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ABSTRACT

In this thesis, we study both local time and Malliavin calculus and their application

to stochastic calculus and finance. In the first part, we analyze three aspects of ap-

plications of local time. We first focus on the existence of the generalized covariation

process and give an approximation when it exists. Thereafter, we study the decom-

position of ranked semimartingales. Lastly, we investigate an application of ranked

semimartingales to finance and particularly pricing using Bid-Ask. The second part

considers three problems of optimal control under asymmetry of information and

also the uniqueness of decomposition of “Skorohod-semimartingales”. First we look

at the problem of optimal control under partial information, and then we investigate

the uniqueness of decomposition of “Skorohod-semimartingales” in order to study

both problems of optimal control and stochastic differential games for an insider.
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Structure of the thesis

This thesis is constituted of two parts, the first part contains three chapters in collaboration

with Raouf Ghomrasni, Paul Kettler and Frank Proske. The second Chapter has led us to

an article accepted for publication in Stochastic Analysis and Applications (see [56]) while

the two other chapters have led us to articles in submission. (See [57, 75].) The second

part contains four chapters and, as in the first part, each chapter conduct us to article in

the process of editing or in submission. (See [34, 35, 89, 107].) This second part is a work

performed in collaboration with Giulia Di Nunno, Thilo Meyer Brandis, Bernt Øksendal,

Frank Proske and Hassilah Binti Salleh.

These works are preceded by a general introduction intended to put them in their context,

and not to give an exhaustive review of the subject. Between the introduction and the body

of the thesis, the mains results obtained are resumed and the plan of the thesis is specified.

1
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Introduction

The purpose of this thesis is to study both local time and Malliavin calculus and their

application to finance. In the first part of this thesis, we analyze three aspects of the appli-

cations of local time. We first focus on the existence of the generalized covariation process

and give an approximations of this process (when it exists). There after, we study the de-

composition of ranked semimartingales (not necessarily continuous). Lastly, we investigate

an application of local time to finance and in particular to pricing using bid-ask. The second

part of this thesis considers Malliavin calculus and its application to problems of optimal

control under asymmetry of information. First, we examine the problem of optimal control

under incomplete information (partial information in this thesis). We then investigate the

uniqueness of decompositions of “Skorohod-semimartingales” processes. This is of great

importance in the study of optimal control for an insider. We begin by introducing some

notions in stochastic analysis and finance, in order to explain the context and motivation

of this work, before presenting the main results.

0.1 Local time and its applications

In classical stochastic integration, the usual Itô formula, first established by Itô for a stan-

dard Brownian motion, and later extended to continuous semimartingales by Kunita and

Watanabe, states that if X is a R-valued semimartingale, and F is a function in C2, then

F (X) is a semimartingale. The decomposition of F (X) is specific and can be given though

the first and second derivatives of F and the quadratic variation [X,X]. There after, various

3



0.1 Local time and its applications 4

extensions of the Itô formula have been established for functions F /∈ C2. The most well

known of these extensions is the Itô-Tanaka formula first, derived by Tanaka for F (x) = |x|,

to which the local time was beautifully linked with the quadratic variation term. An ex-

tension to an absolutely continuous function F with locally bounded F ′ is due to Bouleau

and Yor (see [18]). Here the quadratic variation term in the formula was expressed using

an integral with respect to local time, in a manner which suggests formal integration by

parts. Since then, a lot of research extending the Itô formula, by means of local time-space

integration, has been done.

Eisenbaum in [37] made a fundamental contribution in the case of standard Brownian mo-

tion by deriving an extension of the Itô formula. The quadratic variation term in her

result is expressed as an area integral, with respect to both the time variable s, and the

space variable x, of the local time Lxs . The arguments of Eisenbaum rely on combining

the Bouleau-Yor extension in [18] with the Föllmer-Protter-Shiryaev extension in [49] and

thus depend strongly on the time-reversal property of standard Brownian motion. Further-

more she extended in [38] the results to Lévy processes, and later, in [39], to reversible

semimartingales. Ghomrasni in [54] established a generalized occupation time formula for

continuous semimartingales. See also [58].

Russo and Vallois in a series of papers [121, 122] introduced a technique of stochastic inte-

gration via regularization. In [121], they defined forward, backward and symmetric integrals

by a limit procedure. These integrals are respectively extensions of the Itô, backward and

Stratonovich integrals. In [122], Russo and Vallois introduced a notion of a generalized co-

variation process [X,Y ], in a general setting, concerning essentially continuous processes X

and Y . It is an extension of the usual approach if we consider a continuous semimartingale,

and is in general, defined by a limit procedure.

In her thesis, Bergery [12], through a regularization procedure, gave schemes for approxima-

tions of the local time of a large class of continuous semimartingales and reversible diffusions.
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The convergence in those approximations holds uniformly in compact in probability (ucp)

sense. The limit, in her work, is taken with respect to time. Using the generalized occupa-

tion time formula, given in [54], do we have such approximation with respect to space by

regularization? If so, do these approximations coincide?

From a financial point of view, if we are interested in looking at the capital distribution and

size effect in stochastic portfolio theory, then we have to consider stocks identified by rank,

as opposed to by name. The question of decomposition or stochastic differential equation of

such processes follows. Chitashvili and Mania in [24] introduced the problem of decompo-

sition for the maximum of n semimartingales. They showed that the maximum process can

be expressed in terms of the original processes, adjusted by local times. Fernholz in [45],

defined the more general notion of ranked processes (i.e. order statistics) of n continuous

Itô processes and gave the decomposition of such processes. However, the main drawback of

the latter result, is that triple points do not exist, i.e not more than two processes coincide

at the same time, almost surely. Motivated by the question of extending this decomposi-

tion to triple points (and higher orders of incidence), Banner and Ghomrasni recently [8]

developed some general formulae for ranked processes of continuous semimartingales. They

showed that the ranked processes can be expressed in terms of original processes, adjusted

by the local times of ranked processes. However, is it possible to have such a decomposition

for more general semimartingales (not necessarily continuous)?

The theory of asset pricing and its fundamental theorem was initiated in the Arrow-Debreu

model, the Black and Scholes formula, and the Cox and Ross model. They have now been

formalized in a general framework by Harisson and Kreps [60], Harrison and Pliska [61], and

Kreps [78] according to the principle of no arbitrage. In the classical setting, the market is

assumed to be frictionless, i.e a no arbitrage dynamic price process is a martingale under

a probability measure equivalent to the reference probability measure. However, since real

financial markets are not frictionless, important literature on pricing under transaction

costs and liquidity risk has appeared. (See [15, 69] and the references therein). The bid-ask
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spread in this setting can be interpreted as the transaction cost, or as the result of entering

buy and sell orders.

In the past, in real financial markets, the load of providing liquidity was given to market

makers, specialists, and brokers, who trade only when they expect to make profits. Such

profits are the price that investors and other traders pay, in order to execute their orders

when they want to trade. To ensure steady trading, the market makers sell to buyers and

buy from sellers, and get compensated by the so-called bid-ask spread. The most common

price for referencing stocks is the last trade price. However, the last price is not necessarily

the price at which one can subsequently trade. At any given moment, in a sufficiently liquid

market, there is a best or highest “bid” price, from someone who wants to buy the stock, and

there is a best or lowest “ask” price, from someone who wants to sell the stock. We consider

models of financial markets in which all parties involved (buyers, sellers) find incentives to

participate, and we assume that the dynamic of the different bid and ask prices are given.

The question we address is how to determine an SDE for the “best bid” (respectively, “best

ask”) price process so as to obtain an SDE for the stock price. Is such a market arbitrage

free? Is the market complete?

0.2 Malliavin calculus applied to optimal control under asym-

metry of information

The mathematical theory known as Malliavin calculus was first introduced by Paul Malli-

avin in [83], as an infinite-dimensional calculus. This calculus was designed to study the

smoothness of the densities of the solutions of stochastic differential equations. In 1991,

Karatzas and Ocone in [71], showed that the representation theorem formulated by Clark in

[26] and, latter by Haussmann in [62] and Ocone in [98] could be used in finance. This result

is often cited as the CHO (Clark-Haussmann-Ocone) Theorem and it provides a technique

of computing hedging portfolios in complete markets driven by Brownian motion. This
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discovery leads to a huge growth in the direction of Malliavin calculus, both among math-

ematicians, and finance researchers. Recently, the theory has been generalized and new

applications have been found, e.g partial information optimal control, insider trading and

more generally, anticipative stochastic calculus. Malliavin calculus has also been expanded

to Lévy processes. Therefore, there has also been an increased interest in anticipative inte-

gration with respect to a Lévy process, partly owing to its application to insider trading in

finance (see e.g. [33, 99] and [103]). In finance, one of the objectives of the investor is to

characterize an optimal portfolio to maximize his utility. In this thesis, we will focus on the

application of Malliavin calculus to an optimal portfolio, under asymmetry of information.

Starting from Louis Bachelier’s thesis [5] in 1900 on “Theorie de la speculation” up until

the Black, Scholes and Merton model in 1972 [16, 17], and further, in most problems of

stochastic analysis applied to finance, one of the fundamental hypotheses is the homogeneity

of information that market participants have. This homogeneity does not reflect reality. In

fact, there exist many types of agents in the market, who have different levels of information.

We shall investigate this asymmetry of information.

Back observed in [6] that, the term asymmetry of information can be understood in two

ways: as incomplete information (partial information in this thesis) and as supplementary

information (insider information).

The term incomplete information means that we have been given a filtration in which the

processes are adapted, and we assume that investors only have access to a part of that infor-

mation. The study in an incomplete information framework can be seen as an application

of filtering theory. Much research has been done in this setting, to solve the problem of

optimal control, using either dynamic programming or the stochastic maximum principle.

We note that the authors in [7, 10, 11, 52, 74, 102, 112, 128, 136], studied partially observed

optimal control problems for diffusions, i.e, the controls under consideration are based on
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noisy observations described by the state process. If we consider a general subfiltration as

in [7] (for example the delay information case), and allow our control to be adapted to this

general subfiltration, the problem is not of Markovian type and hence cannot be solved by

dynamic programming and Hamilton-Jacobi-Bellman (HJB) equations. In this framework,

Barghery and Øksendal in [7] studied the problem of optimal control of a jump diffusion, i.e

a process which is the solution of a stochastic differential equation (SDE) driven by Lévy

processes, and employed the stochastic maximum principle. However, these papers assume

the existence of a solution of the adjoint equations. This is an assumption which often fails

in the partial information case. Meyer-Brandis, Øksendal and Zhou in [88] used Malliavin

calculus to obtain a maximum principle for this general non-Markovian partial information

stochastic control problem. If the controlled process follows a stochastic partial differential

equation (SPDE) (rather than an SDE) driven by a Lévy process, do we have similar results

obtained in [88]?

The study of supplementary information, often used to model insider trading, is an applica-

tion of the theory of enlargement of filtration. In this case, we start with a given filtration

in which the processes are adapted, and we assume that the traders has an additional infor-

mation, i.e we enlarge the filtration representing this available information. Karatzas and

Pikovsky in [72] considered the special case of initial enlargement of filtration. This means

at the initial time, the trader has an information concerning the future, i.e he knows the

value of the stock price in the future. They studied a maximization of expected logarithmic

utility from terminal wealth and/or consumption. The results of finiteness of the value of

the control problem were obtained in various setups. One of the main assumptions in this

paper is that the Brownian motion is a semimartingale in the enlarged filtration. What

happens if we consider a more general insider filtration or a more general utility function?

These questions were answered in [14] by Biagini and Øksendal. They presented a more

general approach to insider trading which does not assume that the Brownian motion is

a semimartingale in the bigger filtration. They used techniques of forward integration in-
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troduced by Russo and Vallois [121] to model insider trading. There are many papers on

insider trading and optimal control. We are interested in a more general setting, where

we work with a general insider filtration, a more general utility function, and we allow the

financial market model for prices to have jumps. In such a framework, can we use Malliavin

calculus to solve an optimal control problem for an insider?

Asymmetry of information can also be applied on game theory. Ewald and Xiao in [44]

considered a continuous time market model, and used a stochastic differential games with

anticipative strategy to model a competition of two heterogeneously informed agents in a

financial market. In their model, the agents share the same utility function but are allowed

to possess different levels of information. They derived necessary and sufficient criteria

for the existence of Nash-equilibria and characterize them for various levels of information

asymmetry. Furthermore, they had a look at, how far the asymmetry in the level of in-

formation influences Nash-equilibria and general welfare. What happens, if we consider a

discontinuous time market model? if the agents do not share the same utility functions?

and if the giving filtration are more general?

In the setting of enlargement of filtration, since the integrator need not to be adapted to

the filtration generated by the integrands (Brownian motion and the compensated Poisson

process), we have to consider anticipative stochastic integrals. Nualart and Pardoux in [95]

studied the stochastic integral defined by Skorohod of a possibly anticipating integrand, as

a function of its upper limit, and established an extended Itô formula. Another result in

that paper is the uniqueness of decomposition of Skorohod-semimartingales in continuous

case. Does this uniqueness hold in the jumps case under mild conditions on the integrators?

0.3 Motivation and results

We believe that the questions asked in the preceding sections require further investigations.

In what follows, we shall revisit these questions and provide some answers. We hope that
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these results will motivate others to develop even better solutions.

1. Using the generalized occupation time formula given in [54], do we have such an

approximation with respect to space by regularization? In this case, do these approx-

imations coincide?

The answers to these questions are given in the first chapter, where we focus our atten-

tion on the existence of the generalized covariation process [F (X), X] of a wide class

of function F when the process [X,X] exists. The results we introduce here extend

previous works by Russo and Vallois [121, 122, 123], where they prove the existence

of the generalized covariation and give an extension of the Itô formula, when X is a

process admitting a generalized quadratic variation and F is a function in C2. We

also give a new approximation, in terms of space, for the generalized covariation pro-

cess. The proof of the existence of the generalized covariation process is based on the

Lebesgue differentiation theorem. The approximation function used here, is the same

as that used by Ghomrasni in [55]. We also generalize the result to time-dependent

functions, and consider an application to the transformation of semimartingales. The

case of n-dimensional continuous processes, when all mutual brackets exist, is also

explored. We give in Theorem 1.6.1 and in Remark 1.6.2 an example which illus-

trates that our approximation of generalized covariation does not hold in the random

case. Furthermore, the different time and space approximations do coincide in the

deterministic case, but not in the random case.

2. Is it possible to have such a decomposition for a more general semimartingale (not

necessarily continuous)?

We give a new decomposition of order statistics of semimartingales ( not necessarily

continuous) in the same setting as in [8]. The result obtained is slightly different to the

one in [8], in the sense that we express the order statistics of semimartingales firstly in

terms of order statistics processes adjusted by their local times, and secondly in terms

of original processes adjusted by their local times. The proof of this result is a modified
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and shorter version of the proof given in [8], and is based on the homogeneity property.

As a consequence of this result, we are independently able to derive an extension of

Ouknine’s formula in the case of general semimartingales. The desired generalization,

which is essential in the demonstration of Theorem 2.3 in [8], is not used here to prove

our decomposition.

3. How do we determine the dynamics of the “best bid” (respectively,“best ask”) price

process with the intention of obtaining the stock price process? Is such a market

arbitrage free and/or complete?

In order to answer this question, we introduce the notion of semimartingale local time

and derive the dynamics of the best bid, best ask and thus, the price process. An

important consequence is that the price process possesses the Markov property, if the

bid and ask, are Brownian motion or Ornstein-Uhlenbeck type, and more generally

Feller processes. We conclude, from the evolution of these prices, that they are all

continuous semimartingles. The latter remains valid, when the bid-ask prices are given

by general diffusion processes. We define the notion of completeness in the same way

as Jarrow and Protter in [68], and study the possibility for arbitrage in such a market.

We also discuss (insider) hedging for contingents claims with respect to the stock price

process.

4. In an optimal control under partial information, if the controlled process follows a

stochastic partial differential equation (SDPE) rather than a SDE driven by a Lévy

process, do we have similar results obtained in [88]?

Note first of all that, in this thesis, we cover the partial observation case in [10, 11, 128],

since we deal with controls being adapted to a general subfiltration of the under-

lying reference filtration. We use Malliavin calculus to prove a general stochastic

maximum principle for stochastic partial differential equations (SPDE’s) with jumps

under partial information. More precisely, the controlled process is given by a quasi-

linear stochastic heat equation driven by a Wiener process and a Poisson random
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measure. Further, our Malliavin calculus approach to stochastic control of SPDE’s

allows for optimization of very general performance functionals. Thus our method is

useful for examine control problems of non-Markovian type, which cannot be solved

by stochastic dynamic programming. Another important advantage of our technique

is that we may relax considerably the assumptions on our Hamiltonian. For example,

we do not need to impose concavity on the Hamiltonian. (See e.g. [102, 7].) We

apply the previous results to solve a partial information optimal harvesting problem

(Theorem 4.4.1). Furthermore, we investigate into an portfolio optimization problem

under partial observation. Note that the last example cannot be treated within the

framework of [88], since the random measure Nλ(dt, dξ) is not necessarily a functional

of a Lévy process. Let us also mention that the SPDE maximum principle studied in

[102] does not apply to Example 4.4.3. This is due to the fact that the corresponding

Hamiltonian in [102] fails to be concave.

5. Does the uniqueness of “Skorohod-Semimartingale” hold in the mixed case? and if

we consider mild conditions on our integrators?

The answers of these two questions are obtained in Theorem 5.3.5 as a special case of

a more general decomposition uniqueness theorem for an extended class of Skorohod

integral processes with values in in the space of generalized random variables. (See

Theorem 5.3.3.) Our proof uses white noise theory of Lévy processes. Our decomposi-

tion uniqueness is motivated by applications in anticipative stochastic control theory,

including insider trading in finance asked in the previous Section.

6. In an optimal control under general insider information, can we use Malliavin calculus

to solve an optimal control problem for an insider?

We supply a partial answer of this question and hope that further research will be

done in a more general setting. As in question 4, we use Malliavin calculus to prove

a general stochastic maximum principle for stochastic differential equations (SDE’s)

with jumps under insider information. The main result here is difficult to apply
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because of the appearance of some terms, which all depend on the control. We then

consider the special case when the coefficients of the controlled process X do not

depend on X; we call such processes controlled Itô-Lévy processes. In this case, we

give a necessary and sufficient conditions for the existence of optimal control. Using

white noise theory, and uniqueness of decomposition of a Skorohod-semimartingale,

we derive more precise results when our enlarged filtration is first chaos generated

(the class of such filtrations contains the class of initially enlarged filtrations and

also advanced information filtrations). We applied our results maximize the expected

utility of terminal wealth for the insider. We show that there do not exist an optimal

portfolio for the insider. For the advanced information case, this conclusion is in

accordance with the results in [14] and [33], since the Brownian motion is not a

semimartingale with respect to the advanced information filtration. It follows that

the stock price is not a semimartingale with respect to that filtration either. Hence, we

can deduce that the market has an arbitrage for the insider in this case, by Theorem

7.2 in [29]. In the initial enlargement of filtration case, knowing the terminal value of

the stock price, we also prove that there does not exist an optimal portfolio for the

insider. This result is a generalization of a result in [72], where the same conclusion

was obtained in the special case when the utility function was the logarithm function

and there were no jumps in the stock price. The other application is to optimal insider

consumption. We show that there exists an optimal insider consumption, and in some

special cases the optimal consumption can be expressed explicitly.

7. In a stochastic differential games with anticipative strategy, what happens, if we con-

sider a discontinuous time market model? if the agents do not share the same utility

functions? and if the giving filtration are more general?

We shall use again Malliavin calculus to derive a general maximum principle for

stochastic differential games under insider information. This maximum principle cov-

ers the insider case in [44], since we deal with controls being adapted to general
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sup-filtrations of the underlying reference filtration. Moreover, our Malliavin calculus

approach to stochastic differential games with insider information for Itô-Lévy pro-

cesses allows for optimization of very general performance functionals. We apply our

results to solve a worst case scenario portfolio problem in finance under additional in-

formation. We show that there does not exist a Nash-equilibrium for the insider. We

prove that there exists a Nash-equilibrium insider consumption, and in some special

cases the optimal solution can be expressed explicitly.

0.4 Outline

Chapter 1 is devoted to the existence of the generalized covariation process [F (X), X] of a

wide class of function F when the process [X,X] exists. We also give a new approximation

of the generalized covariation process. The chapter contains a generalization of the result

to time-dependent functions, and an application to the transformation of semimartingales.

In Chapter 2, we examine the decomposition of ranked (order-statistics) processes for semi-

martingales (not necessarily continuous) using a simple approach. We also give a general-

ization of Ouknine [105, 106] and Yan’s [132] formula for local times of ranked processes.

In Chapter 3, we derive the evolution of a stock price from the dynamics of the “best

bid” and “best ask”. Under the assumption that the bid and ask prices are described

by semimartingales, we study the completeness and the possibility for arbitrage on such

a market. Further, we discuss (insider) hedging for contingent claims with respect to the

stock price process.

In Chapter 4, we employ Malliavin calculus to derive a general stochastic maximum princi-

ple for stochastic partial differential equations with jumps, under partial information. We

apply this result to solve an optimal harvesting problem in the presence of partial informa-
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tion. Another application pertaining to portfolio optimization under partial observation, is

examined.

In Chapter 5, we introduce Skorohod-semimartingales as an expanded concept of classical

semimartingales in the setting of Lévy processes. We show under mild conditions that

Skorohod-semimartingales similarly to semimartingales admit a unique decomposition.

In Chapter 6, we gather the results obtain in Chapter 5 to suggest a general stochastic

maximum principle for anticipating stochastic differential equations, driven by a Lévy type

noise. We use techniques of Malliavin calculus and forward integration. We apply our

results to study a general optimal portfolio problem for an insider.

In Chapter 7, we consider a general insider information stochastic differential games where

the state process is driven by a Lévy type of noise. We use techniques of Malliavin calculus

and forward integration to derive a general stochastic maximum principle for anticipating

stochastic differential games.



Part I

Local time and its applications
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Chapter 1

An approximation of the

generalized covariation process

1.1 Introduction

In classical stochastic integration, integrands are practically bounded predictable processes

and integrators are semimartingales. Many authors have examined extensions of stochastic

integrals to a certain class of anticipating integrands. One of the most popular extensions

has been Skorohod integration [95].

Since early 1990’s, Russo and Vallois in a series of papers [121, 122] introduced a technique

of stochastic integration via regularization. In [121], they defined forward, backward and

symmetric integrals by a limit procedure. These integrals are respectively extensions of

Itô, backward and Stratonovich integrals. This approach constitutes a counterpart of a

discretization approach initiated by Föllmer [47] and continued by many authors, see for

instance [37, 43, 49, 58].

In the usual stochastic integration, Itô formula says that if X is a R-valued semimartingale,

and F is a function in C2, then F (X) is a semimartingale. The decomposition of F (X) is

specific and can be given though the first and second derivatives of F and the quadratic

17
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variation [X,X]. In [122], the authors introduced a notion of generalized covariation process

[X,Y ], in a general setting concerning essentially continuous processes X and Y . It is an

extension of the usual one if we consider a continuous semimartingale and it is defined, in

general, by a limit procedure.

In the present chapter, we focus our attention on the existence of the generalized covariation

process [F (X), X] of a wide class of function F when the process [X,X] exists. The results

we introduce here extend previous works by Russo and Vallois [121, 122, 123] where they

prove the existence of the generalized covariation and give an extension of Itô’s formula

when X is a process admitting a generalized quadratic variation and F is a function in C2.

We also give a new approximation of the generalized covariation process. The motivation

for this latest point comes from the desire to connect the results of Eisenbaum [37] and

Ghomrasni [55] results with those of Russo and Vallois [121, 122, 123]. The proof of the

existence of the generalized covariation process is based on the Lebesgue differentiation

theorem. The approximation function we use here is the same as that used by Ghomrasni

in [55]. The chapter also contains a generalization of the result to time-dependent functions,

and an application to the transformation of semimartingales. The case of n-dimensional

continuous processes when all mutual brackets exist is also explored. We give in Theorem

1.6.1 and in Remark 1.6.2 an example which illustrates that our approximation of generalized

covariation does not hold in the random case.

The chapter is organized as follows. In Section 1.2, we recall the basic definitions and

properties of forward, backward, symmetric integrals and covariation. In Section 1.3, we

present our result for time independent continuous functions and then we deal with the

time dependent case. In Section 1.4, we extend the results for functions in L2
loc both

in the time independent and dependent setting. Section 1.5 deals with transformation

of processes and we also concentrate on the case where the continuous process X is a

multidimensional process. In Section 1.6 the random case is visited. The Conclusion gives

results on an equivalence between existence of the generalized covariation process and the
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new approximation.

1.2 Notations and preliminaries

For the convenience of the reader, we recall some basic definitions and fundamental results

about stochastic calculus with respect to finite quadratic variation processes which have

been introduced in [121, 122]. In the whole chapter (Ω,F ,P) will be a fixed probability

space, X = (Xt, 0 ≤ t ≤ T ) , Y = (Yt, 0 ≤ t ≤ T ) be two continuous processes. We will

assume that all filtrations fulfill the usual conditions. The following definitions are from

[121, 122, 125].

Definition 1.2.1 Let X = (X(t), 0 ≤ t ≤ T ) denote a continuous stochastic process and

Y = (Y (t), t ∈ [0, T ]) a process with path in L∞ ([0, T ]). The ε-forward integral (respectively

ε-backward, ε-symmetric integrals and the ε-covariation) is defined as follow:

I−(ε, Y, dX)(t) :=
∫ t

0
Y (s)

X(s+ ε)−X(s)
ε

ds,

I+(ε, Y, dX)(t) :=
∫ t

0
Y (s)

X(s)−X(s− ε)
ε

ds,

I0(ε, Y, dX)(t) :=
∫ t

0
Y (s)

X(s+ ε)−X(s− ε)
2ε

ds,

Cε (X,Y ) (t) :=
1
ε

∫ t

0
(X(s+ ε)−X(s)) (Y (s+ ε)− Y (s)) ds.

Observe that these four processes are continuous.

Definition 1.2.2 1. A family of processes
(
H

(ε)
t

)
t∈[0,T ]

is said to converge to a process

(Ht)t∈[0,T ] uniformly on compacts in probability (abbreviated ucp), if sup0≤t≤T

∣∣∣H(ε)
t −Ht

∣∣∣→
0 in probability, as ε→ 0.

2. The forward, backward, symmetric integrals and the covariation process are defined
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by the following limits in the ucp sense whenever they exist:∫ t

0
Y (s)d−X(s) := lim

ε↓0
I−(ε, Y, dX)(t), (1.2.1)∫ t

0
Y (s)d+X(s) := lim

ε↓0
I+(ε, Y, dX)(t), (1.2.2)∫ t

0
Y (s)d0X(s) := lim

ε↓0
I0(ε, Y, dX)(t), (1.2.3)

[X,Y ] (t) := lim
ε↓0

Cε (X,Y ) (t), (1.2.4)

When X = Y we often put [X,X] = [X].

Definition 1.2.3

1) If [X] exists then it is always increasing and X is said to be a finite quadratic variation

process and [X] is called the quadratic variation of X.

2) If [X] = 0, X is called a zero quadratic variation process (or a zero-energy process).

3) We will say that an m-dimensional process X =
(
X1, · · · , Xm

)
has all the mutual brack-

ets if
[
Xi, Xj

]
exists for every i, j = 1, · · ·m.

In the following, we recall some definitions and facts which are introduced in [27, 121, 122,

125]. The notations we use are those of [27, 121].

Remark 1.2.4

1) If X, Y are two continuous semimartingales, then [X,Y ] = 〈X,Y 〉.

2) If X = Y is a continuous semimartingale then 〈X,X〉 is the quadratic variation of X

and it is an increasing process. In the rest of the chapter, we will note 〈X,X〉 = 〈X〉.

3) If A is a zero quadratic variation process and X is a finite quadratic variation process,

then [X,A] ≡ 0.

4) A continuous bounded variation process is a zero quadratic variation process.

5)We have [X,V ] ≡ 0 if V is a bounded variation process.

6) As a consequence of 5), if X,Y are two continuous process such that [X,Y ] exists and

is of bounded variation, then [[X,Y ] , Z] ≡ 0 for every continuous process Z.
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Definition 1.2.5 Let X = (Xt, 0 ≤ t ≤ T ) , Y = (Yt, 0 ≤ t ≤ T ) be processes with paths

respectively in C0([0, T ]) and L1
loc([0, T ]) i.e.

∫ t
0 |Y (s)| ds <∞ for all t < T .

1. if Y I[0,t] is X-forward integrable for every 0 ≤ t < T, Y is said to be locally X-forward

integrable on [0, T ). In this case there exists a continuous process, which coincides,

on every compact interval [0, t] of [0, T ), with the forward integral of Y[0,t] with respect

to X. That process will be denoted by I(·, Y, dX) =
∫ ·

0 Y d
−X.

2. If Y is locally X-forward integrable and limt→T I(t, Y, dX) exists almost surely, Y is

said to be X-improperly forward integrable on [0, T ].

3. If the covariation process
[
X,Y I[0,t]

]
exists, for every 0 ≤ t < T , we say that the

covariation process [X,Y ] exists locally on [0, T ) and it is denoted by [X,Y ]. In this

case there exists a continuous process, which coincides, on every compact interval

[0, t] of [0, T ), with the covariation process
[
X,Y I[0,t]

]
. That process will be denoted

by [X,Y ] . If X = Y , we will say that the quadratic variation [X,X] of X exists

locally on [0, T ].

4. If the covariation process [X,Y ] exists locally on [0, T ) and limt→T [X,Y ]t exists, the

limit will be called the improper covariation process between X and Y and it will be

denoted by [X,Y ]. If X = Y , we will say that the quadratic variation [X,X] of X

exists improperly on [0, T ].

The existence of the generalized covariation process of transformation of continuous process

by functions in C1 and C1,1 is given in the following propositions.

Proposition 1.2.6 If X,Y are continuous processes such that [X,Y ] , [X] , [Y ] exist and

F,G ∈ C1(R), then [F (X), G(Y )] exists and

[F (X), G(Y )]t =
∫ t

0
F ′(X(s))G′(Y (s))d [X,Y ]s , (1.2.5)

in particular
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1. if X = Y and G(X) = X, we have

[F (X), X]t =
∫ t

0
F ′(X(s))d [X]s , (1.2.6)

2. if G(Y ) = Y , we have

[F (X), Y ]t =
∫ t

0
F ′(X(s))d [X,Y ]s . (1.2.7)

Proposition 1.2.7 If X,Y are continuous processes such that [X,Y ] , [X] , [Y ] exist and

F,G : [0, T ]× R→ R two functions in C1,1(R), then [F (·, X), G(·, Y )] exists and

[F (·, X), G(·, Y )]t =
∫ t

0

∂F

∂x
(s,X(s))

∂G

∂y
(s, Y (s))d [X,Y ]s , (1.2.8)

in particular if X = Y and G(·, X) = X, we have

[F (·, X), X]t =
∫ t

0

∂F

∂x
(s,X(s))d [X]s . (1.2.9)

Proof. See Appendix A, Section A.1.

1.3 Main results

In this section we prove our main results for time dependent and independent cases.

1.3.1 The time independent case

Theorem 1.3.1 Let X be a continuous process such that [X] exists and F ∈ C0(R), then

[F (X), X] exists and we have the following:

[F (X), X]t = lim
ε↓0

1
ε

∫ t

0

{
F (X(s) + ε) − F (X(s))

}
d [X]s, (1.3.1)

= lim
ε↓0

1
ε

∫ t

0

{
F (X(s)) − F (X(s)− ε)

}
d [X]s,

or

lim
ε↓0

∫ t

0

F (X(s+ ε))− F (X(s))
ε

(X(s+ ε)−X(s)) ds

=lim
ε↓0

1
ε

∫ t

0

{
F (X(s)) − F (X(s)− ε)

}
d [X]s. (1.3.2)
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Proof. Let us first prove the existence of the generalized covariation. For this, we associate

to F the following function:

Hn(x) := n

∫ x+ 1
n

x
F (y) dy. (1.3.3)

On the one hand we have

Hn(x) = n

∫ x+ 1
n

x
F (y) dy → F (x) for n→∞. (1.3.4)

On the other hand

H ′n(x) = n

{
F (x+

1
n

)− F (x)
}
. (1.3.5)

We note that the function Hn(x) in Equation (1.3.3) is a C1 function. Then by Proposition

2.1 [122], the generalized covariation process [Hn(X), X] exists. Using the definition of

forward integral and generalized covariation, introduced by Russo and Vallois [121], we

have

lim
ε↓0

∫ t

0

Hn(X(s+ ε))−Hn(X(s))
ε

(X(s+ ε)−X(s)) ds

= [Hn(X), X]t

=
∫ t

0
H ′n(Xs)d [X]s

=n
∫ t

0

{
F (X(s) +

1
n

)− F (X(s))
}
d [X]s .

Since F is continuous, and by (1.3.4) Hn converges uniformly on each compact to F , it

follows that Hn(X·) converges ucp to F (X·). Moreover, the continuity of the processes Iσ =

lim
ε↓0

Iσε , for σ = +,−, 0 imply that Iσ(Hn(X), dX)(t) converges ucp to Iσ(F (X), dX)(t), for σ =

+,−, 0. Then by the definition of the generalized covariation, it follows that

[Hn(X), X]s converges ucp to [F (X), X]s . (1.3.6)

Equation (1.3.6) means that [F (X), X] exists as the limit in the ucp sense of [Hn(X), X]

when n→∞. Thus the first part of theorem is proved. Moreover, since

n

∫ t

0

{
F (X(s) +

1
n

)− F (X(s))
}
d [X]s = [Hn(X), X]t ,
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by the uniqueness of the limit, the equality still holds if we take the limit on both sides in

the ucp sense when n→ +∞. Equation (1.3.1) follows by (1.3.6).

Concerning the second equality of Equation (1.3.1), it suffices to define In as In(x) =

n

∫ x

x− 1
n

F (y) dy. Then In and Hn have the same properties and the result follows.

Corollary 1.3.2 Let X be a continuous semimartingale and F ∈ C0(R). Then [F (X), X]

exists and

lim
ε↓0

1
ε

∫ t

0

{
F (X(s) + ε) − F (X(s))

}
d 〈X〉s

= lim
ε↓0

∫ t

0

F (X(s+ ε))− F (X(s))
ε

(X(s+ ε)−X(s)) ds

=lim
ε↓0

1
ε

∫ t

0

{
F (X(s)) − F (X(s)− ε)

}
d 〈X〉s. (1.3.7)

Proof. Since X is a continuous semimartingale, it is known that [X] exists and [X] = 〈X〉.

Thus the result follows by the preceding Theorem.

Corollary 1.3.3 Let B = (Bt, 0 ≤ t ≤ T ) be a one-dimensional standard Brownian motion

and F ∈ C0(R). Then [F (B), B] exists and we have the following:

lim
ε↓0

1
ε

∫ t

0

{
F (B(s) + ε) − F (B(s))

}
ds

= lim
ε↓0

∫ t

0

F (B(s+ ε))− F (B(s))
ε

(B(s+ ε)−B(s)) ds

=lim
ε↓0

1
ε

∫ t

0

{
F (B(s)) − F (B(s)− ε)

}
ds. (1.3.8)

Remark 1.3.4 Let X be a continuous process such that [X] exists. If F is a function in

C1(R), then Equation (1.3.1) becomes Equation (1.2.6).

1.3.2 The time-dependent case

Theorem 1.3.5 Let X be a continuous process such that [X] exists and F : [0, T ]×R→ R

be a continuous function in x uniformly in s, and continuous in (s, x). Then [F (·, X), X]

exists and
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lim
ε↓0

1
ε

∫ t

0

{
F (s,X(s) + ε) − F (s,X(s))

}
d [X]s

= lim
ε↓0

∫ t

0

F (s+ ε,X(s+ ε))− F (s,X(s))
ε

(X(s+ ε)−X(s)) ds

=lim
ε↓0

1
ε

∫ t

0

{
F (s,X(s)) − F (s,X(s)− ε)

}
d [X]s. (1.3.9)

Proof. Let us associate to F the following function:

Hn(t, x) :=
1
ε

∫ x+ 1
n

x
F (t, y) dy. (1.3.10)

As before, on the one hand we have

Hn(t, x) = n

∫ x+ 1
n

x
F (t, y) dy → F (t, x) for n→∞. (1.3.11)

On the other hand
∂

∂x
Hn(t, x) = n

{
F (t, x+

1
n

)− F (t, x)
}
. (1.3.12)

We note that the function Hn(t, x) in Equation (1.3.10) admits a derivative with respect to

x and which is continuous. Using Proposition 1.2.7, we have

lim
ε↓0

∫ t

0

Hn(s+ ε,X(s+ ε))−Hn(s,X(s))
ε

(X(s+ ε)−X(s)) ds

= [Hn(·, X), X]t

=
∫ t

0

∂Hn

∂x
(s,X(s))d [X]s

=n
∫ t

0

{
F (s,X(s) +

1
n

)− F (s,X(s))
}
d [X]s .

Since Hn converges uniformly on each compact to F , it follows that Hn(s,X·) converges

ucp to F (s,X·). Moreover, as in the Proof of Theorem 1.3.1, the continuity of the forward

and the backward integral imply that

[Hn(·, X), X]s converges ucp to [F (·, X), X]s . (1.3.13)

Thus [F (·, X), X] exists and the first part of the Theorem is proved.
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Since

n

∫ t

0

{
F (s,X(s) +

1
n

)− F (s,X(s))
}
d [X]s = [Hn(·, X), X]t ,

the equality holds if we take the limit on both sides in the ucp sense when n→ +∞. The

result follows by Equation (1.3.13).

The second equality follows from the same argument as in the proof of Theorem 1.3.1.

Corollary 1.3.6 Let X be a continuous semimartingale and F ∈ C0(R), and F : [0, T ] ×

R→ R be continuous in x uniformly in s, and continuous in (s, x), then [F (·, X), X] exists

and

lim
ε↓0

1
ε

∫ t

0

{
F (s,X(s) + ε) − F (s,X(s))

}
d 〈X〉s

= lim
ε↓0

∫ t

0

F (s+ ε,X(s+ ε))− F (s,X(s))
ε

(X(s+ ε)−X(s)) ds

=lim
ε↓0

1
ε

∫ t

0

{
F (s,X(s)) − F (s,X(s)− ε)

}
d 〈X〉s. (1.3.14)

Proof. Since X is a continuous semimartingale, it is known that 〈X〉 exists and the result

follows by applying the preceding Theorem.

Corollary 1.3.7 Let B = (B(t), 0 ≤ t ≤ T ) be a one-dimensional standard Brownian

motion and F : [0, T ]×R→ R be continuous in x uniformly in s, and continuous in (s, x),

then [F (·, B), B] exists and we have the following

lim
ε↓0

1
ε

∫ t

0

{
F (s,B(s) + ε) − F (s,B(s))

}
ds

= lim
ε↓0

∫ t

0

F (s+ ε,B(s+ ε))− F (s,B(s))
ε

(B(s+ ε)−B(s)) ds

=lim
ε↓0

1
ε

∫ t

0

{
F (s,B(s)) − F (s,B(s)− ε)

}
ds. (1.3.15)

Remark 1.3.8 Let X be a continuous process such that [X] exists, if F is a function in

C1,1(R), then Equation (1.3.9) becomes Equation (1.2.9).
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1.4 Extension to the case F ∈ L2
loc(R)

Our approach developed in Section 1.3 allows us to improve our generalized covariation

process to F belonging to L2
loc(R) and X is a Brownian martingale.

1.4.1 The time independent case

Under the assumption of Theorem 5 in [91], we have the following result

Theorem 1.4.1 Let u = {u(t), t ∈ [0, T ]} be an adapted stochastic process such that
∫ T

0 u(s)2 ds <

∞ a.s. Set X(t) =
∫ t

0 u(s)dB(s). Suppose that for all δ > 0, there exist constants

cδi , i = 1, 2, such that we have,

P

(∫ T

0
F (X(s))2(us)2 ds > δ

)
≤cδ1 ‖F‖

2
2 , (1.4.1)

P

(
sup

0≤u≤t

∣∣∣∣∫ u

0

F (X(s+ ε))− F (X(s))
ε

(X(s+ ε)−X(s)) ds
∣∣∣∣ > δ

)
≤cδ2 ‖F‖2 , (1.4.2)

for all t ∈ [0, T ], and for any F in C∞K (R) (infinitely differentiable with compact support).

Then, the generalized covariation process [F (X), X] exists, and we have

[F (X), X]t = lim
ε↓0

1
ε

∫ t

0

{
F (X(s) + ε) − F (X(s))

}
d [X]s. (1.4.3)

Proof. We follow the idea of the proof of Theorem 5 in [91]. Notice that by an approxi-

mation argument, the inequalities (1.4.1) and (1.4.2) hold for any function F ∈ L2(R). Fix

t ∈ [0, T ], and set

V q
t (F ) = q

∫ t

0

[
F (X(s+

1
q

))− F (X(s))
](

X(s+
1
q

)−X(s)
)
ds.

For any K > 0 we define the stopping time TK = inf {t : |X(t)| > K}. Let δ > 0 and take

K > 0 in such a way that P (TK ≤ t) ≤ δ. In order to show the equality, we can assume, by

a localization argument, that the process Xt takes values in a compact interval [−K,K] and

that F has support in this interval. Consider a sequence of infinitely differentiable functions

ϕn with support included in [−K,K] such that ‖F − ϕn‖L2 converges to zero.
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Since F ∈ L2
loc (R), the choice of such a sequence guarantees that, for any K > 0,∫ K

−K
(ϕn(x)− F (x))2 dx→ 0 as n→∞. (1.4.4)

This means that ϕn converges uniformly on each compact set of R to F in L2(R). Conse-

quently, for any K > 0,

E

[∫ t

0
(ϕn(X(s))− F (X(s)))2 I (|X(s)| ≤ K) ds

]
= E

[∫ t

0
(ϕn(X(s))− F (X(s)))2 I (TK > t) ds

]
−→
n→∞

0. (1.4.5)

For a process (Hs)0≤s≤t, define

H(t)∗ = sup
0≤s≤t

|H(s)| .

We have that

P [(V p(F )− V q(F ))∗ > η] ≤ P (TK ≤ t) + P
[
TK > t, (V p(F − ϕn))∗t >

η

3

]
+P

[
TK > t, (V q(F − ϕn))∗t >

η

3

]
+P

[
TK > t, (V p(ϕn)− V q(ϕn))∗t >

η

3

]
≤ δ + 2cη2δ + P

[
TK > t, (V p(ϕn)− V q(ϕn))∗t >

η

3

]
.

We have that limp,q P
[
(V p(ϕn)− V q(ϕn))∗t >

η
3

]
= 0. As a consequence, the generalized

covariation [F (X), X]t exists for any function F that satisfies the conditions of the theorem.

Let

H(x) =F (0) +
∫ x

0
F (y)dy,

Hn(x) =F (0) +
∫ x

0
ϕn(y)dy.

Then by Theorem 2.3 of [123] we have

Hn(X(t)) = Hn(X(0)) +
∫ t

0
H ′n(X(s))d±X(s)± 1

2
[
H ′n(X), X

]
t
,

= Hn(X(0)) +
∫ t

0
ϕn(X(s))d±X(s)± 1

2
[ϕn(X), X]t ,
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where the existence of the last term of the equality follows since Hn is a function in C1 and

X is a reversible semimartingale. Equations (1.4.4) and (1.4.5) imply that ϕn converges

uniformly on each compact to F . It follows that ϕn(X·) converges ucp to F (X·). On the

other hand, since Hn converges uniformly on each compact to H, it follows that Hn(X·)

converges ucp to H(X·). Moreover, the continuity of the processes Iσ = lim
ε↓0

Iσε , for σ =

+,−, 0 implies that Iσ(ϕn, dX)(t) converges ucp to Iσ(F, dX)(t), for σ = +,− or more

simply, ∫ t

0
ϕn(X(s))d±X(s) converges ucp to

∫ t

0
F (X(s))d±X(s).

Then by the definition of the generalized covariation, it follows that [H ′n(X), X] = [ϕn(X), X]

converges ucp to [H ′(X), X] = [F (X), X]. We have

[
H ′n(X), X

]
= lim

ε↓0

1
ε

∫ t

0

{
H ′n(X(s) + ε) − H ′n(X(s))

}
d [X]s

= lim
ε↓0

1
ε

∫ t

0

{
ϕn(X(s) + ε) − ϕn(X(s))

}
d [X]s.

Taking the limit in both sides of the equality, we have the result.

Corollary 1.4.2 Under the same argument on X, suppose that Relations (1.4.1) and

(1.4.2) hold. Let F be absolutely continuous with a locally bounded derivative f and F (0) = 0

so that

F (x) =
∫ x

0
f(y)dy.

Then, [f(X), X] exists and is given by

[f(X), X] = lim
ε↓0

1
ε

∫ t

0

{
f(X(s) + ε) − f(X(s))

}
d [X]s. (1.4.6)

Proof. As before, we can assume, by a localization argument, that the process Xt takes

values in a compact interval [−K,K] and that f has support in this interval. Consider a

sequence of infinitely differentiable functions fn with support included in [−K,K] such that

fn converges uniformly to f in L2(R) as p → ∞. It follows that fn(X·) converges ucp to
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f(X·). Let

Hp(x) =
∫ x+ 1

p

x
f(y)dy,

Hp,n(x) =
∫ x+ 1

p

x
fn(y)dy,

Then by the previous arguments, since
[
H ′p,n(X), X

]
converges ucp to [fn(X), X], it follows

that [fn(X), X] exists and

[fn(X), X] = lim
ε↓0

1
ε

∫ t

0

{
fn(X(s) + ε) − fn(X(s))

}
d [X]s .

The result follows from the convergence ucp of fn(X·) to f(X·).

1.4.2 The time dependent case

Theorem 1.4.3 Let u = {u(t), t ∈ [0, T ]} be an adapted stochastic process such that
∫ T

0 u(s)2 ds <

∞ a.s. Set X(t) =
∫ t

0 u(s) dB(s). Suppose that for all δ > 0, there exist constants

cδi , i = 1, 2, such that we have

P

(∫ T

0
F (s,X(s))2(us)2ds > δ

)
≤cδ1 ‖F‖

2
2 ,

(1.4.7)

P

(
sup

0≤u≤t

∣∣∣∣∫ u

0

F (s+ ε,X(s+ ε))− F (s,X(s))
ε

(X(s+ ε)−X(s)) ds
∣∣∣∣ > δ

)
≤cδ2 ‖F‖2 ,

(1.4.8)

for all t ∈ [0, T ], and for any F (t, ·) in C∞K (R) (infinitely differentiable with compact support)

for all t and continuously differentiable in t. Let F (t, x) be L2
loc (R) in x on R\ {0} and

continuously differentiable in t.

Then, the generalized covariation process [F (·, X), X] exists, and we have

[F (·, X), X]t = lim
ε↓0

1
ε

∫ t

0

{
F (s,X(s) + ε) − F (s,X(s))

}
d [X]s. (1.4.9)

Proof. Fix t ∈ [0, T ], and set

V q
t (F ) = q

∫ t

0

[
F (s,X(s+

1
q

))− F (s,X(s))
](

X(s+
1
q

)−X(s)
)
ds.
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For any K > 0 we define the stopping time TK = inf {t : |X(t)| > K}. Let δ > 0 and take

K > 0 in such a way that P (TK ≤ t) ≤ δ. As before, consider a sequence of infinitely

differentiable functions ϕn with support included in [−K,K] such that ‖F (t, ·)− ϕn(t, ·)‖L2

converges to zero.

The choice of such a sequence guarantees that, for any K > 0,∫ K

−K
(ϕn(t, x)− F (t, x))2 dx→ 0 as n→∞. (1.4.10)

This means that ϕn(t, ·) converges uniformly on each compact to F (t, ·) in L2(R) for all t.

Consequently, for any K > 0,

E

[∫ t

0
(ϕn(s,X(s))− F (s,X(s)))2 I (|X(s)| ≤ K) ds

]
=E

[∫ t

0
(ϕn(s,X(s))− F (s,X(s)))2 I (TK > t) ds

]
−→
n→∞

0.

Using the same arguments as before, we can show the generalized covariation [F (·, X), X]t

exists for any function F satisfying the conditions of the Theorem.

Let

H(t, x) =
∫ x

0
F (t, y)dy,

Hn(t, x) = F (t, 0) +
∫ x

0
ϕn(t, y)dy,

The result follows by the same arguments as in the proof of the previous Theorem.

Under conditions of Theorem 2 in [1], we derive the following

Theorem 1.4.4 Let B = (B(t), 0 ≤ t ≤ T ) be a one dimensional standard Brownian mo-

tion. Suppose that F (t, x) is continuously differentiable in t and absolutely continuous in x

with locally bounded derivative
∂F

∂x
. Furthermore, suppose that

1. F (t, 0) = 0 so that for all t ≥ 0

F (t, x) =
∫ x

0

∂F

∂x
(t, y)dy,
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2. for all t ≥ 0
∂F

∂t
(t, x) =

∫ x

0

∂2F

∂x∂t
(t, y)dy,

where
∂2F

∂x∂t
is locally bounded,

3. F ∗(x) = supt≤T |F (t, x)| ∈ L2
loc(R), for some T > 0,

4.
∂F

∂t

∗
(x) = supt≤T

∣∣∣∣∂F∂t (t, x)
∣∣∣∣ ∈ L1

loc(R), for some T > 0,

where
∂F

∂x
(t, x) = f(t, x).

Then [F (·, B), B] exists and

[F (·, B), B]t

= lim
ε↓0

(∫ t

0
f(s,B(s))1{|B(s)|≥ε}ds +

∫ t

0
F (s, ε)dsLεs −

∫ t

0
F (s,−ε)dsL−εs

)
, (1.4.11)

where the limit holds in the ucp sense and Las is the local time at a of the process B given

by

Las(Z) := |B(t)− a| − |a| +
∫ t

0
sgn(B(s)− a)dB(s).

Proof. Since F is absolutely continuous in x, it follows that F is continuous in x. Then

applying Theorem 1.3.5, it follows that [F (·, B), B] exists.

In order to show the equality, we adapt here the proof given by AlHussaini and Elliot in

[1]. Define

G(t, x) =
∫ x

0
F (t, y) dy and

∂G

∂t
(t, x) =

∫ x

0

∂F

∂t
(t, y) dy.

Write Fε(t, x) = F (t, x)1|x|≥ε and

Gε(t, x) =
∫ x

0
Fε(t, y) dy, then

∂Gε
∂t

(t, x) =
∫ x

0

∂Fε
∂t

(t, y) dy.

Applying Corollary 8 in [1] to Gε with a standard Brownian motion B

Gε(t, B(t)) =
∫ t

0
Fε(s,B(s)) dB(s) +

∫ t

0

∂Gε
∂t

(s,B(s)) ds

−1
2

∫ ∞
−∞

Fε(s, a) daLat +
1
2

∫ t

0

∫ ∞
−∞

∂Fε
∂t

(s, a) daLas ds.
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Writing

AFεt = −
∫ ∞
−∞

Fε(s, a) daLat +
∫ t

0

∫ ∞
−∞

∂Fε
∂t

(s, a) daLas ds,

we have

AFεt = −
(∫ ∞

ε
F (s, a) daLat +

∫ −ε
−∞

F (s, a) daLat

)
+
∫ t

0

(∫ ∞
ε

∂F

∂s
(s, a) daLas +

∫ −ε
−∞

∂F

∂s
(s, a) daLas

)
ds,

and integrating by parts in a, we have

AFεt = LεtF (t, ε)− L−εt F (t,−ε) +
(∫ ∞

ε
+
∫ −ε
−∞

f(t, a)Lat da
)

−
∫ t

0

(
Lεt
∂F

∂s
(s, ε)− L−εt

∂F

∂s
(s,−ε)

)
ds−

∫ t

0

(∫ ∞
ε

+
∫ −ε
−∞

∂2F

∂x∂s
(s, a)Las da

)
ds.

Applying Fubini’s Theorem to the final term and integrating by parts in s(∫ ∞
ε

+
∫ −ε
−∞

)(∫ t

0

∂2F

∂x∂s
(s, a)Las ds

)
da =

(∫ ∞
ε

+
∫ −ε
−∞

)(
Lat f(t, a)−

∫ t

0
f(s, a) dsLas

)
da.

Therefore,

AFεt = −
∫ ∞
−∞

Fε(s, a) daLat +
∫ t

0

∫ ∞
−∞

∂Fε
∂t

(s, a) daLas ds

= LεtF (t, ε)− L−εt F (t,−ε)−
∫ t

0

(
Lεt
∂F

∂s
(s, ε)− L−εt

∂F

∂s
(s,−ε)

)
ds

+
∫ t

0
f(s,B(s))1|B(s)|≥ε ds.

For the function G(t, x) since the hypotheses of Theorem 2.3 [123] are satisfied the process

[F (·, B), B] is also defined by

[F (·, B), B] = 2
(
G(t, x)−

∫ t

0
F (s,B(s)) dB(s) +

∫ t

0

∂G

∂t
(s,B(s)) ds

)
.

Therefore,

[F (·, B), B]−AFεt = 2

(∫ B(t)

0
F (t, y)1|y|≤ε dy −

∫ t

0
F (s,B(s))1|B(s)|≤ε dB(s)

−
∫ t

0

∫ B(s)

0

∂F

∂t
(s, y)1|y|≤ε dy ds

)
,
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and for T > 0,

E

[
sup
t≤T

∣∣∣[F (·, B), B]−AFεt
∣∣∣] ≤ KE

[
sup
t≤T

∣∣∣∣∣
∫ B(t)

0
F (t, y)1|y|≤ε dy

∣∣∣∣∣
+sup
t≤T

∣∣∣∣∫ t

0
F (s,B(s))1|B(s)|≤ε dB(s)

∣∣∣∣
+ sup

t≤T

∣∣∣∣∣
∫ t

0

(∫ B(s)

0

∂F

∂t
(s, y)1|y|≤εdy

)
ds

∣∣∣∣∣
]
.

Denote the three terms in the expectation by I1, I2 and I3, respectively. Then

E
[
I1
]
≤ E

[
sup
t≤T

(∫ ε

−ε
|F (t, y)|

)]
≤
∫ ε

−ε
F ∗(y) dy,

and this converges to 0 as ε→ 0.

E
[
I2
]
≤ CpE

[∣∣∣∣∫ T

0
F (s,B(s))1|B(s)|≤ε dB(s)

∣∣∣∣] ≤ CE (∫ T

0
F 2(s,B(s))1|B(s)|≤ε ds

) 1
2

= CE

(∫ ε

−ε

(∫ T

0
F 2(s, a)1|a|≤ε dsL

a
T

)
da

) 1
2

≤ CE

(∫ ε

−ε
F ∗(a)LaT da

) 1
2

≤ C
(
E(LaT )

1
2

)(∫ ε

−ε
F ∗(a) da

) 1
2

which again converges to 0 as ε→ 0. Finally,

E
[
I3
]
≤ E

[
sup
t≤T

∣∣∣∣∫ t

0

∫ ε

−ε

∣∣∣∣∂F∂t (s, y)
∣∣∣∣ dy ds∣∣∣∣

]
≤ T p

∫ ε

−ε

∂F ∗

∂t
(y) dy,

which converges to 0 as ε → 0. This means that [F (·, B), B] converges in mean to AFεt ,

which implies uniform convergence on compacts in probability, and then the result follows.

Definition 1.4.5 The principal value of the integral
∫ t

0
F (s,B(s)) ds, where B = (B(t), 0 ≤

t ≤ T ) is a one dimensional standard Brownian motion, is defined by

vp.
∫ t

0
F (s,B(s)) ds = lim

ε↓0

∫ t

0
F (s,B(s))1{|B(s)|≥0} ds,

where F is a function such that the right hand side of above equality converges in probability.
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Corollary 1.4.6 Under the same conditions of Theorem 1.4.4, if we assume moreover that

either the principal value of
∫ t

0 f(s,B(s)) ds exists, or the following limit lim
ε↓0

∫ t
0 F (s, ε)dsLεs−∫ t

0 F (s,−ε)dsL−εs exists, then the equality holds in the ucp sense,

[F (·, B), B]t = vp.
∫ t

0
f(s,B(s)) ds + lim

ε↓0

(∫ t

0
F (s, ε) dsLεs −

∫ t

0
F (s,−ε) dsL−εs

)
.

Proof. It follows directly from the proof of Theorem 1.4.4.

As a corollary we have the following, which is proved in [22].

Corollary 1.4.7 Assume that F is time independent, under the same condition of Corol-

lary 1.4.6, we have

[F (B), B]t = vp.
∫ t

0
F (B(s)) ds + lim

ε↓0
(F (ε)− F (−ε))L0

s,

Proof. It follows from Corollary 1.4.6 that

[F (·, B), B]t = vp.
∫ t

0
f(s,B(s)) ds + lim

ε↓0

(∫ t

0
F (s, ε) dsLεs −

∫ t

0
F (s,−ε) dsL−εs

)
.

If F is time independent, then the equality becomes

[F (B), B]t = vp.
∫ t

0
F (B(s)) ds+ lim

ε↓0

(
F (ε)Lεs − F (−ε)L−εs

)
= vp.

∫ t

0
F (B(s)) ds+ lim

ε↓0
(F (ε)− F (−ε))L0

s.

The last inequality follows from the fact that Lxt admits a continuous modification in x.

1.5 Application to transformation of semimartingales

In this section, we derive a generalized covariation for transformation of continuous process

by continuous functions.

Theorem 1.5.1 Let X,Y be two continuous processes such that [X,Y ] exists and F ∈

C0(R), then [F (X), Y ] exists and we have the following:

[F (X), Y ]t = lim
ε↓0

1
ε

∫ t

0

{
F (X(s) + ε) − F (X(s))

}
d [X,Y ]s

= lim
ε↓0

1
ε

∫ t

0

{
F (X(s)) − F (X(s)− ε)

}
d [X,Y ]s. (1.5.1)
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Proof. We will only show the first equality. The second follows using the same arguments.

Associate to F the following function:

Hn(x) := n

∫ x+ 1
n

x
F (y) dy. (1.5.2)

On the one hand we have

Hn(x) = n

∫ x+ 1
n

x
F (y) dy → F (x) for n→∞. (1.5.3)

On the other hand

H ′n(x) = n

{
F (x+

1
n

)− F (x)
}
. (1.5.4)

We note that the function Hn(x) is a C1 function. Then by Proposition 2.1 [122], the

generalized covariation process [Hn(X), Y ] exists. As before, we have

lim
ε↓0

∫ t

0

Hn(X(s+ ε))−Hn(X(s))
ε

(Y (s+ ε)− Y (s)) ds

= [Hn(X), Y ]s

=
∫ t

0
H ′n(X(s))d [X,Y ]s

=n
∫ t

0

{
F (X(s) +

1
n

)− F (X(s))
}
d [X,Y ]s .

Since F is continuous, Hn converges uniformly on each compact to F , it follows that Hn(X·)

converges ucp to F (X·). Moreover, the continuity of the processes Iσ = lim
ε↓0

Iσε , for σ =

+,−, 0 implies that Iσ(Hn, dX)(t) converges ucp to Iσ(F, dX)(t), for σ = +,−, 0, then by

the definition of the generalized covariation, it follows that

[Hn(X), Y ]s converges ucp to [F (X), Y ]s . (1.5.5)

Equation (1.5.5) means that [F (X), Y ] exists as the limit in the ucp sense of [Hn(X), Y ]

when n→∞. Thus the first part of Theorem is proved. Moreover, since

n

∫ t

0

{
F (X(s) +

1
n

)− F (X(s))
}
d [X,Y ]s = [Hn(X), Y ]s ,

by the uniqueness of the limit, the equality still holds if we take the limit on both sides in

the ucp sense when n→ +∞. Equation (1.5.1) follows by Equation (1.5.5).
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Remark 1.5.2 Let X,Y be two continuous processes such that [X,Y ] exists. If F is a

function in C1(R), then Equation (1.5.1) becomes Equation (1.2.7).

Proposition 1.5.3 Let X,Y be two continuous processes such that [X,Y ] exists and F,G

be two functions in C0(R). Then [F (X), G(Y )] exists and the following equality holds in

the ucp sense:

[F (X), G(Y )]t

=lim
ε↓0

1
ε

∫ t

0
(F (X(s+ ε))− F (X(s))) (G(Y (s+ ε))−G(Y (s))) ds

=lim
ε↓0

∫ t

0

(
F (X(s) + ε)− F (X(s))

ε

)(
G(Y (s) + ε)−G(Y (s))

ε

)
d [X,Y ]s (1.5.6)

=lim
ε↓0

∫ t

0

(
F (X(s))− F (X(s)− ε)

ε

)(
G(Y (s))−G(Y (s)− ε)

ε

)
d [X,Y ]s . (1.5.7)

Proof. As in the previous sections, we define Hn and Jn by

Hn(x) = n

∫ x+ 1
n

x
F (y) dy, Jn(x) = n

∫ x+ 1
n

x
G(y) dy.

We have

Hn(x) = n

∫ x+ 1
n

x
F (y) dy → F (x) and Jn(x) = n

∫ x+ 1
n

x
G(y) dy → G(x) for n→∞,

and

H ′n(x) = n

{
F (x+

1
n

)− F (x)
}
, J ′n(x) = n

{
G(x+

1
n

)−G(x)
}
. (1.5.8)

It follows by the properties of the functions Hn and Jn that the generalized covariation

process [Hn(X), Jn(Y )] exists and we have

lim
ε↓0

∫ t

0

Hn(X(s+ ε))−Hn(X(s))
ε

· (Jn(X(s+ ε))− Jn(X(s))) ds

= [Hn(X), Jn(Y )]t

=
∫ t

0
H ′n(X(s))J ′n(Y (s))d [X,Y ]s

= n2

∫ t

0

{
F (X(s) +

1
n

)− F (X(s))
}{

G(Y (s) +
1
n

)−G(Y (s))
}
d [X,Y ] .
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The continuity of the generalized covariation process and the convergence of Hn to F

(respectively Jn to G) imply that

[Hn(X), Jn(Y )] converges ucp to [F (X), G(Y )]

and the result follows by taking the limit ucp when n→∞ in the last term of the equality.

Corollary 1.5.4 Let X be a continuous process such that [X] exists and F be a function

in C0(R). Then [F (X)] exists and the following equalities hold in the ucp sense:

[F (X)]t = lim
ε↓0

1
ε

∫ t

0
(F (X(s+ ε))− F (X(s)))2 ds

= lim
ε↓0

∫ t

0

(
F (X(s) + ε)− F (X(s))

ε

)2

d [X]s

= lim
ε↓0

∫ t

0

(
F (X(s))− F (X(s)− ε)

ε

)2

d [X]s . (1.5.9)

Proof. It suffices here to chose X = Y and G = F and the result follows by the preceding

Theorem.

In the case that the process X is a continuous semimartingale, we have

Remark 1.5.5 Let X, Y two continuous semimartingales, admitting mutual bracket and

F, G two functions in C0(R). Then the following equalities hold.

〈F (X), G(Y )〉t = lim
ε↓0

1
ε

∫ t

0
(F (X(s+ ε))− F (X(s))) (G(Y (s+ ε))−G(Y (s))) ds

= lim
ε↓0

∫ t

0

(
F (X(s) + ε)− F (X(s))

ε

)(
G(Y (s) + ε)−G(Y (s))

ε

)
d 〈X,Y 〉s ,

〈F (X)〉t = lim
ε↓0

1
ε

∫ t

0
(F (X(s+ ε))− F (X(s)))2 ds

= lim
ε↓0

∫ t

0

(
F (X(s+ ε))− F (X(s))

ε

)2

d 〈X〉s .

We derive the following result which is proved in [131].

Corollary 1.5.6 Let X be a continuous semimartingale and f be a function in L2
loc(R), F (x) =∫ x

0 f(y)dy, x ∈ R and Z = F (X). Then

[Z]t = lim
ε↓0

1
ε

∫ t

0
(F (X(s+ ε))− F (X(s)))2 ds =

∫
R
f2(x)Lxt (X) dx. (1.5.10)



1.5 Application to transformation of semimartingales 39

where Lxt (X) is the local time of the process X at point x.

Proof. Using the previous Theorem, we have

[Z]t = lim
ε↓0

∫ t

0

(
F (X(s) + ε)− F (X(s))

ε

)2

d〈X〉s.

Using, the fact that F ′(x) = f(x), the right hand side of the equality gives
∫ t

0 f
2(X(s)) d〈X〉s

and the result follows by the occupation formula.

Corollary 1.5.7 Let X,Y be two continuous semimartingales and F,G be two functions

in C0(R). Then 〈F (X), G(Y )〉 exists and the following equalities hold in the ucp sense:

[F (X), G(Y )]t

=lim
ε↓0

1
ε

∫ t

0
(F (X(s+ ε))− F (X(s))) (G(Y (s+ ε))−G(Y (s))) ds

=lim
ε↓0

∫ t

0

(
F (X(s) + ε)− F (X(s))

ε

)(
G(Y (s) + ε)−G(Y (s))

ε

)
d〈X,Y 〉s.

=lim
ε↓0

∫ t

0

(
F (X(s))− F (X(s)− ε)

ε

)(
G(Y (s))−G(Y (s)− ε)

ε

)
d〈X,Y 〉s. (1.5.11)

A multi-dimensional and useful extension of Proposition 1.5.3 is given by the following

result.

Proposition 1.5.8 Let X =
(
X1, · · · , Xm

)
, Y =

(
Y 1, · · · , Y m

)
be continuous Rm-valued

processes such that
{
X1, · · · , Xm, Y 1, · · · , Y m

}
have all mutual brackets. Let F,G be two

functions in C0(Rm), then {F (X), G(Y )} have all the mutual brackets and

[F (X), G(Y )]t

=
m∑

i,j=1

lim
ε↓0

∫ t

0

{
F (X1(s), · · · , Xi(s) + ε, · · · , Xm(s)) − F (X1(s), · · · , Xi(s), · · · , Xm(s))

ε

}
{
G(Y 1(s), · · · , Y j(s) + ε, · · · , Y m(s)) − G(Y 1(s), · · · , Y j(s), · · · , Y m(s))

ε

}
d
[
Xi, Xj

]
s

=
m∑

i,j=1

lim
ε↓0

∫ t

0

{
F (X1(s), · · · , Xi(s), · · · , Xm(s)) − F (X1(s), · · · , Xi(s)− ε, · · · , Xm(s))

ε

}
{
G(Y 1(s), · · · , Y j(s), · · · , Y m(s)) − G(Y 1(s), · · · , Y j(s)− ε, · · · , Y m(s))

ε

}
d
[
Xi, Xj

]
s
.

(1.5.12)
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Proof. We define for all i = 1, · · · , n, Hn and Jn by

Hn(x1, · · · , xn) = n

∫ xi+
1
n

xi

F (x1, · · · , xi−1,
i
y, xi+1, · · · , xm) dy,

Jn(x1, · · · , xn) = n

∫ xi+
1
n

xi

G(x1, · · · , xi−1,
i
y, xi+1, · · · , xm) dy,

We have

Hn(x1, · · · , xn)→ F (x1, · · · , xn) and Jn(x1, · · · , xn)→ G(x1, · · · , xn) for n→∞,

and

∂

∂xi
Hn(x1, · · · , xn) = n

{
F (x1, · · · , xi +

1
n
, · · · , xn)− F (x1, · · · , xi, · · · , xn)

}
,

∂

∂xi
Jn(x1, · · · , xn) = n

{
G(x1, · · · , xi +

1
n
, · · · , xn)−G(x1, · · · , xi, · · · , xn)

}
.

The result follows by applying Proposition 1.1 in [123] on Hn and Jn and using the same

argument as in proof of the preceding Proposition 1.5.3.

Corollary 1.5.9 Let X =
(
X1, · · · , Xm

)
be a continuous Rm-valued process with all mu-

tual brackets. Let F be a function in C0(Rm). Then
{
F (X), Xi

}
have all the mutual

brackets for i = 1, · · · ,m and

[
F (X), Xi

]
t

=
m∑
j=1

lim
ε↓0

1
ε

∫ t

0

{
F (X1(s), · · · , Xj(s), · · · , Xm(s)) − F (X1(s), · · · , Xj(s) + ε, · · · , Xm(s))

}
× d

[
Xi, Xj

]
s
, (1.5.13)

or

m∑
j=1

lim
ε↓0

∫ t

0

F (X1(s), · · · , Xj(s+ ε), · · · , Xm(s))− F (X1(s), · · · , Xj(s), · · · , Xm(s))
ε

× (Xi(s+ ε)−Xi(s)) ds

=
m∑
j=1

lim
ε↓0

1
ε

∫ t

0

{
F (X1(s), · · · , Xj(s), · · · , Xm(s)) − F (X1(s), · · · , Xj(s) + ε, · · · , Xm(s))

}
× d

[
Xi, Xj

]
s
. (1.5.14)
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1.6 The random function case

In this section we shall give an answer of the following question: Do the equalities we have

in our Theorems always hold for any class of functions? We shall give here an illustrative

example where the equalities fail, thanks to the result obtained by Walsh in [129].

Let B(t) denotes a standard Brownian motion on R, B(0) = 0, with jointly continuous local

time {L(t, x) : t ≥ 0, x ∈ R}. For each x ∈ R we define

A(t, x) =
∫ t

0
1{B(s)≤x} ds

=
∫ x

−∞
L(t, y) dy. (1.6.1)

Let us first give some facts about function A. The following come from (1.6.1).

1. A(t, x) is jointly continuous in (t, x).

2. For fixed x, A is an increasing Lipschitz continuous function of t.

3. For fixed t, A is an increasing C1 function of x with

∂A

∂x
= L(t, x).

Let us now recall Walsh’s theorem about the decomposition of A(t, x).

Theorem 1.6.1 A(t, B(t)) has the following decomposition

A(t, B(t)) =
∫ t

0
L(s,B(s)) dB(s) +X(t),

where

X(t) = lim
ε↓0

1
ε

∫ t

0

{
L(s,B(s)) − L(s,B(s)− ε)

}
ds

= t+ lim
ε↓0

1
ε

∫ t

0

{
L(s,B(s) + ε) − L(s,B(s))

}
ds.

The limits exist in probability, uniformly for t in compact sets.

As a consequence of this theorem, we can make the following remark.
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Remark 1.6.2 The preceding Theorem simply means that we have

lim
ε↓0

1
ε

∫ t

0

{
LB(s)
s − LB(s)−ε

s

}
ds 6= lim

ε↓0

1
ε

∫ t

0

{
LB(s)+ε
s − LB(s)

s

}
ds.

In other words

lim
ε↓0

1
ε

∫ t

0

{
L(s,B(s)) − L(s,B(s)− ε)

}
ds 6= lim

ε↓0

1
ε

∫ t

0

{
L(s,B(s) + ε) − L(s,B(s))

}
ds.

Note that since L(t, y) is continuous in y it follows by Theorem 1.3.5 that [L(t, B), B] exists,

but we do not have the equalities (1.3.9).

1.7 Conclusion

Theorem 1.7.1 Let X be a continuous process with finite quadratic variation [X] and

F ∈ C0(R). The following are equivalent

1. lim
ε↓0

∫ t

0

F (X(s+ ε))− F (X(s))
ε

(X(s+ ε)−X(s)) ds exists,

2. lim
ε↓0

1
ε

∫ t

0

{
F (X(s) + ε) − F (X(s))

}
d [X]s exists.

Proof. (1) =⇒ (2) has already been done. Let us show that under some conditions on F ,

(2) =⇒ (1).

(a) We will first show the implication for a function F ∈ C1(R). Using Taylor’s formula,

one can write

F (X(s) + ε)− F (X(s)) = F ′(X(s))ε+Rε(s)ε, s ≥ 0, ε ≥ 0, (1.7.1)

where Rε(s) denotes a process which converges in the ucp sense to 0 when ε → 0. Multi-

plying both sides of Equation (1.7.1) by d [X]s, integrating from 0 to t and dividing by ε,

we have

1
ε

∫ t

0
(F (X(s) + ε)− F (X(s))) d [X]s =

∫ t

0
F ′(X(s)) d [X]s +

∫ t

0
Rε(s) d [X]s . (1.7.2)
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The second term in the right hand side converges to 0 in the sense ucp. In fact, putting

Iε(t) =
∫ t

0 Rε(s) d [X]s one can write

sup
t≤T
|Iε(t)| ≤ sup

t≤T

∣∣R1
ε (s)

∣∣ [X]T .

Then, the existence of [X] and the convergence of Rε(·) to 0 in the ucp sense imply that

Iε(·) converges ucp to 0. Taking the limit in the sense ucp in both sides of Equation (1.7.2),

we have that

lim
ε↓0

1
ε

∫ t

0

{
F (X(s)) − F (X(s) + ε)

}
d [X]s =

∫ t

0
F ′(X(s)) d [X]s .

We also know that the term on the right exists since the quadratic covariation [X] exists

and F ∈ C1(R). Then by Proposition 2.1 of [122] the generalized covariation [F (X), X]

exists and we have

[F (X), X]t =
∫ t

0
F ′(X(s)) d [X]s .

It follows by the definition of the generalized covariation that the limit in (1) exists in the

ucp term and is equal to the limit in (2).

(b) We now prove the implication for a function F in C0(R) As before, let Hn the function

defined by

Hn(x) := n

∫ x+ 1
n

x
F (y) dy. (1.7.3)

Then

Hn(x) = n

∫ x+ 1
n

x
F (y) dy → F (x) for n→∞, (1.7.4)

and

H ′n(x) = n

{
F (x+

1
n

)− F (x)
}
. (1.7.5)

Since we note that the function Hn(x) is a C1 function, by (a) the existence of the limit

lim
ε↓0

1
ε

∫ t

0

{
Hn(X(s)) − Hn(X(s) + ε)

}
d [X]s in the ucp sense implies that the generalized

covariation process [Hn(X), X] exists. Then the following limit exists in the ucp term

lim
ε↓0

∫ t

0

Hn(X(s+ ε))−Hn(X(s))
ε

(X(s+ ε)−X(s)) ds,
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and we have

lim
ε↓0

1
ε

∫ t

0

{
Hn(X(s)) − Hn(X(s) + ε)

}
d [X]s = [Hn(X), X]t .

By hypothesis, we have the existence in the ucp sense of

lim
n→∞

n

∫ t

0

{
F (X(s) +

1
n

)− F (X(s))
}
d [X]s ,

Using the definition of Hn, we have in the ucp sense

lim
n→∞

n

∫ t

0

{
F (X(s) +

1
n

)− F (X(s))
}
d [X]s = lim

n→∞

∫ t

0
H ′n(X(s)) d [X]s

= lim
n→∞

[Hn(X), X]t

= [F (X), X]t ,

where the second equality follows from (a) and the third one by the continuity of the

generalized covariation process (since it exists by (a)) and the fact that Hn converges ucp

to F . By the definition of the last term, the existence of the limit in ucp sense of (1) is

proved.



Chapter 2

Decomposition of order statistics of

semimartingales using local times

2.1 Introduction

Some recent developments in mathematical finance and particularly the distribution of

capital in stochastic portfolio theory have led to the necessity of understanding dynamics

of the kth-ranked stock amongst n given stocks, at all levels k = 1, · · · , n. For example,

k = 1 and k = n correspond to the maximum and minimum processes of the collection,

respectively. The problem of decomposition for the maximum of n semimartingales was

introduced by Chitashvili and Mania in [24]. The authors showed that the maximum

process can be expressed in terms of the original processes, adjusted by local times. In

[45], Fernholz defined the more general notion of ranked processes (i.e. order statistics)

of n continuous Itô processes and gave the decomposition of such processes. However,

the main drawback of the latter result is that triple points do not exist, i.e., not more

than two processes coincide at the same time, almost surely. Closely related results also

appeared earlier in the paper by Nagasawa and Tanaka [92]. Motivated by the question

of extending this decomposition to triple points (and higher orders of incidence) as was

posed by Fernholz in Problem 4.1.13 of [46], Banner and Ghomrasni recently [8] developed

45
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some general formulas for ranked processes of continuous semimartingales. In the setting

of problem 4.1.13 in [46], they showed that the ranked processes can be expressed in terms

of original processes adjusted by the local times of ranked processes. The proofs of those

results are based on the generalization of Ouknine’s formula [105, 106, 132].

In the present Chapter, we give a new decomposition of order statistics of semimartingales

(i.e., not necessarily continuous) in the same setting as in [8]. The result obtained is slightly

different to the one in [8] in the sense that we express the order statistics of semimartingales

firstly in terms of order statistics processes adjusted by their local times and secondly in

terms of original processes adjusted by their local times. The proof of this result is a

modified and shorter version of the proof given in [8] based on the homogeneity property.

Furthermore, we use the theory of predictable random open sets, introduced by Zheng in

[135] and the idea of the proof of Theorem 2.2 in [8] to show that

n∑
i=1

1{X(i)(t−)=0} dX
(i)+

(t) =
n∑
i=1

1{Xi(t−)=0} dX
+
i (t) ,

where Xi, i = 1, · · · , n represent the original processes and X(i) represent the ranked

processes. As a consequence of this result, we are independently able to derive an extension

of Ouknine’s formula in the case of general semimartingales. The desired generalization

which is essential in the demonstration of Theorem 2.3 in [8] is not used here to prove our

decomposition.

The Chapter is organized as follows. In Section 2.2, we prove the two different decompo-

sitions of ranked processes for general semimartingales. In Section 2.3, after showing the

above equality, we derive a generalization of Ouknine and Yan’s formula.

2.2 Decomposition of Ranked Semimartingales

We consider a complete filtered probability space (Ω,F , (Ft)t≥0,P) which satisfies the usual

conditions. In our study, any given semimartingale X is supposed to satisfy the following
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condition (A): ∑
0<s≤t

|∆X(s)| <∞ a.s. for all t > 0 , (A)

where ∆X(s) = X(s)−X(s−).

We begin by giving the definition of the local time of a semimartingale X.

Definition 2.2.1 Let X = (X(t))t≥0 be a semimartingale and a ∈ R. The local time Lat (X)

of X at a is defined by the following Tanaka-Meyer formula

|X(t)− a| = |X(0)− a|+
∫ t

0
sgn(X(s−)− a) dX(s) + Lat (X)

+
∑
s≤t

(|X(s)− a| − |X(s−)− a| − sgn(X(s−)− a)∆X(s)) ,

where sgn(x) = −1(−∞,0](x) + 1(0,∞)(x).

As has been proved by Yor [133], under the condition (A), a measurable version of (a, t, ω) 7→

Lat (X)(ω) exists which is continuous in t and right continuous with left limits (i.e. càdlàg)

in a. We shall deal exclusively with this version.

Let us recall the definition of the k-th rank process of a family of n semimartingales.

Definition 2.2.2 Let X1, · · · , Xn be semimartingales. For 1 ≤ k ≤ n, the k-th rank process

of X1, · · · , Xn is defined by

X(k) = max
1≤i1<···<ik≤n

min(Xi1 , · · · , Xik), (2.2.1)

where 1 ≤ i1 and ik ≤ n.

Note that, according to Definition 2.2.2, for t ∈ R+,

max
1≤i≤n

Xi(t) = X(1)(t) ≥ X(2)(t) ≥ · · · ≥ X(n)(t) = min
1≤i≤n

Xi(t), (2.2.2)

so that at any given time, the values of the ranked processes represent the values of the

original processes arranged in descending order (i.e. the (reverse) order statistics).
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The following theorem shows that the ranked processes derived from semimartingales can

be expressed in terms of stochastic integral with respect to the original process adjusted by

local times and expressed in terms of stochastic integral with respect to the ranked process

adjusted by local times. We shall need the following definitions

St−(k) = {i : Xi(t−) = X(k)(t−)} and Nt−(k) = |St−(k)| ,

for t > 0.

Then Nt−(k) is the number of subscripts i such that Xi(t−) = X(k)(t−). It is a predictable

process and we have the following explicit decomposition.

Theorem 2.2.3 Let X1, · · · , Xn be semimartingales. Then the k-th ranked processes X(k), k =

1, · · · , n, are semimartingales and we have

dX(k)(t) =
n∑
i=1

1
Nt−(k)

1{X(k)(t−)=X(i)(t−)} dX
(i)(t) +

n∑
i=k+1

1
Nt−(k)

dL0
t (X

(k) −X(i))

−
k−1∑
i=1

1
Nt−(k)

dL0
t (X

(i) −X(k)), (2.2.3)

=
n∑
i=1

1
Nt−(k)

1{X(k)(t−)=Xi(t−)} dXi(t) +
n∑
i=1

1
Nt−(k)

dL0
t ((X

(k) −Xi)+)

−
n∑
i=1

1
Nt−(k)

dL0
t ((X

(k) −Xi)−), (2.2.4)

where L0
t (X) =

1
2
L0
t (X)+

∑
s≤t

1{Xs−=0}∆Xs and L0
t (X) is the local time of the semimartingale

X at zero.

Proof. For all t > 0, using the fact that we can define Nt(k) as

Nt−(k) =
n∑
i=1

1{X(k)(t−)=Xi(t−)}

=
n∑
i=1

1{X(k)(t−)=X(i)(t−)}, ∀ω

we have the following equalities

Nt−(k)dX(k)(t) =
n∑
i=1

1{X(k)(t−)=Xi(t−)}dX
(k)(t)

=
n∑
i=1

1{X(k)(t−)=X(i)(t−)}dX
(k)(t). (2.2.5)



2.2 Decomposition of Ranked Semimartingales 49

Then, by homogeneity, to show (2.2.3), it suffices to show that

Nt−(k)dX(k)(t) =
n∑
i=1

1{X(k)(t−)=X(i)(t−)} dX
(i)(t) +

n∑
i=k+1

dL0
t (X

(k) −X(i))

−
k−1∑
i=1

dL0
t (X

(i) −X(k)). (2.2.6)

We have, by the second equality of (2.2.5)

Nt−(k)dX(k)(t) =
n∑
i=1

1{X(k)(t−)=X(i)(t−)}dX
(k)(t)

=
n∑
i=1

1{X(k)(t−)=X(i)(t−)}dX
(i)(t)

+
n∑
i=1

1{X(k)(t−)=X(i)(t−)}d
(
X(k)(t)−X(i)(t)

)
.

We use the formula

L0
t (Z) =

∫ t

0
1{Zs−=0}dZs, (2.2.7)

which is valid for nonnegative semimartingales Z and we apply (2.2.7) toNt−(k)dX(k)(t), t >

0, to obtain

Nt−(k)dX(k)(t) =
n∑
i=1

1{X(k)(t−)=X(i)(t−)}dX
(i)(t)

+
n∑
i=1

1{X(k)(t−)=X(i)(t−)}d
(

(X(k)(t)−X(i)(t))+
)

−
n∑
i=1

1{X(k)(t−)=X(i)(t−)}d
(

(X(k)(t)−X(i)(t))−
)

=
n∑
i=1

1{X(k)(t−)=X(i)(t−)}dX
(i)(t) +

n∑
i=1

dL0
t

(
(X(k) −X(i))+

)
−

n∑
i=1

dL0
t

(
(X(k) −X(i))−

)
. (2.2.8)

Noting that

(X(k) −X(j))+ =

 X(k) −X(j), if j > k

0, if j ≤ k
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and that

(X(k) −X(j))− =

 X(j) −X(k), if j < k

0, if j ≥ k,

Equation (2.2.3) follows. In the same way, we prove (2.2.4) by applying the first equality

of (2.2.5), and (2.2.7).

2.2.1 Local time and Norms

The next result is proved in [25].

Lemma 2.2.4 Let X = (X1, · · · , Xn) be a n−dimensional semimartingale, N1 and N2 be

norms on Rn such that N1 ≤ N2. Then L0
t (N1(X)) ≤ L0

t (N2(X)).

For example

L0
t ( max

1≤i≤n
|Xi|) ≤ L0

t (
n∑
i=1

|Xi|) ≤ nL0
t ( max

1≤i≤n
|Xi|).

For positive continuous semimartingales, we have the following result.

Corollary 2.2.5 Let X1, · · · , Xn be positive continuous semimartingales. Then we have

L0
t (

n∑
i=1

Xi) ≤ n
n∑
i=1

L0
t (Xi).

Proof. It is known that the equality
n∑
i=1

L0
t (X

(i)) =
n∑
i=1

L0
t (Xi), (∗)

holds for continuous semimartigales (see [8]). Putting L0
t (X

(1)) = L0
t ( max

1≤i≤n
Xi), we have by

the preceding lemma

L0
t (

n∑
i=1

Xi) ≤ nL0
t ( max

1≤i≤n
Xi) = nL0

t (X
(1))

≤ n

n∑
i=1

L0
t (Xi) ( by (∗)).

Remark 2.2.6 The preceding corollary means that if we have a collection of n positive

continuous semimartingales such that the local time at the origin of each semimartingale is

zero then the local time of their sum is also zero at this point.
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2.3 Generalization of Ouknine and Yan’s Formula for Semi-

martingales

In this section we derive a generalization of Ouknine and Yan’s formula for semimartingales.

Such a result was proved in [8] in the case of continuous semimartingales. In order to give

such an extension, we need first to prove the next theorem.

Theorem 2.3.1 Let X1, · · · , Xn be semimartingales. Then the following equality holds:

n∑
i=1

1{X(i)(t−)=0} dX
(i)+

(t) =
n∑
i=1

1{Xi(t−)=0} dX
+
i (t). (2.3.1)

Proof. We will proceed by induction. The case n = 1 is trivial. For n = 2, let us show

that

1{X(1)(t−)=0} dX
(1)+

(t) + 1{X(2)(t−)=0} dX
(2)+

(t)

= 1{X1(t−)=0} dX
+
1 (t) + 1{X2(t−)=0} dX

+
2 (t), (2.3.2)

where X(1) = X1 ∨X2 and X(2) = X1 ∧X2. At this point we follow the same idea as in the

proof of the second theorem in [106]. Since

{X1(t−) ∨X2(t−) = 0} = {X1(t−) < X2(t−) = 0} ∪ {X2(t−) < X1(t−) = 0}

∪ {X1(t−) = X2(t−) = 0} ,

and

{X1(t−) ∧X2(t−) = 0} = {X1(t−) > X2(t−) = 0} ∪ {X2(t−) > X1(t−) = 0}

∪ {X1(t−) = X2(t−) = 0} ,

we can write

1{X(1)(t−)=0} dX
(1)+

(t)

= 1{X1(t−)<X2(t−)=0}dX
(1)+

(t) + 1{X2(t−)<X1(t−)=0}dX
(1)+

(t)

+ 1{X1(t−)=X2(t−)=0}dX
(1)+

(t), (2.3.3)
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and

1{X(2)(t−)=0} dX
(2)+

(t)

= 1{X1(t−)>X2(t−)=0}dX
(2)+

(t) + 1{X2(t−)>X1(t−)=0}dX
(2)+

(t)

+ 1{X1(t−)=X2(t−)=0}dX
(2)+

(t). (2.3.4)

As remarked by Ouknine in [106], the predictable set H = {t > 0 : X1(t−) < X2(t−)}

is not a random open set so the theory developed in [135] cannot be directly applied to

replace the semimartingale X(1)+
by the semimartingale X+

2 which are equal in H. How-

ever, the semimartingale Z = X(1)+ − X+
2 is such that Z− = 0 in H, thus 1HdZ =

1H(1{Z−=0}dZ), and the latter is of finite variation, and null in any open interval where

Z is constant, thus in the interior of H. Then the continuous part of 1HdZ is equal to

zero and the replacement is permitted. Therefore, the first term of the right hand side of

(2.3.3) is 1{X1(t−)<0}1{X2(t−)=0}dX
+
2 (t). Applying the same reasoning, the second term is

1{X2(t−)<0}1{X1(t−)=0}dX
+
1 (t). For the third term, we can write X(1)+

= (X1 ∨ X2)+ =

X+
1 ∨X

+
2 = X+

2 + (X+
1 −X

+
2 )+ which then becomes

1{X1(t−)=X2(t−)=0}dX
+
2 (t) + 1{X1(t−)=X2(t−)=0}d(X+

1 (t)−X+
2 (t))+.

These remarks allow us to write (2.3.3) as

1{X(1)(t−)=0} dX
(1)+

(t)

= 1{X1(t−)<0}1{X2(t−)=0}dX
+
2 (t) + 1{X2(t−)<0}1{X1(t−)=0}dX

+
1 (t)

+ 1{X1(t−)=X2(t)=0}dX
+
2 + 1{X1(t−)=X2(t−)=0}d(X+

1 −X
+
2 )+

= 1{X1(t−)<0}1{X2(t−)=0}dX
+
2 (t) + 1{X2(t−)<0}1{X1(t−)=0}dX

+
1 (t)

+ 1{X1(t−)=0}1{X2(t−)=0}dX
+
2 (t) + 1{X1(t−)=X2(t−)=0}d(X+

1 (t)−X2(t)+)+. (2.3.5)
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Following the argument for the process X(2), we obtain

1{X(2)(t−)=0} dX
(2)+

(t)

= 1{X1(t−)>0}1{X2(t−)=0}dX
+
2 (t) + 1{X2(t−)>0}1{X1(t−)=0}dX

+
1 (t)

+ 1{X1(t−)=0}1{X2(t−)=0}dX
+
1 (t) − 1{X1(t−)=X2(t−)=0}d(X+

1 (t)−X+
2 (t))+, (2.3.6)

where we have used the fact that X(2)+
= (X1 ∧X2)+ = X+

1 ∧X
+
2 = X+

1 − (X+
1 −X

+
2 )+.

Summing (2.3.5) and (2.3.6) we obtain the desired result for n = 2.

Now assume the result holds for some n. We adjust here the proof given by Banner and

Ghomrasni in [8]. Given semimartingales X1, · · · , Xn, Xn+1, we define X(k), k = 1, · · · , n,

as above and also set

X [k](·) = max
1≤i1<···<ik≤n+1

min(Xi1(·), · · · , Xik(·)).

The process X [k](·) is the kth-ranked process with respect to all n + 1 semimartingales

X1, · · · , Xn, Xn+1. It will be convenient to set X(0)(·) :≡ ∞. In order to show the equality

for n+ 1 we start by showing that

1{X(k−1)(t−)∧Xn+1(t−)=0}d(X(k−1)+
(t) ∧X+

n+1(t)) + 1{X(k)(t−)=0}dX
(k)+

(t)

= 1{X[k](t−)=0}dX
[k]+(t) + 1{X(k)(t−)∧Xn+1(t−)=0}d(X(k)+

(t) ∧X+
n+1(t)) (2.3.7)

for k = 1, · · · , n and t > 0. Suppose first that k > 1. By (2.3.2), we have

1{X(k−1)(t−)∧Xn+1(t−)=0}d(X(k−1)+
(t) ∧X+

n+1(t)) + 1{X(k)(t−)=0}dX
(k)+

(t)

= 1{(X(k−1)(t−)∧Xn+1(t−))∨X(k)(t−)=0}d
(

(X(k−1)+
(t) ∧X+

n+1(t)) ∨X(k)+
(t)
)

+1{(X(k−1)(t−)∧Xn+1(t−))∧X(k)(t−)=0}d
(

(X(k−1)+
(t) ∧X+

n+1(t)) ∧X(k)+
(t)
)
.

Since X(k)(t) ≤ X(k−1)(t) for all t > 0, the second term of the right hand side of the above

equation is simply 1{Xn+1(t−)∧X(k)(t−)=0}d(X+
n+1(t)∧X(k)+

(t)). On the other hand, we have

(X(k−1) ∧Xn+1) ∨X(k)(t) =


X(k−1)(t), if Xn+1(t) ≥ X(k−1)(t) ≥ X(k)(t)

Xn+1(t), if X(k−1)(t) ≥ Xn+1(t) ≥ X(k)(t)

X(k)(t), if X(k−1)(t) ≥ X(k)(t) ≥ Xn+1(t).
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In each case it can be checked that (X(k−1) ∧ Xn+1) ∨ X(k)(t) is the kth smallest of the

numbers X1, · · · , Xn+1; that is, (X(k−1) ∧Xn+1) ∨X(k)(·) ≡ X [k](·). It follows that X [k] is

a semimartingale for k = 1, · · · , n. Equation (2.3.7) follows for k = 2, · · · , n. If k = 1, then

X(0)(·) ≡ ∞ and applying (2.3.2), Equation (2.3.7) reduces to

1{Xn+1(t−)=0}dX
+
n+1(t) + 1{X(1)(t−)=0}dX

(1)+
(t)

= 1{X(1)(t−)∨Xn+1(t−)=0}d(X(1)+
(t) ∨X+

n+1(t))

+ 1{X(1)(t−)∧Xn+1(t−)=0}d(X(1)+
(t) ∧X+

n+1(t))

= 1{X(1)(t−)∧Xn+1(t−)=0}d(X(1)+
(t) ∧X+

n+1(t))

+ 1{X[1](t−)=0}dX
[1]+(t), (2.3.8)

where we observe that (X(1) ∨Xn+1)(·) ≡ X [1](·).

Finally, by the induction hypothesis and Equation(2.3.7), we have
n+1∑
i=1

1{Xi(t−)=0} dX
+
i (t) =

n∑
i=1

1{Xi(t−)=0} dX
+
i (t) + 1{Xn+1(t−)=0} dX

+
n+1(t)

=
n∑
i=1

1{X(i)(t−)=0} dX
(i)+

(t) + 1{Xn+1(t−)=0} dX
+
n+1(t)

=
n∑
i=1

1{X[i](t−)=0} dX
[i]+(t) + 1{Xn+1(t−)=0} dX

+
n+1(t)

−
n∑
i=1

1{X(i−1)(t−)∧Xn+1(t−)=0}d(X(i−1)+
(t) ∧X+

n+1(t))

+
n∑
i=1

1{X(i)(t−)∧Xn+1(t−)=0}d(X(i)+
(t) ∧X+

n+1(t))

=
n∑
i=1

1{X[i](t−)=0} dX
[i]+(t) + 1{Xn+1(t−)=0} dX

+
n+1(t)

−1{X(0)(t−)∧Xn+1(t−)=0}d(X(0)+
(t) ∧X+

n+1(t))

+ 1{X(n)(t−)∧Xn+1(t−)=0}d(X(n)+
(t) ∧X+

n+1(t))

=
n+1∑
i=1

1{X[i](t−)=0} dX
[i]+(t).

The third equality follows from Equation (2.3.7) while the last comes from the fact that

X(0)(t) ∧Xn+1(t) = Xn+1(t) and (X(n) ∧Xn+1)(·) ≡ X [n+1](·) for all t > 0 ;
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then the result follows by induction.

It follows that

Corollary 2.3.2 Let X1, · · · , Xn be semimartingales. Then the k-th ranked processes X(k), k =

1, · · · , n, are semimartingales and we have

n∑
i=1

1{X(k)(t−)=X(i)(t−)}d
(
X(i)(t)−X(k)(t)

)+
=

n∑
i=1

1{X(k)(t−)=Xi(t−)}d
(
Xi(t)−X(k)(t)

)+
.(2.3.9)

Proof. Fix X(k), for k = 1, · · · , n and define the processes Y1, · · · , Yn by Yi(t) = Xi(t) −

X(k)(t), i = 1, · · · , n. Then Y1, · · · , Yn are semimartingales and the processes Y (1), · · · , Y (n)

defined by Y (i)(t) = X(i)(t)−X(k)(t), i = 1, · · · , n are the i-th ranked processes of Yi(t), i =

1, · · · , n with the property Y (1) ≥ Y (2) ≥ · · · ≥ Y (n), and, they are semimartingales. By

Theorem 2.3.1, we have

n∑
i=1

1{Y (i)(t−)=0} dY
(i)+(t) =

n∑
i=1

1{Yi(t−)=0} dY
+
i (t), (2.3.10)

and the result follows.

In the case of positive semimartingales, the preceding theorem becomes

Corollary 2.3.3 Let X1, · · · , Xn be positive semimartingales. Then the following equality

holds
n∑
i=1

1{X(i)(t−)=0} dX
(i)(t) =

n∑
i=1

1{Xi(t−)=0} dXi(t). (2.3.11)

A consequence of Theorem 2.3.1 is the following theorem, which is a generalization of Yan

[132] and Ouknine’s [105, 106] formula.

Theorem 2.3.4 Let X1, · · · , Xn be semimartingales. Then we have

n∑
i=1

L0
t (X

(i)) =
n∑
i=1

L0
t (Xi), (2.3.12)

where L0
t (X) is the local time of the semimartingale X at 0.
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Proof. We recall first that L0
t (Z) = L0

t (Z
+) for every semimartingale Z. By Theorem 2.3.1

the following equality holds:

n∑
i=1

1{X(i)(t−)=0} dX
(i)+

(t) =
n∑
i=1

1{Xi(t−)=0} dX
+
i (t). (2.3.13)

We know that

L0
t (Z

+) =
∫ t

0
1{Zs−=0}dZ

+
s ,

for all semimartingales. Then the preceding equation becomes

n∑
i=1

L0
t (X

(i)+
) =

n∑
i=1

L0
t (X

+
i ). (2.3.14)

Putting

A(t) =
n∑
i=1

L0
t (X

(i)+
) and B(t) =

n∑
i=1

L0
t (X

+
i ),

then

A(t) =
n∑
i=1

1
2
L0
t (X

(i)+
) +

∑
s≤t

1{X(i)(s−)=0}∆X
(i)+

(s)

 ,

B(t) =
n∑
i=1

1
2
L0
t (X

+
i ) +

∑
s≤t

1{Xi(s−)=0}∆X
+
i (s)

 .

Since A(t) = B(t) for all t > 0, we have Ac(t) = Bc(t) where Ac (resp. Bc) is the continuous

part of A (resp. B). The desired result follows from the continuity of local time and the

fact L0
t (Z) = L0

t (Z
+).

In particular,

Corollary 2.3.5 (Yan [132], Ouknine [105, 106])

Let X and Y be semimartingales. We have the following

L0
t (X ∨ Y ) + L0

t (X ∧ Y ) = L0
t (X) + L0

t (Y ), (2.3.15)

where L0
t (X) denotes the local time at 0 of X.
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Remark 2.3.6 Assume that X1, · · · , Xn are continuous semimartingales. Banner and

Ghomrasni have shown that (see [8], Theorem 2.3)

dX(k)(t) =
n∑
i=1

1
Nt(k)

1{X(k)(t)=Xi(t)} dX
(i)(t) +

n∑
i=k+1

1
2Nt(k)

dL0
t (X

(k) −X(i))

−
k−1∑
i=1

1
2Nt(k)

dL0
t (X

(i) −X(k)). (2.3.16)

Identifying Equations (2.2.3) and (2.3.16), it follows that

n∑
i=1

1{X(k)(t)=X(i)(t)} dX
(i)(t) =

n∑
i=1

1{X(k)(t)=Xi(t)} dXi(t). (2.3.17)

We extend below Equation (2.3.17) for general semimartingales.

Proposition 2.3.7 Let X1, · · · , Xn be semimartingales and k ∈ {1, 2, · · · , n}. Then we

have

dX(k)(t) =
n∑
i=1

1
Nt−(k)

1{X(k)(t−)=Xi(t−)} dXi(t) +
n∑

i=k+1

1
Nt−(k)

dL0
t (X

(k) −X(i))

−
k−1∑
i=1

1
Nt−(k)

dL0
t (X

(i) −X(k)) , (2.3.18)

and
n∑
i=1

1{X(k)(t−)=X(i)(t−)} dX
(i)(t) =

n∑
i=1

1{X(k)(t−)=Xi(t−)} dXi(t). (2.3.19)

Proof. Consider the following family of semimartingales {Zi := −Xi}i=1,··· ,n, the rank

processes are then given by

Z(n) = −X(1) ≤ · · · ≤ Z(n+1−i) = −X(i) ≤ · · · ≤ Z(1) = −X(n)

and from Theorem 2.3.1 we have that

n∑
i=1

1{Z(n+1−i)(t−)=0} dZ
(n+1−i)+

(t) =
n∑
i=1

1{Zn+1−i(t−)=0} dZ
+
n+1−i(t).

from which it follows that

n∑
i=1

1{Z(i)(t−)=0} dZ
(i)+

(t) =
n∑
i=1

1{Zi(t−)=0} dZ
+
i (t).
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Using Relation (??), we have

n∑
i=1

L0
t (Z

(i)+
) =

n∑
i=1

L0
t (Z

+
i ).

Since Zi = −Xi, we have Z+
i = X−i and Z(i)+

= X(n+1−i)− , from which we obtain that

n∑
i=1

L0
t (X

(n+1−i)−) =
n∑
i=1

L0
t (X

(i)−) =
n∑
i=1

L0
t (X

−
i ). (2.3.20)

Equations (2.3.14) and (2.3.20) imply that Equation (2.2.4) may be rewritten as,

dX(k)(t) =
n∑
i=1

1
Nt−(k)

1{X(k)(t−)=Xi(t−)} dXi(t) +
n∑
i=1

1
Nt−(k)

dL0
t ((X

(k) −Xi)+)

−
n∑
i=1

1
Nt−(k)

dL0
t ((X

(k) −Xi)−)

=
n∑
i=1

1
Nt−(k)

1{X(k)(t−)=Xi(t−)} dXi(t) +
n∑
i=1

1
Nt−(k)

dL0
t ((X

(k) −X(i))+)

−
n∑
i=1

1
Nt−(k)

dL0
t ((X

(k) −X(i))−) .

Therefore,

dX(k)(t) =
n∑
i=1

1
Nt−(k)

1{X(k)(t−)=Xi(t−)} dXi(t) +
n∑

i=k+1

1
Nt−(k)

dL0
t (X

(k) −X(i))

−
k−1∑
i=1

1
Nt−(k)

dL0
t (X

(i) −X(k)) . (2.3.21)

We obtain the desire result by identifying both Equations (2.2.3) and (2.3.21).



Chapter 3

On local times: application to

pricing using bid-ask

3.1 Introduction

The theory of asset pricing and its fundamental theorem were initiated in the Arrow-Debreu

model, the Black and Scholes formula, and the Cox and Ross model. They have now been

formalized in a general framework by Harrison and Kreps [60], Harrison and Pliska [61],

and Kreps [78] according to the no arbitrage principle. In the classical setting, the market

is assumed to be frictionless i.e a no arbitrage dynamic price process is a martingale under

a probability measure equivalent to the reference probability measure.

However, real financial markets are not frictionless, and so an important literature on pricing

under transaction costs and liquidity risk has appeared. See [15, 69] and references therein.

In these papers the bid-ask spreads are explained by transaction costs. Jouini and Kallal in

[69] in an axiomatic approach in continuous time assigned to financial assets a dynamic ask

price process (respectively, a dynamic bid price process.) They proved that the absence of

arbitrage opportunities is equivalent to the existence of a frictionless arbitrage-free process

lying between the bid and the ask processes, i.e., a process which could be transformed into

59
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a martingale under a well-chosen probability measure. The bid-ask spread in this setting

can be interpreted as transaction costs or as the result of entering buy and sell orders.

Taking into account both transaction costs and liquidity risk Bion-Nadal in [15] changed

the assumption of sublinearity of ask price (respectively, superlinearity of bid price) made

in [69] to that of convexity (respectively, concavity) of the ask (respectively, bid) price. This

assumption combined with the time-consistency property for dynamic prices allowed her to

generalize the result of Jouini and Kallal. She proved that the “no free lunch” condition

for a time-consistent dynamic pricing procedure [TCPP] is equivalent to the existence of

an equivalent probability measure Q that transforms a process between the bid and ask

processes of any financial instrument into a martingale.

In recent years, a pricing theory has also appeared taking inspiration from the theory of risk

measures. First to investigate in a static setting were Carr, Geman, and Madan [23] and

Föllmer and Schied [51]. The point of view of pricing via risk measures was also considered

in a dynamic way using backward stochastic differential equations [BSDE] by El Karoui

and Quenez [40], El Karoui, Peng, and Quenez [41], and Peng [109, 110]. This theory soon

became a useful tool for formulating many problems in mathematical finance, in particular

for the study of pricing and hedging contingent claims [41]. Moreover, the BSDE point

of view gave a simple formulation of more general recursive utilities and their properties,

as initiated by Duffie and Epstein (1992) in their [stochastic differential] formulation of

recursive utility [41].

In the past, in real financial markets, the load of providing liquidity was given to market

makers, specialists, and brokers, who trade only when they expect to make profits. Such

profits are the price that investors and other traders pay, in order to execute their orders

when they want to trade. To ensure steady trading, the market makers sell to buyers and

buy from sellers, and get compensated by the so-called bid-ask spread. The most common

price for referencing stocks is the last trade price. At any given moment, in a sufficiently
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liquid market there is a best or highest “bid” price, from someone who wants to buy the

stock and there is a best or lowest “ask” price, from someone who wants to sell the stock.

The best bid price R(t) and best ask (or best offer) price T (t) are the highest buying price

and the lowest selling price at any time t of trading.

In the present work, we consider models of financial markets in which all parties involved

(buyers, sellers) find incentives to participate. Our framework is different from the existing

approach (see [15, 69] and references therein) where the authors assume some properties

(sublinearity, convexity, etc) on the ask (respectively, bid) price function in order to define

a dynamic ask (respectively, bid.) Rather, we assume that the different bid and ask prices

are given. Then the question we address is how to model the “best bid” (respectively, the

“best ask”) price process with the intention to obtain the stock price dynamics.

The assumption that the bid and ask processes are described by (continuous) semimartin-

gales in our special setting entails that the stock price admits arbitrage opportunities.

Further, it turns out that the price process possesses the Markov property, if the bid and

ask are Brownian motion or Ornstein-Uhlenbeck type, or more generally Feller processes.

Note that our results are obtained without assuming arbitrage opportunities.

This chapter is also related with [68] where the authors explore market situations where

a large trader causes the existence of arbitrage opportunities for small traders in complete

markets. The arbitrage opportunities considered are “hidden” which means that they are

almost not observable to the small traders, or to scientists studying markets because they

occur on time sets of Lebesgue measure zero.

The Chapter is organized as follows: Section 3.2 presents the model. Section 3.3 studies the

Markovian property of the processes, while Sections 3.4 and 3.5 are devoted to the study

of completeness, arbitrage and (insider) hedging on a market driven by such processes.
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3.2 The model

Let Bs = (B(s)1, · · · , B(s)n)T (where (·)T denotes transpose) be a n-dimensional standard

Brownian motion on a filtered probability space (Ω,F , {Ft}t≥0, P ).

Suppose bid and ask price processes Xi(t) ∈ R, 1 ≤ i ≤ n, which are modeled by continuous

semimartingales

Xi(t) = Xi(0) +
∫ t

0
ai(s,Xs, ω) ds+

∫ t

0
σ(s,Xs, ω) dBi(s). (3.2.1)

Here we consider the following model for bid and ask prices.

 

 

 

 

 

 

 

t 

Realization of 

 Xt=(Xt
1,…, Xt

n).

Bid and ask 

(or the other 
way round) 

Figure 3.1 Realization of bid and ask

The evolution of the stock price process S(t) is based on Xi(t), i = 1, ..., n. Denote by

Bid(t) the Best Bid and Ask(t) the Best Ask at time t. Then Bid(t) is the lowest price that

a day trader seller is willing to accept for a stock at that time and Ask(t) is the highest

price that a day trader buyer is willing to pay for that stock at any particular point in time.
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Let us define the processes X+(t) = max(X(t), 0) and X∗(t) = min(X(t), 0). Further set

R(t) := min
1≤i≤n

X+
i (t)

T (t) := max
1≤i≤n

X∗i (t).

where we use the convention that min {∅} = 0 and max {∅} = 0. Then Bid(t) and Ask(t)

can be modeled as

Bid(t) := min {R(t), −T (t)} , (3.2.2)

and

Ask(t) := max {R(t), −T (t)} . (3.2.3)

Given Bid(t) and Ask(t), the market makers will agree on a stock price within the Bid/Ask

spread, that is

S(t) = α(t)Bid(t) + (1− α(t))Ask(t), (3.2.4)

where α(t) is a stochastic process such that 0 ≤ α(t) ≤ 1. One could choose e.g.,

α(t) = σ(t)

for a function σ : [0, T ]→ [0, 1] or

α(t) = f(R(t), T (t))

for a function f : R× R→ [0, 1].

For convenience, we will from now on assume that α(t) ≡ 1/2, that is

St =
Bid(t) +Ask(t)

2

=
R(t)− T (t)

2
. (3.2.5)
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3.3 Markovian property of processes R, T and S

For convenience, let us briefly discuss the Markovian property of the processes R(t), T (t)

and S(t) in some particular cases. The two cases considered here are the cases when the

process
{
Xi(t)

}
t≥0

are Brownian motions or Ornstein-Uhlenbeck processes. Let us first

have on the definition of semimartingales rank processes.

Definition 3.3.1 Let X1, · · · , Xn be continuous semimartingales. For 1 ≤ k ≤ n, the k-th

rank process of X1, · · · , Xn is defined by

X(k) = max
i1<···<ik

min(Xi1 , · · · , Xik), (3.3.1)

where 1 ≤ i1 and ik ≤ n.

Note that, according to Definition 3.3.1, for t ∈ R+,

max
1≤i≤n

Xi(t) = X(1)(t) ≥ X(2)(t) ≥ · · · ≥ X(n)(t) = min
1≤i≤n

Xi(t), (3.3.2)

so that at any given time, the values of the rank processes represent the values of the original

processes arranged in descending order (i.e. the (reverse) order statistics).

Using Definition 3.3.1, we get

R(t) := X(n)+(t) (3.3.3)

T (t) := X(1)∗(t).

3.3.1 The Brownian motion case

Here we assume that the processes
{
Xi(t)

}
t≥0

, 1 ≤ i ≤ n are independent Brownian

motions.

Proposition 3.3.2 The process R possesses the Markov property with respect to the filtra-

tion Ft := FBt ∩ σ(R(t); 0 ≤ t ≤ T ).
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Proof. : We first prove that B+ = max(B, 0) is a Markov process. define the process

Y (t) =

 |B(t)|

B(t)

 ∈ R2.

Then (Y (t))t≥0 is a two dimensional Feller process.

Let g(x1, x2) = 1
2(x1 + x2). One observes that g : R2 → R is a continuous and open map.

Thus is follows from Remark 1 p. 327, in [36] that B+(t) = Y +(t) = g(Y (t)) is a Feller

process, too.

The latter argument also applies to the n-dimensional case, that is

Ỹ :=
(
B+

1 (t), · · · , B+
n (t)

)
is a Feller process. Since

f : Rn → R

(x1, · · · , xn) 7→ min(x1, · · · , xn)

is a continuous and open map we conclude that R(t) = f(Ỹ ) is a Feller process.

Proposition 3.3.3 The process T possesses Markov property with respect to the filtration

Ft := FBt ∩ σ(T (t); 0 ≤ t ≤ T ).

Proof. See the proof of Proposition 3.3.2.

Corollary 3.3.4 The process S possesses Markov property with respect to the filtration

Ft := FBt ∩ σ(S(t); 0 ≤ t ≤ T )..

Proof. The process Z defined by Zt = Rt + Tt for all t ≥ 0 is a Markov process as sum of

two Markov processes.

3.3.2 The Ornstein-Uhlenbeck case

Here we assume that the process X(t) = (X1(t), · · · , Xn(t)) is an n-dimensional Ornstein-

Uhlenbeck, that is

dXi(t) = −αiXi(t)dt + σidBi(t), 1 ≤ i ≤ n, (3.3.4)
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where αi and σi are parameters. It is clear that an Ornstein-Uhlenbeck process is a Feller

process. So we obtain

Proposition 3.3.5 The process R, T and S defined by (3.3.3) and (3.2.5) possess Markov

property.

Proof. The conclusion follows from the proof of Proposition 3.3.2.

Remark 3.3.6 Using continuous and open transformations of Markov processes, the above

results can be generalized to the case, when the bid and ask processes are Feller processes.

See [36].

3.4 Further properties of S(t)

In this Section, we want to use the semimartingale decomposition of our price process St to

analyze completeness and arbitrage on market driven by such a process.

We need the following result. See Proposition 4.1.11 in [46].

Theorem 3.4.1 Let X1, · · · , Xn be continuous semimartingales of the form (3.2.1). For

k ∈ {1, 2, · · · , n}, let u(k) = (ut(k), t ≥ 0) : Ω × [0,∞[→ {1, 2, · · · , n} be any predictable

process with the property:

X(k)(t) = Xut(k)(t). (3.4.1)

Then the k-th rank processes X(k), k = 1, · · · , n, are semimartingales and we have:

X(k)(t) = X(k)(0) +
n∑
i=1

∫ t

0
1{us(k)=i} dXi(s)

+
1
2

n∑
i=1

∫ t

0
1{us(k)=i} ds L

0
s((X

(k) −Xi)+)

− 1
2

n∑
i=1

∫ t

0
1{us(k)=i} ds L

0
s((X

(k) −Xi)−), (3.4.2)
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where L0
t (X) is the local time of the semimartingale X at zero, defined by

|Xt| = |X0|+
∫ t

0
sgn(Xs−) dXs + L0

t (X),

where sgn(x) = −1(−∞,0](x) + 1(0,∞)(x).

Proof. We find that

X
(k)
t −X

(k)
0 =

n∑
i=1

∫ t

0
1{us(k)=i} dX

i
s +

n∑
i=1

∫ t

0
1{us(k)=i} d (X(k)

s −Xi
s), (3.4.3)

where we used the property
∑n

i=1 1{us(k)=i} = 1. It follows,

X
(k)
t −X

(k)
0 =

n∑
i=1

∫ t

0
1{us(k)=i} dX

i
s

+
n∑
i=1

∫ t

0
1{us(k)=i} d (X(k)

s −Xi
s)

+

−
n∑
i=1

∫ t

0
1{us(k)=i} d (X(k)

s −Xi
s)
−.

We note the fact

{us(k) = i} ⊂ {X(k)
s = Xi(s)}. (3.4.4)

We now use the following formula:

1
2
L0
t (X) =

∫ t

0
1{Xs=0} dXs, (3.4.5)

which is valid for non-negative semimartingales X. See e.g., [24, 46]

Then, by applying (3.4.5) to (X(k)(t)−Xi(t))±, t ≥ 0, Equation (3.4.3) becomes:

X(k)(t) − X(k)(0) =
n∑
i=1

∫ t

0
1{us(k)=i} dXi(s)

+
1
2

n∑
i=1

∫ t

0
1{us(k)=i} ds L

0
s((X

(k) −Xi)+)

− 1
2

n∑
i=1

∫ t

0
1{us(k)=i} ds L

0
s((X

(k) −Xi)−).

Then the above result follows.
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3.4.1 The Brownian motion case

If Xi(t) = B+
i (t) or B∗i (t), i = 1, ..., n are n independent Brownian motions, the evolution

of R(t) and T (t) follows from Theorem 3.4.1.

Corollary 3.4.2 Let the processes {R(t)}t≥0 and {T (t)}t≥0 be given by Equation (3.3.3).

Then R(t) = B(n)+(t) and T (t) = B(1)∗(t) and we have:

R(t) = R(0) +
n∑
i=1

∫ t

0
1{us(n)=i}

{
dB+

i (s)− 1
2
dsL

0
s

(
B+
i −R

)}

= R(0) +
n∑
i=1

∫ t

0
1{us(n)=i}

{
1{Bi(s)>0}dBi(s) +

1
2
[
dsL

0
s(Bi)− dsL0

s

(
B+
i −R

)]}
,

(3.4.6)

and

T (t) = T (0) +
n∑
i=1

∫ t

0
1{vs(n)=i}

{
dB∗i (s) +

1
2
dsL

0
s (T −B∗i )

}

= T (0) +
n∑
i=1

∫ t

0
1{vs(n)=i}

{
1{Bi(s)≤0}dBi(s) +

1
2
[
dsL

0
s (T −B∗i )− dsL0

s(Bi)
]}

.

(3.4.7)

We can rewrite R(t) and T (t) as follows:

R(t) =R(0) + MR(t) + V R(t),

T (t) =T (0) + MT (t) + V T (t),

where MR(t), MT (t) are continuous local martingales and V R(t), V T (t) are continuous

processes of locally bounded variation given by:

V R(t) =
n∑
i=1

∫ t

0
1{us(n)=i}

1
2
[
dsL

0
s(Bi)− dsL0

s

(
B+
i −R

)]
, (3.4.8)

MR(t) =
n∑
i=1

∫ t

0
1{us(n)=i} 1{Bi(s)>0}dBi(s), (3.4.9)

V T (t) =
n∑
i=1

∫ t

0
1{vs(1)=i}

1
2
[
dsL

0
s (T −B∗i )− dsL0

s(Bi)
]
, (3.4.10)

MT (t) =
n∑
i=1

∫ t

0
1{vs(n)=i} 1{Bi(s)≤0}dBi(s). (3.4.11)
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The following corollary gives the semimartingale decomposition satisfied by the process St.

Corollary 3.4.3 Assume that the process S(·) is given by Equation (3.2.5). Then one can

write S(t) = f(A(t)) where A(t) = (R(t), T (t)) and f(x1, x2) = 1
2 (x1 − x2), and we have:

S(t) =S(0) +
1
2

n∑
i=1

∫ t

0

(
1{us(n)=i} 1{Bi(s)>0} − 1{vs(n)=i}1{Bi(s)≤0}

)
dBi(s)

+
1
2

n∑
i=1

∫ t

0

(
1{us(n)=i} + 1{vs(n)=i}

)
dsL

0
s(Bi)

− 1
2

n∑
i=1

{∫ t

0
1{us(n)=i}dsL

0
s

(
B+
i −R

)
+
∫ t

0
1{vs(n)=i}dsL

0
s (T −B∗i )

}
. (3.4.12)

In order to price options with respect to S(t) one should ensure that S(t) does not admit

arbitrage possibilities and the natural question which arises at this point is the following:

Can we find an equivalent probability measure Q such that S is a Q-sigma martingale (see

[116] for definitions)? Since our process S is continuous we can reformulate the question as:

Can we find an equivalent probability measure Q such that S is a Q local martingale1?

We first give the following useful remark which is a part of Theorem 1 in [117].

Remark 3.4.4 Let X(t) = X0 +M(t) + V (t) be a continuous semimartingale on a filtered

probability space (Ω,F , {Ft}t≥0, P ). Let Ct = [X,X]t = [M,M ]t , 0 ≤ t ≤ T . A necessary

condition for the existence of an equivalent martingale measure is that dV << dC.

Consequence 3.4.5 Since local time is singular, we observe that the total variation of the

bounded variation part in Equation (3.4.12) cannot be absolutely continuous with respect to

the quadratic variation of the martingale. It follows that the set of equivalent martingale

measures is empty and thus such a market contains arbitrage opportunities.

3.4.2 (In)complete market with hidden arbitrage

We consider in this Section a model where {S(t)}t≥0 denotes a stochastic process modeling

the price of a risky asset, and {R(t)}t≥0 denotes the value of a risk free money market
1 In fact since S is continuous and since all continuous sigma martingales are in fact local martingales,

we only need to concern ourselves with local martingales
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account. We assume a given filtered probability space
(

Ω,F , {Ft}t≥0 , P
)

, where {Ft}t≥0

satisfies the “usual hypothesis”. In such a market, a trading strategy (a, b) is self-financing

if a is predictable, b is optional, and

a(t)S(t) + b(t)R(t) = a(0)S(0) + b(0)R(0) +
∫ t

0
a(s)dS(s) +

∫ t

0
b(s)dR(s) (3.4.13)

for all 0 ≤ t ≤ T . For convenience, we let S0 = 0 and R(t) ≡ 1 (thus the interest rate

r = 0), so that dR(t) = 0, and Equation (3.4.13) becomes

a(t)S(t) + b(t)R(t) = b(0) +
∫ t

0
a(s)dS(s).

Definition 3.4.6 (See [68].)

1. We call a random variable H ∈ FT a contingent claim. Further, a contingent claim

H is said to be Q-redundant if for a probability measure Q there exists a self-financing

strategy (a, b) such that

V Q(t) = EQ [H| Ft] = b(0) +
∫ t

0
a(s)dS(s), (3.4.14)

where {V (t)}t≥0 is the value of the portfolio.

2. A market (S(t), R(t)) = (S(t), 1) is Q-complete if every H ∈ L1 (FT , Q) is Q-

redundant.

Define the process
(
MS(t)

)
t>0

as follows

MS(t) =
1
2

n∑
i=1

∫ t

0

(
1{us(n)=i} 1{Bi(s)>0} − 1{vs(n)=i}1{Bi(s)≤0}

)
dBi(s). (3.4.15)

Then the following theorem is immediate from Theorem 3.2 in [68].

Theorem 3.4.7 Suppose there exists a unique probability measure P ∗ equivalent to P such

that MS(t) is a P ∗−local martingale. Then the market (S(t), 1) is P ∗−complete.

Proof. Omitted.
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Proposition 3.4.8 Suppose that n ≥ 2. Then, there exists no unique martingale measure

P ∗ such that MS(t) is a P ∗−local martingale.

Proof. Because of Equation (3.4.15), we observe that MS(t) is a P -martingale. Let us

construct another equivalent martingale measure P ∗. For this purpose assume wlog that

us(n) and vs(n) are given by

us(n) = min
{
i ∈ {1, ..., n} : B+

i (t) = R(t)
}

and

vs(n) = min {i ∈ {1, ..., n} : B∗i (t) = T (t)} .

Now define the process h as

h(t) = 1{A(t)},

where

A(t) = {ω ∈ Ω : β(t, ω) = 0} ,

with

β(s) =
n∑
i=1

(
1{us(n)=i}1{Bi(s)>0} − 1{vs(n)=i}1{Bi(s)≤0}

)
. (3.4.16)

One finds that Pr[A(t)] > 0 for all t. Let us define the equivalent measure P ∗ with respect

to a density process Zt given by

Zt = E [N ]t.

Here E(N) denotes the Doléans-Dade exponential of the martingale Nt defined by

Nt =
n∑
i=1

∫ t

0
h(s) dBi(s).

Then it follows from the Girsanov-Meyer theorem (see [116]) thatMS(t) has a P ∗-semimartingale

decomposition with a bounded variation part given by∫ t

0
2h(s) d

〈
MS ,MS

〉
s
.
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We have that ∫ t

0
2h(s)d

〈
MS ,MS

〉
s

=
1
2

∫ t

0
h(s)β(s)ds.

Since hβ = 0, it follows that ∫ t

0
h(s)d

〈
MS ,MS

〉
s

= 0.

Thus MS(t) is a P ∗-martingale. Since P is also a martingale measure with P 6= P ∗ the

proof follows.

Remark 3.4.9 In the case n = 1 (a single Bid/Ask), the market becomes complete since

the process β(t), defined by Equation (3.4.16) in the proof is equal to sgn(B(t)). Therefore

the unique martingale measure is P .

We can then deduce the following theorem on our process S(t).

Theorem 3.4.10 Suppose that S = {S(t)}t≥0 is given by Equation (3.4.12), and
{
MS(t)

}
t≥0

is given by Equation (3.4.15). Then

1. For n = 1 (a single Bid/Ask), the market (S(t), 1) is P -complete and admits the

arbitrage opportunity of Equation (3.4.17).

2. For n ≥ 2 (more than a single Bid/Ask), the market (S(t), 1) is incomplete and

arbitrage exists.

Proof. From Theorem 3.4.8, we know that the market is P -complete for n = 1 and

incomplete for n > 1. Let P such that MS(t) is a P -local martingale.

For n = 1, let us construct an arbitrage strategy. Let

as = 1{supp(d[MS ,MS ])}c(s), (3.4.17)

where supp
(
d
[
MS ,MS

])
denotes the ω by ω support of the (random) measure d

[
MS ,MS

]
s

(ω);

that is, for fixed ω it is the smallest closed set in R+ such that d
[
MS ,MS

]
s

does not charge
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its complement. Compare the proof of Proposition 3.4.8.

Let

H = H(T ) =
1
2

n∑
i=1

∫ T

0

(
1{us(n)=i} + 1{vs(n)=i}

)
dsL

0
s(Bi)

− 1
2

n∑
i=1

{∫ T

0
1{us(n)=i}dsL

0
s

(
B+
i −R

)
+
∫ T

0
1{vs(n)=i}dsL

0
s (T −B∗i )

}
.

Assume wlog that H ∈ L1(P ). Then by Theorem 3.4.7, there exists a self financing strategy

(jt, b) such that

H = H(T ) = E [H(T )] +
∫ T

0
j(s)dS(s).

However, by Equation 3.4.17, we also have

HT = 0 +
∫ T

0
a(s)dH(s).

Moreover, we have
∫ t

0 a(s)dMS(s) = 0, 0 ≤ t ≤ T , by construction of the process a. Hence,

H = H(T ) = 0 +
∫ T

0
a(s)dS(s),

which is an arbitrage opportunity.

3.5 Pricing and insider trading with respect to S(t)

In this Section we discuss a framework introduced in [27], which enables us pricing of

contingent claims with respect to the price process S(t) of the previous sections. We even

consider the case of insider trading, that is the case of an investor, who has access to insider

information. To this end we need some notions.

We consider a market driven by the stock price process S(t) on a filtered probability space

(Ω,H, {Ht}t≥0 ,P). We assume that, the decisions of the trader are based on market infor-

mation given by the filtration {Gt}0≤t≤T with Ht ⊂ Gt for all t ∈ [0, T ] , T > 0 being a fixed

terminal time. In this context an insider strategy is represented by an Gt-adapted process

ϕ(t) and we interpret all anticipating integrals as the forward integral defined in [95] and
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[121].

In such a market, a natural tool to describe the self-financing portfolio is the forward inte-

gral of an integrand process Y with respect to an integrator S, denoted by
∫ t

0 Y d
−S. See

Chapter 1 or [121]. The following definitions and concepts are consistent with those given

in [27].

Definition 3.5.1 A self-financing portfolio is a pair (V0, a) where V0 is the initial value of

the portfolio and a is a Gt-adapted and S-forward integrable process specifying the number

of shares of S held in the portfolio. The market value process V of such a portfolio at time

t ∈ [0, T ], is given by

V (t) = V0 +
∫ t

0
a(s) d−S(s), (3.5.1)

while b(t) = V (t)− S(t)a(t) constitutes the number of shares of the less risky asset held.

3.5.1 A-martingales

Now, we briefly review the definition of A-martingales which generalizes the concept of

a martingale. We refer to [27] for more information about this notion. Throughout this

Section, A will be a real linear space of measurable processes indexed by [0, 1) with paths

which are bounded on each compact interval of [0, 1).

Definition 3.5.2 A process X = {X(t)}0≤t≤T is said to be a A-martingale if every θ in A

is X-improperly forward integrable (see Chapter 1) and

E

[∫ t

0
θ(s)d−X(s)

]
= 0 for every 0 ≤ t ≤ T (3.5.2)

Definition 3.5.3 A process X = (X(t), 0 ≤ t ≤ T ) is said to be A-semimartingale if it

can be written as the sum of an A-martingale M and a bounded variation process V , with

V (0) = 0.

Remark 3.5.4
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1. Let X be a continuous A-martingale with X belonging to A, then, the quadratic vari-

ation of X exists improperly. In fact, if
∫ ·

0 X(t)d−X(t) exists improperly, then one

can show that [X,X] exists improperly and [X,X] = X2 −X2(0)− 2
∫ ·

0 X(s)d−X(s).

See [27] for details.

2. Let X a continuous square integrable martingale with respect to some filtration F .

Suppose that every process in A is the restriction to [0, T ) of a process (θ(t), 0 ≤ t ≤

T ) which is F-adapted. Moreover, suppose that its paths are left continuous with right

limits and E
[∫ T

0 θ2(t)d[X]t
]
<∞. Then X is an A-martingale.

3.5.2 Completeness and arbitrage: A-martingale measures

We first recall some definitions and notions introduced in [27].

Definition 3.5.5 Let h be a self-financing portfolio in A, which is S-improperly forward

integrable and X its wealth process. Then h is an A-arbitrage if X(T ) = limt→T X(t) exists

almost surely, Pr[X(T ) ≥ 0] = 1 and Pr[X(T ) > 0] > 0.

Definition 3.5.6 If there is no A-arbitrage, the market is said to be A-arbitrage free.

Definition 3.5.7 A probability measure Q ∼ P is called a A-martingale measure if with

respect to Q the process S is an A-martingale according to Definition 3.5.2.

We need the following assumption. See [27].

Assumption 3.5.8 Suppose that for all h in A the following condition holds.

h is S-improperly forward integrable and∫ ·
0
d−
∫ t

0
h(s)d−S(s) =

∫ ·
0
h(t)d−S(t) =

∫ ·
0
h(t)d−

∫ t

0
d−S(s) (3.5.3)

The proof of the following proposition can be found in [27].

Proposition 3.5.9 Under Assumption 3.5.8, if there exists an A-martingale measure Q,

the market is A-arbitrage free.
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Definition 3.5.10 A contingent claim is an F-measurable random variable. Let L be the

set of all contingent claims the investor is interested in.

Definition 3.5.11

1. A contingent claim C is called A-attainable if there exists a self-financing trading

portfolio (X(0), h) with h in A, which is S-improperly forward integrable, and whose

terminal portfolio value coincides with C, i.e.,

lim
t→T

X(t) = C P -a.s.

Such a portfolio strategy h is called a replicating or hedging portfolio for C, and X(0)

is the replication price for C.

2. A A-arbitrage free market is called (A,L)-complete if every contingent claim in L is

attainable.

Assumption 3.5.12 For every G0-measurable random variable η, and h in A the process

u = hη, belongs to A.

Proposition 3.5.13 Suppose that the market is A-arbitrage free, and that Assumption

3.5.8 is realized. Then the replication price of an attainable contingent claim is unique

Proof. Let Q be a given measure equivalent to P . For such a Q, let A be a set of all

strategies (Gt-adapted) such that Equation (3.5.2) in definition 3.5.2 is satisfied. Then, it

follows from Proposition 3.5.9 that our market (S(t), 1) in Section 3.4.2 is A-arbitrage free.

In the final section, we shall discuss attainability of claims in connection with a concrete

set A of trading strategies.
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3.5.3 Hedging with respect to S(t)

In this Section, we want to determine hedging strategies for a certain class of European

options with respect to the price process S(t) of Section 3.4.2.

Let us now assume that n = 1 (a single Bid/Ask). Then, the price process S is the sum

of a Wiener process and a continuous process with zero quadratic variation; moreover, we

have that d[S]t = 1
4β

2(t) = 1
4 , where β(t) is given by Equation (3.4.16). We can derive the

following proposition which is similar to Proposition 5.29 in [27].

Proposition 3.5.14 Let ψ be a function in C0(R) of polynomial growth. Suppose that

there exist (v(t, x), 0 ≤ t ≤ T, x ∈ R) of class C1,2([0, T )×R) ∩C0([0, T ]×R) which is a

solution of the following Cauchy problem ∂tv(t, x) + 1
8∂yyv(t, y) = 0 on [0, T )× R

v(T, y) = ψ(y)
(3.5.4)

Set

h(t) = ∂yv(t, S(t)), 0 ≤ t ≤ T, X(0) = v(0, S(0)).

Then (X(0);h) is a self-financing portfolio replicating the contingent claim (ψS(T )).

In particular, (S(t), 1) is A,L-complete, where A is given by

A = {(φ(t, S(t)), 0 ≤ t ≤ T ) : φ : [0, T ]× R→ R Borel

measurable, of polynomial growth and lower bounded} ,

and L by all claims as stated in this Proposition.

Proof. The proof is a direct consequence of Itô’s Lemma for forward integrals. See Propo-

sition 5.29 in [27].
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Chapter 4

Malliavin calculus applied to

optimal control of stochastic

partial differential equations with

jumps

4.1 Introduction

In this Chapter we aim at using Malliavin calculus to prove a general stochastic maximum

principle for stochastic partial differential equations (SPDE’s) with jumps under partial

information. More precisely, the controlled process is given by a quasilinear stochastic heat

equation driven by a Wiener process and a Poisson random measure. Further the control

processes are assumed to be adapted to a subfiltration of the filtration generated by the

driving noise of the controlled process. Our Chapter is inspired by ideas developed in Meyer-

Brandis, Øksendal & Zhou [88], where the authors establish a general stochastic maximum

principle for SDE’s based on Malliavin calculus. The results obtained in this Chapter can

be considered a generalization of [88] to the setting of SPDE’s.

79
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There is already a vast literature on the stochastic maximum principle. The reader is

e.g., referred to [10, 11, 7, 52, 128, 102, 136] and the references therein. Let us mention

that the authors in [10, 128], resort to stochastic maximum principles to study partially

observed optimal control problems for diffusions, that is the controls under consideration

are based on noisy observations described by the state process. Our Chapter covers the

partial observation case in [10, 11, 128], since we deal with controls being adapted to a

general subfiltration of the underlying reference filtration. Further, our Malliavin calculus

approach to stochastic control of SPDE’s allows for optimization of very general performance

functionals. Thus our method is useful to examine control problems of non-Markovian type,

which cannot be solved by stochastic dynamic programming. Another important advantage

of our technique is that we may relax the assumptions on our Hamiltonian, considerably.

For example, we do not need to impose concavity on the Hamiltonian. See e.g., [102, 7].

We remark that the authors in [7] prove a sufficient and necessary maximum principle for

partial information control of jump diffusions. However, their method relies on an adjoint

equation which often turns out to be unsolvable.

We shall give an outline of our Chapter: In Section 4.2, we introduce a framework for our

partial information control problem. Then in Section 4.3, we prove a general maximum

principle for SPDE’s by invoking Malliavin calculus. See Theorem 4.3.3. In Section 4.4,

we use the results of the previous section to solve a partial information optimal harvesting

problem (see Theorem 4.4.1). Further we inquire into a portfolio optimization problem

under partial observation. The latter problem boils down to a partial observation problem

of jump diffusions, which cannot be captured by the framework of [88].

4.2 Framework

In the following, let {Bs}0≤s≤T be a Brownian motion and Ñ(dz, ds) = N(dz, ds)−dsν(dz)

a compensated Poisson random measure associated with a Lévy process with Lévy measure

ν on the (complete) filtered probability space (Ω,F , {Ft}0≤t≤T , P ). In the sequel, we assume
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that the Lévy measure ν fulfills ∫
R0

z2ν(dz) <∞,

where R0 := R\ {0} .

Consider the controlled stochastic reaction-diffusion equation of the form

dΓ(t, x) =
[
LΓ(t, x) + b(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω)

]
dt

+ σ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω)dB(t)

+
∫

R
θ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), z, ω)Ñ(dz, dt), (4.2.1)

(t, x) ∈ [0, T ]×G

with boundary condition

Γ(0, x) =ξ(x), x ∈ G ,

Γ(t, x) =η(t, x), (t, x) ∈ (0, T )× ∂G.

Here L is a partial differential operator of order m and ∇x the gradient acting on the space

variable x ∈ Rn and G ⊂ Rn is an open set. Further

b(t, x, γ, γ′, u, ω) : [0, T ]×G× R× Rn × U × Ω −→ R

σ(t, x, γ, γ′, u, ω) : [0, T ]×G× R× Rn × U × Ω −→ R

θ(t, x, γ, γ′, u, z, ω) : [0, T ]×G× R× Rn × U × R0 × Ω −→ R

ξ(x) : G −→ R

η(t, x) : (0, T )× ∂G −→ R

are Borel measurable functions, where U ⊂ R is a closed convex set. The process

u : [0, T ]×G× Ω −→ U

is called an admissible control if the system (4.2.1) has a unique (strong) solution Γ = Γ(u)

such that u(t, x) is adapted with respect to a subfiltration

Et ⊂ Ft, 0 ≤ t ≤ T , (4.2.2)
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and such that

E

[∫ T

0

∫
G
|f(t, x,Γ(t, x), u(t, x), ω)| dx dt+

∫
G
|g(x,Γ(T, x), ω)| dx

]
<∞

for some given C1 functions that define the performance functional (see Equation (4.2.3)

below)

f : [0, T ]×G× R× U × Ω −→ R ,

g : G× R× Ω −→ R.

A sufficient set of conditions, which ensures the existence of a unique strong solution of

(4.2.1), is e.g., given by the requirement that the coefficients b, σ, θ satisfy a certain linear

growth and Lipschitz condition and that the operator L is bounded and coercive with

respect to some Gelfand triple. For more general information on the theory of SPDE’s the

reader may consult e.g., [28], [70].

Note that one possible subfiltration Et of the type (4.2.2) is the δ-delayed information given

by

Et = F(t−δ)+ ; t ≥ 0

where δ ≥ 0 is a given constant delay.

The σ-algebra Et can be interpreted as the entirety of information at time t the controller

has access to. We shall denote by A = AE the class of all such admissible controls.

For admissible controls u ∈ A define the performance functional

J(u) = E
[∫ T

0

∫
G
f(t, x,Γ(t, x), u(t, x), ω) dx dt+

∫
G
g(x,Γ(T, x), ω) dx

]
. (4.2.3)

The optimal control problem is to find the maximum and the maximizer of the performance,

i.e. determine the value J∗ ∈ R and the optimal control u∗ ∈ A such that

J∗ = sup
u∈A

J(u) = J(u∗) (4.2.4)
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4.3 A generalized maximum principle for stochastic partial

differential equations with jumps

In this Section we want to derive a general stochastic maximum principle by means of

Malliavin calculus. To this end, let us briefly review some basic concepts of this theory. As

for definitions and further information on Malliavin calculus, we refer to [94] or [31].

4.3.1 Some elementary concepts of Malliavin calculus for Lévy processes

In the sequel consider a Brownian motion B(t) on the filtered probability space

(Ω(1),F (1), {F (1)
t }0≤t≤T , P

(1)),

where {F (1)
t }0≤t≤T is the P (1)−augmented filtration generated by Bt with F (1) = F (1)

T .

Further we assume that a Poisson random measure N(dt, dz) associated with a Lévy process

is defined on the stochastic basis

(Ω(2),F (2), {F (2)
t }0≤t≤T , P

(2)).

See [13, 127] for more information about Lévy processes.

The starting point of Malliavin calculus is the following observation which goes back to K.

Itô [66]: Square integrable functionals of B(t) and Ñ(dt, dz) enjoy the chaos representation

property, that is

(i) If F ∈ L2(F (1), P (1)) then

F =
∑
n≥0

I(1)
n (fn) (4.3.1)

for a unique sequence of symmetric fn ∈ L2(λn), where λ is the Lebesgue measure

and

I(1)
n (fn) := n!

∫ T

0

∫ tn

0
· · ·
(∫ t2

0
fn(t1, · · · , tn)dB(t1)

)
dB(t2) · · · dB(tn), n ∈ N

the n-fold iterated stochastic integral with respectBt. Here I(1)
n (f0) := f0 for constants

f0.
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(ii) Similarly, if G ∈ L2(F (2), P (2)), then

G =
∑
n≥0

I(2)
n (gn), (4.3.2)

for a unique sequence of kernels gn in L2((λ× ν)n), which are symmetric with respect

to (t1, z1), · · · , (tn, zn). Here I(2)
n (gn) is given by

I(2)
n (gn) :=n!

∫ T

0

∫
R0

∫ tn

0

∫
R0

· · ·
(∫ t2

0

∫
R0

gn(t1, z1, · · · , tn, zn)
)
Ñ(dt1, dz1) · · · Ñ(dtn, dzn),

n ∈ N.

It follows from the Itô isometry that

‖F‖2L2(P (1)) =
∑
n≥0

n! ‖fn‖2L2(λn)

and

‖G‖2L2(P (2)) =
∑
n≥0

n! ‖gn‖2L2((λ×ν)n) .

Definition 4.3.1 (Malliavin derivatives Dt and Dt,z)

(i) Denote by D(1)
1,2 the stochastic Sobolev space of all F ∈ L2(F (1), P (1)) with chaos expan-

sion (4.3.1) such that

‖F‖2D(1)
1,2

:=
∑
n≥0

nn! ‖fn‖2L2(λn) <∞.

Then the Malliavin derivative Dt of F ∈ D(1)
1,2 in the direction of the Brownian motion

B is defined as

DtF =
∑
n≥1

nI
(1)
n−1(f̃n−1),

where f̃n−1(t1, · · · , tn−1) := fn(t1, · · · , tn−1, t).

(ii) Similarly, let D(2)
1,2 be the space of all G ∈ L2(F (2), P (2)) with chaos representation

(4.3.2) satisfying

‖G‖2D(2)
1,2

:=
∑
n≥0

nn! ‖gn‖2L2((λ×ν)n) <∞.
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Then the Malliavin derivative Dt,z of G ∈ D(2)
1,2 in the direction of the pure jump Lévy

process ηt :=
∫ T

0

∫
R0
zÑ(dt, dz) is defined as

Dt,zG :=
∑
n≥1

nI
(2)
n−1(g̃n−1),

where g̃n−1(t1, z1, · · · , tn−1, zn−1) := gn(t1, z1, · · · , tn−1, zn−1, t, z).

A crucial argument in the proof of our general maximum principle (Theorem 4.3.3) rests

on duality formulas for the Malliavin derivatives Dt and Dt,z. (See [94] and [32].)

Lemma 4.3.2 (Duality formula for Dt and Dt,z)

(i) Require that ϕ(t) is F (1)
t −adapted with EP (1)

[∫ T
0 ϕ2(t) dt

]
<∞ and F ∈ D(1)

1,2. Then

EP (1)

[
F

∫ T

0
ϕ(t) dB(t)

]
= EP (1)

[∫ T

0
ϕ(t)DtF dt

]
.

(ii) Assume that ψ(t, z) is F (2)
t −adapted with EP (2)

[∫ T
0

∫
R0
ψ2(t, z) ν(dz) dt

]
< ∞ and

G ∈ D(2)
1,2. Then

EP (2)

[
G

∫ T

0

∫
R0

ψ(t, z)Ñ(dt, dz)
]

= EP (2)

[∫ T

0

∫
R0

ψ(t, z)Dt,zGν(dz) dt
]
.

From now on, our stochastic basis will be

(Ω,F , {Ft}0≤t≤T , P ),

where Ω = Ω(1)× Ω(2), F = F (1) ×F (2), Ft = F (1)
t ×F

(2)
t , P = P (1) × P (2).

We remark that we may state the duality relations in Lemma 4.3.2 in terms of P.

4.3.2 Assumptions

In view of the optimization problem (4.2.4) we require the following conditions 1–5:

1. The functions b, σ, θ, f, g are contained in C1 with respect to the arguments Γ ∈ R

and u ∈ U .
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2. For all 0 < t ≤ r < T and all bounded Et ⊗ B(R)−measurable random variables α,

the control

βα(s, x) := α · χ[t,r](s), 0 ≤ s ≤ T , (4.3.3)

where χ[t,T ] denotes the indicator function on [t, T ], is an admissible control.

3. For all u, β ∈ AE with β bounded there exists a δ > 0 such that

u+ yβ ∈ AE (4.3.4)

for all y ∈ (−δ, δ), and such that the family{
∂

∂γ
f(t, x,Γu+yβ(t, x), u(t, x) + yβ(t, x), ω)

d

dy
Γu+yβ(t, x)

+
∂

∂u
f(t, x,Γu+yβ(t, x), u(t, x) + yβ(t, x), ω)β(t, x)

}
y∈(−δ,δ)

is λ× P × µ−uniformly integrable;{
∂

∂γ
g(T, x,Γu+yβ(T, x), ω)

d

dy
Γu+yβ(T, x)

}
y∈(−δ,δ)

is P × µ−uniformly integrable.

4. For all u, β ∈ AE with β bounded the process

Y (t, x) = Y β(t, x) =
d

dy
Γ(u+yβ)(t, x)

∣∣∣∣
y=0

exists and

LY (t, x) =
d

dy
LΓ(u+yβ)(t, x)

∣∣∣∣
y=0

∇xY (t, x) =
d

dy
∇xΓ(u+yβ)(t, x)

∣∣∣∣
y=0
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Further suppose that Y (t, x) follows the SPDE

Y (t, x) =
∫ t

0

[
LY (s, x) + Y (s, x)

∂

∂γ
b(s, x,Γ(s, x),∇xΓ(s, x), u(s, x), ω)

+ ∇xY (s, x)∇γ′b(s, x,Γ(s, x),∇xΓ(s, x), u(s, x), ω)
]
ds

+
∫ t

0

[
Y (s, x)

∂

∂γ
σ(s, x,Γ(s, x),∇xΓ(t, x), u(s, x), ω)

+ ∇xY (s, x)∇γ′σ(s, x,Γ(s, x),∇xΓ(t, x), u(s, x), ω)
]
dB(s)

+
∫ t

0

∫
R

[
Y (s−, x)

∂

∂γ
θ(s, x,Γ(s, x),∇xΓ(t, x), u(s, x), z, ω)

+ ∇xY (s−, x)∇γ′θ(s, x,Γ(s, x),∇xΓ(t, x), u(s, x), z, ω)
]
Ñ(dz, ds)

+
∫ t

0

[
β(s, x)

∂

∂u
b(s, x,Γ(s, x),∇xΓ(s, x), u(s, x), ω)

]
ds

+
∫ t

0
β(s, x)

∂

∂u
σ(s, x,Γ(s, x),∇xΓ(t, x), u(s, x), ω) dB(s)

+
∫ t

0

∫
R
β(s−, x)

∂

∂u
θ (s, x,Γ(s, x),∇xΓ(t, x), u(s, x), z, ω) Ñ(dz, ds) ,

(t, x) ∈[0, T ]×G , (4.3.5)

with

Y (0, x) =0, x ∈ G ,

Y (t, x) =0, (t, x) ∈ (0, T )× ∂G .

where ∇x =
(

∂
∂x1

, · · · , ∂
∂xn

)
, ∇γ′ =

(
∂
∂γ′1

, · · · , ∂
∂γ′n

)
and

γ′ =
(
∂Γ
∂x1

, · · · , ∂Γ
∂xn

)
= (γ′1, · · · , γ′n)

The proof of our maximum principle (Theorem 4.3.3) necessitates a certain proba-

bilistic representation of solutions of the SPDE (4.3.5). Compare [79] in the Gaussian

case. To this end, we need some notations and conditions.

In what follows we need some notation:

Let m ∈ N, 0 < δ ≤ 1. Denote by Cm,δ the space of all m-times continuously
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differentiable functions f : Rn −→ R such that

‖f‖m+δ;K := ‖f‖m;K +
∑
|α|=m

sup
x,y∈K,x6=y

|Dαf(x)−Dαf(y)|
‖x− y‖δ

<∞

for all compact sets K ⊂ Rn, where

‖f‖m;K := sup
x∈K

|f(x)|
(1 + ‖x‖)

+
∑

1≤|α|≤m

sup
x∈K
|Dαf(x)| .

For the multi-index of non-negative integers α = (α1, · · · , αd) the operator Dα is

defined as

Dα =
∂|α|

(∂x1)α1 · · · (∂xd)αd
,

where |α| :=
∑d

i=1 αi.

Further introduce for sets K ⊂ Rn the norm

‖g‖∼m+δ;K := ‖g‖∼m;K +
∑
|α|=m

∥∥Dα
xD

α
y g
∥∥∼
δ;K

,

where

‖g‖∼δ;K := sup
x,y,x

′
,y
′∈K

x 6=y,x′ 6=y′

∣∣∣g(x, y)− g(x
′
, y)− g(x, y

′
) + g(x

′
, y
′
)
∣∣∣

‖x− x′‖δ ‖y − y′‖δ

and

‖g‖∼m;K := sup
x,y∈K

|g(x, y)|
(1 + ‖x‖)(1 + ‖y‖)

+
∑

1≤|α|≤m

sup
x,y∈K

∣∣Dα
xD

α
y g(x, y)

∣∣ .
We shall simply write ‖g‖∼m+δ for ‖g‖∼m+δ;Rn .

Define

b̃i(t, x) =
∂

∂γ
′
i

b(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω), i = 1, · · · , n (4.3.6)

σ̃i(t, x) =
∂

∂γ
′
i

σ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω), i = 1, · · · , n (4.3.7)

θ̃i(t, x) =
∂

∂γ
′
i

θ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), z, ω), i = 1, · · · , n (4.3.8)

b∗(t, x) =
∂

∂γ
b(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω) (4.3.9)
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σ∗(t, x) =
∂

∂γ
σ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω) (4.3.10)

θ∗(t, x, z) =
∂

∂γ
θ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), z, ω) (4.3.11)

bu(t, x) := β(s, x)
∂

∂u
b(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω) (4.3.12)

σu(t, x) := β(s, x)
∂

∂u
σ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω) (4.3.13)

Set

Fi(x, dt) := b̃i(t, x) dt+ σ̃i(t, x) dB(t), i = 1, · · · , n

Fn+1(x, dt) := b∗(t, x) dt+ σ∗(t, x) dB(t) +
∫

R0

θ∗(t, x, z)Ñ(dt, dz)

Fn+2(x, t) :=
∫ t

0
bu(s, x) ds+

∫ t

0
σu(s, x) dB(s)

Define the symmetric matrix function (Aij(x, y, s)1≤i,j≤n+2 given by

Aij(x, y, s) = σ̃i(s, x) · σ̃j(s, y), i, j = 1, · · · , n,

Ai,n+1(x, y, s) = σ̃i(s, x)σ∗(s, y), i = 1, · · · , n

Ai,n+2(x, y, s) = σ̃i(s, x)σu(s, y), i = 1, · · · , n

and

An+1,n+1(x, y, s) =σ∗(s, x) · σ∗(s, y)

An+1,n+2(x, y, s) =σ∗(s, x) · σu(s, y)

An+2,n+2(x, y, s) =σu(s, x) · σu(s, y)

We make the following assumptions:

D1 ∂
∂uθ(t, x,Γ(t, x), ∇xΓ(t, x), u(t, x), z, ω) ≡ 0, θ̃i(t, x) ≡ 0, i = 1, · · · , n.

D2 σ∗(t, x), θ∗(t, x, z), σ̃i(t, x), i = 1, · · · , n are measurable deterministic functions.

D3
∑n+2

i,j=1

∫ T
0

∥∥Aij(·, ·, s)∥∥∼
m+δ

ds <∞ and∫ T
0

{
(
∑n

i=1

∥∥∥b̂i(s, ·)∥∥∥
m+δ

) + ‖b∗(s, ·)‖m+δ + ‖bu(s, ·)‖m+δ

}
ds <∞ a.e.

for some m ≥ 3 and δ > 0.
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D4 There exists a measurable function (z 7−→ β(r, z)) such that∣∣∣Dα
xθ
∗(t, x, z)−Dα

xθ
∗(t, x

′
, z)
∣∣∣ ≤ β(r, z)

∥∥∥x− x′∥∥∥δ
and ∫

R0

|β(r, z)|p ν(dz) <∞

for all p ≥ 2, |α| ≤ 2, 0 ≤ t ≤ T and x, x
′

with ‖x‖ ≤ r,
∥∥∥x′∥∥∥ ≤ r.

D5 There exist measurable functions α(z) ≤ 0 ≤ β(z) such that

−1 < α(z) ≤ θ∗(t, x, z) ≤ β(z) for all t, x, z

and∫
R0

|β(z)|p ν(dz) +
∫

R0

(α(z)− log(1 + α(z)))p/2 ν(dz) <∞ for all p ≥ 2.

In the following we assume that the differential operator L in Equation (4.3.5) is of

the form

Lsu = L(1)
s u+ L(2)

s u,

where

L(1)
s u :=

1
2

n∑
i,j=1

aij(x, s)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x, s)
∂u

∂xi
+ d(x, s)u

and

L(2)
s u :=

1
2

n∑
i,j=1

Aij(x, x, s)
∂2u

∂xi∂xj
+

n∑
i=1

(
Ai,n+1(x, x, s) +

1
2
Ci(x, s)

)
∂u

∂xi

+
1
2
(
D(x, s) +An+1,n+1(x, x, s)

)
u

with

Cj(x, s) :=
n∑
j=1

∂Aij

∂yi
(x, y, s)

∣∣∣∣
y=x

, i = 1, · · · , n

and

D(x, s) :=
n∑
j=1

∂Ai,n+1

∂yi
(x, y, s)

∣∣∣∣
y=x

.

We require the following conditions:
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D6 L
(1)
t is an elliptic differential operator.

D7 There exists a non-negative symmetric continuous matrix function (aij(x, y, s))1≤i,j≤n

such that aij(x, x, s) = aij(x, s). Further it is assumed that

n∑
i,j=1

∥∥aij(·, s)∥∥
m+1+δ

≤ K for all s

for a constant K and some m ≥ 3, δ > 0.

D8 The functions bi(x, s), i = 1, · · · , n are continuous in (x, s) and satisfy

n∑
i=1

‖bi(·, s)‖m+δ ≤ C for all s

for a constant C and some m ≥ 3, δ > 0.

D9 The function d(x, s) is continuous in (x, s) and belongs to Cm,δ for some m ≥ 3,

δ > 0. In addition aij is bounded and d/(1 + ‖x‖) is bounded from the above.

D10 The functions b∗, σ∗ and d∗ are uniformly bounded.

Now let X(x, t) = (X1(x, t), · · · , Xn(x, t)) be a Ck,γ−valued Brownian motion , that

is a continuous process X(t, ·) ∈ Ck,γ with independent increments (see [79]) on

another probability space (Ω̂, F̂ , P̂ ). Assume that this process has local characteristic

aij(x, y, t) and m(x, t) = b(x, t)− c(x, t), where the correction term c(x, t) is given by

ci(x, t) =
1
2

∫ t

0

n∑
j=1

∂aij

∂xj
(x, y, s)

∣∣∣∣
y=x

ds, i = 1, · · · , n.

Then, let us consider on the product space (Ω× Ω̂,F×F̂ , P × P̂ ) the first order SPDE

v(x, t) =
n∑
i=1

∫ t

0
(Xi(x, ◦ds) + Fi(x, ◦ds))

∂v

∂xi

+
∫ t

0
(d(x, s) + Fn+1(x, ◦ds))v + Fn+2(x, t), (4.3.14)

where ◦dt stands for non-linear integration in the sense of Stratonovich (see [79]).
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Using the definition of X(x, t) the equation (4.3.14) can be recast as

v(x, t) =
∫ t

0
Lsv(x, s)ds+

n∑
i=1

Y ∗i (x, ds)
∂v

∂xi

+
n∑
i=1

∫ t

0
Fi(x, ds)

∂v

∂xi
+
∫ t

0
Fn+1(x, ds)v

+ Fn+2(x, t), (4.3.15)

where Y ∗(x, t) = (Y ∗1 (x, t), ..., Y ∗n (x, t)) is the martingale part of X(t, x). So applying

the expectation E
P̂

to both sides of the latter equation gives the following represen-

tation for the solution to system 4.3.5:

Y (t, x) = E
P̂

[v(x, t)]

See also the proof of Theorem 6.2.5 in [79]. Now let ϕs,t be the solution of the

Stratonovich SDE

ϕs,t(x) = x−
∫ t

s
G(ϕs,r(x), ◦dr),

where G(x, t) := (X1(x, t) +F1(x, t), · · · , Xn(x, t) +Fn(x, t)). Then by employing the

proof of Theorem 6.1.8 and Theorem 6.1.9 in [79] with respect to a generalized Itô

formula in [20] one obtains the following explicit representation of v(t, x) :

v(x, t)

=
∫ t

0
exp

{
1
2

∫ t

s
σ∗(r, ϕt,r(x))2dr +

∫ t

s
b∗(r, ϕt,r(x)) dr + σ∗(r, ϕt,r(x)) d̂B(r)

+
∫ t

s

∫
R0

(log(1 + θ∗(r, ϕt,r(x), z))− θ∗(r, ϕt,r(x), z)) dr

+
∫ t

s

∫
R0

log(1 + θ∗(r, ϕt,r(x), z) Ñ(d̂r, dz)
}
×(

β(s, x)
∂

∂u
b(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω) ds

+β(s, x)
∂

∂u
σ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω) ◦ d̂B(s)

)
, (4.3.16)

where d̂ denotes backward integration and where the inverse flow ϕt,s = ϕ−1
s,t solves

the backward Stratonovich SDE

ϕ
(i)
t,s(x) = xi +

∫ t

s
b̃i(r, ϕt,r(x)) dr +

∫ t

s
σ̃i(r, ϕt,r(x)) ◦ d̂B(r), i = 1, ..., n.
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For later use, let us consider the general case, when

Y (0, x) =f(x), x ∈ G ,

Y (t, x) =0, (t, x) ∈ (0, T )× ∂G ,

holds, where f ∈ Cm,δ.

Then, v(x, t) is described by

v(x, t) =f(x) +
∫ t

0
Lsv(x, s)ds+

n∑
i=1

Y ∗i (x, ds)
∂v

∂xi

+
n∑
i=1

∫ t

0
Fi(x, ds)

∂v

∂xi
+
∫ t

0
Fn+1(x, ds)v

+ Fn+2(x, t).

Using the same reasoning, we obtain:

v(x, t)

= exp
{

1
2

∫ t

s
σ∗(r, ϕt,r(x))2dr +

∫ t

s
b∗(r, ϕt,r(x)) dr + σ∗(r, ϕt,r(x)) d̂B(r)

+
∫ t

s

∫
R0

(log(1 + θ∗(r, ϕt,r(x), z))− θ∗(r, ϕt,r(x), z)) dr

+
∫ t

s

∫
R0

log(1 + θ∗(r, ϕt,r(x), z) Ñ(d̂r, dz)
}
× f(ϕt,0(x))

+
∫ t

0
exp

{
1
2

∫ t

s
σ∗(r, ϕt,r(x))2dr +

∫ t

s
b∗(r, ϕt,r(x)) dr + σ∗(r, ϕt,r(x)) d̂B(r)

+
∫ t

s

∫
R0

(log(1 + θ∗(r, ϕt,r(x), z))− θ∗(r, ϕt,r(x), z)) dr

+
∫ t

s

∫
R0

log(1 + θ∗(r, ϕt,r(x), z) Ñ(d̂r, dz)
}
×(

β(s, x)
∂

∂u
b(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω) ds

+β(s, x)
∂

∂u
σ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω) ◦ d̂B(s)

)
, (4.3.17)

Finally, we require the following conditions:
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5. Suppose that for all u ∈ AE the processes

K(t, x) :=
∂

∂γ
g(x,Γ(T, x)) +

∫ T

t

∂

∂γ
f (s, x,Γ(s, x), u(s, x)) ds

DtK(t, x) :=Dt
∂

∂γ
g(x,Γ(T, x)) +

∫ T

t
Dt

(
∂

∂γ
f(s, x,Γ(s, x), u(s, x))

)
ds

Dt,zK(t, x) :=Dt,z
∂

∂γ
g(x,Γ(T, x)) +

∫ T

t
Dt,z

(
∂

∂γ
f(s, x,Γ(s, x), u(s, x))

)
ds

H0(s, x, γ, γ′, u) :=K(s, x)b(s, x, γ, γ′, u, ω) +DsK(s, x)σ(s, x, γ, γ′, u, ω) (4.3.18)

+
∫

R
Ds,zK(s, x)θ(s, x, γ, γ′, u, z, ω) ν(dz)

Z(t, s, x) := exp
{∫ t

s
Fn+1

(
x, ◦d̂r

)}
, (4.3.19)

p(t, x) :=K(t, x) +
∫ T

t

{
∂

∂γ
H0(s, x,Γ(s, x),∇xΓ(s, x), u(s, x)) + L∗K(s, x)

+ ∇∗x
(
∇γ′H0(s, x,Γ(s, x),∇xΓ(s, x), u(s, x))

)}
Z(t, s, ϕs,t(x)) ds

q(t, x) :=Dtp(t, x)

r(t, x, z) :=Dt,zp(t, x); t ∈ [0, T ], z ∈ R0, x ∈ G .

are well-defined and where ϕs,t and ϕ
(i)
t,s are defined as before.
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Assume also that

E

[∫ T

0

∫
G

{
|K(t, x)|

(
|LY (t, x)|+

∣∣∣∣Y (t, x)
∂

∂γ
b(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω)

∣∣∣∣
+
∣∣∣∣β(t, x)

∂

∂u
b(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω)

∣∣∣∣
+
∣∣∇xY (t, x)∇γ′b(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω)

∣∣)
+ |DtK(t, x)|

(∣∣∣∣Y (t, x)
∂

∂γ
σ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω)

∣∣∣∣
+
∣∣∇xY (t, x)∇γ′σ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω)

∣∣
+
∣∣∣∣β(t, x)

∂

∂u
σ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), ω)

∣∣∣∣)
+
∫

R
|Dt,zK(t, x)|

(∣∣∣∣Y (t, x)
∂

∂γ
θ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), z, ω)

∣∣∣∣
+
∣∣∇xY (t, x)∇γ′θ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), z, ω)

∣∣
+
∣∣∣∣β(t, x)

∂

∂u
θ(t, x,Γ(t, x),∇xΓ(t, x), u(t, x), z, ω)

∣∣∣∣) ν(dz)

+
∣∣∣∣β(t, x)

∂

∂u
f(t, x,Γ(t, x), u(t, x))

∣∣∣∣} dt dx]
<∞.

Here L∗ is the dual operator of L. Further, the densely defined operator ∇∗x stands

for the adjoint of ∇x, that is

(g,∇xf)L2(G;Rn) = (∇∗xg, f)L2(G;R) (4.3.20)

for all f ∈ Dom (∇x) , g ∈ Dom (∇∗x). For example, if g = (g1, ..., gn) ∈ C∞0 (G; Rn),

then ∇∗xg =
n∑
j=1

∂gj
∂xj

.

Let us comment that DtK(t, x) and Dt,zK(t, x) in condition 5 exist, if e.g., coefficients b, σ, θ

fulfill a global Lipschitz condition, f is independent of u in condition 1 and the operator L

is the generator of a strongly continuous semigroup. See e.g., [94, 126] and [21, Section 5].

Now let us introduce the general Hamiltonian

H : [0, T ]×G× R× Rn × U × Ω −→ R
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by

H(t, x, γ, γ′, u, ω) := f(t, x, γ, u, ω) + p(t, x)b(t, x, γ, γ′, u, ω) +Dtp(t, x)σ(t, x, γ, γ′, u, ω)

+
∫

R
Dt,zp(t, x)θ(t, x, γ, γ′, u, z, ω) ν(dz). (4.3.21)

4.3.3 A general stochastic maximum principle for a partial information

control problem

We can now state a general stochastic maximum principle for our partial information control

problem (4.2.4):

Theorem 4.3.3 Retain the conditions 1-5. Assume that û ∈ AE is a critical point of the

performance functional J(u) given by (4.2.4), that is

d

dy
J(û+ yβ)

∣∣∣∣
y=0

= 0 (4.3.22)

for all bounded β ∈ AE . Then

E

[
EQ

[∫
G

∂

∂u
Ĥ(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x))dx

]∣∣∣∣ Et] = 0 a.e. in (t, x, ω), (4.3.23)

where

Γ̂(t, x) = Γ(û)(t, x),

Ĥ(t, x, γ, γ′, u, ω) = f(t, x, γ, u, ω) + p̂(t, x)b(t, x, γ, γ′, u, ω) +Dtp̂(t, x)σ(t, x, γ, γ′, u, ω)

+
∫

R
Dt,z p̂(t, x)θ(t, x, γ, γ′, u, z, ω)ν(dz) ,

with

p̂(t, x) = K̂(t, x) +
∫ T

t

{
∂

∂γ
Ĥ0(s, x, Γ̂, Γ̂′, û, ω) + L∗K̂(s, x)

+∇∗x
(
∇γ′H0(s, x, Γ̂, Γ̂′, û, ω)

)}
Ẑ(t, s, ϕ̂s,t(x))ds ,

K̂(t, x) =
∂

∂γ
g(x, Γ̂(T, x), ω) +

∫ T

t

∂

∂γ
f(s, x, Γ̂(s, x), û(s, x), ω)ds,
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where ϕ̂s,t is the solution of the of the Stratonovich SDE

ϕs,t(x) = x−
∫ t

s
Ĝ(ϕ̂s,r(x), ◦dr),

with Ĝ(x, t) := (X1(x, t) + F̂1(x, t), · · · , Xn(x, t) + F̂n(x, t)),

ϕ̂s,t(x) =x−
∫ t

s
Ĝ(ϕs,r(x), ◦dr),

F̂i(x, dt) := ̂̃bi(t, x) dt+ ̂̃σi(t, x) dB(t), i = 1, · · · , n

F̂n+1(x, dt) := b̂∗(t, x) dt+ σ̂∗(t, x) dB(t) +
∫

R0

θ̂∗(t, x, z)Ñ(dt, dz)

F̂n+2(x, t) :=
∫ t

0
b̂u(s, x) ds+

∫ t

0
σ̂u(s, x) dB(s)

̂̃
bi(t, x) =

∂

∂γ
′
i

b(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x), ω), i = 1, · · · , n

̂̃σi(t, x) =
∂

∂γ
′
i

σ(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x), ω), i = 1, · · · , n

̂̃
θi(t, x) =

∂

∂γ
′
i

θ(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x), z, ω), i = 1, · · · , n

b̂∗(t, x) =
∂

∂γ
b(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x), ω)

σ̂∗(t, x) =
∂

∂γ
σ(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x), ω)

θ̂∗(t, x, z) =
∂

∂γ
θ(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x), z, ω)

b̂u(t, x) :=β(s, x)
∂

∂u
b(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x), ω)

σ̂u(t, x) :=β(s, x)
∂

∂u
σ(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x), ω),

and

Ẑ(t, s) := exp
{∫ t

s
Fn+1

(
ϕ̂s,r(x), ◦d̂r

)}
,

Remark 4.3.4 We remark that in Theorem 4.3.3 the partial derivatives of H and H0 with

respect to u, γ, and γ′ only refer to differentiation at places where the arguments appear in

the coefficients of the definitions (4.3.18) and (4.3.21).

Proof. See Appendix A, Section A.2.
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4.4 Applications

In this Section we take aim at two applications of Theorem 4.3.3 : The first one pertains to

partial information optimal harvesting, whereas the other one refers to portfolio optimiza-

tion under partial observation.

4.4.1 Partial information optimal harvesting

Assume that Γ(t, x) describes the density of a population (e.g. fish) at time t ∈ (0, T ) and at

the location x ∈ G ⊂ Rd. Further suppose that Γ(t, x) is modeled by the stochastic-reaction

diffusion equation

dΓ(t, x) =
[

1
2

∆Γ(t, x) + b(t)Γ(t, x)− c(t)
]
dt+ σ(t)Γ(t, x) dB(t)

+
∫

R
θ(t, z)Γ(t, x)Ñ(dz, dt), (t, x) ∈ [0, T ]×G, (4.4.1)

where ∆=
n∑
i=1

∂2

∂X2
i

is the Laplacian,

with boundary condition

Γ(0, x) = ξ(x), x ∈ G

Γ(t, x) = η(t, x), (t, x) ∈ (0, T )× ∂G.

where b, σ, θ, c are given processes such that D1–D10 in Section 4.3.2 are fulfilled.

The process c(t) ≥ 0 is our harvesting rate, which is assumed to be a Et−predictable

admissible control.

We aim to maximize both expected cumulative utility of consumption and the terminal size

of the population subject to the performance functional

J(c) = E

[∫
G

∫ T

0
ζ(s)U(c(s)) ds dx+

∫
G
ξΓ(c)(T, x) dx

]
, (4.4.2)
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where U : [0,+∞) −→ R is a C1 utility function, ζ(s) = ζ(s, x, ω) is an Ft−predictable

process and ξ = ξ(ω) is an FT−measurable random variable such that

E

[∫
G
|ζ(t, x)| dx

]
<∞ and E

[
ξ2
]
<∞.

We want to find an admissible control ĉ ∈ AE such that

sup
c∈AE

J(c) = J(ĉ). (4.4.3)

Note that condition 1 of Section 4.3.2 is fulfilled. Using the same arguments in [10] it can

be verified that the linear SPDE (4.4.1) also satisfies conditions 2–4. Using the previous

notation, we note that in this case, with u = c,

f(t, x,Γ(t, x), c(t), ω) = ζ(s, ω)U(c(t)); g(x,Γ(t, x), ω) = ξ(ω)Γ(c)(t, x).

Hence

K(t, x) =
∂

∂γ
g(x,Γ(T, x), ω) +

∫ T

t

∂

∂γ
f(s, x,Γ(s, x), u(s, x), ω) ds = ξ(ω),

H0(t, x, γ, c) =ξ(ω) (b(t, x)γ − c) +Dtξ(ω)σ(t)γ +
∫

R
Dt,zξ(ω)θ(t, z)γ ν(dz) dt,

I(t, s, x) =
(
b(t, x)ξ(ω) +Dtξ(ω)σ(t) +

∫
R
Dt,zξ(ω)θ(t, z) ν(dz)

)
× Z(t, s, ϕ̂s,t(x)),

I1(t, s, x) =I2(t, s, x) = 0,

Z(s, t, x) = exp
{∫ s

t
Fn+1(x, ◦d̂r)

}
,

Fn+1(x, dt) =b(t) dt+ σ(t) dB(t) +
∫

R0

θ(t, z)Ñ(dt, dz).

In this case we have ϕs,t(x) = x since K(s, x) = ξ(ω) if follows that L∗K(s, x) = 0, in

addition, H0 does not depend on γ′ and then ∇∗x
(
∇γ′H0(s, x,Γ(s, x),∇xΓ(s, x), u(s, x))

)
=

0. Therefore

p(t, x) = ξ(ω) +
∫ T

t

(
b(t, x)ξ(ω) +Dtξ(ω)σ(t) +

∫
R
Dt,zξ(ω)θ(t, z)ν(dz)

)
Z(t, r, ϕ̂s,t(x)) dr,

(4.4.4)

and the Hamiltonian becomes

H(t, x, γ, c) = ζ(t)U(c) + p(t, x) (b(t, x)Γ(t, x)− c(t)) +Dtp(t, x)σ(t)

+
∫

R0

Dt,zp(t, x)θ(t, z)ν(dz). (4.4.5)
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Then, ĉ ∈ AE is an optimal control for the problem (4.4.3) if we have:

0 = E

[
EQ

[∫
G

∂

∂c
H(t, x, Γ̂(t, x), ĉ(t)) dx

]∣∣∣∣ Et]
= E

[
EQ

[∫
G

{
ζ(t)U ′(ĉ(t))− p(t, x)

}
dx

]∣∣∣∣ Et]
= U ′(ĉ(t))E

[
EQ

[∫
G
ζ(t, x) dx

]∣∣∣∣ Et]− E [EQ [∫
G
p(t, x) dx

]∣∣∣∣ Et]
We have proved a theorem similar to Theorem 4.2 in [88]:

Theorem 4.4.1 If there exists an optimal harvesting rate ĉ(t) of problem (4.4.3), then it

satisfies the equation

U ′(ĉ(t))E
[
EQ

[∫
G
ζ(t, x) dx

]∣∣∣∣ Et] = E

[
EQ

[∫
G
p(t, x) dx

]∣∣∣∣ Et] . (4.4.6)

4.4.2 Application to optimal stochastic control of jump diffusion with

partial observation

In this Subsection we want to apply ideas of non-linear filtering theory in connection with

Theorem 4.3.3 to solve a portfolio optimization problem, where the trader has limited

access to market information (Example 4.4.3). As for general background information on

non-linear filtering theory the reader may e.g., consult [10]. For the concrete setting that

follows below see also [86] and [90].

Suppose that the state process X(t) = X(u)(t) and the observation process Z(t) are de-

scribed by the following system of SDE’s:

dX(t) =α(X(t), u(t)) dt+ β(X(t), u(t)) dBX(t),

dZ(t) =h(t,X(t)) dt+ dBZ(t) +
∫

R0

ξ Nλ(dt, dξ), (4.4.7)

where (BX(t);BZ(t)) ∈ R2 is a Wiener process independent of the initial value X(0), and

Nλ is an integer valued random measure with predictable compensator

µ(dt, dξ, ω) = λ(t,Xt, ξ) dt ν(dξ),
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for a Lévy measure ν and an intensity rate function λ(t, x, ξ), such that the increments of

Nλ are conditionally independent with respect to the filtration generated by BX
t . Further

u(t) is a control process which takes values in a closed convex set U ⊂ R and which is

adapted to the filtration Gt generated by the observation process Z(t). The coefficients

α : R× U −→ R, β : R× U −→ R, λ : R+ × R× R0 −→ R and h : R+ × R −→ R are twice

continuously differentiable.

In what follows we shall assume that a strong solution X(t) = X(u)(t) of System (4.4.7),

if it exists, takes values in a given Borel set G ⊆ R. Let us introduce the performance

functional

J(u) := E

[∫ T

0
f(X(t), Z(t), u(t)) dt+ g(X(T ), Z(T ))

]
,

where f : G × R × U −→ R, g : G × R −→ R are (lower) bounded C1 functions. We want

to find the maximizer u∗ of J , that is

J∗ = sup
u∈A

J(u) = J(u∗), (4.4.8)

where A is the set of admissible controls consisting of Gt−predictable controls u such that

System (4.4.7) admits a unique strong solution.

We shall now briefly outline how the optimal control problem (4.4.8) for SDE’s with partial

observation can be transformed into one for SPDE’s with complete information. See e.g.,

[10] and [86] for details. In the sequel we assume that λ(t, x, ξ) > 0 for all t, x, ξ and that

the exponential process

Mt := exp
{∫ t

0
h(X(s)) dBZ(s)− 1

2

∫ t

0
h2(X(s)) ds

+
∫ t

0

∫
R0

log λ(s,X(s), ξ)Nλ(ds, dξ) +
∫ t

0

∫
R0

[1− λ(s,X(s), ξ)] ds ν(dξ)
}

; t ≥ 0

is well defined and a martingale. Define the change of measure

dQ′ = MTdP
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and set

NT = M−1
T

Using the Girsanov theorem for random measures and the uniqueness of semimartingale

characteristics (see e.g., [67]), one sees that the processes in System (4.4.7) get decoupled

under the measure Q′ in the sense the system is transformed to

dX(t) =α(X(t), u(t)) dt+ β(X(t), u(t)) dBX(t),

dZ(t) = dB(t) + dL(t),

where Z(t) is a Levy process independent of Brownian motion BX(t), and consequently

independent of X(t), under Q′. Here

B(t) = BZ(t)−
∫ t

0
h(X(s)) ds

is the Brownian motion part and

L(t) =
∫ t

0

∫
R0

ξN(dt, dξ)

is the pure jump component associated to the Poisson random measureN(dt, dξ) = Nλ(dt, dξ)

with compensator given by dsν(dξ). Define the differential operator A = Az,u by

Aφ(x) = Auφ(x) = α(x, u)
dφ

dx
(x) +

1
2
β2(x, u)

d2φ

dx2
(x)

for φ ∈ C2
0 (R). Hence Au is the generator of X(t), if u is constant. Set

a(x, u) =
1
2
β2(x, u). (4.4.9)

Then the adjoint operator A∗ of A is given by

A∗φ =
∂

∂x

(
a(x, u)

dφ

dx
(x)
)

+
∂

∂x

(
∂a

∂x
(x, u)φ(x)

)
− ∂

∂x
(a(x, u)φ(x)) . (4.4.10)

Let us assume that the initial condition X(0) has a density p0 and that there exists a unique

strong solution Φ(t, x) of the following SPDE (Zakai equation)

dΦ(t, x) = A∗Φ(t, x) dt+ h(x)Φ(t, x) dB(t) +
∫

R0

[λ(t, x, ξ)− 1]Φ(t, x) Ñ(dt, dξ), (4.4.11)



4.4 Applications 103

with

Φ(0, x) = p0(x)

Then Φ(t, x) is the unnormalized conditional density of X(t) given Gt and satisfies:

EQ′ [φ(X(t))Nt|Gt] =
∫

R
φ(x)Φ(t, x)dx (4.4.12)

for all φ ∈ Cb(R).

Using Relations (4.4.12) and (4.4.11) under the change of measure Q′ and the definition of

the performance functional we obtain that

J(u) = E

[∫ T

0
f(X(t), Z(t), u(t))dt+ g(X(T ), Z(T ))

]
= EQ′

[{∫ T

0
f(X(t), Z(t), u(t))dt+ g(X(T ), Z(T ))

}
NT

]
= EQ′

[∫ T

0
f(X(t), Z(t), u(t))Ntdt+ g(X(T ), Z(T ))NT

]
= EQ′

[∫ T

0
EQ [f(X(t), Z(t), u(t))Nt | Gt] dt+ EQ [g(X(T ), Z(T ))NT | Gt]

]
= EQ′

[∫ T

0

∫
G
f(x, Z(t), u(t))Φ(t, x)dxdt+

∫
G
g(x, Z(T ))Φ(T, x)dx

]
The observation process Z(t) is a Q′-Lévy process. Hence the partial observation control

problem (4.4.8) reduces to a SPDE control problem under complete information. More

precisely, our control problem is equivalent to the maximization problem

sup
u
EQ′

[∫ T

0

∫
G
f(x, Z(t), u(t))Φ(t, x) dx dt+

∫
G
g(x, Z(T ))Φ(T, x) dx

]
(4.4.13)

where Φ solves the SPDE (4.4.11). So the latter problem can be tackled by means of the

maximum principle of Section 4.3.3.

For convenience, let us impose that a in Equation (4.4.9) is independent of the control, i.e.,

a(x, u) = a(x) .

Denote by A1 the set u ∈ A for which Equation (4.4.11) has a unique solution. Consider
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the general stochastic Hamiltonian (if existent) of the control problem (4.4.13) given by

H(t, x, φ, φ′, u, ω) = f(t, x, Z(t), u)φ+ p(t, x)b(t, x, φ, φ′, u) +Dtp(t, x)h(x)φ

+
∫

R0

Dt,zp(t, x)[λ(t, x, ξ)− 1]φ ν(dz), (4.4.14)

where

b(t, x, φ, φ′, u) =
(
d2a

dx2
(x)− α(x, u)

)
φ+

(
da

dx
(x)− α(x, u)

)
φ′

and where p(t, x) is defined as in Equation (4.3.21) with

g(x, φ, ω) = g(x, Z(T ))φ

and

Lψ(x) = a(x)
d2ψ

dx2
(x), ψ ∈ C2

0 (R).

Assume that the conditions 1–5 in Section 4.3.2 are satisfied with respect to Problem (4.4.13)

for controls u ∈ A1. Then by the general stochastic maximum principle (Theorem 4.3.3)

applied to the partial information control problem (4.4.8) we find that

E

[
EQ

[∫
G

∂

∂u
Ĥ(t, x, Φ̂, Φ̂

′
, û, ω) dx

∣∣∣∣Gt]] = 0, (4.4.15)

if û ∈ A1 is an optimal control.

4.4.3 Optimal consumption with partial observation

Let us illustrate the maximum principle by inquiring into the following portfolio optimiza-

tion problem with partial observation: Assume the wealth X(t) at time t of an investor is

modeled by

dX(t) = [µX(t)− u(t)] dt+ σX(t) dBX(t), 0 ≤ t ≤ T,

where m ∈ R, σ 6= 0 are constants, BX(t) a Brownian motion and u(t) ≥ 0 the consumption

rate. Suppose that the initial value X(0) has the density p0(x) and that u(t) is adapted to

the filtration Gt generated by the observation process

dZ(t) = mX(t) dt+ dBZ(t) +
∫

R0

ξ Nλ(dt, dξ), Z(0) = 0 ,
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where m is a constant. As before we require that (BX(t), BZ(t)) is a Brownian motion

independent of the initial value X(0), and that Nλ is an integer valued random measure

as described in System (4.4.7). Further, let us restrict the wealth process X(t) to be

bounded from below by a threshold ζ > 0 for 0 ≤ t ≤ T . The investor intends to maximize

the expected utility of his consumption and terminal wealth according to the performance

criterion

J(u) = E

[∫ T

0

ur(t)
r

dt+ θXr(T )
]
, r ∈ (0, 1), θ > 0. (4.4.16)

So we are dealing with a partial observation control problem of the type (4.4.8) (for G =

[ζ,∞)). Here, the operator A in (4.4.11) has the form

Aφ(x) =
1
2
σ2x2φ′′(x) + [µx− u]φ′(x), (4.4.17)

(where ′ denotes the differentiation with respect to x) and hence

A∗φ(x) =
1
2
σ2x2φ′′(x)− [µx− u]φ′(x)− µφ(x) . (4.4.18)

Therefore the Zakai equation becomes

dΦ(t, x) =
[

1
2
σ2x2Φ′′(t, x)− [µx− u] Φ′(t, x)− µΦ(t, x)

]
dt+ xΦ(t, x) dB(t) (4.4.19)

+
∫

R0

[λ(t, x, ξ)− 1]Φ(t, x) Ñ(dt, dξ),

Φ(0, x) = p0(x) , x > ζ,

Φ(t, 0) = 0 , t ∈ (0, T ),

where Ñ(dt, dξ) is a compensated Poisson random measure under the corresponding measure

Q′. Since Lψ = 1
2σ

2x2 d2ψ
dx2 (x) is uniformly elliptic for x > ζ there exists a unique strong

solution of SPDE (4.4.19). Further one verifies that condition 4 of Section 4.3.2 is fulfilled.

See [10]. So our problem amounts to finding an admissible û ∈ A1 such that

J1(û) = sup
u∈A1

J1(u), (4.4.20)

where

J1(u) = EQ′

[∫ T

0

∫
G

ur(t)
r

Φ(t, x) dx dt+
∫
V
θxrΦ(T, x) dx

]
.
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Our assumptions imply that condition 1 of Section 4.3.2 holds. Further, by exploiting the

linearity of the SPDE (4.4.19) one shows as in [11] that also the conditions 2–4 in Section

4.3.2 are fulfilled. Using the notation of (4.4.14) we see that

f(x, Z(t), u(t)) =
ur(t)
r

,

g(x, Z(T )) =θxr,

L∗Φ(t, x) =
1
2
σ2x2 ∂

2

∂x2
Φ(t, x),

K(t, x) =θxr(T ) +
∫ T

t

ur(s)
r

ds,

H0(t, x, φ, φ′, u) =
[
(−µx− u)φ′(t, x)− µφ(t, x)

]
K(t, x) +DtK(t, x)xφ

+
∫

R0

Dt,zK(t, x)[λ(t, x, ξ)− 1]φ ν(dξ)

I(t, s, x) =
(
−µK(s, x) +DsK(s, x)x+

∫
R0

Ds,zK1(s, x)[λ(s, x, ξ)− 1]ν(dξ)
)
×

Z(t, s, ϕ̂s,t(x)),

I1(t, s, x) =
1
2
σ2x2 ∂

2

∂x2
K(s, x)× Z(t, s, ϕ̂s,t(x)),

I2(t, s, x) =
∂

∂x
[(−µx− u)K(s, x)]Z(t, s, ϕ̂s,t(x)),

Z(t, s, x) = exp
{∫ s

t
Fn+1

(
x, ◦d̂r

)}
,

Fn+1(x, dt) =µdt+ xdB(t) +
∫

R0

[λ(t, x, ξ)− 1] Ñ(dt, dξ),

Fi(x, dt) = F (x, dt) =− [µx− u] dt, i = 1, · · · , n.

In this case we have ϕs,t(x) = x +
∫ s
t G(ϕs,r(x), ◦dr), where G(x, t) = X(x, t) + F (t, x).

Then

p(t, x) = K(t, x) +
∫ T

t

(
I1(r, s, x) + I2(r, s, x) + I3(r, s, x)

)
dr. (4.4.21)

So the Hamiltonian (if it exists) becomes

H(t, x, φ, φ
′
, u) =

ur(t)
r

φ+
[
(−µx− u)φ′(t, x)− µφ(t, x)

]
p(t, x)

+Dtp(t, x)xφ+
∫

R0

Dt,zp(t, x)[λ(t, x, ξ)− 1]φ ν(dξ).
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Hence, if û is an optimal control of the problem (4.4.8) such that the Hamiltonian is well-

defined, then it follows from Relations (4.4.15) and (4.4.12) that

0 = EQ′

[
EQ

[∫
G

∂

∂u
H(t, x, Φ̂, Φ̂

′
, û) dx

]∣∣∣∣Gt]
= EQ′

[
EQ

[∫
G

{
ur−1(t)Φ̂(t, x) + Φ̂′(t, x)p̂(t, x)

}
dx

]∣∣∣∣Gt] .
Thus we get

ur−1(t) = −
EQ′

[
EQ

[∫
G Φ̂′(t, x)p̂(t, x) dx

]∣∣∣Gt]
EQ′

[
EQ

[∫
G Φ̂(t, x)dx

]∣∣∣Gt] .

Using integration by parts and (4.4.12) implies that

u∗(t) =

−EQ′
[
EQ

[∫
G Φ̂′(t, x)p̂(t, x) dx

]∣∣∣Gt]
EQ′

[
EQ

[∫
G Φ̂(t, x) dx

]∣∣∣Gt]


1
r−1

=

EQ
[
EQ′

[∫
G Φ̂(t, x)p̂′(t, x) dx

∣∣∣Gt]]
EQ

[
EQ′

[∫
G Φ̂(t, x)dx

∣∣∣Gt]]


1
r−1

=

EQ
EQ′

[∫
G Φ̂(t, x)p̂′(t, x) dx

∣∣∣Gt]
EQ′

[∫
G Φ̂(t, x) dx

∣∣∣Gt]


1
r−1

=
(
EQ

[
EQ [ p̂′(t,X(t))Nt| Gt]

EQ [Nt| Gt]

]) 1
r−1

= EQ
[
E
[
p̂′(t,X(t))

∣∣Gt]] 1
r−1 .

So if u∗(t) maximizes (4.4.16) then u∗(t) necessarily satisfies

u∗(t) = EQ
[
E
[
p̂′(t,X(t))

∣∣Gt]] 1
r−1

= E
[
EQ
[
p̂′(t,X(t))

]∣∣Gt] 1
r−1 . (4.4.22)

Theorem 4.4.2 Suppose that û ∈ AGt is an optimal portfolio for the partial observation

control problem

sup
u∈AGt

E

[∫ T

0

ur(t)
r

dt+ θXr(T )
]
, r ∈ (0, 1), θ > 0,
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with the wealth and the observation processes X(t) and Z(t) at time t given by

dX(t) = [µX(t)− u(t)] dt+ σX(t)dBX(t), 0 ≤ t ≤ T,

dZ(t) =mX(t)dt+ dBZ(t) +
∫

R0

ξNλ(dt, dξ).

Then

u∗(t) = E
[
EQ
[
p̂′(t,X(t))

]∣∣Gt] 1
r−1 . (4.4.23)

Remark 4.4.3 Note that the last example cannot be treated within the framework of [88],

since the random measure Nλ(dt, dξ) is not necessarily a functional of a Lévy process. Let us

also mention that the SPDE maximum principle studied in [102] does not apply to Example

4.4.3. This is due to the fact the corresponding Hamiltonian in [102] fails to be concave.



Chapter 5

Uniqueness of decompositions of

skorohod-semimartingales

5.1 Introduction

Let X(t) = X(t, ω); t ∈ [0, T ], ω ∈ Ω be a stochastic process of the form

X(t) = ζ +
∫ t

0
α(s) ds+

∫ t

0
β(s) δB(s) +

∫ t

0

∫
R0

γ(s, z) Ñ(dz, δs), (5.1.1)

where ζ is a random variable, α is an integrable measurable process, β(s) and γ(s, z) are

measurable processes such that βχ[0,t](·) and γχ[0,t](·) are Skorohod integrable with respect

to Bs and Ñ(dz, ds) respectively, and the stochastic integrals are interpreted as Skorohod

integrals. Here B(s) = B(s, ω) and Ñ(dz, ds) = Ñ(dz, ds, ω) is a Brownian motion and and

independent Poisson random measure, respectively. Such processes are called Skorohod-

semimartingales. The purpose of this chapter is to prove that the decomposition (5.1.1) is

unique, in the sense that if X(t) = 0 for all t ∈ [0, T ] then

ζ = α(·) = β(·) = γ(·, ·) = 0

(see Theorem 5.3.5).

This is an extension of a result by Nualart and Pardoux [95], who proved the uniqueness of

109
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such a decomposition in the Brownian case (i.e., Ñ = 0) and with additional assumption

on β.

We obtain Theorem 5.3.5 as a special case of a more general decomposition uniqueness

theorem for an extended class of Skorohod integral processes with values in in the space of

generalized random variables G∗. See Theorem 5.3.3. Our proof uses white noise theory of

Lévy processes. In Section 5.2 we give a brief review of this theory and in Section 5.3 we

prove our main theorem.

Our decomposition uniqueness is motivated by applications in anticipative stochastic control

theory, including insider trading in finance. See Chapters 6 and 7.

5.2 A concise review of Malliavin calculus and white noise

analysis

This Section provides the mathematical framework of our chapter which will be used in

Section 5.3. Here we want to briefly recall some basic facts from both Malliavin calculus

and white noise theory. See [31, 84] and [94] for more information on Malliavin calculus.

As for white noise theory we refer the reader to [30, 64, 65, 77, 81, 97] and [101].

In the sequel denote by S(R) the Schwartz space on R and by S p(R) its topological dual.

Then in virtue of the celebrated Bochner-Minlos theorem there exists a unique probability

measure µ on the Borel sets of the conuclear space S p(R) (i.e. B(S p(R)))such that∫
S p(R)

ei〈ω,φ〉µ(dω) = e
− 1

2
‖φ‖2

L2(R) (5.2.1)

holds for all φ ∈ S(R), where 〈ω, φ〉 is the action of ω ∈ S p(R) on φ ∈ S(R). The measure

µ is called the Gaussian white noise measure and the triple

(
S p(R),B(S p(R)), µ

)
(5.2.2)

is referred to as (Gaussian) white noise probability space.
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Consider the Doleans-Dade exponential

ẽ(φ, ω) = e
〈ω,φ〉− 1

2
‖φ‖2

L2(R) , (5.2.3)

which is holomorphic in φ around zero. Hence there exist generalized Hermite polynomials

Hn(ω) ∈
(

(S(R))⊗̂n
)p

(i.e. dual of n−th completed symmetric tensor product of S(R))

such that

ẽ(φ, ω) =
∑
n≥0

1
n!
〈
Hn(ω), φ⊗n

〉
(5.2.4)

for all φ in a neighborhood of zero in S(R). One verifies that the orthogonality relation

∫
S p(R)

〈
Hn(ω), φ(n)

〉〈
Hn(ω), ψ(n)

〉
µ(dω) =

 n!
(
φ(n), ψ(n)

)
L2(Rn)

, m = n

0 m 6= n
(5.2.5)

is fulfilled for all φ(n) ∈ (S(R))⊗̂n, ψ(m) ∈ (S(R))⊗̂m . From this relation we obtain that

the mappings (φ(n) 7−→
〈
Hn(ω), φ(n)

〉
) from (S(R))⊗̂n to L2(µ) have unique continuous

extensions

In : L̂2(Rn) −→ L2(µ),

where L̂2(Rn) is the space of square integrable symmetric functions. It turns out that L2(µ)

admits the orthogonal decomposition

L2(µ) =
∑
n≥0

⊕In(L̂2(Rn)). (5.2.6)

Note that that In(φ(n)) can be considered an n−fold iterated Itô integral φ(n) ∈ L̂2(Rn)

with respect to a Brownian motion B(t) on our white noise probability space. In particular

I1(ϕχ[0,T ]) =
〈
H1(ω), ϕχ[0,T ]

〉
=
∫ T

0
ϕ(t) dB(t), ϕ ∈ L2(R). (5.2.7)

Let F ∈ L2(µ). It follows from (5.2.6) that

F =
∑
n≥0

〈
Hn(·), φ(n)

〉
(5.2.8)

for unique φ(n) ∈ L̂2(Rn). Further require that∑
n≥1

nn!
∥∥∥φ(n)

∥∥∥2

L̂2(Rn)
<∞. (5.2.9)
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Then the Malliavin derivative Dt of F in the direction B(t) is defined by

DtF =
∑
n≥1

n
〈
Hn−1(·), φ(n)(·, t)

〉
.

Denote by D1,2 the stochastic Sobolev space which consists of all F ∈ L2(µ) such that

(5.2.9) is satisfied. The Malliavin derivative D· is a linear operator from D1,2 to L2(λ×µ) (λ

Lebesgue measure). The adjoint operator δ of D· as a mapping from Dom(δ) ⊂ L2(λ×µ) to

L2(µ) is called Skorohod integral. The Skorohod integral can be regarded as a generalization

of the Itô integral and one also uses the notation

δ(uχ[0,T ]) =
∫ T

0
u(t) δB(t) (5.2.10)

for Skorohod integrable (not necessarily adapted) processes u ∈ L2(λ×µ) (i.e. u ∈ Dom(δ)).

In view of Section 5.3 we give the construction of the dual pair of spaces ((S), (S)∗), which

was first introduced by Hida [63] in white noise analysis: Consider the self-adjoint operator

A = 1 + t2 − d2

dt2

on S(R) ⊂L2(µ). Then the Hida test function space (S) is the space of all square integrable

functionals f with chaos expansion

f =
∑
n≥0

〈
Hn(·), φ(n)

〉
such that

‖f‖20,p :=
∑
n≥0

n!
∥∥∥(A⊗n)pφ(n)

∥∥∥2

L2(Rn)
<∞ (5.2.11)

for all p ≥ 0. We mention that (S) is a nuclear Fréchet algebra, that is a countably

Hilbertian nuclear space with respect to the seminorms ‖·‖0,p , p ≥ 0 and an algebra with

respect to ordinary multiplication of functions. The topological dual (S)∗ of (S) is the Hida

distribution space.
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Another useful dual pairing which was studied in [115] is (G,G∗). Denote by N the Ornstein-

Uhlenbeck operator (or number operator). The space of smooth random variables G is the

space of all square integrable functionals f such that

‖f‖2q :=
∥∥eqNf∥∥2

L2(µ)
<∞ (5.2.12)

for all q ≥ 0. The dual of G denoted by G∗ is called space of generalized random variables.

We have the following interrelations of the above spaces in the sense of inclusions:

(S) ↪→ G ↪→ D1,2 ↪→ L2(µ) ↪→ G∗ ↪→ (S)∗. (5.2.13)

In what follows we define the white noise differential operator

∂t = Dt|(S) (5.2.14)

as the restriction of the Malliavin derivative to the Hida test function space. It can be

shown that ∂t maps (S) into itself, continuously. We denote by ∂∗t : (S)∗ −→ (S)∗ the

adjoint operator of ∂t. We mention the following crucial link between ∂∗t and δ:∫ T

0
u(t) δB(t) =

∫ T

0
∂∗t u(t) dt, (5.2.15)

where the integral on the right hand side is defined on (S)∗ in the sense of Bochner. In

fact, the operator ∂∗t can be represented as Wick multiplication with Brownian white noise

Ḃ(t) = dB(t)
dt , i.e.,

∂∗t u = u � Ḃ(t), (5.2.16)

where � represents the Wick or Wick-Grassmann product. See [65].

We now shortly elaborate a white noise framework for pure jump Lévy processes: Let A

be a positive self-adjoint operator on L2(X,π), where X = R× R0 (R0 := R\{0})and π =

λ×v. Here ν is the Lévy measure of a (square integrable) Lévy process ηt. Assume that A−p

is of Hilbert-Schmidt type for some p > 0. Then denote by S(X) the standard countably

Hilbert space constructed from A. See e.g., [97] or [64]. Let S p(X) be the dual of S(X).

In what follows we impose the following conditions on S(X) :
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(i) Each f ∈ S(X) has a (π−a.e.) continuous version.

(ii) The evaluation functional δt : S(X) −→ R; f 7−→ f(t) belongs to S p(X) for all t.

(iii) The mapping (t 7−→ δt) from X to S p(X) is continuous.

Then just as in the Gaussian case we obtain by the Bochner-Minlos theorem the (pure

jump) Lévy noise measure τ on B(S p(X)) which satisfies∫
S p(X)

ei〈ω,φ〉 τ(dω) = exp(
∫
X

(eiφ − 1)π(dx)) (5.2.17)

for all φ ∈ S(X).

We remark that analogously to the Gaussian case each F ∈ L2(τ) has the unique chaos

decomposition

F =
∑
n≥0

〈
Cn(·), φ(n)

〉
(5.2.18)

for φ(n) ∈ L̂2(X,π) (space of square integrable symmetric functions on X). Here Cn(ω) ∈(
(S(X))⊗̂n

)p
are generalized Charlier polynomials. Note that

〈
Cn(·), φ(n)

〉
can be viewed

as the n−fold iterated Itô integral of φ(n) with respect to the compensated Poisson random

measure Ñ(dz, dt) := N(dz, dt)− v(dz)dt associated with the pure jump Lévy process

ηt =
〈
C1(·), zχ[0,t]

〉
=
∫ t

0

∫
R0

zÑ(dz, ds). (5.2.19)

Similarly to the Gaussian case we define the (pure jump) Lévy-Hida test function space

(S)τ as the space of all f =
∑

n≥0

〈
Cn(·), φ(n)

〉
∈ L2(τ) such that

‖f‖20,π,p :=
∑
n≥0

n!
∥∥∥(A⊗n)pφ(n)

∥∥∥2

L2(Xn,πn)
<∞ (5.2.20)

for p ≥ 0.

Suppressing the notational dependence on τ we mention that the spaces (S)∗, G, G∗ and

the operators Dt,z, ∂t,z, ∂∗t,z can be introduced in the same way as in the Gaussian case.

For example Equation (5.2.15) takes the form∫ T

0

∫
R0

u(t, z) Ñ(dz, δt) =
∫ T

0

∫
R0

∂∗t,zu(t, z) ν(dz) dt, (5.2.21)
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where the left hand side denotes the Skorohod integral of u(·, ·) with respect to Ñ(·, ·), for

Skorohod integrable processes u ∈ L2(τ ×π). See e.g., [81] or [66]. Similar to the Brownian

motion case, (see (5.2.16)), one can prove the representation

∂∗t,z u = u � ˙̃
N(z, t), (5.2.22)

where ˙̃
N(z, t) = Ñ(dz,dt)

ν(dz)×dt is the white noise of Ñ . See [65] and [101].

In the sequel we choose the white noise probability space

(Ω,F , P ) =
(
S p(R)× S p(X),B(S p(R))⊗ B(S p(X))), µ× τ

)
(5.2.23)

and we suppose that the above concepts are defined with respect to this stochastic basis.

5.3 Main results

In this Section we aim at establishing a uniqueness result for decompositions of Skorohod-

semimartingales. Let us clarify the latter notion in the following:

Definition 5.3.1 (Skorohod-semimartingale) Assume that a process Xt, 0 ≤ t ≤ T on

the probability space (5.2.23) has the representation

Xt = ζ +
∫ t

0
α(s) ds+

∫ t

0
β(s) δB(s) +

∫ t

0

∫
R0

γ(s, z) Ñ(dz, δs) (5.3.1)

for all t. Here we require that βχ[0,t](·) resp. γχ[0,t](·) are Skorohod integrable with respect

to Bt respectively Ñ(dz, dt) for all 0 ≤ t ≤ T. Further ζ is a random variable and α a

process such that ∫ T

0
|α(s)| ds <∞ P -a.e.

Then Xt is called a Skorohod-semimartingale.

Obviously, the Skorohod-semimartingale is a generalization of semimartingales of the type

Xt = ζ +
∫ t

0
α(s) ds+

∫ t

0
β(s) dB(s) +

∫ t

0

∫
R0

γ(s, z) Ñ(dz, ds),
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where β, γ are predictable Itô integrable processes w.r.t. to some filtration Ft and where ζ

is F0-measurable. The Skorohod-semimartingale also extends the concepts of the Skorohod

integral processes∫ t

0
β(s) δB(s) and

∫ t

0

∫
R0

γ(s, z) Ñ(dz, δs), 0 ≤ t ≤ T.

Further it is worth mentioning that the increments of the Skorohod integral process Y (t) :=∫ t
0 β(s) δB(s) satisfy the following orthogonality relation:

E [Y (t)− Y (s)
∣∣F[s,t]c

]
= 0, s < t,

where F[s,t]c is the σ−algebra generated by the increments of the Brownian motion in the

complement of the interval [s, t]. See [94] or [108]. We point out that Skorohod integral

processes may exhibit very rough path properties. For example consider the Skorohod SDE

Y (t) = η +
∫ t

0
Y (s) δB(s), η = sign(B(1)), 0 ≤ t ≤ 1.

It turns out that the Skorohod integral process X(t) = Y (t) − η possesses discontinuities

of the second kind. See [19]. Another surprising example is the existence of continuous

Skorohod integral processes
∫ t

0 β(s) δB(s) with a quadratic variation, which is essentially

bigger than the expected process
∫ t

0 β
2(s) ds. See [9].

In order to prove the uniqueness of Skorohod-semimartingale decompositions we need the

following result which is of independent interest:

Theorem 5.3.2 Let ∂∗t and ∂∗t,z be the white noise operators of Section 5.2. Then

(i) ∂∗t maps G∗\{0} into (S)∗\G∗.

(ii) The operator

(u 7−→
∫

R0

∂∗t,zu(t, z) ν(dz))

maps G∗\{0} into (S)∗\G∗.

(iii)

∂∗t +
∫

R0

∂∗t,z(·) ν(dz) : G∗\{0} × G∗\{0}−→(S)∗\G∗.
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Proof. Without loss of generality it suffices to show that

∂∗t maps G∗\{0} into (S)∗\G∗.

For this purpose consider a F ∈ G∗\{0} with formal chaos expansion

F =
∑
n≥0

〈
Hn(·), φ(n)

〉
.

where φ(n) ∈ L̂2(Rn). One checks that
〈
Hn(·), φ(n)

〉
can be written as〈

Hn(·), φ(n)
〉

=
∑
|α|=n

cα

〈
Hn(·), ξ⊗̂α

〉
where

cα =
(
φ(n), ξ⊗̂α

)
L2(Rn)

(5.3.2)

with

ξ⊗̂α = ξ⊗̂α1
1 ⊗̂...⊗̂ξ⊗̂αkk

for Hermite functions ξk, k ≥ 1 and multiindices α = (α1, ..., αk), αi ∈ N0. Here |α| :=∑k
i=1 αi. By Equation (5.2.5) we know that

∞ >
∥∥∥〈Hn(·), φ(n)

〉∥∥∥2

L2(µ)
=
∑
|α|=n

α!c2
α.

Assume that

∂∗t F ∈ G∗. (5.3.3)

Then ∂∗t F has a formal chaos expansion

∂∗t F =
∑
n≥0

〈
Hn(·), ψ(n)

〉
.

Thus it follows from of the definition of ∂∗t (see Section 5.2) that

∞ >
∥∥∥〈Hn(·), ψ(n)

〉∥∥∥2

L2(µ)
=
∑
|γ|=n

γ!

 ∑
α+ε(m)=γ

cα · ξm(t)

2

, (5.3.4)

where the multiindex ε(m) is defined as

ε(m)(i) =

 1, i = m

0 else
.
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On the one hand we observe that

∑
|γ|=n

γ!

 ∑
α+ε(m)=γ

cα · ξm(t)

2

=
n∑
k=1

∑
(a1,...,ak)∈Nk
a1+...+ak=n

a1! · ... · ak!
∑

i1>i2>...>ik

∑
m≥1

ca1ε(i1)+...+akε
(ik)−ε(m) · ξm(t)

2

,

where coefficients are set equal to zero, if not defined. So we get that

∥∥∥〈Hn(·), ψ(n)
〉∥∥∥2

L2(µ)

=
n∑
k=1

∑
(a1,...,ak)∈Nk
a1+...+ak=n

a1! · ... · ak!a1! · ... · ak!
∑

i1>i2>...>ik

 k∑
j=1

c
a1ε(i1)+...+akε

(ik)−ε(ij) · ξij (t)

2

.

(5.3.5)

By our assumption there exist n∗ ∈ N0, a∗2, ..., a
∗
k0
∈ N, pairwise unequal i∗2, ..., i

∗
k0
, k0 ≤ n∗−1

such that

a∗2 + ...+ a∗k0
= n∗ − 1

and

c
a∗2ε

(i∗2)+...+a∗k0
ε
(i∗
k0

) 6= 0. (5.3.6)

On the other hand it follows from Equation (5.3.5) for n = n∗ that

∥∥∥〈Hn(·), ψ(n)
〉∥∥∥2

L2(µ)

≥ a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

 k0∑
j=1

c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε(i

∗
j

) · ξi∗j (t)

2

= a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

k0∑
j1,j2=1

(
c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε

(i∗
j1

) · ξi∗j1 (t)

·c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε

(i∗
j2

) · ξi∗j2 (t)
)

=:A1 +A2 +A3, (5.3.7)
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where

A1 = a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

(c
a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

))2 · (ξi∗1(t))2,

A2 = a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

k0∑
j=2

(c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε(i

∗
j

) · ξi∗j (t))
2,

A3 = a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

K0∑
j1 6=j2
j1,j2=1

(
c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε

(i∗
j1

) · ξi∗j1 (t)

·c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε

(i∗
j2

) · ξi∗j2 (t)
)
.

The first term A1 in (5.3.7) diverges to ∞ because of (5.3.6). The second term is positive.

The last term A3 can be written as

A3

= a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

2
k0∑
j=2

(
c
a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

) · ξi∗1(t)

· c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε(i

∗
j

) · ξi∗j (t)
)

+ a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

K0∑
j1 6=j2
j1,j2=1

(
c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε

(i∗
j1

) · ξi∗j1 (t)

·c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε

(i∗
j2

) · ξi∗j2 (t)
)

=:A3,1 +A3,2, (5.3.8)

where

A3,1 = a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

2
k0∑
j=2

(
c
a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

) · ξi∗j (t)

· c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε(i

∗
j

) · ξi∗1(t)
)
,

A3,2 = a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

K0∑
j1 6=j2
j1,j2=1

(
c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε

(i∗
j1

) · ξi∗j1 (t)

·c
ε(i
∗
1)+a∗2ε

(i∗2)+···+a∗k0
ε
(i∗
k0

)
−ε

(i∗
j2

) · ξi∗j2 (t)
)
.
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By means of relation (5.3.2) and the properties of basis elements one can show that the

term A3,1 in (5.3.8) converges t−a.e. The other term A3,2 with Hermite functions which do

not depend on the summation index converges by assumption, too.

We conclude that ∥∥∥〈Hn∗(·), ψ(n∗)
〉∥∥∥2

L2(µ)
=∞,

which contradicts (5.3.4) and it contradicts (5.3.3), too.

It follows that

∂∗t maps G∗\{0} into (S)∗\G∗.

The proofs of (ii) and (iii) are similar.

We are now ready to prove the main result of this chapter:

Theorem 5.3.3 [Decomposition uniqueness for general Skorohod processes]

Consider a stochastic process Xt of the form

X(t) = ζ +
∫ t

0
α(s) ds+

∫ t

0
β(s) δB(s) +

∫ t

0

∫
R0

γ(s, z) Ñ(dz, δs),

where βχ[0,t], γχ[0,t] are Skorohod integrable for all t. Further require that α(t) is in G∗ a.e.

and that α is Bochner-integrable w.r.t. G∗ on the interval [0, T ]. Suppose that

X(t) = 0 for all 0 ≤ t ≤ T.

Then

ζ = 0, α = 0, β = 0, γ = 0 a.e.

Proof. Because of Equations (5.2.15) and (5.2.21) it follows that

X(t) =ζ +
∫ t

0
α(s) ds+

∫ t

0
∂∗sβ(s) ds+

∫ t

0

∫
R0

∂∗s,zγ(s, z) ν(dz) ds

=0, 0 ≤ t ≤ T.

Thus

α(t) + ∂∗t β(t) +
∫

R0

∂∗t,zγ(t, z) ν(dz) = 0 a.e.
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Therefore

∂∗t β(t) +
∫

R0

∂∗t,zγ(t, z) ν(dz) ∈ G∗ a.e.

Then Theorem 5.3.2 implies

β = 0, γ = 0 a.e.

Remark 5.3.4 We mention that Theorem 5.3.3 is a generalization of a result in [95] in

the Gaussian case, when β ∈ L1,2, that is

‖β‖21,2 := ‖β‖2L2(λ×µ) + ‖D·β‖2L2(λ×λ×µ) <∞.

As a special case of Theorem 5.3.3, we get the following:

Theorem 5.3.5 [Decomposition uniqueness for Skorohod-semimartingales]

Let Xt be a Skorohod-semimartingale of the form

X(t) = ζ +
∫ t

0
α(s) ds+

∫ t

0
β(s) δB(s) +

∫ t

0

∫
R0

γ(s, z) Ñ(dz, δs),

where α(t) ∈ L2(P ) for all t. Then if

X(t) = 0 for all 0 ≤ t ≤ T.

we have

ζ = 0, α = 0, β = 0, γ = 0 a.e.

Example 5.3.6 Assume in Theorem 5.3.3 that γ ≡ 0. Further require α(t) ∈ Lp(µ) 0 ≤

t ≤ T for some p > 1. Since Lp(µ) ⊂ G∗ for all p > 1 (see [115]) it follows from Theorem

5.3.3 that if X(t) = 0, 0 ≤ t ≤ T then ζ = 0, α = 0, β = 0 a.e.

Example 5.3.7 Denote by Lt(x) the local time of the Brownian motion. Consider the

Donsker delta function δx(B(t)) of B(t), which is a mapping from [0, T ] into G∗. The
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Donsker delta function can be regarded as a time-derivative of the local time Lt(x), that

is

Lt(x) =
∫ t

0
δx(B(s)) ds

for all x a.e. See e.g. [64]. So we see from Theorem 5.3.3 that the random field

X(t) = ζ + Lt(x) +
∫ t

0
β(s) δB(s) +

∫ t

0

∫
R0

γ(s, z) Ñ(dz, δs)

has a unique decomposition. We remark that we obtain the same result if we generalize

Lt(x) to be a local time of a diffusion process (as constructed in [114]) or the local time

of a Lévy process (as constructed in [85]). Finally, we note that the unique decomposition

property carries over to the case when Xt has the form

X(t) = ζ +A(t) +
∫ t

0
β(s) δB(s) +

∫ t

0

∫
R0

γ(s, z) Ñ(dz, δs),

where A(t) is a positive continuous additive functional with the representation

A(t) =
∫

R
Lt(x)m(dx),

where m is a finite measure. See [13] or [53].



Chapter 6

A general stochastic maximum

principle for insider control

6.1 Introduction

In the classical Black-Scholes model, and in most problems of stochastic analysis applied to

finance, one of the fundamental hypotheses is the homogeneity of information that market

participants have. This homogeneity does not reflect reality. In fact, there exist many types

of agents in the market, who have different levels of information. In this Chapter, we are

focusing on agents who have additional information (insider), and show that, it is important

to understand how an optimal control is affected by particular pieces of such information.

In the following, let {Bs}0≤s≤T be a Brownian motion and Ñ(dz, ds) = N(dz, ds)−dsν(dz)

be a compensated Poisson random measure associated with a Lévy process with Lévy mea-

sure ν on the (complete) filtered probability space (Ω,F , {Ft}0≤t≤T , P ). In the sequel, we

assume that the Lévy measure ν fulfills∫
R0

z2 ν(dz) <∞,

where R0 := R\ {0} .

123
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Suppose that the state process X(t) = X(u)(t, ω); t ≥ 0, ω ∈ Ω is a controlled Itô-Lévy

process in R of the form:
d−(X)(t) = b(t,X(t), u(t)) dt + σ(t,X(t), u(t)) d−B(t)

+
∫

R0
θ(t,X(t), u(t), z) Ñ(dz, d−t);

X(0) = x ∈ R

(6.1.1)

Here we have supposed that we are given a filtration {Gt}t∈[0,T ] such that

Ft ⊂ Gt, t ∈ [0, T ], (6.1.2)

representing the information available to the controller at time t.

Since B(t) and Ñ(dz, dt) need not be a semimartingale with respect to {Gt}t≥0, the two

last integrals in (6.1.1) are anticipating stochastic integral that we interpret as forward

integrals.

The control process

u : [0, T ]× Ω −→ U,

is called an admissible control if (6.1.1) has a unique (strong) solution X(·) = X(u)(·) such

that u(·) is adapted with respect to the sup-filtration {Gt}t∈[0,T ].

The choice of forward integration is motivated by the possible applications to optimal

portfolio problems for insiders as in Section 6.6. (See for e.g., [14, 33, 32].) Moreover,

the applications are not restricted to this area and include all situations of optimization

problems in anticipating environment. (See e.g., [104].)

More significantly, the problem we are dealing with is the following. Suppose that we are

given a performance functional of the form

J(u) := E

[∫ T

0
f(t,X(t), u(t)) dt + g(X(T ))

]
, u ∈ AG , (6.1.3)
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where AG is a family of admissible controls u(·) contained in the set of Gt-adapted controls.

Consider

f : [0, T ]× R× U × Ω −→ R ,

g : R× Ω −→ R,

where f is an F-adapted process for each x ∈ R, u ∈ U and g is an FT -measurable random

variable for each x ∈ R satisfying

E

[∫ T

0
|f(t,X(t), u(t))| dt + |g(X(T ))|

]
< ∞ for all, u ∈ AG ,

The goal is to find the optimal control u∗ of the following insider control problem

ΦG = sup
u∈AG

J(u) = J(u∗) . (6.1.4)

We use Malliavin calculus to prove a general stochastic maximum principle for stochastic

differential equations (SDE’s) with jumps under additional information. The main result

here is difficult to apply because of the appearance of some terms, which all depend on the

control. We then consider the special case when the coefficients of the controlled process

X(·) do not depend on X; we call such processes controlled Itô-Lévy processes. In this case,

we give a necessary condition for the existence of optimal control. Using the uniqueness of

decomposition of a Skorohod-semimartingale (see [34]), we derive more precise results when

our enlarged filtration is first chaos generated (the class of such filtrations contains the class

of initially enlarged filtrations and also advanced information filtrations). We apply our

results to maximize the expected utility of terminal wealth for the insider. We show that

there does not exist an optimal portfolio for the insider. For the advanced information case,

this conclusion is in accordance with the results in [14] and [33], since the Brownian motion

is not a semimartingale with respect to the advanced information filtration. It follows that

the stock price is not a semimartingale with respect to that filtration either. Hence, we can

deduce that the market has an arbitrage for the insider in this case, by Theorem 7.2 in [29].
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In the initial enlargement of filtration case, knowing the terminal value of the stock price,

we also prove that there does not exist an optimal portfolio for the insider. This result

is a generalization of a result in [72], where the same conclusion is obtained in the special

case when the utility function is the logarithm function and there are no jumps in the stock

price. The other application pertains to optimal insider consumption. We show that there

exists an optimal insider consumption, and in some special cases the optimal consumption

can be expressed explicitly.

The Chapter is structured as follows: In Section 6.2, we briefly recall some basic concepts

of Malliavin calculus and its connection to the theory of forward integration. In Section

6.3, we use Malliavin calculus to obtain a maximum principle (i.e., necessary and sufficient

conditions) for this general non-Markovian insider information stochastic control problem.

Section 6.4 considers the special of Itô-Lévy processes. In Section 6.5, we apply our results

to some special cases of filtrations. Section 6.6 and 6.7 are respectively application to

optimal insider portfolio, and optimal insider consumption.

6.2 Framework

In this Section we briefly recall some basic concepts of Malliavin calculus and its connec-

tion to the theory of forward integration. We refer to Section 4.3 of Chapter 4 for more

informations about Malliavin calculus. As for the theory of forward integration the reader

may consult [95, 121, 124] and [32].

6.2.1 Malliavin calculus and forward integral

In this Section we briefly recall some basic concepts of Malliavin calculus and forward

integrations related to this Chapter. We refer to [95, 121, 124] and [32] for more information

about these integrals.

A crucial argument in the proof of our general maximum principle rests on duality formulas

for the Malliavin derivatives Dt and Dt,z. (See [94] or [31].)
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Lemma 6.2.1 We recall that the Skorohod integral with respect to B resp. Ñ(dt, dz)

is defined as the adjoint operator of D· : D(1)
1,2 −→ L2(λ×P (1)) resp. D·,· : D(2)

1,2 −→

L2(λ× ν×P (2)). Thus if we denote by∫ T

0
(·) δBt and

∫ T

0

∫
R0

(·) Ñ(dt, dz)

the corresponding adjoint operators the following duality relations are satisfied:

(i)

EP (1)

[
F

∫ T

0
ϕ(t)δBt

]
= EP (1)

[∫ T

0
ϕ(t)DtF dt

]
(6.2.1)

for all F ∈ D(1)
1,2 and all Skorohod integrable ϕ ∈ L2(λ×P (1)) (i.e. ϕ in the domain of

the adjoint operator).

(ii)

EP (2)

[
G

∫ T

0

∫
R0

ψ(t, z)Ñ(δt, dz)
]

= EP (2)

[∫ T

0

∫
R0

ψ(t, z)Dt,zGν(dz)dt
]

(6.2.2)

for all G ∈ D(2)
1,2 and all Skorohod integrable ψ ∈ L2(λ× ν×P (2)).

Forward integral and Malliavin calculus for B(·)

This section constitutes a brief review of the forward integral with respect to the Brownian

motion. Let B(t) be a Brownian motion on a filtered probability space (Ω,F ,Ft≥0, P ), and

T > 0 a fixed horizon.

Definition 6.2.2 Let φ : [0, T ] × Ω → R be a measurable process. The forward integral of

φ with respect to B(·) is defined by∫ T

0
φ(t, ω) d−B(t) = lim

ε→0

∫ T

0
φ(t, ω)

B(t+ ε)−B(t)
ε

dt, (6.2.3)

if the limit exist in probability, in which case φ is called forward integrable.

Note that if φ is càdlàg and forward integrable, then∫ T

0
φ(t, ω) d−B(t) = lim

∆t→0

∑
j

φ(tj)∆B(tj). (6.2.4)

where the sum is taken over the points of a finite partition of [0, T ].
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Definition 6.2.3 Let MB denote the set of stochastic functions φ : [0, T ] × Ω → R such

that:

1. φ ∈ L2 ([0, T ]× Ω), u(t) ∈ DB
1,2 for almost all t and satisfies

E

(∫ T

0
|φ(t)|2 dt +

∫ T

0

∫ T

0
|Duφ(t)|2 dudt

)
<∞ .

We will denoted by L1,2 [0, T ] the class of such processes.

2. limε→0
1
ε

∫ u
u−ε φ(t)dt = φ(u) for a.a u ∈ [0, T ] in L1,2[0, T ],

3. Dt+φ(t) := lims→t+Dsφ(t) exists in L1((0, T )⊗ Ω) uniformly in t ∈ [0, T ].

We let MB
1,2 be the closure of the linear span of MB with respect to the norm given by

‖φ‖MB
1,2

:= ‖φ‖L1,2[0,T ] + ‖Dt+φ(t)‖L1((0,T )⊗Ω)

Then we have the relation between the forward integral and the Skorohod integral (see

[76, 31]):

Lemma 6.2.4 If φ ∈MB
1,2 then it is forward integrable and∫ T

0
φ(t)d−B(t) =

∫ T

0
φ(t)δB(t) +

∫ T

0
Dt+φ(t)dt . (6.2.5)

Moreover

E

[∫ T

0
φ(t)d−B(t)

]
= E

[∫ T

0
Dt+φ(t)dt

]
. (6.2.6)

Using (6.2.5) and the duality formula for the Skorohod integral see e.g., [31], we deduce the

following result.

Corollary 6.2.5 Suppose φ ∈MB
1,2 and F ∈ DB

1,2 then

E

[
F

∫ T

0
φ(t)d−B(t)

]
= E

[
F

∫ T

0
φ(t)δB(t) + F

∫ T

0
Dt+φ(t)dt

]
= E

[∫ T

0
φ(t)DtF dt +

∫ T

0
F Dt+φ(t)dt

]
(6.2.7)
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Proposition 6.2.6 Let H be a given fixed σ-algebra and ϕ : [0, T ] × Ω → R be a H-

measurable process. Set X(t) = E [B(t)|H]. Then

E

[∫ T

0
ϕ(t)d−B(t)

∣∣∣∣H] = E

[∫ T

0
ϕ(t)d−X(t)

]
(6.2.8)

Proof. Using uniform convergence on compacts in L1(P ) and the definition of forward

integration in the sense of Russo-Vallois (see [121]) we observe that

E [
∫ T

0
ϕ(t)d−B(t) |H] =E [ lim

ε→0+

∫ T

0
ϕ(t)

B(t+ ε)−B(t)
ε

dt |H]

=L1(P )− lim
ε→0+

E [
∫ T

0
ϕ(t)

B(t+ ε)−B(t)
ε

dt |H]

= lim
ε→0+

∫ T

0
ϕ(t)E [

B(t+ ε)−B(t)
ε

|H] dt

= lim
ε→0+

∫ T

0
ϕ(t)

X(t+ ε)−X(t)
ε

dt

=
∫ T

0
ϕ(t)d−X(t), in the ucp sense

and the result follows.

Definition 6.2.7 Let (Ht)t≥0 be a given filtration and ϕ : [0, T ] × Ω → R be a H-adapted

process. The conditional forward integral of φ with respect to B(·) is defined by∫ T

0
ϕ(t)E [ d−B(t) |Ht− ] = lim

ε→0

∫ T

0
ϕ(t)

E [ B(t+ ε)−B(t) |Ht− ]
ε

dt, (6.2.9)

if the limit exist ucp sense.

Remark 6.2.8 Note that Definition 6.2.7 is different from Proposition 6.2.6 except if Ht =

H for all t

Forward integral and Malliavin calculus for Ñ(·, ·)

In this section, we review the forward integral with respect to the Poisson random measure

Ñ .

Definition 6.2.9 The forward integral

J(φ) :=
∫ T

0

∫
R0

φ(t, z)Ñ(dz, d−t) ,
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with respect to the Poisson random measure Ñ , of a càdlàg stochastic function φ(t, z), t ∈

[0, T ] , z ∈ R, with φ(t, z) = φ(ω, t, z), ω ∈ Ω,is defined as

J(φ) = lim
m→∞

∫ T

0

∫
R
φ(t, z)1UmÑ(dz, dt) ,

if the limit exist in L2(P). Here Um,m = 1, 2, · · · , is an increasing sequence of compact

sets Um ⊆ R\{0} with ν(Um) <∞ such that limm→∞ Um = R\{0}.

Definition 6.2.10 Let MÑ denote the set of stochastic functions φ : [0, T ] × R × Ω → R

such that:

1. φ(t, z, ω) = φ1(t, ω)φ2(t, z, ω) where φ1(ω, t) ∈ DÑ
1,2 is càdlàg and φ2(ω, t, z) is adapted

such that

E
[∫ T

0

∫
R
φ2(t, z)ν(dz)dt

]
<∞ ,

2. Dt+,zφ := lims→t+Ds,zφ exists in L2(P× λ× ν),

3. φ(t, z) +Dt+,zφ(t, z) is Skorohod integrable.

We let MÑ
1,2 be the closure of the linear span of MB with respect to the norm given by

‖φ‖MÑ
1,2

:= ‖φ‖L2(P×λ×ν) + ‖Dt+,zφ(t, z)‖L2(P×λ×ν)

Then we have the relation between the forward integral and the Skorohod integral (see

[32, 31]):

Lemma 6.2.11 If φ ∈MÑ
1,2 then it is forward integrable and∫ T

0

∫
R
φ(t, z)Ñ(dz, d−t) =

∫ T

0

∫
R
Dt+,zφ(t, z)ν(dz)dt+

∫ T

0

∫
R

(φ(t, z)+Dt+,zφ(t, z))Ñ(dz, δt) .

(6.2.10)

Moreover

E
[∫ T

0

∫
R
φ(t, z)Ñ(dz, d−t)

]
= E

[∫ T

0

∫
R
Dt+,zφ(t, z)ν(dz)dt

]
. (6.2.11)
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Then by (6.2.10) and duality formula for Skorohod integral for Poisson process see [31], we

have

Corollary 6.2.12 Suppose φ ∈MÑ
1,2 and F ∈ DÑ

1,2, then

E
[
F

∫ T

0

∫
R
φ(t, z)Ñ(dz, d−t)

]
=E

[
F

∫ T

0

∫
R
Dt+,zφ(t, z)ν(dz)dt

]
+ E

[
F

∫ T

0

∫
R

(φ(t, z) + Dt+,zφ(t, z))Ñ(dz, δt)
]

=E
[∫ T

0

∫
R
φ(t, z)Dt,zFν(dz)dt

]
+ E

[∫ T

0

∫
R

(F + Dt,zF )Dt+,zφ(t, z)ν(dz)dt
]
. (6.2.12)

6.3 A Stochastic Maximum Principle for insider

In view of the optimization problem (6.1.4) we require the following conditions 1–5:

1. The functions b : [0, T ] × R × U × Ω → R , σ : [0, T ] × R × U × Ω → R, θ : [0, T ] ×

R× U × R0 × Ω → R, f : [0, T ]× R× U × Ω → R and g : R× Ω → R are contained

in C1 with respect to the arguments x ∈ R and u ∈ U for each t ∈ R and a.a ω ∈ Ω.

2. For all r, t ∈ (0, T ), t ≤ r and all bounded Gt−measurable random variables α =

α(ω), ω ∈ Ω, the control

βα(s) := α(ω)χ[t,r](s), 0 ≤ s ≤ T , (6.3.1)

is an admissible control i.e., belongs to AG (here χ[t,T ] denotes the indicator function

on [t, T ]).

3. For all u, β ∈ AG with β bounded, there exists a δ > 0 such that

u+ yβ ∈ AG , for all y ∈ (−δ, δ) (6.3.2)

and such that the family{
∂

∂x
f(t,Xu+yβ(t), u(t) + yβ(t))

d

dy
Xu+yβ(t)

+
∂

∂u
f(t,Xu+yβ(t), u(t) + yβ(t))β(t)

}
y∈(−δ,δ)
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is λ× P−uniformly integrable and{
g′(Xu+yβ(T ))

d

dy
Xu+yβ(T )

}
y∈(−δ,δ)

is P−uniformly integrable.

4. For all u, β ∈ AG with β bounded the process

Y (t) = Yβ(t) =
d

dy
X(u+yβ)(t)

∣∣∣∣
y=0

exists and follows the SDE

dY u
β (t) =Yβ(t−)

[
∂

∂x
b(t,Xu(t), u(t)) dt +

∂

∂x
σ(t,Xu(t), u(t)) d−B(t)

+
∫

R0

∂

∂x
θ(t,Xu(t), u(t), z) Ñ(dz, d−t)

]
+ β(t)

[
∂

∂u
b(t,Xu(t), u(t)) dt +

∂

∂u
σ(t,Xu(t), u(t)) d−B(t)

+
∫

R0

∂

∂u
θ(t,Xu(t), u(t), z) Ñ(dz, d−t)

]
(6.3.3)

Y (0) = 0
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5. Suppose that for all u ∈ AG the processes

K(t) := g′(X(T )) +
∫ T

t

∂

∂x
f(s,X(s), u(s)) ds (6.3.4)

DtK(t) := Dtg
′(X(T )) +

∫ T

t
Dt

∂

∂x
f(s,X(s), u(s)) ds

Dt,zK(t) := Dt,zg
′(X(T )) +

∫ T

t
Dt,z

∂

∂x
f(s,X(s), u(s)) ds

H0(s, x, u) := K(s)
(
b(s, x, u) +Ds+σ(s, x, u) +

∫
R0

Ds+,zθ(s, x, u, z) ν(dz)
)

+DsK(s)σ(s, x, u) (6.3.5)

+
∫

R0

Ds,zK(s)
{
θ(s, x, u, z) +Ds+,zθ(s, x, u, z)

}
ν(dz)

G(t, s) := exp

(∫ s

t

{
∂b

∂x
(r,X(r), u(r))− 1

2

(
∂σ

∂x

)2

(r,X(r), u(r))

}
dr

+
∫ s

t

∂σ

∂x
(r,X(r), u(r)) dB−(r)

+
∫ s

t

∫
R0

{
ln
(

1 +
∂θ

∂x
(r,X(r), u(r), z)

)
− ∂θ

∂x
(r,X(r), u(r), z)

}
ν(dz) dr

+
∫ s

t

∫
R0

{
ln
(

1 +
∂θ

∂x

(
r,X(r−), u(r−), z

))}
Ñ(dz, d−r)

)
(6.3.6)

p(t) := K(t) +
∫ T

t

∂

∂x
H0(s,X(s), u(s))G(t, s) ds (6.3.7)

q(t) := Dtp(t) (6.3.8)

r(t, z) := Dt,zp(t); t ∈ [0, T ], z ∈ R0 . (6.3.9)

are well-defined.

Now let us introduce the general Hamiltonian of an insider

H : [0, T ]× R× U × Ω −→ R

by

H(t, x, u, ω) := p(t)
(
b(t, x, u, ω) +Dt+σ(t, x, u, ω) +

∫
R0

Dt+,zθ(t, x, u, ω) ν(dz)
)

+ f(t, x, u, ω) + q(t)σ(t, x, u, ω)

+
∫

R0

r(t, z)
{
θ(t, x, u, z, ω) +Dt+,zθ(t, x, u, z, ω)

}
ν(dz) (6.3.10)
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We can now state a general stochastic maximum principle for our control problem (6.1.4):

Theorem 6.3.1 1. Retain the conditions 1–5. Assume that û ∈ AG is a critical point

of the performance functional J(u) in (6.1.4), that is

d

dy
J(û+ yβ)

∣∣∣∣
y=0

= 0 (6.3.11)

for all bounded β ∈ AG. Then

E

[
∂

∂u
Ĥ(t, X̂(t), û(t))

∣∣∣∣Gt] + E[A] = 0 a.e. in (t, ω), (6.3.12)

where A is given by Equation (A.3.12)

X̂(t) =X(û)(t),

Ĥ(t, X̂(t), u) = p(t)
(
b(t, X̂, u) +Dt+σ(t, X̂, u) +

∫
R0

Dt+,zθ(t, X̂, u) ν(dz)
)

+ f(t, X̂, u) + q(t)σ(t, X̂, u)

+
∫

R0

r(t, z)
{
θ(t, X̂, u, z) +Dt+,zθ(t, X̂, u, z)

}
ν(dz) (6.3.13)

with

p̂(t) =K̂(t) +
∫ T

t

∂

∂x
Ĥ0(s, X̂(s), û(s))Ĝ(t, s) ds , (6.3.14)

K̂(t) :=g′(X̂(T )) +
∫ T

t

∂

∂x
f(s, X̂(s), û(s))ds,

and

Ĝ(t, s) := exp

(∫ s

t

{
∂b

∂x

(
r, X̂(r), u(r)

)
− 1

2

(
∂σ

∂x

)2 (
r, X̂(r), u(r)

)}
dr

+
∫ s

t

∂σ

∂x

(
r, X̂(r), u(r)

)
dB−(r)

+
∫ s

t

∫
R0

{
ln
(

1 +
∂θ

∂x

(
r, X̂(r), u(r), z

))
− ∂θ

∂x

(
r, X̂(r), u(r), z

)}
ν(dz)dt

+
∫ s

t

∫
R0

{
ln
(

1 +
∂θ

∂x

(
r, X̂(r−), u(r−), z

))}
Ñ(dz, d−r)

)
Ĥ(t, x, u) =K̂(t)

(
b(t, x, u) +Dt+σ(t, x, u) +

∫
R0

Dt+,zθ(t, x, u) ν(dz)
)

+DtK̂(t)σ(t, x, u) + f(t, x, u)

+
∫

R0

Dt,zK̂(t)
{
θ(t, x, u, z) +Dt+,zθ(t, x, u, z)

}
ν(dz)



6.4 Controlled Itô-Lévy processes 135

2. Conversely, suppose there exists û ∈ AG such that (6.3.12) holds. Then û satisfies

(6.3.11).

Proof. See Appendix A, Section A.3.

6.4 Controlled Itô-Lévy processes

The main result of the previous section (Theorem 6.3.1) is difficult to apply because of the

appearance of the terms Y (t), Dt+Y (t) and Dt+,zY (t), which all depend on the control u.

However, consider the special case when the coefficients do not depend on X, i.e., when

b(t, x, u, ω) = b(t, u, ω), σ(t, x, u, ω) = σ(t, u, ω)

and θ(t, x, u, z, ω) = θ(t, u, z, ω). (6.4.1)

Then the equation (6.1.1) gets the form
d−(X)(t) = b(t, u(t), ω)dt + σ(t, u(t), ω)d−Bt

+
∫

R0
θ(t, u(t), z, ω)Ñ(dz, d−t);

X(0) = x ∈ R

(6.4.2)

We call such processes controlled Itô-Lévy processes.

In this case, Theorem 6.3.1 simplifies to the following

Theorem 6.4.1 Let X(t) be a controlled Itô-Lévy process as given in Equation (6.4.2).

Retain the conditions (1)-(5) as in Theorem 6.3.1.

Then the following are equivalent:

1. û ∈ AG is a critical point of J(u),

2.

E

[
L(t)α + M(t)Dt+α +

∫
R0

R(t, z)Dt+,zαν(dz)
]

= 0
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for all Gt-measurable α ∈ D1,2 and all t ∈ [0, T ], where

L(t) =K(t)
(
∂b(t)
∂u

+ Dt+
∂σ(t)
∂u

+
∫

R0

Dt+,z
∂θ(t)
∂u

ν(dz)
)

+
∂f(t)
∂u

+
∫

R0

Dt,zK(t)
(∂θ(t)
∂u

+Dt+,z
∂θ(t)
∂u

)
ν(dz) + DtK(t)

∂σ(t)
∂u

, (6.4.3)

M(t) =K(t)
∂σ(t)
∂u

(6.4.4)

and

R(t, z) = {K(t) +Dt,zK(t)}
(∂θ(t)
∂u

+Dt+,z
∂θ(t)
∂u

)
. (6.4.5)

Proof.

1. It is easy to see that in this case, p(t) = K(t), q(t) = DtK(t), r(t, z) = Dt,zK(t) and

the general Hamiltonian H given by (6.3.10) is reduced to H1 given as follows

H1(s, x, u, ω) :=K(s)
(
b(s, u, ω) +Ds+σ(s, u, ω) +

∫
R0

Ds+,zθ(s, u, ω)ν(dz)
)

+DsK(s)σ(s, u, ω) + f(s, x, u, ω)

+
∫

R0

Ds,zK(s)
{
θ(s, u, z, ω) +Ds+,zθ(s, u, z, ω)

}
ν(dz).

Then, performing the same calculus lead to

A1 =A3 = A5 = 0,

A2 =E

[∫ t+h

t

{
K(t)

(
∂b(s)
∂u

+ Ds+
∂σ(s)
∂u

+
∫

R0

Ds+,z
∂γ(s)
∂u

ν(dz)
)

+
∂f(s)
∂u

+
∫

R0

Ds,zK(s)
(∂θ(s)
∂u

+Ds+,z
∂γ(s)
∂u

)
ν(dz) + DsK(s)

∂σ(s)
∂u

}
αds

]
,

A4 =E

[∫ t+h

t
K(s)

∂σ(s)
∂u

Ds+αds

]
,

A6 =E

[∫ t+h

t

∫
R0

{K(s) +Ds,zK(s)}
(∂θ(s)
∂u

+Ds+,z
∂γ(s)
∂u

)
ν(dz)Ds+,zαds

]
.
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It follows that

d

dh
A2

∣∣∣∣
h=0

=E

[{
K(t)

(
∂b(t)
∂u

+ Dt+
∂σ(s)
∂u

+
∫

R0

Dt+,z
∂θ(t)
∂u

ν(dz)
)

+
∂f(t)
∂u

+
∫

R0

Dt,zK(t)
(∂θ(t)
∂u

+Dt+,z
∂γ(t)
∂u

)
ν(dz) + DtK(t)

∂σ(t)
∂u

}
α

]
,

d

dh
A4

∣∣∣∣
h=0

=E

[
K(t)

∂σ(t)
∂u

Dt+α

]
,

d

dh
A6

∣∣∣∣
h=0

=E

[∫
R0

{K(t) +Dt,zK(t)}
(∂θ(t)
∂u

+Dt+,z
∂γ(t)
∂u

)
ν(dz)Dt+,zα

]
.

This means that

0 =E

[{
K(t)

(
∂b(t)
∂u

+ Dt+
∂σ(s)
∂u

+
∫

R0

Dt+,z
∂θ(t)
∂u

ν(dz)
)

+
∂f(t)
∂u∫

R0

Dt,zK(t)
(∂θ(t)
∂u

+Dt+,z
∂γ(t)
∂u

)
ν(dz) + DtK(t)

∂σ(t)
∂u

}
α

+ K(t)
∂σ(t)
∂u

Dt+α+
{∫

R0

{K(t) +Dt,zK(t)}
(∂θ(t)
∂u

+Dt+,z
∂γ(t)
∂u

)
ν(dz)

}
Dt+,zα

]
,

and the first implication follows.

2. The converse part follows from the arguments used in the proof of Theorem 6.3.1.

6.5 Application to special cases of filtrations

The results obtained so far are for given general sup-filtrations. To provide some concrete

examples, let us confine ourselves to particular cases of filtrations. We consider the case of

an insider who has an additional information compared to the standard normally informed

investor.

• It can be the case of an insider who always has advanced information compared to

the honest trader. This means that if Gt and Ft represent respectively the flows of

informations of the insider and the honest investor then we can write that Gt ⊃ Ft+δ(t)

where δ(t) > 0;
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• it can also be the case of a trader who has at the initial date particular information

about the future (initial enlargement of filtration). This means that if Gt and Ft

represent respectively the flows of informations of the insider and the honest investor

then we can write that Gt = Ft ∨ σ(L) where L is a random variable.

6.5.1 Filtrations satisfying conditions (Co1) and (Co2)

In the following we need the notion of D-commutativity of a σ-algebra.

Definition 6.5.1 A sub-σ-algebra A ⊆ F is D-commutable if for all F ∈ D2,1 the condi-

tional expectation E [F |A] belongs to D2,1 and

DtE [F |A] = E [DtF |A] , (Co1)

Dt,zE [F |A] = E [Dt,zF |A] (Co2)

Theorem 6.5.2 Suppose that û ∈ AG is a critical point for J(u). Assume that Gt is D-

commutable for all t. Further require that the set of Gt−measurable elements in the space

of smooth random variables G (see [115]) are dense in L2(Gt) for all t and that E [M(t) |Gt]

and E [R(t, z) |Gt] are Skorohod integrable. Then

0 =
∫ s

0
E [L(t) |Gt0 ]h(t) dt+

∫ s

0
E [M(t) |Gt0 ]h(t) δBt

+
∫ s

0

∫
R0

E [R(t, z)| Gt0 ]h(t) Ñ(δt, dz). (6.5.1)

for all h ∈ L2 ([0, T ]) with supp .h ⊆ [t0, T ] .

Proof. Without lost of generality, we give the proof for the Brownian motion case, and the

ones of the pure jump case and mixed case follow.

Let fix a t0 ∈ [0, T ). Then, by assumption it follows that for all Gt0−measurable α ∈ G and

h ∈ L2([0, T ]) with

supp .h ⊆ [t0, T ], t0 ≤ t ≤ T,

0 =
〈∫ T

0
E [L(t) |Gt0 ]h(t)dt, α

〉
+
〈
E[
∫ T

0
M(t)h(t)δBt |Gt0 ] , α

〉
.
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On the other hand the duality relation (6.2.1) implies〈
E

[∫ T

0
M(t)h(t)δBt

∣∣∣∣Gt0] , α〉 =E

[∫ T

0
M(t)h(t)δBtE [α| Gt0 ]

]
=E

[∫ T

0
M(t)h(t)DtE [α| Gt0 ] dt

]
=E

[∫ T

0
M(t)h(t)E [Dtα| Gt0 ] dt

]
=E

[∫ T

0
E [M(t)h(t)| Gt0 ]Dtαdt

]
=
〈∫ T

0
E [M(t) | Gt0 ]h(t)δBt, α

〉
for all α ∈ G. So

E

[∫ T

0
M(t)h(t)δBt

∣∣∣∣Gt0] =
∫ T

0
E [M(t) | Gt0 ]h(t)δBt.

Hence, by denseness, we obtain that

0 =
∫ T

0
E [L(t) |Gt0 ]h(t)dt+

∫ T

0
E [M(t) |Gt0 ]h(t)δBt.

To provide some concrete examples let us confine ourselves to the following type of filtrations

H. Given an increasing family of G = {Gt}t∈[0,T ] Borel sets Gt ⊃ [0, t]. Define

H = FG = {Gt}t≥0 where FG = σ

{∫ T

0
χU (s)dB(s); U ⊂ Gt

}
∨N (6.5.2)

where N is the collection of P−null sets. Then Conditions (Co1) and (Co2) hold (see

Proposition 3.12 in [31]). Examples of filtrations of type (6.5.2) are

H1 =Ft+δ(t),

H2 =F[0,t]∪O,

where O is an open set contained in [0, T ].

It is easily seen that filtrations of type (6.5.2) satisfy conditions of Theorem 6.5.2 as well.

Hence, we have
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Corollary 6.5.3 Suppose that {Gt}0≤t≤T is given by (6.5.2). Then, Equation (6.5.1) holds.

Using Theorem 5.3.3 in Chapter 5, it follows that

Theorem 6.5.4 Suppose that Gt is of type (6.5.2). Then there exist a critical point û for

the performance functional J(u) in (6.1.3) if and only if the following three conditions hold:

(i) E [L(t)| Gt] = 0,

(ii) E [M(t)| Gt] = 0,

(iii) E [R(t, z)| Gt] = 0.

where L, M and R are respectively given by Equations (6.4.3), (6.4.4) and (6.4.5).

Proof. It follows from the uniqueness of decomposition of Skorohod-semimartingale pro-

cesses of type (6.5.1) (See Theorem 5.3.3.)

We show in Appendix A, Section A.4, that, using a technique based on chaos expansion,

we can obtain similar results, when Gt is of type (6.5.2).

Remark 6.5.5 Not all filtrations satisfy conditions (Co1) and (Co2). An important exam-

ple is the following: Choose the σ-field H to be σ(B(T )), where {B(s)}s≥0, is the Wiener

process (Brownian motion) starting at 0 and T > 0 is fixed. Then, H is not D-commutable.

In fact, let F = B(t) for some t < T and choose s such that t < s < T . Then

DsE [B(t)|H] = Ds

(
t

T
B(T )

)
=

t

T
,

while

E [DsB(t)|H] = E [0|H] = 0.

It follows from the preceding Remark that the technique using in the preceding Section

cannot be apply to the σ-algebra of the type Ft ∨ σ(BT ), and hence we need a different

approach to discuss such cases.
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6.5.2 A different approach

In this Section, we consider σ-algebras which do not necessarily satisfy conditions (Co1)

and (Co2).

Theorem 6.5.6 Let t0 ∈ [0, T ], put H = Gt0. Further, require that there exists a set A =

At0 ⊆ D1,2∩L2(H) and a measurable setM⊂ [t0, T ] such that E [L(t)|H]·χ[0,T ]∩M, E [M(t)|H]·

χ[0,T ]∩M and E [R(t, z)|H] · χ[0,T ]∩M are Skorohod integrable and

(i) Dtα and Dt,zα are H-measurable, for all α ∈ A, t ∈M.

(ii) Dt+α = Dtα and Dt+,zα = Dt,zα for all α ∈ A and a.a. t, z, t ∈M.

(iii) SpanA is dense in L2(H).

(iv)

E

[
L(t)α + M(t)Dt+α +

∫
R0

R(t, z)Dt+,zαν(dz)
]

= 0

Then for all h = χ[t0,s)(t)χM(t)

0 =E

[∫ T

0
E [L(t) |H]h(t)dt+

∫ T

0
E [M(t) |H]h(t)δBt

+
∫ T

0

∫
R0

E [R(t, z)|H]h(t) Ñ(δt, dz)
∣∣∣∣H] . (6.5.3)

Proof. Let α = E [F |H] for all F ∈ A. Further, choose a h ∈ L2 ([0, T ]) with h =

χ[t0,s)(t)χM(t). By assumption, we see that

0 =
〈∫ T

0
E [L(t) |H]h(t)dt, α

〉
+
〈
E

[∫ T

0
M(t)h(t)δBt

∣∣∣∣H] , α〉
+
〈
E

[∫ T

0

∫
R0

R(t, z)h(t) Ñ(δt, dz)
∣∣∣∣H] , α〉 .
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On the other hand, the duality relation (6.2.1) and (ii) imply that〈
E

[∫ T

0
M(t)h(t)δBt

∣∣∣∣H] , α〉 =E

[∫ T

0
M(t)h(t)δBtE [F |H]

]
=E

[∫ T

0
M(t)h(t)DtE [F |H] dt

]
=E

[∫ T

0
E [M(t)|H]h(t)DtE [F |H] dt

]
=E

[∫ T

0
E [M(t) |H]h(t)δBt · E [F |H]

]
=
〈∫ T

0
E [M(t) |H]h(t)δBt, α

〉
.

In the same way, we show that〈
E

[∫ T

0

∫
R0

R(t, z)h(t) Ñ(δt, dz)
∣∣∣∣H] , α〉 =

〈∫ T

0

∫
R0

E [R(t, z) |H]h(t) Ñ(δt, dz), α
〉
.

Then it follows from (iv) that

0 = E

[∫ T

0
E [L(t) |H]h(t)dt+

∫ T

0
E [M(t) |H]h(t)δBt +

∫ T

0

∫
R0

E [R(t, z)|H]h(t) Ñ(δt, dz)
∣∣∣∣H] .

for all h ∈ L2 ([0, T ]) with with supp .h ⊆ (t0, T ], t0 ≤ t ≤ T,.

Theorem 6.5.7 [Brownian motion case] Assume that the conditions in Theorem 6.5.6 are

in force and θ = 0. In addition, we require that E [M(t)| Gt− ] ∈ MB
1,2 and is forward

integrable with respect to E [ d−B(t) |Gt− ]. Then

0 =
∫ T

0
E [L(t) |Gt− ]h0(t)dt+

∫ T

0
E [M(t) |Gt− ]h0(t)E [ d−B |Gt− ]

−
∫ T

0
Dt+E [M(t)| Gt− ]h0(t)dt (6.5.4)

Proof. We apply the preceding result to h(t) = h0(t)χ[ti,ti+1](t), where 0 = t0 < t1 < · · · <

ti < ti+1 = T is a partition of [0, T ]. From Equation (6.5.3), we have

0 =
∫ ti+1

ti

E [L(t) |Gti ]h(t)dt+ E

[∫ ti+1

ti

E [M(t) |Gti ]h(t)δBt

∣∣∣∣Gti]
+ E

[ ∫ ti+1

ti

∫
R0

E [R(t, z)| Gti ]h(t) Ñ(δt, dz)
∣∣∣∣Gti] . (6.5.5)
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By Lemma 6.2.4 and by assumption, we know that∫ ti+1

ti

E [M(t) |Gti ]h0(t)δBt =
∫ ti+1

ti

E [M(t) |Gti ]h0(t)d−B(t)

−
∫ ti+1

ti

Dt+E [M(t)| Gti ]h0(t)dt. (6.5.6)

Substituting (6.5.6) into (6.5.5) and summing over all i and taking the limit as ∆ti → 0,

we get

0 = lim
∆ti→0
n→∞

{
n∑
i=1

∫ ti+1

ti

E [L(t) |Gti ]h0(t)dt

+
n∑
i=1

∫ ti+1

ti

E [M(t) |Gti ]h0(t)
E [B(ti+1)−B(ti)| Gti ]

∆ti
∆ti

−
n∑
i=1

∫ ti+1

ti

Dt+E [M(t) |Gti ]h0(t)dt

}
,

in the topology of uniform convergence in probability.

Hence, by Definition 6.2.7, we get the result.

Important examples of a σ-algebras H satisfying condition of Theorem 6.5.6 are σ-algebras

of the following type which are first chaos generated (see [96]), that is

H = σ(I1(hi), i ∈ N, hi ∈ L2([0, T ])) ∨N , (6.5.7)

where N is the collection of P−null sets. Concrete examples of these σ-algebras are

H3 =Ft ∨ σ(B(T )),

or

H4 = Ft ∨ σ (B(t+ ∆tn)) ; n = 1, 2, ...

Lemma 6.5.8 Suppose that H = H2 = Ft ∨ σ(B(T )). Then

E [B(t) |Ht0 ] =
T − t
T − t0

B(t0) +
t− t0
T − t0

B(T ) for all t > t0.

In particular

E [B(t+ ε) |Ht] = B(t) +
ε

T − t
(B(T )−B(t))
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Proof. We have that

E [B(t) |Ht0 ] =
∫ t0

0
ϕ(t, s)dB(s) + C(t)B(T ).

On one hand, we have

t = E [E [B(t) |Ht0 ]B(T )] =E
[(∫ t0

0
ϕ(t, s)dB(s)

)
B(T )

]
+ C(t)T

=
∫ t0

0
ϕ(t, s)ds+ C(t)T. (6.5.8)

On the other hand

u = E [E [B(t) |Ht0 ]B(u)] =E
[(∫ t0

0
ϕ(t, s)dB(s)

)
B(u)

]
+ C(t)u

=
∫ u

0
ϕ(t, s)ds+ C(t)u, for all u < t. (6.5.9)

Differentiating Equation (6.5.9) with respect to u, it follows that

ϕ(t, u) + C(t) = 1.

Substituting ϕ by its value in Equation(6.5.8), we obtain C(t) = t−t0
T−t0 and then ϕ(t, s) =

T−t0
T−t0 . Therefore, the result follows.

Corollary 6.5.9 Suppose that H = H2 = Ft ∨ σ(B(T )). Then

E [ d−B |Ht− ] =
B(T )−B(t)

T − t
dt.

We now consider a generalization of the previous example:

For each t ∈ [0, T ), let {δn}∞n=0 = {δn(t)}∞n=0 be a given decreasing sequence of numbers

δn(t) ≥ 0 such that

t+ δn(t) ∈ [t, T ] for all n.

Define

H = H4 = Ft ∨ σ (B(t+ δn(t))) ; n = 1, 2, · · · (6.5.10)
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Then, at each time t, the σ-algebra H4(t) contains full information about the values of the

Brownian motion at the future times t + δn(t); n = 1, 2, · · · The amount of information

that this represents, depends on the density of the sequence δn(t) near 0. Define

ρk(t) =
1

δ2
k+1

(δk − δk+1) ln
(

ln
(

1
δk − δk+1

))
; k = 1, 2, · · · (6.5.11)

We may regard ρk(t) as a measure of how small δk−δk+1 is compared to δk+1. If ρk(t)→ 0,

then δk → 0 slowly, which means that the controller has at time t many immediate future

values of B(t+δk(t)); k = 1, 2, · · · , at her disposal when making her control value decision.

For example, if

δk(t) =
(

1
k

)p
for some p > 0,

then we see that

lim
k→∞

ρk(t) =


0 if p < 1

1 if p = 1

∞ if p > 1

(6.5.12)

Lemma 6.5.10 Suppose that H = H4 as in (6.5.10) and that

lim
k→∞

ρk(t) = 0 in probability, uniformly in t ∈ [0, T ). (6.5.13)

Then

E
[
d−B(t) |Ht−

]
= d−B(t); t ∈ [0, T )

Proof. For each ε > 0, choose δk = δ
(ε)
k such that

δk+1 < ε ≤ δk.
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Then

1
ε
E [B(t+ ε)−B(t) |Ht− ]

=
1
ε
E
[
B(t+ ε)−B(t) | Ft+δk+1(t) ∨ σ (B(t+ δk(t)))

]
=

1
ε

[
δk − ε

δk − δk+1
B(t+ δk+1) +

ε− δk+1

δk − δk+1
B(t+ δk)−B(t)

]
=

1
ε

[
B(t+ δk+1)−B(t) +

ε− δk+1

δk − δk+1
{B(t+ δk)−B(t+ δk+1)}

]
=
δk+1

ε
· 1
δk+1

[B(t+ δk+1)−B(t)] +
ε− δk+1

ε(δk − δk+1)
[B(t+ δk)−B(t+ δk+1)]

Note that
ε− δk+1

ε(δk − δk+1)
≤ 1
δk+1

and, by the law of iterated logarithm for Brownian motion (See e.g [119], p. 56),

lim
k→∞

1
δk+1

|B(t+ δk)−B(t+ δk+1)|

= lim
k→∞

1
δk+1

[
(δk − δk+1) ln

(
ln
(

1
δk − δk+1

))] 1
2

= 0 a.s.,

uniformly in t, by assumption (6.5.13).

Therefore, since
δk+1

δk
≤ δk+1

ε
≤ 1, for all k

and
δk+1

δk
→ 1 a.s., k →∞, again by (6.5.13),

we conclude that, using Definition 6.2.7,∫ T

0
ϕ(t)E

[
d−B(t) |Ht−

]
=lim
ε→0

∫ T

0
ϕ(t)

E [B(t+ ε)−B(t) |Ht− ]
ε

dt

= lim
k→∞

∫ T

0
ϕ(t)

B(t+ δk+1)−B(t)
δk+1

dt =
∫ T

0
ϕ(t) d−B(t)

in probability, for all bounded forward-integrable H-adapted processes ϕ. This proves the

lemma.
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6.6 Application to optimal insider portfolio

Consider a financial market with two investments possibilities:

1. A risk free asset, where the unit price S0(t) at time t is given by

dS0(t) =r(t)S0(t) dt, S0(0) = 1. (6.6.1)

2. A risky asset, where the unit price S1(t) at time t is given by the stochastic differential

equation

dS1(t) =S1(t−)
[
µ(t)dt+ σ0(t)dB−(t) +

∫
R0

γ(t, z)Ñ(d−t, dz)
]
, S1(0) > 0. (6.6.2)

Here r(t) ≥ 0, µ(t), σ0(t), and γ(t, z) ≥ −1 + ε (for some constant ε > 0) are given Gt-

predictable, forward integrable processes, where {Gt}t∈[0,T ] is a given filtration such that

Ft ⊂ Gt for all t ∈ [0, T ] (6.6.3)

Suppose a trader in this market is an insider, in the sense that she has access to the

information represented by Gt at time t. This means that if she chooses a portfolio u(t),

representing the amount she invests in the risky asset at time t, then this portfolio is a

Gt-predictable stochastic process.

The corresponding wealth process X(t) = X(u)(t) will then satisfies the (forward) SDE

d−X(t) =
X(t)− u(t)

S0(t)
dS0(t) +

u(t)
S1(t)

d−S1(t)

=X(t)r(t)dt+ u(t)
[

(µ(t)− r(t)) dt+ σ0(t)dB−(t)

+
∫

R0

γ(t, z)Ñ(d−t, dz)
]
, t ∈ [0, T ] , (6.6.4)

X(0) =x > 0. (6.6.5)

By choosing S0(t) as a numeraire, we can, without loss of generality, assume that

r(t) = 0 (6.6.6)
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from now on. Then Equations (6.6.4) and (6.6.5) simplify to
d−X(t) = u(t)

[
µ(t)dt+ σ0(t)dB−(t) +

∫
R0

γ(t, z)Ñ(d−t, dz)
]
,

X(0) = x > 0.
(6.6.7)

This is a controlled Itô-Lévy process of the type discussed in section 6.4 and we can apply

the results of that section to the problem of the insider to maximize the expected utility of

the terminal wealth, i.e., to find Φ(x) and u∗ ∈ AG such that

Φ(x) = sup
u∈AG

E
[
U
(
X(u)(T )

)]
= E

[
U
(
X(u∗)(T )

)]
, (6.6.8)

where U : R+ → R is a given utility function, assumed to be concave, strictly increasing

and C1. In this case the processes K(t), L(t), M(t) and R(t, z), given respectively by

Equations (6.3.4), (6.4.3), (6.4.4) and (6.4.5), take the form

K(t) =U ′ (X(T )) , (6.6.9)

L(t) =U ′ (X(T ))
[
µ(t) +Dt+σ0(t) +

∫
R0

Dt+,zγ(t, z) ν(dz)
]

(6.6.10)

+
∫

R0

Dt,zU
′ (X(T )) [γ(t, z) +Dt+,zγ(t, z)] ν(dz) +DtU

′ (X(T ))σ0(t),

M(t) =U ′ (X(T ))σ0(t), (6.6.11)

R(t, z) =
{
U ′ (X(T )) +Dt,zU

′ (X(T ))
}
{γ(t, z) +Dt+,zγ(t, z)} . (6.6.12)

6.6.1 Case Gt = FGt , Gt ⊃ [0, t]

In this case, Gt satisfies Equation (6.5.2) and hence conditions (Co1) and (Co2). Therefore,

Theorem 6.5.4 of Section 6.4 gives the following:

Theorem 6.6.1 Suppose that P (λ {t ∈ [0, T ]; σ0(t) 6= 0} > 0) > 0 where λ denotes the

Lebesgue measure on R and that Gt is given by (6.5.2). Then, there does not exist an

optimal portfolio u∗ ∈ AG of the insider’s portfolio problem (6.6.8).

Proof. Suppose an optimal portfolio exists. Then we have seen that in either of the cases,

the conclusion is that

E [L(t)| Gt] = E [M(t)| Gt] = E [R(t, z)| Gt] = 0
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for a.a. t ∈ [0, T ] , z ∈ R0. In particular,

E [M(t)| Gt] = E
[
U ′ (X(T ))

∣∣Gt]σ0(t) = 0, for a.a t ∈ [0, T ].

Since U ′ > 0, this contradicts our assumption about U . Hence an optimal portfolio cannot

exist.

Remark 6.6.2 In the case that Gt = Hi, i = 1 or i = 3 it is known that B(·) is not

a semimartingale with respect to {Gt} and hence an optimal portfolio cannot exists, by

Theorem 3.8 in [14] and Theorem 15 in [33]. It follows that S1(t) is not a Gt-semimartingale

either and hence we can even deduce that the market has an arbitrage for the insider in this

case, by Theorem 7.2 in [29]

6.6.2 Case Gt = Ft ∨ σ(B(T ))

In this case, Gt is not D-commutable, therefore, we apply results from Section 6.5.2. We

have seen that

E [ d−B |Gt− ] =
B(T )−B(t)

T − t
dt

(Corollary 6.5.9). It follows that

Theorem 6.6.3 [Brownian motion case] Assume that µ(t) = µ0, σ0(t) = σ0, γ(t, z) = 0

and conditions in Theorem 6.5.6 hold. In addition, require that

1. E [M(t)| Gt− ] ∈MB
1,2

2. lim
t↑T

E [|Dt+E [M(t)| Gt− ]|] <∞.

3. lim
t↑T

E [|L(t)|] <∞.

Then, there does not exist a critical point of the performance functional J(u) in (6.1.3).

Proof. Assume that there is a critical point of the performance functional J(u) in (6.1.3).

It follows from Theorems 6.4.1, 6.5.6 and 6.5.7 that Equation 6.5.4 holds. Replacing
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K(t), L(t), and M(t) by their given expressions in Equations (6.6.9), (6.6.10) and (6.6.11),

Equation (6.5.4) becomes

0 =E
[
µ0U

′(X(T )) + σ0DtU
′(X(T )) |Gt− ] + E

[
U ′(X(T ))σ0 |Gt− ]

B(T )−B(t)
T − t

− Dt+E
[
σ0U

′(X(T ))
∣∣Gt−] , a.e t (6.6.13)

Taking the limit as t ↑ T , the second term in Equation (6.6.13) goes to∞. Therefore, there

is no critical point for the performance functional J(u) in (6.1.3).

Remark 6.6.4 This result is a generalization of a result in [72], where the same conclusion

was obtained in the special case when

U(x) = ln(x)

6.6.3 Case Gt = H = H4

In this case, we have seen that under the condition of Lemma 6.5.10

E
[
d−B(t) |Ht−

]
= d−B(t).

Therefore, we get

Theorem 6.6.5 Suppose that, with Gt as above, the conditions of Theorem 6.5.7 are sat-

isfied. Then u is a critical point for J(u) = E [U(Xu(T ))] if and only if

E [L(t)| Gt− ]−Dt+E [M(t)| Gt− ] = 0, (6.6.14)

and

E [M(t)| Gt− ] = 0, for a.a t ∈ [0, T ]. (6.6.15)

Proof. It follows from Equation (6.5.4) and the uniqueness of decomposition of forward

processes.

Corollary 6.6.6 Suppose Gt is as in Theorem 6.6.5 and that P (λ {t ∈ [0, T ]; σ0(t) 6= 0} > 0) >

0 where λ denotes the Lebesgue measure on R. Then, there does not exist an optimal port-

folio u∗ ∈ AG for the performance J(u) = E [U(Xu(T ))].

Proof. It follows from Equation (6.6.15) and the property of the utility function U .
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6.7 Application to optimal insider consumption

Suppose we have a cash flow X(t) = X(u)(t) given by
dX(t) = (µ(t)− u(t)) dt+ σ(t)dB(t) +

∫
R0

θ(t, z)Ñ(dt, dz),

X(0) = x ∈ R.
(6.7.1)

Here µ(t), σ(t) and θ(t, z) are given Gt-predictable processes and u(t) ≥ 0 is our consump-

tion rate, assumed to be adapted to a given insider filtration {Gt}t∈[0,T ] where

Ft ⊂ Gt for all t.

Let f(t, u, ω); t ∈ [0, T ] , u ∈ R, ω ∈ Ω be a given FT -measurable utility process. Assume

that u→ f(t, u, ω) is strictly increasing, concave and C1 for a.a (t, ω).

Let g(x, ω); x ∈ R, ω ∈ Ω be a given FT -measurable random variable for each x. Assume

that x→ g(x, ω) is concave for a.a ω. Define the performance functional J by

J(u) = E

[∫ T

0
f(t, u(t), ω) dt+ g

(
X(u)(T ), ω

)]
; u ∈ AG , u ≥ 0. (6.7.2)

Note that u→ J(u) is concave, so u = û maximizes J(u) if and only if û is a critical point

of J(u).

Theorem 6.7.1 (Optimal insider consumption I)

û is an optimal insider consumption rate for the performance functional J in Equation

(6.7.2) if and only if

E

[
∂

∂u
f(t, û(t), ω)

∣∣∣∣Gt] = E
[
g′
(
X(û)(T ), ω

)∣∣∣Gt] . (6.7.3)

Proof. In this case we have

K(t) = g′
(
X(u)(T )

)
L(t) = − g′

(
X(u)(T )

)
+

∂

∂u
f(t, û(t))

M(t) =R(t, z) = 0



6.7 Application to optimal insider consumption 152

Therefore Theorem 6.4.1 gives û is a critical point for J(u) if and only if

0 = E [L(t)| Gt] = E

[
∂

∂u
f(t, û(t))

∣∣∣∣Gt]+ E
[
−g′

(
X(û)(T )

)∣∣∣Gt] .

Since X(û)(T ) depends on û, Equation (6.7.3) does not give the value of û(t) directly.

However, in some special cases û can be found explicitly:

Corollary 6.7.2 (Optimal insider consumption II)

Assume that

g(x, ω) = λ(ω)x (6.7.4)

for some GT -measurable random variable λ > 0.

Then the optimal consumption rate û(t) is given by

E

[
∂

∂u
f(t, û, ω)

∣∣∣∣Gt]
u=û(t)

= E [λ| Gt] . (6.7.5)

Thus we see that an optimal consumption rate exists, for any given insider information

filtration {Gt}t≥0. It is not necessary to be in a semimartingale setting.



Chapter 7

Stochastic Differential Games in

Insider markets via Malliavin

Calculus

7.1 Introduction

In real world, market agents have access to different levels of information and it is important

to understand what value particular pieces of information have. This chapter is devoted

to the study of a class of two-player stochastic differential games in which the players

have different information on the payoff. The different agents invest different amounts of

capital in order to optimize their utility. We derive necessary and sufficient conditions for

the existence of Nash-equilibria for this game and characterize these for various levels of

information asymmetry. The framework is the one of stochastic differential games with

anticipative strategy sets.

In the following, let {Bs}0≤s≤T be a Brownian motion and Ñ(dz, ds) = N(dz, ds)−dsν(dz)

be a compensated Poisson random measure associated with a Lévy process with Lévy mea-

sure ν on the (complete) filtered probability space (Ω,F , {Ft}0≤t≤T , P ). In the sequel, we

153
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assume that the Lévy measure ν fulfills∫
R0

z2 ν(dz) <∞,

where R0 := R\ {0} .

Suppose that the state process X(t) = X(u)(t, ω); t ≥ 0, ω ∈ Ω is a controlled Itô-Lévy

process in R of the form:
d−X(t) = b(t,X(t), u0(t), ω) dt + σ(t,X(t), u0(t), ω) d−B(t)

+
∫

R0
γ(t,X(t), u0(t), u1(t, z), z, ω) Ñ(dz, d−t);

X(0) = x ∈ R

(7.1.1)

Where the coefficients b : [0, T ] × R × U × Ω −→ R, σ : [0, T ] × R × U × Ω −→ R, and

γ : [0, T ]×R×U ×K×R0×Ω −→ R are measurable functions, where U ⊂ R2, K ⊂ R×R0

are given open convex sets. Here we consider filtrations
{
Git
}
t∈[0,T ]

, i = 1, 2 such that

Ft ⊂ Git ⊂ FT , t ∈ [0, T ], i = 1, 2, (7.1.2)

representing the information available to the controller at time t.

Since B(t) and Ñ(dz, dt) need not be a semimartingale with respect to {Git}t≥0, i = 1, 2,

the two last integrals in (7.1.1) are anticipating stochastic integrals that we interpret as

forward integrals.

The control processes u0(t) and u1(t, z) with values in given open convex sets U and K

respectively for a.a t ∈ [0, T ] , z ∈ R0 are called admissible controls if (7.1.1) has a unique

(strong) solution X = X(u0,u1) such that the components of u0(·) and u1(·, ·) are adapted

to the considered filtrations
{
G1
t

}
t∈[0,T ]

and
{
G2
t

}
t∈[0,T ]

respectively.

Let f : [0, T ] × R × U ×K × Ω −→ R and g : R × Ω −→ R be given measurable functions

and the given performance functionals for players are as follows:

Ji(u0, u1) := Ex
[∫ T

0
fi(t,X(t), u0(t), u1(t, z), ω)µ(dz)dt + gi(X(T ), ω)

]
, i = 1, 2,

(7.1.3)
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where µ is a measure on the given measurable space (Ω,FT ) and Ex = E denotes the

expectation with respect to P given that X(0) = x. Suppose that the controls u0(t) and

u1(t, z) have the form

u0(t) = (π0(t), θ0(t)) ; t ∈ [0, T ] , (7.1.4)

u1(t, z) = (π1(t, z), θ1(t)) ; t ∈ [0, T ]× R0. (7.1.5)

Let AΠ (respectively AΘ) denote the given family of controls π = (π0, π1) (respectively

θ = (θ0, θ1)) such that they are contained in the set of G1
t -adapted controls (respectively

G2
t -adapted controls), (7.1.1) has a unique strong solution up to time T and

Ex
[∫ T

0
|fi(t,X(t), u0(t), u1(t, z), ω)| µ(dz)dt + |gi(X(T ), ω)|

]
<∞, i = 1, 2.

The insider information non-zero-sum stochastic differential games problem we analyze is

the following:

Problem 7.1.1 Find (π∗, θ∗) ∈ AΠ ×AΘ (if it exists) such that

1. J1 (π, θ∗) ≤ J1 (π∗, θ∗) for all π ∈ AΠ

2. J2 (π∗, θ) ≤ J2 (π∗, θ∗) for all θ ∈ AΘ

The pair (π∗, θ∗) is called a Nash Equilibrium (if it exists). The intuitive idea is that there

are two players, Player I and Player II. While Player I controls π, Player II controls θ. Each

player is assumed to know the equilibrium strategies of the other players, and no player has

anything to gain by changing only his or her own strategy (i.e., by changing unilaterally).

Player I and Player II are in Nash Equilibrium if each player is making the best decision

she can, taking into account the other players decision. Note that since we allow b, σ, γ,

f and g to be stochastic processes and since our controls are also G1
t -adapted (respectively

G2
t -adapted), this problem is not of Markovian type and hence cannot be embedded into

the framework of dynamic programming.
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This chapter is inspired by ideas developed both in Chapter 6 where we use Malliavin cal-

culus to derive a general maximum principle for anticipative stochastic control, and, in An

et al [4], where the authors derived a general maximum principle for stochastic differen-

tial games with partial information. This Chapter covers the insider case in [44], since we

deal with controls being adapted to general supfiltrations of the underlying reference filtra-

tion. Moreover, our Malliavin calculus approach to stochastic differential games with insider

information for Itô-Lévy processes allows for optimization of very general performance func-

tionals. We apply our results to a worst case scenario portfolio problem in finance under

additional information. We show that there does not exist a Nash-equilibrium for the in-

sider. We prove that there exists a Nash-equilibrium insider consumption, and in some

special cases the optimal solution can be expressed explicitly.

The framework in this Chapter is the same as in Chapter 6. The reader is then referred to

Section 6.2 of that chapter for a brief recall on some basic concepts of Malliavin calculus

and its connection to the theory forward integration, and also some notions and results

from white noise analysis.

7.2 A stochastic maximum principle for the stochastic dif-

ferential games for insider

We now return to Problem 7.1.1 given in the introduction. We make the following assump-

tions:

1. The functions b : [0, T ]×R×U ×Ω→ R, σ : [0, T ]×R×U ×Ω→ R, γ : [0, T ]×R×

U ×K ×R0×Ω→ R, f : [0, T ]×R×U ×Ω→ R and g : R×Ω→ R are contained in

C1 with respect to the arguments x ∈ R, u0 ∈ U and u1 ∈ K for each t ∈ [0, T ] and

a.a. ω ∈ Ω.

2. For all s, r, t ∈ (0, T ), t ≤ r and all bounded G2
t -measurable (respectively G1

t -measurable)

random variables α = α(ω) (respectively ξ = ξ(ω)), ω ∈ Ω, the controls βα(s) :=
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(
0, βiα(s)

)
and ηξ(s) :=

(
0, ηiξ(s)

)
for i = 1, 2 with

βiα(s) := αi(ω)χ[t,r](s), 0 ≤ s ≤ T, (7.2.1)

respectively

ηiξ(s) := ξi(ω)χ[t,r](s), 0 ≤ s ≤ T, (7.2.2)

belong to AΠ (respectively AΘ). Also, we will denote the transposes of the vectors β

and η by β∗, η∗ respectively.

3. For all π, β ∈ AΠ with β bounded, there exists a δ1 > 0 such that

π + yβ ∈ AΠ , for all y ∈ (−δ1, δ1), (7.2.3)

and such that the family{
∂

∂x
f1(t,X(π+yβ,θ)(t), π + yβ, θ, z)

d

dy
X(π+yβ,θ)(t)

+∇πf1(t,X(π+yβ,θ)(t), π + yβ, θ, z)β∗(t)
}
y∈(−δ1,δ1)

is λ× ν × P−uniformly integrable and{
g′(X(π+yβ,θ)(T ))

d

dy
X(π+yβ,θ)(T )

}
y∈(−δ1,δ1)

is P−uniformly integrable. Similarly, for all θ, η ∈ AΘ with η bounded, there exists a

δ2 > 0 such that

θ + vη ∈ AΘ , for all v ∈ (−δ2, δ2), (7.2.4)

and such that the family{
∂

∂x
f2(t,X(π,θ+vη)(t), π, θ + vη, z)

d

dy
X(π,θ+vη)(t)

+∇θf2(t,X(π,θ+vη)(t), π, θ + vη, z)η∗(t)
}
v∈(−δ2,δ2)

is λ× ν × P−uniformly integrable and{
g′(X(π,θ+vη)(T ))

d

dy
X(π,θ+vη)(T )

}
v∈(−δ2,δ2)

is P−uniformly integrable.



7.2 A stochastic maximum principle for the stochastic differential games for insider 158

4. For all π, β ∈ AΠ and θ, η ∈ AΘ with β, η bounded the processes

Y (t) = Yβ(t) =
d

dy
X(π+yβ,θ)(t)

∣∣∣∣
y=0

, V (t) = Vη(t) =
d

dv
X(π,θ+vη)(t)

∣∣∣∣
v=0

exist and follow the SDE, respectively:

dY π
β (t) =Yβ(t−)

[
∂

∂x
b(t,X(t), π0(t), θ0(t)) dt +

∂

∂x
σ(t,X(t), π0(t), θ0(t)) d−B(t)

+
∫

R0

∂

∂x
γ
(
t,X(t−), π0(t), π1(t−, z), θ0(t−), θ1(t−, z), z

)
Ñ(dz, d−t)

]
+ β∗(t)

[
∇πb(t,X(t), π0(t), θ0(t)) dt + ∇πσ(t,X(t), π0(t), θ0(t)) d−B(t)

+
∫

R0

∇πγ
(
t,X(t−), π0(t), π1(t−, z), θ0(t−), θ1(t−, z), z

)
Ñ(dz, d−t)

]
(7.2.5)

Y (0) = 0

and

dV θ
η (t) =Vη(t−)

[
∂

∂x
b(t,X(t), π0(t), θ0(t)) dt +

∂

∂x
σ(t,X(t), π0(t), θ0(t)) d−B(t)

+
∫

R0

∂

∂x
γ
(
t,X(t−), π0(t), π1(t−, z), θ0(t−), θ1(t−, z), z

)
Ñ(dz, d−t)

]
+ η∗(t)

[
∇θb(t,X(t), π0(t), θ0(t)) dt + ∇θσ(t,X(t), π0(t), θ0(t)) d−B(t)

+
∫

R0

∇θγ
(
t,X(t−), π0(t), π1(t−, z), θ0(t−), θ1(t−, z), z

)
Ñ(dz, d−t)

]
(7.2.6)

V (0) = 0
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5. Suppose that for all π ∈ AΠ and θ ∈ AΘ the following processes

Ki(t) := g′i(X(T )) +
∫ T

t

∫
R0

∂

∂x
fi(s,X(s), π, θ, z1)µ(dz1)ds, (7.2.7)

DtKi(t) :=Dtg
′
i(X(T )) +

∫ T

t
Dt

∂

∂x
fi(s,X(s), π, θ, z1)µ(dz1)ds,

Dt,zKi(t) :=Dt,zg
′
i(X(T )) +

∫ T

t

∫
R0

Dt,z
∂

∂x
fi(s,X(s), π, θ, z1)µ(dz1)ds,

H0
i (s, x, π, θ) :=Ki(s)

(
b(s, x, π0, θ0) +Ds+σ(s, x, π0, θ0)

+
∫

R0

Ds+,zγ(s, x, π, θ, z) ν(dz)
)

+DsK(s)σ(s, x, π0, θ0)

+
∫

R0

Ds,zK(s)
{
γ(s, x, π, θ, z) +Ds+,zγ(s, x, π, θ, z)

}
ν(dz),

(7.2.8)

G(t, s) := exp

[∫ s

t

{
∂b

∂x
(r,X(r), π0(r), θ0(r))− 1

2

(
∂σ

∂x

)2

(r,X(r), π0(r), θ0(r))

}
dr

+
∫ s

t

∂σ

∂x
(r,X(r), π0(r), θ0(r)) d−B(r)

+
∫ s

t

∫
R0

{
ln
(

1 +
∂γ

∂x
(r,X(r), π, θ, z)

)
− ∂γ

∂x
(r,X(r), π, θ, z)

}
ν(dz) dt

+
∫ s

t

∫
R0

{
ln
(

1 +
∂γ

∂x

(
r,X(r−), π(r−, z), θ(r−, z), z

))}
Ñ(dz, d−r)

]
,

(7.2.9)

pi(t) :=Ki(t) +
∫ T

t

∂

∂x
H0
i (s,X(s), π0(s), π1(s, z), θ0(s), θ1(s, z))G(t, s) ds,

(7.2.10)

qi(t) :=Dtpi(t), (7.2.11)

ri(t, z) :=Dt,zpi(t), (7.2.12)

all exist for i = 1, 2, 0 ≤ t ≤ s ≤ T, z1, z ∈ R0.

Now let us introduce the general Hamiltonians of insiders.

Definition 7.2.1 The general stochastic Hamiltonians for the stochastic differential games

for insiders in Problem 7.1.1 are the functions

Hi (t, x, π, θ, ω) : [0, T ]× R× U ×K × Ω −→ R, i = 1, 2
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defined by

Hi (t, x, π, θ, ω) :=
∫

R0

fi(t, x, π, θ, z, ω)µ(dz) + pi(t)
(
b(t, x, π0, θ0, ω) +Dt+σ(t, x, π0, θ0, ω)

+
∫

R0

Dt+,zγ(t, x, π, θ, z, ω) ν(dz)
)

+ qi(t)σ(t, x, π0, θ0, ω)

+
∫

R0

ri(t, z)
{
γ(t, x, π, θ, z, ω) +Dt+,zγ(t, x, π, θ, z, ω)

}
ν(dz), (7.2.13)

where π = (π0, π1) and θ = (θ0, θ1)

We can now state a general stochastic maximum principle of insider for zero-sum games:

Theorem 7.2.2 [Maximum principle for insider non zero-sum games]

Retain conditions 1-5.

(i) Suppose (π̂, θ̂) ∈ AΠ ×AΘ is a Nash equilibrium, i.e.

1. J1(π, θ̂) ≤ J1(π̂, θ̂) for all π ∈ AΠ

2. J2(π̂, θ) ≤ J2(π̂, θ̂) for all θ ∈ AΘ

Then

E
[
∇πĤ1(t,Xπ,θ̂(t), π, θ̂, ω)

∣∣∣
π=π̂

∣∣∣G2
t

]
+ E[A] = 0 a.e. in (t, ω), (7.2.14)

and

E
[
∇θĤ2(t,X π̂,θ(t), π̂, θ, ω)

∣∣∣
θ=θ̂

∣∣∣G1
t

]
+ E[B] = 0 a.e. in (t, ω), (7.2.15)

where A is given by Equation (A.5.21) and B is defined in a similar way.

X̂(t) =X(π̂,θ̂)(t),

Ĥi

(
t, X̂(t), π, θ, ω

)
:=
∫

R0

fi(t, X̂(t), π, θ, z, ω)µ(dz) (7.2.16)

+ p̂i(t)
(
b(t, X̂(t), π0, θ0, ω) +Dt+σ(t, X̂(t), π0, θ0, ω)

+
∫

R0

Dt+,zγ(t, X̂(t), π, θ, z, ω) ν(dz)
)

+ q̂i(t)σ(t, X̂(t), π0, θ0, ω)

+
∫

R0

r̂i(t, z)
{
γ(t, X̂(t), π, θ, z, ω) +Dt+,zγ(t, X̂(t), π, θ, z, ω)

}
ν(dz),
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with

p̂i(t) := K̂i(t) +
∫ T

t

∂

∂x
Ĥ0
i (s, X̂(s), π̂(s), θ̂(s))Ĝ(t, s) ds, (7.2.17)

K̂i(t) := g′i(X̂(T )) +
∫ T

t

∫
R0

∂

∂x
fi(s, X̂(s), π̂(s, z), θ̂(s, z), z)µ(dz)ds,

(7.2.18)

Ĥ0
i (s, X̂, π̂, θ̂) := K̂i(s)

(
b(s, X̂, π̂0, θ̂0) +Ds+σ(s, X̂, π̂0, θ̂0)

+
∫

R0

Ds+,zγ(s, X̂, π̂, θ̂, z) ν(dz)
)

+DsKi(s)σ(s, X̂, π̂0, θ̂0)

+
∫

R0

Ds,zKi(s)
{
γ(s, X̂, π̂, θ̂, z) +Ds+,zγ(s, X̂, π̂, θ̂, z)

}
ν(dz),

(7.2.19)

Ĝ(t, s) := exp

[∫ s

t

{
∂b

∂x

(
r, X̂(r), π̂0(r), θ̂0(r)

)
− 1

2

(
∂σ

∂x

)2 (
r, X̂(r), π̂0(r), θ̂0(r)

)}
dr

+
∫ s

t

∂σ

∂x

(
r, X̂(r), π̂0(r), θ̂0(r)

)
d−B(r)

+
∫ s

t

∫
R0

{
ln
(

1 +
∂γ

∂x

(
r, X̂(r), π̂, θ̂, z

))
− ∂γ

∂x

(
r, X̂(r), π̂, θ̂, z

)}
ν(dz) dt

+
∫ s

t

∫
R0

{
ln
(

1 +
∂γ

∂x

(
r, X̂(r−), π̂(r−, z), θ̂(r−, z), z

))}
Ñ(dz, d−r)

]
.

(7.2.20)

(ii) Conversely, suppose (π̂, θ̂) ∈ AΠ×AΘ such Equations (7.2.14) and (7.2.15) hold. Then

∂J1

∂y
(π̂ + yβ, θ̂)

∣∣∣∣
y=0

= 0 for all β, (7.2.21)

∂J2

∂v
(π̂, θ̂ + vη)

∣∣∣∣
v=0

= 0 for all η, (7.2.22)

In particular, if

π → J1(π, θ̂),

and

θ → J2(π̂, θ)

are concave, then
(
π̂, θ̂
)

is a Nash equilibrium.

Proof. See Appendix A, Section A.5.
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7.2.1 Zero-sum games

Here, we suppose that the given performance functional for Player I is the negative of that

for Player II, i.e.,

J1(u0, u1) := E

[∫ T

0
f(t,X(t), u0(t), u1(t, z), ω)µ(dz)dt + g(X(T ), ω)

]
= −J2(u0, u1)

(7.2.23)

where E = ExP denotes the expectation with respect to P given that X(0) = x. Suppose

that the controls u0(t) and u1(t, z) have the form (7.1.4) and (7.1.5). Let AΠ (respectively

AΘ) denote the given family of controls π = (π0, π1) (respectively θ = (θ0, θ1)) such that

they are contained in the set of G1
t -adapted controls (respectively G2

t -adapted controls),

(7.1.1) has a unique strong solution up to time T and

E

[∫ T

0
|f(t,X(t), u0(t), u1(t, z), ω)| µ(dz)dt + |g(X(T ), ω)|

]
<∞. (7.2.24)

Then the insider information zero-sum stochastic differential games problem is the following:

Problem 7.2.3 Find π∗ ∈ AG2

Π and θ∗ ∈ AG1

Θ and Φ ∈ R (if it exists) such that

Φ = inf
θ∈AG1

Θ

( sup
π∈AG2

Π

J(π, θ)) = J(π∗, θ∗) = sup
π∈AG2

Π

( inf
θ∈AG1

Θ

J(π, θ)) (7.2.25)

Such a control (π∗, θ∗) is called an optimal control (if it exists). The intuitive idea is that

while Player I controls π, Player II controls θ. The actions of the players are antagonistic,

which means that between player I and II there is a payoff J(π, θ) and it is a reward for

Player I and cost for Player II. Note that since we allow b, σ, γ, f and g to be stochastic

processes and also because our controls are G1
t -adapted, and G2

t -adapted respectively, this

problem is not of Markovian type and can not be solved by dynamic programming.

Theorem 7.2.4 [Maximum principle for insider zero-sum games]

Retain conditions 1-5.
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(i) Suppose (π̂, θ̂) ∈ AΠ×AΘ is a directional critical point for J(π, θ), in the sense that for

all bounded β ∈ AΠ and η ∈ AΘ, there exists δ > 0 such that π̂+yβ ∈ AΠ, θ̂+vη ∈ AΘ

for all y, v ∈ (−δ, δ) and

c(y, v) := J(π̂ + yβ, θ̂ + vη), y, v ∈ (−δ, δ)

has a critical point at zero, i.e.,

∂c

∂y
(0, 0) =

∂c

∂v
(0, 0) = 0. (7.2.26)

Then

E
[
∇πĤ(t,Xπ,θ̂(t), π, θ̂, ω)

∣∣∣
π=π̂

∣∣∣G2
t

]
+ E[A] = 0 a.e. in (t, ω), (7.2.27)

and

E
[
∇θĤ(t,X π̂,θ(t), π̂, θ, ω)

∣∣∣
θ=θ̂

∣∣∣G1
t

]
+ E[B] = 0 a.e. in (t, ω), (7.2.28)

where A and B are given as in the previous theorem.

X̂(t) =X(π̂,θ̂)(t),

Ĥ
(
t, X̂(t), π, θ, ω

)
:=
∫

R0

f(t, X̂(t), π, θ, z, ω)µ(dz) (7.2.29)

+ p̂(t)
(
b(t, X̂(t), π0, θ0, ω) +Dt+σ(t, X̂(t), π0, θ0, ω)

+
∫

R0

Dt+,zγ(t, X̂(t), π, θ, z, ω) ν(dz)
)

+ q̂(t)σ(t, X̂(t), π0, θ0, ω)

+
∫

R0

r̂(t, z)
{
γ(t, X̂(t), π, θ, z, ω) +Dt+,zγ(t, X̂(t), π, θ, z, ω)

}
ν(dz),
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with

p̂(t) := K̂(t) +
∫ T

t

∂

∂x
Ĥ0(s, X̂(s), π̂(s), θ̂(s))Ĝ(t, s) ds (7.2.30)

K̂(t) := g′(X̂(T )) +
∫ T

t

∫
R0

∂

∂x
f(s, X̂(s), π̂(s, z), θ̂(s, z), z)µ(dz)ds

(7.2.31)

Ĥ0(s, X̂, π̂, θ̂) := K̂(s)
(
b(s, X̂, π̂0, θ̂0) +Ds+σ(s, X̂, π̂0, θ̂0)

+
∫

R0

Ds+,zγ(s, X̂, π̂, θ̂, z) ν(dz)
)

+DsK(s)σ(s, X̂, π̂0, θ̂0)

+
∫

R0

Ds,zK(s)
{
γ(s, X̂, π̂, θ̂, z) +Ds+,zγ(s, X̂, π̂, θ̂, z)

}
ν(dz)

(7.2.32)

Ĝ(t, s) := exp

[∫ s

t

{
∂b

∂x

(
r, X̂(r), π̂0(r), θ̂0(r)

)
− 1

2

(
∂σ

∂x

)2 (
r, X̂(r), π̂0(r), θ̂0(r)

)}
dr

+
∫ s

t

∂σ

∂x

(
r, X̂(r), π̂0(r), θ̂0(r)

)
dB−(r)

+
∫ s

t

∫
R0

{
ln
(

1 +
∂γ

∂x

(
r, X̂(r), π̂, θ̂, z

))
− ∂γ

∂x

(
r, X̂(r), π̂, θ̂, z

)}
ν(dz) dt

+
∫ s

t

∫
R0

{
ln
(

1 +
∂γ

∂x

(
r, X̂(r−), π̂(r−, z), θ̂(r−, z), z

))}
Ñ(dz, d−r)

]
(7.2.33)

(ii) Conversely, suppose that there exists a (π̂, θ̂) ∈ AΠ ×AΘ such that Equations (7.2.27)

and (7.2.28) hold. Then (π̂, θ̂) satisfies 7.2.26.

7.3 Controlled Itô-Lévy processes

The main result of the previous section (Theorem 7.2.2) is difficult to apply because of the

appearance of the terms Y (t), Dt+Y (t) and Dt+,zY (t), which all depend on the control u.

However, consider the special case when the coefficients do not depend on X, i.e., when

b(t, x, u, ω) = b(t, u, ω), σ(t, x, u, ω) = σ(t, u, ω)

and θ(t, x, u, z, ω) = θ(t, u, z, ω). (7.3.1)
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Then equation (7.1.1) takes the form
d−X(t) = b(t, u(t), ω)dt + σ(t, u(t), ω)d−B(t)

+
∫

R0
θ(t, u(t), z, ω)Ñ(dz, d−t);

X(0) = x ∈ R

(7.3.2)

We call such processes controlled Itô-Lévy processes.

In this case, Theorem 7.2.2 simplifies to the following

Theorem 7.3.1 Let X(t) be a controlled Itô-Lévy process as given in Equation (7.3.2).

Assume that the conditions 1-5 as in Theorem 7.2.2 are in force.

Then the following statements are equivalent:

(i) (π̂, θ̂) is a directional critical point for Ji(π, θ) for i = 1, 2 in the sense that for all

bounded β ∈ AΠ and η ∈ AΘ, there exists δ > 0 such that π̂ + yβ ∈ AΠ, θ̂+ vη ∈ AΘ

for all y, v ∈ (−δ, δ).

(ii)

E

[
Lπ(t)α + Mπ(t)Dt+α +

∫
R0

Rπ(t, z)Dt+,zαν(dz)
]

= 0

and

E

[
Lθ(t)ξ + Mθ(t)Dt+ξ +

∫
R0

Rθ(t, z)Dt+,zξ ν(dz)
]

= 0

for all α Malliavin differentiable and all t ∈ [0, T ], where

Lπ(t) = K̂1(t)
(
∇πb(t) + Dt+∇πσ(t) +

∫
R0

Dt+,z∇πγ(t, z)ν(dz)
)

+ ∇πf1(t) + DtK̂1(t)∇πσ(t)

+
∫

R0

Dt,zK̂1(t)
(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
ν(dz), (7.3.3)

Mπ(t) = K̂1(t)∇πσ(t), (7.3.4)

Rπ(t, z) =
{
K̂1(t) +Dt,zK̂1(t)

}(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
, (7.3.5)
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Lθ(t) = K̂2(t)
(
∇θb(t) + Dt+∇θσ(t) +

∫
R0

Dt+,z∇θγ(t, z)ν(dz)
)

+ ∇θf2(t) + DtK̂2(t)∇θσ(t)

+
∫

R0

Dt,zK̂2(t)
(
∇θγ(t, z) +Dt+,z∇θγ(t, z)

)
ν(dz), (7.3.6)

Mθ(t) = K̂2(t)∇θσ(t) (7.3.7)

and

Rθ(t, z) =
{
K̂2(t) +Dt,zK̂2(t)

}(
∇θγ(t, z) +Dt+,z∇θγ(t, z)

)
. (7.3.8)

In particular, if

π → J1(π, θ̂)

and

θ → J2(π̂, θ),

are concave, then
(
π̂, θ̂
)

is a Nash equilibrium.

Proof. It is easy to see that in this case, p(t) = K(t), q(t) = DtK(t), r(t, z) = Dt,zK(t)

and the general Hamiltonian Hi, i = 1, 2 given by Equation (7.2.13) is reduced to Hi given

as follows

Hi (t, x, π, θ, ω) :=
∫

R0

fi(t, π, θ, z, ω)µ(dz) + pi(t)
(
b(t, π0, θ0, ω) +Dt+σ(t, π0, θ0, ω)

+
∫

R0

Dt+,zγ(t, π, θ, z, ω) ν(dz)
)

+ qi(t)σ(t, π0, θ0, ω)

+
∫

R0

ri(t, z)
{
γ(t, π, θ, z, ω) +Dt+,zγ(t, π, θ, z, ω)

}
ν(dz),
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(i) Performing the same calculation leads to

A1 =A3 = A5 = 0,

A2 =E

[∫ t+h

t

{
K̂1(t)

(
∇πb(s) +Ds+∇πσ(s) +

∫
R0

Dts,z∇πγ(t, z)ν(dz)
)

+ DtK̂1(t)∇πσ(t) +
∫

R0

∇πf1(s, z)µ(dz)

+
∫

R0

Ds,zK̂1(t)
(
∇πγ(s, z) +Ds,z∇πγ(s, z)

)
ν(dz)

}
αds

]
,

A4 =E

[∫ t+h

t
K̂1(t)∇πσ(s)Ds+αds

]
,

A6 =E

[∫ t+h

t

∫
R0

(
K̂1(t) +Ds,zK̂1(t)

){
∇πγ(s, z) + Ds+,z∇πγ(s, z)

}
ν(dz)Ds+,zαds

]
,

It follows that

d

dh
A2

∣∣∣∣
h=0

=E
[{
K̂1(t)

(
∇πb(t) + Dt+∇πσ(t) +

∫
R0

Dt+,z∇πγ(t, z)ν(dz)
)

+ ∇πf1(t) + DtK̂1(t)∇πσ(t)

+
∫

R0

Dt,zK̂1(t)
(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
ν(dz)

}
α

]
,

d

dh
A4

∣∣∣∣
h=0

=E
[
K̂1(t)∇πσ(t)Dt+α

]
,

d

dh
A6

∣∣∣∣
h=0

=E

[∫
R0

{
K̂1(t) +Dt,zK̂1(t)

}(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
ν(dz)Dt+,zα

]
.

This means that

0 =E

[{
K̂1(t)

(
∇πb(t) + Dt+∇πσ(t) +

∫
R0

Dt+,z∇πγ(t, z)ν(dz)
)

+ ∇πf1(t) + DtK̂1(t)∇πσ(t)

+
∫

R0

Dt,zK̂1(t)
(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
ν(dz)

}
α

+ K̂1(t)∇πσ(t)Dt+α

+
∫

R0

{
K̂1(t) +Dt,zK̂1(t)

}(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
ν(dz)Dt+,zα

]
.

Performing the same computation for H2, the result follows. This completes the proof

for (i).
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(ii) The converse part follows from the arguments used in the proof of Theorem 7.2.2.

7.3.1 Zero-sum games

Under the same hypothesis as given in Section 7.2.1, if we assume that the controlled process

is of Itô-Lévy type, Theorem 7.2.4 becomes

Theorem 7.3.2 Let X(t) be a controlled Itô-Lévy process as given in Equation (7.3.2).

Retain the conditions 1-5 as in Theorem 7.2.2.

Then the following statements are equivalent:

(i) (π̂, θ̂) is a directional critical point for J(π, θ) in the sense that for all bounded β ∈ AΠ

and η ∈ AΘ, there exists δ > 0 such that π̂+yβ ∈ AΠ, θ̂+vη ∈ AΘ for all y, v ∈ (−δ, δ)

and

c(y, v) := J(π̂ + yβ, θ̂ + vη), y, v ∈ (−δ, δ)

has a critical point at 0, i.e.,

∂c

∂y
(0, 0) =

∂c

∂v
(0, 0) = 0. (7.3.9)

(ii)

E

[
Lπ(t)α + Mπ(t)Dt+α +

∫
R0

Rπ(t, z)Dt+,zαν(dz)
]

= 0

and

E

[
Lθ(t)ξ + Mθ(t)Dt+ξ +

∫
R0

Rθ(t, z)Dt+,zξ ν(dz)
]

= 0
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for all α Malliavin differentiable and all t ∈ [0, T ], where

Lπ(t) = K̂(t)
(
∇πb(t) + Dt+∇πσ(t) +

∫
R0

Dt+,z∇πγ(t, z)ν(dz)
)

+ ∇πf(t) + DtK̂(t)∇πσ(t)

+
∫

R0

Dt,zK̂(t)
(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
ν(dz), (7.3.10)

Mπ(t) = K̂(t)∇πσ(t), (7.3.11)

Rπ(t, z) =
{
K̂(t) +Dt,zK̂(t)

}(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
, (7.3.12)

Lθ(t) = K̂(t)
(
∇θb(t) + Dt+∇θσ(t) +

∫
R0

Dt+,z∇θγ(t, z)ν(dz)
)

+ ∇θf(t) + DtK̂(t)∇θσ(t)

+
∫

R0

Dt,zK̂(t)
(
∇θγ(t, z) +Dt+,z∇θγ(t, z)

)
ν(dz), (7.3.13)

Mθ(t) = K̂(t)∇θσ(t) (7.3.14)

and

Rθ(t, z) =
{
K̂(t) +Dt,zK̂(t)

}(
∇θγ(t, z) +Dt+,z∇θγ(t, z)

)
. (7.3.15)

7.3.2 Some special cases revisited

In this Section, we consider the same sup-filtration given in Section 6.5 of Chapter 6.

Let H be one of the following sup-filtrations,

H1 =Ft+δ(t),

H2 =F[0,t]∪O,

H3 = ,Ft ∨ σ(BT )

H4 =Ft ∨ σ (B(t+ ∆tn)) ; n = 1, 2, ..− .

where O is an open set contained in [0, T ].

From now on we assume that the following conditions are fulfilled:

Fix a t0 ∈ [0, T ]. Then
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(C1) There exist a Ai = Ait0 ⊆ D1,2∩L2(Git0), i = 1, 2 and a measurableMi ⊂ [t0, T ], i =

1, 2 such that Dtα and Dt,zα are Git0-measurable, for all α ∈ Ai, t ∈Mi, i = 1, 2,

(C2) Dt+α = Dtα and Dt+,zα = Dt,zα for all α ∈ Ai and a.a. t, z, t ∈Mi, i = 1, 2.

(C3) Ai is total in L2(Git0), i = 1, 2,

(C4) E[Mθ(t)|G1
t0 ]·χ[0,t]∩M1 , E[Rθ(t, z)|G1

t0 ]·χ[0,t]∩M1 , E[Mπ(t)|G2
t0 ]·χ[0,t]∩M2 and E[Rπ(t, z))|G2

t0 ]·

χ[0,t]∩M2 are Skorohod integrable for all t,

(C5)
∫ T

0 {|E[Lθ(t)|G1
t0 ]|+ |E[Lπ(t)|G1

t0 ]|}dt <∞ a.e.,

where Lπ, Mπ, Lθ, Mθ, Rπ and Rθ are defined as in (7.3.3), (7.3.4), (7.3.6), (7.3.7), (7.3.5)

and (7.3.8).

We can then deduce the following results from the arguments in Theorems 6.5.2 and 6.5.4

in Section 6.5 of Chapter 6.

Theorem 7.3.3 Suppose that Git , i = 1, 2 is of type (6.5.2) and that b, σ and γ do not

depend on the controlled process X(·). Further require that (C3)–(C5) hold. Then the

following are equivalent:

(i) (π̂, θ̂) is a directional critical point for Ji(π, θ) for i = 1, 2 in the sense that for all

bounded β ∈ AΠ and η ∈ AΘ, there exists a δ > 0 such that π̂+yβ ∈ AΠ, θ̂+vη ∈ AΘ

for all y, v ∈ (−δ, δ).

(ii)

(1)E
[
Lπ(t)| G2

t

]
= E

[
Mπ(t)| G2

t

]
= E

[
Rπ(t, Z)| G2

t

]
= 0,

(2)E
[
Lθ(t)| G1

t

]
= E

[
Mθ(t)| G1

t

]
= E

[
Rθ(t, z)| G1

t

]
= 0,

where Lπ, Mπ, Lθ, and Mθ are given by (7.3.3), (7.3.4), (7.3.6) and (7.3.7) respec-

tively. In particular, if

π → J1(π, θ̂)
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and

θ → J2(π̂, θ),

are concave, then
(
π̂, θ̂
)

is a Nash-equilibrium.

Proof. It follows from the proof of Theorems 6.5.2 and 6.5.4 of Chapter 6.

If Git , i = 1, 2 is of type H4, then from Theorem 6.6.5, we have

Theorem 7.3.4 [Brownian motion case] Suppose that b and σ do not depend on X and

that

Git = H4, i = 1, 2

Assume that (C1)–(C5) are valid forM∈ (t0, T ]. In addition, we require that E
[
Mπ(t)| G2

t−

]
,

E
[
Mθ(t)| G1

t−

]
∈ MB

1,2 and are forward integrable with respect to E [ d−B(t)
∣∣G2
t−

]
and

E [ d−B(t)
∣∣G1
t−

]
respectively. Then the following statements are equivalent:

(i) (π̂, θ̂) is a directional critical point for Ji(π, θ) for i = 1, 2 in the sense that for all

bounded β ∈ AΠ and η ∈ AΘ, there exists a δ > 0 such that π̂+yβ ∈ AΠ, θ̂+vη ∈ AΘ

for all y, v ∈ (−δ, δ).

(ii)

E
[
Lπ(t)| G2

t−
]
−Dt+E

[
Mπ(t)| G2

t−
]

= 0,

E
[
Mπ(t)| G2

t−
]

= 0,

E
[
Lθ(t)| G1

t−
]
−Dt+E

[
Mθ(t)| G1

t−
]

= 0,

E
[
Mθ(t)| G1

t−
]

= 0, for a.a t ∈ [0, T ].

where Lπ, Mπ, Rπ, Lθ, Mθ and Rθ are given by (7.3.3), (7.3.4), (7.3.5), (7.3.6),

(7.3.7) and (7.3.8) respectively. In particular, if

π → J1(π, θ̂)

and

θ → J2(π̂, θ),

are concave, then
(
π̂, θ̂
)

is a Nash-equilibrium.
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Proof. See proof of Theorem6.6.5.

In the next section, we apply our results to model a competition of two heterogeneously

informed agents in the market. We particularly focus on a game between the market and

the trader. We assume that the mean relative growth rate θ(t) of the risky asset is not

known to the trader, but subject to uncertainty.

7.4 Application to optimal and competing-insider trading

Consider a financial market with two investments possibilities:

1. A risk free asset, where the unit price S0(t) at time t is given by

dS0(t) =r(t)S0(t) dt, S0(0) = 1. (7.4.1)

2. A risky asset, where the unit price S1(t) at time t is given by the stochastic differential

equation

dS1(t) =S1(t−)
[
θ(t)dt+ σ0(t)d−B(t) +

∫
R0

γ(t, z)Ñ(d−t, dz)
]
, S1(0) > 0. (7.4.2)

Here r(t) ≥ 0, θ(t), σ0(t), and γ(t, z) ≥ −1 + ε (for some constant ε > 0) are given G1
t -

predictable, forward integrable processes, where
{
G1
t

}
t∈[0,T ]

is a given filtration such that

Ft ⊂ G1
t for all t ∈ [0, T ] (7.4.3)

Suppose a trader in this market is an insider, in the sense that she has access to information

represented by G2
t at time t (with Ft ⊂ G2

t for all t ∈ [0, T ]). Assume that G1
t ⊂ G2

t (e.g.

G1
t = Ft). Let π(t) = π(t, ω) be a portfolio representing the amount invested by her in the

risky asset at time t. Then this portfolio is a G2
t -predictable stochastic process and hence
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the corresponding wealth process X(t) = X(π,θ)(t) will then satisfy the (forward) SDE

d−X(t) =
X(t)− π(t)

S0(t)
dS0(t) +

π(t)
S1(t)

d−S1(t)

=X(t)r(t)dt+ π(t)
[

(θ(t)− r(t)) dt+ σ0(t)d−B(t)

+
∫

R0

γ(t, z)Ñ(d−t, dz)
]
, t ∈ [0, T ] , (7.4.4)

X(0) =x > 0. (7.4.5)

By choosing S0(t) as a numeraire, we can, without loss of generality, assume that

r(t) = 0 (7.4.6)

from now on. Then Equations (7.4.4) and (7.4.5) simplify to
d−X(t) = π(t)

[
θ(t)dt+ σ0(t)d−B(t) +

∫
R0

γ(t, z)Ñ(d−t, dz)
]
,

X(0) = x > 0.
(7.4.7)

This is a controlled Itô-Lévy process of the type discussed in Section 7.3. Let us assume

that the mean relative growth rate θ(t) of the risky asset is not known to the trader, but

subject to uncertainty. We may regard θ as a market scenario or a stochastic control of the

market, which is playing against the trader. Let AG2

Π and AG1

Θ denote the set of admissible

controls π, θ, respectively. The worst case insider information scenario optimal problem

for the trader is to find π∗ ∈ AG2

Π and θ∗ ∈ AG1

Θ and Φ ∈ R such that

Φ = inf
θ∈AG1

Θ

( sup
π∈AG2

Π

E[U(Xθ,π)(T )])

=E
[
U(Xθ∗,π∗)(T )

]
(7.4.8)

where U : R+ → R is a given utility function, assumed to be concave, strictly increasing

and C1. We want to study this problem by using results of Section 7.3. In this case, the

processes K(t),L(t), M(t) and R(t, z) which are given respectively by equations (7.2.7),
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(7.3.3), (7.3.4), (7.3.5), (7.3.6), (7.3.7) and (7.3.8) become

K1(t) =K2(t) = U ′ (X(T )) , (7.4.9)

Lπ(t) =U ′ (X(T ))
[
θ(t) +Dt+σ0(t) +

∫
R0

Dt+,zγ(t, z) ν(dz)
]

(7.4.10)

+
∫

R0

Dt,zU
′ (X(T )) [γ(t, z) +Dt+,zγ(t, z)] ν(dz) +DtU

′ (X(T ))σ0(t),

Mπ(t) =U ′ (X(T ))σ0(t), (7.4.11)

Rπ(t, z) =
{
U ′ (X(T )) +Dt,zU

′ (X(T ))
}
{γ(t, z) +Dt+,zγ(t, z)} . (7.4.12)

Lθ(t) =U ′ (X(T ))π (7.4.13)

Mθ(t) =Rθ(t, z) = 0 (7.4.14)

7.4.1 Case Gt = FGt , Gt ⊃ [0, t]

In this case, it follows from Theorem 7.3.3 and Theorem 7.3.4 of Section 7.3 that:

Theorem 7.4.1 Suppose that P (λ {t ∈ [0, T ]; σ0(t) 6= 0} > 0) > 0 where λ denotes the

Lebesgue measure on R and that Git , i = 1, 2 is given by (6.5.2).

Then there does not exist an optimal solution (π∗, θ∗) ∈ AG2

Π ×A
G1

Θ of the stochastic differ-

ential game (7.4.8).

Proof. Suppose an optimal portfolio exists. Then we have seen that

E
[
Lπ(t)| G2

t

]
= E

[
Mπ(t)| G2

t

]
= E

[
Rπ(t, z)| G2

t

]
= E

[
Lθ(t)| G1

t

]
= 0

for a.a. t ∈ [0, T ] , z ∈ R0. In particular,

E
[
Mπ(t)| G2

t

]
= E

[
U ′ (X(T ))

∣∣G2
t

]
σ0(t) = 0,

or,

E
[
Lθ(t)| G1

t

]
= E

[
U ′ (X(T ))

∣∣G1
t

]
π(t) = 0.

Since U ′ > 0, this contradicts our assumption about U . Hence an optimal solution cannot

exist.
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7.4.2 Case Gt = Ft ∨ σ(B(T ))

In this case, using Corollary 6.5.9 and Theorem 6.6.3 in Section 6.6.2 of Chapter 6, we have

Theorem 7.4.2 (Knowing the terminal value of the risky asset) Suppose that σ0(t) 6=

0 G1
t = Ft and G2

t = Ft ∨ σ(S1(T )), t ∈ [0, T ] and the coefficients θ(t), σ0(t) = σ0 6= 0

and γ(t, z) ≡ 0 are deterministic. Further, require that the conditions (C1)–(C5) hold for

M∈ (t0, T ] and that

1. E
[
Mθ(t)| G1

t0

]
, E

[
Mπ(t)| G2

t0

]
∈MB

1,2

2. lim
t↑0
E
[∣∣Dt+E

[
Mφi(t)| G2

t0

]∣∣] <∞ for φ1 = θ and φ2 = π.

3. lim
t↑0
E [|Lφi(t)|] <∞ for φ1 = θ and φ2 = π.

Then, there does not exist an optimal solution for the insider stochastic differential game.

Proof. Since S1(t) can be written as

S1(t) = S1(0) exp
(∫ T

0

{
θ(t)− 1

2
σ2

0(t)
}
dt+

∫ T

0
σ0(t) dB(t)

)
, (7.4.15)

One finds that G2
t = H2

t . Hence the result follows from Theorem 6.6.3 in Chapter 6.

Remark 7.4.3 This result is a generalization of a result in [44], where the same conclusion

was obtained in the special case when

U(x) = ln(x)

Remark 7.4.4 It can be shown (see Chapter 6) that Theorem 7.4.2 also applies e.g., to

cases, when the terminal value S1(T ) is given by max
o≤t≤T

B(t) or η(T ), where η is a Lévy

process.

7.4.3 Case Gt = Ft ∨ σ (B(t+ ∆tn)) ; n = 1, 2, · · · with ∆tn+1

∆tn
→ 1 as n→∞

It follows from Theorem 7.3.4 that:
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Theorem 7.4.5 Suppose Git is as in Theorem 7.3.4 and that P (λ {t ∈ [0, T ]; σ0(t) 6= 0} > 0) >

0 where λ denotes the Lebesgue measure on R. Then, there does not exist an optimal solution

(θ∗, π∗) ∈ AG2

Π ×A
G1

Θ for the performance functional J(θ, π) = E
[
U(Xθ,π(T ))

]
.

Proof. See proof of Corollary 6.6.6.

7.5 Application to optimal insider consumption

Suppose we have a cash flow X(t) = X(π,θ)(t) given by
dX(t) = (θ(t)− u(t)) dt+ σ(t)dB(t) +

∫
R0

γ(t, z)Ñ(dt, dz),

X(0) = x ∈ R.
(7.5.1)

Here θ(t), σ(t) and θ(t, z) are given FT -measurable processes and π(t) ≥ 0 is the consump-

tion rate, assumed to be adapted to a given insider filtration {Gt}t∈[0,T ] where

Ft ⊂ Gt for all t

Let f(t, π, θ, ω); t ∈ [0, T ] , π, θ ∈ R, ω ∈ Ω be a given FT -measurable utility process.

Assume that u→ f(t, π, θ, ω) is strictly increasing, concave and C1 for a.a (t, ω).

Let g(x, ω); x ∈ R, ω ∈ Ω be a given FT -measurable random variable for each x. Assume

that u→ g(x, ω) is concave for a.a ω. Define the performance functional J by

J(π, θ) = E

[∫ T

0
f(t, π(t), θ(t), ω) dt+ g

(
X(u)(T ), ω

)]
; u ∈ AG , u ≥ 0 (7.5.2)

Note that π → J(π, θ̂) and θ → J(π̂, θ) are concave, so (π̂, θ̂) is a Nash-equilibrium if and

only if (π̂, θ̂) is a critical point of J(π, θ).

Theorem 7.5.1 [Optimal insider consumption stochastic differential game consumption I]

(π̂, θ̂) is a Nash-equilibrium of insider consumption rate for the performance functional J

in Equation (7.5.2) if and only if

−E
[
∂

∂θ
f(t, π̂(t), θ̂(t), ω)

∣∣∣∣Gt] = E

[
∂

∂π
f(t, π̂(t), θ̂(t), ω)

∣∣∣∣Gt] = E
[
g′
(
X(π̂,θ̂)(T ), ω

)∣∣∣Gt]
(7.5.3)
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Proof. In this case we have

K1(t) =K2(t) = g
(
X(π,θ)(T )

)
Lπ(t) = − g

(
X(π,θ)(T )

)
+

∂

∂π
f(t, π̂(t), θ̂(t))

Lθ(t) = g
(
X(π,θ)(T )

)
+

∂

∂θ
f(t, π̂(t), θ̂(t))

Mπ(t) =Rπ(t, z) = Mθ = Rθ = 0

Therefore (π̂, θ̂) is a critical point for J(π, θ) if and only if

0 =E [Lπ(t)| Gt] = E [Lθ(t)| Gt]

=E

[
∂

∂π
f(t, π̂(t), θ̂(t))

∣∣∣∣Gt]+ E
[
−g′

(
X(π̂,θ̂(t))(T )

)∣∣∣Gt]
=E

[
∂

∂θ
f(t, π̂(t), θ̂(t))

∣∣∣∣Gt]+ E
[
g′
(
X(π̂,θ̂(t))(T )

)∣∣∣Gt]

Since X(π̂,θ̂)(T ) depends on (π̂, θ̂), Equation (7.5.3) does not give the value of π̂(t) (respec-

tively θ̂(t)) directly.

However, in some special cases π̂ and θ̂(t) can be found explicitly:

Corollary 7.5.2 (Optimal insider stochastic differential game consumption II)

Assume that

g(x, ω) = λ(ω)x (7.5.4)

for some FT -measurable random variable λ ≥ 0.

Then the Nash-equilibrium (π̂(t), θ̂(t)) of the stochastic differential game (7.5.2) is given by

E

[
∂

∂π
f(t, π̂, θ̂, ω)

∣∣∣∣Gt]
π=π̂(t)

=E [λ| Gt] , (7.5.5)

E

[
∂

∂θ
f(t, π̂, θ̂, ω)

∣∣∣∣Gt]
θ=θ̂(t)

= − E [λ| Gt] (7.5.6)

Thus we see that the Nash-equilibrium exists, for any given insider information filtration

{Gt}t≥0.



Appendix A

Proofs of Some Theorems

A.1 Proof of Proposition 1.2.7

Here we give a proof of Proposition 1.2.7.

Proof. of Proposition 1.2.7.

Motivated by [122], we set

Rε(F,X, s) = F (s+ ε,Xs+ε)− F (s,Xs)−
∂F

∂s
(s,Xs+ε)ε−

∂F

∂x
(s,X)(Xs+ε −Xs).(A.1.1)

Put Cε (F (·, X), G(·, Y )) = C
(1)
ε + Iε, where

C(1)
ε =

1
ε

∫ ·
0

∂F

∂x
(s,X)

∂G

∂y
(s, Y )(Xs+ε −Xs)(Ys+ε − Ys)ds,

Iε =
7∑
i=1

I(i)
ε , with

I(1)
ε =

1
ε

∫ ·
0

∂G

∂x
(s, Ys)Rε(F,X, s)(Ys+ε − Ys)ds,

I(2)
ε =

1
ε

∫ ·
0

∂F

∂x
(s,Xs)Rε(G, Y, s)(Xs+ε −Xs)ds,

I(3)
ε =

1
ε

∫ ·
0
Rε(G, Y, s)Rε(F,X, s)ds,

I(4)
ε =

∫ ·
0

∂G

∂s
(s, Ys+ε)Rε(F,X, s)ds,

178
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I(5)
ε =

∫ ·
0

∂F

∂s
(s,Xs+ε)Rε(G, Y, s)ds,

I(6)
ε =

∫ ·
0

∂F

∂s
(s,Xs+ε)

∂G

∂x
(s, Ys)(Ys+ε − Ys)ds,

I(7)
ε =

∫ ·
0

∂G

∂s
(s, Ys+ε)

∂F

∂x
(s,Xs)(Xs+ε −Xs)ds.

By proposition 1.2 in [122], C(1)
ε converges ucp to

∫ ·
0

∂F

∂x
(s,X)

∂G

∂y
(s, Y )d [X,Y ] (s). We

will check that I(i)
ε converges ucp to 0, 1 ≤ i ≤ 7. Since F is a C1,1 function, one can verify

that

Rε(F,X, s) =
(∫ 1

0

[
∂F

∂x
(s, αXs + (1− α)Xs+ε)−

∂F

∂x
(s,Xs)dα

])
(Xs+ε −Xs)

+
(∫ 1

0

[
∂F

∂u
(αs+ (1− α)(s+ ε), Xs+ε)−

∂F

∂u
(s,Xs+ε)dα

])
ε.

Let T > 0 fixed. Then X is uniformly continuous on [0, T + 1] and X ([0, T + 1]) ⊂ [−K,K].

We set ρ1 (respectively ρ2 and ρ3) to be the modulus of continuity
∂F

∂x
on [−K,K] (re-

spectively
∂F

∂u
, X on [0, T + 1]). The functions ρ1, ρ2 and ρ3 are positive, increasing and

converge to 0, at 0. Moreover K, ρ1, ρ2 and ρ3 depend on ω. We have

|Rε(F,X, s)| ≤ ρ1(ρ3(ε)) |Xs+ε −Xs|+ ρ3(ε)ε s ∈ [0, T ] , 0 < ε < 1. (A.1.2)

Now,
(
∂F

∂x
(s,Xs); 0 ≤ s ≤ T + 1

)
is bounded by M1 (M1 is random); therefore,

sup
0≤t≤T

I(1)
ε ≤M1

(
ρ1(ρ3(ε))

1
ε

∫ T

0
|Xs+ε −Xs| |Ys+ε − Ys| ds+ ρ3(ε)

∫ T

0
|Ys+ε − Ys| ds

)
.

By the Cauchy-Schwartz inequality, we have

sup
0≤t≤T

I(1)
ε ≤M1

(
ρ1(ρ3(ε)) {Cε (X,X) (T )Cε (Y, Y ) (T )}

1
2 + ερ3(ε) {TCε (Y, Y ) (T )}

1
2

)
.

Since (Cε (X,X) (T ), 0 < ε < 1) and (Cε (Y, Y ) (T ), 0 < ε < 1) are bounded, it follows that

I
(1)
ε converges ucp to 0. By symmetry, I(2)

ε converges ucp to 0. Substituting X for Y , F

for G, Equation (A.1.2) becomes

|Rε(G, Y, s)| ≤ ρ4(ε) |Ys+ε − Ys|+ ρ5(ε)ε s ∈ [0, T ] , 0 < ε < 1.
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where limε→0 ρ4(ε) = 0 = limε→0 ρ5(ε). We have

sup
0≤t≤T

I(3)
ε ≤ ρ4(ε)ρ1(ρ3(ε))

1
ε

∫ T

0
|Xs+ε −Xs| |Ys+ε − Ys| ds+ ρ5(ε)ρ1(ρ3(ε))

∫ T

0
|Xs+ε −Xs| ds

+ρ3(ε)ρ4(ε)
∫ T

0
|Ys+ε − Ys| ds+ ερ3(ε)ρ5(ε).

As before, the previous inequality implies that I(3)
ε converges ucp to 0. On the other hand,(

∂F

∂s
(s,Xs); 0 ≤ s ≤ T + 1

)
is bounded by M2; therefore,

sup
0≤t≤T

I(5)
ε ≤M2

(
ρ4(ε)

∫ T

0
|Ys+ε − Ys| ds+ Tρ5(ε)ε

)
,

and the convergence follows. By symmetry I
(4)
ε converges ucp to 0. Using the same argu-

ments, it is easy to show that I(6)
ε and I

(7)
ε converges ucp to 0.
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A.2 Proof of Theorem 4.3.3

Since û ∈ AE is a critical point, there exists for all bounded β ∈ AE a δ > 0 as in (4.3.4).

We conclude that

0 =
d

dy
J(û+ yβ)

∣∣∣∣
y=0

= E

[∫ T

0

∫
G

(
∂

∂γ
f(s, x, Γ̂(s, x), û(s, x), ω)Ŷ β(s, x)

+
∂

∂u
f(s, x, Γ̂(s, x), û(s, x), ω)β(s, x)

)
dx ds+

∫
G

∂

∂γ
g(x, Γ̂(T, x), ω)Ŷ β(T, x) dx

]
,

where Ŷ β is defined as in condition 4 with u = û and fulfills

Ŷ β(t, x) =
∫ t

0

[
LŶ β(s, x) + Ŷ β(s, x)

∂

∂γ
b(s, x, Γ̂(s, x),∇xΓ̂(s, x), û(s, x))

+∇xŶ β(s, x)∇γ′b(s, x, Γ̂(s, x),∇xΓ̂(s, x), û(s, x))
]
ds

+
∫ t

0

[
Ŷ β(s, x)

∂

∂γ
σ(s, x, Γ̂(s, x),∇xΓ̂(t, x), û(s, x))

+∇xŶ β(s, x)∇γ′σ(s, x, Γ̂(s, x),∇xΓ̂(t, x), û(s, x))
]
dB(s)

+
∫ t

0

∫
R

[
Ŷ β(s−, x)

∂

∂γ
θ(s, x, Γ̂(s, x),∇xΓ̂(t, x), û(s, x), z)

+∇xŶ β(s−, x)∇γ′θ(s, x, Γ̂(s, x),∇xΓ̂(t, x), û(s, x), z)
]
Ñ(dz, ds)

+
∫ t

0

[
β(s, x)

∂

∂u
b(s, x, Γ̂(s, x),∇xΓ̂(s, x), û(s, x))

]
ds

+
∫ t

0
β(s, x)

∂

∂u
σ(s, x, Γ̂(s, x),∇xΓ̂(t, x), û(s, x)) dB(s)

+
∫ t

0

∫
R
β(s−, x)

∂

∂u
θ(s, x, Γ̂(s, x),∇xΓ̂(t, x), û(s, x), z) Ñ(dz, ds) (A.2.1)

(t, x) ∈ [0, T ]×G

with

Ŷ β(0, x) = 0, x ∈ G

Ŷ β(t, x) = 0, (t, x) ∈ (0, T )× ∂G.

Using the shorthand notation ∂
∂γ f(s, x, Γ̂(s, x), û(s, x), ω) = ∂

∂γ f(s, x),

∂
∂uf(s, x, Γ̂(s, x), û(s, x), ω) = ∂

∂uf(s, x) and similarly for ∂g
∂γ ,

∂b
∂γ ,

∂b
∂u ,

∂σ
∂γ ,

∂σ
∂u ,

∂θ
∂γ and ∂θ

∂u ,
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we can write

E

[∫
G

∂

∂γ
g(x, Γ̂(T, x))Ŷ β(T, x)dx

]
=

∫
G
E

[
∂

∂γ
g(x, Γ̂(T, x))Ŷ β(T, x)

]
dx

=
∫
G
E

[
∂

∂γ
g(x, Γ̂(T, x))

(∫ T

0

[
LŶ β(t, x) +

∂

∂γ
b(t, x)Ŷ β(t, x)

+∇xŶ β(t, x)
∂

∂γ′
b(t, x) + β(t, x)

∂

∂u
b(t, x)

]
dt

+
∫ T

0

[
∂

∂γ
σ(t, x, )Ŷ β(t, x) +∇xŶ β(s, x)

∂

∂γ′
σ(t, x) +

∂

∂u
σ(t, x)β(t, x)

]
dB(t)

+
∫ T

0

∫
R0

[
∂

∂γ
θ(t, x, z) +∇xŶ β(s, x)

∂

∂γ′
θ(t, x, z) +

∂

∂u
θ(t, x, z)β(t−, x)

]
Ñ(dt, dz)

)]
dx

Then by the duality formulas (Lemma 4.3.2) we get that

E

[∫
G

∂

∂γ
g(x, Γ̂(T, x))Ŷ β(T, x) dx

]
=

∫
G
E

[∫ T

0

(
∂

∂γ
g(x, Γ̂(T, x))

[
LŶ β(t, x) +

∂

∂γ
b(t, x)Ŷ β(t, x)

+∇γ′b(t, x)∇xY (t, x) +
∂

∂u
b(t, x)β(t, x)

]
+Dt

(
∂

∂γ
g(x, Γ̂(T, x))

)[
∂

∂γ
σ(t, x)Ŷ β(t, x) +∇γ′σ(t, x)∇xŶ β(t, x)

+
∂

∂u
σ(t, x)β(t, x)

]
+
∫

R0

{
Dt,z

(
∂

∂γ
g(x, Γ̂(T, x))

)[
∂

∂γ
θ(t, x, z)Ŷ β(t−, x)

+∇γ′θ(t, x, z)∇xŶ β(t−, x) +
∂

∂u
θ(t, x, z)β(t−, x)

]}
ν(dz)

)
dt

]
dx. (A.2.2)
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Further we similarly obtain by duality and Fubini’s theorem that

E

[∫ T

0

∫
G

∂

∂γ
f(t, x)Ŷ β(t, x) dx dt

]
= E

[∫ T

0

∫
G

∂

∂γ
f(t, x)

(∫ t

0

{
LŶ β(s, x) +

∂

∂γ
b(s, x)Ŷ β(s, x)

+
∂

∂u
b(s, x)β(s, x) +∇γ′b(s, x, )∇xY (s, x)

}
ds

+
∫ t

0

{
∂

∂γ
σ(s, x)Ŷ β(s, x) +∇γ′σ(s, x)∇xŶ β(s, x) +

∂

∂u
σ(s, x)β(s, x)

}
dB(s)

+
∫ t

0

{
∂

∂γ
θ(s, x, z)Ŷ β(s, x) +∇γ′θ(s, x, z)∇xŶ β(t, x) +

∂

∂u
θ(s, x, z)β(t, x)

}
Ñ(dz, ds)

)
dxdt

]
=

∫
G
E

[∫ T

0

(∫ t

0

{
∂

∂γ
f(t, x)

[
LŶ β(s, x) +

∂

∂γ
b(s, x)Ŷ β(s, x) +∇γ′b(s, x, )∇xY (s, x)

+
∂

∂u
b(s, x)β(s, x)

]
+Ds

(
∂

∂γ
f(t, x)

)[
∂

∂γ
σ(s, x)Ŷ β(s, x) +∇γ′σ(s, x)∇xŶ β(s, x)

+
∂

∂u
σ(s, x)β(s, x)

]
+ +

∫
R0

Ds,z

(
∂

∂γ
f(t, x)

)[
∂

∂γ
θ(s, x, z)Ŷ β(s, x)

+∇γ′θ(s, x, z)∇xŶ β(t, x) +
∂

∂u
θ(s, x, z)β(t, x)

]
ν(dz)

}
ds

)
dt

]
dx

=
∫
G
E

[∫ T

0

{(∫ T

s

∂

∂γ
f(t, x)dt

)[
LŶ β(s, x) +

∂

∂γ
b(s, x)Ŷ β(s, x) +∇γ′b(s, x, )∇xY (s, x)

+
∂

∂u
b(s, x)β(s, x)

]
+
(∫ T

s
Ds

∂

∂γ
f(t, x)dt

)[
∂

∂γ
σ(s, x)Ŷ β(s, x) +∇γ′σ(s, x)∇xŶ β(s, x)

+
∂

∂u
σ(s, x)β(s, x)

]
+
∫

R0

(∫ T

s
Ds,z

∂

∂γ
f(t, x)dt

)[
∂

∂γ
θ(s, x, z)Ŷ β(s, x)

+∇γ′θ(s, x, z)∇xŶ β(t, x) +
∂

∂u
θ(s, x, z)β(t, x)

]
ν(dz)

}
ds

]
dx

Changing the notation s→ t, this becomes

=
∫
G
E

[∫ T

0

{(∫ T

t

∂

∂γ
f(s, x)ds

)[
LŶ β(t, x) +

∂

∂γ
b(t, x)Ŷ β(t, x)

+
∂

∂u
b(t, x)β(t, x) +∇γ′b(t, x, )∇xY (t, x)

]
+
(∫ T

t
Dt

∂

∂γ
f(s, x)ds

)[
∂

∂γ
σ(t, x)Ŷ β(t, x) +∇γ′σ(t, x)∇xŶ β(t, x)

+
∂

∂u
σ(t, x)β(t, x)

]
+
∫

R0

(∫ T

t
Dt,z

∂

∂γ
f(s, x)ds

)[
∂

∂γ
θ(t, x, z)Ŷ β(t, x)

+∇γ′θ(t, x, z)∇xŶ β(t, x) +
∂

∂u
θ(t, x, z)β(t, x)

]
ν(dz)

}
dt

]
dx (A.2.3)
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Thus by the definition of K̂(t, x) and combining with Equations (4.3.22)-(A.2.3) it follows

that

E

[∫
G

∫ T

0

{
K̂(t, x)

[
LŶ β(t, x) +

∂

∂γ
b(t, x)Ŷ β(t, x) +∇γ′b(t, x)∇xŶ β(t, x)

+
∂

∂u
b(t, x)β(t, x)

]
+DtK̂(t, x)

[
∂

∂γ
σ(t, x)Ŷ β(t, x) +∇γ′σ(t, x)Ŷ β(t, x)

+
∂

∂u
σ(t, x)β(t, x)

]
+
∫

R0

{
Dt,zK̂(t, x)

[
∂

∂γ
θ(t, x, z)Ŷ β(r, x)

+∇γ′θ(t, x, z)∇xŶ β(r, x) +
∂

∂u
θ(t, x, z)β(t, x)

]}
ν(dz)

+
∂

∂u
f(t, x, Γ̂(t, x), û(t, x), ω)β(t, x)

}
dtdx

]
= 0 (A.2.4)

We observe that for all β = βα ∈ AE of the form βα(s, x) = αχ[t,t+h](s) for some t, h ∈

(0, T ) , t+ h ≤ T as defined in Equation (4.3.3)

Ŷ βα(s, x) = 0, 0 ≤ s ≤ t, x ∈ G .

Then by inspecting Equation (A.2.4) we have that

A1 +A2 +A3 +A4 = 0 (A.2.5)

where

A1 = E

[∫
G

∫ T

t

{
K̂(s, x)

∂

∂γ
b(s, x) +DsK̂(s, x)

∂

∂γ
σ(s, x)

+
∫

R
Ds,zK̂(s, x)

∂

∂γ
θ(s, x, z)ν(dz)

}
Ŷ βα(s, x) ds dx

]
A2 = E

[∫
G

∫ t+h

t

{
K̂(s, x)

∂

∂u
b(s, x) +DsK̂(s, x)

∂

∂u
σ(s, x)

+
∫

R
Ds,zK̂(s, x)

∂

∂u
θ(s, x, z)ν(dz) +

∂

∂u
f(s, x)

}
αds dx

]
A3 = E

[∫
G

∫ T

t
K̂(s, x)LŶ βα(s, x) dx dt

]
A4 = E

[∫
G

∫ T

t

{
K̂(s, x)

∂

∂γ′
b(s, x) +DsK̂(s, x)∇γ′σ(s, x)

+
∫

R
Ds,zK̂(s, x)∇γ′θ(s, x, z) ν(dz)

}
∇xŶ βα(s, x) ds dx

]
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Note by the definition of Ŷ βα with Ŷ βα(s, x) = Y (s, x) and s ≥ t + h the process Y (s, x)

follows the following SPDE

dŶ (s, x) =
{
LŶ βα(s, x) + Ŷ βα(s−, x)

∂

∂γ
b(s, x) +∇xŶ βα(s−, x)∇γ′b(s, x)

}
ds

+
{
Ŷ βα(s−, x)

∂

∂γ
σ(s, x) +∇xŶ βα(s−, x)∇γ′σ(s, x)

}
dB(s)

+
∫

R0

{
Ŷ βα(s−, x)

∂

∂γ
θ(s, x, z) +∇xŶ βα(s−, x)∇γ′θ(s, x, z)

}
Ñ(dz, dr)

Using notation (4.3.6)-(4.3.13) and assumption D1 we have

dŶ (s, x) =LŶ βα(s, x) + Ŷ βα(s−, x)
{
b∗(s, x) ds+ σ∗(s, x) dB(s) +

∫
R0

θ∗(s, x, z) Ñ(dz, dr)
}

+
n∑
i=1

∂

∂xi
Ŷ βα(s−, x)

{
b̃i(s, x) ds+ σ̃i(s, x) dB(s)

}
, (A.2.6)

for s ≥ t+ h with initial condition Y (t+ h, x) 6= 0 at time t+ h. Equation (A.2.6) can be

solve explicitly using the stochastic flow theory of the preceding section.

Let us consider the equation (see p. 297/298 in [79])

ηs(y) =
∫ s

0
ηr(y)Fn+1(ϕ0,r(x), ◦dr) +

∫ s

0
Fn+2(ϕ0,r(x), ◦dr).

Then

ηs(y) =
∫ t+h

0
ηr(y)Fn+1(ϕ0,r(x), ◦dr) +

∫ t+h

0
Fn+2(ϕ0,r(x), ◦dr)

+
∫ s

t+h
ηr(y)Fn+1(ϕ0,r(x), ◦dr) +

∫ s

t+h
Fn+2(ϕ0,r(x), ◦dr)

=ηt+h(y) +
∫ s

t+h
ηr(y)Fn+1(ϕ0,r(x), ◦dr) + 0

ηt+h(y) +
∫ s

t+h
ηr(y)Fn+1(ϕ0,r(x), ◦dr).

So it follows that

ηs(y) = ηt+h(y) exp
{∫ s

t+h
Fn+1(ϕ0,r(x), ◦dr)

}
.

Thus

v(x, s) = ηs(y)|y=ϕs,0(x) = ηt+h(y)|y=ϕs,0(x) exp
{∫ s

t+h
Fn+1(ϕs,r(x), ◦d̂r)

}
= v(ϕs,t+h(x), t+ h) exp

{∫ s

t+h
Fn+1(ϕs,r(x), ◦d̂r)

}
.



A.2 Proof of Theorem 4.3.3 186

Therefore we obtain that

Y (s, x) =EQ

[
v(ϕs,t+h(x), t+ h) exp

{∫ s

t+h
Fn+1(ϕs,r(x), ◦d̂r)

}]
=E

P̂

[
v(ϕs,t+h(x), t+ h)Z(t+ h, s, ϕs,r(x))

]
. (A.2.7)

where Z(t, s, x), s ≥ t is given by (4.3.19). For notational convenience, we set

Q = P̂ .

Recall that v(x, s) satisfies the SPDE (4.3.15).

In addition recall that

Y (t, x) = E
P̂

[v(t, x)]. (A.2.8)

Put

Ĥ0(s, x, γ, γ′, u) = K̂(s, x)b(s, x, γ, γ′, u) +DsK̂(s, x)σ(s, x, γ, γ′, u)

+
∫

R
Ds,zK̂(s, x)θ(s, x, γ, γ′, z, u) ν(dz) (A.2.9)

A1 = E

[∫
G

∫ T

t

∂

∂γ
Ĥ0(s, x)Ŷ (s, x) ds dx

]
Differentiating with respect to h at h = 0 we get

d

dh
A1

∣∣∣∣
h=0

=
d

dh
E

[∫
G

∫ t+h

t

∂

∂γ
Ĥ0(s, x)Ŷ (s, x) ds dx

]
h=0

+
d

dh
E

[∫
G

∫ T

t+h

∂

∂γ
Ĥ0(s, x)Ŷ (s, x) ds dx

]
h=0

(A.2.10)

Since Y (t, x) = 0 we see that

d

dh
E

[∫
G

∫ t+h

t

∂

∂γ
Ĥ0(s, x)Ŷ (s, x) ds dx

]
h=0

= 0. (A.2.11)

Therefore by Equation (A.2.7), we get

d

dh
A1

∣∣∣∣
h=0

=
d

dh
E

[∫
G

∫ T

t+h

∂

∂γ
Ĥ0(s, x)EQ

[
v (t+ h, ϕ̂s,t+h(x)) Ẑ (t+ h, s, ϕ̂s,r(x))

]
ds dx

]
h=0

=
∫
G

∫ T

t

d

dh
E

[
∂

∂γ
Ĥ0(s, x)EQ

[
v (t+ h, ϕ̂s,t+h(x)) Ẑ (t+ h, s, ϕ̂s,r(x))

]]
h=0

ds dx

=
∫
G

∫ T

t

d

dh
E

[
∂

∂γ
Ĥ0(s, x)EQ

[
v (t+ h, ϕ̂s,t+h(x)) Ẑ (t, s, ϕ̂s,r(x))

]]
h=0

ds dx.

(A.2.12)
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By Equation (4.3.15)

v(t+ h, x) =
∫ t+h

t
Lsv(x, s)ds+

n∑
i=1

∫ t+h

t
Y ∗i (x, ds)

∂v

∂xi

+
n∑
i=1

∫ t+h

t
Fi(x, ds)

∂v

∂xi
+
∫ t

0
Fn+1(x, ds)v

+ α

∫ t+h

t

{
∂

∂u
b(r, x) dr +

∂

∂u
σ(r, x) dB(r)

}
, (A.2.13)

Then, using Equations (A.2.12) and (A.2.13), we get

d

dh
A1

∣∣∣∣
h=0

= A1,1 +A1,2 +A1,3, (A.2.14)

where

A1,1 =
∫
G

∫ T

t

d

dh
E

[
∂

∂γ
Ĥ0(s, x)EQ

[
Ẑ (t, s, ϕ̂s,r(x))×

{∫ t+h

t
Lsv̂(x, r) dr

+
∫ t

0
Fn+1(x, dr)v̂(x, r)

}]]
h=0

ds dx (A.2.15)

A1,2 =
∫
G

∫ T

t

d

dh
E

[
∂

∂γ
Ĥ0(s, x)EQ

[
Ẑ (t, s, ϕ̂s,r(x)) ×

α

∫ t+h

t

{
∂

∂u
b(r, ϕt+h,r(x)) dr +

∂

∂u
σ(r, ϕt+h,r(x))dB(r)

}]]
h=0

ds dx, (A.2.16)

A1,3 =
∫
G

∫ T

t

d

dh
E

[
∂

∂γ
Ĥ0(s, x)EQ

[
Ẑ (t, s, ϕ̂s,r(x)) ×{

n∑
i=1

∫ t+h

t
Y ∗i (x, dr)

∂v̂

∂xi
(x, r) +

n∑
i=1

∫ t+h

t
Fi(x, dr)

∂v̂

∂xi
(x, r)

}]]
h=0

ds dx.

(A.2.17)

Since Ŷ (t, x) = 0 we have that v(t, x) = 0 and then

A1,1 = A1,3 = 0

By the duality formula and applying Fubini’s theorem repeatedly, A1,2 becomes

A1,2 =
∫
G

∫ T

t

d

dh
E

[
EQ

[
α

∫ t+h

t

{
∂

∂u
b(r, ϕt+h,r(x))I(t, s, x)

+
∂

∂u
σ(r, ϕt+h,r(x))DrI(t, s, x)

}]]
h=0

ds dx,

=
∫
G

∫ T

t
EQ

[
E

[
α

{
∂

∂u
b(t, ϕt+h,t(x))I(t, s, x)

+
∂

∂u
σ(t, ϕt+h,t(x))DtI(t, s, x)

}]]
ds dx, (A.2.18)
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where I(t, s, x) = ∂
∂γ Ĥ0(s, x)Ẑ(t, s, ϕ̂s,t(x)).

This implies that

d

dh
A1

∣∣∣∣
h=0

=A1,2

=
∫
G

∫ T

t
EQ

[
E

[
α

{
∂

∂u
b(t, ϕt,t(x))I(t, s, x)

+
∂

∂u
σ(t, ϕt,t(x))DtI(t, s, x)

}]]
ds dx.

=
∫
G

∫ T

t
EQ

[
E

[
α

{
∂

∂u
b(t, x)I(t, s, x) +

∂

∂u
σ(t, x)DtI(t, s, x)

}]]
ds dx,

(A.2.19)

where the last equality follows from the fact that ϕ̂t,t(x) = x. Moreover, we see that

d

dh
A2

∣∣∣∣
h=0

=
∫
G
E

[
α

{
∂

∂u
b(t, x)K̂(t, x) +

∂

∂u
σ(t, x)DtK̂(t, x) +

∂

∂u
f(t, x)

}]
ds dx

(A.2.20)

Then, using the adjoint operators L∗ and ∇∗x (see (4.3.20)) we get

A3 = E

[∫
G

∫ T

t
K̂(s, x)LŶ βα(s, x)dx dt

]
= E

[∫
G

∫ T

t
L∗K̂(s, x)Ŷ βα(s, x) dx dt

]
A4 = E

[∫
G

∫ T

t

{
K̂(s, x)∇γ′b(s, x) +DsK̂(s, x)∇γ′σ(s, x)

+
∫

R
Ds,zK̂(s, x)∇γ′θ(s, x, z)ν(dz)

}
∇xŶ βα(s, x) ds dx

]
= E

[∫
G

∫ T

t
∇∗x
(
∇γ′Ĥ0(s, x)

)
Ŷ βα(s, x) ds dx

]
Differentiating with respect to h at h = 0 gives

d

dh
A3

∣∣∣∣
h=0

=
d

dh
E

[∫
G

∫ t+h

t
L∗K̂(s, x)Ŷ (s, x) ds dx

]
h=0

+
d

dh
E

[∫
G

∫ T

t+h
L∗K̂(s, x)Ŷ (s, x) ds dx

]
h=0

, (A.2.21)

d

dh
A4

∣∣∣∣
h=0

=
d

dh
E

[∫
G

∫ t+h

t
∇∗x
(
∇γ′Ĥ0(s, x)

)
Ŷ (s, x) ds dx

]
h=0

+
d

dh
E

[∫
G

∫ T

t+h
∇∗x
(
∇γ′Ĥ0(s, x)

)
Ŷ (s, x) ds dx

]
h=0

. (A.2.22)
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Using the same arguments as before, it can be shown that

d

dh
A3

∣∣∣∣
h=0

=
∫
G

∫ T

t
EQ

[
E

[
α

{
∂

∂u
b(t, x)I1(t, s, x) +

∂

∂u
σ(t, x)DtI1(t, s, x)

}]]
ds dx,

(A.2.23)

d

dh
A4

∣∣∣∣
h=0

=
∫
G

∫ T

t
EQ

[
E

[
α

{
∂

∂u
b(t, x)I2(t, s, x) +

∂

∂u
σ(t, x)DtI2(t, s, x)

}]]
ds dx,

(A.2.24)

where I1(t, s, x) = L∗K̂(s, x)Ẑ(t, s, ϕs,t(x)) and I2(t, s, x) = ∇∗x
(
∇γ′Ĥ0(s, x)

)
Ẑ(t, s, ϕs,t(x)).

Therefore, differentiating Equation (A.2.5) with respect to h at h = 0 yields

EQ

[
E

[
α

∫
G

{
∂

∂u
f(t, x) +

(
K̂(t, x) +

∫ T

t

(
I(t, s, x) + I1(t, s, x) + I2(t, s, x)

)
ds

)
∂

∂u
b(t, x)

+Dt

(
K̂(t, x) +

∫ T

t

(
I(t, s, x) + I1(t, s, x) + I2(t, s, x)

)
ds

)
∂

∂u
σ(t, x)

}
dx

]]
= 0

(A.2.25)

By the definition of p̂(t, x), we have

p̂(t, x) = K̂(t, x) +
∫ T

t

(
I(t, s, x) + I1(t, s, x) + I2(t, s, x)

)
ds.

We can then write (A.2.25), as

EQ

[
E

[∫
G

∂

∂u

{
f(t, x,Γ, û, ω) + p(t, x)b(t, x,Γ,Γ′, û, ω) +Dtp(t, x)σ(t, x,Γ,Γ′, û, ω)

+
∫

R
Dt,zp(t, x)θ(t, x,Γ,Γ′, û, z, ω)ν(dz)

}
αdx

]]
= 0

Since this holds for all bounded Et−measurable random variables α, we conclude that

EQ

[
E

[∫
G

∂

∂u
Ĥ(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x)) dx

∣∣∣∣ Et]] = 0 a.e. in (t, x, ω),

which means

E

[
EQ

[∫
G

∂

∂u
Ĥ(t, x, Γ̂(t, x),∇xΓ̂(t, x), û(t, x)) dx

]∣∣∣∣ Et] = 0 a.e. in (t, x, ω),

which completes the proof.
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A.3 Proof of Theorem 6.3.1

1. Since û ∈ AG is a critical point for J(u), there exists a δ > 0 as in Equaation (6.3.2)

for all bounded β ∈ AG . Thus

0 =
d

dy
J(û+ yβ)

∣∣∣∣
y=0

(A.3.1)

= E

[∫ T

0

{
∂

∂x
f(t,X(t), u(t))Ŷ (t) +

∂

∂u
f(t,X(t), u(t))β(t)

}
ds+ g′(X(T ))Ŷ (T )

]
,

where Ŷ = Y û
β is as defined in Eqution (6.3.3).

We study the two summands separately.

E
[
g′(X(T ))Y (T )

]
=E

[
g′(X(T ))

(∫ T

0

{
∂b(t)
∂x

Y (t) +
∂b(t)
∂u

β(t)
}
dt

+
∫ T

0

{
∂σ(t)
∂x

Y (t) +
∂σ(t)
∂u

β(t)
}
d−B(t)

+
∫ T

0

∫
R0

{
∂θ(t)
∂x

Y (t) +
∂θ(t)
∂u

β(t)
}
Ñ(dz, d−t)

)]
=E

[∫ T

0
g′(X(T ))

{
∂b(t)
∂x

Y (t) +
∂b(t)
∂u

β(t)
}
dt

]
+ E

[∫ T

0
Dtg

′(X(T ))
{
∂σ(t)
∂x

Y (t) +
∂σ(t)
∂u

β(t)
}
dt

]
+ E

[∫ T

0
g′(X(T ))Dt+

(
∂σ(t)
∂x

Y (t) +
∂σ(t)
∂u

β(t)
)
dt

]
+ E

[∫ T

0

∫
R0

Dt,zg
′(X(T ))

{
∂θ(t)
∂x

Y (t) +
∂θ(t)
∂u

β(t)
}
ν(dz)dt

]
+ E

[∫ T

0

∫
R0

{
g′(X(T )) +Dt,zg

′(X(T ))
}
Dt+,z

(
∂θ(t)
∂x

Y (t) +
∂θ(t)
∂u

β(t)
)
ν(dz)dt

]



A.3 Proof of Theorem 6.3.1 191

=E

[∫ T

0

{
g′(X(T ))

∂b(t)
∂x

+Dtg
′(X(T ))

∂σ(t)
∂x

+
∫

R0

Dt,zg
′(X(T ))

∂θ(t)
∂x

ν(dz)
}
Y (t)dt

]
+ E

[∫ T

0

{
g′(X(T ))

∂b(t)
∂u

+Dtg
′(X(T ))

∂σ(t)
∂u

+
∫

R0

Dt,zg
′(X(T ))

∂θ(t)
∂u

ν(dz)
}
β(t)dt

]
+ E

[∫ T

0
g′(X(T ))Dt+

∂σ(t)
∂x

Y (t)dt
]

+ E

[∫ T

0
g′(X(T ))

∂σ(t)
∂x

Dt+Y (t)dt
]

+ E

[∫ T

0
g′(X(T ))Dt+

∂σ(t)
∂u

β(t)dt
]

+ E

[∫ T

0
g′(X(T ))

∂σ(t)
∂u

Dt+β(t)dt
]

+ E

[∫ T

0

∫
R0

{
g′(X(T )) +Dt,zg

′(X(T ))
}
Dt+,z

∂θ(t)
∂x

Y (t)ν(dz)dt
]

+ E

[∫ T

0

∫
R0

{
g′(X(T )) +Dt,zg

′(X(T ))
}{∂θ(t)

∂x
+ Dt+,z

∂θ(t)
∂x

}
Dt+,zY (t)ν(dz)dt

]
+ E

[∫ T

0

∫
R0

{
g′(X(T )) +Dt,zg

′(X(T ))
}
Dt+,z

∂θ(t)
∂u

β(t)ν(dz)dt
]

+ E

[∫ T

0

∫
R0

{
g′(X(T )) +Dt,zg

′(X(T ))
}{∂θ(t)

∂u
+ Dt+,z

∂θ(t)
∂u

}
Dt+,zβ(t)ν(dz)dt

]
=E

[∫ T

0

{
g′(X(T ))

(
∂b(t)
∂x

+Dt+
∂σ(t)
∂x

+
∫

R0

Dt+,z
∂θ(t)
∂x

ν(dz)
)

+Dtg
′(X(T ))

∂σ(t)
∂x

+
∫

R0

Dt,zg
′(X(T ))

(
∂θ(t)
∂x

+Dt+,z
∂θ(t)
∂x

)
ν(dz)

}
Y (t)dt

]
+ E

[∫ T

0

{
g′(X(T ))

(
∂b(t)
∂u

+Dt+
∂σ(t)
∂u

+
∫

R0

Dt+,z
∂θ(t)
∂u

ν(dz)
)

+Dtg
′(X(T ))

∂σ(t)
∂u

+
∫

R0

Dt,zg
′(X(T ))

(
∂θ(t)
∂u

+Dt+,z
∂θ(t)
∂u

)
ν(dz)

}
β(t)dt

]
+ E

[∫ T

0
g′(X(T ))

∂σ(t)
∂x

Dt+Y (t)dt
]

+ E

[∫ T

0
g′(X(T ))

∂σ(t)
∂u

Dt+β(t)dt
]

+ E

[∫ T

0

∫
R0

{
g′(X(T )) +Dt,zg

′(X(T ))
}{∂θ(t)

∂x
+ Dt+,z

∂θ(t)
∂x

}
Dt+,zY (t)ν(dz)dt

]
+ E

[∫ T

0

∫
R0

{
g′(X(T )) +Dt,zg

′(X(T ))
}{∂θ(t)

∂u
+ Dt+,z

∂θ(t)
∂u

}
Dt+,zβ(t)ν(dz)dt

]
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Similarly, we have using both Fubini and duality theorems,

E

[∫ T

0

∂

∂x
f(t)Y (t)dt

]
=E

[∫ T

0

∂

∂x
f(t)

(∫ t

0

{
∂b(s)
∂x

Y (s) +
∂b(s)
∂u

β(s)
}
ds

+
∫ t

0

{
∂σ(s)
∂x

Y (s) +
∂σ(s)
∂u

β(s)
}
d−B(s)

+
∫ t

0

∫
R0

{
∂θ(s)
∂x

Y (s) +
∂θ(s)
∂u

β(s)
}
Ñ(dz, d−s)

)
dt

]
=E

[∫ T

0

(∫ t

0

∂f(t)
∂x

{
∂b(s)
∂x

Y (s) +
∂b(s)
∂u

β(s)
}
ds

)
dt

]
+E

[∫ T

0

(∫ t

0
Ds

∂f(t)
∂x

{
∂σ(s)
∂x

Y (s) +
∂σ(s)
∂u

β(s)
}
ds

)
dt

]
+E

[∫ T

0

(∫ t

0

∂f(t)
∂x

Ds+

{
∂σ(s)
∂x

Y (s) +
∂σ(s)
∂u

β(s)
}
ds

)
dt

]
+E

[∫ T

0

(∫ t

0

∫
R0

Ds,z
∂f(t)
∂x

{
∂θ(s)
∂x

Y (s) +
∂θ(s)
∂u

β(s)
}
ν(dz)ds

)
dt

]
+E

[∫ T

0

(∫ t

0

∫
R0

{
∂f(t)
∂x

+Ds,z
∂f(t)
∂x

}
×

Ds+,z

(
∂θ(s)
∂x

Y (s) +
∂θ(s)
∂u

β(s)
)
ν(dz)ds

)
dt

]
=E

[∫ T

0

(∫ T

s

∂f(t)
∂x

dt

){
∂b(s)
∂x

Y (s) +
∂b(s)
∂u

β(s)
}
ds

]
+ E

[∫ T

0

(∫ T

s
Ds

∂f(t)
∂x

dt

){
∂σ(s)
∂x

Y (s) +
∂σ(s)
∂u

β(s)
}]

+ E

[∫ T

0

(∫ T

s

∂f(t)
∂x

dt

)
Ds+

{
∂σ(s)
∂x

Y (s) +
∂σ(s)
∂u

β(s)
}
ds

]
+ E

[∫ T

0

∫
R0

(∫ T

s
Ds,z

∂f(t)
∂x

dt

){
∂θ(s)
∂x

Y (s) +
∂θ(s)
∂u

β(s)
}
ν(dz)ds

]
+ E

[∫ T

0

∫
R0

(∫ T

s

{
∂f(t)
∂x

+Ds,z
∂f(t)
∂x

}
dt

)
×

Ds+,z

{
∂θ(s)
∂x

Y (s) +
∂θ(s)
∂u

β(s)
}
ν(dz)ds

]
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Changing the notation s→ t, this becomes

=E

[∫ T

0

(∫ T

t

∂f(s)
∂x

ds

){
∂b(t)
∂x

Y (t) +
∂b(t)
∂u

β(t)
}
dt

]
+E

[∫ T

0

(∫ T

t
Dt
∂f(s)
∂x

ds

){
∂σ(t)
∂x

Y (t) +
∂σ(t)
∂u

β(t)
}]

+E

[∫ T

0

∫
R0

(∫ T

t
Dt,z

∂f(s)
∂x

ds

){
∂θ(t)
∂x

Y (t) +
∂θ(t)
∂u

β(t)
}
ν(dz)dt

]
+E

[∫ T

0

(∫ T

t

∂f(s)
∂x

ds

)
Dt+

{
∂σ(t)
∂x

Y (t) +
∂σ(t)
∂u

β(t)
}
dt

]
+E

[∫ T

0

∫
R0

(∫ T

t

{
∂f(s)
∂x

+Dt,z
∂f(s)
∂x

}
ds

)
(
Dt+,z

{
∂θ(t)
∂x

Y (t) +
∂θ(t)
∂u

β(t)
})

ν(dz)dt
]

(A.3.2)

=E

[∫ T

0

{(∫ T

t

∂f(s)
∂x

ds

)(
∂b(t)
∂x

+Dt+
∂σ(t)
∂x

+
∫

R0

Dt+,z
∂θ(t)
∂x

ν(dz)
)

+
(∫ T

t
Dt
∂f(s)
∂x

ds

)
∂σ(t)
∂x

+
∫

R0

(∫ T

t
Dt,z

∂f(s)
∂x

ds

)(
∂θ(t)
∂x

+Dt+,z
∂θ(t)
∂x

)
ν(dz)

}
Y (t)dt

]
+ E

[∫ T

0

{(∫ T

t

∂f(s)
∂x

ds

)(
∂b(t)
∂u

+Dt+
∂σ(t)
∂u

+
∫

R0

Dt+,z
∂θ(t)
∂u

ν(dz)
)

+
(∫ T

t
Dt
∂f(s)
∂x

ds

)
∂σ(t)
∂u

+
∫

R0

(∫ T

t
Dt,z

∂f(s)
∂x

ds

)(
∂θ(t)
∂u

+Dt+,z
∂θ(t)
∂u

)
ν(dz)

}
β(t)dt

]
+ E

[∫ T

0

(∫ T

t

∂f(s)
∂x

ds

)
∂σ(t)
∂x

Dt+Y (t)dt
]

+ E

[∫ T

0

(∫ T

t

∂f(s)
∂x

ds

)
∂σ(t)
∂u

Dt+β(t)dt
]

+ E

[∫ T

0

∫
R0

{(∫ T

t

∂f(s)
∂x

+Dt,z
∂f(s)
∂x

ds

)}{
∂θ(t)
∂x

+ Dt+,z
∂θ(t)
∂x

}
Dt+,zY (t)ν(dz)dt

]
+ E

[∫ T

0

∫
R0

{(∫ T

t

∂f(s)
∂x

+Dt,z
∂f(s)
∂x

ds

)}{
∂θ(t)
∂u

+ Dt+,z
∂θ(t)
∂u

}
Dt+,zβ(t)ν(dz)dt

]
Recall that

K(t) := g′(X(T )) +
∫ T

t

∂

∂x
f(s,X(s), u(s))ds



A.3 Proof of Theorem 6.3.1 194

and combining Equations (6.3.11)-(6.3.14) and (A.3.2), it follows that

0 =E

[∫ T

0

{
K(t)

(
∂b(t)
∂x

+Dt+
∂σ(t)
∂x

+
∫

R0

Dt+,z
∂θ(t)
∂x

ν(dz)
)

+DtK(t)
∂σ(t)
∂x

+
∫

R0

Dt,zK(t)
(
∂θ(t)
∂x

+Dt+,z
∂θ(t)
∂x

)
ν(dz)

}
Y (t)dt

]
+ E

[∫ T

0

{
K(t)

(
∂b(t)
∂u

+Dt+
∂σ(t)
∂u

+
∫

R0

Dt+,z
∂θ(t)
∂u

ν(dz)
)

+DtK(t)
∂σ(t)
∂u

+
∫

R0

Dt,zK(t)
(
∂θ(t)
∂u

+Dt+,z
∂θ(t)
∂u

)
ν(dz) +

∂f(t)
∂u

}
β(t)dt

]
+ E

[∫ T

0
K(t)

∂σ(t)
∂x

Dt+Y (t)dt
]

+ E

[∫ T

0
K(t)

∂σ(t)
∂u

Dt+β(t)dt
]

(A.3.3)

+ E

[∫ T

0

∫
R0

{K(t) +Dt,zK(t)}
{
∂θ(t)
∂x

+ Dt+,z
∂θ(t)
∂x

}
Dt+,zY (t)ν(dz)dt

]
+ E

[∫ T

0

∫
R0

{K(t) +Dt,zK(t)}
{
∂θ(t)
∂u

+ Dt+,z
∂θ(t)
∂u

}
Dt+,zβ(t)ν(dz)dt

]
We observe that for all βα ∈ AG given as βα(s) := αχ[t,t+h](s), for some t, h ∈

(0, T ), t+h ≤ T , where α = α(ω) is bounded and Gt−measurable. Then Y (βα)(s) = 0

for 0 ≤ s ≤ t and hence Equation (A.3.3) becomes

A1 +A2 +A3 +A4 +A5 +A6 = 0 (A.3.4)

Where

A1 =E

[∫ T

t

{
K(t)

(
∂b(s)
∂x

+ Ds+
∂σ(s)
∂x

+
∫

R0

Ds+,z
∂θ(s)
∂x

ν(dz)
)

+
∫

R0

Ds,zK(s)
(∂θ(s)
∂x

+Ds+,z
∂θ(s)
∂x

)
ν(dz) + DsK(s)

∂σ(s)
∂x

}
Y (βα)(s)ds

]
A2 =E

[∫ t+h

t

{
K(t)

(
∂b(s)
∂u

+ Ds+
∂σ(s)
∂u

+
∫

R0

Ds+,z
∂θ(s)
∂u

ν(dz)
)

+
∂f(s)
∂u

+
∫

R0

Ds,zK(s)
(∂θ(s)
∂u

+Ds+,z
∂θ(s)
∂u

)
ν(dz) + DsK(s)

∂σ(s)
∂u

}
αds

]
A3 =E

[∫ T

t
K(s)

∂σ(s)
∂x

Ds+Y
(βα)(s)ds

]
A4 =E

[∫ t+h

t
K(s)

∂σ(s)
∂u

Ds+αds

]
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A5 =E

[∫ T

t

∫
R0

{K(s) +Ds,zK(s)}
(∂θ(s)
∂x

+Ds+,z
∂θ(s)
∂x

)
ν(dz)Ds+,zY

(βα)(s)ds
]

A6 =E

[∫ t+h

t

∫
R0

{K(s) +Ds,zK(s)}
(∂θ(s)
∂u

+Ds+,z
∂θ(s)
∂u

)
ν(dz)Ds+,zαds

]
Note by the definition of Y , with Y (s) = Y (βα)(s) and s ≥ t + h, the process Y (s)

follows the dynamics

dY (s) = Y (s−)
[
∂b

∂x
(s)ds +

∂σ

∂x
(s)d−B(s) +

∫
R0

∂θ

∂x
(s, z)Ñ(dz, d−s)

]
, (A.3.5)

for s ≥ t+ h with initial condition Y (t+ h) in time t+ h. By Itô formula for forward

integral, this equation can be solved explicitly and we get

Y (s) = Y (t+ h)G(t+ h, s), s ≥ t+ h (A.3.6)

where, in general, for s ≥ t,

G(t, s) := exp

(∫ s

t

{
∂b

∂x
(r,X(r), u(r), ω)− 1

2

(
∂σ

∂x

)2

(r,X(r), u(r), ω)

}
dr

+
∫ s

t

∂σ

∂x
(r,X(r), u(r), ω) dB−(r)

+
∫ s

t

∫
R0

{
ln
(

1 +
∂θ

∂x
(r,X(r), u(r), ω)

)
− ∂θ

∂x
(r,X(r), u(r), ω)

}
ν(dz)dt

+
∫ s

t

∫
R0

{
ln
(

1 +
∂θ

∂x

(
r,X(r−), u(r−), ω

))}
Ñ(dz, d−r)

)
.

Note that G(t, s) does not depend on h, but Y (s) does. Defining H0 as in Equation

(6.3.5), it follows that

A1 = E

[∫ T

t

∂H0

∂x
(s)Y (s)ds

]
.

Differentiating with respect to h at h = 0, we get

d

dh
A1

∣∣∣∣
h=0

=
d

dh
E

[∫ t+h

t

∂H0

∂x
(s)Y (s)ds

]
h=0

+
d

dh
E

[∫ T

t+h

∂H0

∂x
(s)Y (s)ds

]
h=0

.

Since Y (t) = 0, we see that

d

dh
E

[∫ t+h

t

∂H0

∂x
(s)Y (s)ds

]
h=0

= 0
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Therefore, by Equation (A.3.6),

d

dh
A1

∣∣∣∣
h=0

=
d

dh
E

[∫ T

t+h

∂H0

∂x
(s)Y (t+ h)G(t+ h, s)ds

]
h=0

=
∫ T

t

d

dh
E

[
∂H0

∂x
(s)Y (t+ h)G(t+ h, s)

]
h=0

ds

=
∫ T

t

d

dh
E

[
∂H0

∂x
(s)G(t, s)Y (t+ h)

]
h=0

ds,

where, Y (t+ h) is given by

Y (t+ h) =
∫ t+h

t
Y (r−)

[
∂b

∂x
(r)dr +

∂σ

∂x
(r)d−B(r) +

∫
R0

∂θ

∂x
(r, z)Ñ(dz, d−r)

]
+ α

∫ t+h

t

[
∂b

∂u
(r)dr +

∂σ

∂u
(r)d−B(r) +

∫
R0

∂θ

∂u
(r, z)Ñ(dz, d−r)

]
.

Therefore, by the two preceding equalities,

d

dh
A1

∣∣∣∣
h=0

= A1,1 +A1,2,

where

A1,1 =
∫ T

t

d

dh
E

[
∂H0

∂x
(s)G(t, s)α

∫ t+h

t

{
∂b

∂u
(r)dr +

∂σ

∂u
(r)d−B(r)

+
∫

R0

∂θ

∂u
(r, z)Ñ(dz, d−r)

}]
h=0

ds,

and

A1,2 =
∫ T

t

d

dh
E

[
∂H0

∂x
(s)G(t, s)

∫ t+h

t
Y (r−)

{
∂b

∂x
(r)dr +

∂σ

∂x
(r)d−B(r)

+
∫

R0

∂θ

∂x
(r, z)Ñ(dz, d−r)

}]
h=0

ds.

Applying again the duality formula, we have

A1,1 =
∫ T

t

d

dh
E

[
α

∫ t+h

t

{
∂b

∂u
(r)F (t, s) +

∂σ

∂u
(r)DrF (t, s) + F (t, s)Dr+

∂σ

∂u
(r)

+
∫

R0

{(
∂θ

∂u
(r, z) +Dr+,z

∂θ

∂u
(r, z)

)
Dr,zF (t, s)

+ Dr+,z
∂θ

∂u
(r, z)F (t, s)

}
ν(dz)

}
dr

]
h=0

ds

=
∫ T

t
E

[
α

{(
∂b

∂u
(t) +Dt+

∂σ

∂u
(t) +

∫
R0

Dt+,z
∂θ

∂u
(t, z)ν(dz)

)
F (t, s)

+
∂σ

∂u
(t)DtF (t, s) +

∫
R0

(
∂θ

∂u
(t, z) +Dt+,z

∂θ

∂u
(t, z)

)
Dt,zF (t, s)ν(dz)

}]
ds,
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where we have put

F (t, s) =
∂H0

∂x
(s)G(t, s)

Since Y (t) = 0 we see that

A1,2 = 0.

We conclude that

d

dh
A1

∣∣∣∣
h=0

=A1,1 (A.3.7)

=
∫ T

t

d

dh
E

[
α

∫ t+h

t

{
∂b

∂u
(r)F (t, s) +

∂σ

∂u
(r)DrF (t, s)

+ F (t, s)Dr+
∂σ

∂u
(r) +

∫
R0

{(
∂θ

∂u
(r, z) +Dr+,z

∂θ

∂u
(r, z)

)
Dr,zF (t, s)

+ Dr+,z
∂θ

∂u
(r, z)F (t, s)

}
ν(dz)

}
dr

]
h=0

ds

=
∫ T

t
E

[
α

{(
∂b

∂u
(t) +Dt+

∂σ

∂u
(t) +

∫
R0

Dt+,z
∂θ

∂u
(t, z)ν(dz)

)
F (t, s)

+
∂σ

∂u
(t)DtF (t, s)

+
∫

R0

(
∂θ

∂u
(t, z)Dt+,z

∂θ

∂u
(t, z)

)
Dt,zF (t, s)ν(dz)

}]
ds,

Moreover, we see that

d

dh
A2

∣∣∣∣
h=0

=E
[{
K(t)

(
∂b(t)
∂u

+ Dt+
∂σ(t)
∂u

+
∫

R0

Dt+,z
∂θ(t, z)
∂u

ν(dz)
)

+
∂f(t)
∂u

+ DtK(t)
∂σ(t, z)
∂u

+
∫

R0

Dt,zK(t)
(∂θ(t, z)

∂u
+Dt+,z

∂θ(t, z)
∂u

)
ν(dz)

}
α

]
, (A.3.8)

d

dh
A4

∣∣∣∣
h=0

=E
[
K(t)

∂σ(t)
∂u

Dt+α

]
, (A.3.9)

d

dh
A6

∣∣∣∣
h=0

=E
[∫

R0

{K(t) +Dt,zK(t)}
(∂θ(t, z)

∂u
+Dt+,z

∂θ(t, z)
∂u

)
ν(dz)Dt+,zα

]
.

(A.3.10)

On the other hand, differentiating A3 with respect to h at h = 0, we get

d

dh
A3

∣∣∣∣
h=0

=
d

dh
E

[∫ t+h

t
K(s)

∂σ(s)
∂x

Ds+Y (s)ds
]
h=0

+
d

dh
E

[∫ T

t+h
K(s)

∂σ(s)
∂x

Ds+Y (s)ds
]
h=0

.
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Since Y (t) = 0, we see that

d

dh
A3

∣∣∣∣
h=0

=
d

dh
E

[∫ T

t+h
K(s)

∂σ(s)
∂x

Ds+

(
Y (t+ h)G(t+ h, s)

)
ds

]
h=0

=
∫ T

t

d

dh
E

[
K(s)

∂σ(s)
∂x

Ds+

(
Y (t+ h)G(t+ h, s)

)]
h=0

ds

=
∫ T

t

d

dh
E

[
K(s)

∂σ(s)
∂x

(
Ds+G(t+ h, s) · Y (t+ h)

+Ds+Y (t+ h) ·G(t+ h, s)
)]

h=0
ds

=
∫ T

t

d

dh
E

[
K(s)

∂σ(s)
∂x

·Ds+Y (t+ h)G(t, s)
]
h=0

ds.

For

Y (t+ h) =
∫ t+h

t
Y (r−)

[
∂b

∂x
(r)dr +

∂σ

∂x
(r)d−B(r) +

∫
R0

∂θ

∂x
b(r, z)Ñ(dz, d−r)

]
+ α

∫ t+h

t

[
∂b

∂u
(r)dr +

∂σ

∂u
(r)d−B(r) +

∫
R0

∂θ

∂u
(r, z)Ñ(dz, d−r)

]
,

Using the definition of p̂ and Ĥ given respectively by Equations (6.3.14) and (6.3.13)

in the Theorem, it follows from Equation (A.3.4) that

E

[
∂

∂u
Ĥ(t, X̂(t), û(t))

∣∣∣∣Gt] + E[A] = 0 a.e. in (t, ω), (A.3.11)

where

A =
d

dh
A3

∣∣∣∣
h=0

+
d

dh
A4

∣∣∣∣
h=0

+
d

dh
A5

∣∣∣∣
h=0

+
d

dh
A6

∣∣∣∣
h=0

(A.3.12)

2. Conversely, suppose there exists û ∈ AG such that Equation (6.3.12) holds. Then

by reversing the previous arguments, we obtain that Equation (A.3.4) holds for all
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βα(s) := αχ[t,t+h](s) ∈ AG , where

A1 =E

[∫ T

t

{
K(t)

(
∂b(s)
∂x

+ Ds+
∂σ(s)
∂x

+
∫

R0

Ds+,z
∂θ(s)
∂x

ν(dz)
)

+
∫

R0

Ds,zK(s)
(∂θ(s)
∂x

+Ds+,z
∂θ(s)
∂x

)
ν(dz) + DsK(s)

∂σ(s)
∂x

}
Y (βα)(s)ds

]
A2 =E

[∫ t+h

t

{
K(t)

(
∂b(s)
∂u

+ Ds+
∂σ(s)
∂u

+
∫

R0

Ds+,z
∂θ(s)
∂u

ν(dz)
)

+
∂f(s)
∂u

+
∫

R0

Ds,zK(s)
(∂θ(s)
∂u

+Ds+,z
∂θ(s)
∂u

)
ν(dz) + DsK(s)

∂σ(s)
∂u

}
αds

]
A3 =E

[∫ T

t
K(s)

∂σ(s)
∂x

Ds+Y
(βα)(s)ds

]
A4 =E

[∫ t+h

t
K(s)

∂σ(s)
∂u

Ds+αds

]

A5 =E

[∫ T

t

∫
R0

{K(s) +Ds,zK(s)}
(∂θ(s)
∂x

+Ds+,z
∂θ(s)
∂x

)
ν(dz)Ds+,zY

(βα)(s)ds
]

A6 =E

[∫ t+h

t

∫
R0

{K(s) +Ds,zK(s)}
(∂θ(s)
∂u

+Ds+,z
∂θ(s)
∂u

)
ν(dz)Ds+,zαds

]
for some t, h ∈ (0, T ), t + h ≤ T , where α = α(ω) is bounded and Gt−measurable.

Hence, these equalities hold for all linear combinations of βα. Since all bounded β ∈

AG can be approximated pointwise boundedly in (t, ω) by such linear combinations,

it follows that Equation (A.3.4) holds for all bounded β ∈ AG . Hence, by reversing

the remaining part of the previous proof, we conclude that

d

dy
J1(û+ yβ)

∣∣∣∣
y=0

= 0, for all β,

and then û satisfies Relation (6.3.11).
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A.4 A chaos expansion approach when Gt is of type (6.5.2)

Theorem A.4.1 Suppose that b, σ and θ do not depend on X and that Gt is of type (6.5.2).

Then there exist an optimal control û for the performance functional J(u) in (6.1.3) if and

only if the following three conditions hold:

(i) E [L(t)| Gt] = 0,

(ii) E [M(t)| Gt] = 0,

(iii) E
[∫

R0

R(t, z)ν(dz)| Gt
]

= 0,

where L,M, and R are given by (6.4.3), (6.4.4) and (6.4.5).

Proof. In order to prove the theorem, we consider the Brownian motion case and the

Poisson random measure case separately.

Brownian motion case: Choose ψ1, · · · , ψn ∈ C [0, T ] and

α = In
(
ϕ1⊗̂ · · · ⊗̂ϕn−1⊗̂ϕn

)
where

ϕi(ti) = ψi(ti)χAi(ti); 1 ≤ i ≤ n. (A.4.1)

Then

Dt+α = n In−1

(
ϕ1⊗̂ · · · ⊗̂ϕn−1⊗̂ϕn(·, · · · , t+)

)
where

(
ϕ1⊗̂ · · · ⊗̂ϕn−1⊗̂ϕn

)
(t1, · · · , tn−1, t) =

1
n

n∑
i=1

(
⊗̂

j∈{1,··· ,n}\{i}
ϕj

)
· ϕi(t).

Since χAt(t+) = 1, this implies that

Dt+α =
n∑
i=1

In−1

(
⊗̂

j∈{1,··· ,n}\{i}
ϕj

)
· ψi(t).
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We have

0 =E [L(t)α+M(t)Dt+α]

=E
[
L(t) In

(
ϕ1⊗̂ · · · ⊗̂ϕn−1⊗̂ϕn

)]
+

n∑
i=1

E

[
M(t) In−1

(
⊗̂

j∈{1,··· ,n}\{i}
ϕj

)]
· ψi(t)

=E
[
L(t) In

(
ϕ1⊗̂ · · · ⊗̂ϕn−1⊗̂ϕn

)]
+
n−1∑
i=1

E

[
M(t) In−1

(
⊗̂

j∈{1,··· ,n}\{i}
ϕj

)]
· ψi(t)

+E

[
M(t) In−1

(
⊗̂

j∈{1,··· ,n−1}
ϕj

)]
· ψn(t) (A.4.2)

Let ε > 0 and choose ψn such that |ψn| ≤ 1 and

ψn(s) =

 1 if |s− t| < ε

0 if |s− t| ≥ 2ε.

Then, applying both the Cauchy-Schwartz inequality and the Itô isometry to the first term,

we have

|E [L(t)α]| =
∣∣E [L(t) In

(
ϕ1⊗̂ · · · ⊗̂ϕn−1⊗̂ϕn

)]∣∣
≤E

[
L2
t

] 1
2 · E

[
I2
n

(
ϕ1⊗̂ · · · ⊗̂ϕn−1⊗̂ϕn

)] 1
2

=E
[
L2
t

] 1
2 · E

[∫ t+δ

0
· · ·
∫ t+δ

0

(
ϕ1⊗̂ · · · ⊗̂ϕn−1⊗̂ϕn

)2
ds1 · · · dsn

] 1
2

The choice of ψn leads to the convergence of the second factor of the last equality to zero.

It follows that E [L(t)α] goes to zero as ε→ 0.

In the same way, we prove that the second term in equality (A.4.2) goes to zero as ε→ 0.

Then, we can conclude that

E

[
M(t) In−1

(
⊗̂

j∈{1,··· ,n−1}
ϕj

)]
= 0,

and then

E [M(t)| Gt] = 0.
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The preceding equality implies that E [M(t)Dt+α] = 0. In fact, we have

E [M(t)Dt+α] =E [E [M(t)Dt+α]| Gt]

=E [E [M(t)| Gt] ·Dt+α]

= 0

It then follows that E [L(t)| Gt] = 0.

Jump case: Choose

α = In
(
g1⊗̂ · · · ⊗̂gn−1⊗̂gn

)
Dt+α =n In−1

(
g1⊗̂ · · · ⊗̂gn−1⊗̂gn ((·, ·), · · · , (·, ·), (t, z))

)
(
g1⊗̂ · · · ⊗̂gn−1⊗̂gn

)
((t1, z1), · · · , (tn−1, zn−1), (t, z)) =

1
n

n∑
i=1

(
⊗̂

j∈{1,··· ,n}\{i}
gj

)
· gi(t, z).

This implies that

Dt+α =
n∑
i=1

In−1

(
⊗̂

j∈{1,··· ,n}\{i}
gj

)
· gi(t, z).

We have

0 =E

[
L(t)α+

∫
R0

R(t, z)Dt+,zαν(dz)
]

=E
[
L(t) In

(
g1⊗̂ · · · ⊗̂gn−1⊗̂gn

)]
+

n∑
i=1

E

[∫
R0

R(t, z) In−1

(
⊗̂

j∈{1,··· ,n}\{i}
gj

)
· gi(t, z) ν(dz)

]

=E
[
L(t) In

(
g1⊗̂ · · · ⊗̂gn−1⊗̂gn

)]
+
n−1∑
i=1

∫
R0

E

[
R(t, z) In−1

(
⊗̂

j∈{1,··· ,n}\{i}
gj

)]
gi(t, z) ν(dz)

+
∫

R0

E

[
R(t, z) In−1

(
⊗̂

j∈{1,··· ,n−1}
gj

)]
gn(t, z) ν(dz). (A.4.3)

Choose gi(t, z) = ϕi(t)fi(z), i = 1, · · · , n and define ϕi as in Equation (A.4.1). Choosing

ψi, i = 1, · · · , n as before, we have by applying again both the Cauchy-Schwartz inequality

and the Itô isometry that the first two terms go to 0 as ε converges to 0.

The last term gives

E

[∫
R0

R(t, z) In−1

(
⊗̂

j∈{1,··· ,n−1}
gj

)
fn(z) ν(dz)

]
= 0. (A.4.4)
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Since In−1

(
⊗̂

j∈{1,··· ,n−1}
gj

)
does not depend on z, Equation (A.4.4) becomes

E

[∫
R0

R(t, z)fn(z) ν(dz) In−1

(
⊗̂

j∈{1,··· ,n−1}
gj

)]
= 0. (A.4.5)

Equation (A.4.5) holds for all fn, we can then choose fn = 1 and it follows that

E

[∫
R0

R(t, z) ν(dz)
∣∣∣∣Gt] = 0.

The same arguments as in the Brownian case lead to E [L(t)| Gt] = 0.

In order to have the whole filtration generated by the Itô-Lévy process, we can define α as

α = IBn (ω1) · IÑn (ω2)

and perform the same computations. The result follows.
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A.5 Proof of Theorem 7.2.2

The proof relies on a combination of arguments in [4] and in Chapter 6

(i) Suppose (π̂, θ̂) ∈ AΠ × AΘ is a Nash equilibrium. Since 1 and 2 hold for all π and

θ, (π̂, θ̂) is a directional critical point for Ji(π, θ) for i = 1, 2 in the sense that for all

bounded β ∈ AΠ and η ∈ AΘ, there exists δ > 0 such that π̂+ yβ ∈ AΠ, θ̂+ vη ∈ AΘ

for all y, v ∈ (−δ, δ). Then we have

0 =
∂

∂y
J1(π̂ + yβ, θ̂)

∣∣∣∣
y=0

(A.5.1)

=Ex

[∫ T

0

∫
R0

{
∂

∂x
f1(t, X̂(t), π̂0(t), π̂1(t, z), θ̂0(t), θ̂1(t, z), z)

d

dy
X(π̂+yβ,θ)(t)

∣∣∣∣
y=0

+ ∇πf1(t,X(π,θ̂)(t), π0(t), π1(t, z), θ̂0(t), θ̂1(t, z), z)
∣∣∣
π̂=π

β∗(t)
}
µ(dz)dt

+ g′(X(T ))
d

dy
X(π̂+yβ,θ)(t)

∣∣∣∣
y=0

]

=Ex
[∫ T

0

∫
R0

{
∂

∂x
f1(t, X̂(t), π̂0(t), π̂1(t, z), θ̂0(t), θ̂1(t, z), z)Ŷ (t)

+ ∇πf1(t,X(π,θ̂)(t), π0(t), π1(t, z), θ̂0(t), θ̂1(t, z), z)
∣∣∣
π̂=π

β∗(t)
}
µ(dz)dt

+ g′(X̂(T ))Ŷ (t)
]
,

where

Ŷ (t) = Ŷβ(t) =
d

dy
X(π̂+yβ,θ̂)(t)

∣∣∣∣
y=0

(A.5.2)

=
∫ t

0

{
∂

∂x
b(s, X̂(s), π̂0(s), θ̂0(s))Y (s)

+ ∇πb(s,Xπ,θ̂(s), π0(s), θ̂0(s))
∣∣∣
π=π̂

β∗(s)
}
ds

+
∫ t

0

{
∂

∂x
σ(s, X̂(s), π̂0(s), θ̂0(s))Y (s)

+ ∇πσ(s,Xπ,θ̂(s), π0(s), θ̂0(s))
∣∣∣
π=π̂

β∗(s)
}
dB−(s)

+
∫ t

0

∫
R0

{
∂

∂x
γ(s, X̂(s−), π̂0(s−), θ̂0(s−), z)Y (s)

+ ∇πγ(s,Xπ,θ̂(s−), π0(s−), θ̂0(s−), z)
∣∣∣
π=π̂

β∗(s)
}
Ñ(dz, d−s)
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We study the three summands separately. Using the short notation ∂
∂xf1(t, X̂(t), π̂, θ̂, z) =

∂
∂xf1(t, z), ∇πf1(t,X(π,θ̂)(t), π, θ̂, z)

∣∣∣
π̂=π

and similarly for ∂
∂xb, ∇πb,

∂
∂xσ, ∇πσ,

∂
∂xγ

and ∇πγ.

By the duality formulas (6.2.7) and (6.2.12) and the Fubini theorem, we get

E
[
g′1(X(T ))Y (T )

]
=E

[
g′1(X(T ))

(∫ T

0

{
∂b

∂x
(t)Y (t) + ∇πb(t)β∗(t)

}
dt

+
∫ T

0

{
∂σ

∂x
(t)Y (t) + ∇πσ(s)β∗(t)

}
d−B(t)

+
∫ T

0

∫
R0

{
∂γ

∂x
(t, z1)Y (t) + ∇πγ(s, z1)β∗(t)

}
Ñ(dz1, d

−t)
)]

=E

[∫ T

0
g′1(X(T ))

{
∂b

∂x
(t)Y (t) + ∇πb(t)β∗(t)

}
dt

]
+ E

[∫ T

0
Dtg

′
1(X(T ))

{
∂σ

∂x
(t, z1)Y (t) + ∇πσ(t, z1)β∗(t)

}
dt

]
+ E

[∫ T

0
g′1(X(T ))Dt+

(
∂σ

∂x
(t)Y (t) + ∇πσ(t)β∗(t)

)
dt

]
+ E

[∫ T

0

∫
R0

Dt,z1g
′
1(X(T ))

{
∂γ

∂x
(t, z1)Y (t) + ∇πγ(t, z1)β∗(t)

}
ν(dz1)dt

]
+ E

[ ∫ T

0

∫
R0

{
g′1(X(T )) +Dt,z1g

′
1(X(T ))

}
Dt+,z1

(∂γ
∂x

(t, z1)Y (t)

+ ∇πγ(t, z1)β∗(t)
)
ν(dz1)dt

]
Changing notation z1 → z and using the multidimensional product rule for Malliavin

derivatives, this becomes
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=E

[∫ T

0

{
g′1(X(T ))

(
∂b

∂x
(t) +Dt+

∂σ

∂x
(t) +

∫
R0

Dt+,z
∂γ

∂x
(t, z)ν(dz)

)
+Dtg

′
1(X(T ))

∂σ

∂x
(t) +

∫
R0

Dt,zg
′
1(X(T ))

(
∂γ

∂x
(t, z) +Dt+,z

∂γ

∂x
(t, z)

)
ν(dz)

}
Y (t)dt

]
+ E

[∫ T

0

{
g′1(X(T ))

(
∇πb(t) +Dt+∇πσ(t) +

∫
R0

Dt+,z∇πγ(t, z)ν(dz)
)

+Dtg
′
1(X(T ))∇πσ(t) +

∫
R0

Dt,zg
′
1(X(T )) (∇πγ(t, z) +Dt+,z∇πγ(t, z)) ν(dz)

}
β∗(t)dt

]
+ E

[∫ T

0
g′1(X(T ))

∂σ

∂x
(t)Dt+Y (t)dt

]
+ E

[∫ T

0
g′1(X(T ))∇πσ(t)Dt+β

∗(t)dt
]

+ E

[∫ T

0

∫
R0

{
g′1(X(T )) +Dt,zg

′
1(X(T ))

}{∂γ
∂x

(t, z) + Dt+,z
∂γ

∂x
(t, z)

}
Dt+,zY (t)ν(dz)dt

]
+ E

[∫ T

0

∫
R0

{
g′1(X(T )) +Dt,zg

′
1(X(T ))

}
{∇πγ(t, z) + Dt+,z∇πγ(t, z)}Dt+,zβ

∗(t)ν(dz)dt
]
.

(A.5.3)

Similarly, we have using both Fubini and duality formulas (6.2.7) and (6.2.12), we get

Ex
[∫ T

0

∫
R0

∂f1

∂x
(t, z)Y (t)µ(dz)dt

]
=Ex

[∫ T

0

∫
R0

∂f1

∂x
(t, z)

(∫ t

0

{
∂b

∂x
(s)Y (s) + ∇πb(s)β∗(s)

}
ds

+
∫ t

0

{
∂σ

∂x
(s)Y (s) + ∇πσ(s)β∗(s)

}
d−B(s)

+
∫ t

0

∫
R0

{
∂γ

∂x
(s, z1)Y (s) + ∇πγ(s, z1)

}
Ñ(dz1, d

−s)
)
dt

]
=Ex

[∫ T

0

∫
R0

(∫ t

0

∂f1

∂x
(t, z)

{
∂b

∂x
(s)Y (s) + ∇πb(s)β∗(s)

}
ds

)
µ(dz)dt

]
+ Ex

[∫ T

0

∫
R0

(∫ t

0
Ds

∂f1

∂x
(t, z)

{
∂σ

∂x
(s)Y (s) + ∇πσ(s)β∗(s)

}
ds

)
µ(dz)dt

]
+ E

[∫ T

0

∫
R0

(∫ t

0

∂f1

∂x
(t, z)Ds+

{
∂σ(s)
∂x

Y (s) + ∇πσ(s)β∗(s)
}
ds

)
µ(dz)dt

]
+ E

[∫ T

0

∫
R0

(∫ t

0

∫
R0

Ds,z1

∂f1

∂x
(t, z)

{
∂γ

∂x
(s, z1)Y (s) + ∇πγ(s, z1)β∗(s)

}
ν(dz1)ds

)
µ(dz)dt

]
+ E

[∫ T

0

∫
R0

(∫ t

0

∫
R0

{
∂f1

∂x
(t, z) +Ds,z1

∂f1

∂x
(t, z)

}
×

Ds+,z1

(
∂γ

∂x
(s, z1)Y (s) + ∇πγ(s, z1)β(s)

)
ν(dz1)ds

)
µ(dz)dt

]
.
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Changing notation t1 → t and z1 → z this becomes

=Ex
[∫ T

0

{(∫ T

t

∫
R0

∂f1

∂x
(s, z)µ(dz)ds

)(
∂b

∂x
(t) +Dt+

∂σ

∂x
(t) +

∫
R0

Dt+,z
∂γ

∂x
(t, z)ν(dz)

)
+
(∫ T

t

∫
R0

Dt
∂f1

∂x
(s, z)µ(dz)ds

)
∂σ

∂x
(t)

+
∫

R0

(∫ T

t

∫
R0

Dt,z
∂f1

∂x
(s, z)µ(dz)ds

)(
∂γ

∂x
(t, z) +Dt+,z

∂γ

∂x
(t, z)

)
ν(dz)

}
Y (t)dt

]
+ Ex

[∫ T

0

{(∫ T

t

∫
R0

∂f

∂x
(s, z)µ(dz)ds

)(
∇πb(t) +Dt+∇πσ(t) +

∫
R0

Dt+,z∇πγ(t, z)ν(dz)
)

+
(∫ T

t

∫
R0

Dt
∂f1

∂x
(s, z)µ(dz)ds

)
∇πσ(t)

+
(∫ T

t

∫
R0

Dt,z
∂f1

∂x
(s, z)µ(dz)ds

)(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
ν(dz)

}
β∗(t)dt

]
+ Ex

[∫ T

0

(∫ T

t

∫
R0

∂f1

∂x
(s, z)µ(dz)ds

)
∂σ(t)
∂x

Dt+Y (t)dt
]

+ Ex
[∫ T

0

(∫ T

t

∫
R0

∂f1

∂x
(s, z)µ(dz)ds

)
∇πσ(t)Dt+β

∗(t)dt
]

+ Ex
[∫ T

0

∫
R0

{∫ T

t

∫
R0

(
∂f

∂x
(s, z) +Dt,z

∂f

∂x
(s, z)

)
µ(dz)ds

}
×{

∂γ

∂x
(t) + Dt+,z

∂γ

∂x
(t)
}
Dt+,zY (t)ν(dz)dt

]
+ Ex

[∫ T

0

∫
R0

{∫ T

t

∫
R0

(
∂f1

∂x
(s, z) +Dt,z

∂f1

∂x
(s, z)

)
µ(dz)ds

}
×{

∇πγ(t, z) + Dt+,z∇πγ(t, z)
}
Dt+,zβ

∗(t)ν(dz)dt
]
. (A.5.4)

Recall that

K(t) := g′1(X(T )) +
∫ T

t

∫
R0

∂f1

∂x
(s, z1)µ(dz1)ds,

so

K̂1(t) := g′1(X̂(T )) +
∫ T

t

∫
R0

∂f1

∂x
(s, z1)µ(dz1)ds. (A.5.5)
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By combining (A.5.3)-(A.5.4), we get

0 =E

[∫ T

0

{
K̂1

(
∂b

∂x
(t) +Dt+

∂σ

∂x
(t) +

∫
R0

Dt+,z
∂γ

∂x
(t, z)ν(dz)

)
+DtK̂1

∂σ

∂x
(t) +

∫
R0

Dt,zK̂1

(
∂γ

∂x
(t, z) +Dt+,z

∂γ

∂x
(t, z)

)
ν(dz)

}
Y (t)dt

]
+ E

[∫ T

0

{
K̂1

(
∇πb(t) +Dt+∇πσ(t) +

∫
R0

Dt+,z∇πγ(t, z)ν(dz)
)

+DtK̂1∇πσ(t) +
∫

R0

Dt,zK̂1

(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
ν(dz)

}
β∗(t)dt

]
+ E

[∫ T

0
K̂1

∂σ(t)
∂x

Dt+Y (t)dt
]

+ E

[∫ T

0
K̂1∇πσ(t)Dt+β

∗(t)dt
]

+ E

[∫ T

0

∫
R0

(
K̂1 +Dt,zK̂1

){∂γ
∂x

(t) + Dt+,z
∂γ

∂x
(t)
}
Dt+,zY (t)ν(dz)dt

]
+ E

[∫ T

0

∫
R0

(
K̂1 +Dt,zK̂1

){
∇πγ(t, z) + Dt+,z∇πγ(t, z)

}
Dt+,zβ

∗(t)ν(dz)dt
]

+ E

[∫ T

0

∫
R0

∇πf1(t, z)β∗(t)µ(dz)dt
]
. (A.5.6)

Now apply this to β = βα ∈ AΠ given as βα(s) := αχ[t,t+h](s), for some t, h ∈

(0, T ), t+h ≤ T , where α = α(ω) is bounded and G2
t−measurable. Then Y (βα)(s) = 0

for 0 ≤ s ≤ t and hence Equation (A.5.6) becomes

A1 +A2 +A3 +A4 +A5 +A6 = 0, (A.5.7)

where

A1 =Ex
[∫ T

t

{
K̂1(t)

(
∂b

∂x
(s) +Ds+

∂σ

∂x
(s) +

∫
R0

Ds+,z
∂γ

∂x
(s, z)ν(dz)

)
+ DtK̂1(t)

∂σ

∂x
(t)

+
∫

R0

Ds,zK̂1(t)
(
∂γ

∂x
(s, z) +Ds+,z

∂γ

∂x
(s, z)

)
ν(dz)

}
Y (βα)(s) ds

]
, (A.5.8)

A2 =Ex
[∫ t+h

t

{
K̂1(t)

(
∇πb(s) +Ds+∇πσ(s) +

∫
R0

Dts,z∇πγ(t, z)ν(dz)
)

+ DtK̂1(t)∇πσ(t)

+
∫

R0

Ds,zK̂1(t)
(
∇πγ(s, z) +Ds,z∇πγ(s, z)

)
ν(dz) +

∫
R0

∇πf1(s, z)µ(dz)
}
αds

]
,

(A.5.9)
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A3 =Ex
[∫ T

t
K̂1(t)

∂σ(s)
∂x

Ds+Y
(βα)(s) ds

]
, (A.5.10)

A4 = + E

[∫ t+h

t
K̂1(t)∇πσ(s)Ds+αds

]
, (A.5.11)

A5 =Ex
[∫ T

t

∫
R0

(
K̂1(t) +Ds,zK̂1(t)

){∂γ
∂x

(s) + Ds+,z
∂γ

∂x
(t)
}
ν(dz)Ds+,zY

(βα)(s) ds
]
,

(A.5.12)

A6 =Ex
[∫ t+h

t

∫
R0

(
K̂1(t) +Ds,zK̂1(t)

){
∇πγ(s, z) + Ds+,z∇πγ(s, z)

}
ν(dz)Ds+,zαds

]
.

(A.5.13)

Note by the definition of Y , with Y (s) = Y (βα)(s) and s ≥ t + h, the process Y (s)

follows the dynamics

dY (s) = Y (s−)
[
∂b

∂x
(s)ds +

∂σ

∂x
(s)d−B(s) +

∫
R0

∂θ

∂x
(s−, z)Ñ(dz, d−s)

]
,(A.5.14)

for s,≥ t + h with initial condition Y (t + h) in time t + h. By the Itô formula for

forward integrals, this equation can be solved explicitly and we get

Y (s) = Y (t+ h)G(t+ h, s), s ≥ t+ h, (A.5.15)

where, in general, for s ≥ t,

G(t, s) := exp

(∫ s

t

{
∂b

∂x
(r)− 1

2

(
∂σ

∂x

)2

(r)

}
dr +

∫ s

t

∂σ

∂x
(r)dB−(r)

+
∫ s

t

∫
R0

{
ln
(

1 +
∂γ

∂x
(r, z)

)
− ∂γ

∂x
(r, z)

}
ν(dz)dt

+
∫ s

t

∫
R0

{
ln
(

1 +
∂γ

∂x
(r−, z)

)}
Ñ(dz, d−r)

)
.

Note that G(t, s) does not depend on h, but Y (s) does. Defining H1
0 as in Equation

(7.2.8), it follows that

A1 = Ex

[∫ T

t

∂Ĥ1
0

∂x
(s)Y (s)ds

]
.

Where Ĥ1
0 (s) = H1

0 (s, X̂(s), π̂, θ̂).

Differentiating with respect to h at h = 0, we get

d

dh
A1

∣∣∣∣
h=0

=
d

dh
Ex

[∫ t+h

t

∂Ĥ1
0

∂x
(s)Y (s)ds

]
h=0

+
d

dh
Ex

[∫ T

t+h

∂Ĥ1
0

∂x
(s)Y (s)ds

]
h=0

.
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Since Y (t) = 0, we see that

d

dh
Ex
[∫ t+h

t

∂H0

∂x
(s)Y (s)ds

]
h=0

= 0.

Therefore, by (A.5.15), we get

d

dh
A1

∣∣∣∣
h=0

=
d

dh
Ex

[∫ T

t+h

∂Ĥ1
0

∂x
(s)Y (t+ h)G(t+ h, s)ds

]
h=0

=
∫ T

t

d

dh
Ex

[
∂Ĥ1

0

∂x
(s)Y (t+ h)G(t+ h, s)

]
h=0

ds

=
∫ T

t

d

dh
Ex

[
∂Ĥ1

0

∂x
(s)G(t, s)Y (t+ h)

]
h=0

ds,

where, Y (t+ h) is given by

Y (t+ h) =
∫ t+h

t
Y (r−)

[
∂b

∂x
(r)dr +

∂σ

∂x
(r)d−B(r) +

∫
R0

∂γ

∂x
(r−, z)Ñ(dz, d−r)

]
+ α

∫ t+h

t

[
∇πb(r)dr + ∇πσ(r)d−B(r) +

∫
R0

∇πγ(r−, z)Ñ(dz, d−r)
]
.

Therefore, by the two preceding equalities,

d

dh
A1

∣∣∣∣
h=0

=A1,1 +A1,2,

where

A1,1 =
∫ T

t

d

dh
Ex
[
∂H0

∂x
(s)G(t, s)α

∫ t+h

t

{
∇πb(r)dr + ∇πσ(r)d−B(r)

+
∫

R0

∇πγ(r−, z)Ñ(dz, d−r)
}]

h=0

ds,

and

A1,2 =
∫ T

t

d

dh
Ex
[
∂H0

∂x
(s)G(t, s)

∫ t+h

t
Y (r−)

{
∂b

∂x
(r)dr +

∂σ

∂x
(r)d−B(r)

+
∫

R0

∂γ

∂x
(r, z)Ñ(dz, d−r)

}]
h=0

ds.



A.5 Proof of Theorem 7.2.2 211

Applying again the duality formula, we have

A1,1 =
∫ T

t

d

dh
Ex
[
α

∫ t+h

t
{∇πb(r)F1(t, s) +∇πσ(r)DrF1(t, s)

+ F1(t, s)Dr+∇πσ(r) +
∫

R0

{(
∇πγ(r, z) +Dr+,z∇πγ(r, z)

)
Dr,zF1(t, s)

+ Dr+,z∇πγ(r, z)F1(t, s)
}
ν(dz)

}
dr
]
h=0

ds

=
∫ T

t
Ex
[
α

{(
∇πb(t) +Dt+∇πσ(t) +

∫
R0

Dt+,z∇πγ(t, z)ν(dz)
)
F1(t, s)

∇πσ(t)DtF1(t, s) +
∫

R0

(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
Dt,zF1(t, s)ν(dz)

}]
ds,

where we have put

F1(t, s) =
∂Ĥ1

0

∂x
(s)G(t, s).

Since Y (t) = 0 we see that

A1,2 = 0.

We conclude that

d

dh
A1

∣∣∣∣
h=0

=A1,1 (A.5.16)

=
∫ T

t
E

[
α

{(
∇πb(t) +Dt+∇πσ(t) +

∫
R0

Dt+,z∇πγ(t, z)ν(dz)
)
F1(t, s)

+ ∇πσ(t)DtF1(t, s) +
∫

R0

(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
Dt,zF1(t, s)ν(dz)

}]
ds,

Moreover, we see that

d

dh
A2

∣∣∣∣
h=0

=E

[{
K̂1(t)

(
∇πb(t) + Dt+∇πσ(t) +

∫
R0

Dt+,z∇πγ(t, z)ν(dz)
)

+ ∇πf1(t) + DtK̂1(t)∇πσ(t)

+
∫

R0

Dt,zK̂1(t)
(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
ν(dz)

}
α

]
, (A.5.17)

d

dh
A4

∣∣∣∣
h=0

=E
[
K̂1(t)∇πσ(t)Dt+α

]
, (A.5.18)

d

dh
A6

∣∣∣∣
h=0

=E
[∫

R0

{
K̂1(t) +Dt,zK̂1(t)

}(
∇πγ(t, z) +Dt+,z∇πγ(t, z)

)
ν(dz)Dt+,zα

]
.

(A.5.19)
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On the other hand, differentiating A3 with respect to h at h = 0, we get

d

dh
A3

∣∣∣∣
h=0

=
d

dh
E

[∫ t+h

t
K̂1(s)

∂σ(s)
∂x

Ds+Y (s)ds
]
h=0

+
d

dh
E

[∫ T

t+h
K̂1(s)

∂σ(s)
∂x

Ds+Y (s)ds
]
h=0

.

Since Y (t) = 0, we see that

d

dh
A3

∣∣∣∣
h=0

=
d

dh
E

[∫ T

t+h
K̂1(s)

∂σ(s)
∂x

Ds+

(
Y (t+ h)G(t+ h, s)

)
ds

]
h=0

=
∫ T

t

d

dh
E

[
K̂1(s)

∂σ(s)
∂x

Ds+

(
Y (t+ h)G(t+ h, s)

)]
h=0

ds

=
∫ T

t

d

dh
E

[
K̂1(s)

∂σ(s)
∂x

(
Ds+G(t+ h, s) · Y (t+ h)

+Ds+Y (t+ h) ·G(t+ h, s)
)]

h=0
ds

=
∫ T

t

d

dh
E

[
K̂1(s)

∂σ(s)
∂x

·Ds+Y (t+ h)G(t, s)
]
h=0

ds.

Using the definition of p̂ and Ĥ1 given respectively by Equations (7.2.17) and (7.2.16)

in the theorem, it follows by (A.5.7) that

E
[
∇πĤ1(t, X̂(t), û(t))

∣∣∣G2
t

]
+ E[A] = 0 a.e. in (t, ω), (A.5.20)

where

A =
d

dh
A3

∣∣∣∣
h=0

+
d

dh
A4

∣∣∣∣
h=0

+
d

dh
A5

∣∣∣∣
h=0

+
d

dh
A6

∣∣∣∣
h=0

. (A.5.21)

Similarly, we have

0 =
∂

∂v
J2(π̂, θ̂ + vη)

∣∣∣∣
v=0

(A.5.22)

=Ex
[∫ T

0

∫
R0

{
∂

∂x
f2(t, X̂(t), π̂0(t), π̂1(t, z), θ̂0(t), θ̂1(t, z), z)V̂ (t)

+ ∇πf1(t,X(π̂,θ)(t), π̂0(t), π̂1(t, z), θ0(t), θ1(t, z), z)
∣∣∣
θ̂=θ

η∗(t)
}
µ(dz)dt

+ g′(X̂(T ))V̂ (t)
]
,
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where

V̂ (t) = V̂η(t) =
d

dv
X(π̂,θ̂+vη)(t)

∣∣∣∣
v=0

(A.5.23)

=
∫ t

0

{
∂

∂x
b(s, X̂(s), π̂0(s), θ̂0(s))V (s) + ∇πb(s,X π̂,θ(s), π̂0(s), θ0(s))

∣∣∣
θ=θ̂

η∗(s)
}
ds

+
∫ t

0

{
∂

∂x
σ(s, X̂(s), π̂0(s), θ̂0(s))V (s) + ∇πσ(s,X π̂,θ(s), π̂0(s), θ0(s))

∣∣∣
θ=θ̂

η∗(s)
}
dB−(s)

+
∫ t

0

∫
R0

{
∂

∂x
γ(s, X̂(s−), π̂0(s−), θ̂0(s−), z)V (s)

+ ∇πγ(s,X π̂,θ(s−), π̂0(s−), θ0(s−), z)
∣∣∣
θ=θ̂

η∗(s)
}
Ñ(dz, d−s).

Define

D(s) = D(t+ h)G(t+ h, s); s ≥ t+ h,

where G(t, s) is defined as in Equation (7.2.20). Using similar arguments, we get

E
[
∇πĤ2(t, X̂(t), û(t))

∣∣∣G1
t

]
+ E[B] = 0 a.e. in (t, ω),

where B is given in the same way as A. This completes the proof of (i).

(ii) Conversely, suppose that there exist π̂ ∈ AΠ such that Equation (7.2.14) holds. Then

by reversing the previous arguments, we obtain that Equation (A.5.7) holds for all

βα(s) := αχ[t,t+h](s ∈ AΠ), where A1, ..., A6 are given by Equation (A.5.10),..., Equa-

tion (A.5.13) respectively, for some t, h ∈ (0, T ), t + h ≤ T , where α = α(ω) is

bounded and G2
t−measurable. Hence, these equalities hold for all linear combinations

of βα. Since all bounded β ∈ AΠ can be approximated pointwise boundedly in (t, ω)

by such linear combinations, it follows that Equation (A.5.7) holds for all bounded

β ∈ AΠ. Hence, by reversing the remaining part of the previous proof, we conclude

that
∂J1

∂y
(π̂ + yβ, θ̂)

∣∣∣∣
y=0

= 0, for all β.

Similarly, suppose that there exist θ̂ ∈ AΘ such that Equation (7.2.15) holds. Then,

the above argument leads us to conclude that

∂J2

∂v
(π̂, θ̂ + vη)

∣∣∣∣
v=0

= 0, for all η.
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This complete the proof.
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cesses with Applications to Finance. Universitext Springer, (2008).

[32] G. Di Nunno, T. Meyer-Brandis, B. Øksendal and F. Proske. Malliavin cal-
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[50] H. Föllmer and P. Protter. On Itô’s Formula for multidimensional Brownian

motion. Probability Theory and Related Fields, 116 (2000) 1–20.



BIBLIOGRAPHY 220
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[127] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Vol. 68 of

Cambridge Studies in Advanced Mathematics. Cambridge University Press,

Cambridge, (1999).

[128] S. Tang. The maximum principle for partially observed optimal control of

stochastic differential equations. SIAM Journal on Control and Optimization

36 (5) (1998), 1596–1617 .

[129] J. B. Walsh. Some remarks on A(t;Bt). Sém. Probab. 27, Lecture Notes in

Math. 1557 (1993), 173–176.
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