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Abstract

Continued fractions have been extensively studied in number-theoretic ways.

In this text, we will illuminate some of the geometric properties of contin-

ued fractions by considering them as compositions of Möbius transformations

which act as isometries of the hyperbolic plane H2. In particular, we examine

the geometry of simple continued fractions by considering the action of the

extended modular group on H2. Using these geometric techniques, we prove

very important and well-known results about the convergence of simple con-

tinued fractions. Further, we use the Farey tessellation F and the method of

cutting sequences to illustrate the geometry of simple continued fractions as

the action of the extended modular group on H2. We also show that F can be

interpreted as a graph, and that the simple continued fraction expansion of

any real number can be can be found by tracing a unique path on this graph.

We also illustrate the relationship between Ford circles and the action of the

extended modular group on H2. Finally, our work will culminate in the use of

these geometric techniques to prove well-known results about the relationship

between periodic simple continued fractions and quadratic irrationals.
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Chapter 1

Hyperbolic Geometry

1.1 Historical Background

Definition 1.1 A continued fraction is a fraction of the form

b0 +
a0

b1 +
a1

b2 +
a2

b3 +
.. .

(1.1)

where the ai and bi, for i = 0, 1, 2, ..., may be real or complex numbers.

In this text, we will concern ourselves mainly with continued fractions in

which ai = 1 for all i and bi ∈ Z+ for all i ≥ 1, and b0 ∈ Z. Such continued

fractions are called simple continued fractions and have been extensively stud-

ied by number-theorists ([1],[2],[3]). The geometric properties of continued

fractions are apparent from the fact that a continued fraction is a composi-

tion of a finite or infinite sequence of Möbius maps of the form z 7→ bi + ai

z

for i = 0, 1, 2, ..., evaluated at a suitable z. In particular, a simple continued

1



CHAPTER 1. HYPERBOLIC GEOMETRY 2

fraction can be expressed as a composition of a sequence of Möbius maps of

the form z 7→ bi + 1
z

for i = 0, 1, 2, ..., evaluated at z = ∞. In 1938, L.R.

Ford ([4]) discussed the geometry of continued fractions by representing each

rational number as a circle in the upper half plane. In 1942, J.F. Paydon and

H.S. Wall ([6]) discussed continued fractions as sequences of Möbius maps.

A subsequent, more comprehensive text by Jones and Thron ([5]) also dis-

cussed the treatment of continued fractions as compositions of sequences of

Möbius maps. Indeed, continued fraction theory has been revolutionized by

considering continued fractions from this geometric point of view.

In recent years, mathematicians such as Alan Beardon, Caroline Series, Svet-

lana Katok and Ian Short have contributed to the theory of continued frac-

tions by considering the action of particular groups of Möbius transformations

on the boundaries of H2 and H3 ([7],[8],[9],[12]). The aim of this text is to

explore some of the developments that have arisen from studying simple con-

tinued fractions in this way.

1.2 Theoretical Background

1.2.1 Definition of a Continued Fraction

We call (1.1) a simple continued fraction if ai = 1 for all i, and bi ∈ Z+ for

all i ≥ 1, and b0 ∈ Z. If ai = 1 for all i and b0 ∈ Z and bi ∈ R+ for all i ≥ 1

then we call (1.1) a positive continued fraction. If ai = 1 and bi ∈ Z for all i,

then we call (1.1) an integer continued fraction.

Definition 1.2 The quantities b0, b1, b2, ... of the simple continued fraction
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given by

b0 +
1

b1 +
1

b2 +
.. . +

1

bn

(1.2)

are called the partial quotients.

A continued fraction may be finite or infinite, and we may denote a simple

continued fraction by its sequence of partial quotients. That is, if (1.2) is

a finite simple continued fraction then it is represented by [b0, b1, b2, ..., bn],

where n ∈ N. If (1.2) is an infinite simple continued fraction, then it is

represented by [b0, b1, b2, ...].

1.2.2 Möbius Transformations

The results stated in this subsection are well-known and can be found in the

literature on Möbius transformations. We state these results for completeness

as we will rely on them throughout this text. The proofs of many of the

theorems are omitted, but can be found in texts such as [10], [11] and [14].

We will represent the extended complex plane C∪ {∞} by C∞. Similarly, we

represent the extended real line R ∪ {∞} by R∞.

Definition 1.3 A Möbius transformation (or Möbius map) is a map of the

form z 7→ az+b
cz+d

from C∞ to C∞ where a, b, c, d ∈ C and ad − bc 6= 0. We

denote the group of all Möbius maps by M.

Definition 1.4 The General Linear Group, GL(2,C), is the group of 2 × 2

complex matrixes


 a b

c d


 where ad − bc 6= 0, and I denotes the 2 × 2

identity matrix.
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Since the mapping z 7→ az+b
cz+d

is equivalent to the mapping z 7→ λaz+λb
λcz+λd

for

λ 6= 0, we identify the matrices

 a b

c d


 and


 λa λb

λc λd


 for λ 6= 0. Thus any matrix A ∈ GL(2,C) can

be multiplied by a suitable λ so that det(λA) = 1, and we say that A has

been normalized.

We note that a circle C in C∞ can assume one of two possible forms:

1. C is a Euclidean circle;

2. C is a Euclidean line with ∞ attached.

Hence we refer to inversions in circles and lines as reflections. If S(a, r) is a

circle with center a ∈ C and radius r > 0, then reflection in S(a, r) is given

as φS(a,r)(z) = a + r2 (z−a)
|z−a|2 . Reflection in the line

L(a, t) = {z ∈ C : (z · a) = t} ∪ {∞},

where t ∈ R, is given by φL(a,t)(z) = z − 2[(z · a)− t] a
|a|2 .

Example : Let S(0, 1) = {z ∈ C : |z| = 1} be the unit circle centred at

0; <(z) = a be the line through a ∈ R orthogonal to the real axis and let

=(z) = 0 be the real axis in C∞. Reflection of a point z in the circle S(0, 1)

is given by J1(z) = z
|z|2 = 1

z̄
, with J1(0) = ∞ and J1(∞) = 0. Reflection in

=(z) = 0 is given by J2(z) = z − 2i=(z) = z̄, with J2(∞) = ∞. Reflection

in the line <(z) = a is given by Ja(z) = z − 2(<(z) − a) with Ja(∞) = ∞.

We note that the mappings ψ(z) = 1
z

and τ(z) = z + 1 can be expressed as

ψ = J1J2 = J2J1 and τ = Ja+ 1
2
Ja for any a ∈ R.

Definition 1.5 The General Möbius Group, denoted GM(Rn
∞), is the group

consisting of finite compositions of reflections in spheres or planes in Rn
∞. The
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Möbius Group is the subgroup of GM(Rn
∞) consisting of compositions of an

even number of reflections in lines or circles in Rn
∞.

Theorem 1.6 When n = 2 the Möbius Group is M. Thus a Möbius trans-

formation acting in Rn
∞ is a finite composition of an even number of reflections

in spheres or planes. [14]

In fact, these transformations can be written as compositions of rotations,

dilations, translations and the complex inversion z 7→ 1
z

in C∞.

Theorem 1.7 M∼= GL(2,C)/{λI : λ 6= 0}

Definition 1.8 For f ∈M with f(z) = az+b
cz+d

and ad− bc = 1, we define the

norm of f as ||f || =
√
|a|2 + |b|2 + |c|2 + |d|2.

Definition 1.9 The fixed points of f ∈ M are all the values of z such that

f(z) = z.

Theorem 1.10 If f ∈M \ {1M} then f has one or two fixed points.

Theorem 1.11 If {z1, z2, z3} and {w1, w2, w3} are triples of distinct points in

C∞, then there is a unique Möbius map f such that f(zj) = wj for j = 1, 2, 3.

Theorem 1.12 For any three distinct points z1, z2, z3 ∈ C∞, there is a

unique circle which passes through z1, z2 and z3. Further, if f ∈ M and

C is a circle in C∞, then f(C) is also a circle in C∞. In particular, any circle

in C∞ is the image under some f ∈M of the real axis.
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Definition 1.13 The cross-ratio of four distinct points z1, z2, z3, z4 ∈ C∞ is

defined as

(z1, z2; z3, z4) =
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)
.

Theorem 1.14 Cross-ratios are invariant under Möbius transformations. That

is, for any f ∈M we have

(f(z1), f(z2); f(z3), f(z4)) = (z1, z2; z3, z4).

Definition 1.15 The trace of a Möbius map f(z) = az+b
cz+d

, where ad−bc = 1,

is the quantity a + d denoted tr(f). Further, tr2(f), the square of the trace

of a Möbius map f 6= 1M, is used to classify f as follows:

1. f is called parabolic if and only if tr2(f) = 4

2. f is called elliptic if and only if tr2(f) ∈ [0, 4)

3. f is called loxodromic if and only if tr2(f) 6∈ [0, 4]

4. f is called strictly loxodromic if and only if tr2(f) < 0 or tr2(f) 6∈ R.

Example : Let f(z) = eiθz where eiθ 6= 1. This is a Euclidean rotation

through θ radians. Since eiθ 6= 1, we must have θ 6= 2kπ, k ∈ Z. Then

f is associated with the matrix


 eiθ 0

0 1


 which can be normalized to the

matrix


 e

iθ
2 0

0 e−
iθ
2


. That is:

f(z) =
eiθz + 0

0z + 1
=

e
iθ
2 z + 0

0z + e
−iθ
2

.
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We thus have

tr2(f) = (e
iθ
2 + e

−iθ
2 )2 =

(
2 cos

(
θ

2

))2

= 4 cos2

(
θ

2

)
.

Since 0 ≤ cos2 ( θ
2
) < 1 with θ 6= 2kπ for all k ∈ Z , we have 0 ≤ 4 cos2( θ

2
) < 4.

That is, 0 ≤ tr2(f) < 4 and so f is elliptic.

Example : Let f(z) = λz where λ ∈ C and |λ| 6= 0, 1. Here we have f

associated with the matrix


 λ 0

0 1


 which can be normalized to the matrix

±


√

λ 0

0 1√
λ


. Then tr2(f) = (

√
λ + 1√

λ
)2 = λ + 1

λ
+ 2. If λ ∈ R+ then

√
λ ∈ R and λ + 1

λ
> 2 and hence tr2(f) > 4 and so f is loxodromic. This is

easily seen since if λ+ 1
λ
≤ 2 then λ+ 1

λ
−2 ≤ 0 and so λ2−2λ+1 = (λ−1)2 ≤ 0.

This is a contradiction if λ ∈ R+ and λ 6= 1. If λ 6∈ R+ then tr2(f) 6∈ R and

so f is strictly loxodromic.

Definition 1.16 Two Möbius maps g and h are conjugate in M if there

exists a map f ∈M such that h = fgf−1.

Theorem 1.17 The trace of a Möbius map is invariant under conjugation.

The conjugacy classes of a Möbius map can also be used to classify Möbius

maps into the same categories as in Definition 1.15, and we thus have the

following theorem ([12]).

Theorem 1.18 Let g ∈M and g 6= 1M.

The following are equivalent:

1. (a) g is parabolic;
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(b) g is conjugate in M to the translation z 7→ z + 1;

(c) g has exactly one fixed fixed point ζ and gn → ζ pointwise on C∞.

The following are equivalent:

2. (a) g is elliptic;

(b) g is conjugate in M to a Euclidean rotation z 7→ eiθz, where

eiθ 6= 1;

(c) g has two fixed points, and gn(z) converges if and only if z is a

fixed point of g.

The following are equivalent:

3. (a) g is loxodromic or strictly loxodromic;

(b) g is conjugate in M to the map z 7→ λz, where |λ| 6= 0, 1;

(c) g has two fixed points u and v which can be chosen so that if z 6= v

then gn(z) → u as n →∞.

Proof: Definition 1.15 implies that if g 6= 1M then exactly one of 1(a), 2(a) and

3(a) is true. Since the trace of a Möbius map is invariant under conjugation

(Theorem 1.17), we have that 1(b) implies 1(a), 2(b) implies 2(a) and 3(b)

implies 3(a).

We know that from Theorem 1.10 that g has either one or two fixed points,

so if g has exactly one fixed point, then g is conjugate to a map which has ∞
as its only fixed point. That is, g is conjugate to a translation. If g has two

fixed points then g is conjugate to a map which fixes 0 and ∞. That is, g is

conjugate to a map of the form z 7→ λz, λ 6= 0, 1. Hence at least one of 1(b),

2(b) and 3(b) is true, and so 1(a) is equivalent to 1(b), or 2(a) is equivalent

to 2(b) or 3(a) is equivalent to 3(b).
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Suppose that 1(b) holds. Then for some h ∈ M we have g = hfh−1, where

f(z) = z+1. We have that ∞ is the only fixed point of f. Further, for all z we

have fn(z) = z +n →∞ as n →∞, so that gn(z) = hfn(h−1(z)) → h(∞) as

n → ∞. Thus g has exactly one fixed point, namely h(∞) = ζ, and gn → ζ

pointwise on C∞. This shows that 1(b) implies 1(c).

Now suppose that 2(b) holds. Then for some h ∈ M we have g = hfh−1,

where f(z) = eiθz. Note that f(0) = 0 and f(∞) = ∞, so g has two fixed

points. Since eiθ 6= 1, we have fn(z) = einθz and fn(z) has no limit for z 6= 0

and z 6= ∞. Thus gn converges only at its limit points. This shows that 2(b)

implies 2(c).

Now suppose that 3(b) holds. Then for some h ∈ M we have g = hfh−1,

where f(z) = λz, |λ| 6= 0, 1. Then f(z) fixes 0 and ∞, and we have fn(z) =

λnz. If |λ| < 1, then λnz → 0 as n → ∞ for all z 6= ∞. If |λ| > 1 then

λnz →∞ as n →∞ for all z 6= 0. Thus g has two fixed points u and v which

can be chosen so that if z 6= v then gn(z) → u as n →∞. Hence 3(b) implies

3(c).

We know that at most one of 1(a), 2(a) and 3(a) is true. Since we have that

1(b) implies 1(a), 2(b) implies 2(a), and 3(b) implies 3(a), we have that at

most one of 1(b), 2(b) and 3(b) can hold. Now we also have that 1(b) implies

1(c), 2(b) implies 2(c), and 3(b) implies 3(c), so at least one of 1(c), 2(c) and

3(c) must hold. But at most one of 1(c), 2(c) and 3(c) can hold. Therefore

exactly one of 1(c), 2(c) and 3(c) holds. Therefore 1(b) is equivalent to 1(c)

and hence to 1(a); 2(b) is equivalent to 2(c) and hence to 2(a), and 3(b) is

equivalent to 3(c) and hence to 3(a).

Definition 1.19 With the labeling that we have given in the above theorem,

we call u the attracting fixed point and v the repelling fixed point of the
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loxodromic map g. That is, gn(z) → u as n → ∞ for all z 6= v, while

gn(v) = v.

1.2.3 The Action of Möbius Maps on H2

In this subsection, we introduce the upper half plane H2 and the group of

Möbius maps which preserves H2. We introduce the hyperbolic plane metric

which, together with H2, become a model of the hyperbolic plane.

Definition 1.20 The upper-half plane H2 is defined as

H2 = {z ∈ C : =(z) > 0}.

We are interested in Möbius maps that leave H2 invariant. Some of the results

in this subsection are stated without proof. These proofs can be found in texts

that include an introduction to hyperbolic geometry, such as [9], [10], [13] and

[14].

Definition 1.21 PSL(2,R) = {z 7→ az+b
cz+d

: a, d, c, d ∈ R, ad− bc = 1}.

Definition 1.22 We define hyperbolic length in H2 by the formula

ds2 =
dx2 + dy2

y2
=
|dz|2
y2

,

where z = x + iy. In particular, if f : [a, b] → H2 is a piecewise differentiable

path with f(t) = x(t) + iy(t) then its hyperbolic length `(f) is given by

`(f) =

∫ b

a

√(
dx
dt

)2
+

(
dy
dt

)2
dt

y
=

∫ b

a

∣∣dz
dt

∣∣ dt

y
=

∫ b

a

|dz|
y

=

∫ b

a

|dz|
=(z)

.
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Theorem 1.23 Hyperbolic length is invariant under the elements of PSL(2,R).

Example : Suppose 0 < a < b, where a, b ∈ R, and consider the piecewise

C1 path f : [a, b] → H2 given by f(t) = it. Then f([a, b]) is the segment of I,

the positive imaginary axis, between ia and ib. Further, we have =(f(t)) = t

and |f ′(t)| = 1, so

`(f) =

∫

f

1

=(z)
|dz| =

∫ b

a

1

t
dt = [ln(t)]ba = ln(b)− ln(a) = ln

(
b

a

)
.

Hyperbolic lines (also called H-lines) are the paths of shortest hyperbolic

length between two points in H2. That is, H-lines are hyperbolic geodesics.

The next theorem establishes that there is a unique path of shortest hyper-

bolic length between any two points in H2. This uniqueness leads to an

understanding of the nature of H-lines and H-line segments.

Theorem 1.24 There is a unique H-line segment (geodesic) joining two dis-

tinct points in H2. The H-line segments are arcs of circles with centre on the

real axis, or segments of Euclidean lines perpendicular to the real axis.

Definition 1.25 Let G be a group and X a set. G acts on X if

1. g(x) ∈ X for g ∈ G, x ∈ X

2. g1g2(x) = g1(g2(x)) for g1, g2 ∈ G

3. 1G(x) = x, where 1G is the identity element in G.

G acts transitively on X if for all x1, x2 ∈ X, there exists a g ∈ G such

that x2 = g(x1). G acts doubly transitively on X if, whenever (x1, x2) and

(y1, y2) are pairs of distinct elements of X, there exists some g ∈ G such that

g(xi) = yi for i = 1, 2.
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As in Euclidean geometry, there is a unique H-line between any two distinct

points in H2. Two H-lines are parallel in H2 if they are disjoint in H2. The

positive imaginary axis I is an H-line and plays a pivotal role in the develop-

ment of the ideas that follow.

Theorem 1.26

1. PSL(2,R) acts transitively on H2.

2. PSL(2,R) acts doubly transitively on R∞.

3. PSL(2,R) acts transitively on the set of all H-lines.

Definition 1.27 The hyperbolic distance ρ(z1, z2) between two points

z1, z2 ∈ H2 is the hyperbolic length of the unique H-line segment joining z1

to z2. That is, ρ(z1, z2) = inf{`(f)}, where the infimum is taken over all

piecewise C1 paths f : [a, b] → H2 such that f(a) = z1 and f(b) = z2.

Theorem 1.28 H2, together with the metric ρ, is a metric space.

The elements of PSL(2,R) are isometries of H2. However, there are isome-

tries of H2, such as z 7→ −z̄, that are not in PSL(2,R). In particular, we

have the following result:

Theorem 1.29 IsomH2, the set of all isometries on H2, is generated by

Möbius transformations from PSL(2,R) together with the map z 7→ −z̄.

The group PSL(2,R) is a normal subgroup of index 2 of IsomH2.

We have seen that if ia and ib, with b > a, are two points on I then we have

that ρ(ia, ib) = ln( b
a
). Using this fact together with Theorem 1.23, we have

the following result:
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Lemma 1.30 Let z, w ∈ H2 with z 6= w, and let the H-line joining z and w

have endpoints z∗, w∗ ∈ R∞, chosen in such a way that z lies between z∗ and

w. Then there exists a unique g ∈ PSL(2,R) such that g(z∗) = 0, g(w∗) = ∞
and g(z) = i. We also have g(w) = ri, where r > 1, and ρ(z, w) = ln(r).

Theorem 1.31 Let z, w ∈ H2, then we have the following:

1. tanh 1
2
ρ(z, w) =

∣∣ z−w
z−w̄

∣∣

2. sinh 1
2
ρ(z, w) = |z−w|

2
√
=(z)=(w)

Theorem 1.32 If f ∈ PSL(2,R) with f(z) = az+b
cz+d

then

||f ||2 = 2 cosh ρ(i, f(i)) = 2 + 4 sinh2 ρ(i, f(i))

where ||f ||2 = |a|2 + |b|2 + |c|2 + |d|2.

Proof: First observe that f(i) = ai+b
ci+d

= (ac+bd)+i
|c|2+|d|2 .

Also observe that

(ac + bd)2 + 1 = (ac + bd)2 + (ad− bc)2

= |a|2|c|2 + |b|2|d|2 + |a|2|d|2 + |b|2|c|2

= (|a|2 + |b|2)(|c|2 + |d|2)

From Theorem 1.31, we have that

sinh 1
2
ρ(z, w) = |z−w|

2(=(z)=(w))
1
2
, which gives us

cosh2 1
2
ρ(z, w) = 1 + sinh2 1

2
ρ(z, w) = 1 + |z−w|2

4=(z)=(w)
.

From the hyperbolic trigonometric identities, we have for all A that

1 + cosh 2A = 2 cosh2 A and cosh2 A− sinh2 A = 1.

Thus 1 + cosh 2(1
2
ρ(z, w)) = 2 cosh2 1

2
ρ(z, w) implies

1 + cosh ρ(z, w) = 2
(
1 + |z−w|2

4=(z)=(w)

)
which implies
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cosh ρ(z, w) = 1 + |z−w|2
2=(z)=(w)

which implies

2 cosh ρ(z, w) = 2 + 4 sinh2 1
2
ρ(z, w).

So, setting z = i and w = f(i), we obtain

2 cosh ρ(i, f(i)) = 2 + 4 sinh2 1
2
ρ(i, f(i)). This gives us

cosh ρ(i, f(i)) = 1 + 2 sinh2 1

2
ρ(i, f(i))

= 1 +
|i− f(i)|2

2=(i)=(f(i))

= 1 +

∣∣i− ai+b
ci+d

∣∣
2
(

1
|c|2+|d|2

)

= 1 +

∣∣∣i− (ac+bd)+i
|c|2+|d|2

∣∣∣
2

|c|2+|d|2

= 1 +
1

2

(
(−1 + |c|2 + |d|2)2

|c|2 + |d|2 +
(ac + bd)2

|c|2 + |d|2
)

= 1 +
1

2

(
(−1 + |c|2 + |d|2)2

|c|2 + |d|2 +
(|a|2 + |b|2)(|c|2 + |d|2)− 1

|c|2 + |d|2
)

=
1

2
(|a|2 + |b|2 + |c|2 + |d|2).

Hence 2 cosh ρ(i, f(i)) = |a|2 + |b|2 + |c|2 + |d|2.
Hence 2 cosh ρ(i, f(i)) = 2 + 4 sinh2 ρ(i, f(i)) = |a|2 + |b|2 + |c|2 + |d|2 as

required.

1.3 The Modular Group and the Extended

Modular Group

We now introduce a subgroup of PSL(2,R), namely the Modular group

PSL(2,Z), denoted Γ. We also introduce the Extended Modular group,

denoted Γ̃. The Modular and Extended Modular groups are useful in the
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study of simple continued fractions, as any simple continued fraction can be

expressed as a composition of Extended Modular maps.

Definition 1.33 Γ = {z 7→ az+b
cz+d

: a, b, c, d ∈ Z, ad− bc = 1} = PSL(2,Z)

Definition 1.34 Γ̃ = {z 7→ az+b
cz+d

: a, b, c, d ∈ Z, |ad− bc| = 1}

Elements of Γ are called Modular maps (or Modular transformations) while

elements of Γ̃ are called Extended Modular maps (or Extended Modular trans-

formations).

Definition 1.35 SL(2,Z), the Special Linear Group, is the group of non

singular 2× 2 integer matrices with determinant 1.

Theorem 1.36 Γ is a group under composition of maps where each element

z 7→ az+b
cz+d

in Γ can be associated with a non-singular matrix


 a b

c d


 in

SL(2,Z). ([9],[12])

Theorem 1.37 Γ is generated by the mappings τ and ϕ where τ(z) = z + 1

and ϕ(z) = −1
z
. We write Γ = 〈τ, ϕ〉. ([9],[12])

Theorem 1.38 Γ̃ is a group under the composition of maps and Γ̃ = 〈τ, ψ〉
where τ(z) = z + 1 and ψ(z) = 1

z
. Γ is a normal subgroup of Γ̃. In particular

ϕ = τψτ−1ψτ and Γ̃ = Γ ∪ Γψ. ([12])

Consider the maps of the form sbi
(z) = bi + 1

z
= τ biψ(z) for bi ∈ Z. We

note that while τ ∈ Γ ∩ Γ̃ the mapping ψ ∈ Γ̃ \ Γ. When studying simple
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continued fractions, it is thus more natural to consider the action of the

Extended Modular group on H2.

We denote the composition of a sequence of n such maps by

S[bn](z) = sb0sb1sb2 · · · sbn(z) = b0 +
1

b1 +
1

b2 +
.. . +

1

bn +
1

z

(1.3)

Note that the sequence of exponents of the τ ’s gives the sequence of partial

quotients of the simple continued fraction of ω where ω = S[bn](∞) and

S[bn](∞) = b0 +
1

b1 +
1

b2 +
.. . +

1

bn

(1.4)

We note that the map ψ ∈ Γ̃ does not preserve H2. This is a complicating

feature in the development of the geometry of simple continued fractions in

H2, but we can find a novel way of changing the geometry in order to avoid

this problem.

1.3.1 The Vertical Plane in Hyperbolic Space

The vertical plane H⊥ is the intersection of hyperbolic 3-space H3 with the

vertical Euclidean plane through R∞. Let j = (0, 0, 1) ∈ H⊥. This plane is an

isometric image of H2 where we map x+ iy in H2 to x+ jy in H⊥. We will see

that H⊥ is left invariant by an extension of ψ and is thus a more appropriate

region in which to study simple continued fractions.

Definition 1.39 Hyperbolic space, denoted H3, is defined as

H3 = {(x1, x2, x3) ∈ R3 : x3 > 0}
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together with the metric ρ′ of hyperbolic space given by |dx|
x3

where x =

(x1, x2, x3) ∈ R3. ([12])

Definition 1.40 The vertical hyperbolic plane H⊥ in H3 is given by

H⊥ = {(x1, x2, x3) ∈ R3 : x2 = 0, x3 > 0}.

A quarternion is a quantity of the form w = x1 + x2i + x3j + x4k where

x1, x2, x3, x4 ∈ R and we set i2 = j2 = k2 = ijk = −1. We denote the set

of all quarternions by Q. If x3 = x4 = 0 then w = x1 + ix2 ∈ C, so C

can be considered as a subset of Q. By considering the complex number as

quarternions, Theorem 1.32 can be generalized to H3 as follows ([12]):

Theorem 1.41 Suppose g(z) = az+b
cz+d

where a, b, c, d ∈ C, ad − bc = 1 and

z ∈ H3 . Then ||g||2 = 2 cosh ρ′(j, g(j)) where ||g|| = |a|2 + |b|2 + |c|2 + |d|2.

Theorem 1.42 C∞ is the boundary of H3, and the action of a Möbius map

on C∞ is in fact the action of a conformal isometry of H3 on the boundary of

H3. [11]

1.3.2 The Poincaré Extension

Henri Poincaré (1854 - 1912) observed that each Möbius map g acting on C∞
has a natural extension to a Möbius map g̃ acting on R3

∞. We have already

noted that a Möbius map can be expressed as the composition of finitely

many reflections in circles or generalized circles. Poincaré showed that for

each reflection in R2 we define a reflection in R3 that leaves the plane x3 = 0,

as well as each of the upper and lower half spaces, invariant. In this way
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each Möbius map acting on C∞ can be regarded as a composition of a finite

number of reflections in R3. This extension depends on the embedding x 7→ x̃

of R2 into R3, where x = (x1, x2) and x̃ = (x1, x2, 0). [14]

Definition 1.43 For each reflection g acting in C∞, we define a reflection

g̃ acting in R3
∞ as follows: if g is a reflection in the circle S(a, r) of radius

r centred at a = (a1, a2), then g̃ is a reflection in the sphere S(ã, r) in R3,

where ã = (a1, a2, 0). If g is a reflection in a line

L(a, t) = {x ∈ R2 : (x · a) = t} ∪ {∞}

then g̃ is a reflection in the plane

P (ã, t) = {x ∈ R3 : (x · ã) = t} ∪ {∞},

where t ∈ R. The extensions g̃ are called the Poincaré Extensions.

It is seen that if x = (x1, x2) ∈ R2 and (y1, y2) = y = g(x) for some reflection

g in C∞, then the Poincaré extension g̃ of g satisfies

g̃(x1, x2, 0) = (y1, y2, 0) = g̃(x).

These extensions leave the complex plane x3 = 0 and each of the half planes

x3 > 0 and x3 < 0 invariant. This invariance proves that a Poincaré extension

of a composition of reflections exists and is unique. [14]

Further we observe that if gi and fj are reflections in C∞, then g̃ifj = g̃if̃j.

Thus if g and f are in M with g = g1g2 · · · gn and f = f1f2 · · · fm where the

gi and fj are reflections in C∞ for i = 1, 2, · · · , n and j = 1, 2, · · · ,m, then

g̃f = (g̃1g̃2 · · · g̃nf̃1f̃2 · · · f̃m) = g̃f̃
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Theorem 1.44 If g̃ is reflection in the sphere S(ã, r) with radius r and centre

ã, where a ∈ R2, then

|g̃(y)− g̃(x)|
|y − x| = r2

( 1

|y − a|2−
2(x− a) · (y − a)

|x− a|2|y − a|2 +
1

|x− a|2
) 1

2
=

r2

|x− ã||y − ã| .

[14]

Example : We have noted that the complex inversion ψ(z) = 1
z

is the

composition of the reflections J1(z) = z
|z|2 = 1

z̄
and J2(z) = z − 2i=(z) = z̄.

Thus ψ̃ = J̃1J2 = J̃1J̃2. Hence for w = (x1, x2, x3) we have

ψ̃(w) = ψ̃(x1, x2, x3)

= J̃1J̃2(x1, x2, x3)

= J̃1(x1,−x2, x3)

=

(
x1

x2
1 + x2

2 + x2
3

,
−x2

x2
1 + x2

2 + x2
3

,
x3

x2
1 + x2

2 + x2
3

)
.

In particular, when x2 = 0 we obtain

ψ̃(w) = ψ̃(x1, 0, x3) =

(
x1

x2
1 + x2

3

, 0,
x3

x2
1 + x2

3

)
.

This is precisely the reflection of the point (x1, 0, x3) in the unit hemisphere

centred at the origin. Thus the Poincaré extension ψ̃ of the mapping ψ, when

restricted to H⊥, is equivalent to inversion in the unit semi-circle centred at

the origin, and therefore leaves the plane H⊥ invariant.

It can be similarly established that the Poincaré extension of the mapping

τ = Ja+ 1
2
Ja for any a ∈ R is the mapping τ̃(x1, x2, x3) = (x1 + 1, x2, x3) and

acts like the translation (x1, 0, x3) 7→ (x1 + 1, 0, x3) and leaves H⊥ invariant.

Thus we have that ψ̃ and τ̃ preserve H⊥, which is an identical copy of H2 in

H3. In what follows we will identify τ̃ with τ ; ψ̃ with ψ; H⊥ with H2, and
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the boundary of H⊥ in H3 with R∞. Further, we identify I with the vertical

axis in H⊥. The tessellation described in Chapter 3, as well as the simple

continued fraction expansions of all the real numbers, will be considered in

this way. That is, as existing in this identical copy of the hyperbolic plane.

Since Γ̃ is generated by τ and ψ, we can now regard Γ̃ as a group of hyperbolic

isometries acting on hyperbolic space H3, with the extended real line and the

plane H⊥ being left invariant by the Poincaré extensions of elements in Γ̃.

1.3.3 A tessellation of H2

Definition 1.45 Let G be a group of homeomorphisms of a topological space

X. We say that two points x and y in X are equivalent if y = g(x) for some

g in G. An open subset D of X is a fundamental domain for G if every point

of X is equivalent to at most one point in D, and to at least one point in D̄,

the closure of D in X. ([12])

The following lemma provides a test to determine whether a set is a funda-

mental domain for the action of a group G on X.

Lemma 1.46 Let G be a group of homeomorphisms of a topological space

X onto itself, and let D be an open subset of X. Then D is a fundamental

domain for G if the following two conditions are satisfied [12]:

1. g ∈ G and g 6= 1G implies that g(D) ∩D = Φ

2.

X =
⋃
g∈G

g(D̄)
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Proof: Assume that D satisfies (1) and (2). Suppose that x is equivalent to

the points y1 and y2 in D. Then y1 and y2 are equivalent, so there is some g

in G such that y2 = g(y1). Now (1) implies that g = 1G, and so y1 = y2, and

this shows that every point of X is equivalent to at most one point in D. It

follows from property (2) that every point of X is equivalent to at least one

point in D̄.

Definition 1.47 If an open subset D of X is a fundamental domain for G,

then we say that the collection of sets {g(D̄) : g ∈ G} is a tessellation of X.

Theorem 1.48 A fundamental domain for Γ is given by the set

D =

{
z ∈ H2 : |z| > 1, |<(z)| < 1

2

}
.

([9],[10],[15],[16],[17])

Proof: We will show that D satisfies the two conditions of Lemma 1.46.

1. Suppose g(D)∩D 6= Φ, where g ∈ Γ with g(z) = az+b
cz+d

. That is, suppose

that there is a w ∈ D such that g(w) ∈ D.

Without loss of generality, we may assume that =(w) ≤ =(g(w)). If

necessary, we can consider g−1 where g−1(g(w)) = w ∈ D ∩ g−1(D).

Let w = u + iv.

=(g(w)) = =
(

(aw + b)(c̄w̄ + d̄)

(cw + d)(c̄w̄ + d̄)

)

= =
(

ac|w|2 + bd + u + iv

|cw + d|2
)

=
v

|cw + d|2
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=
=(w)

|cw + d|2 .

Hence =(w) ≤ =(g(w)) implies that |cw + d| ≤ 1.

Since w ∈ D we have |w| > 1 and |u| < 1
2
. Assume c 6= 0. Then

|cw + d|2 = |cu + d + icv|2

= (cu + d)2 + (cv)2

= c2(u2 + v2) + d2 + 2cdu

= c2|w|2 + d2 + 2cdu

> c2 + d2 + 2cdu

≥ c2 + d2 − |cd|
= (|c| − |d|)2 + |cd|
≥ 1.

But |cw + d|2 ≤ 1. Hence there is a contradiction. But if d = 0 and

c 6= 0 then |cw|2 = c2|w|2 > c2 ≥ 1. This is also a contradiction. Thus

we must have c = 0 and d 6= 0. Thus g(z) = z + m for some m ∈ Z.

Thus if w ∈ D and g(w) ∈ D, then |w − g(w)| < 1.

But g(w)− w = m ≥ 1 unless m = 0. Therefore m = 0 and g = 1M.

2. Let z0 ∈ H2 with z0 = x0 + y0. We must show that z0 is Γ-equivalent

to some point in D̄. Consider K > 0 and any c′ ∈ Z. Consider K
|c′| .

Then the circle with centre z0 and radius K
|c′| can contain only a finite

number of integers and hence at most a finite number of rationals with

denominator c′. Thus there are only a finite number of integers c′ and

d′ such that
∣∣z0 −

(−d′
c′
)∣∣ < K

c′ , or |c′z0 + d′| < K. Thus the set of

numbers |c′z0+d′|, taken over all coprime pairs (c′, d′), attains a positive

minimum. Let this minimum be attained when c = c′ and d = d′. Then
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we can find integers a and b such that ad − bc = 1. Let g(z) = az+b
cz+d

.

Then g ∈ Γ, and since =(g(w)) = =(w)
|cw+d|2 , we have that g(z0) has the

largest imaginary part among all Γ-images of z0. By composing g with a

suitable translation τm(z) = z+m, we may assume that |<(g(z0))| ≤ 1
2
.

Now let g(z0) = x1+iy1. Since =(ϕg(z0)) ≤ y1 we have that y1

|g(z0)|2 ≤ y1

so that g(z0) ≥ 1. Finally, since |<(g(z0))| ≤ 1
2

and |g(z0)| ≥ 1, we have

that g(z0) ∈ D̄.



Chapter 2

Continued Fractions and

Möbius Maps

2.1 Convergents, Convergence and Tails of Sim-

ple Continued Fractions

In this chapter, we give a formal and detailed account of a simple continued

fraction as a composition of a sequence of Möbius maps. This will enable us

to explore many well-known properties of continued fractions in the context

of the action of Möbius maps on H2.

Since Möbius maps are compositions of inversions in hyperspheres, they can

be defined in all dimensions, so results about the convergence of compositions

of Möbius maps are likely to be true in all dimensions. We will investigate

simple continued fractions from a geometric point of view, as opposed to the

traditional number-theoretic point of view.

24
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We are concerned with the convergence of simple continued fractions, which

are continued fractions of the form given by b0 + K(1|bn), where

K(1|bn) =
1

b1 +
1

b2 +
1

b3 +
.. . +

1

bn +
.. .

(2.1)

where b0 ∈ Z and the bi ∈ Z+ for all i ≥ 1. This simple continued fraction

can be described in terms of Möbius transformations of the form tbi
(z) = 1

bi+z

for i ≥ 1. Compositions of these maps in the form T[bn](z) = tb1tb2 · · · tbn(z)

will provide a way of describing the convergence of simple continued fractions

in terms of Möbius maps. Analogously we may describe the simple continued

fractions in terms of Möbius maps of the form sbi
(z) = bi + 1

z
for i ≥ 0. In

this case we may compose the maps to form the composition of n + 1 such

maps as S[bn](z) = sb0sb1sb2 · · · sbn(z).

We note that for b ∈ Z we have tb(0) = 1
b

while tb(∞) = 0. Thus we

have that T[bn](0) = T[bn]tb(∞) = T[bn+1](∞) for any b ∈ Z+ where T[bn+1] =

tb1tb2 · · · tbntb and bi, b ∈ Z+. Similarly, sb(0) = ∞ while sb(∞) = b and so

S[bn](∞) = S[bn]sb(0) = S[bn+1](0) for any b ∈ Z+ where S[bn+1] = sb0sb1 · · · sbnsb

and bi, b ∈ Z+ for i ≥ 1 and b0 ∈ Z.

In this text, we will use Möbius transformations and hyperbolic geometry

to prove some of the well-known results about the convergence of simple

continued fractions.
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2.1.1 Definition of Convergence of a Continued Frac-

tion

Definition 2.1 For the continued fraction b0 + K(1|bn), the quantities

b0, b0 +
1

b1

, b0 +
1

b1 +
1

b2

, · · · (2.2)

are called the convergents or approximants of the continued fraction.

Using the above compositions of maps, the sequence of convergents may be

expressed as S[b0](∞), S[b1](∞), S[b2](∞)....

Equivalently, we can express the sequence of convergents as b0 + T[b1](0), b0 +

T[b2](0), b0 + T[b3](0), ...

Definition 2.2 The continued fraction b0 + K(1|bn) converges classically to

x if and only if the limit

lim
n→∞

S[bn](0)

exists and is equal to x.

Note that

lim
n→∞

S[bn](0) = x

implies that

lim
n→∞

S[bn](∞) = x.

Alternatively, the continued fraction b0 +K(1|bn) converges classically to x if

and only if

b0 + lim
n→∞

T[bn](0) = b0 + lim
n→∞

T[bn](∞) = x
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and it is sufficient for one of these limits to equal x.

That is, the convergence of a simple continued fraction is described in terms

of its convergents and a simple continued fraction converges classically to a

real number x if the sequence of its convergents converges to x. ([12])

Definition 2.3 Let x ∈ R have the simple continued fraction expansion

x = b0 +
1

b1 +
1

b2 +
.. .

(2.3)

Then

x = lim
k→∞

S[bk](∞)

where S[bk](z) = sb0sb1 · · · sbk
(z). Then S[bk](∞) = sb0sb1 · · · sbk

(∞) is called

the k-th convergent to x. Analogously, b0 + T[bk](0) = b0 + tb1tb2 · · · tbk
(0) is

called the k-th convergent to x.

Since we are working in C∞, ∞ is an admissible value, so a continued fraction

that approaches ∞ is said to converge to ∞.

We note that the removal of a finite number of partial quotients at the be-

ginning of a continued fraction will not affect its convergence. It is useful to

describe the convergence and convergents of x in terms of tails of the simple

continued fractions in the following way.

Definition 2.4 Let

x = lim
n→∞

S[bn](∞).

Then
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xbk
= bk +

1

bk+1 +
1

bk+2
. . .

(2.4)

is called the k-th tail or k-th complete quotient of x.

We note immediately that x = xb0 and thus S−1
[bk−1](x) = xbk

and x =

Sbk
(xbk+1

).

2.1.2 Convergence of Positive Continued Fractions

In this section, we will show that all positive continued fractions converge.

In particular, we examine the geometry of the Möbius maps of the form

tbj
(z) = 1

bj+z
= ψτ bj(z), where ψ(z) = 1

z
and τ(z) = z + 1 and bj ∈ Z+ for all

j.

We note that tb = ψτ b for b ≥ 1 and sb = τ bψ for all b ≥ 0.

Note that I is the H-line with endpoints 0 and ∞, and is mapped by tbj
to

the H-line with endpoints 0 and 1
bj

, for j ≥ 1. We will consider the right half

plane given by K = {z ∈ C : <(z) > 0}, the interior of the circle in C∞ which

has the imaginary axis as its circumference. This circle, and its interior K,

are mapped by the transformations tbj
to the circle centered on the real axis

and passing through the points 0 and 1
bj

. We note further that since these

transformations are all conformal, the transformed circle remains orthogonal

to the real axis.

These facts lead to the following important theorem about the convergents

of a positive real continued fraction.
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Theorem 2.5 Let K(1|bn) be a positive continued fraction. Then

0 < T[b2](0) < T[b4](0) < T[b6](0) < · · · < T[b5](0) < T[b3](0) < T[b1](0).

In particular, the two series

∑
n=4,6,8,...

T[bn](0)− T[bn−2](0),
∑

n=3,5,7,...

T[bn−2](0)− T[bn](0)

and the two sequences {T[b1](0), T[b3](0), T[b5](0), ...}, {T[b2](0), T[b4](0), T[b6](0), ...}
all converge.([12])

Proof: Let K = {z ∈ C : <(z) > 0} and let tbj
(z) = 1

bj+z
for j ≥ 1. Let z ∈ K,

with z = x + iy where x > 0.

Now, tbj
(∞) = 1

bj+∞ = 0 and tbj
(0) = 1

bj+0
= 1

bj
.

Hence tbj
(I) = `bj

, where I is the positive imaginary axis and `bj
is the H-

line through 0 and tbj
(0). Since each tbj

maps circles to circles, we have

that K is mapped to tbj
(K). Each disc T[bn](K) is symmetric about the real

axis, and as T[bn+1](∞) = T[bn](0), the real diameter of T[bn](K) has endpoints

T[bn](∞) and T[bn+1](∞) = T[bn](0). Thus T[b2n](K) is tangent to T[b2n−1](K) at

its extreme right-hand point T[b2n−1](∞), and is tangent to T[b2n+1](K) at its

extreme left-hand point T[b2n](∞). Thus,

0 < T[b2](0) < T[b4](0) < · · · < T[b5](0) < T[b3](0) < T[b1](0).

Now, the real diameter of tbn(K) is the real closed interval [tbn(∞), tbn(0)], so

the discs T[b1](K), T[b2](K), T[b3](K), ... must be nested as illustrated in Figure

1 below. That is, tbj
maps K onto a Euclidean disc tbj

(K) which lies in K and

which is tangent to I at 0, and we have K ⊇ T[b1](K) ⊇ T[b2](K) ⊇ ... This

completes the proof.
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Figure 1: Nested Discs

A number-theoretic proof of this result can be found in [3].

Corollary 2.6 If b0 + K(1|bn) is a simple continued fraction, then we have

that the sequences {S[b2k+1](∞)}k≥0 and {S[b2k](∞)}k≥0 converge to α′ and β′

respectively, with β′ ≤ α′.

Proof: If K(1|bn) is a simple continued fraction, then

0 < T[b2](0) < T[b4](0) < · · · < T[b5](0) < T[b3](0) < T[b1](0)

and the sequence {T[b2k+1](0)}k≥0 converges to α while the sequence {T[b2k](∞)}k≥1

converges to β, where β ≤ α. Consider

T[b2k](z) = tb1tb2 · · · tb2k
(z)

= ψτ b1ψτ b2 · · ·ψτ b2k(z)
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= ψτ b1ψτ b2 · · ·ψτ b2kψψ(z)

= ψ(sb1sb2 · · · sb2k
)ψ(z).

Thus T[b2k](0) = ψ(sb1sb2 · · · sb2k
)ψ(0) = ψ(sb1sb2 · · · sb2k

)(∞). Hence if

lim
k→∞

T[b2k](0) = β

then it follows from the completeness axiom that

lim
k→∞

S[b2k](∞)

converges to some β′. Similarly, T[b2k+1](0) = tb1tb2 · · · tb2k+1
(0) = ψ(sb1 · · · sb2k+1

)(∞)

and it follows from the completeness axiom that

lim
k→∞

S[b2k+1](∞)

converges to some α′. Since β ≤ α, we have β′ ≤ α′.

We can now state and prove the following theorem about the convergence

of positive infinite continued fractions.

Theorem 2.7 Suppose each bk > 0. Then K(1|bn) converges if and only if

∞∑

k=1

bk

diverges. (The Seidel-Stern Theorem [12])

Simple continued fractions are positive continued fractions, so this theorem

states that every infinite simple continued fraction converges.

Proof: We prove the contrapositive of this statement. That is, we prove that

K(1|bn) diverges if and only if
∞∑

k=1

bk
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converges.

Let tbk
(z) = 1

bk+z
and let T[bn] = tb1 · · · tbn .

Then tbk
(z) = 1

bk+z
= i

ibk+iz
, so let tbk

be represented by the matrix

Ak =


 0 i

i ibk




Observe that det(Ak) = 1, so Ak is unimodular in

PSL(2,C) = {z 7→ az + b

cz + d
: a, b, c, d ∈ C, ad− bc = 1}.

Now ||tbk
||2 = (|0|2 + |i|2 + |i|2 + |ibk|2) = 2 + |bk|2. Hence by Theorem 1.41

|bk|2 = ||tbk
||2 − 2

= 2 cosh ρ′(j, tbk
(j))− 2

= 2(cosh ρ′(j, tbk
(j))− 1)

= 2(1 + 2 sinh2 1

2
ρ′(j, tbk

(j))− 1)

= 2(2 sinh2 1

2
ρ′(j, tbk

(j)))

= 4 sinh2 1

2
ρ′(j, tbk

(j))

Hence |bk| = 2 sinh 1
2
ρ′(j, tbk

(j)).

Now, let us first assume that

∞∑

k=1

bk =
∞∑

k=1

|bk|

converges. This implies that

∞∑

k=1

2 sinh
1

2
ρ′(j, tbk

(j))

converges, since we showed above that |bk| = 2 sinh 1
2
ρ′(j, tbk

(j)). Further,

∞∑

k=1

|bk|
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is convergent implies that |bk| → 0 as k →∞.

Thus 2 sinh 1
2
ρ′(j, tbk

(j)) → 0 as k →∞.

Let ck = ρ′(j, tbk
(j)). Then sinh 1

2
ck = e

1
2 ck−e−

1
2 ck

2
→ 0 as k → ∞. Hence

ck → 0 as k →∞ since the hyperbolic sine function is a homeomorphic and

increasing function over its entire domain. That is ρ′(j, tbk
(j)) → 0 as k →∞.

Thus, if
∞∑

k=1

sinh
1

2
ρ′(j, tbk

(j))

converges, then by the Limit Comparison Test for the convergence of positive

series, we have that
∞∑

k=1

ρ′(j, tbk
(j))

converges.

Since ρ′ is a metric, we deduce from the triangle inequality that

ρ′(j, T[bn](j)) = ρ′(j, tb1 · · · tbn(j))

≤ ρ′(j, tb1 · · · tbn−1(j)) + ρ′(tb1 · · · tbn−1(j), tb1 · · · tbn(j))

≤ ρ′(j, tb1 · · · tbn−1(j)) + ρ′(j, tbn(j))

...

≤ ρ′(j, tb1(j)) + · · ·+ ρ′(j, tbn(j))

But

ρ′(j, t1(j)) + · · ·+ ρ′(j, tn(j)) =
n∑

k=1

ρ′(j, tbk
(j)).

Hence

ρ′(j, T[bn](j)) ≤
n∑

k=1

ρ′(j, tbk
(j)).
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But ∞∑

k=1

ρ′(j, tbk
(j))

converges to some m0, as shown above. So ρ′(j, T[bn](j)) is bounded above

by m0, and so we may deduce that the points T[bk](j), k = 1, 2, ..., n lie in a

compact part of H3. That is, ρ′(j, T[bn](j)) ≤ m0. Consider the hyperbolic

geodesic that has endpoints T[bk](0) and T[bk−1](0). We have that T[bk](j) lies

on this geodesic. Figure 2 illustrates the closest the geodesic endpoints can

get to each other when T[bk](j) is furthest from j. Since we are interested in

|T[bn](0) − T[bn−1](0)|, we note that this distance is at its minimum when the

geodesic is situated as illustrated in Figure 2, when |T[bn](0) − T[bn−1](0)| =

2T[bn](j).

1(0)
n

T

j

( )
n

T j

(0)
n

T

Figure 2: Minimum Distance of Geodesics

That is, the hyperbolic geodesic in H3 that has endpoints T[bk](0) and T[bk](∞)

contains T[bk](j), and so we have that |T[bk](0) − T[bk](∞)| or, equivalently,
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|T[bk](0) − T[bk−1](0)| must be bounded below by a positive number, say M1.

Hence the series
∑

n=4,6,8,...

T[bn](0)− T[bn−2](0)

and
∑

n=3,5,7,...

T[bn−2](0)− T[bn](0)

do not converge to the same limit, so K(1|bn) must diverge, by Theorem 2.5.

Now we prove the converse. That is, if K(1|bn) diverges, then

∞∑

k=1

bk

converges.

Since cross-ratios are invariant under Möbius maps we have that

(tbk
(0),∞; 0, T−1

[bk−1](∞)) = (t−1
bk

(tbk
(0)), t−1

bk
(∞); t−1

bk
(0), t−1

bk
(T−1

[bk−1](∞)))

= (0, t−1
bk

(∞); t−1
bk

(0), (T[bk]tbk
)−1(∞))

= (0, t−1
bk

(∞); t−1
bk

(0), T−1
[bk](∞))

= (T[bk](0), T[bk](t
−1
bk

(∞)); T[bk](t
−1
bk

(0)), T[bk](T
−1
[bk](∞)))

= (T[bk](0), T[bk−1](∞); T[bk−1](0),∞)

= (T[bk](0), T[bk−2](0); T[bk−1](0),∞)

Now

(T[bk](0), T[bk−2](0); T[bk−1](0),∞) = lim
M→∞

(T[bk](0)− T[bk−2](0))(T[bk−1](0)−M)

(T[bk](0)− T[bk−1](0))(T[bk−2](0)−M)

but

lim
M→∞

(T[bk](0)− T[bk−2](0))(T[bk−1](0)−M)

(T[bk](0)− T[bk−1](0))(T[bk−2](0)−M)
=

T[bk](0)− T[bk−2](0)

T[bk](0)− T[bk−1](0)
=

T−1
[bk−1](∞)

1
bk
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So
T[bk](0)− T[bk−2](0)

T[bk](0)− T[bk−1](0)
= bkT

−1
[bk−1](∞) (2.5)

Further, T−1
[bk−1](∞) = tbk

(T−1
[bk](∞)) = 1

bk+T−1
[bk]

(∞)

which implies bkT
−1
[bk−1](∞) + T−1

[bk−1]T
−1
[bk](∞) = 1

and so

bkT
−1
[bk−1](∞) = 1− T−1

[bk−1](∞)T−1
[bk](∞) (2.6)

Now let w[bk] = T−1
[bk](∞) and let v[bk] = T[bk](0)− T[bk−1](0).

Then w[bk]w[bk−1] = 1 − bkw[bk−1] = 1 − v[bk]+v[bk−1]

v[bk]
=

−v[bk−1]

v[bk]
from (2.5) and

(2.6).

Hence we have

w[bk]w[bk−1] =
−v[bk−1]

v[bk]

(2.7)

which implies
w[bk]w[bk−1]

v[bk]
=

−v[bk−1]

v2
[bk]

. This implies v[bk−1]

w[bk]w[bk−1]

v[bk]
=

−v2
[bk−1]

v2
[bk]

which implies
w[bk]

v[bk]
=

(
−1

w[bk−1]
v[bk−1]

) (
v2
[bk−1]

v2
[bk]

)
. Since (2.7) implies that

w[bk−1]v[bk−1] =
−v[bk−2]

w[bk−2]

,

we have
∣∣∣w[bk]

v[bk]

∣∣∣ =
∣∣∣ 1
w[bk−1]

v[bk−1]

∣∣∣
v2
[bk−1]

v2
[bk]

implies
∣∣∣w[bk]

v[bk]

∣∣∣ =
∣∣∣w[bk−2]

v[bk−2]

∣∣∣
v2
[bk−1]

v2
[bk]

, which

implies
∣∣∣w[bk]

v[bk]

∣∣∣ ≥
∣∣∣w[bk−2]

v[bk−2]

∣∣∣ since {|v[bk]|} is a decreasing sequence and |v[bk]| ≥
a > 0 for all k, since we assumed that K(1|bn) diverges. Now we can deduce

that
{∣∣∣w[bk]

v[bk]

∣∣∣
}

, k = 1, 2, ..., n is bounded below by some positive number r.

Hence we may conclude that the sequence {|w[bk]|} has a positive lower bound,

say R, since
∣∣∣w[bk]

v[bk]

∣∣∣ > r implies |w[bk]| > r|v[bk]| > ar.

Now, from (2.5), we obtain rRbk ≤ T[bk](0) − T[bk−2](0) and by Theorem 2.5,

the mutually disjoint open intervals (T[b2](0), T[b4](0)), (T[b4](0), T[b6](0)),...,

(T[b5](0), T[b3](0)), (T[b3](0), T[b1](0)) lie in the interval (T[b2](0), T[b1](0)), and so

if ∞∑

k=1

|T[bk](0)− T[bk−2](0)|
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converges, then
∞∑

k=1

rRbk

converges, and hence
∞∑

k=1

bk

converges, and this completes the proof.

A number-theoretic proof of this result can be found in [2]. We noted in

Chapter 1.2.2 that g ∈M can be expressed as an even number of reflections

in lines or circles. More generally, a Möbius transformation acting in Rn
∞ can

be expressed as a composition of an even number of reflections in hyperplanes

or hyperspheres. Since our continued fractions can be expressed as compo-

sitions of reflections, the concept of continued fractions in higher dimensions

exists. This geometric interpretation of continued fractions in higher dimen-

sions complements the algebraic methods of exploring continued fractions in

higher dimensions.

Since we have shown that every simple continued fraction converges, it is nat-

ural to ask whether every real number can be expressed as a simple continued

fraction. The answer to this question is “yes”. In particular, every rational

number can be expressed as a finite simple continued fraction in two distinct

ways, while every irrational number can be expressed as an infinite simple

continued fraction. We adopt the convention that the last partial quotient

of the simple continued fraction of a rational must always be 1. Using this

convention we will show that the simple continued fraction of any real number

will be unique.

Let us first note that the simple continued fraction expansion of any rational



CHAPTER 2. CONTINUED FRACTIONS AND MÖBIUS MAPS 38

number can be found by using Euclid’s algorithm. For example, consider

151
46
∈ Q:

151 = (3× 46) + 13

46 = (3× 13) + 7

13 = (1× 7) + 6

7 = (1× 6) + 1

6 = (1× 5) + 1

Hence the simple continued fraction expansion of 151
46

is given by

151

46
= 3 +

1

3 +
1

1 +
1

1 +
1

5 +
1

1

(2.8)

where we have adopted the convention that the final partial quotient of a

finite simple continued fraction expansion must always be 1. We note that

S[bn](∞) = sb0sb1 · · · sbn−1s1(∞) if bn ≥ 2 and so this convention can always

be adopted.

Theorem 2.8 A real number x has a finite simple continued fraction ex-

pansion if and only if x is rational. Further, the simple continued fraction

expansion is unique if we assume that the last partial quotient must be 1.

([12])

Proof: We have seen that the finite simple continued fraction of a rational

number can be written in such a way that the last partial quotient is 1, so if

x ∈ R has a unique finite simple continued fraction expansion then clearly x

is rational and the last partial quotient is 1.

Conversely, let x = p
q
∈ Q where p and q are co-prime and q > 0. It follows
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immediately from Euclid’s algorithm that the simple continued fraction ex-

pansion of x = p
q

is finite with last partial quotient 1. We need only establish

the uniqueness. Suppose that

p
q

= sb0sb1 · · · sbn(∞) = sc0sc1 · · · scm(∞) where bn = 1 and cm = 1. Assume

that m < n.

We have sb0(xb1) = sc0(xc1), where c0 and b0 are the integer parts of x. Thus

b0 = c0 and sb0 = sc0 .

Hence, applying s−1
b0

to both sides, we have p′
q′ = xb1 = xc1 .

Since b1 and c1 are the integer parts of p′
q′ , we have b1 = c1 and sb1 = sc1 .

Hence, applying s−1
b1

to both sides of sb1sb2 · · · sbn(∞) = sc1sc2 · · · scm(∞), we

obtain sb2sb3 · · · sbn(∞) = sc2sc3 · · · scm(∞). Continuing in this way, we obtain

that bi = ci for all i ≤ m. Then bm = 1 and sbm+1sbm+2 · · · sbn(∞) = ∞. But

this is impossible since bm+i ≥ 1 for all i, so sbm+1sbm+2 · · · sbn(∞) is finite.

Hence m ≥ n. Similarly, we can show that n ≥ m, and so m = n.

The uniqueness of the simple continued fraction for p
q

is thus established if

we choose the last coefficient to be 1.

Theorem 2.9 Every irrational number x can be expressed uniquely as an

infinite simple continued fraction.([12])

Proof: Let x ∈ R \ Q and let [x] = q0 denote the integer part of x. Thus

0 < x − [x] < 1. Let xq1 = s−1
q0

(x) = 1
x−q0

and q1 = [xq1 ]. Then xq1 > 1 and

xq1 ∈ R \Q.

Now, x = sq0(xq1). Hence

xq1 = [xq1 ] + xq1 − [xq1 ] = q1 + (xq1 − q1) = q1 +
1
1

xq1−q1

= q1 +
1

xq2

= sq1(xq2)
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where x2 = 1
x1−q1

> 1 and x2 ∈ R \ Q. Continuing in this way, we see that

x = sq0sq1 · · · sqk
(xqk+1

) = S[qk](xqk+1
) where q0 ∈ Z, qi ∈ Z+ for i ≥ 1 and

xqk+1
> 1 and xqk+1

∈ R \Q.

Since qi ∈ Z+ for i ≥ 1, we know that the simple continued fraction S[qk](∞) =

sq0sq1 · · · sqk
(∞) converges to some real X, by Theorem 2.7. We show that

x = X. Letting sqk
(z) = qk + 1

z
and S[qk](z) = sq0sq1 · · · sqk

, we note that

for each k we have x = S[qk](xqk+1
). Note that if a > 0 then the map-

ping x 7→ a + 1
x
, where x > 0, is a decreasing map of the interval (0,∞)

into itself, and a + 1
x

decreases as x increases. Thus the composition of

such maps, as we have with S[qk] = sq0sq1 ...sqk
, is an increasing or decreas-

ing map of (0,∞) into itself, depending on whether k is even or odd, by

Corollary 2.6. That is, S[q0](∞), S[q2](∞), ..., S[q2k](∞) is increasing while

S[q1](∞), S[q3](∞), ..., S[q2k+1](∞) is decreasing, for k = 0, 1, 2, .... Thus

S[q2k+1](∞) ≤ S[q2k+1](x2k+2) = x = S[q2k](x2k+1) ≤ S[q2k](∞).

Letting k →∞, we see that X = x.

To establish uniqueness, suppose that

x = lim
m→∞

sa0sa1 · · · sam(∞) = lim
n→∞

sb0sb1 · · · sbn(∞)

where ai, bi ∈ Z+ if i ≥ 1. Equating the integer parts, we obtain a0 = b0.

Now suppose that

xak
= lim

m→∞
sak

sak+1
· · · sam(∞) = lim

n→∞
sbk

sbk+1
· · · sbn(∞) = xbk

.

Then we have that bk = ak and so sbk
= sak

. Acting s−1
bk

= s−1
ak

on both sides,

we obtain

xak+1
= lim

m→∞
sak+1

sak+2
· · · sam(∞) = lim

n→∞
sbk+1

sbk+2
· · · sbn(∞) = xbk+1

which gives us bk+1 = ak+1. Hence by induction on i we have that ai = bi for

all i = 0, 1, 2, ....



CHAPTER 2. CONTINUED FRACTIONS AND MÖBIUS MAPS 41

Since we have established the uniqueness of the simple continued fraction

expansion for any real, we may simplify the notation for the convergents S[bn]

to just Sn and for the tails from xbn to just xn when there is no ambiguity.

The number-theoretic proofs of Theorems 2.8 and 2.9 can be found in [3].

2.2 Equivalence of Continued Fractions

Definition 2.10 Two real numbers x and y are said to be ∼ equivalent ,de-

noted x ∼ y, if we can find a transformation g ∈ Γ̃ with g(y) = x so that x

and y are in the same orbit under Γ̃.

This ∼ relation is clearly an equivalence relation, and any rational number is

equivalent to zero and thus any two rational numbers are equivalent to each

other, by transitivity.

Definition 2.11 Let x, y ∈ R \ Q. We say x and y have the same tail, or

x ≈ y, if there exist p, q ∈ Z+ such that xap+n = ybq+n for n = 0, 1, 2, ..., where

x = lim
n→∞

S[an](∞),

where S[an](z) = sa0sa1 · · · san(z), and

y = lim
m→∞

S[bm](∞),

where S[bm](z) = sb0sb1 · · · sbm(z), are the simple continued fraction expansions

of x and y respectively. Without loss of generality we may write xp+n = yq+n

for n = 0, 1, 2, ... instead of xap+n = ybq+n for n = 0, 1, 2, ....

Lemma 2.12 ≈ is an equivalence relation on R \Q.
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Proof: Let x, y, z ∈ R \Q:

1. x ≈ x since the simple continued fraction expansion of x is unique.

2. If x ≈ y then y ≈ x since the relationship is clearly symmetric.

3. Suppose x ≈ y and y ≈ z. Then xp+n = yq+n and yt+m = zs+m

for p, q, t, s ∈ Z+ and m = 0, 1, 2, ..., n = 0, 1, 2, ... This implies that

xr+n = zv+n for some r, v ∈ Z+ and n = 0, 1, 2, ... Hence x ≈ z

We will show that two irrational numbers x and y are ∼ equivalent (under Γ̃)

if and only if their simple continued fraction expansions have the same tail.

This is stated formally in Theorem 2.13.

Theorem 2.13 Suppose x, y ∈ R \ Q. Then x and y are in the same orbit

under Γ̃ if and only if x and y have the same tail, or x ∼ y if and only if

x ≈ y. ([12])

Proof: We know that Γ̃ = 〈τ, ψ〉, where τ(z) = z + 1 and ψ(z) = 1
z
. Let

ω(z) = −z, where ω ∈ Γ̃. We will first show the following:

1. τ(z) ≈ z for all z

2. ω(z) ≈ z for all z

3. ψ(z) ≈ z for all z

Let

z = lim
k→∞

S[ak](∞) = lim
k→∞

sa0sa1 · · · sak
(∞) = S[ak](zk+1),
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be the simple continued fraction expansion of z. Note that ω(sak
(z)) =

ωτakψ(z) = s−ak
(ω(z)). That is, −sak

(z) = s−ak
(−z). Further, note that

sas1sb(z) = sa+1s−(b+1)(−z) , for a, b ∈ Z. That is,

sas1sb(z) = sa+1s−(b+1)ω(z). (2.9)

1. Clearly τ(z) ≈ z since z and

1 + z = lim
k→∞

sa0+1sa1 · · · sak
(∞) = τS[ak](zk+1)

have the same tails.

2. −z = ω(z) = ω(S[ak](zk+1)) = S[−ak]ω(zk+1)

Consider the following two cases. Case (a): z < 0, and Case (b): z > 0.

Case (a): If z < 0, then a0 ≤ −1 and ai ≥ 1 for all i ≥ 1.

If a1 6= 1 then

−z = ω(z) = ω(S[ak](zk+1)) = S[−ak]ω(zk+1) = lim
k→∞

s−a0−1s1sa1−1s−a2 · · · s−ak
(∞)

by (2.9), with −a0 = a + 1 and −a1 = −b− 1.

If a1 = 1 then

−z = lim
k→∞

s−a0s−a1s−a2 · · · s−ak
(∞) = lim

k→∞
s−a0−1s1+a2sa3 · · · sak

(∞)

by (2.9), with a = a0 and b = a2. Hence ω(z) ≈ z if z < 0.

Case (b): We have −z < 0, so by case (a) we have ω(−z) ≈ −z. But

ω(−z) = −(−z) = z, so z ≈ −z = ω(z). Hence ω(z) ≈ z for all z.

3. Consider the following two cases. Case (a): z > 0, and Case (b): z < 0.

Case (a): If 0 < z < 1 then

z = lim
k→∞

sa0sa1sa2 · · · sak
(∞) = S[ak](zk+1)



CHAPTER 2. CONTINUED FRACTIONS AND MÖBIUS MAPS 44

where a0 = 0 and ai ∈ Z+ for all i ≥ 1. Then

ψ(z) =
1

z
= ψ(S[ak](zk+1)) = s−1

a0
S[ak](zk+1)

where ai ∈ Z+ for all i. Hence ψ(z) = 1
z
≈ z.

If z > 1 then set v = ψ(z) = 1
z

so that 0 < v < 1. By above,

v ≈ 1
v

= ψ(v). Thus ψ(ψ(z)) ≈ ψ(z) and so z ≈ ψ(z). Hence ψ(z) ≈ z

for all z > 0.

Case (b): z < 0

From (2) above, we have ω(z) ≈ z and ω(z) > 0 if z < 0.

From 3(a) above, we have ψ(ω(z)) ≈ ω(z) and ω(z) ≈ z

so ψ(ω(z)) ≈ z by transitivity of ≈ .

But ψ(ω(z)) = ψ(−z) = 1
−z

= −(1
z
) = ω(ψ(z)).

Therefore ω(ψ(z)) ≈ z and ω(ψ(z)) ≈ ψ(z).

Therefore z ≈ ψ(z), by transitivity of ≈ .

Hence z ≈ ψ(z) for z < 0 and thus z ≈ ψ(z) for all z ∈ R \Q.

Now we can conclude that if x ∼ y, then x ≈ y, for all x, y ∈ R \Q.

Conversely, suppose x ≈ y, with x = sc0sc1 ...sct(xt+1) = S[ct](xt+1) and

y = sb0sb1 ...sbr(yr+1) = S[br](yr+1), where b0, c0 ∈ Z and bi, ci ∈ Z+ for

i ≥ 1 and S[br], S[ct] ∈ Γ̃

Then β = xt+1 = yr+1 for some r, t ∈ Z+. Therefore x = S[ct](β)

and β = S−1
[ct]

(x) and so y = S[br](β) = S[br]S
−1
[ct]

(x) = S(x), where

S = S[br]S
−1
[ct]
∈ Γ̃. Thus x ∼ y.



Chapter 3

Geometry of Simple Continued

Fractions

3.1 Introduction

In this chapter, we investigate the tessellation of H2 by Farey triangles. We

develop this tessellation by considering the orbit of I under Γ or Γ̃.

In this section we identify H2 with H⊥ and refer to H⊥ exclusively. Recall

that in order to deal with Γ̃ acting on H2, we identify ψ : z 7→ 1
z

with its

Poincaré extension ψ̃ which preserves H⊥. We note that ψ acting on C∞ is

the composition of two reflections, namely inversion in the unit sphere and

reflection in the plane through R∞.

The tessellation that we develop gives a rich geometric description of Γ and

Γ̃. It is this description of Γ (or Γ̃) acting on H2 that enables us to consider

simple continued fractions in a geometric way by considering the cutting

45
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sequences across the tessellations. Further, we show how this tessellation can

be interpreted as a graph, and that the simple continued fraction expansion

of any real number is related to a unique path on this graph.

3.2 Farey Geodesics

Recall that geodesics in H2 can be vertical line segments or semicircles or-

thogonal to R∞. If the endpoints α and β of a geodesic γ lie on ∂H2 = R∞
then we denote the geodesic γ by [α : β], where [α : β] = [β : α]. The positive

imaginary axis I = [0 : ∞] is the geodesic that has endpoints 0 and ∞ and

is called the fundamental geodesic. Recall too that all geodesics are segments

of circles or generalized circles in C∞ and that g ∈ Γ maps circles in C∞ to

circles in C∞.

Definition 3.1

1. A Farey geodesic is the image of I under some g ∈ Γ. We denote by F

the set of all Farey geodesics. That is,

F = {g(I) : g ∈ Γ}.

2. If γ = g(I) is a Farey geodesic, then its endpoints g(0) and g(∞) on

R∞ are called Farey neighbours.

The relationship between Q∞, Farey geodesics, Farey neighbours, Γ and Γ̃ is

made explicit in the following theorem.

Theorem 3.2 Let γ = [α : β] be a hyperbolic geodesic with α, β ∈ R∞.
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1. If γ is a Farey geodesic then α, β ∈ Q∞.

2. F = {g(I) : g ∈ Γ̃}.

3. γ =
[

p
q

: r
s

]
is a Farey geodesic if and only if |ps− qr| = 1. We call this

the Farey neighbourhood condition.

4. [x : ∞] ∈ F if and only if x ∈ Z.

5. Every element in Q∞ is the end point of infinitely many Farey geodesics.

6. If x and y are Farey neighbours then g(x) and g(y) are Farey neighbours

for all g ∈ Γ̃. That is, extended modular transformations map Farey

geodesics to Farey geodesics.

Proof:

1. γ ∈ F implies that γ = g(I) where g ∈ Γ with g(z) = az+b
cz+d

. Since

g(0) = b
d

and g(∞) = a
c

are in R∞, they are the unique endpoints of γ

and so γ =
[

b
d

: a
c

]
and a

c
, b

d
∈ Q∞.

2. We know from Theorem 1.38 that Γ̃ = Γ ∪ Γψ and so Γ is a normal

subgroup of Γ̃. Thus F ⊆ {g(I) : g ∈ Γ̃}. Let g ∈ Γ̃ \ Γ, then g = hψ

where h ∈ Γ. We note that ψ(I) = I, so g(I) = hψ(I) = h(I) ∈ F. Hence

{g(I) : g ∈ Γ̃} ⊆ F and thus {g(I) : g ∈ Γ̃} = F .

3. If γ is a Farey geodesic then γ =
[

p
q

: r
s

]
= g(I) where g(z) = pz+r

qz+s

or rz+p
sz+q

and g(0) = r
s

or p
q
, and g(∞) = p

q
or r

s
and g ∈ Γ̃. Thus

|ps− qr| = 1.

Conversely, if p
q

and r
s

inQ∞ are such that |ps−qr| = 1, then g(z) = pz+r
qz+s

and g ∈ Γ̃ and g(I) ∈ F . Thus
[

p
q

: r
s

]
∈ F .
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4. If [x : ∞] ∈ F then there is a g ∈ Γ̃ such that g(z) = az+b
cz+d

, |ad− bc| = 1

and a, b, c, d ∈ Z, with g(∞) = a
c

and g(0) = b
d

and [x : ∞] = g(I).

Either g(0) = ∞ or g(∞) = ∞. If g(∞) = ∞ and g(0) = x, then

a
c

= ∞ and c = 0 and ad = ±1. Since a, d ∈ Z we have d = ±1. Thus

x = g(0) = b
d

= ±b ∈ Z. Alternately, g(0) = ∞ and g(∞) = x implies

that b
d

= ∞ and d = 0 and −bc = ±1. As above, we obtain c = ±1

and so x = a
c

= ±a ∈ Z. Conversely, if x ∈ Z then x and ∞ are Farey

neighbours since |x · 0− 1 · 1| = 1, and so [x : ∞] ∈ F .

5. For each integer m we know that [m : ∞] is a Farey geodesic, by part 4

above. Further, for any p
q
∈ Q with p and q co-prime, there are infinitely

many integers m and n such that pn− qm = 1. Let g(z) = pz+m
qz+n

where

g(∞) = p
q
. Hence there are infinitely many Farey geodesics with end

point p
q
.

6. If x and y are Farey neighbours, then [x : y] ∈ F and so there exists

an f ∈ Γ̃ such that γ = [x : y] = f(I). Thus g(γ) = [g(x) : g(y)] =

gf(I) ∈ F since gf ∈ Γ̃. That is, g(x), g(y) ∈ Q∞ and satisfy the Farey

neighbour condition. Therefore g(x) and g(y) are Farey neighbours for

all g ∈ Γ̃.

Recall that if a group G acts on a set X then the stabilizer of an element x ∈ X

under G is given by Gx = {g ∈ G : g(x) = x}. We will consider Γ and Γ̃ act-

ing on F . For g ∈ Γ̃ we denote τ g = gτg−1 and so 〈τ g〉 = 〈gτg−1〉 = g〈τ〉g−1,

and (gτg−1)n = gτng−1 = 〈τ〉g. Recall that we use 1G to denote the identity

element of a group G.
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Theorem 3.3 Recall that I = [0 : ∞], ϕ(z) = −1
z

, ψ(z) = 1
z

and ω(z) = −z.

Then Γ and Γ̃ act on F in the following way:

1. ΓI = {1M, ϕ}, Γ̃I = {1M, ϕ, ψ, ω}.

2. Γg(I) = {1M, gϕg−1} for g ∈ Γ and Γ̃g(I) = {1M, gϕg−1, gψg−1, gωg−1}
for g ∈ Γ̃.

3. Two Farey geodesics are either equal or disjoint. That is, two Farey

geodesics will never intersect each other in H2.

4. If a
c
, b

d
∈ Q and

[
a
c

: b
d

] ∈ F then a
c

and b
d

lie in the same unit interval.

Proof:

1. ΓI = {g ∈ Γ : g(I) = I}, where g(z) = az+b
cz+d

with ad − bc = 1 and

a, b, c, d ∈ Z. Suppose g ∈ ΓI. Then g(0) = ∞ and g(∞) = 0, or

g(0) = 0 and g(∞) = ∞. That is, d = 0 and a = 0, or b = 0 and

c = 0. Since ad − bc = 1 and a, b, c, d ∈ Z, we have g(z) = b
cz

= −1
z

or g(z) = z. Thus g = ϕ or g = 1M. Hence ΓI ⊆ {ψ, 1M}. Now

suppose g ∈ {ψ, 1M}. Since ϕ(I) = I and 1M(I) = I, we must have that

{ψ, 1M} ⊆ ΓI and hence ΓI = {1M, ϕ}.
Recall that we consider Γ̃ acting on H⊥ rather than H2 and thus ψ(I) =

ψ̃(I) = I.

Γ̃I = {g ∈ Γ̃ : g(I) = I}. If g ∈ Γ̃I then g(z) = az+b
cz+d

with ad− bc = ±1

and a, b, c, d ∈ Z. As above, we obtain that g = 1M or g = ϕ but we

can also have bc = 1 and ad = −1, in which case g = ψ or g = ω.

Thus Γ̃I = {1M, ϕ, ψ, ω}, where ϕ2 = ψ2 = 1M, ϕψ = ω = ψϕ and

ψω = ϕ = ωψ and ϕω = ψ = ωϕ.



CHAPTER 3. GEOMETRY OF SIMPLE CONTINUED FRACTIONS 50

2. Let g ∈ Γ.

Γg(I) = {f ∈ Γ : f(g(I)) = g(I)}
= {f ∈ Γ : g−1fg(I) = I}
= {f ∈ Γ : g−1fg ∈ ΓI}
= {f ∈ Γ : f ∈ gΓIg

−1}
= {1M, gϕg−1}.

Similarly, if we let f, g ∈ Γ̃ then we have

Γ̃g(I) = {f ∈ Γ̃ : f(g(I)) = g(I)}
= {f ∈ Γ̃ : g−1fg(I) = I}
= {f ∈ Γ̃ : g−1fg ∈ Γ̃I}
= {f ∈ Γ̃ : f ∈ gΓ̃Ig

−1}
= {1M, gϕg−1, gψg−1, gωg−1}.

3. Let γ1 = f(I), γ2 = g(I) where f, g ∈ Γ. Then γ1 = γ2 implies that

f(I) = g(I) and thus g−1f(I) = I. Thus g−1f = 1M or g−1f = ϕ. Hence

we have f = g or f = gϕ.

Let g ∈ Γ and g 6= 1M, ϕ. Then g(I) 6= I. Suppose g(I) ∩ I 6= Φ.

If there exists a distinct pair z and w in g(I) ∩ I then by definition

of a hyperbolic geodesic we have that g(I) and I are identical as the

unique H-line through z and w. But this contradicts g(I) 6= I, so if

g(I) ∩ I 6= Φ then it contains at most one element. That is, g(I) cuts I.

Thus the endpoints g(0) and g(∞) of g(I) must satisfy g(0) < 0 < g(∞)

or g(∞) < 0 < g(0). That is,

b

d
< 0 <

a

c
(3.1)

or
a

c
< 0 <

b

d
(3.2)
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where g(z) = az+b
cz+d

with ad − bc = 1 and a, b, c, d ∈ Z. We can assume

that d > 0 and c > 0 and so we have that either bc < 0 < ad or

ad < 0 < bc.

Thus we have
(

a
c

) (
b
d

)
< 0, from (3.1) and (3.2).

Thus bcad = (bc)2(ad
bc

) < 0 and bcad = bc(1 + bc) since ad− bc = 1.

Thus bc(1 + bc) < 0. But if bc < 0 < ad and bc(1 + bc) < 0 then

1 + bc > 0 and so −1 < bc < 0. But b, c ∈ Z, so this is impossible.

If ad < 0 < bc then 1 + bc < 0 and bc < −1 and so 0 < bc < −1, which

is also impossible.

Thus there does not exist a singleton z ∈ g(I) ∩ I and so g(I) ∩ I = Φ.

4. Let a
c
, b

d
∈ Q with c 6= 0, d 6= 0. Let g ∈ Γ such that g(I) =

[
a
c

: b
d

] ∈ F .

By part 3 above, we have that g(I) = I or g(I) ∩ I = Φ.

Suppose that there exists a m ∈ Z such that a
c

< m < b
d
. Let τ−m(z) =

z −m. Then τ−m ∈ Γ and τ−mg(I) will cut I with

τ−m
(a

c

)
< 0 < τ−m

(
b

d

)
.

That is,
a

c
−m < 0 <

b

d
−m.

This is a contradiction, so the endpoints a
c

and b
d

must lie in a closed

interval [m,m + 1] where we may have c = d = 1 with a = m and

b = m + 1.
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3.3 The Farey Tessellation

A hyperbolic n-gon is a polygon with n hyperbolic line segments as its sides.

The line segments intersect in pairs at points, and we call these points the

cusps of the n-gon, and the line segments do not intersect other than at these

cusps. Further, these cusps will be used to represent the n-gons in H⊥.

In particular, if n = 3 then the hyperbolic n-gon is a hyperbolic triangle.

That is, an open set bounded by three hyperbolic geodesics and denoted by

T = {z1; z2; z3} where z1, z2 and z3 are the cusps of T. If z1, z2 and z3 all lie

on R∞ then T is called an ideal triangle.

The ideal triangle T0 = {0; 1;∞} =
{

0
1
; 1

1
; 1

0

}
(Figure 3) is called the fun-

damental triangle. That is, T0 is the hyperbolic triangle bounded by the

geodesics [0 : ∞], [0 : 1] and [1 : ∞], and plays a central role in the develop-

ment of the Farey tessellation of H2.

0 1

Figure 3: The Fundamental Triangle



CHAPTER 3. GEOMETRY OF SIMPLE CONTINUED FRACTIONS 53

If T is a hyperbolic triangle then we denote T̄ as the closure of T in H⊥. Thus

T̄0 = T0 ∪ [0 : ∞] ∪ [1 : ∞] ∪ [1 : 0].

We note that in T0 the cusp at 1 = 1
1

can be written as the median of 0
1

and

1
0
. That is, 0

1
⊕ 1

0
= 0+1

1+0
= 1

1
. This property plays an important role in the

Farey tessellation of H2. We formally define the median (or Farey sum) as

follows:

Definition 3.4 Let a
c

and b
d

be reduced rationals. Without loss of generality,

we may assume that c ≥ 0 and d ≥ 0. Then we say that a
c
⊕ b

d
= a+b

c+d
is the

Farey sum of a
c

and b
d
.

Definition 3.5 A Farey triangle is the image of T0 under an element of Γ.

The set of all Farey triangles will be denoted by F = {g(T0) : g ∈ Γ}.

Note that ψ(0) = ∞, ψ(∞) = 0 and ψ(1) = 1, so ψ(z) = 1
z

leaves T0

invariant, and hence we also have that F = {g(T0) : g ∈ Γ̃}. If g(z) = az+b
cz+d

and |ad − bc| = 1 and a, b, c, d ∈ Z, then T = g(T0) has cusps g(∞) = a
c
,

g(0) = b
d

and g(1) = a+b
c+d

. That is, the cusps of g(T0) are the images under g

of the the cusps of T0. More generally, we have the following result.

Theorem 3.6 Extended modular transformations map Farey triangles to

Farey triangles.

Proof: Let T be any Farey triangle. Then T = g(T0) for some g ∈ Γ̃ and so

T0 = g−1(T). Now let f ∈ Γ̃. Then fg ∈ Γ̃ and hence fg(T0) = f(T) is also

a Farey triangle.

Theorem 3.7 Let T =
{

a
c
; e

f
; b

d

}
be any Farey triangle such that e

f
lies

between a
c

and b
d
. Then we have the following:
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1. T = g(T0) where g(z) = az+b
cz+d

, g ∈ Γ̃ and e
f

= a
c
⊕ b

d
. Hence, if a

c
< b

d

then a
c

< a+b
c+d

< b
d
. If b

d
< a

c
then b

d
< a+b

c+d
< a

c
.

2. An ideal triangle is a Farey triangle if and only if it is bounded by three

Farey geodesics.

3. Two Farey triangles are either equal or disjoint.

Proof:

1. Let g(z) = az+b
cz+d

such that g ∈ Γ̃. Then g(0) = b
d
, g(∞) = a

c
and

g(1) = a+b
c+d

, so e
f

= a+b
c+d

= a
c
⊕ b

d
.

Let f ∈ Γ̃. Then fg ∈ Γ̃ and fg(T0) is a Farey triangle.

fg(0) = f
(

b
d

)
, fg(∞) = f

(
a
c

)
and fg(1) = f

(
a+b
c+d

)
= f

(
a
c
⊕ b

d

)
.

Thus fg(1) = fg(0)⊕ fg(∞), or f
(

a
c
⊕ b

d

)
= f

(
a
c

)⊕ f
(

b
d

)
.

That is, if T = g(T0), then g
(

0
1

)⊕ g
(

1
0

)
= g

(
1
1

)
. Further, if f ∈ Γ̃ we

have f
(

a
c
⊕ b

d

)
= f

(
a
c

)⊕ f
(

b
d

)
.

2. If T is a Farey triangle then, by definition of a Farey triangle, T0 must

be bounded by three Farey triangles. Conversely, let T 6= T0 be an ideal

triangle bounded by three Farey geodesics. Let one of these geodesics

be g(I) for some g ∈ Γ̃. Then g−1(T) is an ideal triangle with all of its

sides being Farey geodesics, one of which is I. But T0 and {−1, 0,∞} =

τ−1(T0) are the only ideal triangles which are bounded by I. Hence

T = g(T0) or T = gτ−1(T0) and so T is an image of T0 under an

extended modular map, and so T is a Farey triangle.

3. We have shown that Farey geodesics cannot cross each other. Hence

a Farey triangle cannot meet any Farey geodesic. Let T1 and T2 be

two distinct Farey triangles. Thus T2 cannot meet any of the three
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geodesics that bound T1. The complement, in H⊥, of the three geodesics

that bound T1 has four components, one of which is T1. Since T2 is

connected, we have that either T1∩T2 = Φ or T2 ⊂ T1. Similarly, since

T1 is connected we must have that T2 ∩ T1 = Φ or T1 ⊂ T2. Since T1

and T2 are distinct, we have T1 ∩ T2 = Φ.

While each Farey triangle T can be written as g(T0) for some g ∈ Γ̃, there

are elements of Γ̃ that leave T0 invariant. It is useful to find the elements of

Γ̃ that leave T0 fixed, as this leads us to the stabilizer of any Farey triangle

T under Γ and Γ̃.

Theorem 3.8 Γ and Γ̃ act on T0 in the following way:

1. ΓT0 = {g ∈ Γ : g(T0) = T0} = 〈h〉, where h(z) = ϕτ−1(z) and h3 = 1M.

2. Γ̃T0 = {g ∈ Γ̃ : g(T0) = T0} = 〈h, ψ〉, where h(z) = ϕτ−1(z) and

ψ(z) = 1
z
.

3. If H = 〈h〉, then

Γ =
∞⋃
i=0

hiH = h0H ∪ h1H ∪ h2H...

is the coset decomposition of Γ with respect to H, where h0 = 1M and

hi ∈ Γ \H for i ≥ 1, and where hiH ∩ hjH = Φ for i 6= j.

Proof:

1. h(z) = ϕτ−1(z) = ϕ(z − 1) = −1
z−1

= 1
1−z

. Thus h(0) = 1, h(1) = ∞
and h(∞) = 0. Thus h leaves the set of cusps of T0 invariant. So
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h(T0) = T0. Further, h2 = h−1 and h3 = 1M so that H = 〈h〉 is a cyclic

subgroup of order 3 in Γ. Hence 〈h〉 ⊆ ΓT0 .

Now suppose g(T0) = T0 for some g ∈ Γ. If g 6∈ H then g must

interchange two cusps, leaving one fixed. Say g(0) = ∞, g(∞) = 0 and

g(1) = 1. So we must have that g = ψ, but ψ 6∈ Γ, and so we must

have that g ∈ H. Hence ΓT0 ⊆ H and thus ΓT0 = H = 〈h〉. Similarly, if

g(1) = ∞, g(∞) = 1 and g(0) = 0 then we obtain that g = ψh−1 = ψh2.

If g(0) = 1, g(1) = 0 and g(∞) = ∞ then we obtain g = ψh.

2. Γ ⊂ Γ̃ so ΓT0 ⊆ Γ̃T0 . From part (1) above we have that if g(T0) = T0

and g ∈ Γ̃ \H, then g = ψ, so ψh and ψh2 also leave T0 fixed. Hence

Γ̃T0 = 〈ψ, h〉.

3. H is a proper subgroup of Γ, so we can partition Γ into disjoint cosets

modulo H. That is, we can find h0, h1, h2, ..., where h0 = 1M and

hi 6∈ H for i ≥ 1, such that

Γ =
∞⋃
i=0

hiH = h0H ∪ h1H ∪ h2H...

Recall that if an open subset D of X is a fundamental domain for a group G,

then we say that the collection of sets {g(D̄) : g ∈ G} is a tessellation of X.

Theorem 3.9 H⊥ is tessellated by the sets{
hi(T̄0) : Γ =

∞⋃
i=0

hiH

}

.

Proof: The coset decomposition of Γ by H (where H is as defined in Theorem

3.8) is into distinct, disjoint cosets modulo H. So if i 6= j then hiH∩hjH = Φ.
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Suppose hi(T0) ∩ hj(T0) 6= Φ, where hi, hj ∈ Γ and i 6= j. Then hi(T0) and

hj(T0) are Farey triangles and are therefore equal or disjoint. So hi(T0) =

hj(T0) and so h−1
i hj(T0) = T0. Thus h−1

i hj ∈ 〈h〉 = H and hiH = hjH,

which is a contradiction. Hence hi(T0) ∩ hj(T0) = Φ for i 6= j. Hence
{

hi(T0) : Γ =
∞⋃
i=0

hiH

}

is a collection of disjoint subsets of H⊥.

It remains to show that the sets hj(T̄0), j = 0, 1, 2..., cover H⊥. Let

Σ = T̄0 ∪ τ−1(T̄0).

Recall from Theorem 1.48 that the fundamental region D of Γ is given by

D =

{
z ∈ H⊥ : |<(z)| < 1

2
, |z| > 1

}
.

Thus D̄ ⊂ Σ. Also recall that {g(D̄) : g ∈ Γ} tessellates H⊥. Hence every

z ∈ H⊥ lies in some Γ-image of D̄ and hence in some Γ-image of T̄0, since

τ−1 ∈ Γ and D̄ ⊂ T̄0 ∪ τ−1(T̄0). But the collection of Γ-images of D̄ is the

same as the collection {hj(T̄0) : j = 0, 1, 2, ...}. That is, z ∈ H⊥ implies that

z ∈ g(D̄) which implies z ∈ g(Σ) which implies z ∈ g′(T̄0) for some g′ ∈ Γ.

Now g′ ∈ Γ so g′ ∈ hiH for some i = 0, 1, 2, .... That is, g′ = hih
r for some

r ∈ Z. Therefore z ∈ hih
r(T̄0) = hi(T̄0). Thus

H⊥ ⊆
∞⋃
i=0

hi(T̄0) ⊆ H⊥

and this completes the proof.

Definition 3.10 The tessellation of H⊥ by Farey triangles, as described

above, is called the Farey tessellation (Figure 4) of H⊥ and is denoted by

F =

{
hi(T̄0) : Γ =

∞⋃
i=0

hiH

}
.
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Figure 4: Part of the Farey Tessellation

Theorem 3.11 F is invariant under Γ.

Proof: We need to show that

Γ =
∞⋃
i=0

ghiH

for all g ∈ Γ and thus that

F =

{
ghj(T̄0) : Γ =

∞⋃
i=0

ghiH

}
.

That is, we need to show that Γ is the disjoint union of the cosets ghiH,

i = 0, 1, 2, .... Suppose ghiH ∩ ghjH 6= Φ where i 6= j. Then for t, p ∈ [0, 2]

we have ghih
t = ghjh

p where h ∈ H. This implies that hih
t = hjh

p, which

implies that hth−p = h−1
i hj. But this implies that h−1

i hj ∈ H and so hiH =

hjH, which is impossible. Hence we must have ghiH ∩ ghjH = Φ. Since
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ghi ∈ Γ, we have ghi ∈ hkH for some k, and so ghiH ⊆ hkH. Further, we

have |ghiH| = |hkH| = 3 and so ghiH = hkH. Thus

F =

{
ghi(T̄0) : Γ =

∞⋃
i=0

ghiH

}
.

3.4 Cutting Sequences and Simple Continued

Fractions

3.4.1 Introduction

Following Series ([8]), we consider the Farey tessellation F that is cut by a

directed geodesic σ giving rise to a sequence of cut Farey triangles.

R - cut

Figure 5: A Right Cut
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We define the different cuts of the Farey triangles as follows: if σ cuts Tj so

that one cusp of Tj lies to the right of the direction of σ, then we label the

segment of σ that lies in Tj as a “right cut” or “R” of Tj (Figure 5).

L - cut

Figure 6: A Left Cut

If σ cuts Tj so that one cusp lies to the left of the direction of σ, then we

label the segment of σ that lies in Tj as a “left cut” or “L” of Tj (Figure 6).

Accumulating the L and R labels, we obtain a sequence · · ·Rn−1Ln0Rn1Ln2 · · ·
where the exponent ni denotes a succession of ni left or right cuts, and we

assign n0 to the succession of cuts that begins with T0. Series calls this

sequence the cutting sequence of σ. She then shows that if σ cuts R at x′ and x,

where |x| ≥ 1 and 0 < |x′| ≤ 1, then the simple continued fraction expansions

of x′ and x satisfy x = [n1, n2, · · ·] and ϕ(x′) = −1
x′ = [n0, n−1, n−2, · · ·].

If x ∈ Q+ then x is a cusp of a Farey triangle, and so σ cuts through a

finite number of Farey triangles to produce a finite cutting sequence. For a
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finite cutting sequence, we adopt the convention that the last cut (that is,

the segment of σ that ends at x) is given the opposite label to second-last

cut. This is consistent with our convention that the final partial quotient of a

finite simple continued fraction must be 1. If x ∈ R+ \Q then x is not a cusp

of any Farey triangle, and so σ must cut through an infinite number of Farey

triangles before cutting the real line at x, thereby producing a semi-infinite

cutting sequence.

In this section, we show how the Farey tessellation F can be interpreted as

a graph G and that the cutting sequence can be interpreted as a path on G.

In particular, we show that G is a tree and that these paths are thus unique.

In what follows, we will show that each rational number will give rise to a

unique finite path on G while each irrational number will give rise to a unique

semi-infinite path on G. We first introduce some basic concepts in graph

theory, taken from [18] and [19].

Formally, a graph G = (V,E) is comprised of a non-empty set V of elements

called vertices, together with a set E of edges, where each edge is an unordered

pair of elements from V . A graph is infinite if the vertex set V is infinite or

if the set of edges E is infinite.

Two vertices that are joined by an edge are said to be adjacent, as are two

edges that meet at a vertex. An edge between vertices u and v is said to

have u (or v) as an end vertex, and the edge is said to be incident with v (or

u). The number of edges incident with a vertex v in a graph G is called the

degree of v and is denoted by degv or degGv. A graph in which every vertex

has degree r is called an r-regular graph.

A path in a graph G is an ordered set {v0, v1, v2, ...} of elements of V such

that vi is adjacent to vi+1 for i = 0, 1, 2, ... The length of a path is the number
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of edges in the path. A path that starts at u ∈ V and ends at v ∈ V is called

a (u, v)− path in G. A graph G is called connected if for each u, v ∈ V there

is a (u, v) − path in G. A closed path is a path which begins and ends at

the same vertex. A cycle is a closed path that contains no repeated vertices

other than the beginning and end vertex. A connected graph that contains

no cycles is called a tree. In particular, a graph G is a tree if and only if every

two distinct vertices of G are joined by a unique path.

3.4.2 The ρ− τ Farey Tree

Recall that T0 is the Farey triangle bounded by I,
[

1
1

: 1
0

]
and

[
0
1

: 1
1

]
with

cusps at 0,1 and ∞. Also recall that every Farey triangle is in the orbit of T0

under Γ̃ = 〈τ, ψ〉, where Γ̃ acts on H⊥.

Definition 3.12 Two Farey triangles are said to be adjacent if they are

bounded by a common Farey geodesic, where Ti ./ Tj denotes Ti is adjacent

to Tj.

Theorem 3.13 Every Farey triangle is adjacent to exactly three other Farey

triangles.

Proof: Let Tj be any Farey triangle. Then Tj = g(T0) for some g ∈ Γ̃ and so

T0 = g−1(Tj). Clearly T0 is adjacent to exactly three other Farey triangles,

namely {−1; 0;∞}, {1; 2;∞} and {0; 1
2
; 1}, or τ−1(T0)=ρ−1(T0), τ(T0) and

ρ(T0) = ψτψ(T0), because T0 is adjacent to these three other Farey triangles

and cannot be adjacent to any others because it only has three sides. Thus

g(T0) is adjacent to gτ(T0), gτ−1(T0) and gρ(T0). Hence every Farey triangle
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is adjacent to exactly three other Farey triangles.

We now construct an infinite graph G of Farey triangles. Let the set V of

vertices be the set of all Farey triangles, and let the set E of edges be the set

of all pairs of adjacent Farey triangles. That is, V = {g(T0) : g ∈ Γ̃} and

E = {(Ti,Tj) : Ti ./ Tj}.

In Theorem 3.13 we showed that every Farey triangle is adjacent to exactly

three Farey triangles, so every vertex in G has degree 3. A path on G is thus

a chain Ti,Ti+1, .... of adjacent Farey triangles where Ti is adjacent to Ti+1

for all i. In what follows, we will show that G is a tree. That is, we will

show that G is connected and contains no cycles. We will first prove that G
is connected.

Theorem 3.14 G is connected and every vertex T of G can be expressed as

T = τ b0ρb1τ b2ρb3 · · · τ bn(T0) where b0 ∈ Z and bi ∈ Z+ for all i ≥ 1, except bn

which may be zero. Further, since ψ(T0) = T0 and sbi
(z) = τ biψ(z), we have

that each vertex can be written as sb0sb1 · · · sbn(T0).

Proof: We have shown in Theorem 3.9 that the Farey triangles tessellate H2.

Thus each Farey triangle is connected to every other Farey triangle by a

chain of adjacent Farey triangles and G is thus connected. In particular, T0

is connected to each vertex in G. Consider the sequence of adjacent vertices

T0,T1, ...,Tj in G, connecting T0 to Tj.

If Tj = T1, then Tj is adjacent to T0. Thus Tj = τ−1(T0), Tj = τ(T0) or

Tj = ρ(T0). Thus b0 = −1 or 1 or 0 and the result holds.

Assume the result holds for m < k. That is, assume Tm = τ b0ρb1 · · · τ bk(T0) =

g(T0) where b0 ∈ Z and bi ∈ Z+ for i ≥ 1, except bk which may be zero. Since
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Tm+1 is adjacent to Tm, we have that Tm+1 = gτ(T0) or gρ(T0) or gτ−1(T0),

by Theorem 3.13. Thus the result holds for Tm+1 and hence for all k.

We note that since ρ(z) = ψτψ(z), we can write each vertex Tm ∈ V as

Tm = τ b0ψτ b1ψ · · · τ bk(T0), or τ b0ψτ b1ψ · · · τ bkψ(T0) since ψ(T0) = T0. Thus

we have Tm = sb0sb1 · · · sbk
(T0).

From now on, we may refer to G as the ρ− τ Farey graph.

Theorem 3.15 G contains no cycles.

Proof: If we remove T0 then the graph is disconnected. Since the graph is

homogeneous, if we remove any vertex then the graph is disconnected. But if

there is a cycle, then removing a single vertex will not disconnect the graph.

Hence G contains no cycles.

From Theorems 3.14 and 3.15, we conclude that G is a tree (Figure 7).
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Figure 7: Part of the ρ− τ Farey Tree
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Definition 3.16 On any given path on G, we distinguish the vertices at

which the direction of this path changes, and we call these vertices the nodes

of the path.

The nodes are the vertices at which a succession of τ ’s ends and a succession

of ρ’s begins, or vice versa. For example, if Tj = τ b0ρb1 · · · τ bk(T0) is a vertex

on a path on which the next vertex is τ b0ρb1 · · · τ bkρ(T0), then Tj is a node of

this path.

Definition 3.17 We define a T0-path on G as a path that begins at the

vertex T0.

The nodes of a T0-path, the j-th node of which is given by

Tj = τ b0ρb1 · · · τ bk(T0) = S[bk](T0), are thus given by

S[b0](T0), S[b1](T0), S[b2](T0), ..., S[bk](T0), ...

The cusps of the node S[nk](T0) lie in the interval [S[nk](0), S[nk](∞)]. A T0-

path may be finite or semi-infinite. We note that there appears to be a direct

relationship between simple continued fraction expansions and the chains of

nodes on a T0-path on G. This relationship will be explored in the sections

that follow.

3.4.3 Cutting Sequences as T0-paths on G

The geodesic segment σ, starting at a point inside T0 and cutting the real

line at a point x, is divided into subsegments as it cuts across F . Hence we

can regard σ = σ0 ∪ σ1 ∪ σ2 · · ·, where the subsegment σi can be identified as

the intersection of σ with the Farey triangle Ti which is the i-th triangle cut
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by σ. Since the path of σ links adjacent triangles, the vertices {Vi}i=0,1,2,··· of

G, where Vi = Ti, form a T0-path and hence a chain of nodes on G.

Thus σ produces a unique ordered path {Ti}i=0,1,2··· on G. We define the

cutting sequence of σ as this unique T0-path, which may be finite or semi-

infinite. If σ ends at a rational x then the T0-path is finite. If x is irrational

then the T0-path is semi-infinite.

3.4.4 Finite T0-paths on G

Consider the geodesic segment σ starting at a point in T0 and ending at a

rational point x on R. Assume that the simple continued fraction expansion

of x is given by S[at]s1(∞) = sa0sa1 · · · sats1(∞) with a0 ∈ Z, ai ∈ Z+ for i ≥ 1

and where the convergents of x are

S[a0](∞), S[a1](∞), S[a2](∞), · · · , S[at](∞), S[at]s1(∞) = x.

We note that x ∈ [a0, a0 + 1] where a0 is the integer part of x. Recall that

we have adopted the convention that the last partial quotient of the simple

continued fraction expansion of a rational must be 1. Thus at+1 = 1 and

x = S[at](1) = S[at]s1(∞) = S[at+1](∞).

The segment σ will cross a finite number of Farey triangles in F and will thus

describe a finite T0-path. The nodes on the path will be of the form S[b0](T0),

S[b1](T0), S[b2](T0), · · ·, S[bk](T0), where b0 ∈ Z and bi ∈ Z+ for i ≥ 1. Note

that S[bk](T0) is the last vertex on this T0-path and that S[bk](1) = x is a cusp

of this vertex. Thus x = S[at](1) = S[bk](1).

Since we know that the simple continued fraction expansion of a rational is
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unique if the final partial quotient is 1, we have t = k and ai = bi for all

i = 0, 1, 2, · · · , k. Hence the finite T0-path (corresponding to σ) on G has

nodes S[b0](T0), S[b1](T0), S[b2](T0), · · · , S[bk](T0), where the convergents of x

are S[b0](∞), S[b1](∞), S[b2](∞), · · · , S[bk](∞) and S[bk](1) = x.

Thus we have the following result:

Theorem 3.18 The T0-path of a geodesic segment σ, which starts in T0 and

ends at a rational point x, has nodes that correspond to the convergents of

the simple continued fraction expansion of x. That is, S[bk](T0) is a node of

the T0-path of the geodesic segment σ that ends at x if and only if S[bk](∞)

is a convergent of the simple continued fraction expansion of x.

3.4.5 Convergence of semi-infinite T0-paths on G

Definition 3.19 If the nodes of a semi-infinite T0-path are given by

S[b0](T0), S[b1](T0), S[b2](T0), ..., S[bk](T0), ... and if the path ends at the point

x on R where

x = lim
k→∞

S[bk](∞) = lim
k→∞

S[bk](0) = lim
k→∞

S[bk](1)

then we say that the T0-path converges to x. Here S[bk](T0) is the k-th node

of the T0-path.

Let x be any irrational number with simple continued fraction expansion given

by the convergents S[a0](∞), S[a1](∞), ... where S[at](∞) → x as t →∞. Thus

x ∈ [a0, a0 + 1]. Let σ be a geodesic segment that starts in T0 and ends at

x ∈ R \Q. This segment will trace out a semi-infinite T0-path on G. Let the

nodes of this T0-path be S[b0](T0), S[b1](T0), S[b2](T0), ... where b0 ∈ Z and bi ∈
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Z+ for i ≥ 1. For any k, the node S[bk](T0) has cusps S[bk](0), S[bk](∞), S[bk](1)

and x lies in the interval spanned by the cusps S[bk](0) and S[bk](∞). Since

lim
k→∞

S[bk](∞) = lim
k→∞

S[bk](0) = lim
k→∞

S[bk](1)

we have that

lim
k→∞

S[bk](∞) = x.

Thus bi = ai for all i since a real irrational number has a unique simple

continued fraction expansion. Thus we have the following result:

Theorem 3.20 The T0-path of geodesic segment σ, which starts in T0 and

ends at an irrational point x, has nodes that correspond to the convergents of

the simple continued fraction expansion of x. That is, S[bk](T0) is a node of

the T0-path of the geodesic segment σ that ends at x if and only if S[bk](∞)

is a convergent of the simple continued fraction expansion of x.

3.5 Ford Circles

We include this section on Ford circles because we need a result from Ford

circles to prove a result in the next chapter of this text. The proofs of some

of the results in this section are omitted because they can be found in [4].

In what follows, we will assume that a
c

is reduced and we will represent ∞ as

1
0
.

Definition 3.21 The Ford circle at a
c
, denoted by Ca

c
, is the circle which has

a radius of 1
2c2

, lies above the real axis and is tangent to the real axis at a
c
.

The Ford circle C∞ = C 1
0

is the line {z ∈ C : =(z) = 1} ∪ {∞} and is called
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the fundamental Ford circle. That is, C∞ is the Ford circle that is tangential

to R∞ at ∞. We denote the set of all Ford circles by F.

It follows that the integers are represented by circles of radius 1
2
, and that

any interval of the real axis contains infinitely many points of tangency of

Ford circles.

Theorem 3.22 Two distinct Ford circles are either tangent to each other or

completely external to each other. ([4])

Definition 3.23 Two fractions a
c

and b
d

are adjacent if their representative

Ford circles are tangent to each other.

In [4], Ford describes the parts of H⊥ that are exterior to the Ford circles as

consisting of an infinite number of circular arc triangles which he calls mesh

triangles. Any two sides of a mesh triangle lie on circles corresponding to

adjacent fractions. Consider a vertical geodesic L in H⊥ given by <(z) = ω

and consider the fractions whose circles are passed through in succession by

L. Each circle Ca
c

is surrounded by mesh triangles. If L passes from Ca
c

into

one of these mesh triangles and if L does not return to Ca
c
, then it will on

leaving the mesh triangle pass in general into a circle tangent to Ca
c

because a

mesh triangle is the space between three adjacent Ford circles. We adopt the

convention that if L touches two circles at their point of tangency without

entering either circle, then we will only consider one of these circles as crossed

by L. We thus have from [4] the following principle.

Principle
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If two circles in the system of Ford circles are penetrated in succession by a

vertical geodesic L, then the two corresponding fractions are adjacent.

Theorem 3.24

1. Each fraction a
c

has an adjacent fraction. ([4])

2. F = {g(C∞) : g ∈ Γ̃}, and either Ca
c
∩C b

d
= Φ or Ca

c
∩C b

d
= {g(i)} where

g(z) = az+b
cz+d

and g ∈ Γ̃. Further, <(g(i)) ∈ Q.

3. If Ca
c

is tangential to C b
d

then C bn
dn

is tangential to Ca
c

if and only if

bn

dn
= b+na

d+nc
for n ∈ Z. ([4])

4. Of the family of circles tangential to Ca
c
, exactly two correspond to

fractions that have denominators numerically smaller than c ([4]). A

vertical line <(z) = ω will cut a finite number of Ford circles if and

only if ω ∈ Q. The vertical line <(z) = ω, where ω ∈ R \ Q, will cut

infinitely many Ford circles.

5. Let ω be irrational. Apart from C∞, all the Ford circles cut by the

vertical line <(z) = ω have points of tangency (with the x axis) in the

same unit interval as ω.

Proof:

1. Since a and c are coprime, we have that there exist integers b and d

such that |ad− bc| = 1 ([4]).

2. Let g ∈ Γ̃ where g(z) = az+b
cz+d

. Consider the three distinct points ∞,

i and 1 + i on the Ford circle C∞. It is easily shown that g(∞), g(i)

and g(i + 1) all lie on Ca
c
, the Ford circle at a

c
, given by the equation
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∣∣z − (
a
c

+ i
2c2

)∣∣ = 1
2c2

. But Möbius maps map circles to circles, and three

points determine a circle uniquely, so we must have that g(z) = az+b
cz+d

maps C∞ to Ca
c
. Hence {g(C∞) : g ∈ Γ̃} ⊆ F.

Let Ca
c
∈ F. By part 1 above, we can find b

d
∈ Q such that |ad−bc| = 1.

Let g(z) = az+b
cz+d

. Thus g ∈ Γ̃. Further, we have g(∞) = a
c

and g(C∞) =

Ca
c
. Thus F ⊆ {g(C∞) : g ∈ Γ̃} and hence F = {g(C∞) : g ∈ Γ̃}.

Further, since a
c

= g(∞) we can state that g(C∞) = Cg(∞). It follows

that if f, g ∈ Γ̃, then gf(C∞) = Cgf(∞) since gf ∈ Γ̃. Suppose Ca
c

is

tangent to C b
d
. Since g maps circles to circles and preserves tangency,

we have that g
(Ca

c

)
= Cg(a

c )
is tangent to g

(
C b

d

)
= Cg( b

d)
and these

circles are Ford circles. In particular, C 1
0

and C 0
1

touch at i, which

implies that g(C∞)=Cg(∞) and g(C0)=Cg(0) touch at g(i). Further, we

have <(g(i)) = <(
ai+b
ci+d

)
= <((

ai+b
ci+d

) (−ci+d
−ci+d

))
= ac+bd

c2+d2 ∈ Q.

3. |(b + na)c− a(d + nc)| = |bc− ad| = 1 and it is thus easily verified that

the fractions bn

dn
are adjacent to a

c
.

|(b + na)(d + (n + 1)c)− (b + (n + 1)a)(d + nc)| = |bc− ad| = 1 and it

is thus easily verified that bn

dn
is adjacent to bn+1

dn+1
.

bn

dn

=
a

c
+

bc− ad

c(d + nc)
=

a

c
± 1

c2
(
n + d

c

) (3.3)

As n →∞, bn

dn
approaches a

c
from one side. As n → −∞, bn

dn
approaches

a
c

from the other side. Hence the circles C bn
dn

form a ring around Ca
c

and

are all tangent to Ca
c
, with C bn

dn

tangent to C bn+1
dn+1

and C bn−1
dn−1

. It is not

possible to draw a circle, lying in H⊥, which is tangent to both the real

line and Ca
c

but does not intersect one of the circles of the form C bn
dn

.

Thus there are no further fractions adjacent to a
c
.
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4. We have that |d + nc| < |c| or, equivalently, |n + d
c
| < 1 for exactly two

values of n, namely the integers between which −d
c

lies. For one of these

two values of n, n + d
c

is positive while the other is negative. We have

from (3.3) that one of the these fractions is greater than a
c

while the

other is less than a
c
. Hence a vertical geodesic <(z) = ω can only cut

a finite number of Ford circles. Conversely, if L cuts through a finite

number of Ford circles, then the last of these Ford circles must be cut

by L at its point of tangency with the real axis. Thus w is rational.

It follows that if ω 6∈ Q then the vertical geodesic <(z) = ω will cut

infinitely many Ford circles.

5. Since ω ∈ R \ Q, there exists an integer n such that n < ω < n + 1.

But the Ford circles Cn and Cn+1 are tangent to each other and to the

real axis, so, with the exception of C∞, all the Ford circles cut by L will

lie in the mesh triangle in between Cn and Cn+1 and will therefore have

points of tangency (with the real line) in between n and n + 1.

The relationship between Ford circles and the extended modular group can

be investigated further, but this investigation would be beyond the scope of

this text because we are only considering simple continued fractions.



Chapter 4

Periodic Simple Continued

Fractions

4.1 Introduction

In this chapter, we pay special attention to the geometric properties of pe-

riodic simple continued fractions. In particular, we examine the relationship

between periodic simple continued fractions and the fixed points of loxodromic

modular transformations.

Definition 4.1 The simple continued fraction b0 + K(1|bn) is periodic if the

sequence b0, b1, ... is periodic.

Definition 4.2 The simple continued fraction b0 + K(1|bn) is pre-periodic if

the sequence b0, b1, ... is periodic after a finite number of initial terms have

been deleted.

73
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The period p of the simple continued fraction b0 + K(1|bn) is the smallest

positive integer that is a period of the sequence b0, b1, ...

Suppose the sequence sb0 , sb1 , ... is periodic with period p, where sbn(z) =

bn+ 1
z
. Let S[bp] = sb0sb1 · · · sbp . We call S[bp] the generator of the corresponding

simple continued fraction.

Definition 4.3 A real number x is a quadratic irrational if it is of the form

x = a+b
√

D
c

where a, b, c ∈ Z, c 6= 0 and D is a square-free positive integer.

Definition 4.4 If x = a+b
√

D
c

is a quadratic irrational and x∗ = a−b
√

D
c

,

then x∗ is also a quadratic irrational and is a solution of the same quadratic

equation of which x is a solution. We call x∗ the algebraic conjugate of x.

Lemma 4.5 The image of a quadratic irrational under an extended modular

transformation is again a quadratic irrational.

Proof: Let f ∈ Γ̃ with f(z) = pz+q
rz+s

, and let x = a+b
√

D
c

be a quadratic

irrational. Then

f(x) =
p(a+b

√
D

c
) + q

r(a+b
√

D
c

) + s

=
(pa + qc) + pb

√
D

(ra + sc) + rb
√

D

=
(pq + c)((ra + sc)− rb

√
D)

((ra + sc) + rb
√

D)((ra + sc)− rb
√

D)
+

pb
√

D((ra + sc)− rb
√

D)

((ra + sc) + rb
√

D)((ra + sc)− rb
√

D)

=
−(sc + ra)(p + qc)− prb2D ±√D(±bc + pbr(a− 1)2)

(ra + sc)2 − (rb)2D
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It is well-known to number-theorists that an irrational number x has a pre-

periodic simple continued fraction expansion if and only if x is a quadratic

irrational ([1],[2],[3]). In our text, we give a geometric proof that an irrational

number has a pre-periodic simple continued fraction expansion if and only if

it is the fixed point of some loxodromic modular transformation.

Recall that a loxodromic modular map is a map of the form f(z) = az+b
cz+d

,

with a, b, c, d ∈ Z and ad − bc = 1 and tr2(f) = (a + d)2 > 4 and f has two

distinct fixed points in R∞. Let us call these fixed points α and β, where α

is the attracting fixed point. Recall that fn(z) → α as n →∞ for all z 6= β,

and fn(β) = β for all n. Let A(f) be the unique geodesic that has α and β

as its endpoints. Then A(f) is fixed by f and is called the axis of f .

Theorem 4.6 Let f be a loxodromic modular map and let α and β be the

fixed points of f , with α the attracting fixed point and β > α. Then A(f) is

the only geodesic that is fixed by f and f−1, but all Euclidean circles in C∞
that pass through α and β are also fixed by f and f−1.

Proof: We know that A(f) is fixed by f and f−1 since the endpoints of A(f)

are the fixed points of f and f−1, and f and f−1 are isometries of H⊥ by

Theorem 1.23. Further, we know that A(f) is the only geodesic that is fixed

by f and f−1 since f and f−1 are loxodromic maps and therefore have only

two distinct fixed points in R∞. Now consider the segment of any Euclidean

circle in H⊥ that passes through α and β, and consider the map g(z) = z−β
z−α

.

Then g maps A(f) to I and maps the segment of the Euclidean circle (which

passes through α and β) in H⊥ to an infinite ray through the origin. Thus

∞ is the attracting fixed point of h = gfg−1. Thus h(z) = λz, where λ > 1.

That is, h = gfg−1 fixes I and the system of infinite rays passing through 0.

Hence all circles, including A(f), that pass through α and β are fixed by f .



CHAPTER 4. PERIODIC SIMPLE CONTINUED FRACTIONS 76

Similarly, they are fixed by f−1.

4.2 Pell’s Equation

Before we explore the relationship between quadratic irrationals and the fixed

points of loxodromic modular maps, let us take a closer look at the properties

of quadratic irrationals by examining the integer solutions of the equations

X2 −DY 2 = 1 (4.1)

and

X2 −DY 2 = 4 (4.2)

where D is a square-free positive integer. This discussion is taken from [12].

It is easy to show that if (Xi, Yi) is a solution of (4.1), called Pell’s Equation,

then (2Xi, 2Yi) is a solution of (4.2). Hence the solutions of Pell’s equation

will naturally lead us to solutions of (4.2).

A solution of either (4.1) or (4.2) is called a trivial solution if Y = 0. We will

show that (4.1) and (4.2) have non-trivial solutions.

Lemma 4.7 If D is a square-free positive integer and a, b, c, d ∈ Q, then

a + b
√

D = c + d
√

D if and only if a = c and b = d.

Proof: If a = c and b = d then clearly a + b
√

D = c + d
√

D.

Conversely, if a + b
√

D = c + d
√

D then (b− d)
√

D = c− a.

But (b− d) ∈ Q and
√

D ∈ R \Q, so (b− d)
√

D ∈ R \Q.

But (c− a) ∈ Q. So (b− d)
√

D = c− a is only possible if b− d = 0. That is,

if b = d. Hence c− a = 0 and so a = c.
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Theorem 4.8 Suppose D is a square-free positive integer. Then there exists

a solution (X, Y ) of Pell’s equation such that X, Y ∈ Z+. ([12])

Proof: We know from Theorem 3.24 that a vertical line <(z) =
√

D will cut

infinitely many distinct Ford circles C pi
qi

so that
∣∣∣
√

D − pi

qi

∣∣∣ ≤ 1
2q2

i
. Hence

we have an infinite sequence {pi

qi
}i∈I , where I is an index set, satisfying∣∣∣

√
D − pi

qi

∣∣∣ ≤ 1
2q2

i
. Then

|p2
i−Dq2

i | =
(

q2
i

∣∣∣∣
√

D − pi

qi

∣∣∣∣
)(√

D +
pi

qi

)
≤

(
1

2q2
i

q2
i

)(√
D +

pi

qi

)
=

1

2

(√
D +

pi

qi

)
.

We know from Theorem 3.24 that if C p1
q1

and C p2
q2

are adjacent Ford circles

intersected by the vertical line <(z) =
√

D, then |p1q2 − q1p2| = 1 and p1

q1
, p2

q2

are Farey neighbours. By Theorem 3.24, we have some integer n such that

n ≤ p1

q1

<
√

D <
p2

q2

≤ n + 1

or

n ≤ p2

q2

<
√

D <
p1

q1

≤ n + 1.

That is,
√

D and pi

qi
, i ∈ I, lie in the same unit interval, since C pi

qi

and C pi+1
qi+1

are adjacent Ford circles. That is, we have

n <
√

D < n + 1

and

n <
pi

qi

< n + 1.

So

2n <
√

D +
pi

qi

< 2n + 2.

This implies that

n <
1

2

(√
D +

pi

qi

)
< n + 1.
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Further, we have

n + 1 <
√

D + 1 < n + 2.

Hence n < 1
2

(√
D + pi

qi

)
< n + 1 <

√
D + 1 and so 1

2

(√
D + pi

qi

)
<
√

D + 1.

Thus |p2
i − Dq2

i | <
√

D + 1, or −(
√

D + 1) < p2
i − Dq2

i <
√

D + 1. Thus

{p2
i −Dq2

i }i∈I is a bounded sequence of integers. Since there are only a finite

set of integers between −(
√

D + 1) and
√

D + 1, we can find infinitely many

j ∈ I such that p2
j −Dq2

j = K, where K is some integer between −√D − 1

and
√

D +1. Hence we can pass to this infinite subsequence of {p2
i −Dq2

i }i∈I

in which p2
j ≡ Dq2

j (mod K) for all j. Further, since the sequence {pi}i∈I is

infinite, we can find infinitely many members such that pi ≡ pj (mod K).

Similarly, we can find infinitely many members of the infinite sequence {qi}i∈I

such that qi ≡ qj (mod K). Let us now pass to this further subsequence of

{p2
i −Dq2

i }i∈I in which p2
i ≡ Dq2

i (mod K), pi ≡ pj (mod K) and qi ≡ qj

(mod K). Note that

(p1 −
√

Dq1)(p2 +
√

Dq2) = p1p2 −Dq1q2 +
√

D(p1q2 − p2q1)

where pi, pj, qi, qj satisfy pi ≡ pj (mod K) and qi ≡ qj (mod K).

Now let u = p1p2 −Dq1q2 and v = p1q2 − p2q1.

Then u ≡ (p2
1 −Dq2

1) (mod K) ≡ K (mod K) ≡ 0 (mod K)

and v ≡ (p1q1 − p1q1) (mod K) ≡ 0 (mod K).

Thus we can write u = KX and v = KY for some X, Y ∈ Z.

Further, we note the following:

u2−Dv2 = (p1p2−Dq1q2)
2−D(p1q2− p2q1)

2 = (p2
2−Dq2

2)(p
2
1−Dq2

1) = K2.

But u2 −Dv2 = K2X2 −DK2Y 2 = K2(X2 −DY 2).

Thus K2 = K2(X2 −DY 2) and hence X2 −DY 2 = 1.

Note that Y 6= 0, because if Y = 0 then v = 0 and then v = p1q2 − p2q1 = 0

and so p1

q1
= p2

q2
, which is not possible since we assumed that the pj and qj are

coprime and that each pi

qi
is distinct. Hence |Y | ≥ 1. Further, we note that
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X2 −DY 2 = 1 implies that Y 2 = X2−1
D

. Hence Y 6= 0 implies that |X| > 1.

If X < −1 then let X ′ = −X. Then (X ′)2 = X2 and so (X ′)2 − DY 2 = 1.

So, if necessary, we can replace X by −X to obtain X > 1. Similarly, we can

replace Y by −Y so that we have a solution (X,Y ) of (4.1) with X > 0 and

Y > 0.

Theorem 4.9 The map θ defined by θ(X + Y
√

D) = (X,Y ) is an isomor-

phism between the additive groups Z(
√

D) = {X + Y
√

D : X, Y ∈ Z} and

Z× Z = {(X, Y ) : X, Y ∈ Z}.

Proof: Suppose X1 + Y1

√
D = X2 + Y2

√
D. Then (X1, Y1) = (X2, Y2), by

Lemma 4.7, and so θ(X1 + Y1

√
D) = (X1, Y1) = (X2, Y2) = θ(X2 + Y2

√
D).

Thus θ is well-defined. The fact that θ is one-to-one follows immediately. It is

also clear that θ is onto. Now we need only show that θ is a homomorphism.

θ((X1 + Y1

√
D) + (X2 + Y2

√
D)) = θ((X1 + X2) + (Y1 + Y2)

√
D)

= (X1 + X2, Y1 + Y2)

= (X1, Y1) + (X2, Y2)

= θ(X1 + Y1

√
D) + θ(X2 + Y2

√
D)

We thus identify the number X + Y
√

D with the ordered pair (X,Y ). This

relationship is explored in the following lemma.

Lemma 4.10 Let (X, Y ) be a solution of (4.2) and let U = X + Y
√

D and

let V = X − Y
√

D. Then U 6= 0; U = 2 if and only if X = 2 and Y = 0;

U = −2 if and only if X = −2 and Y = 0. Further, we have the following:

1. X > 2 and Y > 0 if and only if U > 2.
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2. X > 2 and Y < 0 if and only if 0 < U < 2.

3. X < −2 and Y > 0 if and only if −2 < U < 0.

4. X < −2 and Y < 0 if and only if U < −2.

Proof: The hyperbola X2−DY 2 = 4 (represented in Figure 8) is transformed

to the hyperbola UV = 4 (represented in Figure 9) by the transformation

equations U = X + Y
√

D and V = X − Y
√

D.

(2,0)(-2,0)

Figure 8: X2 −DY 2 = 4
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Figure 9: UV = 4

Note that U = X+Y
√

D and V = X−Y
√

D give us X = U+V
2

and Y = U−V
2
√

D
.

We note that the lines X = ±√DY are asymptotic to X2 −DY 2 = 4, while

the axes U = 0 and V = 0 are asymptotic to UV = 4.

Note that U = 2 if and only if V = 2. Since U+V
2

= X and U−V
2
√

D
= Y , we

have that U = 2, V = 2 if and only if X = 2 and Y = 0.

Similarly, we see that U = −2 if and only if V = −2, and this holds if and

only if X = −2 and Y = 0.

The remaining relationships can be read off the graphs.

Remark 4.11 From Theorem 4.8 and Lemma 4.10 we deduce that there is

at least one solution (X,Y ) of (4.2) such that U = X + Y
√

D lies in the

interval (2,∞), with U = X + Y
√

D > |X| + |Y |. Since the values of U

do not accumulate anywhere in the interval (2,∞), there must be a solution

(X0, Y0) which yields the smallest value of X + Y
√

D taken over all (X,Y )
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such that X + Y
√

D > 2. We call (X0, Y0) the fundamental solution of (4.2).

Note that X0 +Y0

√
D = X0 +

√
X2

0 − 4, so X0 is the smallest positive integer

X satisfying (4.2) for some integer Y.

Lemma 4.12 If G is a non-trivial subgroup of (R, +), then G is either dense

in R or cyclic. Further, if G′ is a non-trivial subgroup of (R+, ·) then G′ is

either dense in R+ or cyclic. ([20], [21])

Proof: Suppose G is a subgroup of (R, +) and is not dense in R. Then G

cannot contain arbitrarily small positive real numbers, and so there exists a

real ε > 0 such that the open interval (0, ε) is disjoint from G. We claim that

G contains a least positive real number. Suppose G does not contain a least

positive real number. Then there exist positive real numbers a1 > a2 > · · ·
that are all in G. But each of the positive real numbers ai− ai+1 is in G, and

all but finitely many of them must be less than ε, which is impossible. Hence

there is a least positive real number a ∈ G. Any b ∈ R may be expressed as

b = na + c where n ∈ Z and 0 ≤ c < a. If b ∈ G then we also have that

c ∈ G. But then we must have that c = 0 since a is the least positive real

number in G. Hence b = na and so G = 〈a〉.

Let χ : (R, +) → (R+, ·) be defined by χ(x) = ex, then G ≤ R is mapped to

χ(G) = G′. Exponential functions are one-to-one and onto, so χ is a one-to-

one and onto mapping. Further note that χ(x+y) = ex+y = exey = χ(x)χ(y),

and so χ is a group homomorphism. Hence G′ ∼= χ(G) ≤ R+. Suppose G is

dense in R. Since the exponential map is locally a homeomorphism, we have

that χ preserves denseness and so G′ is dense in R+. If G is not dense in R

then G is cyclic and so G = 〈a〉 where a is the least positive real element in

G. Hence G′ = 〈ea〉 since the image, under an isomorphism, of a cyclic group
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is a cyclic group. Thus, if G′ is a non-trivial subgroup of (R+, ·) then G′ is

either dense in R+ or cyclic.

Theorem 4.13 Suppose D is a square-free positive integer, and let

Π(D) =

{
1

2
(X + Y

√
D) : X,Y ∈ Z, X2 −DY 2 = 4, X + Y

√
D > 0

}
.

Then Π(D) is a cyclic multiplicative group generated by 1
2
(X0+Y0

√
D), where

(X0, Y0) is the fundamental solution of (4.2). [12]

Proof: Let Π(D) =
{

U
2

: U > 0
}
, where U = X +Y

√
D > 0 and X2−DY 2 =

4, X, Y ∈ Z. If X = 2 and Y = 0 then U
2

= 1 ∈ Π(D). Thus Π(D) is a

non-empty set of positive numbers.

Note that if U
2
∈ Π(D) then V

2
= X−Y

√
D

2
∈ Π(D), where UV = 4. Thus,

if U
2
∈ Π(D) then 2

U
= V

2
∈ Π(D) so that Π(D) is closed under taking

multiplicative inverses.

We need to show that Π(D) is closed under multiplication.

Let 1
2
(Xi + Yi

√
D) ∈ Π(D) for i = 1, 2.

Let A+B
√

D
2

=
(

X1+Y1

√
D

2

) (
X2+Y2

√
D

2

)
then A

2
= X1X2+DY1Y2

4
, B

2
= X1Y2+Y1X2

4
,

or A = X1X2+Y1Y2D
2

, B = X1Y2+Y1X2

2
.

To show that A,B ∈ Z, we must show that X1X2 + DY1Y2 and X1Y2 + Y1Y2

are even. We also need to show that A2 −DB2 = 4 and that A + B
√

D > 0.

Since Xi + Yi

√
D > 0, i = 1, 2, we have that A + B

√
D > 0.

Further, A2 −DB2 = 1
4
(X1X2 + DY1Y2)

2 − D
4
(X1Y2 + Y1X2)

2 = 4.

We need to establish that both X1X2 + DY1Y2 and X1Y2 + Y1X2 are even.

If Y1 is even then X2
1 −DY 2

1 = 4 implies that X2
1 = 4 + DY 2

1 = 4m for some

m ∈ Z, so X1 is even. Thus X1X2 + DY1Y2 is even and X1Y2 + Y1X2 is even.

Thus A,B ∈ Z. Similarly, if Y2 is even then X2 is even and so A,B ∈ Z.

Now assume that both Y1 and Y2 are odd.
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Then Y 2
1 ≡ Y 2

2 ≡ Y1Y2 ≡ 1 (mod 4). Since X2
i − DY 2

i = 4 for i = 1, 2,

we have that X2
i ≡ DY 2

i (mod 4) and so X2
1 ≡ X2

2 ≡ D (mod 4) since

Y 2
i ≡ 1 (mod 4) for i = 1, 2. So X1 and X2 have the same parity (both even

or both odd) and so the parity of X1X2 will be the same as that of X1 and

X2. Further, if Xi is even (or odd), then X2
i ≡ D (mod 4) implies that D

is even (or odd). Thus X1, X2 and D are of the same parity (all even or all

odd) and so the parity of X1X2 will be the same as that of X1, X2 and D.

So if Y1, Y2 are odd, then 2A = X1X2 + DY1Y2 ≡ X1X2 + D ≡ 0 (mod 2)

since X1, X2 and D all have the same parity, and the sum of two odd integers

is an even integer. Similarly, 2B = X1Y2 + Y1X2 ≡ 0 (mod 2). Thus

A, B ∈ Z in all cases. Hence Π(D) is a multiplicative group of positive

integers. Further, Π(D) is both non-trivial and non-dense in the interval

(1,∞) (Remark 4.11). Hence by Lemma 4.12 we have that the group Π(D)

is an infinite cyclic multiplicative group generated by X0+Y0

√
D

2
.

Definition 4.14 We will call a solution (X, Y ) of (4.2) a positive solution if

X + Y
√

D > 0.

Remark 4.15 In Π(D) we consider only the positive solutions of (4.2). In

general, if (X,Y ) is a solution of (4.2) then so is (−X,−Y ). That is, (X,Y )

is a solution of (4.2) if and only if we have X+Y
√

D
2

= ±
(

X0+Y0

√
D

2

)n

for some

n ∈ Z. [12]

Theorem 4.16 Suppose D is a square-free positive integer. Let G be the

set of positive solutions of X2 −DY 2 = 4. That is,

G = {(X, Y ) : X,Y ∈ Z, X2 −DY 2 = 4, X + Y
√

D > 0}.

Then G is an infinite cyclic group generated by (X0, Y0) where X0+Y0

√
D

2
is

the generator of Π(D). [12]
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This theorem essentially states that G is isomorphic to Π(D).

Proof: On G define the binary operation ? by

(X1, Y1) ? (X2, Y2) = (X, Y )

where X = X1X2+Y1Y2D
2

and Y = X1Y2+Y1X2

2
and X, Y ∈ Z. We show that ? is

a well-defined binary operation on G:

(X1, Y1) = (U1, V1) and (X2, Y2) = (U2, V2) implies that X1+Y1

√
D

2
= U1+V1

√
D

2

and X2+Y2

√
D

2
= U2+V2

√
D

2
.

Thus
(

X1+Y1

√
D

2

)(
X2+Y2

√
D

2

)
=

(
U1+V1

√
D

2

)(
U2+V2

√
D

2

)
as Π(D) is a group

under a well-defined operation.

Thus X1X2 + Y1Y2D = U1U2 + V1V2D and X1Y2 + Y1X2 = U1V2 + V1U2.

Hence (X1, Y1) ? (X2, Y2) = (U1, V1) ? (U2, V2).

Let Ω : Π(D) → G be defined by Ω
(

X+Y
√

D
2

)
= (X, Y ). Then Ω is well-

defined and bijective. Further, observe that

Ω

((
X1 + Y1

√
D

2

)(
X2 + Y2

√
D

2

))
= Ω

(
A + B

√
D

2

)

= (A,B)

=

(
X1X2 + Y1Y2D

2
,
X1Y2 + Y1X2

2

)

= (X1, Y1) ? (X2, Y2)

= Ω

(
X1X2 + Y1Y2D

2

)
? Ω

(
X1Y2 + Y1X2

2

)
.

Hence Ω is a group homomorphism and so G is an infinite cyclic group gen-

erated by (X0, Y0).
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4.3 Quadratic Irrationals and Loxodromic Mod-

ular Maps

Recall that the discriminant D of the quadratic polynomial Az2 + Bz + C,

where A,B,C ∈ Z, A 6= 0, is given by D = B2− 4AC and that this quantity

D gives us information about the nature of the roots of the quadratic equation

Az2 + Bz + C = 0 (4.3)

In particular, recall that the two roots of (4.3) are distinct irrationals if and

only if D is a square-free positive integer.

In this section, we show that any pair α and α∗ of algebraically conju-

gate quadratic irrationals are precisely the pair of fixed points of some loxo-

dromic modular map. That is, we will illuminate the geometric properties of

quadratic irrationals by analysing the action of loxodromic modular maps on

H2.

Theorem 4.17 The fixed points of a loxodromic modular map are alge-

braically conjugate quadratic irrationals. Further, if α and α∗ are alge-

braically conjugate quadratic irrationals, then α and α∗ are the fixed points

of a loxodromic modular map ([12]).

Proof: Let g be a loxodromic modular map. Then we may write g(z) = az+b
cz+d

for a, b, c, d ∈ Z such that ad − bc = 1 and (a + d)2 > 4. To find the fixed

points of g, we solve the quadratic equation cz2 + (d− a)z − b = 0. We note

that if c = 0 then ad− bc = 1 implies that ad = 1, which implies a, d = ±1.

This contradicts (a + d)2 > 4, so c 6= 0. The discriminant of this equation is

given by
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D = (d−a)2 +4bc = d2−2ad+a2 +4(ad−1) = (a+d)2−4, since ad−bc = 1.

We have that (a + d)2 > 4, so (a + d)2− 4 > 0. Suppose that
√

D ∈ Q. Then

since D ∈ Z, we must have that
√

D ∈ Z, say
√

D = M , where M > 0 so that

D = (a+d)2−4 = M2. But this means that 4 = (a+d)2−M2, which implies

that (|a + d| −M)(|a + d| + M) = 4. But this implies that |a + d| −M = 1

and |a + d| + M = 4, since (a + d)2 > 4 implies that |a + d| > 2. Hence

|a + d| −M + |a + d|+ M = 5 and so |a + d| = 5
2
. But this is a contradiction,

because |a + d| = 5
2

is not possible since we assumed that a, d ∈ Z. Thus we

can conclude that the fixed points of g are algebraically conjugate quadratic

irrationals, with D = (a + d)2 − 4 having an irrational square root.

Conversely, suppose that α and α∗ are the solutions of (4.3), where D =

B2 − 4AC > 0 and
√

D ∈ R \ Q. By Theorem 4.8, we have that there exist

X, Y ∈ Z+ such that X2 −DY 2 = 4. Note that

(X − Y B)(X + Y B)− (−2CY )(2AY ) = X2 − Y 2B2 + 4ACY 2

= X2 − Y 2(B2 − 4AC) = X2 −DY 2 = 4. Hence the matrix

 X − Y B −2CY

2AY X + Y B




has determinant 4. Now 4ACY 2 is even, and we have that

(X − Y B)(X + Y B) + 4ACY 2 = 4, so X + Y B or X − Y B must be even, or

X+Y B and X−Y B are both even. But if X−Y B is even then X−Y B = 2V

for some V ∈ Z, which implies that X + Y B = 2V + 2Y B, which implies

X + Y B is also even. Similarly, X + Y B is even implies that X − Y B is also

even. Thus we may write X−Y B = 2V and X+Y B = 2U for some U, V ∈ Z.

Hence the map g(z) = V z−CY
AY z+U

is a modular map since U,CY, AY, V ∈ Z and

UV − AY CY =
(X − Y B)(X + Y B)

4
− 4ACY 2

4

=
(X − Y B)(X + Y B)− 4ACY 2

4
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=
4

4

= 1.

The fixed points of g satisfy V z − CY = z(AY z + U). This implies that

AY z2 + z(U − V ) + CY = 0, which implies that AY z2 + zY B + CY = 0.

Hence Az2 + Bz + C = 0, since Y 6= 0. Further, observe that

(U + V )2 = X2 = 4 + DY 2 > 4.

Hence the fixed points of g satisfy (4.3), and we have tr2(g) = (U + V )2 > 4.

Hence the fixed points of g are α and α∗, and g is a loxodromic modular map.

Lemma 4.18 Let α be a quadratic irrational. Then a loxodromic modular

map g fixes α if and only if g fixes α∗. Moreover Γα, the stabiliser of α in Γ,

is cyclic. [12]

Proof: Suppose g(z) = az+b
cz+d

is a loxodromic modular map.

Then the fixed points of g satisfy cz2 + (d− a)z − b = 0, so the fixed points

are algebraic conjugates of each other. Let us denote them by α and α∗.

Thus α =
a−d+

√
(d−a)2+4bc

2c
and α∗ =

a−d−
√

(d−a)2+4bc

2c
, where c 6= 0, and

g(α) = α, g(α∗) = α∗ and (α∗)∗ = α.

The stabiliser of α in Γ is given by Γα = {g ∈ Γ : g(α) = α}. Thus g ∈ Γα if

and only if g(α) = α and g(α∗) = α∗, by Theorem 4.17.

Assume that α > α∗ and set f(z) = z−α
z−α∗ . Then f ∈ PSL(2,R) and f(α) = 0

and f(α∗) = ∞. We note that for each g ∈ Γα we have fgf−1(0) = fg(α) =

f(α) = 0, and fgf−1(∞) = fg(α∗) = f(α∗) = ∞.

Let Λ0 = fΓαf−1. Thus each element in Λ0 fixes both 0 and ∞ and is in
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PSL(2,R). Hence the geodesic I is fixed. Hence the elements of Λ0 must be

of the form z 7→ kz, k ∈ R+.

Hence Λ0 = {gk ∈ PSL(2,R) : gk(z) = kz, k ∈ R+} is isomorphic to (R+, ·),
the multiplicative group of positive real numbers.

Since Γα is a subgroup of Γ, which is a discrete subgroup of PSL(2,R)

([10],[16]), the action of Γα on the hyperbolic geodesic joining α and α∗ is

non-trivial and discrete. Thus the action of Λ0 = fΓαf−1 on I is also non-

trivial and discrete. Since we have that Λ0 is isomorphic to (R+, ·) we have

Λ0 is cyclic and hence Γα is cyclic, by Lemma 4.12.

The next result establishes the generator of the cyclic group Γα.

Theorem 4.19 Let α and α∗ be the solutions of (4.3), with

D = B2 − 4AC > 0 ,
√

D ∈ R \Q and where

G = {(X,Y ) : X2 −DY 2 = 4, X + Y
√

D > 0}.

Then the map Ψ : G→ Γα defined by Ψ(X,Y ) = g where

g(z) =
(X − Y B)z − 2CY

2AY z + (X + Y B)
,

is an isomorphism. Furthermore, Γα = {g ∈ Γ : g(α) = α} is generated by

Ψ(X0, Y0), where (X0, Y0) is the fundamental solution of (4.2). [12]

Proof: By Theorem 4.16, we can identify G with Π(D). By Theorem 4.17, we

have that the solutions α and α∗ of (4.3) are the fixed points of g(z) = V z−CY
AY z+U

where U = X+BY
2

, V = X−BY
2

and g(α) = α and g(α∗) = α∗.

We first show that Ψ : (G, ?) → Γα is a group homomorphism.

Ψ((X1, Y1) ? (X2, Y2)) = Ψ
(

X1X2+DY1Y2

2
, X1Y2+Y1X2

2

)
= g
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where

g(z) =

((
X1X2+DY1Y2

2

)−B
(

X1Y2+Y1X2

2

))
z − 2C

(
X1Y2+Y1X2

2

)

2A
(

X1Y2+Y1X2

2

)
z +

(
X1X2+DY1Y2

2
+ B

(
X1Y2+Y1X2

2

))

=
((X1X2 + DY1Y2)−B(X1Y2 + Y1X2))z − 2C(X1Y2 + Y1X2)

2A(X1Y2 + Y1X2)z + X1X2 + DY1Y2 + B(X1Y2 + Y1X2)

= g1g2(z)

with gi(z) = (Xi−BYi)z−2CYi

2AYiz+Xi+BYi
for i = 1, 2.

Now, the composition g1g2 is associated with the matrix product

 X1 −BY1 −2CY1

2AY1 X1 + BY1





 X2 −BY2 −2CY2

2AY2 X2 + BY2




=
 (X1 −BY1)(X2 −BY2)− 4ACY1Y2 −2CY2(X1 −BY1)− 2CY1(X2 + BY2)

2AY1(X2 −BY2) + 2AY2(X1 + BY1) −4ACY1Y2 + (X1 + BY1)(X2 + BY2)




=
 X1X2 + Y1Y2(B

2 − 4AC)−B(Y1X2 + X1Y2) −2C(Y2X1 + Y1X2)

2A(Y1X2 + Y2X1) X1X2 + Y1Y2(B
2 − 4AC) + B(Y1X2 + X1Y2)




=
 X1X2 + DY1Y2 −B(Y1X2 + X1Y2) −2C(X1Y2 + Y1X2)

2A(Y1X2 + Y2X1) X1X2 + DY1Y2 + B(Y1X2 + X1Y2)




Hence Ψ((X1, Y1)?(X2, Y2)) = g1g2 = Ψ(X1, Y1)Ψ(X2, Y2) and so Ψ is a group

homomorphism.

Now we show that Ψ is one-to-one.

Suppose that Ψ(X1, Y1) = Ψ(X2, Y2). Then g1 = g2, where gi(z) = (Xi−BYi)z−2CYi

2AYiz+Xi+BYi

for i = 1, 2.

We have g1(0) = g2(0) and g1(∞) = g2(∞), so

−2CY1

X1 + Y1B
=

−2CY2

X2 + Y2B
(4.4)
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and
X1 − Y1B

2AY1

=
X2 − Y2B

2AY2

(4.5)

Hence we have

Y1(X2 + Y2B) = Y2(X1 + Y1B) (4.6)

from (4.4). From (4.5) we have

Y2(X1 − Y1B) = Y1(X2 − Y2B) (4.7)

Subtracting (4.6) from (4.7), we obtain

X1

X2

=
Y1

Y2

(4.8)

Since Xi, Yi ∈ Z+ for i = 1, 2 and X2
i −DY 2

i = 4, it is seen that

Y 2
1 X2

2

Y 2
2

−DY 2
2 = 4

and thus

X2
2 −DY 2

2 = 4
Y 2

2

Y 2
1

= 4.

Hence
Y 2
2

Y 2
1

= 1 and Y1 = Y2 and so X1 = X2. Thus (X1, Y1) = (X2, Y2) and so

Ψ is one-to-one.

Now we show that Ψ is onto.

Let f ∈ Γα with f(z) = az+b
cz+d

. Then f(α) = α, f(α∗) = α∗ and (a + d)2 >

4. Without loss of generality (by changing the sign of the coefficients of

f if necessary), we may assume a + d > 0. We note that if w is a fixed

point of f then f(w) = w, and we see that w satisfies a quadratic equation

Aw2+Bw+C = 0 and hence in fact Y (Aw2+Bw+Cw) = 0 for Y 6= 0, where

one can thus assume that A,B, C are co-prime. Further, since aw+b
cw+d

= w

we have that Y A = c, Y B = d − a, Y C = −b with Y 6= 0. That is
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Y (Aw2 + Bw + C) = cw2 + (d − a)w − b. Let D = B2 − 4AC, and put

X = a + d > 0. Then

X2 −DY 2 = X2 − (B2 − 4AC)Y 2

= X2 −B2Y 2 + 4ACY 2

= X2 − (Y B)2 + 4(Y A)(Y C)

= (a + d)2 − (d− a)2 + 4(c)(−b)

= 4ad− 4bc

= 4(ad− bc)

= 4

Thus f(w) =
2aw + 2b

2cw + 2d
=

(X − Y B)w − 2Y C

2(Y A)w + (X + Y B)
. Hence f = Ψ(X,Y ) and so

Ψ is onto Γα, where α is a fixed point of f .

Finally, since Ψ : G→ Γα and Ω : Π(D) → G are both group isomorphisms,

we have that ΨΩ : Π(D) → Γα is a group isomorphism. We have shown in

Theorem 4.13 that Π(D) is an infinite multiplicative cyclic group generated

by X0+Y0

√
D

2
where (X0, Y0) is the fundamental solution of X2 − DY 2 = 4.

Thus, since Ψ : G → Γα is an isomorphism, we have that Γα is generated

by Ψ(X0, Y0) = g0, where g0(z) =
(X0 − Y0B)z − 2CY0

2AY0z + (X0 + Y0B)
and α and α∗ satisfy

(4.3).

4.4 Simple Periodic Continued Fractions and

Quadratic Irrationals

In this section, we prove well-known theorems about pre-periodic simple con-

tinued fractions. Specifically, that a real number x has a periodic simple
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continued fraction expansion if and only if x is a quadratic irrational. The

number-theoretic proofs of these theorems are well-documented ([1],[2],[3]).

Following Series [8], we will prove the results using Möbius maps acting on

H⊥.

Recall that a Möbius map f is loxodromic if and only if tr2(f) 6∈ [0, 4].

Lemma 4.20 Any composition of maps of the form z 7→ b + 1
z
, where b ≥ 1,

is loxodromic. [12]

Proof: Let sb(z) = b + 1
z

= bz+1
z

, where b ≥ 1. Then sb(1) = b + 1 > 1 and

sb(∞) = b, so sb maps the interval [1,∞) ∪ {∞} into itself.

Note that s−1
b (z) = 1

z−b
so s−1

b (−1) = 1
−1−b

> −1, and s−1
b (0) = 1

−b
< 0,

so s−1
b maps the interval [-1,0] into itself. The same is therefore true of a

composition g of such maps. Thus g has a fixed point in [1,∞) and g−1 has

a fixed point in [−1, 0]. So g has two distinct real fixed points and so g must

be loxodromic.

Theorem 4.21 If the infinite simple continued fraction expansion of x ∈
R \Q is pre-periodic, then x is a quadratic irrational. [12]

Proof: Let x ∈ R \Q, say

x = lim
n→∞

S[bn](0) = lim
n→∞

S[bn](1) = lim
n→∞

S[bn](∞)

where S[bn](z) = sb0sb1sb2 · · · sbn(z) where sbi
(z) = bi + 1

z
and bi ≥ 1 for all

i ≥ 1 and b0 ∈ Z. Then the sequence of convergents of the simple continued

fraction expansion of x is given by {S[b0](∞), S[b1](∞), S[b2](∞), ...}. Now

assume that the simple continued fraction expansion of x is pre-periodic.
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Then the sequence of maps {sb0 , sb1 , sb2 , ...} is also pre-periodic and so it has

a subsequence of the form {g, gf, gf 2, gf 3, ...} where f is loxodromic and g

must contain sb0 in its composition if b0 < 1. Further, we have that

lim
n→∞

gfn(0) = x

and therefore

lim
n→∞

fn(0) = g−1(x).

But if f is loxodromic then fn(0) converges, and we denote this limit by y.

That is,

lim
n→∞

fn(0) = y.

Thus y is a fixed point of f and x = g(y). Now, f is composed of maps of

the form sbi
(z) = bi + 1

z
with bi ≥ 1 for all i and sbi

∈ Γ̃. So fn ∈ Γ̃ for all

n ∈ Z and fn also fixes y. While f may be in Γ̃, we have that f 2 ∈ Γ and

so y is a quadratic irrational by Theorem 4.17. But x = g(y) and g ∈ Γ̃, and

the image of a quadratic irrational under an extended modular map is again

a quadratic irrational, by Lemma 4.5. Hence x is a quadratic irrational.

We now prove the converse of Theorem 4.21. In this proof we use the concept

of a cutting sequence as a T0-path on the ρ − τ Farey tree. We recall that

each vertex on the path can be written as

T = τ b0ρb1τ b2ρb3 · · · τ bt(T0),

where b0 ∈ Z and bj ≥ 1 for all j ≥ 1 and where bt may be zero.

It is noted that if −1 < α∗ < 0 and 0 < α < 1, we can consider ψ(α∗) < −1

and ψ(α) > 1 where ψ(z) = 1
z
. Let [ψ(α∗)] = −n be the integer part of ψ(α∗)

where n > 1. Then −1 < τn−1ψ(α∗) < 0 and 1 < τn−1ψ(α) since n− 1 ≥ 1.
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Thus there is a g ∈ Γ̃ such that −1 < g(α∗) < 0 < 1 < g(α). In this case we

say that g(α∗) and g(α) are in standard normal form. Thus if α and α∗ are

not in standard normal form they can be brought to this form by the action

of g ∈ Γ̃.

Theorem 4.22 If α is a quadratic irrational, then the simple continued frac-

tion expansion of α is pre-periodic. [12]

Proof: Let α and α∗ be a pair of algebraically conjugate quadratic irrationals

fixed by the loxodromic map f ∈ Γ. We know from Lemma 4.18 that Γα is a

cyclic group, so we may choose f to be the generator of the subgroup of Γα

that contains the loxodromic modular maps that fix α and α∗. Without loss

of generality, we may assume that α∗ < α and that α is the attracting fixed

point of f . Let ` be the hyperbolic geodesic with end points α and α∗. Then

` is fixed set-wise by the maps f and f−1. Since α and α∗ are irrational, they

cannot be the endpoints of any Farey geodesic. Thus ` must be crossed by

some Farey geodesic, say σ.

Since I cuts the axis g(`) joining g(α∗) and g(α), we have that σ = g−1(I)

cuts the axis ` joining α and α∗.

We have shown in Theorem 3.20 that the convergents of the simple continued

fraction expansion of a point g(α) > 0 correspond to the nodes of a semi-

infinite T0-path that converges to g(α). The Farey tessellation, the ρ − τ

Farey tree, and the axis g(`) are invariant under the loxodromic modular

map f0 = gfg−1 that fixes g(α∗) and g(α) with tr2(f0) = tr2(f).

If Tj is any vertex of the T0-path that converges to g(α), then f r
0 (Tj) is also

on this T0-path for all r ∈ Z. In particular, since g(α) and g(α∗) are in
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standard normal form, we know that f r
0 (T0) is also on this T0-path for all

r ∈ Z. Now let

T1 = f0(T0) = τ b0ρb1τ b2ρb3 · · · τ bt(T0).

Since f0(T0) lies on the T0-path that converges to g(α) > 1, we know that

b0 ≥ 1.

Now

f r
0 (T0) = (τ b0ρb1τ b2ρb3 · · · τ bt)r(T0)

for all r ∈ Z.

Thus

g(α) = lim
r→∞

(τ b0ρb1τ b2ρb3 · · · τ bt)r(∞)

since g(α) is fixed by f0. Thus g(α) has a periodic simple continued fraction

expansion with period given by

(τ b0ρb1τ b2ρb3 · · · τ bt).

If −1 < g(α∗) < 0 then 1 < ϕ(g(α∗)), where ϕ(z) = −1
z
. Then ϕ(g(α∗))

is fixed by the loxodromic map ϕf0ϕ. By the same argument as above we

see that ϕ(g(α∗)) has a periodic simple continued fraction expansion. Hence

both α and α∗ have pre-periodic simple continued fraction expansions. That

is

α = lim
r→∞

g−1(τ b0ρb1τ b2ρb3 · · · τ bt)r(∞)

where α and g(α) have the same tails.

Further, if

ϕ(g(α∗)) = lim
r→∞

(τn0ρn1τn2 · · · ρnk)r(∞)

then

g(α∗) = lim
r→∞

ϕ(τn0ρn1τn2 · · · ρnk)r(∞)
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and

α∗ = lim
r→∞

g−1ϕ(τn0ρn1τn2 · · · ρnk)r(∞)

where α∗ and g(α∗) have the same tails (Chapter 2.2).

Theorem 4.23 A positive number α has an infinite periodic simple contin-

ued fraction expansion if and only if α is a quadratic irrational and α ∈ (1,∞)

and α∗ ∈ (−1, 0). [12]

Proof: If α is a quadratic irrational in (1,∞) and the conjugate α∗ is in

(−1, 0), then α and α∗ are in standard normal forms and so Theorem 4.22

establishes that the simple continued fraction expansion of α is periodic.

Conversely we suppose that α > 0 has a periodic simple continued fraction

expansion given by

α = lim
r→∞

(τ b0ρb1τ b2ρb3 · · · τ bt)r(∞) = lim
r→∞

(sb0sb1 · · · sbt)
r(∞).

Thus b0 ≥ 1 since b0 < 1 cannot occur as a partial quotient in a simple

periodic continued fraction expansion. Thus α > 1. Since any periodic simple

continued fraction is trivially pre-periodic we see by Theorem 4.21 that α is

a quadratic irrational.

It remains to show that the conjugate α∗ ∈ (−1, 0). We note that for each

j = 0, 1, 2, · · · , t, we have that the composition of maps of the form sbj
(z) =

bj + 1
z

or s−1
bj

(z) = 1
z−bj

, with bj ≥ 1 for all j, are both loxodromic in Γ̃, by

Lemma 4.20, and

α∗ = lim
r→∞

(sb0sb1 · · · sbt)
−r(∞) = lim

r→∞
(s−1

bt
· · · s−1

b1
s−1

b0
)r(∞).

Finally we note that each map s−1
bj

(z) = 1
z−bj

maps the interval [−1, 0] into

itself and the map sbj
(z) = bj + 1

z
maps the interval [1,∞) into itself. Thus

we have that α∗ ∈ (−1, 0).
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