=V v "
& vt

Figure 4.2.9

Definition of the variables appearing in equation (4.2.135).
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State Probability P (t)

The probability P, = P[fl)pwoﬁ 2o that the variable p, o, is ‘off’ during Z first ‘off’

state can be expressed as

P7 = P;Eﬂ)p,,,off/z,off = PZ(I())ff - Pp(wl?o ,on/Z ,off (42136)
The conditional probability /f )p on/zoff €an be found as
1
Pp(%,ia./,on/z,oﬁ (t) dt =
t
ZPI’{N”E(U,U+dU)/\Tﬂ>t/\Nv(t)=l}+ (42137)
=0

tZPr{N” e(u,u+du)/\Tﬂ >t/\ide e(§,§+d§)/\ N, (t—§)=1,3,.}

u=0 £=0

where the terms at the right hand side account for the probability that the variable Z is
in its first ‘off” state and simultaneously p,p, is ‘on’, that is the time variable t is

between the first N, driven event and the subsequent R, event and simultaneously

between an odd-number and the subsequent even-number Poisson-driven event with

parameter v .
The probability density Pp(,l,)pv,on 2o €an be expressed as

Pp(:)p ,on/Z off (t) =
j u)duve " (1-F (1))+ (4.2.138)
0

i (31" )azau(1-r v)

The variables appearing at the right hand side of the expression above are defined in
Figure 4.2.10
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+ R, driven event

o R, drivenevent

+ Nﬂdrivenevent
L—(D LL) - >

Figure 4.2.10

Definition of the variables appearing in equation (4.2.138).

State Probability P, (t)

The state probability P, = P[E:)pwoﬁ jzon that the variable p, p, is ‘off” during Z first
‘on’ state can be expressed as

PS = Pp(:)pv,off/z,on = Pz(jc))n - P/EJ);JV,on/Z,on (42139)
the state probability Pp(i)pv on/z.on an be found as
P;giLv,on/Z,on (t) =
t T, e(u,u+du)a
Prs & +
% ' ZdRﬂ e(uy,u, +dul)/\TNV (&,4+dE)AT, >tAN (t-u)=13,..
U =u
u
T e(u,u+du)/\ZOde €(&E+AEAT, (§-6.6-E+dE)
ZPr : -
D AR, e (U, U +du ) AT, >t=EAN  (t-u,)=1,3,..
u;=u
(4.2.140)

where the terms at the right hand side account for the probability that the time
variable t is between the first N, driven event following the first R, driven event and

the subsequent N, event and simultaneously between an even-number and the
subsequent odd-number Poisson-driven event with parameter x .

The probability density p) can be expressed as

Pupy,0N/Z,0N
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Pp(liyv,on/z,on (t) =

t

(1= ), 0 o 60 Tt 02 o s

0

ngﬂ (u)[u h(&)g, (& —5)(1 ~F, (t —5))d§ﬁ h, (ul)%(l_e—h(t—ul))dglj]du

(4.2.141)
The variables appearing at the right hand side of the expression above are defined in
Figure 4.2.11

* <4 R, drivenevent
O R, drivenevent

© N, drivenevent
+ N, drivenevent

Figure 4.2.11
Definition of the variables appearing in equation (4.2.129).

Let us express the joint probability density of the state vector X in terms of the joint
probabilities

p(x,%2)=> p"(x%2) (4.2.142)

Where Z= (Z’pv’p,u’pvp;ﬂzpv’ Zpyﬂ vapy) *
Due to the fact that there is a finite probability of the system being in a deterministic
state from the initial time to the first impulse, the joint probabilities p(l) (X, )'(,Z) to

p(g) (X, X, Z) given that no impulses have occurred, can be expressed as
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(4.2.143)

1) 1) 1 1
off — I:)pv,on/z,off - Ppﬂ.on/z,off + Pp#pv,on/Z,Off

=P
F_)Z t) = P(l) P(l)

p,.on/Z.offt — T p,p,.0n/Z off

F_>3 (t = P(l) n/Z ,off P(l)

= T pup, .o/ Z off

P, 0N/ Z off (4.2.144)
p) +pW

on p,on/Zon " T p,.on/Z.on PP, 0N/ Z 00

p®

pyon/Zon 1 p,p,.0n/Z 00

1) —pWM

Pu ,on/Z,on PuPy ,on/Z.,on

If the joint probabilities p(g) (X, )'(,Z) to p(”’) (X, )'(,Z) given that the first impulse has

occurred are expressed as
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p(g)(xXz) P (t) f(x,%)
(2)6(p,)5(p,)8 p;,pv)5(2pv 5(zp,)5(2p,p.).
p’ (XXZ) Ro (1) £ (x.%)
5(2)8(p,~1)8(p )(pupv)5 2p,)5(20,)5(2p,.),
p" (x,%,2)=R, (t) f¥ (x,%)
5(2)8(p.)5(p,=1)8(,p.)8(20.)5(20,)5(20,p.).
p" (%, %,2) =P, (t) £ (x,%)
5(2)8(p.~1)8(p,=1)8(p,p. ~1)5(20,)8(20,) 5 (20,p, ),
p"™ (x,%,2) =Py (t) £V (x.x)
5(2-1)5(p.)8(p,)5(p,p.)(20.)6(2,)5(20,p.).
p" (x, ,2)=h (t)f(é)(x,x)
(z-1)8(p, -1)5(p,)5(p.p, )0 (20, -1)5(2p,)5(2p,p.);

) X,

(

S

p(ls)(xxz) P (t)f( (%,X)

S

p(lé)(x X z) P (t)f(s)(x, X)

(z-1)3(p,)5(p,-1)5(p.0.)5(20,)5(20,-1)5(2p,0,). (4.2.145)

5(z-1)6(p, (pﬂ— )5(pﬂpv—1) (zp, —1)5(Zp!l—1)5(2pﬂpv—l),

where

Py () =Prar =P} vzt =Py anizat + Po g anizon = Pr (1) + P (1) =Py (1)

Po (t) =Py, on/z.on Ppip oz =P (t)+ P (t)

P.(t)= PY ozt = Po g oz =—Ps(t)+Po (1)

Po () =Py, anvzan =—Ro (1) +Prlgg (1) (4.2.146)
P (t) =P o =P} onzion = Poy owzon + P onizon = Pa () + Py (1) =Py, ()

Re() =P} ovzon = Pr s avzen = B ()= Pi(1)

Rs(t)=P} aizan =P ponzan = P (1) = P (1)

Re (1) =P} anzon =R (1) + P (1)

Let us consider the case of zero initial conditions. Since the auxiliary variables are
zero-one processes, the following relationships hold
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E[X*X'Z"[=E[X*X'Z ;E[X*X'p," |=E[X*X'p, |;
E[X*X'p,"]= E[XkX'pﬂ];E[XkX'(Zp‘,)m}z E[X"X'Zp,];
E[ka'(zpﬂ)m]: E[XKX'Z,O#];E[XKX'(vap#)m:|= E[X*X'Zp,p, ];

(4.2.147)
The unconditional moment of order p =m+n involving displacements and velocity

can be expressed in terms of the conditional moments of the same order as follows
8 . .

E[XmX”]:ZPJ.+8E(‘)[XmX”] (4.2.148)
j=1

The unconditional moment of order p+1=m+n+1 involving also the auxiliary
variables can be expressed in terms of the conditional moments of order p as follows

E(]+4)[X mX n];

4

E[X"X"Z]=)_P,,,
j=1

E[X"X"p,1=PEPIX"X"]+P,EV[X"X"]+

PLECIX"X ]+ REVIX"X"];

E[X"X"p,]=P,EP[X"X"]+P;E®[X"X"]+

P.EV[X™X"]+RE®IX"X"]; (4.2.149)

E[X"X"p,p,]1=P,EY[X"X"]+BEP[X"X"];

E[X"X"Zp,]=P,E[X"X"]+R,EV[X"X"];

E[me anﬂ]: |;)15E(7)[X m)'(n]+ Pl()E(S)[X mX n];

E[X"X"Zp,p,]1=PEY[X"X"].

The following relationships between the conditional moments of order p=m+n and the
unconditional ones can be derived:
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EV[X"X"]=
E[X"X"]-E[X"X"p, |-E[X"X"p, [+ E[ X"X"Z |-E[ X"X"Zp, |+ E[XmX"Zp‘,pﬂ]'
5 ;

9

EW[X"X"]=

E[X"X"p, |-E[X"X"Zp, |-E[ X"X"p,p, |+E[ X"X"Zp,p, |
Py ’

EV[X"X"]=
E[X"X"p, |[-E[X"X"Z |+ E[ X"X"Zp, |+ E[X"X"Zp, |-E[X"X"Zp,p, |
5 ;

11
E[XmX”pvp#]—E[XmX"Zp‘,pﬂ]
P, ’
E[X"X"Z|-E[X"X"Zp, |-E[X"X"Zp, |+ E[X"X"Zp,p, |
5 ;

13

E[X"X"Zp, |-E[X"X"Zp,p, |
P ’

E[X"X"Zp, |-E[X"X"Zp,p,]
> ;

15
E[X"X"Zp,p, ]
. .

16

EY[X"X"]=

E“’[xmxn]:

EV[X"X"]=

EV[X"X"]=

EY[X"X"]=

(4.2.150)
Let us perform the ordinary cumulant neglect closure on the eight sets of conditional
moments. The conditional moments of order s higher than the closure order r are
expressed in terms of conditional moments of order lower than r, which in turn can be
derived as functions of the unconditional moments of order lower than r through
equation (4.2.150). From equations (4.2.148) and (4.2.149), the modified closure
scheme for the unconditional moments becomes

7" B'er" | ' Bex q+8

E[X,..X,]= ZMZH{ZH{(\B'\ D) S (E, )}}

7" B'erx q+12

E[xl--.xsz1=qi HZZH{ZH{(\B'\ D < (Ew)ﬂ;

ieB"

E[X,..X.p,]= ZPMZH{Z {(‘B‘ 1) )\B‘\*lpl (Ezq)ﬂ;

7" B'er’ | 7 Ble 20+8
B"
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7" Bex’ 7 Blex q+
ieB"

E[X,..X;p,]1= Z 2q+9ZH{ZH|:(‘BI‘ 1) ‘B 1F’zl 9(Ezq+l)ﬂ+

zn{zn[(\sﬂ D0 (& ﬂ}

7" B'ex" | ' B'er'
ieB"

7" B'ex" | ' Bler 49+8

e[ Xnp, ] 5P an{zn[(xs'\ (e, %

E[X,..X.Zp,]=P, ZH{ZH{(‘B" 1) \B IPI (EG)HJr

7" B'ex" | 7' Bler' 14

7" B'ex” | ' Ber

ZH{ZH[(\B'\ ) o >}}

ieB"

er 7 Bler 15

E[X,..X.Zp, =P ZH{ZH[(‘B" (-1 1) IPI (E)}]

ZH&ZH[(\B'\ (1) IPL(E)}}, 4.2.151)

7" B'ex" | ' B'er'
ieB"

er 7 B'er

E[X,..X.Zp,p, |= %ZH{ZH{(‘B" -1)° IPL(E)H

where

jeB' jeB'

{Hx} {H‘ pv}E:ngp#}E{ngz}_%nszm}E{ijzpvpﬂ}

jeB' jeB'

EZE_HXJ.,DV}E[ Xijv:—El:Hijvpﬂ}—i-E{HXijVpH:|;
_E{HX :|+E{HX Zp:|+E{HX Zpﬂ} {HXijVpﬂ}

jeB! jeB! jeB!

E;=E ijz}— El:HXijV:|— E{HXijﬂ:|+ E{HXij‘,pﬂ}
_jeB' jeB' jeB' jeB'

E,=E HXijV} E{ijzpvpﬂ}
_jEB'

jeB'
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E, = EI:HXJ.Z,D”}— E|:HXijvp”}

jeB' jeB'

ES = E|:ijzpvpy:|’

jeB'

4.2.7 Numerical analysis

Consider a Duffing oscillator governed by the stochastic differential equation (4.2.1).
The data assumed for the Duffing oscillator is:@m, =1s",¢ =0.05 and £=0.5.

Computations have been performed for the load processes I and II characterized in
sections (4.2.3) and (4.2.4). The values of the parameters of the driving Erlang and
Poisson processes have been assumed in such a way that the mean arrival rate of the

impulses L = 0.0082—7[ :

E[T] o,
The random magnitudes of impulses have been assumed as centralized, Rayleigh
distributed random variables. The values of the parameter o, = E [PZ ] /\J2 for each

case have been chosen so that the stationary value of the variance of the response of
the corresponding linear oscillator has a unit value.

To verify the approximate analytical results, the response moments have been
obtained from Monte Carlo simulations based on averaging 30000 of the response
sample functions, obtained by numerical integration of the equation of motion (4.2.1)
with the aid of the computer program Mathematica.

The analytical results are obtained by applying the ordinary and the modified
cumulant-neglect closure techniques, neglecting in both schemes the cumulants above
the second order. Transient response statistics of the non-linear oscillator are shown in
Figures 4.2.12.and 4.2.13.

In the case of low mean arrival rate of impulses, the application of higher order
ordinary cumulant neglect closure does not lead to improved results since it becomes
numerically unstable. The modified scheme, on the other hand, provides very good
predictions of the transient mean value and variance with a second order closure.
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Figure 4.2.12 (a)
Mean value of the response of a Duffing oscillator to a random train of impulses driven by the non-
Erlang process I (section 4.2.3) driven by two Poisson processes with parameters p=0.05 and v=1
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Figure 4.2.12 (b)
Variance of the response of a Duffing oscillator to a random train of impulses driven by the non-Erlang
process I (section 4.2.3) driven by two Poisson processes with parameters p=0.05 and v=1
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Figure 4.2.13 (a)
Mean value of the response of a Duffing oscillator to a random train of impulses driven by the non-
Erlang process II (section 4.2.4) driven by an Erlang process with parameters u=0.1 and 1=2 and a
Poisson process with parameter v=1
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Figure 4.2.13 (b)
Variance of the response of a Duffing oscillator to a random train of impulses driven by the non-
Erlang process II (section 4.2.4) driven by an Erlang process with parameters u=0.1 and 1=2 and a
Poisson process with parameter v=1
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CONCLUSIONS

A non-diffusive Markov processes approach has been developed for dynamic systems
under a class of renewal-driven trains of impulses. The considered class embraces
Erlang-driven impulse processes as well as the impulse processes obtained by selecting
impulses from an Erlang-driven train. In the latter model the impulses are selected with
the aid of an auxiliary jump, zero-one, stochastic variable governed by a stochastic
differential equation driven by two independent Erlang processes. The underlying
counting process has been proved to be a renewal (non-Erlang) process. The proof hinges
on the evaluated probability density functions of the first and second waiting times.
Conversion of the non-Markov problem for the original state vector driven by a renewal
impulse process into a Markov problem is performed by means of augmenting the state
vector by auxiliary variables which are the jump stochastic processes. A novel technique
of recasting an Erlang renewal process in terms of the Poisson process has been
developed, where the jump processes are zero-one. Thus for the Erlang renewal impulse
processes the augmented state vector is driven by single Poisson process and for the non-
Erlang impulse process it is driven by the independent Poisson processes. Consequently
the augmented state vectors are non-diffusive Markov processes.

For non-linear dynamic systems with polynomial non-linearities under both Erlang
renewal impulses and the considered class of non-Erlang impulses the technique of
equations for moments combined with a novel modified cumulant neglect closure
technique has been devised. This technique is based on conditioning the joint probability
density function of the augmented state vector on the ‘on’ and ‘off’ states of the auxiliary
zero-one variables. The form of the joint probability density function allows to derive the
relationships between the unconditional and conditional moments. Application of the
ordinary cumulant neglect closure scheme to the conditional moments leads to the
modified cumulant neglect closure technique. The validity and accuracy of the developed
technique has been examined at the example of the Duffing oscillator. The equations for
moments have been closed at the second-order moments level, with the aid of the
ordinary and modified cumulant neglect closure techniques and the results have been
verified against Monte Carlo simulations. The results have shown that for highly non-
Gaussian case of sparse trains of impulses (low mean arrival rate) the modified closure
scheme provides more accurate results than the ordinary cumulant neglect closure.
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APPENDIX

The coefficients appearing in the equation (3.2.52), giving the probability density of the interarrival
times for the non-Erlang renewal process 1V, take on the following form

y“[y-zv]v[s;a“-2;§v-45;3v3+9pv3+?4v4]_3 ) P i-2v? 2 ey )
) Tl 28 v -bpd -3 ’ 2_-2[.-1—v]2[2n3+n2v—6m3-4v3]’
st (1004053 3204 1) PRT I STV

) fie- VPR [ei? 42 3022 ;4=[+t-Y]2[#+Y]2[4#3+3Y2];
_p“v[pnv][ﬁp“+2;§v-45;?v3-9pv3+74v4]_B ) B ir-2vv? peav? _
) DlprrP 268 e vaspr? -3 ’ 6__2[#+v]3[2p3—p9v-6w3+4v3]’

5 =

Bs
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