LIST OF FIGURES

Figure 1: Diagram showing an interactive model for thermal coal production2	4
Figure 2: Production cost ranges of various thermal coal export mines in South Africa. (Wood Mackenzie, June 2012)3	0
Figure 3: Supply FOB Cost curve per country (Schernikau et al., 2010)	1
Figure 4: Self-regulating cycle in (coal) raw-material supply; after: Thieleman et al. (2007)	3
Figure 5: Illustrating distribution of the remaining reserves in the R.S.A. (Spurr 2006)) 5
Figure 6: Illustrating the rank distribution in South Africa (Spurr 2006)	5
Figure 7: Logistical railway infrastructure within the coalfields of South Africa. Eberhard (2011)	7
Figure 8: Water precipitation and scarcity map in South Africa	2
Figure 9: Indicative carbon capture and storage costs according to the IEA (2012). 4	4
Figure 10: Classification of trace elements according to their behaviour during combustion or gasification (picture originally from Couch, 1995)	7
Figure 11: Thermal export and domestic coal price trends (Wood-Mackenzie 2012).	0
Figure 12: Bell distribution of costs of thermal export mines in South Africa. From Data Wood Mackenzie Operation Cost Report September 20125	1
Figure 13: Bell distribution of costs of thermal export mines plant production costs in South Africa. From Data Wood Mackenzie Operation Cost Report September 2012	2
Figure 14: Division of core samples for analysis from ISO 141805	5
Figure 15: Continuous reconciliation of resources (de Klerk, 2006)	6
Figure 16: Illustrating the coal formation with rank classification (after Spurr 2006). 7	0
Figure 17: Mayer Curve evaluation for coal (by Dryzmala 2007)7	2
Figure 18: Illustrating the geometrical characteristics of the M-curve derived by King (1990) and the approach at a 20% ash content	3

Figure 19: Illustrating different levels of beneficiation. Adapted from Leonard (1988).
Figure 20: Illustrating the washability densimetric comparison between typical South African, Indian and German coal. (Kamal for the UK Department of Trade & Industry, 2001)
Figure 21: Dryzmala, Optimal range of particle size for separation by different separation methods. *low intensity (LI), ** high intensity (HI), *** high gradient magnetic field (HG))
Figure 22: Epm performance of separators on various feed size distributions78
Figure 23: Illustration of Rotary Breaker operation (after Wills 2011)
Figure 24: Illustration of a Bradford type Rotary Breaker (after Wills 2011)
Figure 25: Illustration of Double Roll Crusher (after Wills 2011)
Figure 26: Double Roll crusher with hood removed illustrating crusher teeth. (Shumar crushers)
Figure 27: Illustration of Jaw Crusher (Telsmith crushers)
Figure 28: Illustration of a Single Roll Crusher (Leonard 1991)
Figure 29: American Ring Roll Crusher (www. osborne.co.za)
Figure 30: Picture of Bivi-TEC Screen. de Korte, G.J. (2008)
Figure 31: Illustrating the predicted epm's of dense medium cyclones and baths respectively with varying feed sizes (Wills 2006)
Figure 32: Illustrating the Batac Coal Jig (Saunders 2002)
Figure 33: Illustration of a ROM Jig96
Figure 34: Characteristics utilised by dry coal beneficiation techniques
Figure 35: Multicell Schematic Diagram (Opperman 2002) 101
Figure 36: Conceptual 3D layout of Briquette Plant
Figure 37: Illustration of chemical cleaning plant using high temperature chemical cleaning (Leonard 1991)
Figure 38: Schematic diagram of the zones in tailings and waste rock dumps 106
Figure 39: Trace element reduction compared to ash and forms of sulphur reduction (Akers 1998)

Figure 40: Trace element cleaning potential coal beneficiation for Pittsburgh coals (Davidson 1998)
Figure 41: Schematic of mineral transformation during combustion and gas-solid partitioning of trace elements (Thorwardt 2007)
Figure 42: Influence of lower quality coal on total coal utilisation chain (Juniper,1995)
Figure 43: Wet FGD Scrubber Module, from Gupta (2007) 111
Figure 44: Metal Oxides in the ash acting as bulk to ash deposits and unwanted bonding/fluxing agents (after Gupta 2007)
Figure 45: Thermal coal supply and demand curve. D = Demand Curve Scenario, S = Supply Curve Scenario, P = Price Scenario
Figure 46: Influence of pollution externalities on marginal cost. MC=Marginal Cost of Pollution, MB=Marginal Benefit of Pollution, Q=Optimal Quantity of Pollution (after Dahl 2007)
Figure 47: Coal LCA System, adapted from National Renewable Energy Laboratory – Report on Life Cycle Assessment of Coal Fired Power Generation Plants (NREL 2007)
Figure 48: Witbank coalfield No. 4 seam stratigraphy 122
Figure 48: Witbank coalfield No. 4 seam stratigraphy
Figure 48: Witbank coalfield No. 4 seam stratigraphy 122 Figure 49: Waterberg Upper Ecca Stratigraphy, (Dorlant, 2012) 124 Figure 50: Illustrating the conveyor falling stream mechanical sampler and mechanism. 126
Figure 48: Witbank coalfield No. 4 seam stratigraphy122Figure 49: Waterberg Upper Ecca Stratigraphy, (Dorlant, 2012)124Figure 50: Illustrating the conveyor falling stream mechanical sampler and mechanism.126Figure 51: Illustrating the sampling point from sampler discharge.127
Figure 48: Witbank coalfield No. 4 seam stratigraphy 122 Figure 49: Waterberg Upper Ecca Stratigraphy, (Dorlant, 2012) 124 Figure 50: Illustrating the conveyor falling stream mechanical sampler and 126 Figure 51: Illustrating the sampling point from sampler discharge. 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127
Figure 48: Witbank coalfield No. 4 seam stratigraphy 122 Figure 49: Waterberg Upper Ecca Stratigraphy, (Dorlant, 2012) 124 Figure 50: Illustrating the conveyor falling stream mechanical sampler and 126 Figure 51: Illustrating the sampling point from sampler discharge. 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 53: Flow diagram for division of test samples for analysis from ISO 13909-4. 129
Figure 48: Witbank coalfield No. 4 seam stratigraphy 122 Figure 49: Waterberg Upper Ecca Stratigraphy, (Dorlant, 2012) 124 Figure 50: Illustrating the conveyor falling stream mechanical sampler and 126 Figure 51: Illustrating the sampling point from sampler discharge. 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 53: Flow diagram for division of test samples for analysis from ISO 13909-4. 129 Figure 54: Illustrating sample splitting and crushing/liberation to facilitate preparation for various analyses. 130
Figure 48: Witbank coalfield No. 4 seam stratigraphy 122 Figure 49: Waterberg Upper Ecca Stratigraphy, (Dorlant, 2012) 124 Figure 50: Illustrating the conveyor falling stream mechanical sampler and 126 Figure 51: Illustrating the sampling point from sampler discharge. 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 53: Flow diagram for division of test samples for analysis from ISO 13909-4. 129 Figure 54: Illustrating sample splitting and crushing/liberation to facilitate preparation for various analyses. 130 Figure 55: Washability equipment and testing method (from Habetinejad, 2012) 131 131
Figure 48: Witbank coalfield No. 4 seam stratigraphy 122 Figure 49: Waterberg Upper Ecca Stratigraphy, (Dorlant, 2012) 124 Figure 50: Illustrating the conveyor falling stream mechanical sampler and 126 Figure 51: Illustrating the sampling point from sampler discharge. 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers 127 Figure 53: Flow diagram for division of test samples for analysis from ISO 13909-4. 129 Figure 54: Illustrating sample splitting and crushing/liberation to facilitate preparation 130 Figure 55: Washability equipment and testing method (from Habetinejad, 2012) 131 131

Figure 58: Experimental procedure during release analysis
Figure 59: The QEM SCAN microscope used for the minerogical investigations 134
Figure 60: Illustration of the ICP MS spectrometer at UIS analytical services 135
Figure 61: Illustrating the microwave digestion experimental setup
Figure 62: Illustration of the petrographic microscopes and vitrinite reflectance measurement configuration respectively
Figure 63: Summary of samples, test work and analyses
Figure 64: Typical ROM Coal PSD of the Witbank Coalfield No. 4 Seam
Figure 65: Typical ROM Coal PSD of the Waterberg Upper Ecca
Figure 66: Partitioning of arsenic content comparison
Figure 67: Partitioning of Mercury content comparison
Figure 68: Reduction potential of various trace elements though beneficiation - Witbank Coalfield No. 4 Seam
Figure 69: Reduction potential of various trace elements - Waterberg Upper Ecca150
Figure 70: Composite washability of WITBANK COALFIELD NO. 4 SEAM
Figure 71: Composite washability of WATERBERG UPPER ECCA 151
Figure 72: Composite washability of (Vereeniging) ROM
Figure 73: Witbank Coalfield No. 4 Seam ash grade-recovery curve from release analysis
Figure 74: Witbank Coalfield No. 4 Seam CV grade-recovery curve from release analysis
Figure 75: Trace element reduction through froth flotation of Witbank Coalfield No. 4 Seam ultra-fine material
Figure 76: Bulk mineralogy of the Witbank Coalfield No. 4 Seam samples
Figure 77: QEMSEM images of pyrite in Witbank Coalfield No. 4 Seam
Figure 78: QEMSEM images of kaolinite in Witbank Coalfield No. 4 Seam
Figure 79: QEMSEM images of dolomite & dolomite in Witbank Coalfield No. 4 Seam
Figure 80: Bulk mineralogy of the Waterberg coal samples

Figure 81: Liberation of pyrite in the Waterberg Upper Ecca
Figure 82: QEMSEM images of pyrite distribution in Waterberg Upper Ecca 165
Figure 83: QEMSEM images of kaolinite distribution - Waterberg Upper Ecca 166
Figure 84: QEMSEM images of finely distributed calcite & dolomite in the Waterberg Upper Ecca
Figure 84: Fuel ratio vs. Vitrinite content for WITBANK COALFIELD NO. 4 SEAM and Waterberg Upper Ecca
Figure 85: Carbominerite distribution at various washing RD's for the Witbank Coalfield No. 4 Seam and Waterberg Upper Ecca
Figure 86: Maceral distribution at various density fractions – Witbank Coalfield No. 4 Seam
Figure 87: Vitrinite and CV relationship through liberation analysis for the Witbank Coalfield No. 4 Seam
Figure 88: Maceral distribution at various density fractions –Waterberg Upper Ecca
Figure 89: Vitrinite and CV relationship in Waterberg Upper Ecca through liberation analysis
Figure 90: Partitioning of microlithotypes in Witbank Coalfield No. 4 Seam
Figure 91: Partitioning of microlithotypes in Waterberg Upper Ecca
Figure 92: Trace element origin and associations
Figure 93: Sulphur distribution at various thermal coal export grades (4000-6000 NAR CV) – Witbank Coalfield No. 4 Seam
Figure 94: Witbank Coalfield No. 4 Seam Pyrite Association
Figure 95: Witbank Coalfield No. 4 Seam Kaolinite Association
Figure 96: Witbank Coalfield No. 4 Seam Vitrinite & Organic Sulphur Association 176
Figure 97: Sulphur distribution at various thermal coal export grades (4000-6000 NAR) - Waterberg Upper Ecca
Figure 98: Waterberg Upper Ecca Pyrite Association
Figure 99: Waterberg Upper Ecca Kaolinite Association
Figure 100: Waterberg Upper Ecca Vitrinite & Organic Sulphur Association 179

Figure 101: Washability of Hg and As in Witbank Coalfield No. 4 Seam	180
Figure 102: Washability of Hg and As in Waterberg Upper Ecca	181
Figure 103: Witbank Coalfield No. 4 Seam M-Curves at various liberation size fractions	185
Figure 104: Waterberg Upper Ecca M-Curves at various liberation size fractions .	186
Figure 105: Witbank Coalfield No. 4 Seam Pyrite M-Curve	187
Figure 106: Witbank Coalfield No. 4 Seam Kaolinite M-Curve	187
Figure 107: Witbank Coalfield No. 4 Seam Calcite M-Curve	188
Figure 108: Waterberg Upper Ecca Pyrite M-Curve	189
Figure 109: Waterberg Upper Ecca Kaolinite M-Curve	189
Figure 110: Waterberg Upper Ecca Calcite M-Curve	190
Figure 111: Witbank Coalfield No. 4 Seam Vitrinite M-Curve	191
Figure 112: Witbank Coalfield No. 4 Seam Liptinite M-Curve	192
Figure 113: Witbank Coalfield No. 4 Seam Reactive Inertinite M-Curve	192
Figure 114: Witbank Coalfield No. 4 Seam Inertinite M-Curve	193
Figure 115: Witbank Coalfield No. 4 Seam Inertite M-Curve	193
Figure 116: Witbank Coalfield No. 4 Seam Minerite M-Curve	194
Figure 117: Waterberg Upper Ecca Vitrinite M-Curve	195
Figure 118: Waterberg Upper Ecca Liptinite M-Curve	195
Figure 119: Waterberg Upper Ecca Reactive Inertinite M-Curve	196
Figure 120: Waterberg Upper Ecca Inertinite M-Curve	197
Figure 121: Waterberg Upper Ecca Inertite M-Curve	197
Figure 122: Waterberg Upper Ecca Minerite M-Curve	198
Figure 123: Sulphur Recovery curve for Witbank Coalfield No. 4 Seam in various liberation size fractions.	200
Figure 124: Mayer curve distribution of sulphur for the Witbank Coalfield No. 4 Seam.	201

Figure 125: Sulphur Recovery curve for WBUE in various liberation size fractions.
Figure 126: Mayer curve distribution of sulphur for the Waterberg Upper Ecca 203
Figure 127: Energy Recovery potential at various liberation size fractions - WC4S204
Figure 128: Combustible Recovery potential in various liberation size fractions WC4S
Figure 129: Energy recovery potential for different liberation size fractions in the WBUE
Figure 130: Combustible Recovery at various liberation size fractions
Figure 131: Conventional Single Stage dense medium processing circuit with Wemco Drum and DSM Cyclone
Figure 132: Double Stage conventional dense medium processing design with Wemco Drums and DSM Cyclones
Figure 133: Conventional dense medium DSM Cyclones circuit
Figure 134: Dry screening and wet de-stoning circuit for domestic power consumption
Figure 135: Complete dry processing circuit using either XRT sorting or the FGX separator (mainly for domestic production)
Figure 136: Combined Dry and Wet processing circuit for coarse and medium size feed respectively
Figure 137: Conventional circuit to treat fines (-0.5+0.15 mm), using a screen bowl centrifuge
Figure 138: Proposed Three Product Cyclone circuit. Note that the primary product drain and rinse screen can be modified to allow for a split screen. The split screen would allow for the discharge of the primary and middling product separately 215
Figure 139: Proposed conventional fines processing circuit to treat the -0.5+0.15 mm and -150 micron material
Figure 140: Advanced circuit optimum sulphur and ash reduction
Figure 141: Witbank Coalfield No. 4 Seam mineral rejection curve
Figure 142: Waterberg Upper Ecca mineral rejection curve
Figure 143: Forms of sulphur washability distribution for the Waterberg Upper Ecca

Figure 144: Forms of sulphur washability distribution for the Witbank Coalfield No. 4 seam
Figure 145: Distribution of Nitrogen on the washability curve, with Volatile content and Fuel Ratio
Figure 146: Witbank Coalfield No. 4 Seam Carbon Emissions per Energy Unit gained - Wet processing
Figure 147: Witbank Coalfield No. 4 Seam Carbon Emissions per Energy Unit gained - Dry
Figure 148: Waterberg Upper Ecca - Carbon Emissions per Energy Unit gained – Wet
Figure 149: Relative Operating & Maintenance costs in a coal fired power station for different quality coals (Juniper 1995)
Figure 150: FGD Modelled OPEX at various product sulphur contents - Witbank Coalfield No. 4 Seam Export scenario
Figure 151: FGD Modelled OPEX at various product sulphur contents - Waterberg Upper Ecca Export scenario
Figure 152: FGD Modelled OPEX at various product sulphur contents - Free State Domestic Power supply scenario
Figure 153: Steam Coal Index FOB Prices for RB1, until July 2012235
Figure 154: Techno-economic approach for process models
Figure 155: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for Conventional Dense Medium Cyclones for the coarse and medium sized fractions
Figure 156: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for Conventional Dense Medium Bath for the coarse fraction & DSM Cyclones for the medium fraction
Figure 157: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for Conventional Jigs for the coarse fraction & DSM Cyclones for the medium fraction
Figure 158: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for dry FGX Separation for the coarse fraction & DSM Cyclones for the medium fraction

Figure 164: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for dry screening of medium to fines fraction with coarse fraction beneficiation with a XRT Sorter
Figure 165: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Lower Grade Thermal Products as a Secondary Product (5500-4500 NAR), and a 6000 NAR Primary Product
Figure 166: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for Conventional Dense Medium Cyclones
Figure 167: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for Jigs & Cyclones
Figure 168: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for FGX & Cyclones
Figure 169: Waterberg Upper Ecca -Economic Value vs. Energy Recovery for XRT Sorter & Cyclones
Figure 170: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for Conventional Dense Medium Cyclones for domestic thermal production
Figure 171: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for Conventional Dense Medium Bath & Cyclones for domestic thermal production 255
Figure 172: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for Jigs & Cyclones for domestic thermal production

Figure 173: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for FGX & Cyclones for domestic thermal production
Figure 174: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for XRT Sorter & Cyclones for domestic thermal production
Figure 175: Free State (Vereeniging) - Economic Value vs. Energy Recovery for Conventional Dense Medium Cyclones for domestic thermal production
Figure 176: Free State (Vereeniging) - Economic Value vs. Energy Recovery for Conventional Dense Medium Cyclones & Baths for domestic thermal production . 258
Figure 177: Free State (Vereeniging) - Economic Value vs. Energy Recovery for Water Jigs & Dense Medium for domestic thermal production
Figure 178: Free State Vereeniging - Economic Value vs. Energy Recovery for Dry FGX Separator & Dense Medium for domestic thermal production
Figure 179: Free State (Vereeniging) - Economic Value vs. Energy Recovery for Dry XRT Sorting & Dense Medium for domestic thermal production
Figure 180: Low versus High Grade Thermal Coal Export positives and negatives.
Figure 181: Illustrating the analysis algorithm required to adequately address the determination of product to be produced