

11. APPENDICES

11.1 Appendix A: Generator Design

11.1.1 Appendix A1: Generator PVC Properties

Table A1: uPVC Properties [24]

Material:	SABS Class 16 uPVC
Max. Operating Pressure:	1.6 MPa
Specific Gravity:	1.45 g.cm ⁻³
Maximum Service Temperature:	65 °C
Tensile Strength (Yield):	55 MPa
Impact Resistance:	No Break
Hardness Ball Indentation:	120 N.mm. ²
Co-efficient of Thermal Expansion:	70 x10 ⁻⁶ mm/mm.K
Surface Resistivity:	$10^{13} \Omega.mm^{-2}$
Thermoforming Temperature:	120 – 150 °C

Appendices

11.1.2 Appendix A2: Thread Specifications

Table A2: Thread Specifications [27]

		Coa	rse Threads—U	NC	Fine Threads—UNF		
Size	Major Diameter d (in.)	Threads per Inch	Minor Diameter of External Thread <i>d_r</i> (in.)	Tensile Stress Area A_t (in. ²)	Threads per Inch	Minor Diameter of External Thread <i>d_r</i> (in.)	Tensile Stress Area A _t (in. ²)
0(.060)	0.0600				80	0.0447	0.00180
1(.073)	0.0730	64	0.0538	0.00263	72	0.0560	0.00278
2(.086)	0.0860	56	0.0641	0.00370	64	0.0668	0.00394
3(.099)	0.0990	48	0.0734	0.00487	56	0.0771	0.00523
4(.112)	0.1120	40	0.0813	0.00604	48	0.0864	0.00661
5(.125)	0.1250	40	0.0943	0.00796	44	0.0971	0.00830
6(.138)	0.1380	32	0.0997	0.00909	40	0.1073	0.01015
8(.164)	0.1640	32	0.1257	0.0140	36	0.1299	0.01474
10(.190)	0.1900	24	0.1389	0.0175	32	0.1517	0.0200
12(.216)	0.2160	24	0.1649	0.0242	28	0.1722	0.0258
1	0.2500	20	0.1887	0.0318	28	0.2062	0.0364
$\frac{1}{4}$ $\frac{5}{16}$	0.3125	18	0.2443	0.0524	24	0.2614	0.0580
16 3 8	0.3750	16	0.2983	0.0775	24	0.3239	0.0878
$\frac{7}{16}$	0.4375	14	0.3499	0.1063	20	0.3762	0.1187
16 1 2	0.5000	13	0.4056	0.1419	20	0.4387	0.1599
9 16	0.5625	12	0.4603	0.182	18	0.4943	0.203
5	0.6250	11	0.5135	0.226	18	0.5568	0.256
3	0.7500	10	0.6273	0.334	16	0.6733	0.373
5 8 3 4 7 8	0.8750	9	0.7387	0.462	14	0.7874	0.509
1	1.0000	8	0.8466	0.606	12	0.8978	0.663
118	1.1250	7 .	0.9497	0.763	12	1.0228	0.856
11	1.2500	7	1.0747	0.969	12	1.1478	1.073
138	1.3750	6	1.1705	1.155	12	1.2728	1.315
$1\frac{1}{2}$	1.5000	6	1.2955	1.405	12	1.3978	1.581
13	1.7500	5	1.5046	1.90			
2	2.0000	$4\frac{1}{2}$	1.7274	2.50			
21	2.2500	$4\frac{1}{2}$	1.9774	3.25			
$2\frac{1}{2}$	2.5000	4	2.1933	4.00			
2 ³ / ₄	2.7500	4	2.4433	4.93			
3	3.0000	4	2.6933	5.97			
31	3.2500	4	2.9433	7.10			
31/2	3.5000	4	3.1933	8.33			
34	3.7500	4	3.4433	9.66			
4	4.0000	4	3.6933	11.08			

Appendices

Page 134

11.2 Appendix B: Design Drawings

Appendices

11.3 Appendix C: Preliminary Experimental Data

11.3.1 Appendix C1: Temperature Test Results

Table C1: Temperature Test Results

Time	Mass of Water	Temp	Rate of Water	Molecular Rate	Molecular Rate	Mass of H_2	Volume of
	Loss		Loss	of Water Loss	of H ₂ Produced	Produced	H ₂ Produced
[s]	[g]	[deg C]	[g/s]	[mol/s]	[mol/s]	[g/s]	[m³/s]
55	0.2	22.00	0.003636	2.019E-04	2.019E-04	0.000407	0.00453
900	5.1	36.40	0.005667	3.146E-04	3.146E-04	0.000634	0.00705
900	5.2	37.90	0.005778	3.207E-04	3.207E-04	0.000647	0.00719
900	9.9	48.80	0.011000	6.106E-04	6.106E-04	0.001231	0.01369
900	14	55.00	0.015556	8.635E-04	8.635E-04	0.001741	0.01936

11.3.2 Appendix C2: Sample Calculation [31]

• Atomic Mass of Water

$$A_{,water} = A_{H} + A_{O}$$
(C.1)
= (2)(1.008) + (15.9994)
= 18.01

• Rate of Water Loss

$$\dot{m}_{water} = \frac{m_{water}}{t}$$
 (C.2)
= $\frac{14}{900}$
= 0.015556g.s⁻¹

• Molecular Loss of Water

$$\dot{M}_{water} = \frac{\dot{m}_{water}}{A_{water}}$$
(C.3)
= $\frac{0.015556}{18.01}$
= $8.635 \times 10^{-4} mol.s^{-1}$

• Molecular Weight of Hydrogen

From, the balanced equation for the dissociation of water into hydrogen and oxygen, it can be seen that for every mole of water there is one mole of hydrogen produced.

$$2H_2O = 2H_2 + O_2$$

Therefore, the number of moles of hydrogen produced is equal to the number of moles of water used up.

$$\dot{M}_{hydrogen} = 8.635 x 10^{-4} g.s^{-1}$$

• Mass of Hydrogen Produced

$$\dot{m}_{hydrogen} = (\dot{M}_{hydrogen})(A_{hydrogen})$$
 (C.5)
= $(8.635 \times 10^{-4})(2)(1.008)$

$$= 0.001741 g.s^{-1}$$

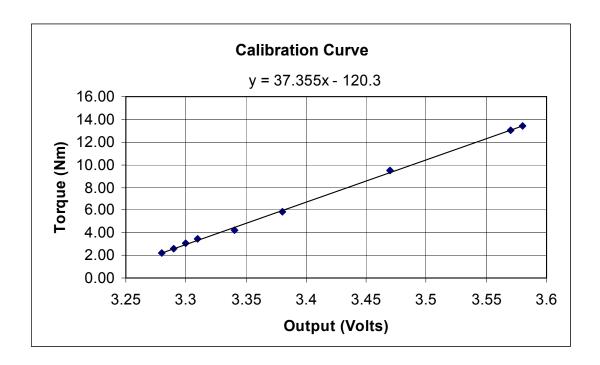
• Volume of Hydrogen Produced

$$V = \frac{m}{\rho}$$
 (C.6)
= $\frac{0.001741}{0.0000899}$
= $0.01936m^3$

11.3.3 Appendix C3: Frequency Test Results

Table C2: Frequency Test Results

Time	Mass of Water	Frequency	Rate of Water	Molecular Rate	Molecular Rate	Mass of H ₂	Volume of
	Loss		Loss	of Water Loss	of H ₂ Produced	Produced	H ₂ Produced
[s]	[g]	[kHz]	[g/s]	[mol/s]	[mol/s]	[g/s]	[m³/s]
1800	2.3	16.67	0.001278	7.093E-05	7.09285E-05	0.000143	0.00159
1800	3.4	20.00	0.001889	1.049E-04	0.000104851	0.000211	0.00235
1800	2.8	20.00	0.001556	8.635E-05	8.63478E-05	0.000174	0.00194
1800	3.3	20.83	0.001833	1.018E-04	0.000101767	0.000205	0.00228
1800	2.9	22.73	0.001611	8.943E-05	8.94316E-05	0.000180	0.00201
1800	2.7	25.00	0.001500	8.326E-05	8.32639E-05	0.000168	0.00187
1800	3.7	50.00	0.002056	1.141E-04	0.000114102	0.000230	0.00256
1800	3.6	62.50	0.002000	1.110E-04	0.000111019	0.000224	0.00249
1800	3.3	66.67	0.001833	1.018E-04	0.000101767	0.000205	0.00228
1800	3.6	100.00	0.002000	1.110E-04	0.000111019	0.000224	0.00249



11.4 Appendix D: Dynamometer Calibration

Mass	Mass	Load	Torque	Voltage
[lb]	[kg]	[N]	[Nm]	[V]
1.37	0.62	6.07	2.22	3.28
1.62	0.73	7.21	2.63	3.29
1.87	0.85	8.32	3.04	3.3
2.12	0.96	9.43	3.44	3.31
2.62	1.19	11.66	4.26	3.34
3.62	1.64	16.11	5.88	3.38
5.82	2.64	25.90	9.45	3.47
8.02	3.64	35.69	13.03	3.57
8.27	3.75	36.80	13.43	3.58

Table D1: Dynamometer Calibration Data

11.5 Appendix E: Gas Analyser Procedure

The procedures to follow are for the Signal Series III Analyser. For each test session these procedures have to be performed to ensure good working order of the analyser.

11.5.1 Appendix E1: Start up Procedure

- 1. Switch on the main power supply at the wall plug. The pumps will start up, the oven lights will burn and the fans will turn on.
- 2. Switch on all the analyser units (CO, CO₂, NO_X and cooler/dryer). The switches to these analysers are on the front panels of each unit.
- 3. All the display panels (LCD) will now be lit up and go into standby mode.
- 4. A Status warning will show on all the LCD displays of the analyser units.
- 5. Press the STATUS button and then press the PAGE DOWN button twice. Do this for all the analyzer units.
- 6. The window being displayed at this stage on all of the units should be the "Health Check Window", which gives the operating status of the analyzer by listing all the operating variables. A flashing variable alerts the user to a problem with that specific variable. Upon start up, usually temperature, pressure and/or the flow variables will be flashing.
- Allow all units to stand as they are for about 45 minutes to an hour, to allow the oven and converter temperatures in the NO_X analyser to reach the operating temperatures required. The variables will stop flashing to indicate operating status.

11.5.2 Appendix E2: Analyser Requirements and Gas Cylinder Contents

Analyser	Cylinder Label	Cylinder Contents	Description
NO _X	Zero	99.9 % Nitrogen	Large
	Span	3030 ppm NO in N_2	Large
СО	Zero	99.9 % Nitrogen	Large
	Span	8.0 % in air	Large
CO ₂	Zero	99.9 % Nitrogen	Large
	Span	15.6 % CO_2 in air	Large

Table E1: Gas Cylinder Contents

11.5.3 Appendix E3: Calibration Procedure

- Once the NO_x oven and converter temperatures have reached their required levels (i.e. no longer flashing), then the next phase can begin. Double check to see that the above two temperature variables on the LCD panels are not flashing.
- 2. Now press the ESC (Escape) button on all the analysers.
- Press the SAMPLE button (the button below the LCD screen aligned with SAMP on the screen) on all the analysers. This will change the analyser units from STANDBY to SAMPLE mode.
- Open the NO_x ZERO (nitrogen) gas cylinder. NB: Do not turn the regulator dials. All the cylinders have regulators that have been pre-set because of the flows and pressures required by each analyser. The main cylinder valve is the one to be opened.
- Open the laboratory's supply of compressed air by turning the valve halfway (45^o). The compressed air passes through three filters, namely particulate, water and oil.

- The CO₂, CO and NO_x analysers should now be in SAMPLE mode without any STATUS warnings.
- When calibrating, each analyser is calibrated separately, first starting with the NO_X, followed by the CO₂ and lastly the CO analyser.
- 8. Open a single SPAN cylinder corresponding to the analyser to be calibrated. Now press CAL button (the button below the LCD screen aligned with CAL on the screen) on the analyser, and wait for the calibration process to complete before moving onto the next analyser.
- The calibration process on the analyser first processes ZERO calibration and then proceeds to SPAN calibration, the analyser then reads "SAMPLE SETTLING" on the LCD screen, after which it returns to SAMPLE mode. Once this is done, the calibration process is complete.
- If a STATUS WARNING is given after the calibration, one or some of the variables have not reached their required status for calibration. Proceed to the "Health Check" window and establish which variables are flashing.
- 11. Most often it is the gas flow variables that flash, this means insufficient gas is flowing through the analyser. **NB: Adjust the regulator knobs on the gas cylinder until the variable stops flashing, do this carefully**. *This is the only time that the regulator knobs should be turned otherwise not.* Re-calibrate the analyser.
- 12. After calibration of a single analyser the SPAN cylinder should be shut. Only the ZERO and FUEL cylinders remain open throughout until testing is complete.
- 13. Now check to see that the calibration process was successful. This is done by pressing the STATUS button, and then the PAGE DOWN button once. The effective range should lie between –100% and +100% for all the analyser units.
- 14. Note: If the STATUS WARNING appears, due to N_2 gas flow on the CO or CO_2 while calibration occurs is because N_2 is used by both CO and CO_2 at the same time, it should stop flashing after calibration, if it does not the regulator knob should be adjusted until it stops on both analysers.
- 15. If all the preceding procedures have been completed, refer to the table which follows to check that all the variables on the 'Health Check Window' are within the given ranges.

11.5.4 Appendix E4: Variable Ranges For Each Analyser

If the variable values are not within range, the analyser will give a "STATUS WARNING" error message.

Analyser	Variable	Normal	Upper Limit	Lower Limit
		Reading	Reading	Reading
CO ₂	Amb. Temp.	40 °C	58 °C	0 °C
7000 M	Sens Status	GOOD	FA	ULT ¹
	P. S. Status	GOOD	FA	ULT ¹
	N ₂ Pressure	0.14 bar	Check footnote # 2	
	Gas Flow	0.7 l/m	1.0 l/m	0 l/m
	Measure 147.9 POH			

Table E2 - Variable Ranges for CO2 Analyser

 Table E3 - Variable Ranges for CO Analyser

Analyser	Variable	Normal	Upper Limit	Lower Limit
		Reading	Reading	Reading
CO	Amb. Temp.	38 °C	58 °C	0°C
7000 M	Sens Status	GOOD	FAULT ¹	
	P. S. Status	GOOD	FAULT ¹	
	N ₂ Pressure	0.18 bar	Check footnote # 2	
	Gas Flow	0.5 l/m	1.0 l/m	0 l/m

Table E4 - Variable Ranges for NO _x Analyser

Analyser	Variable	Normal	Upper Limit	Lower Limit
		Reading	Reading	Reading
NO _X	Oven Temp.	195 °C	205 °C	175 °C
4000 VM	Conv.	383 °C	400 °C 4	360 °C
	Temp.			
	Amb. Temp.	39 °C	60 °C	0 °C
	P. S. Status	GOOD	FAI	JLT ¹
	H. T. Status	GOOD	FA	JLT ¹
	O ₃ Pressure	1.06 bar	1.25 bar⁵	0.75 bar
	Vac.	0.05 bar	0.05 bar	0.01 bar
	Pressure			
	Gas Flow	1.9 l/m	5.0 l/m	0.5 l/m

NOTE: IN THE ABOVE TABLES, THE NORMAL READING FOR ALL THE VARIABLES INDICATES PERFECT OPERATION, HOWEVER SHOULD THE VARIABLE READINGS VARY SLIGHTLY BUT ARE STILL WITHIN RANGE; NO ERROR MESSAGES WILL APPEAR.

11.5.5 Appendix E5: Notes

- 1. The analyser will give a "FAULT" warning, refer to the manual for help or contact a Signal technician.
- 2. The user manuals do not specify upper and lower limits. If a STATUS WARNING appears on the LCD display then it means insufficient N₂ is flowing through the analyser. Page down to the "Health Check Window" and the N₂ gas flow variable will be flashing. Adjust the regulator on the N₂ gas cylinder until the N₂ variable on the "Health Check Window" stops flashing, check that this is achieved on both the CO and CO₂ analyser.

- 3. Flashing of this variable will commence, which indicates the temperature is too high or too low.
- 4. This value is not given in the operating manuals.
- 5. The optimum O_3 pressure is 1.00 bar and 1.25 bar is an estimated Upper limit.

11.5.6 Appendix E6: Problems With Calibration

Should any problems occur with the calibration of the analyser, a CAL WARNING error message will appear on the LCD screen. The following procedure should be used.

- On the front panel of the analyser, with the error message, press the STATUS button and then the PAGE DOWN button once. The effective range for any of the variables should lie between –100% and +100%. The error message will have appeared if one or more of the variables lie outside the –100% and +100% limits. Find out which of these is causing the fault.
- Check to see that the SPAN/ZERO main valve on the cylinder for that variable is open. If it is closed, open it and recalibrate.
- If the valve is open already, then place the analyser in the correct the correct mode to read the value of the cylinder contents. To get the analyser in this mode, while in the sample mode screen, press the PAGE DOWN button once and notice on the LCD screen, the SPAN and ZERO will appear on the bottom of the screen.
- If the SPAN is giving the problem, press SPAN and wait for the analyser to read the contents of the SPAN of the cylinder. Once this value has been established, adjust the potentiometer on the inside of the analyser front panel (see user manual for location).
- By adjusting the potentiometer, the value being read by the analyser can be adjusted to read the value of the cylinder.
- Once this has been done, close the front panel, place the analyser back into SAMPLE mode and recalibrate.

11.5.7 Appendix E7: Shut Down

- 1. Once testing is completed for the day, remove the heated line from the exhaust connection.
- 2. Allow the analyser to "air out" for 30 minutes to an hour.
- 3. Press STOP on the front panels of all the analyser units. The analyser units will now begin to purge themselves (120 seconds).
- 4. When this is complete, the units will all be in STANDBY mode.
- 5. Now close all the cylinder main valves and do not tamper with the regulator valves.
- 6. Turn off the air supply.
- 7. Switch off the front panel power switches.
- 8. Switch off the wall plug power.

11.6 Appendix F: Emissions Data Acquisition Procedure

Once the PC has been started up in Windows and the Analyser unit has been calibrated then the software program may be set up to capture the test data. The program used is Signal and this measures the emissions of the engine in a graphical mode by calculating the average concentration of the emissions and plotting the results as the test is being performed. If anything were to go wrong during a test then one would immediately notice this by the change in pattern of the graphs being plotted. The emissions measured are the Nitric Oxide (NO_X), Carbon monoxide (CO) and Carbon dioxide (CO_2) emissions. The following procedure briefly outlines the steps involved whilst performing tests with emissions.

- Double click on the Signal icon (torch flame picture) to open the Signal Exhaust Analyser Software operating window.
- Click the Test button on the menu bar scroll to click the Start New Test button.
 This will then open the Start New Test Information Window.

- Here the test name is entered as before and the operator can select the number of data points. For this research project either 50 or 100 points were chosen depending on the time available for each test.
- 4. The Reading Interval was set at every 1 second.
- 5. Clicking the icon with the little folders on it can choose the directory, to which the data is to be saved. Here select the path C:\SignalProgam\Signaldata\{Folder}. The entry {Folder} is to be replaced with whichever folder the data is to be stored in. This is usually the date of the test and the test number, eg. 2702, which reads 27th of November and test number two for that day.
- 6. The operating window shows all concentrations graphically and numerically as the test is being run.
- 7. For each new test, the new test name needs to be re-entered in order to be stored for further use.
- 8. The captured data may be viewed in *Notepad* at a later stage for further use.

11.7 Appendix G: Raw Data

Table G1: Petrol Data at 1/2 Throttle

THROTTLE:	$\frac{1}{2}$	FUEL:	Petrol	
Engine Speed		NO _x	CO	CO ₂
[rpm]		[ppm]	[ppm]	[ppm]
		781	51040	72232
		768	53914	-
2000		701	-	-
2000		676	-	-
		605	-	-
	Average:	706	52477	72232
		467	62230	82080
		510	63820	81870
1940		537	62080	81610
1340		521	62560	-
		485	63249	-
	Average:	504	62788	81853
		482	66302	82002
		497	66440	81827
1840		473	-	81410
1040		476	-	81352
		499	-	81000
	Average:	485	66371	81518
		3005	30939	89415
		2039	33005	89170
1480		2462	29919	89075
		3108	29741	88930
	Average:	2654	30901	89147

Table G2: Hydrogen Data at 1/2 Throttle

THROTTLE:	$\frac{1}{2}$	FUEL:	Petrol & Hydrogen	
Engine Speed		NO _x	CO	CO ₂
[rpm]		[ppm]	[ppm]	[ppm]
		887	40682	83500
		984	39665	83815
		968	40143	83665
		835	41193	84360
2000		860	-	85009
2000		-	-	80915
		-	-	83365
		-	-	85415
		-	-	87040
	Average:	907	40420	84120
		706	50315	86255
		727	52120	87925
1860		728	51655	88260
1000		721	51800	88770
		-	-	89300
	Average:	720	51472	88102
		683	55925	90405
		772	57355	90820
1740		716	56410	91060
1740		702	59120	91100
		718	59220	91075
	Average:	718	57606	90892
		1551	38715	90970
		1468	35417	90835
1280		-	38321	-
		-	41767	-
	Average:	1509	38555	90902

Table G3: Petrol Data at ²/₃ Throttle

THROTTLE: $\frac{2}{3}$		FUEL:	Petrol		
Engine Speed		NO _x	CO	CO ₂	
[rpm]		[ppm]	[ppm]	[ppm]	
2360		681	54805	86057	
		767	54269	85690	
		687	56102	85600	
		750	-	80585	
		870	-	-	
		731	-	-	
		734	-	-	
		730	-	-	
		952	-	-	
	Average:	767	55059	84483	
		532	71555	83445	
2220		502	72385	85312	
		497	73305	86535	
		502	-	87682	
		520	-	88477	
	Average:	511	72415	86290	
1960		504	75372	89122	
		502	79307	89157	
		489	77972	88692	
		487	78472	87957	
		487	79077	87135	
	Average:	494	78040	88412	
1660		2723	28745	85535	
		2537	29608	85085	
		2369	30361	84545	
		2799	27187	-	
		2478	-	-	
	Average:	2581	28975	85055	

It should be noted that Table G4 is somewhat different from the previous Tables in that each emission has its own corresponding engine speed. This was due to the difficulty in obtaining the exact engine speed when the hydrogen tests were repeated at two-thirds throttle. However, while these engine speeds are different to those in Table 8.4, the specific emissions and plotted results were determined using the true data in Table G4 below.

Page 151

Appendices

Table G4: Hydrogen Data at ²/₃ Throttle

	THROTTLE:	$\frac{2}{3}$	FUEL:	Petrol & Hydrogen			
	NO _x		СО	со		CO ₂	
	Emissions	Speed	Emissions	Speed	Emissions	Speed	
	[ppm]	[rpm]	[ppm]	[rpm]	[ppm]	[rpm]	
	583		58020		91044		
	671		58120		90625		
	677	1880	57370	1880	90437	1880	
			56630		90272		
Average:	644		57535		90595		
Average:	635		46574		91390		
	605		47402		91292		
	612	1920	47726	1920	91500	1920	
	615	1920		1920	91402	1920	
	616		47234		91396		
	855		45768		91366		
	934		40079		92218		
			40805		92062		
			43104		91722		
Average:		2080	48898	1980		1980	
			46944				
	895		44266		91842		
	966		10147		82714		
	983		9916				
Ľ		2120	9060	2120		2080	
Average:	974.5		9708		82714		

Page 152

11.8 Appendix H: EES Source Code

{VARIABLES} {v=dynamometer reading} {p=power} {T=torque} {deltap = change in pressure} {s=time taken to consume 50ml fuel} {m=rpm} {bmep=brake mean effective pressure} {Vd=displacement volume} {Nc=cylinder factor} {Ib=calibration mass in pounds} {m=mass in kilograms} {F=load on dynamometer} {x=torque arm distance} {Tcal = calibration torque} {vcal= calibration voltage} {nox=nitrogen oxides} {co=carbon monoxide} {co2=carbon dioxide} {snox=specific nox} {sco=specific co} {sco2=specific co2} {AFa=Actual Air/Fuel Ratio} {FAa=Actual Fuel/Air Ratio} {FAs=Stoichiometric Fuel/Air Ratio} {eq=equivalence ratio} {CALIBRATION} m=0.45359*lb F=m*9.81 Tcal=F*x x=0.365 {RESULTS} T=37.3468*v-120.272 p=2*pi*n*T/60 bmep*1000=(p*Nc)/(Vd*n/60) Vd=pi*((bore/2)^2)*stroke bore=0.082 stroke=0.064 Nc=0.5 snox=nox/p sco=co/p sco2=co2/p 1/FAa=AFa eq=FAa/FAs

1/FAs=AFs AFs=14.7

11.9 Appendix I: Curve Fit Equations

11.9.1 Appendix I1: Torque

- $\frac{1}{2}$ **P:** -22.742 + 0.0034157*n 0.000104031*n²
- $\frac{1}{2}$ **H:** 1.40469 + 0.0072154*n 0.00000285301*n²
- ²/₃**P:** -7.24869 + 0.0132859*n − 0.00000362076*n²
- ²**′₃H:** -186989 + 0.028862*n − 0.0000849106*n²

Where "n" represents engine speed.

11.9.2 Appendix I2: BMEP

- $\frac{1}{2}$ **P:** -211.311 + 0.317392*n 0.0000966669*n²
- $\frac{1}{2}$ **H:** 13.0681 + 0.0670515*n 0.0000265138*n²
- ²/₃**P:** -67.2642 + 0.123381*n − 0.0000336283*n²
- **²/₃H:** -180.518 + 0.275049*n − 0.0000806293*n²

Where "n" represents engine speed.

11.9.3 Appendix I3: NO_x

- $\frac{1}{2}$ **P:** 50513.8 53.476*n + 0.0142832*n²
- **½H:** 11464.8 − 12.2131*n + 0.00346544*n²
- $\frac{2}{3}$ **P:** 47016.9 43.8945*n + 0.0103082*n²
- **²/₃H:** 24632 − 25.4099*n + 0.006725*n²

Where "n" represents engine speed.

11.9.4 Appendix I4: CO

- $\frac{1}{2}$ **P:** -1.06416x10⁶ + 1253.94*n 0.34734*n²
- $\frac{1}{2}$ **H:** -342315 + 486.528*n 0.147621*n²
- $\frac{2}{3}$ **P:** -1.24563x10⁶ + 1282.82*n 0.31015*n²
- **²/₃H:** 1141060 + 1369.51^{*}n − 0.3898.89^{*}n²

Where "n" represents engine speed.

11.9.5 Appendix I5: CO₂

- $\frac{1}{2}$ **P:** -99067.5 + 242.115*n 0.0777184*n²
- $\frac{1}{2}$ **H:** 13297.1 + 105.523*n 0.0350689*n²
- 2 ₃**P:** -23877.7 + 122.689*n 0.0283297*n²
- 2 **H:** 1.76482x10⁶ + 1912.75*n 0.492536*n²

Where "n" represents engine speed.

11.9.6 Appendix I6: Specific NO_x

- **½P:** 68.778 − 0.00732004*n + 0.0000196159*n²
- $\frac{1}{2}$ **H:** 57.409 0.0536221*n + 0.0000125718*n²
- ²/₃**P:** 15.7386 0.0169289*n + 0.00000477244*n²
- **32.6927** − 0.0338755*n + 0.0000089327*n²

Where "n" represents engine speed.

11.9.7 Appendix I7: Specific CO

- $\frac{1}{2}$ **P:** -789.187 + 0.878974*n 0.000238328*n²
- $\frac{1}{2}$ H: -1085.09 + 1.12876*n 0.000273508*n²
- 2 **P:** -240.199 + 0.373736*n -0.000115944*n²
- 3 **H:** -1154.85 + 1.35937^{*}n − 0.00038195^{*}n²

Where "n" represents engine speed.

11.9.8 Appendix I8: Specific CO₂

- $\frac{1}{2}$ **P:** 6914.67 11.3638*n + 0.00627679*n² 0.0000115073*n³
- $\frac{1}{2}$ **H:** 802.103 + 1.52221*n 0.000835727*n² + 1.48497*n³
- $\frac{2}{3}$ **P:** 1717.07 2.85342*n + 0.00166087n² 3.20474x10⁻⁷*n³
- **²/₃H:** 1054.45 + 1.15118*n − 0.000290613*n²

Where "n" represents engine speed.

11.9.9 Appendix I9: Equivalence Ratio

- $\frac{1}{2}$ **P:** 81.848 + 0.130152*n 0.0000667182*n² + 1.12470x10^{-8*}n³
- $\frac{1}{2}$ H: 7.61349 0.0107492*n + 5.9269x10⁻⁶*n² 1.09389x10⁻⁹*n³
- **²/₃P:** 110.944 − 0.12792*n + 0.000496946*n² − 6.50001x10^{-9*}n³
- **²/₃H:** 5.34536 − 0.00321615*n + 6.07641x10⁻⁷*n²

Where "n" represents engine speed.

11.10 Appendix J: Final Test Results – Sample Calculation

Using the data for two-thirds petrol:

11.10.1 Appendix J1: Torque

From the calibration equation:

$$T = -120.30 + 37.355V$$
$$= -120.30 + 37.355(3.325)$$
$$= 3.906Nm$$

11.10.2 Appendix J2: Power

The engine power was then calculated using equation 8.2 [32]:

$$P = \frac{2\pi NT}{60}$$
$$= \frac{2\pi (2360)(3.906)}{60}$$
$$= 965.323W$$

11.10.3 Appendix J3: BMEP

$$BMEP = \frac{pN_c}{V_d N}$$
$$= \frac{(965.323)(0.5)}{(0.000337985)(2360/60)}$$

$$= 36.3kPa$$

11.10.4 Appendix J4: Specific NO_x

$$sNO_x = \frac{NO_x}{P}$$
$$= \frac{767}{965.323}$$
$$= 0.7645 \, ppm.W^{-1}$$

11.10.5 Appendix J5: Specific CO

$$sCO = \frac{CO}{P}$$
$$= \frac{55059}{965.323}$$
$$= 57.04 \, ppm.W^{-1}$$

11.10.6 Appendix J6: Specific CO₂

$$sCO_2 = \frac{CO_2}{P}$$

= $\frac{84483}{965.323}$
= $87.52 \, ppm.W^{-1}$