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processes. The first - necrosis - follows a complete overwhelming of the homeostatic processes
in the cell and is associated with swelling and then disruption of the nuclear endoplasmic
reticular and cell surface membranes. The cell splits open, spilling its contents into the
extracellular space. The second cell death process is called apoptosis which is an-active suicide
in which the cell uses its own cellular mechanisms to initiate a series of molecular events that
lead to the cell digesting away many of its components from the inside (Fawcett et al., 2001).

These two processes are depicted diagrammatically in Figure 2.1 below.

NECROSIS APOPTOSIS

Figure 2.1: The appearance of necrosis and apoptosis (Fawcett, Rosser & Dunnett, 2001)

MECHANISMS OF RECOVERY IN STROKE

Recovery can be divided roughly into two stages. During first stage recovery the acute effects
of metabolic and membrane failure, ionic and transmitter imbalance, haemorrhage, cellular
reaction and oedema need to be stabilised. The re-establishment of circulation in areas of
partial ischemia or ischemic penumbra and reperfusion mmﬁ thrombolysis are possible early
mechanisms of recovery (Wise, 2003). Damage can be reversed if blood flow can be elevated
bevond anoxic values and many of the neuroprotective agents try minimising damage by

protecting cells in the penumbra until oxygenation can be restored. The. first few days and
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aphasia (Kertesz, 2007). Anomic aphasia is also often observed (Alexander & Loverme, 1980).
Lesions in the putamen and anterior internal capsule produce slow, anomic, dysarthric speech
and with posterior extension, comprehension can also be impaired with paraphasic speech and
jargon (Damasio, Damais, Rizzo, Varney & Gersh, 1982).
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Figure 2.2: Major lobes of the brain with location of important language areas.

In addition to the aphasia syndromes that result from stroke, there are a number of acquired
dyslexias (reading disorders) as well as agraphias (writing disorders) that are associated with
aphasia. Three major psycholinguistic classifications of reading disorders have been identified:
deep dyslexia, surface gu@mim and phonologic alexia (Webb, 2005). In deep dyslexia, there is a
disruption of semantic representations and impaired grapheme-to-phoneme conversion.
Therefore, errors are semantically related to the target, the patient can not Rmﬁ pseudowords,
there is little effect ow length or spelling regularity but a pronounced effect of frequency (Webb,
2005). In surface dyslexia, the impairment rests in an inability to access the grapheme input
lexicon or the representations within. Errors are phonologically related to the target and there is
a pronounced effect of spelling regularity (Webb, 2005). Phonologic alexia represents an
impairment of grapheme-to-phone conversion and patients exhibit an inability to read

pseudowords and difficulty with low frequency words (Webb, 2005).

In a similar vein, McNeil and Tseng (2005) describe agraphia subtypes based on

neuropsychological/psycholinguistic models. .In lexical or surface agraphia, difficulty arises
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Figure 3.1: Lateral and medial views of the frontal lobes and prefrontal cortex (Mesulam, 2002)

First, sensory information in post-Rolandic areas is provided to the orbitofrontal cortical region.
This area is extensively connected to the hypothalamus, amygdala, hippocampus and also the
other paralimbic cortices in the temporal pole, insula, parahippocampal gyrus and cingulate
gyrus (Mesulam, 2002). The significance of these connections is that they are thought to be
critical for the regulation of emotional consequence and motivational value of stimuli. Second,
the _..:Eém:ﬁo_mﬁwm_ prefrontal region via its strong bidirectional connections can exercise a
top-down modulation of activity for the purpose of strategic judgment, encoding, and retrieval
of information (Petrides & Pandya, 2002). Third, the dorsolateral prefrontal region is critical for
monitoring of information in working memory, necessary for high level planning and
manipulation of information. The interaction between the mid-dorsolateral prefrontal region
and the memory system may be exercised via the dorsal limbic pathway that links reciprocally

with the hippocampal system. The posterior dorsolateral frontal cortex appears to underlie
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Figure 3.2: Neurochemical transmission in the PFC (Amsten & Robbins, 2002)

3.3.3.1 Dopamine

Working memory is a critical component of EF and has significant impact on the ability of
individuals to participate meaningfully in conversation. The two elements integral to working
mermory, sensory retrospective memory and sensory prospective memory, allow individuals to
remember the past and engage in preparation to act, respectively (Fuster, 1995; Goldman-Rakic,
1993). People are able to construct hypotheses about how to act in the present and future based
on previous experience, thus if one is unable to look back, one is unable to look forward,
remaining instead in the dislocated present (Barkley, 1998). Therefore, patients with working
memory deficits may display a tendency to be more influenced by context and external stimuli
and less controlled by internally represented w:mowammo:u giving rise to a temporal myopia
(Stuss & Benson, 1986). In conversation, this would result in impaired ability to maintain the

thread of discourse, particularly in multi-party interactions, difficulty integrating new
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central nervous system (Genton & Van Vleyman, 2000). Figure 4.2 below depicts its chemical

structure and its primary pharmacologically inactive metabolite LO57.
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Figure 4.1: The chemical structure of LEV and its metabolite LO57.

LEV was initially evaluated in models of cognitive impairment with the primary objective of
finding a drug more effective than the better known piracetam {Genton & Van Vleymen, 2000),
which has a history of use in patients with aphasia (see discussion above). In preclinical
efficacy trials, LEV has been found to improve leaming and memory in animals with
underlying cerebral ischemia (Gobert, Verloes & Gower. 1988 cited in Genton & Van

Vleymen, 2000).

Despite early data that demonstrated that piracetam demonstrated greater and more consistent
cognitive benefits than LEV (Genton & Van Vieymen, 2000), more recent studies have started
looking at the influence of LEV on cognitive function. Loring and Meador (2004) listed
improvements in cognition, concentration as well as increased alertness in children with
epilepsy treated with LEV. These improvements occurred in several patients without improved
seizure control. Frings, Quiske, Wagner, Carius, Homberg, and Schulze-Bonhage, (2003),
demonstrated statistically significant improvements in selective attention, verbal working
memory and verbal fluency as well as in a visual planning task in eighteen epileptic patients
introduced to LEV. A case study published by Canevini, Chifari and Piazzini (2002), described
the disappearance of stuttering behaviours and improvements in verbal fluency in a 34-year-old
woman treated with LEV. They postulated that LEV might influence the metabolism of the
language area thereby increasing verbal fluency. A particularly interesting case study was

Rﬁonma‘. by Kossoff, Boatman and Freeman (2003). A S5-year-old with Landau-Klefiner
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6.2.4 Results with reference to site of lesion
A growing body of neuro-physiological research using functional imaging techniques such as
IMRI and PET scans has also contributed to the neurclogical sites implicated in performance of
a variety of neuropsychological and executive tasks (Damasio & Anderson, 2003). Several
strands of research have convincingly argued that cognitive control is not attributable to a single
unitary sysiem but rather emerges from the interaction of separable systems, which are
responsible for complementary control functions (Gruber & Goschke, 2004). These systems
include the prefrontal cortex, inferior parietal cortex and anterior cingulate cortex (Abutalebi &
Green, 2007). The chief neural component is the prefrontal cortex which supports several
classes of executive disorders, which have been differentiated roughly into behavioural and
cognitive domains (Godefroy & Stuss, 2007). This distinction is compatible with two major
functional/anatomical dissociations within the frontal lobes (Stuss & Levine, 2002). Cognitive
aspects of EF are mainly supported by the circuit from the dorsolateral frontal cortex, involved
primarily with spatial and conceptual reasoning and the behavioural component by the lateral
E._uma and medial frontal/anterior cingulated circuits involved in emotional processing. Exactly
how these discrete regions and their differential connections contribute to the executive role of
the prefrontal cortex remains to be delineated (Elliot, 2003). Figure 6.1 from Abutalebi and

Green (2007) presents a schematic model of the areas involved in executive control.
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