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ABSTRACT 

 

Soil moisture content (SMC) takes on an important role in the hydrological 

functioning of wetlands. Temperature increases associated with climate change is 

expected to impact the hydrological regime of wetlands. Therefore, regional 

monitoring of SMC is essential for improved understanding of potential changes to 

the hydrological regime of wetlands while supporting decision making and 

interventions. Conventional methods of measuring SMC are costly and have a 

limited view of processes occurring at regional to global scales. In contrast, remote 

sensing can potentially offer a regular, regional overview of the hydrological function 

of wetlands and is therefore more cost-affordable compared to conventional 

methods. In the past, estimations of SMC with remote sensing lacked a sufficient 

spatial resolution for palustrine inland wetland ecosystem types, particularly in semi-

arid countries. However, the use of recently launched and freely available high 

spatial resolution sensors, such as the Sentinel series, may overcome these 

limitations. In this study, the use of European Space Agency’s Sentinel-1A and 1B 

(S1A, S1B; Synthetic Aperture Radar) and Sentinel-2A and 2B (S2A, S2B; optical) 

sensors were evaluated for their ability to predict SMC for wetlands and drylands in 

the grassland biome of South Africa. The percentage Volumetric Water Content 

(%VWC) for 200 points was measured in the Colbyn Nature Valley which is 

dominated by a palustrine wetland. The %VWC in the wetlands and terrestrial area 

of the study area were measured using a hand-held SMT-100 soil moisture and 

temperature meter at a 5 cm soil depth during March and May 2018 (the peak of the 

hydroperiod) and regressed against the Synthetic Aperture Radar (SAR) and optical 

data using a parametric and non-parametric models. The results showed that 

Sentinel images can predict the percentage SMC, with both the S1B and S2B 

images achieving the highest coefficient of determinations (R² > 0.8; R² > 0.9) and 

relatively low Root Mean Square Errors (RMSE = 10 %; 12 %) respectively. 

Predicted maps showed significantly lower ranges of SMC below 50 % (p ≤ 0.05) in 

the terrestrial area compared to the higher ranges of SMC (≥ 50 %) in wetlands for 

both sensors. Although the SAR C-band is limited to the upper 5 cm of the soil 

depth, it shows potential to measure ranges of SMC for palustrine wetlands and 

terrestrial areas in the grassland biome of South Africa which will be beneficial for 

wetland inventorying. 
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1.1. The Importance of estimating and monitoring soil moisture 

content of wetlands 
 

Soil moisture is an important attribute in wetland extent and dynamics. The National 

Wetland Maps showed that wetlands occupy only a small portion of South Africa’s 

surface area (Van Deventer et al., 2018b). Despite their small extent, they offer 

various ecological and economical functions which include improving water quality, 

flood and drought regulation, groundwater recharge, habitation for animals and 

plants, agricultural production and assist in managing limited water resources in the 

country and support commercial activities (McLaughlin et al., 2013). Different 

definitions of the term ‘wetlands’ have been used across the world (e.g., Burton and 

Tiner, 2009). Wetlands are areas of soil saturated or inundated with water within 50 

cm from the soil surface, which occurs during water periods or long enough 

throughout the growing season to become anoxic (Burton and Tiner, 2009; Ollis et 

al., 2013:1).  

South Africa has a variable climate resulting in the formation of a variety of wetland 

types. The Classification System for Wetlands and other Aquatic Ecosystems (Ollis 

et al., 2013) in South Africa distinguished three types of wetlands such as marine, 

estuarine and inland systems. Unlike marine and estuarine systems, inland systems 

are not connected to large bodies of water like the sea (Ollis et al., 2013). Inland 

aquatic ecosystems are systems that are found in different locations and natural 

settings, and hold a wide range of unique properties and functions.  

Wetlands continue to decline on a global scale, in extent and quality, to such severe 

standards, placing these ecosystems under pressure as well as the services they 

provide such as supplying water or providing habitation for wildlife (Gardner et al., 

2015). Wetlands have been and are subjected to various stress induced 

modifications like polluted runoff, hydrological modifications, eutrophication and, 

more recently a major concern is the impact from global climate change (Levin et al., 

2001). Global changes are a major contribution to the degradation and loss of 

wetlands, these include: a higher demand for water supply due to an increasing 

population, urbanisation, infrastructure and development, agricultural activities such 

as overgrazing and increased water abstraction for irrigation purposes (Russi et al., 
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2013). In addition to global changes, climate change poses as a huge threat to the 

ecological condition of wetlands due to increasing temperatures and 

evapotranspiration. Over the last few years, an unequivocal increase in temperature 

of 1.5 °C have been observed while, it had been predicted that by 2050 the 

temperature is likely to exceed 2 °C (IPCC, 2014). In addition, a general decrease in 

precipitation in lower latitudes is expected to occur (Day et al., 2005). Examples of 

impacts that occur from climate change include, alterations in the base flow, changes 

in hydrology (for example changes in wet and dry periods due increasing 

temperatures), increased weather events such as floods and droughts and a 

decrease in water quantity, to name a few (STRP, 2002). 

To overcome these challenges, regular monitoring of the spatial extent of inland 

wetlands is required to identify how much and where losses are occurring. However, 

inland wetlands are highly variable in spatial extent because the inundated and 

saturated areas change periodically, and often seasonally (Hess et al., 2015; Li et 

al., 2015). While inundation have been monitored well across the globe for larger 

wetlands (e.g. Pekel et al., 2016), monitoring of palustrine (vegetated) wetlands are 

deficient. Monitoring of Soil Moisture Content (SMC) can serve as a possible 

indicator of wetland functionality in palustrine wetlands and could be valuable for 

wetland inventorying too. SMC acts as an important component in the hydrological 

processes in wetlands leading to the understanding of land-surface interactions and 

has a predominant influence on an ecosystem’s response to the physical 

environment (Wei, 1995; Martinez et al., 2014). Because of the spatial variability that 

characterise the earth surface in terms of soil (e.g. slope and texture), as well as 

other processes that influence the water fluxes of near surface soil moisture (e.g. 

precipitation and evapotranspiration), soil moisture is variable in both space and 

time. Near surface soil moisture is considered to correspond to the upper layer 

(~5 cm) in the top soil (Bousbih et al., 2018). 

Assessing soil moisture levels is particularly useful for determining the seasonal 

patterns of water levels in a wetland, otherwise known as ‘hydroperiod’ or 

‘hydrological regime’ (Erwin, 2008). These seasonal variations describe the 

hydrological characteristics of a wetland, for example, whether it is inundated and for 

how long (permanent, seasonal, intermittent); and is used as a criterion to determine 

wetland types (Mitsch and Gosselink, 2007). A number of factors influence a 
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wetland’s hydroperiod, such as overgrazing from agricultural use or climate change. 

Therefore, monitoring the hydrodynamics of a wetland provides an understanding of 

a wetland’s response to the changes in their hydrology (Dixon, 2002; Voldseth et al., 

2007). More so, having insight to the hydrodynamics of a wetland is useful to 

quantify the extent of a wetland and therefore a valuable asset to wetland 

inventorying, especially in semi-arid countries (Conway and Dixon, 2000).    

South Africa is a semi-arid country and experiences a mean annual rainfall (MAR) of 

497 mm which falls below the global MAR of 860 mm (Bailey and Pitman, 2016). In 

semi-arid regions, the amount of rainfall varies significantly within and between 

seasons; as such, surface water availability can easily fluctuate (Klemas et al., 

2015). The scarcity of rainfall is compounded by the highly variable and uneven 

distribution of rainfall in South Africa, where the western regions experiences less 

run-off as compared to the eastern regions that receive a higher rainfall run-off 

(Lumsden et al., 2009). The flow regime in wetlands is linked to rainfall events which 

impacts the spatial and temporal distribution of soil moisture in inland aquatic 

wetlands (Whitfield and Matlala, 2011). These effects are noticeable in the changes 

of the hydrological period which may lead to the onset of increased 

evapotranspiration and a reduction in the availability of soil moisture (Bullock and 

Acreman, 2003; Dallas and Rivers-Moore, 2014; Brocca et al., 2017). This in turn 

could accelerate the transformation and degradation of natural intact wetland 

ecosystems and their associated ecosystem services. Due to the limited coverage of 

wetlands in South Africa, their loss and degradation will result in severe 

consequences as compared to a country with a larger extent of wetlands, especially 

taking into consideration that South Africa is a semi-arid country (Kotze et al., 1996). 

To compound monitoring efforts, in 2011, the South African National Biodiversity 

Assessment reported that inland wetlands are poorly mapped, highly threatened and 

poorly protected (Nel and Driver, 2012). Therefore, frequent monitoring, under global 

and climate change conditions, is required to inform the status of the hydroperiod 

and cycle in a non-destructive manner. There is a need for automated inventorying 

of wetlands, particularly, palustrine wetlands which are poorly represented in the 

National Wetland Map (NWM). Monitoring changes to SMC across the hydrological 

cycle, at a regional scale, is important not only for addressing this shortcoming of the 
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NWM, but also future conservation strategies, decision making and intervention 

bringing in great economic and societal benefits in South Africa. 

1.2. Regional monitoring of the variation and changes in the soil 

moisture content of wetlands 
 

In recent decades, various methods have been developed to measure SMC at 

different scales (Bittelli, 2011). There are several ways of measuring SMC. Firstly, 

traditional in situ soil moisture measurements provide reliable point-scale data. 

However, soil moisture is highly variable both spatially and temporally, therefore 

direct measurements are not able to represent the spatial distribution of soil moisture 

and is rendered inadequate to carry out regional to global scale monitoring (Engman, 

1991; Wood et al., 1992). Three other disadvantages of direct measurements of 

SMC are that it is labour intensive, time consuming and costly (Santi et al., 2013). 

Obtaining accurate soil moisture in situ measurements in wetlands is also difficult 

due to their dynamic hydrological characteristics, extensive areas which are difficult 

to access and remote locations. In the past, surface hydrology models have been 

developed to address the shortcomings of estimating SMC at a regional scale (Crow 

and Yilmaz, 2014; Tebbs et al., 2016). The spatial scale of these applied models, 

however, remains too fine scale (~10 km - ~100 km) for accurate soil surface 

measurements of wetlands (Bloschl and Sivapalan, 1995; McDonnell et al., 2007; 

Riley, 2014). Higher spatial resolution modelling is needed to produce more accurate 

predictions in the terrestrial environment (Wood et al., 2011), particularly inland 

wetlands of semi-arid to arid environments. Also, the large range of temporal scales 

in hydrological modelling is limited because of a lack of up-to-date datasets for 

modelling purposes, for example a time series of saturation or inundation levels and 

water level discharge rates (Gentine et al., 2012). 

Remote sensing technologies, both Synthetic Aperture Radar (SAR) and optical, 

provides alternative tools for monitoring SMC of inland wetlands and to overcome 

the limitations of small scale in situ measurements and coarse spatial resolution of 

modelling SMC. International research has shown that space-borne sensors are able 

to estimate SMC in the top layer (5 cm to 10 cm) of the soil surface and are capable 

of producing regional estimates, with frequent temporal overpasses, and at a spatial 
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resolution ranging tens of kilometres (Wang and Qu, 2009). The capability of these 

sensors remains to be assessed for South Africa’s palustrine wetlands. 

Retrieving near surface soil moisture using various active and passive microwave 

remote sensing techniques with good spatio-temporal resolution have been 

conducted over primarily temperate and Mediterranean climates (Ulaby et al., 1982; 

Su et al., 1997; Kerr et al., 2001; Njoku et al., 2002; Njoku et al., 2003; Moran et al., 

2004; Wigneron et al. 2007; Baghdadi et al., 2008; Parajka et al., 2009; Sinclair and 

Pegram, 2010; Jackson et al., 2016). To date, these studies have used both C and 

L-band sensors in their investigations, done for a wide variety of applications. 

Different applications require different spatial and temporal resolutions (Al-Yaari, 

2017). For instance, L-band passive remote sensing products are suitable for 

acquiring SMC information at a global scale, ranging from tens of kilometres, such as 

the Soil Moisture and Ocean Salinity (SMOS) at 35 km spatial resolution and the Soil 

Moisture Active Passive (SMAP) satellite at 3 km spatial resolution with a temporal 

resolutions of two to three days for both satellites (Klinke et al., 2018). However, the 

low spatial resolution of L-band products does not account for the high spatial and 

temporal variation of SMC which is unsuitable for monitoring of small spatial extent 

ecosystems such as palustrine wetlands. More recently, active remote sensing C-

band SAR satellites have been employed in research studies due to its advantage to 

provide near surface SMC datasets at medium to high spatial resolution (from 10 m 

to 100 m) making it more suitable for detecting changes in wetlands, at a regional 

scale, such as the European Remote Sensing Satellite 1/2 (ERS-1/2), Environmental 

Satellite (ENVISAT) or RADARSAT-1/2 (Baghdad et al., 2008; Doubkova et al., 

2009; Pathe et al., 2009; Mladenova et al., 2010; Widhalm et al., 2015).  

Two main features of microwave radiation are frequency and polarization. The depth 

to which a microwave signal can penetrate depends on the frequency (f) and 

wavelength of the satellite. Sensors with low frequency and longer wavelengths have 

the ability to penetrate deeper into the soil surface such as the L-band (f = 1-2 GHz, 

penetration depth = ~ 30 cm) as compared to higher frequency C-band (f = 4-8 GHz, 

penetration depth = ~ 5 cm), and X-band (f = 8-12 GHz, penetration depth = ~3 cm) 

sensors (Wagner et al., 2006). Ideally L-band sensors would therefore be more 

suitable for monitoring wetlands, because of the ability to penetrate deeper in to the 

soil surface near the estimated depth of saturation for wetlands (50 cm), however 
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owing to their coarse spatial resolution or low temporal resolution (e.g. ALOS sensor 

has a revisit time of 46 days), users are limited to sensors at 5 cm depth for features 

with smaller extents. In addition, estimating SMC becomes a challenge for high 

frequency remote sensing products when the study area is also densely vegetated 

and when there is high variability in the topography (e.g., surface roughness) (Ulaby 

et al., 1979; Said et al., 2012). Several studies made use of C-band data to retrieve 

SMC, however, the majority of these studies focused on the estimation of SMC in 

terrestrial ecosystems, usually where the cover was bare soil or very little to sparsely 

vegetated areas with correlation of determination (R) of > 0.5 and root square mean 

error (RMSE) of ≤ 40 % (Moran et al., 2004; Carlson, 2007; Owe et al., 2008; 

Verstraeten et al., 2006; Wang and Qu, 2009). In the case of high frequency, C-band 

sensors, the wavelength (~ 5 cm) together with the polarization modes, improves the 

signal’s ability to penetrate vegetation canopy cover and interact with the surface soil 

layer. In Hornacek et al. (2012), it was shown that vegetation ≤ 1 kg/m² had very little 

influence on the signal for terrestrial systems in a country. Other studies 

compensated for the influence of vegetation and texture through including these in 

the regressions (e.g. using sensors with different configurations such as different 

incident angles; testing during specific phenological periods where there is little to no 

vegetation activity or incorporating vegetation indices (Polascia et al., 2013). 

SAR sensors uses two polarizations in regressions to features, including single 

polarization vertical-receive, vertical-transmit (VV) or horizontal-receive, horizontal-

transmit (HH) vertical-receive and or cross-polarization such as vertical-receive, 

horizontal-transmit (VH). Different polarization modes have also been employed in 

several studies as a means of minimizing the effects of surface roughness or 

vegetation on radar return signal. For instance, different scattering mechanisms 

when dealing with agricultural lands result in direct backscatter from bare soils, direct 

backscatter from leaves, stem or fruit from plants, double-bounce backscatter from 

between the soil surface and vegetation canopy, and multiple scattering between 

ground-vegetation-ground interaction (Cable et al., 2014). A research done by 

Dabrowska-Zielinska et al. (2018) tested the correlation between the C-band 

Sentinel-1 backscatter and the observed SMC measured and found that vertical-

receive, horizontal-transmit (VH) had better accuracies (coefficient of determination, 

R² = 0.55) as compared to the VV (R² = < 0.5) in terrestrial and palustrine wetlands 
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of Poland. Therefore, using sensors with dual-polarization modes allows a good 

compensation of wetland vegetation dynamics to retrieve SMC.  

Optical remote sensing is an alternative tool for estimating near-surface SMC. The 

reflectance of SMC, together with vegetation and texture is detected across the 

visible/near infrared (VNIR: 400 nm–1200 nm) and the short wave infrared (SWIR: 

1200 nm–2500 nm) spectrum, and SMC is particularly detected by the water 

absorption bands with a central wavelength of 970 nm, 1160 nm, 1440 nm and 1930 

nm (Tian, 2016). A hyperspectral study done in the laboratory by Whiting et al. 

(2004) and Liu et al. (2002) found several bands in the SWIR (1200 nm – 2500 nm) 

were suitable for predicting SMC with RMSE 0.002–0.004 for both studies. Optical 

sensors, such as the Landsat series of multispectral scanner (MSS), thematic 

mapper (TM) and operational land imager (OLI) have been used to date to estimate 

SMC in palustrine wetlands as well as monitor wetland’s hydrological regimes, by 

using vegetation type as a proxy (e.g. marshy, herbaceous or meadow) to determine 

the extent of wetlands and terrestrial areas, at various scales (e.g. Shalaby and 

Tateishi, 2007; Zhang et al., 2009a; Tong, et al., 2018). Other than the limitation in 

the spatial resolution of this sensor (30 m) being inadequate for small wetlands, 

frequent cloud coverage and heterogeneity vegetation cover could become a 

challenge when estimating SMC (Saalovara et al., 2005). Other sensors such as the 

WorldView, IKONOS and RapidEye offer eligible accuracy with a sub-meter level 

spatial resolution imagery and an average revisit time of 1.1 days, for detecting the 

extent as well as other aspects of inland wetlands (Nouri et al., 2014). These 

sensors are ideal for monitoring wetlands as it overcomes the technical limitations 

previously mentioned, however, there are high costs associated with attaining the 

data from these commercial sensors, limiting its use in monitoring. 

A number of studies have explored the use of remote sensing technologies in 

monitoring SMC in wetlands, however no literature has explored how this approach 

can be used to determine thresholding for determining the extent of a wetland, and 

using it subsequently in wetland mapping and inventorying. In general, several 

studies have shown in situ SMC measured in terrestrial systems to ranges from 

±24 % to ±45 %, while in situ SMC in wetlands were generally above ±50 %. The 

aims of these studies were not directed at thresholding SMC for identifying the 

boundaries of wetlands.  
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Both SAR and optical sensors have been used successfully to date in estimating 

SMC at a regional to global scale, however the focus had been primarily in terrestrial 

and less so on palustrine wetlands. The coarse resolution of satellites used, limited 

testing across different environments and application of smaller features, such as 

palustrine wetlands in semi-arid countries remains to be assessed. Palustrine 

wetlands are considered crucial in the hydrological regime of the larger landscape, 

and have a valuable contribution to biodiversity (Biggs et al., 2017). The recently 

launched European Space Agency’s dual-polarimetric C-band SAR Sentinel-1 

(launched in 2014) and optical sensor Sentinel-2 (launched in 2015), offer new 

opportunities to test the capabilities of these sensors in predicting SMC for small, 

palustrine wetlands. These sensors are able to provide relatively high spatial 

resolution (10 m) and high revisit time (5-6 days) imagery which is available to all 

users, at no cost (Sentinel Data Access Overview - Sentinel Online, 2018). Should 

these sensors be able to predict SMC in these small, palustrine wetlands, it has the 

potential to, on the one hand, contribute information on their varying extent for 

wetland inventorying and improved representation in the South African National 

Wetlands Map (NWM), and on the other hand, a means of monitoring their ecological 

condition under the pressures of climate change.  

 

1.3. Motivation  
 

It is estimated that since the 1900’s, the world’s wetlands have declined in extent 

from 71% to 64%, from the 20th century to the early 21st century (Davidson, 2014). In 

South Africa, a study by Begg (1988) showed that nearly 58% of the wetlands in the 

Umfolozi catchment have either undergone degradation or transformed to 

agricultural land. Many inland wetlands are located within the grassland biome of 

South Africa. The grassland biome is spread across six provinces of South Africa, 

covering approximately 350 000 km2 of the country (O'Connor and Bredenkamp, 

1997). Grasslands function as water production areas, this allows humans to benefit 

from its rich soil, for example, local communities use it for agriculture and livestock 

grazing and wildlife species, such as the blue crane, rely on dry grasslands for 

habitation. However, inland aquatic ecosystems in the grassland biome are facing 



10 
 

major threats from mining plantation activities, urbanization and invasive alien plants 

(Neke, 1999; SANBI, 2013). 

South Africa, like many other countries, requires an adequate monitoring system for 

inland wetlands. The intent is for the outcome of this study to contribute knowledge 

to South Africa’s National Wetland Monitoring Programme (NWMP) (Wilkinson et al., 

2016), which is still to be implemented in South Africa. The methodologies 

considered in the NWMP includes an assessor to carry out rapid field-based 

assessments on prioritized wetlands (this information is based on existing datasets), 

intending to spend four to eight hours at each site. Such in-field assessments would 

be time-consuming and not cost-effective over the long run. Hence, if SMC can be 

predicted from the new and freely available Sentinel images, thresholds of SMC can 

be explored for the automated mapping and monitoring of palustrine wetlands in the 

grassland biome of South Africa across the hydroperiod.  

 

Globally, SMC is considered as an ‘Essential Climate Variable’ by the Global Climate 

Observing System in the year 2010 (GCOS, 2010). Using remote sensing as a 

means of obtaining up-to-date information on SMC, can also contribute to the efforts 

carried out by Group on Earth Observations Biodiversity Network (GEOBON), in 

order to report and manage changes in the extent of different wetland types, and in 

this way inform ecosystem biodiversity. This would especially have a major positive 

impact on the conservation strategies for wetland biodiversity. 

 

1.4. Study area 
 

The study area chosen included a palustrine wetland in the grassland biome of 

South Africa. The study area is comprised of predominantly densely covered 

graminoid and sedge vegetation with a narrow channel to the western part of the 

study area. The study area provides an ideal opportunity for testing the capability of 

the Sentinel sensor’s ability to estimate SMC, because of a gradual change in soil 

moisture from the drier terrestrial parts of the study area, to areas with increasing soil 

moisture up to the central part where a peat substrate occurs, where the wetland is 

fully saturated. The grassland biome of South Africa constitutes approximately a third 
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of the surface extent of the country (Mucina and Rutherford, 2006), is considered 

‘critically endangered’ and experiencing a high rate of land conversion for agricultural 

use and urban development. The boundary of the wetland has been previously 

mapped at a desktop level, using a single image date only (Van Deventer et al., 

2018b). The full variation of the hydroperiod could therefore not be accounted for. It 

is expected that better representation of the full extent of the wetland can be 

determined based on better understanding of the SMC ranges in the study area. The 

study area therefore provides an opportunity to assess whether a threshold can be 

determined between the terrestrial and wetland ecosystems. 

 

1.5 Aim and objectives 
 

The aim of the study was to determine whether the Sentinel-1 and Sentinel-2 

sensors are able to estimate soil moisture content (SMC) in palustrine wetlands in 

the grassland biome of South Africa, through: 

1. Assessing the capabilities of the Sentinel sensors to estimate SMC in 

palustrine wetlands; 

2. Assessing whether there are significant differences in SMC estimated for 

wetlands and terrestrial ecosystem types. 

Two research questions have been formulated based on gaps identified in the 

literature, including: 

1. Can the estimation of near surface SMC from the Sentinel series satellites 

improve the mapping and monitoring of palustrine wetlands? 

2. Can the optical and radar remote sensing technology be used for 

distinguishing the ranges and differences in SMC between wetlands and 

terrestrial ecosystem types? 
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1.6. Thesis outline  
 

There are six chapters in total for this study. Chapter one is a general introduction, 

outlining the importance of wetlands, the threats they are facing and what measures 

can be put in place to monitor inland wetlands in South Africa. Chapter two is the 

literature review which provides an overview of wetlands and delineating a wetland, 

SMC and its relevance as well as methods of measuring SMC. Chapter three 

describes the study area and datasets used in the study and it also discusses the 

procedure and methods for analysing the data for objective one and two. Chapter 

four contains the results of the algorithms and methods used for analyses. Chapter 

five presents the discussion based on the results and compares previous literature 

and their results. Chapter six closes this thesis with a conclusion. 
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Chapter 2 : LITERATURE REVIEW 
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2.1 Wetlands  
 

2.1.1 Definitions and concepts  
 

The term ‘wetland’ has been defined on the basis for keeping a record of natural 

habitats, for carrying out various scientific studies, and in some countries, for 

regulating the usage of these sensitive ecosystems. Many technical definitions exist 

(Table 1) for the term ‘wetland’, however all these definitions have some shared 

elements. These include, wetlands may be permanently or temporarily saturated or 

inundated; the water in wetlands are either salty or freshwater; wetlands are either 

natural habitats or have been artificially created; these ecosystems are wet long 

enough to support, even if periodically, hydrophytic vegetation and aquatic life and; 

hydric soils exist in wetlands (Burton and Tiner, 2009). 

 

Table 1: Types of definitions used for wetland inventories (Source: Adapted from Tiner et al., 2015:7) 

Definition of wetland Country 

‘Areas of marsh, fen, peatland, or water, whether natural or artificial, permanent or temporary, 
with water that is static or flowing, fresh, brackish, or salt, including areas of marine water, the 
depth of which at low tide does not exceed 6 m.’ (Ramsar Convention Bureau, 1998:7) 

International  

‘Areas of seasonally, intermittently, or permanently waterlogged soils or inundated land, 
whether natural or otherwise, fresh or saline.’ (Semeniuk and Semeniuk, 1995:104). 

Australia  

‘Land that is saturated with water long enough to promote wetland or aquatic processes as 
indicated by poorly drained soils, hydrophytic vegetation, and various kinds of biological 
activity which are adapted to a wet environment.’ (Warner and Rubec, 1997:1) 

Canada  

‘Includes permanently or intermittently wet areas, shallow water, or land water margins that 
support a natural ecosystem of plants and animals that are adapted to wet conditions.’ 
(Johnson and Gerbeaux, 2004:7) 

New Zealand  

‘Lands transitional between terrestrial and aquatic systems where the water table is usually at 
or near the surface or the land is covered by shallow water.’ (Cowardin et al., 1979:3) 

United States  

‘An area of marsh, peatland or water, whether natural or artificial, permanent or temporary, 
with water that is static or flowing, fresh, brackish or salt, including areas of marine water the 
depth of which at low tide does not exceed ten metres’ (South African National Biodiversity 
Institute (SANBI), 2009:6) 

‘Land which is transitional between terrestrial and aquatic systems where the water table is at 
or near the surface, or the land is periodically covered with shallow water, and which land in 
normal circumstances supports or would support vegetation typically adapted to life in 
saturated soils’ (Republic of South Africa, 1998:4; Ollis et al., 2013:103) 

South Africa  
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As a signatory of the Ramsar Convention, South Africa’s broad definition of a 

wetland has adapted to the Ramsar definition for a proposed National Wetland 

Classification System (NWCS) (SANBI, 2009). The definition as per the NWCS 

includes all types of ecosystems that are either permanently or periodically wet, 

other than marine waters deeper than ten meters (Lombard et al., 2005). In 2010, 

the South African National Biodiversity Institute (SANBI) collaborated with experts 

and stakeholders to develop a ‘Classification System for Wetlands and other Aquatic 

Ecosystems in South Africa’ (hereafter called the Classification System) (Ollis et al., 

2013). The Classification System consists of a hierarchical classification process 

which distinguishes inland wetlands from estuaries and marine systems. A 

combination of the broad climatic regions at Level 2 and the hydrogeomorphic 

(HGM) units at Level 4A identifies wetland ecosystem types for South Africa (Figure 

1). At Level 5, attributes distinguish palustrine (vegetated wetlands) from lacustrine 

(open waterbody) systems. The Classification System has adopted the definition of 

wetlands from South Africa’s National Water Act (NWA), Act 36 of 1998 (RSA, 

1998). In order for a wetland to meet the definition above, certain criteria are 

required such as, (a) the presence of a high water table causing saturation near the 

surface of the top soil layer, resulting in anaerobic conditions in the top 0.5 m of top 

soil; (b) hydromorphic soils, indicating long periods of saturation through, for 

example mottling and; (c) hydrophilic plants such as hydrophytes have to be present 

in that environment (DWAF, 2005). 
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Figure 1: Six -tiered hierarchical structure based on the characteristics of the South African Classification 
System for Wetlands and other Aquatic Ecosystems (Ollis et al., 2013:6). Soil moisture saturation regimes are 
attributed at Level 5. 

 

Different climate conditions, soils, vegetation, hydrology and other factors are used 

to determine wetland types. According to the Ramsar Convention and the 

Classification System, wetland types are broadly categorised into coastal, estuarine 

and inland wetlands (Ollis et al., 2013). Inland wetlands are interconnected systems 

which grade laterally in soil moisture saturation or inundation from terrestrial to 

wetland, as well as longitudinally from one wetland type to another through ecotones 

(transition zones) (Chamorro et al., 2015). Inland wetlands are subdivided into 

lacustrine and palustrine systems, depending on whether they are inundated or 

vegetated. Lacustrine wetlands are permanently flooded areas (aquatic systems) 

that have little flow which include lakes and dams and are characterised by emergent 

plants. Palustrine wetlands are ecosystems that occur between the terrestrial and 

aquatic system, are vegetated and the soils vary in saturation (Noble and Hemmens, 

1978). 

Wetland hydrology is the key driver responsible for the formation of wetlands. The 

presence of water and its variations within an ecosystem and underlying soil is the 

‘hydrological regime’ of a wetland (Collins, 2005; Ollis et al., 2013). According to the 

Classification System, the hydrological regime can be further categorised based on 

its hydroperiod, which is whether the HGM units are inundated or saturated (Figure 
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2). Inundation occurs when the water can be seen on the surface for a minimum 

period of 3 months (intermittently), with seasonal systems inundated between 3 and 

6 months and permanently inundated systems > 9 months per year (Ollis et al., 

2013). Other systems which are not inundated, could be divided in similar 

categories, based on their soil saturation in the upper 0.5 m of the soil surface (this is 

the commonly accepted depth for wetland delineation) (Ollis et al., 2013:98, 101). 

These saturation zones create an environment that supports hydric soils as well as 

the growth of wetland vegetation specifically adapted to these saturated conditions 

(Figure 2). 

 

Figure 2: A diagram of a wetland representing the difference between the saturation and inundation zones 
(Source: Ollis et al., 2013:41) 

 

Variations in water depth, the level of inundation and duration of inundation 

influences the ecological function of wetlands and subsequently soil and vegetation 

characteristics (Collins, 2005). For example, permanently inundated zones of a 

wetland would host aquatic vegetation and gleyed soils, while seasonally inundated 

areas would host a mixture of wetland and terrestrial grasses. Delineation of 

wetlands through in-field assessment uses a combination of water, vegetation and 

soil characteristics to infer the long-term inundation or saturation zone of a wetland 

(DWAF, 2005). 
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2.1.2 Wetlands under pressure 
 

Wetlands play a vital role in South Africa as they provide many ecosystem services 

(MEA, 2005; Kotze et al., 2008; Working for Wetlands, 2008). They provide habitats 

for plant species, aquatic species and wildlife; they act as water storage systems and 

reduce peak runoff; they recharge groundwater and function as water filters; they 

provide nutrients and minerals and; they provide numerous recreational activities 

(Wu, 2018). However, in the face of global climate change, these ecosystems are 

highly threatened and evidently can be observed through alterations in the 

hydrological regime (Erwin, 2009).  

Global climate change is a major concern in South Africa. The main drivers of 

climate change are temperature, precipitation and evapotranspiration (Dallas and 

Rivers-Moore, 2014). According to the 2014 South African Long Term Adaptation 

Scenarios and the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change (IPCC, 2014), temperatures will increase by 3—6 oC by the year 

2081 in the interior (Ziervogel et al., 2014). These will impact the hydrological cycle 

and subsequently change the structure and functioning of wetlands and in turn the 

goods and services they offer. Water quantity, water quality, habitat with associated 

fauna and flora are likely to be affected by global climate change. For example, if 

there is an increase in water, it could destabilise the ecosystem because some fauna 

and flora cannot adapt to specific water temperatures and this could lead to a loss in 

plant and animal species (Poff et al., 2002; Mitsch et al., 2009).  

The majority of wetland ecosystems have been degraded or lost through 

anthropogenic activities (Frenken, 2005). Water abstraction reduces the amount of 

water available for wetland ecosystems support and can lead to altering water flow 

direction (Davies et al., 1998). Agricultural practices, such as the spraying of 

pesticides or overgrazing from cattle and water abstraction, cause disturbances and 

changes in the soils and vegetation conditions of wetlands. Also, due to water being 

used from wetlands for irrigation purposes, this leads to the disturbance of how 

precipitation is routed to wetland catchments and causes a change in the water 

budget or water cycle (Voldseth et al., 2007). Mitigating the effects of anthropogenic 
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activities will lead to increased resilience of wetlands in order to continue to provide 

essential ecosystem services under climate change (Kusler et al., 1999; Ferrati et 

al., 2005). 

Despite the importance of wetlands, it has been estimated that 64% of the world’s 

wetlands have disappeared since 1900 (Ramsar Convention, 2009). Roughly 50% of 

wetlands in the Umgeni catchments of South Africa have been lost (Begg, 1988). 

According to the 2011 National Biodiversity Assessment (NBA 2011), 65% of the 

country’s wetland types are under threat (48% critically endangered, 12% 

endangered and 5% vulnerable) (Nel and Driver, 2012). In addition, the NBA 2011 

found that only 11% of wetland ecosystem types were well protected, with 71% not 

protected at all. However, the extent of all wetlands, as well as the rate of loss, is 

unknown and it is estimated that the National Wetland Map (NWM) used for the NBA 

2011, represented < 54% of wetlands mapped at a fine scale (Van Deventer et al., 

2016). Knowledge on the extent and type of wetlands is crucial for the management 

and protection of wetland resources, especially in a semi-arid country like South 

Africa where water is scarce. Therefore, developing a wetland inventory is essential 

for reasons of acquiring knowledge on the distribution and extent of wetlands and 

monitoring their hydrological characteristics. 

 

2.1.3 Inventorying and monitoring of palustrine wetlands in South Africa 
 

South Africa, as a signatory to the Ramsar Convention, has an obligation to manage 

and protect its wetland resources. The South African Department of Water and 

Sanitation developed a National Aquatic Ecosystem Health Monitoring Program in 

the 1990s, in which all inland aquatic ecosystems were to be maintained and 

monitored (DWAF, 2006). The extent of inland wetlands and estuaries are 

represented in the National Wetlands Map (NWM) and its updates, attempting to aim 

for the maximum extent of inundation. However, a lack of basic knowledge on the 

extent and distribution of inland wetlands still existed. Initial assessments of omission 

errors of the NWM identified those in the savannah or woodlands of the KwaZulu-

Natal, Limpopo and Mpumalanga provinces (NLC2000 management committee, 

2008), whereas more recent estimates are linked to various biomes, but more 

specific to palustrine wetlands (Van Deventer et al., 2018b). Full representation of 
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the extent of wetlands is crucial for prioritising areas in a monitoring system for in situ 

measurements. South Africa’s National Wetland Monitoring Programme (NWMP) 

was conceptualised in 2013 through a project funded by the Water Research 

Commission (WRC) developed a project titled, ‘The Design of a National Wetland 

Monitoring Programme (NWMP) (Wilkinson et al., 2016). Although the NWMP 

framework considered the use of hydrological parameters such as SMC to detect the 

extent of palustrine wetlands, remote sensing was not considered in any of the 

methods discussed (Wilkinson et al., 2016). If remote sensing can detect and 

monitor the inter- and intra-annual variation in SMC of palustrine wetlands, it would 

contribute towards a better representation and understanding of the variability of the 

hydrological regime of inland wetlands in South Africa. 

Various methods can be used to map palustrine wetlands. Field-based methods of 

measuring SMC are spatially the most accurate way of delineating acquired data, 

however, it is limited to a single snap-shot in time. Repeat visits are required to 

characterise the hydrological regime and other characteristics of the wetland 

rendering it as impractical, labour intensive and time-consuming when attempting a 

regional scale survey. Remote sensing, on the other hand, can provide a regional 

overview of the landscape and is a cost effective approach compared to field-based 

surveys and monitoring (Ozesmi and Bauer, 2002). For example, Henderson and 

Lewis (2008); Zhao et al. (2015) and Pekel et al. (2016) have compiled extensive 

reviews on studies in which contained reference to wetland detection focusing 

primarily on using medium spatial resolution (> 10 m) C-band SAR (e.g. ERS or SIR-

C) and optical remote sensing (e.g. Satellite Pour l’Observation de la Terre (SPOT) 

or Landsat) and where soil moisture was used, vegetation type served as a proxy to 

infer soil saturation. 

To date, the coarse spatial resolution of space-borne sensors, as well as limitations 

in the spectral bands, limited the detection and mapping of palustrine wetlands in 

South Africa. For instance, different inland wetland types such as lacustrine and 

palustrine, may display similar spectral or backscattering signatures in remote 

sensing imagery, due to similarities in their vegetation cover, such as reeds and 

grass sedges these wetlands hold (Amani et al., 2017). In the grassland biome of 

South Africa, the boundary between palustrine wetlands and terrestrial areas are 

much more gradual and therefore becomes more challenging to use vegetation as 
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means of delineating or determining a cut-off, as has been used in previous 

literature. Therefore, using remote sensing technology with medium to high spatial 

and temporal resolution coupled with a multi-temporal approach to monitor soil 

moisture would be able to provide much more information and insight to the 

hydrological regime of palustrine wetlands. Vegetation could be incorporated in the 

estimation of soil moisture (Haas, 2016). 

 

2.2 Soil moisture content  
 

2.2.1 The role of soil moisture content in wetlands 
 

Soil moisture plays a major role in the climate system and was recognised as an 

Essential Climate Variable (ECV), defined by the Global Climate Observing System 

(GCOS) in 2010 (GCOS, 2010). It assumes the role of an important variable in 

hydrology, climatology and meteorology (Legates et al., 2010). Precipitation and 

ground water percolates the soil and either goes deep into the soil layers or stays in 

the soil surface, depending on the substrates (Esch, 2018). In general, soil moisture 

content (SMC) is water that is contained in the spaces between soil particles, against 

gravity (Arnold et al., 1999; Pitts, 2016). In the geosciences field, the surface of the 

soil is regarded as the top 2.5 cm to 10 cm deep (Bulfin and Gleeson, 1967; Shaver 

et al., 2002). SMC is variable in both space and time even within a few meters 

(Buttafuoco et al., 2005; Seneviratne et al., 2010). The spatial variability of SMC 

often follows terrain and vegetation canopy cover which is linked to water-holding 

capacity. Other contributing factors such as precipitation and evapotranspiration 

influences the spatial and temporal distribution of SMC, especially in semi-arid 

countries where there is a fluctuation in precipitation and evapotranspiration 

(Mohanty and Skaggs, 2001; Lam et al., 2007).  

Soil moisture takes on an integral role in shaping the functioning of a wetland’s 

ecology. It is a determining factor in the interaction between land surface and 

atmosphere through evaporation (Dente, 2016). It modulates plant transpiration and 

soil evapotranspiration and controls the division of precipitation into runoff and 

ground water storage. Furthermore, it supports vegetation species (Trasar-Cepede 
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et al., 2008). Monitoring SMC would assist in the detection of palustrine wetlands as 

well as general wetland health. Information on long term spatial distribution of SMC 

can aid in monitoring the impacts that climate and global change have on these 

ecosystems (Brekke et al., 2009).  

With the aim of improving the detection and characterisation of palustrine wetlands, 

a monitoring system which is as accurate as possible, reports as quick as possible 

and provides continuous time-series data of soil moisture, is required. Several 

methods exist to measure soil moisture content, ranging from tools to measure soil 

moisture in-field, to laboratory assessments and estimations derived from satellite 

images, taken by remote sensors. The following subsections discuss the different 

methods which can be used. 

  

2.2.2 In situ soil moisture measurements 
 

In situ SMC measurements can be acquired directly or indirectly. The standard 

gravimetric method is considered as a direct measurement and requires numerous 

samples to be taken across large areas in order to capture the variation in SMC. The 

samples are then taken to the laboratory for analysis. The Gravimetric method is the 

basic measurement of soil moisture of known weight or volume, on soil samples. 

Physical soil samples are extracted at a desired depth and location where the soil 

samples are taken to the laboratory for evaluation. They are weighed before being 

dried in an oven for 24 hours at 105 °C (Schmugge et al., 1980). After the drying 

period, the samples are weighed again and the difference in weight is calculated as 

the amount of moisture in the soil. Soil moisture content based on weight is defined 

in Equation 1. Gravimetric soil moisture can be converted to volumetric soil moisture. 

Soil samples are collected with a tube auger or a core sampler where the volume of 

the samples is already known. The amount of water that is contained in the soil 

samples are estimated by drying it in an oven and calculating the moisture content. 

Soil moisture content based on weight is defined in Equation 2. 

 

 

Equation 1: Gravimetric method equation (Black, 1965). 
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𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) =
𝑊𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 𝑥 100 

 

 

Equation 2: Volumetric Water Content equation (Black, 1965). 

 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) = 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) 𝑏𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑥 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (%) 𝑏𝑦 𝑣𝑜𝑙𝑢𝑚𝑒  

 

Depending on the soil type and the number of point measurements to represent 

variability, other methods such as neutron scattering or tensiometers can be used to 

measure SMC in the field. Neutron probes make use of high energy neutrons which 

are lowered into the ground through a tube and measures the slow backscattered 

neutrons. A detector counts how many neutrons are slowed down by colliding with 

hydrogen particles present in the soil water. A relationship with volumetric soil water 

content is achieved when the slow neutrons are calibrated with gravimetric soil 

moisture samples and bulk densities (Vachaud et al., 1977). Radioactive scattering 

takes place across a spherical shaped tube, therefore, the neutron probe will 

measure a volume sized sample instead of a point. The depth resolution of the 

neutron probe influences the large volume sampled, making it prone to errors due to 

adjoining air also being sampled (Dorigo et al., 2010). The neutron probe requires 

repeated calibration which makes it time consuming, it is also considered a health 

hazard due to the radioactive material used in the probes (Puri, 2009). The principle 

of a tensiometer instrument is based on measuring the tension of water trapped in 

the soil. The tension to hold water particles in the soil is less in saturated conditions, 

and as the water gets depleted the tension increases as the soil particles hold on to 

the water. The instrument consists of a liquid-filled ceramic cup that is attached to a 

vacuum gauge. When the cup is submerged into the soil it fills up with liquid until the 

pressure from the liquid reaches equilibrium with the pressure from the cup. The 

readings it gives range from a unit of zero for saturated soil and drier soils are 

recorded at approximately 85 units. 

In contrast to direct methods of measuring SMC, indirect methods require an 

instrument to be placed in the ground to measure soil properties that are related to 
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soil moisture. Dielectric properties of the soil help to obtain soil moisture content 

measurement due to the large differences between the relative dielectric properties 

of liquid water (roughly 80) and dry soil (2 to 5) (Schmugge, 1985; Engman and 

Chauhan, 2016). When an element is inserted into a condenser’s electrical field, it 

influences the electrical forces within that field and is expressed as the ratio between 

the force in the element and the force which would exist in the space. This ratio is 

known as the ‘dielectric constant (ε)’ and accounts for approximately 20 times more 

water than the average dry soil, due to the fact that water molecules retain 

permanent dipole moments. Because of the dielectric properties water can be 

compared to those of dry soil, the Volumetric Water Content (VWC) can be 

measured from the dielectric characteristics. This is a reliable and non-destructive 

method because it preserves the soil water structure. Indirect methods can 

determine the volumetric soil water content without the need for determining the soil 

density (Zhang and Zhou, 2016). 

Common indirect methods that are used to estimate SMC in the field are acquired 

from time-domain reflectometry or capacitance frequency-domain reflectometry 

(TDR). Time-domain reflectometry measures the dielectric permittivity of a medium 

(in this case, soil) by calculating how long an electromagnetic wave will take to travel 

along a probe which is surrounded by the soil. The time period measured is then 

translated and related to the electrical conductivity of the soil (Puri, 2009). Basically, 

TDR is based on the principle where the bulk electrical permittivity (εb) of the soil is 

measured and determined as a function of electrical wave velocity. The VWC is 

derived from the length of the electromagnetic waves travelling through the probes 

(Topp et al., 1980). The relation volumetric water content (ε) is measured for different 

soil types, referred to as the Topp equation (Equation 3). 

 

Equation 3: Topp's equation for measuring soil water content (Topp et al., 1980). 

 

𝜃 = −5.3 𝑥  10−2 + 2.92 𝑥 10−2 𝜀𝑏 − 5.5 𝑥 10 −4𝜀𝑏2 + 4.3 𝑥 10−6𝜀𝑏3  

Where: 𝜃 = 𝑑𝑖𝑎𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑟 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡;   𝜀𝑏 =  𝑝𝑒𝑟𝑚𝑒𝑡𝑡𝑖𝑣𝑖𝑡𝑦 
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Frequency-domain reflectometry is a sensor that measures the dielectric constant of 

SMC. This instrument is comprised of an open-ended coaxial cable and a single 

reflectometer, situated at the probe tip, of which the dielectric constant is measured 

at a particular frequency. Soil measurements are referenced to air, and are usually 

calibrated with dielectric liquids of known dielectric properties. An advantage of using 

liquids for calibration is that it is possible to maintain a perfect electrical contact 

between the tip of the probe and the material (Jackson, 1980). However, only a small 

volume of soil is estimated at a time, due to a single small probe tip that is used, and 

therefore soil contact is essential. 

Frequency-domain reflectometry sensors measure the dielectric constant from an 

open-ended coaxial cable and from a single reflectometer at the tip of a specified 

frequency. Soil measurements are referenced to air and are usually calibrated with 

known dielectric properties dielectric liquids. An advantage of using liquids for 

calibration is that the electrical contact is perfect. 

The ThetaProbe works in a similar way in the sense that it measures the VWC using 

a well-established method in which changes in the dielectric constant is detected 

(Ventrella et al., 2008). The pins on a ThetaProbe detect these changes, which are 

converted into a direct current (DC) voltage, in the same manner as a radio 

frequency is transmitted, and is reflected by the soil (Ventrella et al., 2008). The 

handheld device displays the percentage VWC readings. 

Direct and indirect methods are considered the best way to measure SMC due to its 

ability to acquire accurate and detailed information about soil characteristics and to 

estimate SMC at different depths (e.g. 5, 10, 20 or 50 cm) (Majone et al., 2013). 

Direct methods, unlike indirect methods, are relatively inexpensive, however, due to 

its sampling procedure, it is rendered as a destructive method and potential errors 

can arise from sample transporting and constant weighing. The biggest limitation of 

in-field approaches to measuring SMC is carrying out repetitive measurements at a 

regional scale which is time consuming and impractical, especially when sampling in 

areas that are difficult to access, such as palustrine wetlands. 

Ranges of the percentage of VWC (%VWC) have been recorded in various studies 

for terrestrial and wetland areas. For instance, in Paloscia’s et al. (2013) study, mean 

in situ soil moisture measurements ranged between 35 %VWC to 40 %VWC, 
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measured during the peak growth period, over a terrestrial area covered by dense 

grasses, in Northern Italy. Holtgrave et al. (2018) also recorded %VWC for their 

study area in Germany, over a grassland covered floodplain of which > 50 % VWC 

was measured during summer (growth period). Similar trends were found in Lang et 

al. (2007) in which mean %VWC of 59 % and 24 % were recorded for wetland and 

terrestrial areas, respectively, in a coastal plain of the United States of America. 

Based on these studies, there appears to be a possible trend in %VWC being > 50% 

for palustrine wetlands, irrespective of climatic regions and terrains. 

 

2.3 Remote sensing approaches for estimating near surface soil 

moisture content 
 

Remote sensing is a method of obtaining information on the nature, properties or 

state of an object by not having direct physical contact with the object (Lillesand et 

al., 2008). Imaging radar sensors are divided into airborne and space-borne sensors 

based on which platforms are used. Airborne sensors are carried by platforms within 

the Earth’s atmosphere (e.g. aircraft), whereas space-borne sensors use platforms 

that exist outside the earth and are carried on-board a spacecraft or space-shuttle. 

Airborne sensors are extremely flexible in terms of spatial resolution, spectral range 

and temporal coverage, however, extensive planning is required for airborne surveys 

and acquiring an image is very costly. Space-borne sensors offer medium to high 

spatial and temporal images which is useful for time-series research, and acquiring 

imagery is less complicated (Haji Gholizadeh et al., 2016). 

The main advantage of remote sensing over conventional methods of measuring 

SMC, is that remote sensing can provide regional estimates of soil moisture at 

regular temporal intervals. Continuous coverages further make it possible to 

generate global maps of SMC which could provide information on the effects of 

climate and global change on wetlands (Seneviratne et al., 2010). To date, a number 

of studies have shown that soil moisture can be retrieved through different 

technologies of remote sensing such as optical, thermal infrared and microwave 

(MW) remote sensing (e.g. Mattia et al., 2009; Jagdhuber et al., 2013; Zhang et al., 

2016; Peng et al., 2017). The primary difference between these technologies include 

the wavelength of the electromagnetic spectrum that is used, the source of the 
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electromagnetic energy and how the signal of the sensor responds to the soil 

moisture content (Wang and Qu, 2009). Table 2 is a summary of the merits of each 

type of remote sensing sensor. Available sensors of different platforms offer different 

spatio-temporal, radiometric and spectral resolutions making SMC retrieval at a 

regional to global scale possible (Barret et al., 2009; Barret et al., 2012). Even 

though remote sensing has proven its potential to estimate SMC, in situ soil moisture 

measurements are needed for calibration and validation for satellite-based SMC 

retrieval. 

 

Table 2: Summary of the advantages and disadvantages of each different remote sensing technologies method 
to in retrieving soil moisture content (Adapted from Barret et al., 2012:87). 

 Property observed Advantages Limitations 

Optical - Albedo (soil reflection)  - High to medium spatial 
resolution (1.1 m - 30 m)  

- Susceptible to cloud 
coverage and atmospheric 
effects 
- Cannot penetrate deeper 
than 5 cm of soil surface 
- Cannot penetrate 
vegetation cover 

Thermal infrared - Surface temperature - Medium spatial 
resolution (> 10 m)  
- Large swath coverage  
- Frequency physics well  
understood 

- Meteorological conditions  
- Topography  
- Vegetation cover (density) 

Passive remote 
sensing 

- Brightness temperature 
- Dielectric properties 
- Soil temperature 

- Low atmospheric noise  
- Moderate vegetation       
penetration 

- Roughness  
- Vegetation cover  
- Temperature 
- Low resolution 

Active remote 
sensing 

- Backscatter coefficient 
- Dielectric properties 

- Low atmospheric noise  
- High spatial resolution 
 

- Roughness  
- Surface slope  
- Vegetation cover 

 

Several studies showed that remote sensing can be used in the estimation of SMC 

(e.g. Wagner et al., 2008; Pathe et al., 2009; Su et al., 2013,). Sensors that operate 

in the visible light region of the electromagnetic spectrum (Wavelength (λ) = 0.3—

0.7 µm) measures the soil surface albedo. Reflected radiation of the sun from the 

earth’s surface (albedo), allows visible or optical remote sensing to measure soil 

moisture, by knowing the relationship between reflected and incoming solar 

radiation. The increase of SMC results in a decrease of albedo. The reflected 

radiation is easily affected by the organic matter, soil texture, surface roughness, 

incidence angle and density of vegetation cover. Reflectance values represent the 

top few millimetres of the soil surface, furthermore, the reflected values are 
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attenuated by atmospheric elements (Engman, 1991; Walker, 1999). Filion et al., 

(2016) investigated the potential of Landsat Thematic Mapper 5 (with a spatial 

resolution of 30 m) to generate reliable soil moisture maps. The research took place 

over non-irrigated arable lands in a semi-arid region of Italy. They tested the linear 

relation between measured soil moisture and estimated soil moisture using a cross 

validation method. The results demonstrated the potential of Landsat Thematic 

Mapper 5 to estimate surface soil moisture with a correlation coefficient (R2) of 0.54 

and Root Mean Square Error (RMSE) of 5 %. Their research also showed the 

reflectance to be most dominant in the near infrared (NIR) and red bands. In another 

study conducted by Muller and Decamps (2001), SPOT 1, 2 and 3 were used to 

acquire soil moisture reflectance values over arable soils (at the time when the crops 

were sewn) in Garonne valley, France. They obtained satisfactory results for each 

band with R2 = 0.59; RMSE = 6 % for band 1 (green); R2 = 0.57; RMSE = 6.1 % for 

band 2 (red) and; R2 = 0.5; RMSE = 6.6 % for band 3 (NIR). 

Thermal infrared sensors indirectly measure soil moisture content (SMC) through the 

soil surface temperature at wavelengths between 3.5 and 14 µm (Curran, 1985). It 

assumes areas with high levels of SMC emit less thermal radiation compared to 

areas that contain low SMC levels. Vegetation canopy cover (density) influences the 

sensitivity of the signal to SMC and the SMC data is representative of the top few 

millimetres of soil surface (Walker, 1999). A number of studies reported strong 

relations between SMC and thermal infrared estimations (Verstraeten et al., 2006, 

2008; Minacapilli et al., 2009; Lu et al., 2009). Up to the 1990s, studies using thermal 

infrared were conducted over bare and dry lands so as to avoid interferences of 

vegetation and evapotranspiration patterns (Price, 1985), however, recent studies 

demonstrated that thermal infrared could be used to estimate SMC over partially 

vegetated covered (Maltese et al., 2003). Gao et al. (2013) used Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper (ETM+) to determine a direct relation 

between soil moisture and soil reflectance from the red and NIR bands, for wheat 

crop fields in northeast Beijing, China. The results for this experiment gave good 

results for both bands, including the red (R2 = 0.87) and NIR (R2 = 0.85).   

The abovementioned approaches display a potential for estimating near surface 

SMC under conditions where the area is sparsely vegetated to bare soil lands in 

order to minimise the influences of reflectance from vegetation on soil moisture 
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estimates. A commonly used method to overcome the limitations of vegetation cover, 

is applying vegetation indices, to detect water or saturation levels beneath canopy 

cover. The Normalised Difference Vegetation Index (NDVI) was used in a number of 

studies in which all obtained satisfactory results of R2 = 0.6 and RMSE of > 40 % (for 

example, Moreau et al., 2003; Takeuchi et al., 2003; Zoffoli et al., 2008). In the same 

study above, Gao et al. (2013) obtained a R2 of 0.8 between ground measurements 

and SMC measurements estimated from ETM+ on Walnut creek, America using 

NDVI. The vegetation in their study area mainly comprised of corn and soybean and 

the remainder was made up of grass, alfalfa and trees. Most of these studies were 

conducted over large scale areas (> 30 m) suggesting the suitability of using optical 

and thermal remote sensing technologies for large scale studies. Moreover, the 

studies above detected or measured SMC using only single bands implying the use 

of band combinations is unnecessary.  

MW remote sensing operates in the radiowave part of the electromagnetic radiation 

spectrum (λ = 1 m–1 mm) corresponding to frequencies between 0.3 GHz and 

300 GHz. MW remote sensing is categorised into passive and active sensors 

depending on the source of electromagnetic radiation. Passive MW remote sensors 

require no external energy; they detect the natural emitted radiation from all physical 

objects that emit a temperature of 0 K. Active MW remote sensing, on the other 

hand, provides its own electromagnetic energy to measure the intensity of radiation 

that is reflected back from the earth’s surface (Scott et al., 2003). Microwave remote 

sensing has several advantages over optical sensors operating in the visible and 

thermal infrared portions of the electromagnetic system, particularly when estimating 

SMC in vegetated ecosystems (Smith, 1997). MW energy has a relatively low 

attenuation by vegetation canopy making it more sensitive to hydrological 

parameters (e.g. SMC, flooding) below, for example, a deciduous forest canopy 

cover (Hall, 1996; Kasischke et al., 1997). The longer wavelengths of these 

instruments allow data to be collected independently of cloud cover, during night and 

daytime (Barret et al., 2012).  

The principle behind active and passive MW sensing of soil moisture is formulated 

on the large difference of dielectric properties between water (ε ≈ 80) and dry soil 

(ε ≈ 4). The large contrast in the dielectric constant in the soil varies and will cause 

the electromagnetic field to also vary when it passes through soil particles, air and 
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water in the soil (Walker, 1999). By measuring the strength of the signal in the MW 

sensor, an amount of water content contained in the soil can be determined through 

the soil’s dielectric properties (Schmugge, 1985; Engman and Chauhan, 1995). 

However, it becomes a challenge when distinguishing whether the MW signal is 

derived from the soil surface or from the actual soil water content itself. This is 

because of the influence on the signal from the sensor (wavelength and 

polarization), vegetation cover and surface roughness (Barret et al., 2012). For 

example, the effects of vegetation cover on an active sensor’s backscatter signal 

decreases with increasing wavelength (Figure 3). MW sensors used to retrieve SMC 

are acquired in different wavelengths that range from X-band (λ = ~3 cm), C-band 

(λ = ~5 cm) and L-band (λ = ~30 cm) (Moghaddam et al., 2000). Sensors with a 

short wavelength (X-band = ~3 cm) are only able to penetrate into the top layer of 

the soil surface unlike longer wavelength sensors (L-band = ~30 cm) which are able 

to penetrate deeper into the soil surface (Wagner et al., 2006). 
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Figure 3:The shorter microwave wavelength (X-band, 3cm) interacts mostly with the top of the canopy cover, 
sensors with longer wavelengths (L-band, 24 cm) are able to further penetrate into the canopy and interact 
with the soil surface (adapted from Barrett and Petropoulos, 2012: 91) 

 

Specific to retrieving SMC under vegetated areas, passive L-band MW sensors have 

displayed the potential to be more robust compared to active C-band MW sensors 

(Narvekar et al., 2015). This is due to the scattering and attenuation from vegetation 

cover and surface roughness having very little influence on the lower frequency 

backscatter (L-band) as compared to higher frequencies (C-band) backscatter signal 

(Oveisgharan et al., 2018). Currently, two space missions such as European Space 

Agency’s Soil Moisture and Ocean Salinity (SMOS) and National Aeronautical and 

Space Administration’s (NASA) Soil Moisture Active Passive (SMAP) offer 40 km to 

50 km spatial resolution imagery with a short two to three days revisit time (Wagner 

et al., 2006). Various research studies relating L-band radar data to soil moisture 

have been conducted, however, to date, most studies have focused on forests and 

occasionally agricultural areas. For example, a recent study by Al-Yaari et al. (2014), 
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showed that L-band SMOS and C-band AMSR-E (spatial resolution of 25 km) were 

able to capture the variability of SMC in different biomes, climatic regions and soil 

conditions, spatially and temporally, although SMOS had better correlation values in 

densely vegetated biomes (e.g. tropical and temperate humid) compared to AMSR-E 

(R = 0.64 and R = 0.15, respectively). In a research study, Sanli et al. (2008) 

regressed RADARSAT-1, ASAR and PALSAR estimated backscatter against in situ 

soil moisture over Turkey. The results showed good accuracies of R2 = 0.76, 0.81 

and 0.86, respectively. From these studies, it is evident that the L-band sensors are 

most appropriate to estimate soil moisture under vegetated areas due to their 

advantage of wavelength and penetration depth. However, L-band passive MW 

sensors are characterised by broad spatial coverage, and course spatial resolutions 

(from tens of kilometres) (Barret et al., 2012). Whilst this resolution is practical for 

global terrestrial application, it is not sufficient for estimating small features in the 

landscape and heterogeneous ecosystems, such as the palustrine wetlands in semi-

arid regions (Entekhabi et al., 1999; Crow et al., 2000; Piles et al., 2011). Palustrine 

wetlands in South Africa are small in extent and require high spatio-temporal 

resolution imagery in order to detect changes in SMC (Haas, 2016).  

C-band data has been in operation since 1991 such as the European Remote 

Sensing Satellites (ERS) (Lang and Kasischke, 2008). C-band backscatter coefficient 

is mainly influenced by the scattering caused by canopy cover. This is due to the 

length of the MW wavelength in relation to the size, orientation and density of canopy 

that determines how deep the MW is able to penetrate (Lang and Kasischke, 2008). 

This coupled with the sensor’s characteristics affects the MW transmission in dense 

vegetation cover (Lang and Kasischke, 2008). For instance, vertically transmitted 

and received (VV) MW energy is not able to readily penetrate through forests as 

compared to horizontally transmitted and received (HH) MW energy. This is because 

structures that are vertically orientated would interact more with the VV polarization 

mode and attenuate the penetration. Therefore, the HH polarization mode would be 

able to transmit through the vertically orientated structures and reach the surface 

where hydrological parameters such as inundation or SMC can be detected, 

particularly for biomass ≤ 1 kg/m2 (Hess et al., 1995; Wang et al., 1995; Lang and 

Kasischke, 2008; Hornacek et al., 2018).  
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Once the polarization energy is transmitted through the canopy it is able to interact 

with the surface, then the soil moisture can either increase double-bounce scattering, 

volumetric scattering or eliminate surface scattering (Figure 4) (Wang et al., 1995; 

Kasischke et al., 2003). Various studies investigated the response of backscatter to 

soil moisture. For example, Dabrowska-Zielinska et al. (2016) showed that VH 

obtained a better accuracy in estimating SMC with R² = 0.72 compared to VV with 

R² = 0.63 over an area comprised of grasses and sedges, using Sentinel-1 sensor. 

The results from another study done by Dabrowska-Zielinska et al. (2018) 

investigated the response of single polarization modes and cross-polarization 

modes, using Sentinel-1, at depths of 5, 10 and 20 cm over two types of vegetation 

(marshland and grassland) in the Biebrza wetlands, Europe. The results show that 

for the marshland area, the VH polarization mode achieved a Pearson’s correlation 

(R) of 0.56; 0.46 and 0.59 and for the VV polarization mode, R = 0.55; 0.39 and 0.52. 

For the grassland area the VH polarization mode achieved an R = 0.55; 0.53 and 

0.47, while for the VV polarization mode R² = 0.72; 0.69 and 0.55. In conclusion, 

using cross-polarization modes such as VH in general present higher coefficients of 

determination for grassland type vegetation in wetlands due to its ability penetrate 

the vegetation structure and interact with the soil surface. 

 

Figure 4: Three types of scattering (transmit and receive signals) depending on target (Source: adapted and 
modified from: Bai et al. (2017a:186). 

 

In summary, L-band sensors have the advantage of detecting soil moisture in highly 

densely vegetated areas due to their longer wavelength and deeper penetration 

properties. However, L-band sensors are limited by their coarse resolution for certain 
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sensors, for example SMOS; the revisit time, for example ALOS has a revisit time of 

46 days; and the cost associated with acquiring the images, when it comes to 

estimating SMC in features with small extents, such as palustrine wetlands of semi-

arid regions. The most common active remote sensor that has been tested to date, 

for estimating SMC in grasslands is the C-band Synthetic Aperture Radar (SAR) 

system (Wulf et al., 2015). This is likely linked to the fact that the Sentinel sensors 

can provide imagery at a high spatial resolution of 10 m, making them more suited to 

quantify and map SMC for smaller features (Zhang et al., 2017a). In order to monitor 

the hydrological regime in palustrine wetlands, especially in a semi-arid country, 

relatively high spatial resolution imagery is required at frequent revisit times. Since 

S1 has proven success in other grasslands and palustrine wetlands, as per the 

Dabrowska-Zielinska et al. (2018) and other studies, can it be used in South Africa 

for improving the detection and monitoring of palustrine wetlands in the grassland 

biome? 

 

Sentinel-1A (S1A) which was launched on 3 April 2014 and Sentinel-1B (S1B) which 

was launched on 25 April 2016, uses two C-band SAR satellites that operate in 

Interferometric Wide Swath (IWS) mode with a high spatial resolution of 5 m x 20 m 

which images a wide swath in dual polarization. This includes VV and VH 

polarimetric modes. A few requirements for operational users include a high 

temporal sampling rate, near-real-time data availability and free and easy access. 

The temporal revisit time for S1 satellites is every five days, making it suitable for 

detecting changes in the hydrological period. Sentinel-2A (S2A) was launched on the 

23 June 2015 and is an optical space-borne sensor. Multispectral Instrument (MSI) 

images are obtained in 13 spectral bands that range from visible, NIR to Short-wave 

Infrared (SWIR). The first four bands (at 10 m spatial resolution) traditionally provide 

information required for land cover classification; the next six bands (20 m spatial 

resolution) meet the basic requirements for vegetation studies while the last three 

bands (60 m spatial resolution) are used to measure atmospheric conditions (Drusch 

et al., 2012). The advent of Sentinel-2B (S2B) on the 1 March 2017 implied an even 

shorter revisit time to five days. This means that from all the mainstream freely 

available satellites, to date, the Sentinel-2 series have the shortest revisit time. 
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In conclusion, a small number of studies have investigated the use of the Sentinel 

sensors to estimate SMC for grasslands and palustrine wetlands. To my knowledge, 

these include Dabrowska-Zielinska et al. (2016; 2018) in Europe; Bai et al. (2017b) 

over the Tibetan Plateau; El-Hajj et al. (2017) in France; Holtgrave et al. (2018) in 

Germany; and Möller (2014) in central region of Western Cape of South Africa. No 

studies have been undertaken in the grassland biome of South Africa, there has 

been no investigation of the use of Sentinel 1 and Sentinel 2 in palustrine wetlands in 

the grassland biome of South Africa. 
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3.1 Study area 
 

3.1.1 Description of study area 
 

The study area is situated primarily within and around the Colbyn Valley Nature 

Reserve (CVNR) (25°44’30” S; 28°15’49” E), a municipal protected area of 

approximately 20.8 Ha, located within the City of Tshwane Metropolitan Municipality 

and the Gauteng Province of South Africa (Figure 5). The location of the CVNR is 

positioned within the grassland biome of South Africa and more locally within a 

residential urban area. The Hartebeesspruit River drains the catchment from the 

head of the watershed and flows in a northerly direction up to a dolerite dyke. The 

dolerite dyke forms a barrier on the northern side of the study area, and even though 

it has been breached by the River, water backs up south of the dyke, resulting in the 

formation of a channelled valley-bottom wetland. The restricted flow through the 

breach and the seeps from the adjacent hillsides contribute interflow from the sides 

contributing to the wetland (Grundling, 2015).  

Most of the wetland remains permanently saturated throughout the hydroperiod and 

coincide with the centre part of the wetland where peat have accumulated (extent 

estimated at 4.68 Ha) (Delport, 2016). The peat is made up of medium fibrous reeds 

and sedges and accounts for much of the water-holding properties. Highly organic 

soils can be found in the permanently wet areas which display wetness 

approximately 50 cm from the surface and show hydromorphic characteristics such 

as mottling and high clay content (Venter et al., 2016). 

The site is exposed to a number of pressures and impacts. Drainage has been 

disrupted by numerous roads resulting in high energy runoff leading to erosion of the 

wetland (Sherwill, 2015). Weirs have been built along the channel to alleviate the 

effects of erosion in order to prevent further degradation of the wetland near the 

Koedoespoort Railway line causing soil compaction which could induce flooding in 

some areas, as well as altered drainage which could lead to a loss of recharge 

(DEA, 2015). These affects have a consequence on the wetland’s soil moisture 

regimes and plant species (Sherwill, 2015). 
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Figure 5: The location of the study area, the Colbyn Valley Nature Reserve (CVNR), is located within the Gauteng Province of South Africa (a). The CVNR hosts a channelled 
valley-bottom wetland (b) through which the Hartebeesspruit (River) runs. The location of sample plots is displayed in the wetland and terrestrial areas. 
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3.1.2 Climate  
 

The study area is located within the Rocky Highveld region of the Grassland biome 

which encounters a mean annual temperature of 12-20 °C (Kleynhans et al., 2005; 

Mucina and Rutherford, 2006). Geographically, the area is located on the Highveld 

Plateau between 1 335 m and 1 340 m above mean sea level and experiences a 

temperate climate with the rainfall season between September and March and the 

dry season between April and August. This ecoregion experiences an average 

summer rainfall between 650 and 750 mm per annum (Figure 6) and an 

evapotranspiration of 524 mm annually (ARC-ISCW, 2018). 

 

 

Figure 6: Mean monthly precipitation for 2017 and 2018 (especially during sampling periods) according to the 
Station 30687 situated in Pretoria, South Africa (ARC-ISCW, 2018). 

 

3.1.3 Vegetation  
 

The CVNR is considered a palustrine wetland type which is dominated by a variety 

of graminoids and sedges. The temporary saturated zones of the wetland are 

predominantly grass species such as Imperata cylindrica, which gradually flows into 

a sedge community under moister conditions, up to the permanently saturated zones 

with Phragmites australis, Typha capensis and Carex acutiformis (Venter et al., 

2016). The area along the river channel known as the riparian zone is marked by 
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exotic riparian vegetation; most of which is in the form of trees (Salix babylonica) and 

the remainder of the study area is covered with vegetation throughout the year 

(Figure 7).  

 

 

Figure 7: Vegetation found in the wetland area varying from Typha capensis to Imperata cylindrica during end 
of peak growing season (left and right, respectively). 

 

3.2 Data collection 
 

3.2.1 Image acquisition and pre-processing 
 

Sentinel-1 SAR data acquisition and pre-processing 

The Sentinel-1A (S1A) and Sentinel-1B (S1B) Synthetic Aperture Radar (SAR) C-

band images were acquired in the Interferometric Wide (IW) swath mode, at 5 m by 

20 m spatial resolution. The images were downloaded from the Copernicus website 

(https://scihub.copernicus.eu/dhus/#/home) (Table 3). The data were acquired in the 

vertical-transmit, vertical-receive (VV) and vertical-transmit, horizontal-receive (VH) 

polarization modes. S1A and S1B Ground Range Detected (GRD) data was pre-

processed using ESA’s Sentinel Application Platform software (SNAP) version 6.0 

(2018) for radiometric calibration, multi-looking and terrain correction. Multi-looking 

was applied to each Sentinel-1 image to convert a 10 m spatial resolution image to 

20 m spatial resolution image to reduce the speckle present in the images. 

Radiometric calibration of the Synthetic Aperture Radar (SAR) images converts the 

data from a digital number (DN) format to backscatter in sigma naught or sigma dB. 

https://scihub.copernicus.eu/dhus/#/home
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Errors associated with terrain, orientation and geo-referencing of the imagery were 

corrected with the Range Doppler Terrain Correction using the Shuttle Radar 

Topography Mission 3 (SRTM 3) arc-seconds 30 m Digital Elevation Model (USGS, 

2004). 

 

Table 3: Acquisition dates and times of the Sentinel 1A/1B and Sentinel 2A/2B images as well as the dates of 
ground measurements. 

Sensor Scene ID no. 
Date 

(2018) 

Time of 

overpass of 

sensor  

(GMT+ 2 hrs) 

Hydroperiod 

S1A 

S1A_IW_GRDH_1SDV_20180326T16

4655_20180326T164720_021188_02

46E 

26 March 18:44 Peak 

S1B 

S1B_IW_GRDH_1SDV_20180328T03

3428_20180328T033453_010226_01

2958_A3E7 

28 March 05:33 Peak 

S2A 
L1C_T35JPM_A014432_20180328T0

81650 
28 March 09:45 Peak 

S2B 
L1C_T35JPM_A006024_20180502T0

81534 
02 May 09:45 End 

 

 

Sentinel-2 data acquisition and pre-processing 

Sentinel-2 optical images were acquired as close as possible to the SAR images, 

though avoiding imagery with > 20% cloud coverage. The images were downloaded 

from the United States Geological Survey (USGS) Earth Explorer website (USGS, 

2000) as ten individual spectral bands. Bands 2, 3, 4 and 8 are provided by ESA at a 

10 m spatial resolution while bands 5, 6, 7, 8a, 11 and 12 are at 20 m spatial 

resolution (Table 4). Bands with a 60 m spatial resolution (bands 1, 9 and 10) are 

mainly used in atmospheric correction and cirrus-cloud screening and were not 

required for estimating the percentage Soil Moisture Content (%SMC). Three 

procedures were necessary for pre-processing the satellite images, (1) resampling 

the 20 m multispectral images to 10 m to maintain an image with the same spatial 

resolution and number of pixels. This higher spatial resolution image provides more 

detail for data extraction and modelling, required at the level of palustrine wetlands; 

(2) atmospheric correction, terrain and cirrus correction to Top-of-Atmosphere was 
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applied to each image using the iCOR plugin in SNAP and; (3) a subset selection 

was applied to extract the study area.  

 

Table 4: Spectral bands and associated wavelength ranges of the optical Sentinel 2A and 2B images (adapted 
from ESA Sentinel online, 2019). 

  S2A S2B  

Spatial 

Resolution 

(m) 

Band 

Number 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Central  

Wavelength  

(nm) 

Bandwidth 

(nm) Use  

10 

2 442.7 21 442.2 21 
Aerosol correction, 

Land measurement 

3 492.4 66 492.1 66 Land measurement 

4 559.8 36 559.0 36 Land measurement 

8 664.6 31 664.9 31 

Land measurement, 

water vapour 

correction 

20 

5 704.1 15 703.8 16 Land measurement 

6 740.5 15 739.1 15 Land measurement 

7 782.8 20 779.7 20 Land measurement 

8a 832.8 106 832.9 106 
Land measurement, 

water vapour 

11 864.7 21 864.0 22 Land measurement 

12 945.1 20 943.2 21  

60 

1 1373.5 31 1376.9 30 Aerosol correction 

9 1613.7 91 1610.4 94 
Water vapour 

correction 

10 2202.4 175 2185.7 185 Cirrus detection 

 

 

3.2.2 In situ soil moisture measurements  
 

Prior to sampling, several field visits were made to plan sampling positions in the 

wetland and terrestrial areas. The wetland and terrestrial areas were identified by 

characterising the nature of the soil, extracted from the ground using a soil auger; 

vegetation type such as the Typha capensis, Phragmities and Imperata Cylindrica; 

as well as the National Wetlands Map 5 (NWM5). The duration of the sampling 

period was selected to coincide with the peak hydroperiod, which would help to 

detect the maximum level and extent of soil moisture in the wetland for wetland 

inventorying. A stratified random sampling method was chosen to collect in situ, 

percentage Volumetric Water Content (%VWC) measurements in the wetland and 

the terrestrial areas. The reason for the stratified random sampling was to ensure the 
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point sample measurements are well distributed in order to represent the wetland 

and terrestrial sampling areas. Previously dated Sentinel images were downloaded 

and used to determine suitable positions for the sampling plots which were 

positioned to match both the Sentinel SAR and optical image. Therefore, a sampling 

plot the size of 10 m x 10 m was positioned within a 20 m x 20 m grid. There were 

forty sampling plots in total, 20 located in the wetland area and 20 located in the 

terrestrial area (Figure 5). For each sample plot, five replicate measurements of 

%VWC were recorded in order to capture the variation of the observed %SMC within 

the top layer of the soil surface (refer to Figure 8 for a representation of the sampling 

plots and in situ sampling measurements). This yielded a total of 200 readings for 

the terrestrial and wetland areas during each sampling campaign. The reason was to 

guarantee that a single field plot will have a corresponding S1 and S2 extracted data 

pixel. 

 

 

Figure 8: Diagram illustrating the planning of sampling according to the Sentinel 1 and 2 image pixels. The 
smalls (green) squares represent the in situ sampling measurements that were specifically located with both 
Sentinel 1 and Sentinel 2 pixels (blue outline) to ensure values could be extracted for both sensor’s pixels. 

 

Near-surface volumetric soil moisture content was acquired using a hand-held SMT-

100 soil moisture and temperature probe (Sichuan Weinasa Technology Co., Ltd. 

2017). The probe measures the %VWC at a depth of 5 cm. The centre and corners 

of each sample plot was mapped in ArcGIS version 10.5 (ESRI, 2016) and then 

uploaded to several e-Trex 30 Global Positioning Systems (GPSs) (GARMIN, 2011). 

The GPSs was then used to navigate to the same location for successive sampling 

campaigns. Previous studies recommended that ground measurements should be 

made within a two-hour window period around the sensor overpass time so as to 

minimise diurnal variation in soil moisture content and vegetation on radar 

backscatter (Möller, 2014; Baghdadi et al., 2015;). Therefore, three probes were 
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used by three teams, deployed to record the %VWC within a two-hour time period 

around the satellite overpass, including the hour before and after the time of 

overpass of each Sentinel sensor.  

During the field campaigns, the vegetation height in various zones were randomly 

measured and recorded. The height of the vegetation in the terrestrial area, for 

example, comprised of short grasses with an average height of < 3 cm. The 

vegetation in the wetlands zone ranged from sedges and graminoids to macrophytes 

with an average height range between 1.5—2 m. The density and height of the 

vegetation in both zones varied little for the duration of %VWC data collection 

between March and May of 2018. The biomass of these grass and sedge 

communities where sampling took place considered to be ≤ 850 g/m² (Naidoo et al., 

2019). According to Hornacek et al. (2018), vegetation and texture have very little 

impact on the %SMC modelling if grass vegetation is ≤ 1 kg/m2. Consequently, no 

adjustments were made for vegetation or texture in the regression models used. 

 

3.3 Data analysis 
 

In order to assess the Sentinel sensor’s capability to estimate the %SMC, 

backscatter from Sentinel-1A and 1B (S1A and S1B) and reflectance values for 

Sentinel-2A and 2B (S2A and S2B) were extracted from the respective images and 

regressed against the in situ %VWC measurements. The centre point recorded for 

each sample plot in shapefile format were used to extract backscatter values for VV, 

VH polarization modes as well as VV+VH as a modelling scenario, in ArcMap 10.5 

(ESRI, 2016). Similarly, the spectral reflectance values of the optical sensors were 

extracted for all the bands, excluding bands 1, 9 and 10 (60 m resolution bands), 

individually as well as the combination of them, for the same points. 

Factors such as precipitation, evapotranspiration, soil compaction and reflectance 

can influence the distribution of %SMC (Lu et al., 2001). Therefore, the distributions 

of the in situ %VWC measurements were tested first for normality. By performing a 

normal-distribution graph in order to visualise the nature of the in situ data, one can 

determine whether parametric and non-parametric models are appropriate for 

assessing the senor’s capability to estimate %SMC. The principle behind the 

parametric approach is that the model assumes normal distribution of the data, and 
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therefore depends on mean and standard deviation statistics, whereas non-

parametric analysis does not assume normal distribution. Spectral data is often 

found to be not normally distributed, and hence non-parametric approaches have 

previously been found to outperform the parametric approaches in remote sensing. 

Parametric models repetitively selects features, randomly, which is then used in the 

regression, and the procedure is repeated with the remaining features in 

bootstrapping. This process continues until the combinations within the dataset are 

exhausted. The features are rejected and ranked accordingly and this will then 

provide the best results in terms of estimation accuracy (Ali et al., 2015). Parametric 

models, such as simple linear regression, are simple and less complex in terms of 

tuning, but they use only a fixed number of input variables and thus can only be used 

if the data is assumed to be normally distributed.  

Non-parametric analyses produce a model of multidimensional and non-linear 

relationships between the target (%SMC) and input variables (Attarzadeh et al., 

2018). Unlike parametric models, the number of input variables in non-parametric 

models is flexible and changes as it learns from the data and it makes fewer 

assumptions about the data (Ali et al., 2015). This study could significantly gain from 

using non-parametric models due to its ability to undertake small training databases 

in order to perform a strong SMC retrieval. Ahmed et al. (2010) conducted a time 

series analysis from 1998-2005 using the Advanced Very High Resolution 

Radiometer (AVHRR). A Support Vector Machine (SVM) algorithm was employed to 

estimate %SMC on 10 sites comprised of low to dense vegetation, of which five 

years was used as the training dataset and the remaining three years was used to 

test the model. The correlation coefficients for the estimated %SMC ranged from 

0.34 – 0.77 with an RMSE < 2% for all of the study sites, indicating the capability of 

the SVM model to capture the variability of measured %VWC. Several studies 

showed capabilities of both parametric and non-parametric approaches in estimating 

%SMC from both SAR and optical data with ranges of accuracies. In this study, both 

approaches were tested to assess whether any differences were noted in the results. 

The S1 backscatter values and S2 reflectance band values were regressed against 

the %VWC values (in situ measurements) using both parametric (Simple Linear 

Regression model or SLR) and non-parametric (SVM, Random Forest or RF) 

algorithms in the Waikato Environment for Knowledge Analysis (Weka) software 
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version 3.8 (Eibe, 1999-2016). In another study, Srinivaso Rao et al. (2013) 

estimated %SMC using the modified Dubois Model (parametric model) over the 

agricultural lands in the region of India. The results were validated against in situ 

%VWC measurements. Their poorest fit was a correlation (R2) of 0.46 over a densely 

vegetated area, R2 = 0.5 was achieved over an area where the vegetation had 

reached the matured stage and the highest accuracy achieved was R2 = 0.77 over 

an area with sparse vegetation with a mean height of 10 cm. Overall they obtained a 

RMSE of < 4.31 %. Their poorest fit was attributed to the intense vegetation 

coverage and heavy rainfall prior to sampling. Therefore, the differences in 

accuracies suggest that retrieving SMC if the data is normally distributed, i.e. no 

dense vegetation cover or heavy rainfall periods prior or during sampling periods, the 

use of parametric models would be appropriate. 

A data split was used with 30 % data for the training dataset and 70 % for the 

validation dataset to test the best model for regressing the observed %VWC to the 

estimated %SMC. In addition to the data split approach, a cross-validation procedure 

was also performed to evaluate the best-fitting models. The purpose of including the 

cross-validation method is because it is appropriate for scenarios where the dataset 

may be too small. Individual polarizations and bands, as well as a combination of the 

polarizations and all bands have been evaluated for each sensor in predicting 

%SMC. The sensor, algorithm and variables which can predict %SMC with the 

highest coefficient of determination (R²) and lowest the Root Mean Square Error 

(RMSE) were considered the best to use for producing a predicted %SMC map for 

each of the Sentinel (SAR and optical) sensors (Figure 9). 
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Figure 9: Flowchart illustrating the different stages of the overall procedure and methodology to generate the 
final outcome of a predicted percentage Soil Moisture Content (%SMC) maps. 

 

Data from both the in situ %VWC measurements and predicted %SMC maps were 

used to assess the differences in SMC. The 200 points collected across wetland and 

terrestrial areas were used to test a significant difference by conducting a Welch two 

sampled t-test in RStudio version 1.1.456 (Rstudio, Inc., 2009-2018) at a 95% 

confidence interval. If significant differences between these plots were found, a 

threshold of %SMC could be selected to distinguish the wetland extent from the 

terrestrial extent. For wetland mapping, the criteria used to set a threshold were 

based on the principle of mapping the maximum extent of soil saturation of the 

wetland across multiple hydroperiods (Van Deventer et al., 2018b). Following the 

examples of thresholds discussed in Chapter 2, it is likely that a threshold close to 

±45 %VWC can be used to determine the extent of terrestrial area and ±50 %VWC 

can be used to determine the extent of wetland area based on studies conducted 

over grasslands done by Paloscia et al. (2013) and Holtgrave et al. (2018). In this 

study, a threshold was chosen based on the average mean %VWC across the 

terrestrial and wetland areas, however, were informed by a single season sampling 

to demonstrate the concept. The threshold were then applied to the predicted %SMC 

map and compared to the extent of the wetlands digitised by wetland experts in the 

National Wetland Map version 5 (NWM5) (Van Deventer et al., 2018b). The extent of 
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agreement and differences in wetland extent, in terms of their percentage of the 

extent of the study area, were explored between these two datasets to inform 

wetland inventorying. 
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4.1 Descriptive statistics analysis and normality testing for in 

situ volumetric water content measurements  
 

The maximum percentage Volumetric Water Content (%VWC) was measured at 

100 % while the minimum was measured at 4.5 % (Table 5). The range illustrates 

the spatial distribution of soil moisture across terrestrial and wetland areas for March 

and May 2018. Although there is noticeable variation across the study site, the 

standard deviation as a function of soil moisture indicates a relatively wide variability 

at 37 %. The distribution of the in situ %VWC measurements and the estimated 

percentage of Soil Moisture Content (%SMC) was not normally distributed (Figure 

10). The non-normality was caused by the skewness to the right for in situ %VWC 

measurements measured on the 28 March 2018 and skewed to the left for in situ 

measurements at the time of the Sentinel-2B overpass on the 2 May 2018.   

 

Table 5: Descriptive statistical analysis illustrating the variability of soil moisture across the study site during 
the March and May 2018 sampling campaigns 

 
Observed percentage of Volumetric 

Water Content (%VWC) 

Number of samples (in 
total for 28 March 
2018 and 2 May 2018 
sampling campaigns) 

400 

Mean 61 

Minimum  4.5 

Maximum 100 

Standard Deviation 37 
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Figure 10: Graphs showing the distribution of the percentage Volumetric Water Content (%VWC) for (a) 28 
March 2018 and (b) 2 May 2018. The results from the Shapiro-Wilk test indicates the in situ percentage 
Volumetric Water Content is not normally distributed (p < 0.05). 
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4.2 Ability of Sentinel-1 and Sentinel-2 to estimate soil moisture 

content 
 

The Sentinel sensors were capable of predicting the %VWC with correlation 

coefficients (R2) > 0.7 and RMSEs < 17 %. Of the four sensors, Sentinel-1B (S1B) 

produced a high correlation coefficient (R2) of 0.92—0.94 and the lowest Root Mean 

Square Error (RMSE) of 10 %. Sentinel-2B (S2B) achieved the second-highest 

results with an R2 of 0.92—0.94 and RMSE of 12 %-14 %. Sentinel-2A (S2A) 

produced slightly better results (R2 = 0.8—0.86; RMSE = 15 %—16 %) than Sentinel-

1A (S1A) which resulted in the lowest R2 of 0.76—0.8 and highest error at RMSE = 

13 %—17 % (Table 6).   

Of the three polarization modes (vertical-receive, vertical-transmit (VV); vertical-

receive, horizontal-transmit (VH); and VH+VV associated with the two Sentinel-1 

(SAR) sensors the VH polarization mode and the VH+VV modelling scenario yielded 

higher accuracies (R² > 0.72) and lower errors (RMSE < 19 %) compared to the VV 

polarization (Table 6). S1B showed the highest coefficient of determination (R² > 0.9) 

when the VH polarization and VH+VV modelling scenario were used, with an RMSE 

of 10 % in both instances. The results for S1A were slightly lower at R2 = 0.79 and a 

slightly higher RMSE of 13 % for VH and 16 % for VH+VV modelling scenario. The 

single VV polarization showed the lowest coefficient of determination and highest 

error (R2 = >0.2; RMSE = >35 %) for both of the Sentinel-1 sensors. The VH 

polarization mode, however, contributes more to the accuracies of the combined 

VH+VV modelling scenario inputs than the single polarization (VV) mode. 

A combination of all the bands for the optical sensors S2A and S2B, in general, 

resulted in high accuracies (R² > 0.7 and RMSE < 20%) across algorithms and 

validation approaches (Table 6). Some exceptions are evident where the use of the 

blue, green, red and vegetation red edge (VRE) bands produced comparable results 

to the combined bands, most noticeably when the RF algorithm is used (R² = 0.8 for 

S2A, or even higher for S2B (R² > 0.84). Five of the individual bands resulted in high 

coefficient of determinations in estimating %SMC (R2 = >0.9; RMSE = 12%), namely, 

blue (band 2:496–492 nm), green (band 3: 560–559 nm), red (band 4: 664–665 nm), 

NIR (band 8: 833–835 nm) and SWIR (band 12: 2185–2204 nm). 
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When comparing the modelling approaches, the non-parametric Random Forest 

(RF) algorithm outperformed the parametric Simple Linear Regression (SLR) and 

non-parametric Support Vector Machine (SVM). RF achieved ranges of the 

coefficients of determination from R² = 0.58 to R² = 0.94 and RMSE values between 

10 % and 24 % (Table 6). In contrast, SVM had lower accuracies ranging from R² = 

0.01 to R² = 0.66 and RMSE values between 24 % and 50 %. The SLR algorithm 

showed similar ranges of coefficients of determination to that of the non-parametric 

SVM algorithm (from R² = 0.01 to R² = 0.6) and RMSE values ranging from 29 % to 

40 %. The data split method, in general, showed better results (R² = ≥ 0.1; 

RMSE = ≤ 41 %) as compared to the cross validation method (R² = > 0.5; 

RMSE = ≤ 50 %).
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Table 6: Comparison of the different modelling approaches and validation models, using coefficient of determination (R²) and Root Mean Square Error (RMSE) between the 
percentage Volumetric Water Content  (%VWC) and predicted percentage of Soil Moisture Content (%SMC), across the four Sentinel sensors evaluated, using simple linear 
regression, support vector machine and random forest modelling algorithms.  S1A = Sentinel 1A; S1B = Sentinel 1B; S2A = Sentinel 2A; S2B = Sentinel 2B; VV = vertical-
receive, vertical-transmit; VH = vertical receive, horizontal-transmit; VRE = Vegetation Red Edge; SWIR = Short Wave Infrared; SLR = simple linear regression; SVM = support 
vector machine; RF = random forest. 

   
SLR 

   
SVM 

   
RF 

  

  
Data Split Cross validation Data Split Cross validation Data Split Cross validation 

  
R2

 RMSE R2
 RMSE R2

 RMSE R2
 RMSE R2

 RMSE R2
 RMSE 

S1A VV 0.01 40 0.04 36 0.01 50 0.18 39 0.58 24 0.76 17 

 
VH 0.10 34 0.09 25 0.10 35 0.15 35 0.72 19 0.79 13 

 
VV+VH 0.01 40 0.08 35 0.03 48 0.1 37 0.69 23 0.8 16 

              
S1B VV 0.05 39 0.18 39 0.05 32 0.06 35 0.86 15 0.92 10 

 
VH 0.12 36 0.15 35 0.12 37 0.15 37 0.88 14 0.94 10 

 
VV+VH 0.16 34 0.83 36 0.16 36 0.14 37 0.88 13 0.94 10 

              
S2A 2-Blue 0.09 34 0.06 36 0.30 37 0.23 41 0.82 13 0.82 15 

 
3-Green 0.25 32 0.17 34 0.50 33 0.44 37 0.86 18 0.82 15 

 
4-Red 0.28 31 0.21 33 0.53 32 0.49 36 0.86 18 0.80 16 

 
5-VRE 0.23 32 0.15 34 0.48 33 0.42 35 0.86 18 0.82 15 

 6-VRE 0.1 37 0.6 37 0.14 41 0.14 40 0.72 19 0.84 15 

 7-VRE 0.25 37 0.6 36 0.25 41 0.5 38 0.7 19 0.83 15 

 8-NIR 0.7 35 0.13 34 0.7 38 0.13 37 0.74 19 0.84 15 

 
11-SWIR 0.11 35 0.2 33 0.11 39 0.12 37 0.72 20 0.84 15 

 12-SWIR 0.45 27 0.4 29 0.45 27 0.4 39 0.74 19 0.84 15 

 All bands 0.53 25 0.5 26 0.6 25 0.67 28 0.75 19 0.85 15 

              

S2B 2-Blue 0.41 29 0.64 31 0.45 30 0.62 32 0.94 12 0.90 13 

 
3-Green 0.40 29 0.64 31 0.40 29 0.64 31 0.94 13 0.90 13 
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4-Red 0.34 31 0.56 33 0.34 30 0.56 34 0.94 12 0.90 13 

 
5-VRE 0.30 31 0.55 33 0.30 31 0.50 36 0.92 13 0.90 13 

 
6-VRE 0.25 32 0.50 34 0.25 33 0.48 36 0.92 13 0.90 13 

 
7-VRE 0.18 34 0.44 36 0.18 34 0.41 37 0.92 14 0.90 13 

 
8-NIR 0.09 36 0.29 38 0.09 36 0.30 39 0.94 14 0.90 13 

 
11-SWIR 0.36 30 0.59 32 0.36 31 0.59 33 0.92 14 0.90 13 

 
12-SWIR 0.42 28 0.64 30 0.42 29 0.66 32 0.94 13 0.90 13 

 
All bands 0.36 30 0.64 30 0.45 30 0.66 32 0.94 12 0.90 12 
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4.3 Differences in soil moisture content between wetland and 

terrestrial ecosystem types 
 

The in situ %VWC and predicted %SMC values derived from S1B and S2B showed 

significant differences (p < 0.05) between the wetland and terrestrial areas (Table 7). 

On 28 March 2018, higher levels of soil moisture ranging from > 60 % were observed 

in the wetland sampling area and a lower range of soil moisture, less than ±30 % 

(rounded off to the nearest 10th digit) were observed in the terrestrial sampling area 

(Figure 11a). Similarly, a higher range of soil moisture levels occurred in the wetland 

sampling area (> 45 %) as compared to the terrestrial sampling area (< ± 45 %) for 

both the in situ %VWC and predicted %SMC of 2 May 2018 (Figure 11b). There is a 

much larger variability between the in situ %VWC measurements as compared to 

predicted %SMC measurements. 

 

Table 7: Differences between the wetland and terrestrial areas for in situ percentage Volumetric Water 
Content (%VWC) and Soil Moisture Content (%SMC) resulting from the Sentinel 1B and 2B predictions. 

Date In situ  measurements Sensor Predicted soil moisture 

measurements 

28 March 2018 0.0000000000000023 Sentinel-1B 0.0000000000000027 

2 May 2018 0.0000000000000024 Sentinel-2B 0.0000000000000029 

 

 

Figure 11: Percentage Volumetric Water Content and predicted percentage of Soil Moisture Content levels  
between drylands and wetlands for (a) 28 March 2018 and (b) 2 May 2018. 
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The coefficient of variation (COV) and mean values for in situ observed %VWC for 

the wetlands sample plots were low for the 28 March 2018 (COV = 1.2; mean = 90.7) 

and high for the in situ sampling period on the 2 May (COV = 5.6; mean = 74.3). 

Whereas, in comparison to the in situ %VWC, the COV and mean values for S1B 

predicted SMC Values (COV = 0.7; mean = 80.7) and S2B predicted SMC 

(COV = 0.05; mean = 51.9) were low. The coefficient of variation (COV) and mean of 

the %VWC values measured for the terrestrial areas are low for both those 

corresponding to the dates on which S1B (COV = 1.7; mean = 20.3) and S2B 

(COV = 2.2; mean = 5.8) were acquired, whereas COV and mean values of the 

predicted SMC values for S1B (COV = 0.6; mean = 23.3) and S2B 

(COV = 2.3; mean = 28.6) were relatively high in comparison (Table 8).  

The maximum %VWC was recorded as 100% for in situ measurements on 28 March 

2018 at 05:33. The mean modelled %SMC for S1B (mean±standard 

deviation = 80.7±21.4;23.3±7.5) compares well with the observed mean %VWC 

(mean±standard deviation = 90.7±20.8;20.3±7.9) in the wetland and terrestrial areas, 

respectively (Table 8). The S2B predicted SMC map was unable to model very high 

values (close to 100) that had been recorded during the sampling date (Table 8).   

Since S1B and S2B produced the best results, predicted SMC maps were generated 

for the two sensors using the data-split method. The maximum observed %VWC 

and/or modelled %SMC in the terrestrial area is less than 50 %VWC, which are 

therefore suggested as the threshold for mapping wetland extent (Figures 12 and 

13). The predicted %SMC maps for the S1B and S2B sensors show a distinct 

difference in the extent of soil saturation. The SMC map predicted from SAR VH 

taken on 28 March 2018 at 05:33 overpass, showed that 41 % (28,5 Ha) of the 

extent of the study area could be wetland (Figure 12), with %SMC values below the 

chosen threshold value of 50 % predicted %SMC. The S2B SMC map, in contrast, 

indicated a larger extent of wetland area (approximately 72 % or 50,3 Ha) with the 

predicted SMC values > 50 % (Figure 13). S1B shows relatively high SMC values 

around the south of Hartebeesspruit River and along the railway lines whereas S2B 

show higher SMC values (50 %—100 %) indicating more soil saturation.
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Table 8: Descriptive statistics for in situ observed percentage of Volumetric Water Content (%VWC) and 
predicted percentage of Soil Moisture Content (%SMC) at the time of Sentinel sensors overpass on the 28 
March 2018 for Sentinel-1B and  on 2 May 2018 for Sentinel-2B. 

  S1B: 28 March 2018 S2B: 2 May 2018 

 
  

Observed 
%VWC 

Predicted %SMC 
Observed 

%VWC 
Predicted %SMC 

Wetland Minimum  16.2 30.1 35 47.1 

 
Maximum 100 100 100 56.9 

 
Mean  90.7 80.7 74.3 51.9 

 
Standard Deviation 20.8 21.4 28.0 20.5 

 
Coefficient of 
Variation 

1.2 0.7 5.6 0.05 

 
  

    
Terrestrial Minimum 4.5 11.4 1.3 6.6 

 
Maximum 36.9 39.4 16.9 54 

 
Mean  20.3 23.3 5.8 28.6 

 
Standard Deviation 7.9 7.5 2.9 15.8 

 
Coefficient of 
Variation 

1.7 0.6 2.2 2.3 

      
Terrestrial 

and 
wetland 

Minimum  4.5 11.4 1.30 6.6 

 
Maximum 100 100 100 56.9 

 
Mean 57.3 52.0 42.4 40.3 

 
Standard Deviation 38.7 32.9 39.9 16.2 

 
Coefficient of 
Variation 

8.6 2.8 30.7 2.4 
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Figure 12: Predicted percentage Soil Moisture Content (%SMC) map derived from Sentinel-1B showing the variation in soil moisture on 28 March 2018 sampling campaign.  
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Figure 13: Predicted percentage Soil Moisture Content (%SMC) map derived from Sentinel-2B showing the variation in soil moisture for 2 May 2018 sampling campaign. 
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Figure 14: Standard error regression graphs displaying how well Sentinel 1B (a) and Sentinel 2B (b) captured 
the variability of the soil moisture content across the study area. 

 

The standard error graphs illustrating the observed in situ measurements against the 

predicted SMC measurements represent the level of over estimation and under 

estimation of the model (Figure 14). The results displayed show a correlation of 

determination for S1B of R² = 0.94 and for S2B, R2 = 0.93. From the ±5 % to ±30 % 

range the estimated %SMC measurements for S1B are showing an overestimation 

and from > ±30 % it is showing an underestimation. For S2B, the overestimation falls 

in the range of ±2 % to ±15 % and %SMC is underestimated from ±25 %. The 

inflection shows typical performance of machine learning algorithms. 
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Chapter 5 : DISCUSSION 
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The results showed that C-band Synthetic Aperture Radar (SAR) Sentinel-1 (S1) and 

optical sensor, Sentinel-2 (S2), were able to estimate soil moisture content (SMC) for 

a palustrine wetland in the grassland biome of South Africa. S1 produced a high 

correlation coefficient of R2 = > 0.76 and a low Root Mean Square Error (RMSE = < 

24 %) and S2 produced an accuracy of R2 = 0.8 and low RMSE of < 20 %. Several 

studies have made use of C-band to estimate SMC. A study by Dabrowska-Zielinska 

et al. (2018) used the ERS-1/2 SAR VV and ENVISAT to monitor SMC over the 

Bierbza wetlands in northeast Poland, cover by grassland and marshland. Their 

findings show a reasonable error (RMSE) of 10 %. Holtgrave et al. (2018) estimated 

soil moisture using the Sentinel-1 data in grassland floodplain Peene and Elbe, 

Germany. The results showed high accuracies of R2 = > 0.72 and average RMSE of 

13 % over the two sites. In another study conducted in the plains of Italy in a semi-

arid region, RADARSAT-2 estimated SMC with really high accuracies of R2 = 0.85 

(Filion et al., 2015). In a recent study, Sadeghi et al. (2017) estimated soil moisture 

using S2 over a watershed in Southern Arizona, in which low estimation errors of 

0.04 cm3 cm-3 were derived. The results of this study therefore compares well in 

terms of the coefficient of determination, though higher RMSE percentages were 

recorded to all these comparable studies. All of these studies were conducted in 

temperate climatic regions or over areas with grassland cover, and some include 

palustrine wetlands which demonstrate that the C-band SAR sensors are capable of 

predicting %SMC. This study shows that the freely available Sentinel-1 and optical 

Sentinel-2 remote sensors can also estimate near surface SMC, to a depth of 5 cm, 

for palustrine wetlands in the grassland biome of a semi-arid region. 

A significant difference (p < 0.05) in soil moisture ranges was observed between the 

wetland and terrestrial areas. In situ percentage Volumetric Water Content %VWC 

ranged from 4.5 % to 100 %, while predicted %SMC ranged from 1.3 % to ±50 %. 

The results showed that the mean soil moisture levels for the in situ %VWC 

measured in the wetland (90.7 %; 74.3 %) was significantly higher (p < 0.05) 

compared to the mean %VWC measured in the terrestrial area (20.3 %; 5.8 %) on 

the 28 March and 2 May 2018, respectively. Similarly, the Sentinel sensors (S1B and 

S2B) were able to pick up similar trends. Continuous assessment of the different soil 

moisture ranges over multiple hydrological regimes would provide insight into 

determining the maximum extent of a wetland (Van Deventer et al., 2018b). In this 
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study 50 % of the measured %VWC or predicted %SMC is suggested as a possible 

threshold for determining the maximum extent of a wetland. Other studies such as 

Holtgrave et al. (2018) measured %VWC ranging between ±30—99.1 % with a mean 

value of close to 50 % of over a floodplain made up of grassland also reaching up to 

2 m in height, in Germany. In another study, Paloscia et al. (2013) acquired %VWC 

measurements with a mean of 45 % in terrestrial lands comprised of dense grasses, 

in Italy. Both these studies took place at the end of the growing period of the 

vegetation. In another instance, a study conducted by Lang et al. (2007) in the 

coastal plains of Washington D.C. (United States of America), also attained similar 

trends in the differences in the soil moisture ranges between the wetland and the 

terrestrial area, with an average of 59 % and 24 % (%VWC), respectively. It appears 

that these ranges have a similar trend, although in different biomes and regions. In 

addition, for the Colbyn Valley Nature Reserve (CVNR) study area, on-site variation 

in SMC values may be attributed to a number of factors. The vegetation in the 

wetland area causes a decrease in velocity of flow due to the water holding capacity 

of the plants as well as their high friction value. Also, the nature of palustrine type 

wetlands is relatively flat which naturally decreases the velocity of flow, even if there 

was no vegetation present at the time of sampling and overpass of the sensor 

(Enviroguard Ecological Services cc. 2014). Other factors include sub-surface 

fractures, groundwater flow, or alterations which have resulted in the accumulation of 

water. As a result of the build-up of SMC in the valley-bottom, patterns of high SMC 

across the wetland has in some instances linear appearances (marked 1 and 2 in 

Figure 13), following old drains. In addition, the construction and filling of the area for 

the road and railway line may have caused accumulation of water adjacent to these 

areas (Figure 5).     

Differences between the two sampling campaigns of this study in the CVNR may 

relate to changes in the hydrological period. The sampling campaign on 28 March 

2018 took place shortly after an intense rainfall storm (22 March 2018) whereas the 

sampling campaign on 2 May 2018 took place approximately two weeks after a less 

intense rainfall period (Figure 15). Despite the fact that the first campaign (28 March 

2018) took place soon after an intense storm, the extent of soil saturation was much 

wider (30 % or 21 Ha) from the image derived on 2 May 2018 associated with the 

second campaign. The continuous rainfall events over summer (rainfall started mid-
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February of 2018) lead to progressively accumulated water in the wetland through 

surface run-off and groundwater accumulation. The accumulation of water would 

have resulted in an increase dielectric constant, resulting in higher backscatter and 

reflectance values. These results are evidence from the comparison of the predicted 

SMC maps for S1B sensor and S2B sensor to one another, which suggests that 

changes in soil saturation could be detected across the wetland’s hydroperiod. This 

study, however, was limited to an inter-annual analysis at the peak and end of the 

rainfall season and respective hydroperiod, limiting full understanding of the variation 

of %SMC over the hydroperiod and extent of the wetland. Since palustrine wetlands 

are dynamic ecosystems, they require frequent monitoring. Very high spatial (~ 1.2 

m) and temporal resolution (1 – 3 days) imagery from WorldView or IKONOS, for 

example, are most suitable for such an application, however, acquiring information 

from these remote sensing platforms comes at a high cost which makes them 

insufficient for regional monitoring of SMC. The Sentinel series surpasses this 

limitation by offering freely available imagery with a relatively low revisit time of 5 – 6 

days. 

 

Figure 15: Precipitation readings for the duration of the sampling period. Graphs (a) shows a rainfall period shortly before 

the acquisition for S1B on the 28 March 2018 (indicated by red arrow) and graph (b) shows the S2B acquisition on 2 
May2018 (indicated by red arrow). Scale ranges are different to account for differences in the maximum 
precipitation of the two sample dates.  

 

The estimated %SMC based on the interpretation from Sentinel-1 recorded in the 

cross-polarization mode, found vertical-receive, horizontal-transmit (VH) to be more 

sensitive to vegetation cover, surface roughness and SMC (R2 = 0.79; RMSE = 13 

for S1A and R2 = 0.94; RMSE = 10 for S1B) compared to the single polarization 

mode, vertical-receive, vertical-transmit (VV) (R2 = 0.76; RMSE = 17 for S1A and 

R2 = 0.92; RMSE = 10 for S1B) and the VV+VH modelling scenario obtained the 
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same result as the VH polarization mode. The CVNR showed comparable results, 

recommending the use of VH above that of VV. For instance, Dabrowska-Zielinska 

et al. (2016) found that VH was able to estimate SMC with a higher accuracy (R2 = 

0.72) than VV (R2 = 0.63) over a vegetated wetland area comprising of sedges, 

reeds and grasses. By using the cross-polarization VH as well as integrating it into 

the VV+VH modelling scenario, it was assumed that the influence from the 

vegetation cover and surface roughness was reduced and the possibility of receiving 

backscatter from the soil surface was increased. 

The combination of all the optical S2 bands, resampled to 10 m spatial resolution 

(excluding the 60 m spatial resolution bands), produced high accuracies of predicting 

%SMC (R2 = > 0.7; RMSE = ≤ 15 %). S2B stacked bands showed the highest R2 

(0.94) with the lowest RMSE (12 %). The accuracy in the %SMC estimation is 

probably enhanced by the contribution of the visible range bands (blue (496–

492 nm), green (560–559 nm), red (664–665 nm)), the NIR (band 8, 833–835 nm) 

and the SWIR (band 12, 2185–2204 nm), where the spectrum in these bands were 

absorbed by water molecules, based on the results of the random forest’s (RF) 

model ranking of the bands. These bands also produced a high R2 = 0.94 and low 

RMSE = 13 %. Various other studies found that surface soil moisture the NIR and 

SWIR was important for predicting soil moisture (Barret et al., 1993; Lobell and 

Asner, 2002; Wang et al., 2009). For the CVNR, the use of bands across the visible, 

NIR and SWIR all contributed to the optimisation of the prediction of %SMC. 

The findings of our study indicated that non-parametric models (Support Vector 

Machine (SVM) and RF) produced a better outcome as compared to the parametric 

model (Simple Linear Regression (SLR)). The results from the Shapiro-Wilk test 

indicate the in situ %VWC for the 28 March and 2 May 2018 sampling campaigns 

are not normally distributed (w < 0.8; p < 0.05) (Figure 10 (a) and (b)). These results 

are in agreement with other studies which also found non-parametric algorithms to 

outperform parametric algorithms. For example, Ali et al. (2015) made a 

comprehensive comparison between different machine learning methods and 

concluded that non-parametric models such as SVM or Artificial Neural Network 

(ANN) have great potential for measuring SMC for vegetated environments because 

they require less amounts of training data. Liu et al. (2017) compared four different 

machine learning approaches for observing monthly SMC satellite data over grain 
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crop regions in northeast China. They found that of all the four methods, RF showed 

to have produced the best results with R2 generally greater than 0.92 (RMSE = 0.009 

m3m-3). Cross-validation can be used when the number of samples doesn’t capture 

the variability of the data. It appears as if the number of samples used in this study 

did capture the variability and therefore where the data split was used, the results 

were generally higher than the cross-validation approach. 

Despite vegetation canopy cover influencing backscatter from C-band data, in this 

study it can be argued that the vegetation may have very little impact on the radar 

signal from C-band Sentinel-1 SAR. Several studies have attempted to compensate 

for the influence of vegetation and surface roughness through incorporating it in their 

models. Some methods included using sensors at different frequencies, polarization 

modes and incident angles and assessing temporal variations across a part of the 

phenological period when the biomass and texture remained the same (Zribi and 

Dechambre, 2002; Baghdadi, et al., 2008; Paloscia et al., 2013). The most 

commonly used index for incorporating the influence of vegetation in the estimation 

of SMC, is the Normalization Difference Vegetation Index (NDVI). Paloscia et al. 

(2013) and Holtgrave et al. (2018) both showed that the estimation of SMC without 

NDVI resulted in the increase of RMSE values by 7–40 percentile points (pp). In 

Polascia et al. (2013) study, the RMSE increased by 8–40 pp when NDVI was not 

used. Research done by Hornacek et al.  (2013) suggests that grassland above 

ground biomass (AGB) ≤ 1 kg/m2 have very little influence on the estimation of SMC 

estimation. As a result, the estimation of SMC in the CVNR were not adjusted since 

the AGB of grasses and sedges in the study area is likely < 850 g/m2, following AGB 

values of palustrine and terrestrial systems in the grassland biome (Naidoo et al., 

2019). 

This study showed that the Sentinel-1 and -2 sensors have the potential to estimate 

and monitor %SMC of palustrine wetlands at a regional scale. Few studies have 

compared the estimations of %SMC between different microwave bands of sensors, 

such as the C- and L-band sensors. While L-band sensors have the advantage of 

deeper penetration through canopy cover (in case of densely vegetated lands, for 

example, forests), some L-band sensors are limited by their spatial resolution to 

estimate SMC in palustrine wetlands in temperate and semi-arid regions because 

these wetlands are small, such as SMOS satellite (spatial resolution of 35 km); other 
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L-band sensors have a high spatial resolution (10 m) but are limited by their revisit 

time, such as ALOS (46 days temporal resolution); and in some cases, the high cost 

associated with acquiring radar imagery limits its broader use. Since SMC is 

considered an Essential Climate Variable and therefore monitoring SMC in palustrine 

wetlands could lead to positive outcomes in conserving these important ecosystems. 

Future L-band sensors such as the Advanced Land Observing Satellite-4 (ALOS-4) 

from the Japan Aerospace Exploration Agency (JAXA), NASA ISRO Synthetic 

Aperture Radar (NISAR) from NASA/ ISRO and TanDEM-L from the German Space 

Agency or Deutsches Zentrum Fur Luft-und Raumfahrt e.V. (DLR) will greatly 

improve the efforts for monitoring SMC (The CEOS Database – Catalogue of 

Satellite Missions, 2019). However, future research needs to be carried out to 

assess the potential of the different sensors for estimating %SMC across different 

climatic zones and wetland types. 
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This study proves that the freely available Sentinel-1 (SAR) and 2 (optical) sensors 

have potential in estimating the extent and degree of soil saturation of palustrine 

wetlands in the grassland biome of South Africa. The Sentinel 1 SAR and optical 

sensors were able to predict the percentage of Soil Moisture Content (SMC) with a 

high coefficient of determination (R² > 0.7) and low Root Mean Square Error (RMSE) 

< 15 % for a vegetated channelled valley-bottom wetland located in the grassland 

biome and Gauteng Province of South Africa. The VH polarization mode of the 

Sentinel-1 and optical bands 2 (Blue), 3 (Green), 4 (Red), 8 (NIR) and 12 (SWIR) of 

Sentinel-2 sensors, contributed to the highest accuracies, when a non-parametric 

Random Forest regression model was used. An SMC threshold of ≥ 50 % is 

suggested as a potential threshold to determine the extent of the wetland area, 

though further work would be required to confirm whether this is relevant across the 

hydroperiod and other grassland sites. The results therefore suggest that the 

prediction of SMC in the grassland biome of South Africa can play a significant role 

to improve the representation and monitoring of palustrine wetlands in the face of 

global and changing climate. 
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