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SUMMARY

Xt is by now well known that one of the most useful
applications of the Approx‘mation Theory is in approxi-
mating the solutions of boundary-value problems, where
the recently developed Method of Finite Elements, in
413 of its different versions, has become one of the
most popular and effective means for the discretization
of the continuous problem. The purpose of this study
is twofold. at fixst, an attempt has been made to
present a unified treatment of the general multivariate
approximation problem by bringing together the many
published results concerning this problem. Then, the
rate of convergence of the Finite Element Method is
established which is found to depend upon the order to
which the exact solution u can he approximated by the

trial space Sh of plecewise polynomials,

For organizational purposes the content of the whole
analyais has been divided into thrée Parts‘. The Eirst
Part is primaxrily concerned with an introduction to the
iz‘inj,te Element Method. The intention of this introduc—
tion, mainly one of expository nature, is to present
the three major steps implied by the numerical solution
of boundary-value problems through direct variational
methods; viz: the variational formulation of the

problem, the approximation of the solution of the



- iii -

variational problem and finally, the numerical solution

of the approximation problem.

Part II is exclusively devoted to the study of the multi-
variate approximation problem, where a distinction is
made between three different approaches. In the first,
Multivariate Pointwise Approximation of § 2.2, the multi-
variate Hermite approximation technigue is analysed and
the result of Theorem I provides us with a pointwise ap-—
proximation estimate obtained through the standard Taylor
series approach. The domain # of the problem, assumed to
be a polyhedral type domain, is decomposed into a finite
nunber of n-simplices and this permits”.us to consider the
approximation problem over each n-simplex at a time. In
the second approa..:, Multivariate Sobolev Approximation
of § 2.3, which from the mathematizal point of view is
more general than the first, the approximation problem

is posed over the Scbolev spaces H:(n) s kzl, 1sp<w,

and certain results from functional Analysis are employed
in order to compute the mean-sguare approximation esti-
mate of Theorem II. In particular, linear functionals
which annihilate polynomials of a certain degree or less
are of central importance in the study of this ge‘neral
approximation scheme. In the third approach to the approxi-
mation problem, Approximation by Convolution of § 2.4, the
possibility of approximating a f\mcf_ion.u which does not
meel the necessary continuity requirements for its interpo-

lating polynomial to be defined is considercd and the
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outcome of this analysis is the result of Theorem III.
Although Prof. G. Strxang in a published paper on the
Approximation of the Finite Element Method tackles the
same problem by using Fourier transforms, I have used
the general procedure of the nrevious paragraph 2.3
over Sobolev spaces.in brder to give, what I believe to
be a more elegant mathematical treatment of this parti-
cular guestion of the approximation problem. Finally,
for the sake of completeness only, an approximation
technique over curved elements is briefly outlined in

§ 2.5, a situation which is encountered very frequently

in the various practical applications of the method.

Then, the convergence of the Finite Element Method been
governed by a single fundamental principle, viz: with
respect to the enercy inner-pr‘oductv a{u,v) the approxi-
mate solution oy is the projection of the exact solution
u onto the subspace Sye the main theme of the analysis
of the third Part consists of an appropriate utilization-
of the approximation results of the second Part in order
to compute the exact order of convergence of the finite
element approximation Y, to the exact solution u, Finally,
the main purpose of the two simple examples, which are
given at the very end, is to illustrate to some extent
the procedure which is usually followed in practice in
order to determine several erroir bounds between the exact

solution u and its approximation . -
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PART 1

FINITE ELEMENT SOLUTIONS OF LINEAR BOUNDARY VALUE

PROBLEMS

1.1 INTRODUCTION

A widely used technigue in approximating the solutions of
boundary~value problems arising in the theory of partial
differential equations is provided by the Finite Element
Method which, from the mathematical point of view, falls
into the framework of the classical Ritz-Galerkin technigue.
It operates on problems posed in the variational form rather
than directly on the differential equation itself, which is
the case with the well-known method of finite differences.
In order to implement thu Finite Element Method, the domain
f is replaced by a finite number of subdomains ej < @ and
ceriain families of functions are considered which have
different analytical expressions within each subdomain ej.
Then, by the term finite ¢lement we wderstand a closed
subdomain Ei and a family of functions are allowed to

occur within it. This family is a linear combination, with
cosfficients q?‘, of a finite number of baslc functions so
that each function of the family corresponds to ascribing
particular values tc the parameters q?i. The values of

the components of the function awd, possibly those of some

of its partial derivatives at a certain number of points



placed on the boundary and, perhaps, in the interior of
the finite elements, usually called nodes or nodal points,
are chosen as parameters. Therefore, the approximate
solution, which is computed separately within each element

e;, is assumed to be a linear combination:

e: e
a4t (%) R S 23]
3373
: N €3 e
of given basis functions ¢j {x) and the parameters 9 in

{1-1) are computed from the underlying variational principle.
For example, it may be required that the exact solution
u{x) minimizes a given expression of potential energy

corresponding to some physical system.

The crucial difference between the Finite Element Method
and the classical Ritz-Galerkin technique lies in the con-
struction of the basis functions. In the former they are
piecewise polynomials and their main feature is that they
vanish over all but a fixed number of the elements into
which the given domain 2 has been divided. The following
two disadvantages of the classical Ritz ap‘proach contribute

to the success of Finite Element Method:

{a) In practice, the construction of the basis functions

e
d>ji(x) is only possible for some special domains 2, and

{b) even for these simple domains the method can be highly

unstable.

Furthermore, the capabllity of dealing with arbitrary complex




geometrical ¥ ;ions as well as the banded nature of the

resulting sy simultaneous linear eguations of the
assembled p <u, are some more of the basic reasons
whical have turned the balance of choice in favour of the

newly developed method of finite elements.

The true originators of the idea were the engineers, who
regarded the method as a means of generating a discrete
model of a physical system, and, for a number of complicated
problems in elasticity and structural analysis the Finite
Element Method superceded the then well-established method
of finite differences. Only recently hac the method

become attractive to mathematicians and this is due to

the latest developments in approximating theory and varia=-
tional principles. Historically, however, the first idea
goes back to Courant [9]. He suggested -~ in a lecture
delivered some 35 years ago - a triangulation of the given
domain and th: :se of linear trial functions over each
triangle in order to solve second order boundary-value prob-
lems. Prior to Courant, sine and cosine functions as well
as Legendre polynomials were commonly used in approximation
problems. On regular domains these functilans are still
entirely adeqguate, but for irregular regions the situation
is completely different as these functions become. almost
useless. Although Courant's idea was forgotten, when finally
it was recalled again - about 15 years after his remarkable
lecture - and was combined with the newly developed theory
on approximation of functions by piecewise polynomials (so

far this new theory on approsimation having been constructed




completely independent from what Courant had said in his
lecture) , was to be the most powerful technique for nume-
rical solution of partial differential eguations: The

Finite Element Method.

In addition to the Ritz version of the Finite Element
Method which requires the minimization of a certain func-
tional, there are also some other forms of the methcd for
problems where convenient variational principles are not
available. The most popular of these involve classical
methods such as Galexkin, Least squares, Collation, etc.
However, regardless of the principle applied, we shall
always use the term Finite Elemeni Method if the basic
functions constructed have the above mentioned character-

istlc property ¢o beinyg piecewise polynomials.

A fundamental mathematical problem is to determine how

efficiently piecewise polynomials can approximate an un-

known solution u. In other words, to «' ‘0 cstimate
for the error as closely as possible « termine how
rapidly the error decreases as the numbe . the finite

elements e; is increased. Then, the accuracy of the
approximation can be increased by simply refining the
subgivision of the domain. Thexefore, the following two
import;ant questions need an answer as far as the approxi-

mation problem is concerned:

1. What is the degree of the approximation which can be

achieved by the Finite Element Method?




2. wWhat is the error estimate for the difference u-uy,
where u denotes the exact solution of the problem

and 'S its finite element approximation?

The parameter h, of course, in some sense measures the
size of the finite elements ey so that we are woxking with
a sequence of approximations with h + 0. 1In recent years,
much of the mathematical literature of the method has

been concerned with forming a wider basis for the finite
element approximation from the point of view of Functional
Analysis and thus, without any doubt, the problem regquires
some sort of rigorous mathematical treatment in order to

determine its oxder of converge e.

1.2 VARIATIONAL FORMULATION OF THE PROBLEM

In numericaily solving a given partial differential equation,
we first express approximately the solution in terms of a
finite number of parameters and, since in general the solution
is sought in some class of functions, it is essential that
we are able to express any function of th&lclass in terms

of a finite numbexr of parameters with a reasonable accuracy.
Then, the given differential operator is transformed into
expressions relating these parameters and, if the differen-
tial operator is linear, these relations are also linear

wnd we are led to a linear system of algebraic eguatjons.
Therefore, for the numerical solution of any differsntial

egquation it becomes clear that the following two principles




are essential:

(i) The choice of the local parameters of the gsolution,
and

{ii) The use of an ~ppropriate variational principle for
transfoxming the given differential equation into

relations among the parameters of the solution.

But, in order to answer these two questions, we first need

e

some sort of notation:

1.2.1 The space Lp(Q):

Let © be a bounded and open domain in R® with its boundary i

denoted by 8Q, and let

@,

whare & is the closed domain resulting from the combination
of ¢ and 30, be the space of all real-valued functions

defined on @ and which are contimuwous over fi. Then we

denote by:
Lp(9)  or by Hg(n)

the space of all measurable Functions u(x) defined on @

for which:
é[u(x)lzdx < @

with the integration being a Lebesgue integration. That is,

Ly () = (u(x):r{[u(x)]zdx<ﬂ) -oeo. {23
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and the real~valued function .l Ly (8) defined by:

ful (§ tutn12an® RURTI

Lz ()

is known as the Lp-nnrm of the function ul{x} ¢ Ly (R}.

One basic reason for the introduction of such a space

of functions here is that the space Ly (%) is complete in
the norm (1-3), whereas, the continuous space C(§) is not.
This means that, if (un(x)) is a sequence of functions

in Ly (Q) for which:
Ilun(x) - um(x)lle(m + 0, as n,m + =
there exists a function u(x} in Lz (R} such that:

Ilun(x) - u(x) + 0, as n + =,

Lz ()

Note that C(R) is a linear subspace of the space Lj{R)

and another equivalent definttion for the space Ly (R) is
that it is exactly the completion of the space (&) with
respect to the norxm (1~3). This property of completeness
becomes quite important when we reach the stage of con-

structing approximate solutions cof differential equations
by employing certain variational principles, which is the
case with the Finite Element Method. The space Lp{R) is

a Hilbert space with an inner-product defined by:

(“"’)Lz(n) =‘{u(x).u(x)dx; w,v e Ly (R)



1.2.2 The space Hk(n)

For any nonnegative integer k, let Ck(ﬁ) be the space of
all the real-valued functions defined on ¢ and which have
all their derivatives of up to the order k~th inclusive
continuous over §. Then, the space of functions defined

by:

) = (a0 :ul €Ly (0); D*ulx) €Ly i), for all |o} sk} . . . (1-0)
is the completion of the space Ck(ﬁ) with respect to the
following norm:

2 = ¢ 1p%w? L (159)
1w (q) X Ly (2)

lol=
ie, Hk(n) is the space of functions which together with
all theixr generalized derivatives of order up to the k
inclusive are square-integrable over the domain 9, where:
!
B et T T

o= oy ytg e e s ptn) | )
3%y 0% +ee0X,

we have used the usual multi-index notation. The space

defined through (1-4) is a Hilbert space with an inner-

product defined hy:

- o - O s _
(u,u)Hk(m xSk(D 2%, @) [u|T$kéD uwPudx; wyu e B {R)

la]

Corresponding to the norm defined by (1-5), we défine a

semi-norm by the formula:




2 LI o,
u| =z Ip%ul = ¢ [[D"ul ax L. (1-8)
| IH"(m laf = Tate) T (o

where, unlike the norm, the semi~norm is always zero for

a function of degree less than k.

Finally, fo. - negative integer k, we can define, by using

the principle /. -iuelity, the following negative norm:
| tu,v) | {fu(x) . ulx)dx]
pel o= mex. —prpiel8l o ey d ToT
ERO per® (e w*(q) ver® (n) w5 (2)

where, of course, by the word negative we mz2an that the

index k is negative.

1.2.3 Symmetric, Positive and Positive Definite Differential

Operators

Consider the following general linear boundary-value problem
of order 2m in the n-variables x = (X),Xz,...Xp):

Aulx) = £(x), xe@ B P

subiect to:
several essential and/or natural boundary conditions on 80 . . . {1-7)

For the 2m—th order differential operator A, defined

through the equation (L-7), we say that it is:




- 10 -

1. symmetric, if the following condition is satisfied:

(A“’U)Lz(n) = (u'AU)Lz(ﬂ)

for any two functions u and u from its field of defi-
nition. Furthermoxe, a symmetric operator A is said

to be:

2. posi:ive, if:

(Au,u) 20

Lp ()}

for any function u from its field of definition, and

where equality occurs if and only if u = O,
3. positive definite or elliptic, if:
(Au,u) =y ful? C.. (1-8)
Ty (@) H(a) i
for some positive constant y and any function u from

its field of definition.

Then, one can easily prove that if the operator A is posi-
tive, the equation (1-7) cannot have more than one solution:
Indeed, guppose that it has two solutions u; and u, such
that:

Au; = £ and Aup = £
or, by subtracting and using the fact that the operator
A is linear:

Aluy=-uy) = 0

Multiplying this equation scalarly by v, - u,, we obtain:

(Aluy~up) ,u;~up) =0

Lz (R)
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which means, since the operator A is assumed to be posi-

tive, that:

u; - uy =0, or uy; = uy

1.2.4 The Equivalent Variational Problem

We introduce now . equivalent variational approach to the
problem (1-7) - (1-7)' which is a matter of great impor-
tance in our entire analysis from the point of view that
it provides a means for the discretization of the contin-
uous equation (1-7), ie,

The functional:

Fly) = - 2({f (1-9)

(Au.u?LZ(m ’“)Lz‘:.) <.

is related +o the differential equation (1-7) in the fol-
lowing way: 1if the equation (1-7) has a solution u, this
solution minimizes the functional (1-9) and, conversely,

if there exists an element u which minimizes the functional
{1-9) this same element u satisfies the equation (1-7).
This method of solving boundary-value problems by replacing
the @ifferential equation by the problem of minimizing a
certain functional is usually called, the energy method and
the particular functional F(v) the functional of the energy
method. An equlivalent form for the functional (1~9) is

given through the following:

Flv) = alv,u} = 2(f » . (1-10)

Wy, (e) .
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where the second order term u(u,v) in (1-10) is obtained
as a result of an integration by parts of the inner-
product texrm (Au,u)Lzm) in (1-9) over the given domain

Q9 and by invoking the boundary conditions (1-7)' which

are supposed to be satisfied by the functions uy. We shall
call the quantity a(v,u) the strain energy of the function
u end its square xoot Lthe energy norm - or natural norm -
of the function v. It is this norm with respect to which
the Ritz method is minimizing the functional F(u‘) and any
error estimate will at the very first be given in terms

of that kind of norm.

As far as the differential equation (1-7) is concerned,

it is easily seen that the operator A is acting on the
space of functions which are 2m-times differentiable and
satisfy all the boundary conditions imposed on 3g9. That
ig, we say that the (unknown) exact solution u belongs

to the space of functions H;m(ﬂ), with the letter B refex-
ring to the boundary conditions. Then the natural guestion
which arises s to find the admissible space of functions
for which the functional (1-10), or equivalently (1-9), is
well-defined so that the minimization process can proceed.
It is an easy matter to see, however, that, since the
minimization can proceed as long as the functlcnal F(u)
remains finite and since the quadratic texm ofv,v) in (1-10)
involves defivatives of up to the order m~th inclusive only,
the functional (1-10) will be well-defined for all the
functions v which have all their generalized dexivatives of

up to the order m-th inclusive sqguare-integrable over 9;
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ie, for all the functions v which belong to the space
Hmm) and, further, they are required to satisfy only the
essential boundary conditions of the problem. This last
observation comes oput as an immediate consequence of the
following general rule (see G. Strang and G. Fix [247 p.8}
which distinguishes between essential boundary conditions
which remain and natural boundary conditions which got:
'Boundary conditions which involve only derivatives of
order s will make sense in the Hs-norm; those involving
derivatives of order ¢ or higher will be unstable znd will
not apply to the functions belonging in the space g,
Therefore, the corresponding admissible space of functions
for the equivalent variational principle, defined through
the functional (1-10), will be the subspace:

v = 1)
which satisfies the essential (homogeneous or inhomogeneous)
bounda'y conditions of the problem. Note that the only
aifference between the spaces V and #™(2) is that the first
contains all these functions:

v e HMR)
vhich satisfy the essential conditions of the problem. In
the case where all the Loundary conditions are natural,

or of Neumann type, the two spaces V and Hm(n) coincide.

Then, the result of our whele analysis so far is that the
same solution u can be approximated either from the dif-
ferential equation (1-7} directly or from the correspond-

ing variational principle (1-10). 1In the first, we replace
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each derivative of the given differential eguation by a
suitable difference guotient and we are led to a system

of difference equations from which an approximate solution
is cobtained. This is tie finite difference scheme which
operates directly on the differential eqguation. In the
latter, howevexr, we are looking for a function u which
minimizes the gquadratic functional (1-10) over the infinite-
dimensional space V, which means that we now have the
enormous advantage of trying fuictions which do not belong
to the originally admissible space Hgm(n]. Furthermore, the
space V contains, by its construction, those functions v.provided
they can be cbtained as the limit of a sequence vy in Hgm(n), where
by the word l<mit we mean that the second order term of the enexgy
functiocnal (1-10) converges; ie,

- - -+ n o+ e,
alvmy su=u ) 0, as

However, lt can easily be proved that the energy norm ofu,u)
is equivalent to the H'norm defined by (1-5), ie, there exist two

positive constamts C; and C; such that:
2 . 2
Cilial m 5 a{u,u) = Cyllull o P O B b ]
B (a) HO(2)
so that, the completion of the space Hy'(a) to that of
V can be carried out in either norm. We note here, however,
that such an enlargement of the space from H3"(q) to v does

not lower the minimum value of the functional (1~10), since

every new value of F(u) is the limit of old values F{uy).

1.2.5 An Example

As example, consider the following second order partial

[PURSTHIN
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differential equation of elliptic type:

2
Au(x) = - 3 -(ay (x)——\ =£(x}, x e @ . . . {1-12)
*3

131"”‘1

subject to the Dirichiet boundary conditions:

u{x) = 0, X e 30 < {313

where the functions qij(x) , 12i,js2, are real-valued

functions with:

a0 < cl (@)

and are such that:
qu(x) = qji(x) , 151,352, x e @

and satisfy the following ellipticlty condition:

2
2 -
;5:1‘111"‘)%53' = cyfgl C e (1-14)

for any x ¢ 8 and any real number £ ¢ R? with
fe]? = {f—kgg. Then, a bilinear form a{u,u} on V x V,
where here V ¢ H'{n), can be derived by applying a formal

integration by parts on the inner-product term (A“"’)Lz(ﬂ)
.

ie,
2 2
alu,v) =x{ l ax (q (x)———)]u(x)dx—- E . n ax (q (x}—)—g)v(x)dx =
= ila ol Ban - it G028 oty =
Y S AT T N £ %

2

3w v
= § g, ()“—dx
1,4=10 47 %y axg
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since the second term is always equal to zero because of

the boundary condition (i~13}, Thus,

2
aluv) = ¢ f g (X . . - (1-15)
j=1 8 3

i,

from which, togethexr with the ellipticity condition (1-14),

we immediately get:

2
du,?2 2
lafu,w)] 2 €p £ {25 “dx = Cyllul ... (1-18)
! i=1 @ 9% # ()
On the other hand, from (1-15), we have that:
2 su du 2
latwu} s max. max.jq 0] e 3% % = Coltul b L Y]
14,352 xen D i,3=1@ 2%y ¥y HL(g)
where the constant
C, = max. max. |c1ij (x)].

15i,3<2 xef

Finally, by combining the inequalities (1-16} and (1-17),
we obtain:

eriu? < lafu,ut| s Collul?

al(a) ui(a)

which is the double inequality (1-11}

1.2.6 The Finite Element Approximation uy (x)

Por the implementation of the Ritz technique in the Finite
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Element Method, instead, the infinite-dimensional space V

is replaced by a finite-dimensicnal subspace

Sh e V
or, more precisely, by a sequence of finite-dimensional
subspaces Sh,h - 0, spanned by basis functions which
normally are piecewise polynomials. Then, by a choice

of local parameters we understand that each trial function
v, € Sh is expressed in terms of its nodal parameters
which are the unknowns qj of the dQiscrete final system.
Further, each of these nodal parameters is nothing more
than the value, at a given node, say zj, of either the
function Uy itself or one of its derivatives (eg see [24]},
ie,

a4y = Djuh(zj)

with the operator Dj being of zerc order in the case where
the parameter qj ig just the function value. To each of
these nodal parameters 9y we asgociate a basis function

¢j(x) which is defined through the following condition:
Db, 8. .
]-tj (zy} aij

which simply states that at the node zj the value of the
function Dj¢j(x) is ope and zero at all the others. Thus,
with. respect to the nodal points zj and the operators Dj,
the basis functions "'j (%) constitute an interpolating

basis for the trial space Sh,- ie, any function vy € 8, can

be expressed by a combination:
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vy {x) = gqj-»j {x)

and, furthermore, they must be chosen to satisfy the

following conditions:

1.

2.

They are piecewise continuocus over the entire domain Q.

They have compact sSupport over f ox, more preclsely,
thelr support is decreased as the number of the nodal

parameters qj is increased.

They satisfy the essential boundary conditicns of the
problem at hand, and

éq\i(x)qaj(x)ax =0

for most of the pairxs (i,j}.

Over the new subspace Sh now, the guadratic functional

{1-10} is replaced by the following:

Fluy) = alogsu) = 2(8,u,) .. {1-18)
h h’"h h L, ()

and if the domain 2 is decomposed into a number, say M,

of finite elements e;, such that

Q=

M
u
i=

e
li

the space integral on the right-hand side of (1-18) can

be split up into M parts:

(1-19)

M
Flog) = 3 Taluu), = 206y, o7 -
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and the minimization of the above functional over the space
Sy will give us the optimal parameters Qj for which the
approximate solution

u, = § Qj ¢j(x)
is obtained. In morxe detail, the basic computation in
the evaluation of the energy functional (1-18) is carried

out, at first, over each element ey separately:

[F(u)] = Calugou)d = 2(F,0,) Lo . (1-20)
i h'°h [y
Ve ey Ly (2y)

oxr, by substituting the expression of the trial function:
e, ei

i
95 ¢j

w =B (%}
by

over each element e; at a time into (1-20), we get:

(Flo)] = als dwl(x)x ¢j‘(x))—2(f): 4 to0) =
W, q: % T T

Tiil

ey e
= (g} p

- 2(qh

Thus, there are two main problems, first to compute the

e
element stiffness matrices X i and the element load vectors

e
L within each element e; and second to assemble them over

the entire domain 9:

M e.
Fly) = 3 (Fiy)d =x<q)f1i 21:(q)LPj' Teq- 27
i=l L
FY
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to obtain the functional F(uh) which is a function of the
parametexs g = (g),Jas.-..Gy}, where n here denotes the
number of unconstrained nodes of the partition of the
domain ¢ and, consequently, the dimension of the subspace
Sy Then, the first derivative of F(uh) with respect to
eavh parameter qj, 1< 3j£n, is put equal to zero leading

to a system of n equations in the n unknowns qj, 1 <3j sn:
KQ =T <. (121

The equations (1-21) are linear if the problem is linear,
and non-linear if the problem is non-linear, Because each
point of the subdivision is coupled only to its neighbouring
points, the matrix K in {1~21} is a sparse and symmetric
matrix with all its ncn-zero elements being banded around

the main diagonal.

1.3 CONVERGENCE OF THE METHOD

The main problem, which from the mathematical point of

view lies at the very centre of the theory of the Finite
Element Method, is that of giving an estimate for the error
between the exact solution u and its finite element approxi-
mation Uy, T, since the function u minimizes the gquadratic
functional (1-10) over the infinite-dimensional space V

and the function uy, minimizes the quadratic functional
{1~18) over the finite-dimensional subspace 8,7V, between
the minimizing function over V and the minimizing function

over Sh.
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as a first step in this direction, we shall first prove

that the approximate solution u_ ¢ Sh satisfies the fol-

h
lowing equation:

alu ) = (f,uh)Lz(m, for all the finctions vy ¢ §, . . . (1-22)

or, by consldering the whole of the space V instead of
the subspace Sh’ that:

afu,v) = (£v) ) for all the functions v e V o .. (1-23)

Ly (8

We say that the eguation (1~23) expresses the vunishing

of the first variation of the functional FP{v) in any direc-
ticn v e V, while equation (1-22) expresses the vanishing
of the first variation of F(u,) in the direction of the
particular function vy € Sh'

Indeed, since the function u, minimizes (1-18) over S.

h !

we can write:

Fly) $ Plytey ), for all y e § ad any scalar e ¢ R

Then, since:

Flyben) = a(uh+euh,uh+zuh) - Z(f,uhﬂ:uh)LZ @ =

=aly ) + Zea(u ) + e2aly, o) - 2(Fu) = 2e(f,u,) =
Y h'h ' UhLz(ﬂ) 'y, (03

=Fly) + 2elaly ) ~ (o) 14 Zaly)
Ly @)
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and since the perturbed functional F(u +ev ) is quadratic

in e and attains its minimum value for e = O, we have:

ar (uh+ euyp)
de’ =0
or

al o) = (f,uh)I ¢ for all v, € 8§
12 (9}

which is exactly the equation (1-22). The second equation,
(1-23) is nothing more than a natural generalization of

the first.

1.3.1 The Minimum Principle

An important characterization of the approximate solution
u, € S, usually known as the minimum principle and which
constitutes the foundation of the entire convergence
analysis is the following: Suppose that the function

u minimizes the functional (1-10) over the full admissible
space V ¢ H™{2) and let 8y, be any finite-dimensional sub-

space of V. Then,

n(u—uh,u—uh) = min a(u—-uh,u-uh) o0 (A-29)
uhesh
where Uy, again denotes the finite element approximation

to u.

Indeed, for any two functions u,veV, we have:
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Flu) -~ F(u) =alu,m) ~2(f,u) = alu, o) +2(f,U)LZm)=

L2 (@)

=afu,u) - afuv,v) + 2"3'“‘“’\1:.1(9)’

or, by using the eguality {1.-23), that:

Fla) ~Flu) =af{a,w ~clv,v) +2alv,uu) =a{y,w) ~alu,w) +20{v,0} ~20(v,u =

=a{u,u) = 2alv,u) + a{v,v).
Thus,

F{w) =F(v} =alu-v ), for ay fmctions w,u ¢ V v« o {1-25)

from (1-25) now, and for v = vy and v by we get:

min aluey ey ) ¢ alomge) = Fla ) -Fl < Fly) ~ Flw) =
%
= alumy, )
Therefore,
min of{u-v, v ) € efu-u oy} S sl uey )
T/ Thr W 7
%%

from which we obtain:

min ofusy, -y ) = o ey ey )
5
which completes the proof,

Wext, 1f we subtract the following equation from the
equation (1-22):

a(u,\)h) = (f,uh)Lz(n), for all vy € Sy
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which is the same as eguation (1-23) applied for any

function vy € Sh' we get:

au-w,u) = 0, for all v ¢ 5, ... (1-28)

This is the most remarkable rxesult which has been cbiained
so far. Equation (1-26) states that, with respect to the

energy inner-product af{u,v), the finite element solution

oy, is the projection of the exact solution u onto the space
Sh, or, what is the same thing, that the error a-uy, is
orthogonal to the subspace Sh. As a result, the problem
of convergence in the Finite Element Method becomes a
problem in the approximation theory and our main task is
to estimate the distance betweesn the funotion u and the

subspace .

Nevertheless, it if not necessary to work directly with
the finite element solution u,. Instead, it is suffiicient
to consider any conveniently derived polynomial £rom the
finite~dimensional space sh which is as close to the
exact solution u as possible. Then, since’, by virtue of
the minimum prinicple (1-24}, the approximate solution ay
is always closer to u than any other function of the space
Sy, we can imnediately obtain a first upper bound for the
difference between the function u and its finite element
approximation y, in terms of the energy norm. For such

a conveniently derived polynomial, however, close enough

to the exact solution u, we choose its interpolating
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polynomial and, thus, we are faced with a prcblem in
approximation theory of giving an upper bound for the error
between the funetion u and its interpolaiing polynomial.
The construction of such an interpolating polynomial, as
will be seen in the sequel, is always possible for any
function u which assumes any order of continuity over the

entire domain Q.

1.3.2 Cor{s.{stency Plus Stakility Implies Convergence

Let us consider once more the equation (1-26) applied to

the function u

S viz:
L€ Sy

u(u—uh,uh) =0, u, € 8y
or

alu,u) = oluy,u)

Then, by using this result, we obtain:

alumy umg) = alueu) - ol = el W o+ aluy,w) =
= slu,u) - el ,u)

Thus,
u(u—uh,u~uh) = af{u,u) - a(uh,uh) <. {127
and equation (1-27) expresses the Pythagorean theorem for

the Finite Element Method: the energy of the error is

always cqgunal to the error in the energy. Then, since:
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a(u-uy u-y) 2 0

from {1-27}, we get

a(uh,uh) 2 alu,u) - .. (1-28)

so that the energy in the finite element approximation
uy, is always bounded by that of the exact solution u.
Therefore, if we identify the inequality {1-28) with the
stability condition of the method and the approximability
-~ given that u can be approximated by the subspace Sh -
with the consistency condition, then, by virtue of the
fundamental principle in Numerical 2nalysis, ie, consis-
tency plus stability implies convergence and conversely,
the convergence in the Finite Element Method does occur
within the subspace Sh and its order immediately follows

from the minimum principle (1-24).

As far as the finite-dimensional subspace Sh is concerned,

hereafter, we make the following two basic assumptions:

1. 8, is of general degree k~1; ie, it contains within
each of its elements all the polynomiéls of degree

less than or equal to k-1, and
2. fo:r any subdivision of the domain ¢ into finite ele-

ments, a uniformity condition is supposed to be satis-—

fied by them, as the space parameter h + O.

This last condition imposad on the finite elements thewselves

is merely a geometrical condition which avoids degenerate
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elements. Then, under these two conditions, and by using
the results of the approximation theory of the next part,

we shall prove that:

o (ug umu) s cn? 5 g L (129
HY(0)
for any function u ¢ Hk(ﬂ), where m in (1-29) denotes the
order of the highest derivative which is involved in the
bilinear form «(u,v}, C is some numerical constant which
does not deperd on the function u and the parameter h and
“!Hk(n) is either a semi-norm or a norm. If we are able

to estimate a bound for the quantity |u} in terms of

#(a)
the second part of the original differential eguation then,
we have in (1-29) an ¢ priori error bound which only uepends
on the data of the problem at hand. Furthermore, since the
minimum principle {1-24) holds irrespective of homcgeneous
or inhcmogeneous essential boundary conditions, the same

is true for the error estimate (1-29) ~.' .t depends only
on the order to which the solution u can Le approximated

by the trial space Sh composed, by construction, of piece-

wise polynomials.
Next, from the estimate (1-29) combined with the ellipticity

condition (1-16}, we get the following result concerning,

this time, the H™-norm:

k~m,
[RECT ] = O(h ) e .o (1-30)
" glg .

A less straightforward problem however, is to give an
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estimate for the difference between u and v, in terms of

a different norm | -l » with s being smaller or larger

B8 (2)
than m, In this case the application of the so-called
Witsche trick gives for the H®-norm the following rate

of convergence:

= ok, 2 (k) -
Ilu—uhklﬂs(m = 0(n Fn ) ... (1-3D)

Nevertheless, in almost all practical applications of the
method, the first exponent in (1-31) govemns the rate of
convergence and this Is in agreement with the results of
the approximation theory upon which the convergence of the

Finite Element Method depends.
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PART 11

THE GEMERAL MULTIVARIATE APPROXIMATION PROBLEM

2.1 FINITE ELEMENTS AND APPROXIMATING SUBSPACES

The expansion of the Finite Element Method has reached
such a point nowadays that it has become one of the most
popular and effective methods for the numerical solution
of partial differential eguations, particularly for
elliptic equations. At the same time, it is a well-known
fact that the main reason for the success of the method
is reflected by its capabs.ity of dealing with complex
geometrical regions by using arbitrarily shaped simple
elements. Nevertheless, for reasons of simplicity, we
restrict our attention at present to polyhedral type
domains only and we shall examine in a later sectlon of
thig Part the effect which an arbitrarxy curved domain has
on the general approximation problem. Thefefcre, suppose
that we are given a bounded and cpen subset 2 of the
n-dimensional Euclidean space R" whose n-polygonal boun~
dary we denote by ¥2. The implementation of the Finite
Element Method starts with a partition {or subdivision

or general triangulation):

ale,) L. (2en
*er
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of the domain 2 into a finite number of pieces ey © Q,
which we always call fin'.te elements. We denote by LN the
interior of the union of these elements and by aqy, its
respective boundary. The parameter h simply refers to
the mesh spacing introduced by the particular partition
(2-1). Note that, for our particular choice of the doméin
? the boundaries 3% and anh coincide. Then, we say that

a family T, of such elements e, < & constitute any admis-
sible triangulation of the domain @, iif and only if the

following two basic conditions are satisfied:

(i) ue;
&y ey
where @ is the closed domain resulting from the
combination of @ and 8f, and

(ii) If ey and ey € Th, then, eithex ey = ey or
e n ej = f§, or e and ej have a common vertex or
side.

Over each element e a Einite number of points ay - usnally
called nodes or nodal points - are specified, some of which
are common to several adjacent elements of the given trian-
gulation. These points ay constitute a set of interpolat-
ing points which in a wique fashion, and over each element
ey at a time, define an appropriate interpolating polynomial
with a certain degree of continuity over the entire domain
Q. This order of continuity is required for the space Sh

m
to be a subspace >f the energy space H (g), ie, tc be more
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precise, for the case where:

s, = HN@)
the trial functions vy € Sh are required to have m-1 con-
tinuous derivatives between interelement boundaries since,
then, the m-th derivative will at most have a finite
jump between adjacent elements and, therefore, it is pos-
sible for the enesrgy to be found over the entire domain
@ by adding the separate contributions from within each
element. Nevertheless, since the interpolating points
oy are most frequently associated with several adjacent
elements, the basis functions ¢i(x) corresponding to these
points, one or more with each point, constitute only parts
of the complete basis function associated with such a
point of the triangular network. In order to cbtain the
complete basis function at any node, we have to add up
all’ the appropriate parts associated with the elements
adjacent to the node. Before giving a brief description
of some of the approximating subspaces Sh, we note that
the subspace §, is decomposed, with respect to the parti-
cular subdivision of the domain @ satisfyihg the conditions

(L) and {ii), into a finite number of subspaces such that:
5,08 = o 8 (8,17}
h hiTL TR
eieTh

where, again, by Ei we understand the closed element ey
resulting from the compination of ey and its boundary,

and we are only concerned with the construction of such
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subspaces Sh(éi;'l'h) for several types of elements e,.

As far as the dimension of the space sh is concerned,
which is exactly the number N of the free parameters of
the trial functions vy, € Sh’ always coincides with the
number of the unconstrained nodes. & node in the boun-
dary where the function vy is required te vanish, for
example, or to equal to some other prescribed value, is
constrained and will not count to the dimension of the
subspace, With the natural boundary conditions assigned
to the boundary nodes, however, the situation is completely
different. There is no constraint on the trisl functions
vy € Sh ad the dimension of the subspace Sh equals the

total number of the interior and boundary nodes.

There are two main categories of elements into which the
given domain @ can be divided, viz: either n-simplices
{triangles for n=2, tetrahedra for n=3, ete) or unit
n-hypercubes (unit squares for n=2, unit cubes for n=3,

ete).

2.1.1 The Simplicial Finite Element

For the first, let (n+l) peints ui,l % i £ ntl be given

in R with co-ordinates

Opgr@ygreneeOpyi 1S L S ndl

and suppose that the matrixs



~ 33 -

%11 12 1,n+L
%21 %22 "% ,ne1
A= e e e e e e e (2-2)
L %nz vt %n,ne1
H 1. 1

is non-singulazx.
It is well-known that, if x ¢ R with co-ordinates
{%) Xy ,.+-,%y), it is uniquely represented in terms of

the barycentric co-ordinates:
Pi'l $ 1 s n+l

through the formula:

i1 n+1
x = L P,e,, where L P, =1 e e (2-3)
q=p TF je +

Then, from {2-3) combined with (2-2), we can get:

n+l n+l
jill?juij, j:le =1, 124is n‘ e (2=4)

xi =
which is a system of (n+l} linear equations and from which
the vector:

(PyePyrens Poig)

corresponding to any gilven point:
[0 ST ,xn)T
may be determined. The result is a linear, but generally

non-homogeneous, function of x:
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n
P, = ji1bijxj + bi,n+l’ 1< isn+l . {2-5)
where the matrix B = (bij) in (2-5) is exactly the inverse

matrix of (2-2. We call the closed convex hull § of

the (n+l) points oy lsisn+l (ie, the set of points of

® with barycentreic co-ordinates satisfying ospisl, lsisn+l),

the n-simplex generated by these points. The points

oy, lsisntl, themselves constitute the vertices of the

simplex. Furthermore, we gufine:

The barycenter G of §n as that point of the simplex
whose barycentric co-ordinates are all equal, and,

therefore . equal to 1/n+l.
an m~dimensional face of §n as the m~simplex, lsmsn-~1,
generated by (mtl) vertices of 5 . For an example of

a l-dimensional face we refer to the edge of the

triangle.
If;
o, 1sismtl
k)'.’
are (m+l) members of the set {o} » we define by:
. igigndd
mil ml
H = =}:Pi“k'AZP:L=l)

a hyperplane in R" of dimension m. This hyperplane

contains the m-face defined by (b).

Let k be a fixed positive integer and let zk denocte

the following set of numbers:

{0, /k,2/k,....k=1/k,1}
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Then, with the n-simplex én defined above, we

associate the discrete set of points:

ntl n+l
8,00 ={xeR's x= I Py P ety 3Py = 1} ... (2-6)
i=1 1=
which we call the k-t order principal lattice of the

simplex §n‘ It contains exactly:
(k + n)
k
members which, in the practical applications of the

Finite Element Method, constitute the interpolating

points of the simplex.

Given a function u(x}, with x = {x),%;,...,%,) an n-variable,
defined over a (k-l1)-st order principal lattice associated
with the simplex ‘§n and assuming a certain degree of con-
tinuity over the closed element §n, the approximation
problem can be described in a few words as follows: The
values of the function u(x) are interpolated at the points
oy oi the set sn(k-l). This is the general Lagrange inter-
polation problem. In addition to the values of the function
u{x} at the points ay eSn(k-—l) . the values of some of its
partial derivatives at several points of the set Sn(k-—ll

are also interpolated. This is the general Hermite inter-
polation problem, In either case, however, given a func~
tion u(x) which is defined at a finite number of points

oy € sn(k—l) and assumes a certain degree of contiuity over
the simplex §n, its (Lagrange or Hermite) interpolating
polynomial of general degree {k~1) is given through the

formula:



where the coefficients C,;

1) =
EN &) =
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c Ll (-7
Sybiphe e tipgiey Hletzeese a7 R

g .. iy 3B (277) are uniguely

determined through the intexpolating constraints. Then,

by introducing the barycentric co-ordinates in our analysis,

we consider the following special cases for the polynomial

{2-7}:

1.

k=2. The interpolating polynomial is lingax:

i) 4, i n#l
1t
v,_(ll)(x) = z . X% ekt T uley) Qil)(x)
fyHigt. sy MR i=2
P {2-8)
vhere u{e Y, 1£isn+l, are the values of the function
u{x) at the points e; €S (1) - le, the vertices of

the simplex 5, - and ¢{") (x), 11 n+l, are the basis
functions as lated with the points L 1s4isntl,

and which, however, coincide with the barycentric co-
ordinates of the point x ¢ R with respect £o the (n+l)

vertices of the simplex. Obviously:
(1) - s
by (uj) "Sij' 1s4i, jsntl

and, therefore, they constitute a class of linear
basis functions ove. the simplex B . They are

related to the Cartesian co-ordinates through the

furmulas
1
*1 *1( !
*2 @2(1)
Tfomasll L (279)
1 (1}

¢n+ 1



where A is the same as the matxix (2-2) and, since

it has been assumed to be non-singular, we can get:

ay

N *1

)

b *2

: =ak | ... {2-10)
B

X .

(1) 1

a1

The two transformation formulae (2-9) and (2-10)

between Cartesian and barycentric co-ordinates (since
¢;“ (x) = p;,L<dsn+l) are of exceptional importance
since they may transform any element of an arbitrary

(but straight) shape into its standard form - it is
always easier to work in terms of the right triangle,

ey, than one of arbitrary shape - and vice versa. The
interpolating polynomial (2-8) is defined by P.G. Ciarlet
and W. Wagschal [6] as the interpolating polynomial of
type I, with the interpolating polynomial of type IT

being the following:

The interpolating polynomial is éuadratic:

4w = ;. c S
" LHigh. .. dpsz Teterseodn T2 Fn
ntl L
= (2 {2
= I ulagdy ) + N J;=1u(uij)¢ij)(x) L. (271

i=1
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where u(ui) are the values of the fimction u(xj at
the vertices oy, 15 isn+l, of the simplex §n and
u(uij) the values of the function at the mid-points
of the edges (ui,uj) generated by the vertices oy
and uj, l<1, jsn+l, with the convantion that we

always have:

"‘ij = “ji' l=i, jsn+l

Note that the set of points:
fast v (uij)

constitute a secuid-order principal lattice for the
simplex § . Furthermore, the basis functions in
(2-11) are given, in terms of the linear basis func-

tions dl) (x), 1€isn+l, as follows:

%(-2)()() - wil)(“i(l’_l), 1gisn+l
e (2-12)

%(;)"" = 4¢i“’¢34“, 1si, jsntl, 14§

3. k=4. The interpolaving polynomial is cubic:

i dp Ay @

o0 = ¢ T N LT
: i+t tinga Tedzee s dn’l [

il @ n+l @
+or ule,, )83l 0d+ ¢ ule, o) gon, (2} e (2713
=y A4 i3 15 k=1 ijk’ Yijk

ik
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where the set of points:

{ui} u (“iij) u { }

®iik

constitute a third-order principal lattice ror the

simplex én; ie,

L= (Zuiwxj)/a, 1<i, §sntl, i#)

Gy = (ai+uj+uk)/3, 15, j,ksn+l, 1 £ £k

and the basis functions can be given, in terms of the

linear basis functions ¢ ') (x), 1<i<n+l, as follows:
i

”S) G = %éin <3¢11)-1) (3@551)_2), lgisntl

3)

+iilea = 9/293’@;” @M, 1s5, 3ol i3 L. L e

ofitn = z7¢i(”¢3§” #9124, skemd, 154K

Nevertheless, within each 2-face of the simplex generated
by the vertices a;,ay and ay, Lsi, j.ksntl, i3 £k, and
with the point %35k being its barycenter, the values u(“ijk)

of the function u({x) at the points:

aggi = agragta)/3, Ls i, 3 ksnel, $#3 4k

in (2-13) can be replaced by a linear combination of the

form:




u("ijk =k[u(aiij) +u(ajji) +u(ajjk) +u(ukkj) +u(°kki) +u(“ij_k)] -
+ 1/6lufay) + u(uj) fulg)d ... (2-15)

This technique, widely used by the engineers, merely elimi-
nates the internal nodes and, even though in this case the
order of accuracy of the Pinite Element Method is decreased
by one, it is quite often applied in practice since the com-
puting time which is needed is considerably decreased.

For example, following M. Zlamal [30], consider the case
where n=2, ie, the simplex §n becomes a triangle, and no
boundary conditions are prescribed for the trial functions.
Alsc assume that the domain 2 is a unit sguare which has
been decomposed into 2n? triangles by dividing it, first,
into n? squares of egual sides 1/n and, then, every such
square into two triangles. The total number of vertices
constructed so far by this triangulation equals (n+l1)2.

On the other hand, the computer time needed to sclve the
final linear system KQ = F is proportional to Nw?, where

N is the number of equations in the system and 2w+ 1 the
band width of the stiffness matrix K. If polynomials with
ten parameters over each triangle - which correspond to

the three vertices, the three mid-poirts of the edges and

the centroid of the triangle - are used, we have that:
N = 3(n+1)2 + 2n?
w = 5(n+1)

in which case the computer time needed approximately amounts

to:
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Nw? = [3(n+1)2+2n2325(n+1}2 = 125n*

On the contrary, if polynomials with nine parameters are
used - the tenth parameter corresponding to the centroid
of the triangle having been eliminated by a linear combi-
nation similar to that given by the formula (2-15) - over

each triangle, we have:

N o= 3(n+1)?
W = 3n+s
for which case:
Nw? = 3(n+1)2(3n+5)2 = 270"
which means that by eliminating the internal node we can

save approximately 78% of the computer time.

However, since the dimension of the subspace Sh grows
enormously fast with k, an interesting problem arises from
the possibility of imposing further constraints on the
interpolating function without destroying either the
approximation properties or the simplicity of the local
basis. Thus, for k = 4, we consider the following cubic
Hermite interpolating polynomial which can uniquely be

determined through the interpolating constraints:

W ul sy =ule), 151 s

(11 4 Gy ) =ulegg), sy = leptagrod/3, 1ot dKk el 3743k
i) oul¥ () = puley), 1sLsnsl,

Then, the interpolating polynomial ~ although rarely used
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because of its complexity - is given through the formula

{see A.P. Mitchell [141):

ntl 2 3
w6 = step @i 2 M)+
0
- (1), (1), (1)
+1/61,jfk=1[27u(uijk) 7(u(ai)+u(aj)+u(mk))]-¢i q;]. [ 5
ik

n+l nHl

T e (U3 o5y (1 (1) (1)
+ 5 bufe,) (=0l $. - & Dule,) {a o) e, 627" ¢
P R M e B P A e I

i#

(2-16)

where (“-j:‘-’j) denotes the length of the edge generated by
the vertices o and “j’ 1si,jsn+l, i#j. Again, the values
u(aijk) of the function u(x) corresponding to the internal
nodes “ijk' lsi,i,k<n+l, ifj#k, can be eliminated by a
substitution, in terms of the others, of the following

form:

“(“ijk) = 1/3[u(ui)+u(aj)+u(nk)]~ VG[Du(ui)‘(ui—mij

W) +D\1(uj).(aj—mijk) +
* Dulg). by d1 - (2417

and a considerable amount of computer time can again be

saved.
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2.1.2 The Hypercubic Finite Element

as far as the second main category of elements mentioned

earlier is concexned, ie, the unit n-hypercube i let

nt
k21 be any integer and let Nk denote the following set

of numbers:
Ny o= {0,1,2...,k}

Then, in an exactly analogous way as for the n-simplex
described earliier, we call the clcsed convex hull of the

set:

iy, i, i
n(k) = (xeRn:x=(—k‘-,-k—,...,T"), ijst, l<jisn}
.. (2-18)

the unit n~hypercube En of R*. The set of points Hn(k) r
defined by (2-18 -ins exactly (k+1)? members which,
as for the set - .he simplex §n, in the practical
applications of the r.aite Blement Method constitute the
discrete set of interpelabing points for the hypercubic
element. Thus, suppose that a function ul{x), x=(x /%, %) B
is an n-variasble, is defined over the set 'of points nn(k-—l)
assoclated with the hypercube 'n'n and ass:mes a certain
degree of continuity over the closed element ﬁn‘ Then, we
define its (Lagrange or Hermite) “nterpolating polynomial
of general degree (k-1) as the unique polynomial of that
degree which interpolates the values of the function u(x}
together, pexhaps, with the values of some of its partial

derivatives at several points oy € nn(k—l). This polynomial
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in its general form is given through the formula:

iy i, i

! oL (21

{k-1) =
uo ) = ) g seee g U %2 R

I b
Ay ,dgee s odnsk-l
Finally, we only mention here that, the technique of
elimination of the internal nodes can be applied in the
same way for the hypercubic element, as it was for the
n~simplex, leading to the serendipity family of elements

frequently used in engineering applications,

2.1.3 Finite Elements jin the Plane

In the case of a planar domain @, the triangle or 2-dimen-
slonal simplex is the most widely used finite element in
practice, Among other reasons justifying its great

popularity are the following two:

1. Any artibrarily curved domain in the space R? can be
approximated by a polygon which, in turn, can always

be divided into a finite number of triangles, and

2. the boundary of any curved domain can a.vays bettex

be approached by using 2 refined mesh of triangles.

Of course, there are also some adventages as far as the
rectangular element is concexned. It can be used for the
interior of the domain, wherea there are fewer of them
than triangles, and it geems that an appropriate mixture

of trianjular and rectangular elements can produce an
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excellent subdivision of any domain in the plane. The
crucial point, however, when such a mixture of finite
elements is involved, is to make sure that the required’
degree of continuity of the interxpolating function across
the jvmction is secured. In analogy with the interpolating
polynamial (2-7) defined over the simplex §n, over the
triangle T we have the polynomial:

WP ey = e Ly L. {2-20)

i+j=0

which simply interpolates the values - and probably those
of some of its partial derivatives - of a function u{x,y)
which is well-defined over a (k-1}-st order principal
lattice S, (k-1) assoclated with the triangle T. Fox the
particular value of k=2, however, the polynomial (2-20)
is uniguely determined by its values at the three vertices
of the triangle and the corresponding linear trial sub-
space 8y exactly coincides with that proposed by Courant
[9] some 35 yesars ago. Then, the quadratic and cubic
polynomials immediately follow from the polynomial (2-20)
and for the values of k=3 and k=4, respectively, in
analegy to those described earlier for the simplicial
element. However, for any particular value of the para-
meter k, the interpclating polynomial (2-20) reduces to
a polynomial of degree (k-1} in one variable s measured
along the edge of the triangle, This feature is in common
with all the ftriangles of the given trlangular network,

and, therefore, the interpolating function (2-20) is of
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class ¢? over the entire domain 4. Nevertheless, instead
of interpolating the function u{x,y) at a large numbex of
points, and thus increasing the dimension of the subspace
Sh' it is possible to impose further constral'nts on the
interpolating function without destroying the accuracy

of the approximation. Thus, for k=4, we are faced with

the Hermite cubic interpolating polynomial which is uniquely
determined by the values of the iunction v ,y) as well asg
those of its first-order partial derivatives at the three
vertices of the triangle. This polynomial, also being of
class C% over the domain @, cannot be used for the solution
of fourth order eguations where a C! continuity for the
trial functions is required.For the construction of such

an interpolating polynomial we demand that, not only the
function be continuous between adjacent triangles but

also, its normal derivatives as well. This gives rise

to the guintic polynomial which is very useful in prac-
tice and which is determined by the values of the function
u{x,y} and those of its first- and second-order partial
dexivatives at the three vertices of the triangle as well
as the values of its normal derivatives at: the mid-points
of the edges. Finally, note that by using the following

transformation formula:

* X1 Xy Xy a3
Y| =t ¥y1 vz v3s ['|6Pp2 B Y
1 11 1 Ps

the polynomial (2-20) can be tranafoimed inte an eguivalent
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polynomial whose basis functions are expressed in terms of
the barycentric co-ordinates {p;,pz, ) of the point x e R2?
with respect to the three vertices + < ({xyy1), a7 = (Xp,¥5)

and a3 = (x3,y3) of the triangle T.

On the other hand, again over a planar domain 2, and with
the interpolating polynomial (2-19) defined over the unit
hypercube En’ for the unit square 8 = [0,1] x [0,1) we
have the following polynomial:

_ k-1 k-1 s o4
O L T L. (2-22)
i=o0 j=o 7

which, again, interpolates the values - and perhaps those
of some of its partial derivatives - of a function u{x,y)
which is well-defined over a specified set of points

oy ¢ Ry (k=-1) given through the formula (2-18). Note that
any rectangular element {a,b] x [c¢,d] can be transformed

into the unit sguare element [0,1]1 x [0,1] through the

following transformation:

Y- . o
v - S L. (2-23)

x » E2

b-a’

¥or the particular value of k=2, the interpolating poly-
nomial (2-22) is a bilinear function - ie, it is linear
with respect to each one of the two variables whenever

the other is kept fixed ~ and is'uniquely determined by
its values at the four vertices of the square. Thig. in

analogy to the linear case described over the triangle,
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corrasponds to the simplest construction of the bilinear

trial subspace sh’ whereas, the values of k=3 and k=4

give rise to the biquadratic and bicubic polynomials

respectively. However, again, instead of interpolating

the function u{x,y) at a large number of points we may

impose further constraints on the interpolating function

provided that by doing so we do not destroy the accuracy

of the approximation. This, for the value of k=4, gives

a Hermite bicubic interpolating polynomial which is

uniquely determined by the values oi the function u(x,y) ;

and those of its partial derivatives:

3ulx, vy} aulx,y) 32ulx,y)
X 3y ' 83Xy

at the four vertices of the square. Let us .omment a
little further on that polynomial. Suppose that the domain
@ is of rectangular type and has been divided into a finite
number of rectangular elements which, in turn, through the
transformation formulae (2-23} can be transformed into
unit sguares. Then, for any internal node, each basis
function has a support of four squares over the entire sub-
division, whereas, for any boundary node - not a corner
node its support is only two elements. Furthermore,

f. 2 pede in the corner, the support of the corresponding
basis function is only cne element. Since continuity of
the first derivative is also secured between interelement
boundaries, the Hermite bicublc interpolating polynomial

belongs to the class of functions ctrl m general, we
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say that a function u(x,y) belongs to the class C~'J, if

the derivatives:

k+8,
ﬂ—fﬂ%di ,0<ksi, 0Osg53
IXTIY

are continuous over the entire region. An alternative
interpolating polviowial, however, to the Hermite bicubie
function is provided by the bicubic spline function. It

is the tensor product of two cubic splines in the one-
dimensional space and its support is sixteen elements,
provided that the associated node is not on the boundary

or adjacent to the boundary. The continuity of the bicubic
spline is of class C?*? instead of ¢'’’ of the Hermite

¥+% continuous polynomial

bicubic. Furthermore, for a C
we may consider the tensor product of the two quintic
splines in cne dimension. Its support now has been in-
creased considerably to thirty-six elements and this fact
makas the biguintic spline rather difficult to handle,.

We polnt out, however, that whereas the support of the
spiines increases with the order of the spline - it is

4?2 elements for a spline of degree 2k-1 -, the support

of the fermite frnction remains unchanged at the four
elements irrespective of the order of the polynomial.

The difference, of course, is that the splines give greater
continuity, vizi

2 {x-1) ;2 (k=1)

instead of c*71+%71 of the Hemite function.
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2.1.4 The Quadrilataral Element and the Isoparametric

Technique

The important situaticn which arises in considering the
quadrilateral element is that, the continuity which was
achieved by the interpolating polynomial between adjacent
rectangular elements does not, in general, hold between
arbitrary quadrilaterals. For example, consider the bi-
linear function defined through the formula (2-22} and

k=2. If the two guadrilaterals are joined by a line:
¥ =mx + b

then, along that edge, the bilinear function reduces to

a guadratic and, thusz, cénnot uniquely be determined from
the values of the function {x,y} at the two vertices only.
It reduces to alinear polynomial along that edyr if and
only if the edge is horizontal or vertical. The possibi~
lity, however, of achieving a C? continuity for the inter-
polating function over an overall quadrilateral network
becomes a challenging mathematical problem and a practical
technique employed for its solution is the following:
change the co-ordinates in such a way that the quadrila~
teral becomes a rectangle - or rather a unit square - and
the interpolating functions in the new co-ordinates are
admissible. This is the well-known iscparametric technigue
and it merely consists of choosing piecewise polynomials

such that:

(i) they u: ' .ne the co~ordinate transformation, and
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(ii) the same polynomials can be used as interpolating
functions over each element.

For a particular example, consider the quadrilateral Q

with four nodes placed at its four vertices u; = (xy,¥)),

ap = (Xp,¥3) ¢ a3 = (%3,vg) and ay = (x4,yy). Then, the

following linear mapping:

x =X+ (Rpyxg) € ok (Xg™x)a + {x)~xp—Xgtr,)En

Ce (229
Y=t vt lysyda + rrrve YatyadEe
transforms the square S, with vertices a; = (0,0),
ay = (1,0), o) = (1,1 and o) = (0,1) in the (g, -plane,

into the guadrijateral Q. It is an easy matter then to
check out, from eqs (2~24), that the boundaries (see Fig 1

below) of Q and S correspond; ie,

b4 s "
o , ,
a Sy 3
a) % s
Fig 1: ® o o [4

g§ = 0,1 along the sides @iay, ozez and n = Q,l along the
sides ojx,; and ayeg respectively. Although such a corres—
pondence between the boundaries actually occurs, it is

also necessary to show that the mapping (2-24) is invertible
so that each point (x,y) in Q corresponds to one and only
one point (£,n) in 8. This, in turn, can be shown by
merely proving that the Jacobian matrix of the transfor-

mation (2-24) is non-zerc inside the square S. This
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Jacobian is:

e Ax M=Ky H (R =Ko -XgtRy) N KgmxyF () Xy ~Xy%) £
3
J{E,n) = det = det
k> k)
5% 5‘% oyt (V1mv2yatyd 0 vmyih y1-va-vstve) £

and G. Strang and G. Fix in ({24] have shown that the necessary
and sufficient condition for the non-vanishing of the Jacobilan
inside § is that the quadrilateral is convex., Finally, since
the same mapping (2-24) gives the interpolating polynomial

over the quadrilateral @, from {2-24), we can easily get:

% = (1~g)(1rn) Xy + £ (1-n) 2 + n(1~E) xg + Enxy
y = (=€) (mndyy + & (1-n)yz +n(1-8)y; + Enyy,
from which we obtain:
iV (x,9) = (1-8) Grmbute) + £ (-M uleg) + (=g ulag) +Emale) =
4
= zuleg)eglen
=1
where
$1{g,m = (1-g) (1~n) ¢3(g,m = n{l-g}

pz (8, ™ = g(l-n) oulE,m =gn. |

2.2 MULTIVARIATE POINTWISE APPROXIMATION

We shall make an cttempt, in this section, to derive some
error bounds for piecewise polynomial approximation over a
domain @ eR® of the following type: # is a polyhedral type

domain which through a partition:
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A (8]} ... {2-25)
v

el

has been decomposed into a finite number of non-degenerate

contiguous n-simplices 'S:, vel, such that:

i g
= U
vel ®

Then, error bounds for piecewise polynomial approximation
over the polyhedral domain 2 can be derived on the basis
of error bounds for polynomial approximation over a non-
degenerate simplex. Thus, with esery n-simplex 5;, vel,
of the partition & aswociite th. following discrete sec
of interpclating points:

kD = (xe s xm 15, ey -
~1) ={xe R :x= 5Plo,P; e _,, LRy =1}, vel ..
n e A R

where %, = {0,1/k,... k-2/k,1} and p‘;, lsisntl, vel,
denote the barycentric co-ordinates of any point

X = (X 4Xg,000%n) € R with respect to the (n+l) vertices
4y, L<isntl, of the simplex &, veI. The set (2-26)
exactly defines a (k-1)}-st order principal ‘lattice of the
simplex, which was again introduced in an earlier stage,

and contains precisely:
k+n-—1)
k-1
members. WNext, the following set of functions:

P B =ipeoEomp = 3 1Cixi, xe§), ver) ..

HES

. (2-26)

- (2-27)
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A s {80} . (2-25)

has been decomposed into a finite number of non-degenerate

contiguous n-simplices §;", velI, such that:

i= us5,

ver
Then, error bounds for piecewise polynomial approximation
over the polyhedral domain @ can be derived on the basis
of error bounds for polynomial apy ‘oximation over a non-
degenerate simplex. Thus, with every n-simplex 5;, vel,

of the partition 4 associate the following discrete set

of interpolating points:

M m nhL
Splkel) = (x e B o x= IPYLP e, 2P =1}, vel . . .(2-26)
1= i=1
where Z) _\ = {0,1/K;... ,%-2/k,1} and P}, lsisatl, vel,

dencte the barycentric co-ordinates of any point

X = (% ,%3,.++,%n) ¢ R® with respect to the (n+l) vertices
ay, Lsisntl, of the simplex 8y, veI. The set (2-26)
exactly defines a (k~1}-st order principal iattice of the
simplex, which was again introduced in an earlier stage,

and contains precisely:
(k+n~l)
k-1
members. Next, the following set of functions:

Yy = LBV, R - i v w
Pk—-l(sn) ={p(x) 5, > Rip(x) Iil\;'k_lcix e xef, Ve I} e W22
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y
!
!

1 where i = (i),ip,...,iy) and [i] = i;+iy+...+ipn is the

i usual multi-index notation, defines the class of all the
i polynomials of degree less than or equal to {k~1l) in

|
:

n-variables x = (x),%g,..-,%p) ¢ ' restricted over the

simplex S;, v eI. It is within that class of functions

that we are searching for the interpclating polynomial

defined over the simplex 5:1, velI, and its dimension =
i since the dimension of the subspace restricted over the

simplex 5;;, v ¢ I, coincides with the number N of all

i unconstrained nodes of the simplex - is given by:

: v ktn-1
i N = dim P, _,{8)) = ) - .. (2-28)
il i k-1'"n < k-1

n Consider now a function:

aim «FED, ver

which is well-defined over the discrete set of points

S;’l(k-l) + velI, where:

FE = a6 i) «c@); Dabo <a(E), far a1l |a sk, vel}
_ C.. (am2)

and C(E:‘) is the set of all real-valued functions u(x)

which are continuous over the simplex 5;, v ¢ I. The unique

function:

ur(Ak-l) {x) s Pk_l(é;"), vel

which assumes the same values as the function u(x) at the

N discrete points of the set Sy (k-1), v ei, as well as
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those of some of its derivatizes as the dorivatives of the
function u{x) at several points of the same set, defines
its Hermite interpolating polynomial over the simplex

5:/ v eI, The case of the Lagrange approximation clearly
consists of a special case of the Hermite approximation
problem where only the function values are interpolated.
Therefore, considering an analysis of the more general
Hermite approximation problem over the simplex §:\:' vel,
the Lagrange case is essentially included in the analysis
and we shall only briefly outline some of the main points
as far as the Lagrange approximation problem is concerned.
In either case, however, given a function u(x) w-ich
assumes a ¢° order of sontinuity over the simplex E;", vel,

we shall prove the following error estimate:

max, \D“u(x)—D“ursk_” < max pPuG) (K™, Osmak-l . . . (2-30)
XEE;; Xe Sv v
n
Vel vel
lal=m BIIE |

where h, is a geometrical parameter closely associated
with the smimplex 5;, vel, and € is some numerical con-
stant which does not depend upon the discrete set of points

S)(k=1}, v eI, defined by (2-26).
|

2.2,1 Fréchet Differentia

Since we have to deal here with the multivariate approxi-
mation problem based on multivariakte analysis, an extensive

use of the Fréchet differential calculus will naturally be
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unavoidahle, so we first have to give some basic notations,
definitions and results concerning this more general concept

of differentiation:

Suppose that E and F are two real normed linear spaces
and A is a non-empty open subset of E. Then, if u denotes

a mapping of A into F:

it is said to be differentiable at a point aec¢hA, if and

only if there exists a mapping T of E into F:

which satisfies the following condition: for any >0

there exists a & > O such that:
lulx) = wla) - T{x-a)ll <ellx~al, for all xeA e {231

whenever:

x ~ afl 2 8.
Turthermore, we say that the mapping u is differentiable
on A if and only if it is differentiable at each point
a ¢ A, If u is differentiable at a point 'u ¢ &, then,
there exists a unique linear transfomsation T frow E into
F which satisfies (2-31). We call this unique linear
transformation T the Fréchet derivative or Fréchet differ-
ential of the function u Ak the point ¢ ¢ A and denote it
by Dula). Its application co a point x ¢ E is written,

for sake of simplicity, as:

Dulo) .z
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BY:
IPule).xl = sup |Dule).x| .. (2+32)
[RYESN
B
where | 'IlE denotes the norm-operator over the space E,
we define the bound or norm of the operator Dula). also,

we dencte by:
L{E; F)
the class of all the bounded and linear mappings from E

into F.

We consider now the special case where E = R and F & R.
Then, the Fréchet derivative Du{a) of the function u at
a point o ¢ R® is the unique linear transformation from
R into R, ie,

Pulo) ¢ L(RR)
such tuat its application to a point & = (E1,82,...,5n) ¢ K
gives the following real number:

Dula). (& «sbp) € R

Then, in analogy to t.. .ormula (2-32), the norm of the

operater Pulc) is defined by:

1Pufe)l =  sup [Dula).(Ey,6z,.-.,E) ce . (2-33)
£yi1
1sisn
Nevertheless, the following alternative definition for

the norm of the operator Du(a), to that given by (2-33),

will be useful in the sequel:
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Ioutai = sup LBulaEl .. (2-30)
ger?
£F0
where, for convenience, we take the norm §-§i over the

space Rn in (2-34) to be the usual maximum norm:
Vel = maxt|g;) g2l eeen ) En]d

For any point £ = (Ey,E2,...,&n) € Rn, however, the fol-
lowing relation exists between the 'réchet derivative of

a functlon u and its usual partial derivatives:
n
Dafat.g = £ gD ula) v . {2-35)
i=l

where Diu(u) + l<4d <n, denotes the usual partial deriva-
tive of the first order of the function u in the direction
of the i-th co-ordinate. Moreover, if the space ® is

equipped with its canonical basis (ey,ey,...,ep), we have:

Dula). (ey) = Diula), lsisn ... {2-36)

Then, from (2-36), we get:
IPulo). (e il = |Dyula)] < #Da(ull. eyl
or

IPuladil = |Dyula)|, leisn e .. (2-37)

" on the other hand, from (2-38), we haves

n n
Duled.tg] s = j&,]| |Djuwle)| < 0gl £ |o ule)|
‘ ! imy d 1 i i=1! i

ox
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n
J.v.e‘f%%-_als T IDyutar]
- 4=1

and, by taking the supremum over the space R, we obtaln:

n
touledl sz {byule)] £ ¢;(n) max {Diu(a)l ... (2-38)
i=) 1sisn

where, of course, the consta & C)(n) = n. Thus, from
inequalities (2-37) and (2-3.), we get the following use-

ful double inequality:

fpute)| s UPu(ll < ¢y (a} max |Djule)|
1gin

Likewise, the k~th order Frédch.t derivative of the function
u at a point ¢ ¢ &Y is defined as the unique linear txans-
formation of the Caxtesian product space RUR™x. .. xRY
(k timas) into R, ie,

k
Fute) ¢ @i 2 @5

such that its application to a point (£),£2,...,8%) ¢ UL
with ;i € Rn, 1<i<k, gives the following real number:
Futad. (51,87, 5
with the convention:
uta) (e)®

whenever ;i =, 1sisk.

Again, the norm of the operator Dku(a) is defined by the

formula:
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19¥u(e)t = sup [0Nu(e). (£1,62,...,65] ... (2-39)
NeMisy
1sizn

or, alternatively, by:

X k
1%utarn = sep LTI g
ce(rE M(ENER gD

g0

Then, if the vectors £ e Rn, 12isgk, have components

(5778) s+ ++sEp) ¢ 1S 15k, with respect to some co-ordinate
system in Rn, the following formula holds, corresponding
to that defined by (2-35):

n n

n
k 1,2 k
Tuay(s! 2,089 = T L su. § E, £ «.uf. D, D _...D, u{a)
e, nEr e e

(2-41)

Furthersore, if the element (g} ,£2,...,6%) ¢ (R is

such that:
g o=y, 1sisk
then,
Pugay. (51,62, .,k = 0Tu(e) N ES)
n
where r = (x,,x,,...,%y) and |x| = iilri =k,

From (2~42) now, we get:

[9%aa) | = 60%ula) s (51,62 ,ue. B0 5 1DFu (el -0 gl
wheres

el = max hEd
I<isn
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ox, since g < 1, 1sisn, we obtain:

|p%ata)| € 40%(att, |z| =k L (2-43)

On the other hand, from (2-41), we have;

10t . (81,62, .. 89 s

2 n n

1a k
§ T E ... T & £ 5D D LD ule)] s
ML odgel Ml M2 AkTTATAZTT

n n
ER LTI S N

D, ...D, u(@)| ... (2~44)
A=l Ag=l 27

where by 0 (£1,£2,...,6K) we define the following maxi~
mum norm over the Cartesian product space =

2

£

Hel,e?, L, 00 = max (17} “an o,
2

K |, for all the
Ay

possible permutations o FERPW of the set of indices
AL
{3,2,...,n}, with l<isk}l.

Therefore, from {2-44), we have:

1 k n n
Pa). (81,62...80] : 3 seppuE| L. (2748

|u D.
BEELE2, e 890 AgeL Apml )\k—l R

However, since:

L L ...

,
x LD uwlal] = — Aty | <
MeL Ap=l A=l +¥nt

D, D
! Ay Az Ag luf=km'“2' -1

< X!
i) max |DMalad |
fofon T
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oxX s
s X! ok
__ k=
S T

we havei

n n n X

TE .. % DDy ..Dy ul@) | sn” max [DHule)] . . .(2-46)

A=l dpml A=l 012 3 fel=x

Thus, by taking the supremum of (2-45} over the space
' ana combining the result with (2-40) and (2~46), we

obtain:

1ule)l s ¢ tn) lme |o"u(a) | L. (24T
wi=k

where the comstant Cy(n) = ¥,

Finally, from the inegualities (2-43) and (2-47}, we get:
] s 10wl <o m max o] Lo (2-08)
Jul=x
where r = (r;,r3,...,%y) and (x| = k. The double in-
equality (2-48) is very useful in relating the Fréchet

derivatives to the usual composite partial derivatives

and vice versa.

2.2.2 Multivariate Hermite Interpolation

Given an n-simplex E;;, v eI, defined through a partition
4 of the given polyhedral domain &, we begin our analysis

on approximation with the general multivariate Hermite
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approximation problem, the f£inal goal being that of giving

an estimate for the exrror in:

max | Du(x) -Da\%(‘k"l) (x|, for any integer mwith Csmsk-1, . .. (2-49)
v

xe§
n

vel

a]=n

where the function u(x) ¢ Ck(gr‘;) and urfk"l)(x) € Pk_l(§X)

is its unique Hermite interpolating polynomial of general
degree (k-1). It is essential that the function u(x) is
well-defined on a discrete set S of interpolating points,
always associated with the particular simplex 5, veI,
under consideration, which can be defined as follows:
Since the Hermite polynomial w*™! (x) interpolates, not
only the values of the function u{x) at the points

o} €8)(k~1), ve T, but also the values of some of its
derivatives at several - not necessarily all - points of

the same set as well, let us introduce one more superscript

and denote by:

v, 0 - = v .

5p7%k-1) = 8] (k T
the usual (k-1)-st order principal lattice associated to
the simplex 5, ve I, which s defined by the formula

(2-26). It contains exactly:
k+n-1
No =
k-1
points. Furthermore, denote by:

8y M (k=1}, 1 Sy Si, L SA sk-l, vel
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the ) sets of points which in almost all practical appli-
cations constitute only subsets of the original set
5Y*%k=1), veI. For any 1sys) the set s0/M(k-1), vel,
contains those points of the set Sx‘;’g(k—-l) . vel, on which
the values of the partial derivatives of order u of the
function u(x) are interpolated. Denote thw number of those
points by:

Nyr lsus
Then, the set S of interpolating points, mentioned above,

is defined by the following set theoretic union:

A
S =08’ Mk-1), vel ... (2~50)
w=0

Following the same argument as P.G. Ciarlet and
P.A. Raviart in [7], the general Hermite interpolation
problem is defined as follows:

With evexy point:

ey e sy Mke1), 1S isWy, Osusas vel

we assoclate a subspace:

A"Pa(RM), lsisN,, Ogusi, vel

with the convention that:
A‘i’o = R, lsisNo, whenever y = O.

Then, we say, by definition, that the set (2-50) consti-
tutes a (k-1)-misclvent set, if and only if, given a set

of linear transformations:
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Y

} e Lu(Rn;R), 11N, Osus)

with the convention that:

0 n . ;
R, € Lo(RR) = R, 1sisNg

there exists one and only one polynomial p(x) of degree

(k-1) such that:

O ply e 62 enn ) = R (61,82, 80 ©e. (2-51)

for all
{g,82,,.. 80 ¢ A‘i"“, 1sishy, O<usi, vel
Therefore, acgording to the above definition, the Hermite
interpolating polynomial:
{k-1) v
uy {x} ¢ Pk—-l(sn)' vel

of degree (k-1) is the unique polynomial of that degree
which satisfies the following interpolating constraints -

in analogy to those defined by {2-51):

Pl (g1 82 ene 89 = Y el 28 L L (2052)

where (g1,2,...,6% «AlMc ()", 1515, osusy,

v eI, and with the convention that:

k~1
u(u‘i'o) = “r5 )(q;'o), 1sisN, whenever p=0.
The introduction of the subspaces:

3!
e (B, Lsusa, vel
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instead of the entixe Euclidean-product spaces:

¥
(R, Lsusa

becomes a necessity to cope with the situation which
arises in the majority of the practical applications.
Indeed, in many practical cases only a specific kind of
partial dexivatives has to be interpolated -~ eg the values
of the darivatives By and “yy' but not that of the cross

dexivative Uy ~ and, thus, the introduction of those sub-

sets is completely warranted.

Suppose now that for svery such subspace A‘i’”, ls isNu,

lspsh, vel, the following vectors:

Voep o vep Yop
Ei1 vbyg ""’Eivi

form a basis. Then, the Hermite interpolating polynomial

of degree {(k-1) is given by the formula:

Nl\l

v,0 Vol

W,
(k-1) ° .0 v v
u 0= s ula; T4 () + £ p [Duley " IMEN, N 1o, (XD 4 e
n i= i i 1= gm i ie 18

Ny
IR W DS AR Y

+3 3 DTule e N Ty 0 .

3=t =L i 1L 19
with:

- =
oV e v (B, vert

and

. . (2-53)
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Some of the interpolating points of the set S, defined
by (2-50), constitute multiple nodes, by definition of
the Hermite problem, and as far as the basis functions
of the formula (2-53) are concerned, they satisfy the

following conditions:

a‘i”°(x) e Pk_l(EX), 1S18N, vel

¢‘i"°(a‘]ff°) =613, 154,320y, vel

D”¢;'°(u§"‘).(e‘i;“) =0, LsisN, 1835N,, Lstsvy, 1sysa, vel. (2-54)
vou P .
big () ePk_l(Sn), l"iSNu’ l_y.sui, lsuga, vel

v v,;0
ad

DI 7% =0, 145N, LG eNy, Laasvy, 1Sush, vel

v“fp‘i’;“(u‘]?"’).(gg‘p) 28138050 LS4,ISN 1508 vy, Lsush, vel.
However, as for the one-~ and two~variable approximaticn
problems where the Taylor's formula plays a significant
role in deriving several upper erroxr bounds between the
function and its interpolating polynomial, exactly the
same applies with the general multivariate approximation
problem and, therefore, it makes sense to try and get
first the appropriate such multivariate formula. Thus,

¥ order of continuity

for a function f(x} which assumes a C
over an interval domain I, we can write the following

Taylor's expansion formula with an integral remainder:




ey Pl 02

aed
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e

1
(k) -
Gy I (rde . .. (2-55)

e
fig) = 2

1 5 €
L7 gy 4y
5 3 “

7

where £ and « are two distinct points of the interval T
and 1 ¢ [a,t]. For the particular points t=1 and u=0,

the formula (2-55) gives:

N 1 k-1
B0y Bl e W e, v e 0,3 L. (24560
DT

Then, for any point:

.. (2-57)

oy® e SprOk-1), 1EisNg, vel

and any point:

. . (2-58)

X & 5;’\ - S:'O(k-l), vel

we have:

< .
w4+ tloyOx) e By, 1edsty, ve T, £el0,1]
since the simplex EX, v eI, constitutes a convex regicn.
Next, define the following multivariate function:

£08) = ulxst (o) -x)) C .. (2-59)

with the points u\{’o, 1<isNj, vel, and x defined as
in (2-57) and (2~58) respectively. Then, by differen-

tiating the function (2-59) j-times, we get:

aet

n Xy x,
V0, V0_ V04 ALY, V.0
1 (O PR e Y v ol R DN (o R
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for all the integers j such that O s j<k-l. However,

since:

X X
(0 e s ) ) O POt (0 00 =

|xf=1
= Datert (o) 00y O

we get the following result:

3

L) _ gy, (xvt(a"'°-x))(u"'°~x)j, for all O<jsk-l . . . (2-60}
df

Finally, from (2-56) combined with (2~60), we obtain the

following multivariate Taylor formula:

(1~H

v,0
DT '

("'°>= & —vjum e} %03 g Fataert (o) 1050 Mo} -8 a

<« . (2-8L)

for any point a}'% &) O(k-1), 15158, vel, ad any

point xe 8y - 80'%(k-1), veI, telo,1].

w2 shall use the formula (2-61) in order to find an esti-

mate for the difference:

?Mulx) - Dmur‘\k“l) (%}, for any O smsk-1

Then, by using the inequalities {(2-48}, we can easily
obtain an equivalent estimate for the difference:
pu(x - 0"V (), ol =m, Osmsk-1,

involving, this time, the usual composite partial deriva-

tives.
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Consilder now a function:
u(x) e Ck(§;). vel

and its unigue Hermite interpolating polynomial defined

by the formula (2-53). Then, for any point:
xesy - 820k, vel

where S)‘_: der.otes the interior of the n-simplex §;’1, vel,
and any integer m with O <ms k-1, we shall first prove

the following important result:
- k
g =00 + K U%;,— Pagert (6] P (e O @610 000 +

4
S k-2
e e TN A

k-1
x . —0 el e g+
i gy 02T g1

TN
X k=
gy B A Nk o VoA LURPPY
rEE U(k H), mm( ) (85 oy P a0y M)
... (2-62)
Indeed, from the formula {2-53) and for any integer m

with O sms<k~1, v. have:

N, v
0 1t

TV g = RS LOEEE l}:l[L‘u(u\i’l).(€;;1)3.0m¢‘i’£1(x) *eur
= LA

N.
by
P tv%(uv'*) M 21.0% e R
iml g=1
Furthermore, from (2-61) and fox any point a‘;'“ .

lsisNu, Osu2), vel, we have:
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k-1 5
ulef™) = 1 350uio (u"'“-x) +; k T‘“D u(m(mv’u—-x))( “'“—x)kat

3=00°

where t ¢{0,1], lsisN“, Osusgi, veI, and from which

we obtain:

v
uia)®
i

k-1, . o Lokt x
)==& E:L,Dju(x)'(u‘i"’—xﬂﬂ (Ot_lt‘), Dku(x.yt(u\;fo_x) ).(u‘;:‘}_x) at
BaSH A T

where ¢ = £}/%, £}/° 10,13, 12isny, vex

Dule] pleh = Pulortelsh + Dula . (5570 o) L) 4

1 gk V1 9,1 (1) vl
ot T atey ) )+J’W17ku(x+t(ai' )0

k-1 k-1 3-1
SE ] e = K _Wv Sutaelgt )b 4
k=1,
+1 &‘%T—vkmmm“'l a0
where t = t:il, tm €[0,1], 1sisM;, 1sgsvy, vel.

ete ... , and:

P MHey N = Putatel) + P gy et +

1 k-1 v,). VA k—)\—l
*omey?? e (g ") +

!(1'“—)1)—17\1()&1.(“ Al e A E Ny e = t—jq;—.Ou(x)

1 Y
ROANS G >+/ Kaporela) P Mgl ] P ae
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Vi
et
By substituting these results into the formula (2-63),

where ¢ = t € (0,11, l<i<N)\, 15E<vi, vel.

we get:
ND

k-1 . N
vm D = x ] s [Vju(x)‘(a‘j’_'“—x)3]17"‘¢‘i’°(x) "
3207 imL

v
1 .

£ [03uEaeed st '1~x)3"lnv‘““ o
=1

3o rloy )+ ...

NA vy .
B ):[Uju(x) @t M0 I 0% o+

e iy
j—)\ T ” =1 g

N,
0 1
+ [J'vau(m(uv' -)da) ) duv"‘ V000 +

N
3 X
3 or D’—Lﬂ—vku(x-&t(uz’l-‘x) eyt )t e

s=1 ge1 02
) k-2
et 3 [/Wu(mt(u“”‘-x)) RO BT S e
i=1 g=1 0 2

(2-64)
Therefore, the crucial point of proving the formula (2-62)

is to show, using the property:
ut = 4% (), whenever ulxl eB_ &), veT R )
that s
N
Z [ﬂju(x)( W00 1070 4

u M), for Jmm

s - /
2 (Pubo- 37, 3207 T 00 o =
=1

0, for j#m
(2-66)
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Indeed, for any point x ¢ SZ - 5, veI, we have:

un e 1y @R

Thus, for any integer j such that O £js< k-1,

23uxy(a-n3 .. (2767
is a polynomia. in o of degree less than or equal to
{k-1y, where o here denotes any point of the set § deflned

by (2-50). Therefore,
lutte-nd ¢ Py (§;) yvel

and since the Hermite interpolation can alsc be defined
as being the projection of the continucus space:

Aoz

crEY, el
into the space:

5v

By (8 ver
where always:

=v A gy

P (B e cMEY, ver

the polynomial (2-67) coincides with its Hermite inter-
pelating polynomial defined through the formula (2-53), ie

N N.

v
0 . i .

TP T SO P NPT J0 S S v, A
iilv AU A O izl qu(u [07u(5y5", (0 7" NI 407 (@)

= Pu(ode-x?

or
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N
o .
2 Dutadad® 2074y el + oo ¥ LGD . G T
=
. v
T3 el 0 a0 TN e = P (e
. R uix) Eil piey X ¢iz o, ulxy. '

Then, for any integer m, with O<msk-1, we have:

N

o N :

£ 13aGo-(e) O 3005 O e +
i=1

Ny, v,
LI S 3
et DL T 8 a0l el P T 9 e =
i=1 g=1

= 0345-0) - - (§omd) WD uCgefamsg 3T ... (2-68)

From (2-68) now, and for ¢ = X, we haves:

NO N g

© (e} O T 07 O a4 A3 (G . G T
=

N, v

[N i

L e L e b I R
=1 %=1

when and only when j = m. Thus,

¥,

o i o .
A 5 a0 O 1Y O g 4, 32U e ()
SR 1 i

A
[ S j=

3. NeA VA 3T VA »

.iil ziz.w i) - (g% ey ex) ) 10" dyq 0 =
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N
b .

£ (0906 (@) e T 00 4
im1 * B

N, v,

LIRS SN .y
r tulael (e P 0L 0 = Puca .
- ig

S

L 10

I 50

when and only when i = m. For j # m it can easily be seen,

£rom (2-68) , that:

N,

0 . 4

2 10%u(0-(oy 009707 Ot + ..
i=1

[l
o

i !

Vs

i 51 "

5 00l Gl 07 3.0 P
1 R=1 i

which completes the proof for (2-66). Therefore, as an
immediate conseqguence of the result (2-66), we obtain
the result:

No .
2 003000 - (o) 071 ) P 4 e
i=1

N, v
k-1 A . j
1 3 Vik vk ] Pt = 7
heet T wET L kb v ala)(eg, % ey 100" )1 Dgg "% = Dhulx)
3= i=1 g=1 B
from which, together with (2-64), we obtain the required

result (2-62).

From this point on it is an easy matter to derive an upper

bound for the erroxr in

Mutn - oM o
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for any integer Osmsk-1, but, nevertheless, we wish to
do that under the more general notion - suggested in [7]-
of equivalent sets of interpolating points defined as
follows: Suppose that §;, velI, is any simplex defined

through a partition:

v
a: {8}, vel
of the domain 2, and:

X
5= usi'x1, vel
u=0

is its associated set of interpolating points which in
a unique fashion defines the Hermite (piecewise) intexr-
polating polynomial of the formula (2-53). Furthermore,
with the simplex 53, velI, we associate a set of basis
functions defined by the conditions (2~54) as well as
the following two geometrical parameters:

hv=diamaterofbhe sinplexg;'l, vel

0, = diameter of the inscribed sphere in §;", vel

For practical purposes, however, we consider a family of

all possible partitions: '

{ayte hek
where H denotes a collection of positive parameters h,
of the domain ¢ and we say that it defines a regular
family, if there exists a constant a>0 such that the
two geometrical parameters hv and pyr Ve I, defined in

(2-69), satisfy the following inequality:

.. - (2-69)
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h\) sap for all vel « e (2-70)

After that, we choose, once and for all, an n-simplex

§n, and let:

EY
8 = an
5= u:Usn(k—l)
be its associated (k-1l)-unisolvent set of interpolating
points. An analogous set of basis functions, to those
defined through the conditions (2-54), are associated
with the simplex én as well as the following two geoma-

trical parameters:

h = diameter of the simplex gn

. .. (2-71)
$ = diameter of the inscribed sphere in §n
Next, we define an affine (one-to-one and onto) trans-
formation:
x = Rr , vel, R, «L(R), r «R" (2-72)
v e [ Y T

2 ~
mapping the simplex Sn into the simplex Sn, velI, and is
such that the image of the set § under this transforma-
tion is exactly the set S. Furthermore, suppose that to

each point:
u‘i"", 118N, 1spsh, vel

- respectively af

i 1sisNu, lgps i - is associated a

subset:

3 -
A"i"‘:(Rn) — resp. AE e (Rn)u -
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Then, we say that the two sets H and § are eqguivalent if

and only if the following two conditions are satisfied:

(1) “’“=Rv&‘j‘_+rv, RveL(Rn),r‘)eRn,veI

e
u A -
WO B = UEhe?e,eh « 6 et er g, e (27T
for all (E1,E%,..., 8% €AY, 1515, 1susa, vel}

Finally, for the two eguivalent sets of intevpolating
points 8§ and é, the following result (see P.G. Ciarlet
and P.A, Raviart [7]1) is of great importance in deriving

the error bounds:

0 -
~1, _h

IR s—g‘i and IR o R ¢LEY), x eR, vel C. (2-74)

where -l denotes the usual Euclidean vector norm in

R, Then:

THEOREM I

Let a function u(x) ka(gr‘) , veI, be given and

A .
s= u s2'"(k-1), velI, be a (k-1)-Unisolvent set of
et

o

interpolating points associated with the simplex

By, vel, defined by a partition of the domain # such
that the inequality (2-70) is satisfied. Then, if
ur(lk-l) {x) is its unique Hermite interpolating polynomial

defined by the formula:
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NO Nl vy
q® Vi = 3 a4 0w+ 1 e e g e
i=1 i=1

N, vy

nrE oo tv*u(uv' ORI
=1

we have:
max (D460 0% 6 | £ 5, max (0Pt | L (2=19)
o v
X€ Sn xe€ Sn
vel vel
fa]=n [sl=x

for all the integers m such that Osm<k-)l, where the
numerical constant C is the same for all the eguivalent
{k-1) -Unisolvent sets of interpolating points S§ associated
with the simplex 5:, v eI, of the partition A4 and is com-
puted, once and for all, in a (k-1)-Unisolvent set §

which is equivalent to S.
PROOF
Indeed, from (2-62), we immediately gekt:

(LA AN P z ;[(1'”: ||17ku(x~|t(u"’0—x))(u %K 30t

NN

N, v

1TE a2

+ 3  5 Etatereta) o e
2 i

Vel 9 k-1, vl
=1 4 O ST N L W T R
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N) Ve

-1 M
g { X, VA VA v ked YA
Lk 121 ail g‘li(-—-——ﬁ——l\v RO AN O e TRE SN T

k2

hk NO hk~l Nl vy
< sl PGt £ 1970 ol BT supttata. 5 £ el
" v i=1 - i=l =1
xESn Xésn
vel vel
hk—)\ NA v
woot ggyrewlPutal. £ 5 gy e . 42-76)
‘ngv i=1 g=1
n
vel
Then, for the vectors (ei", eyi¥...., gy, veT,

lsysa, which form a basis for the subspace A‘i"”, lsish,
Lspsh, velI, and by recalling the conditions (2-73), we
have:

ViU ek
511 —R\)Eil' lSiSNu, lsusa, ISZSVi, vel

or M

e s ur g s ME N, Lsesa, ver
4

Thus, from (2-76), we get:

ok ¥,
10™a00 - 0™ %D s g2 supnoFutan .z o™y O ¥
x<§; i=1
vel
k N v
h ; i
* LA I S o
=1

)+
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B

Vi
m v, A 2
liluv 41y (OMNESN

Furthermore, for the two sets of points $ and é, their
respective Lasis functions satisfy the following condi-
tions:
V.0 LI
43 (x) = 4y (R T Ux r Ve LEisN, vel
and
eV = §¥ (RTMx-r ), 124N, 1spsh, lsasy, vel.
i ir' Ty LA u ’ tAd
Therefore, for any vectors:
(31,2, 5™ e B®, ete R, 12iem

we have:

Py 0 gL 2 ™ =0T R G e RN R
ana,

LA PN U=, B R PR A O

LsusA, vel

Then,
suph Y0 G0l < supl TG Ger D™, vet
- 58]
vel vel

and

supl D) Gl < suph %) ;P! G IR
=

¢ 5
chn chn
vel vell

lspsi, vel

(2-77)

{2-78)

(2-79)
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and since the image of the simplex §n under the transfor-

mation (2-72) is exactly the simplex §;, velI, we have:

supll 970 (R xs 1O1 = s\ipsm‘“?w'i’ el

v
xeSy ReS
vel

and (2-80)

supl TR e 1 = supl LRET
xS, e
vel n

i
H
i
i
i
i

lepsa, vel

Next, from (2-77) cowbined with (2-78), (2-79) and (2-80),

¢ we get:
t
.k X
h oo .
i 19%0 -5 i s 12 sop a0t B ¢ sup 1 9B +
i BV i1 &
xesn v chn
vel
& N v
Lol em 1 Vi
1 A s
+ TeyT supl)vku(x)u.—m.iE 3 supll 0", GaUMELN ¢ .
%<8 p, =1 =1 o
! n ®e§
vel

K Ny,

h w1 Vi

3 1 k. & PSR

o T sxig;uv u{xl ) supl 0765, (R IELH . . (281
%8~ Py I
vel n

Tharefore, from (2~81) combined together with the regu-

larity condition {2-70), we obtain:

17700 ~ 45 ot e P oupt 901, for all Osmskel L . . (2-62)
%e8”
n
vel
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where the numerical constant C is given explicitly by:

N, M ov

it o e mA L i 61 o sl
e frp st ?N G oy 21 S\ipllﬂmdtu(x)ll AR

e Sn

y Vi
NP S sh
5 sopl 0%, (AL ... (2~83)

. XeS,
n

Finally, by combining the inequality (2-82) with the

double inequality (2-~48), we obtain:

mex |0%a 0%y ¥ | s¢ B max |pPuca| L. (20
v

%e8” #e5,

vz; vel

aj=m fel=x

for all the integers m such that O<m<k-l. The con-
stant ¢ in (2-8%) is given by:

¢=ctk.c
where Cn(k) = nk and the numerical constant C is explicitly

given by (2-83). This completes the proof.

2.2.3 Multivariate Lagrange Interpolation

Oace the general multivariate Hermite approximation problem
has been analysed, it is an easy matter to emphasise some
of the essential points by ret.rring to the particular

problem of the Lagrange (piecewise) interpolation. Thus,




i
i
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let E;:.- v eI, again be any simplex of the partition 4 of
a given polyhedral domain £, such that the following von-

ditions

is satisfied. Also, let:

Sp(k=1), vel
be its associated discrete set of interpolating points
defined through the formula (2-26) and which contains
exactly

ktn-1

¥ Ol

members, Then, for a function u(x) with a Ck orger cf

continuity over the simplex 5;, vel, its unique Legrange

interpolating polynomial is given by the formula:
W0 s 2§ et (2-85)
n JElegley s

where ulay), 1s1sN, veI, are the values of the function
u(x) at the N points aj ¢ §%(k-1), v €I, of the simplex
ana ¢§(x), 1SisN, v eI, are the basis functions which

coxrespond to those points and are such that:

ey(x) e Py (BY), veI anad @‘i‘(u;) = §ij, 11,5, v eI,

By using now the formnla (2-85) together with the multi-
variate Taylor formula defined by (2-61) we, again, can

easily get the following important result:
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let 8), v eI, again be any simplex of the partition A of
a given polyhedral domain @, such that the folluwing con-
dition:

v

B
ver ™

is satisfied. &lso, let:

S:(z:—l) s vel
be its associated discrete set of interpolating points
defined through the formula (2-26) and which contains
exactly

_  ktn-l

No= Oy
members. Then, for a function u{x) with a Ck order of
continuity over the simplex §), veI, its unigue Lagrange

interpolating polynomial is given by the formula:
N
(k=1) _ vy v ~
u G = E wled)ei 0 L. (2-85)

where u(uz) » LE£isN, veI, are the values of the function
ulx) at the N points o} ¢ S} (k-1), v cI, of the simplex
and ¢1(x), Ls1sN, v eI, are the basis functions which

correspond to those points and are such that:
#7000 e Py (B, veT and ¢f(a)) = 613, 161,350, v L.
By using now the formula (2-85) together with the wulti~

variate Taylor formula defined by (2-61) we, again, can

easily get the following important result:
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- Ny Kt
T o =Paw +iil[n/(k—_§-;7—ﬁ‘u(xft(u“i—m MayFaes 0% 1)

-« « (2-86)
i for all the integers m such that 05m,<l‘<—1. This is true
since, by virtue of the more general result given by
(2-66) , we always hiVe:
3 Ly X /17“‘\100, for j=m

37 2 Ul 0 60 =
| : = 0, for jm
The general notion of equivalent sets of interpolating
points, again, plays an important role in the particular
problem of the Lagrange approximation and the starting
point for the computation of an errer bound for the dif-
ference of the sort (2-49) will again ha the result (2-86).
Therefore, suppose that we choose, once and for all, an
n-simplex gn of the partition A with a discrete set of
interpolating points § {k-1) associated with it and a

set of basis functions @i(x) , 1LsisN, rorresponding to

ne an affine

the points &, ¢ én(k-l) , 1sigN. Next, ¢
transformation:

R % n D
¥=R3+r , R eL(R), ¥ eR

into the simplex BY

mapping the simplex 5 M

, veI, and
which is such that the image of the set én(k-l) under
this trenformation is exactly the set Sn(k—l) s vel.
Then, over any simplex §1\-:' v eI, of the partition a such
that the inequality (2~70) is satisfied, by following the
same steps as we did in Theorem I, we can easily prove

that:
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1970 = 7% conse 25 swt ?Maton C.. (2-87)
xs§r‘i

vel

where u(x) e @Y, u¥ V(0 ep, | (B)) is its mique
lagrange interpolating polynomial defined through the

formula (2-8S), h“, v eI, is the geometrical parameter

associated with the simplex §x, v eI, and defined by

(2-69} and C is the following numerical constant:

kN
c= a‘“%—.— T supl o™, (01 ... (2-88)
Toimlg £ *
xeSn

whexe a is the parameter involved in the inequality
(2-70} and h is, again, a geometrical parameter defined
by (2-71). Finally, by combining the ineguality (2-87)

with the double inequality (2-48), we obtain:

max [0 0% | <€ o™ max [DPuga |, for any 0smsk-1

av 4
xeSn xe8
vel vel
Jol=m [al=

v . . {(2-89)
with the numerical constant C given by:
C = Cn(k) .C

where C (k) = n¥ and C is the constant explicitly given

by (2-88).

We only note here that the guantitles:

suph M5 (300
%eB
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in {2-88) can always be bounded in terms of the quantities:

up 4, (o
®eS

n

which involve only the functions ¢i(§<), 15 is N, instead

of their derivatives. Indeed, from (2-48), we have that:

supl 0%, Gl = ¢ 00 max| 0%, (0 | ... (2m90)
& e

Xe Sn Sn

and since the function 61(;‘) , Lsi< N, is a polynomial
of degree (k-1) over the simplex B - which constitute
a compact convex subset of the space R® - Markov's gene-

ralized ineguality gives:

oo alel pen®aen?, L peleh? .
mﬂu%i(x)lsul‘i‘iz)_niﬁ_‘)ﬂ_.ww“x)[. ..o (2-91)
%8 5 5o,
laf=m

where the parameter ¢ is the same &s in (2-71). Thus,

from {2-90) and {2-91), we obtain:

sl (9l 26, 0.4 . max | §; G2

ReS, xe§

lel g2 g2y, teeta)
G
p

and the numerical constant (2-88), instead, is given by:

sk fal ey 2 aeany 2 2
o= fic g0 A2 e~ Cerll)

3 maxl§, 0]
T " 5 max ¢i(x) .
" HE = e

n
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2.3 MULTIVARIATE SOBOLEV _APPROXIMATION

2.3.1 Sobolev spaces

For a more general approximation shceme, than that des-
cribed in the previous section, we need an introduction
to the Seholev spaces as well as to some useful results
from Functional Analysis. Therefore, in addition to what
has been said about the function space Hk(n) defined by
(1-4} where k is any nonnegative integer and @ any boun-
ded and open subset of the space B, for any integer p

with 1sp<«, we denote by:
k
H
p(n)

the following Sobolev space:

a’;<m=(u<x)=u<x»enpm;; Tt <T@, for all fof<k) . . . (2-92)

ie, H’;(n) is the space of functions which together with
their generalized derivatives of up to the ordex k-th

inclusive belong to the space Lp(n) » where

Vp
Lp(ﬂ)=(n(x):U[u(x)Jde] <a} L (2-93)
Q

For example, for p=2 and k=0, the space HI;(n) defined by
(2-92) coincides with the space L, () defined by {(1-2),
while for p=2 and any nonnegative integer k, the space

n’p‘(n) exactly coincides with the space u¥(q) defined by

{1-4}. We equip the space (2-92) with a norm:
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. S -
"u“HJ;;(ﬂ) RALLACT uers@) S (2ee

where, for any function ue Lp(n):
i P = 1 w0l Pax.
Lg(ﬂ) @

is the norm associated with the space LD(n) s Lspe.
Furthermore, corresponding to the norm (2-94), we define

the Eollqwing semi-norm:

P . P . (2n
LN |a;z=k"DU“"Lp<m' ueni@ e (2795)
i3

Then, it can easily be seen, from {2-94) combined with

(2-85) , that:

k
B =5 (wl®) L v ... (2-96)
Ho@ 4=0 Ho) ?

2,3.2 Sobolev Lemma

We recall here some important results from the imbedding
theory over the Sobolev spaces H);(n) which will be of
great value in what we are going to say in our analysis
hereafter. (An extensive analysis of that 1s given by

Smirnov: A course in higher mathematics, vol IV).

Suppose that we have a function u(x) which is defined
over the Sobolev space H}p((n), for any integers k21 and

1$p <= such that:
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pk > n L. (2-97)

where n denoctes the dimension of the space B Then, the

* Function ulx) is continuous over the closed domain &: ie,
ulx) ¢ ClR)
and the following inequality holds:
. {2-98)

““”C(ﬁ) =M !Pu»Hk(n)
P

where by:
o gy = max {ulx)]
XeR
we defils a norm over the continuous space C(f) and M is
some numerical constant which does not depend on the
function u{x). More generally, suppose that we have a

function ulx) EH;(G) and m is some natural number such

thav:
plk~m) > n . . {2-99}
Then, the function:
u(x) ¢ ™)
and the following inegquality holds:
(2-100)

fab o emial .
™M@ u‘; 2)

where, again, by:
o
full o= max [D%u(x) |
Y
fel=n
xefl
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we define a norm over the space C'{f) and M is some
numerical constant which does not depend on the function
u{x}. The ineguality (2-100), with the'inequality (2-99)
being a special case of the first, is the well-known in
Functional Analysis Sobolev lemmae and simply relates the
continuity of the function u(x) to the finite energy of
the derivatives. We note here, however, that the Sobolev
lemma is 'stated for star-shaped domains 9 and, since any
convex region is star-shaped with respect to any of its
points, it is also applicable for the several domains
considered in the practical applications of the Finite

Element Method.

2.3.3 The Quotient Space

Consider the following finite-dimensional subspace:

";ﬂ“” < Hl;(ﬂ)
of all the polynomials of degree less than or equal to
(k~1) defined over the domain g. We shall use the sub=-
space Pk_l(n) to define an equivalence relation in
H);(n) as follows: two elements u; and vy in H;;(sz) are
said to be equivalent modulo Pk_l(n) , if the difference

uy-up is din Py, (8) and we write:

u, = u, (mod. Proq (o))

It is an easy matter to verify that this is indeed an

eqguivalence relation, ic, it has the usual properties
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which characterize an equivalence relation: reflexivity,
symmetry and transitivity. Thus, the space H;(ﬂ) is
divided into & number of mutually disjeint equivalence
classes of functions, two functions being in the same
equivalel}ée class if and only if they are equivalent
modulo Pk_l(n). We denote the set of all such eguiva-

lence classes by:

X
Hp(n)/Pk_l(sz)

In order to answer the question of what is the structure
of these equivalence classes, let u be an element function
of the space H:(n). The equivalent class containing u

is by definition the set of all the elements v such that:

v s ulmod.py_, (2)),
that is,

ful= {viv=u(mod.?)  (a}}}

But, since:

(@) = (uivru=g, for some

sulmod By (@)1= {usv-ucP

g;qu(ﬂ)) = {yiy=utg, for same gcb, ._l(ﬂ)} = {\Hg:ge?k_‘(m]

we can write that:

(u) = {wtgsge®_ (@)} = wipy_ (@) < .. (2-101)

where the last notation is understood to signify the set

of all sums of u and elements of P\ _, ().

Thercfore, a new linear space is constructed which we
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denote by

k

HO(9)/Py ()
and call the quotient space of the space H‘;(n) with respect
to Pk—lm) . The manner in which the equivalence classes
are added and scalarly multiplied - so that we indeed

have a linear space - is as follows:

() (ol Dl = Dakwl
(11} «.fu] = [a.ul, for any scalar «
ox, by using the notation {2-101}:

@' B @)+ (e ) = (uk) +B_ @)

(i1) " a. (P, | (@) =qu+R, (9}, for any scalar e

Then, the origin in H;(ﬂ)/?k_l(ﬂ) is the equivalence class
O+ B {8) = P__|(R), and the negative of u ¥ Py, (2) is

(=u) + 2, _;(0).

2.3.4 The Quotient Norm

For any element:

- K
) = w+py, (2 Hp(ﬂ)/P @)

k-1

of the gquotient space, we define:

R =ha+Py (@ inf H\J:M(Hk

@) /oy ) BORLD o @ B@

< .. (2-102)

Then, formula (2-102) introduces a norm into the guotient

]
!
i1
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space H:m)/Pk-lm)' Indeed, we have:

f)

ac Hlwd+ 0ol =0ty (204 (ot (D0
a’;m)/pk ) /7y

= U (agm) +By_ @ 5 = inf Bl Fi
BRI/, ) veb () EN)

= inE lugmiukeh | = g k) + gl 6
teB, @ ;a’;(n) vter, () ()
inf upkdl .+ lugko'h . 3= dnf fuped +
s vt (a, H‘;m) w@ v, @ B

mE e =N Hru T . Thus, :
v, @ L@ v @ e,
ﬂ[u;]'i{uz]'lx‘; /e, @ S“[Hﬂ"ﬁg e (SZ)+ “[UzJJI}l-!)(n)/Pk—l @
forany Twl, [wd e 195(9)/»,{_1(0).
B e ol Som, oy 1o P @0 P -
e @ @/, @ U«p‘fn_lf(m" WU“H’;(m |
= |al. uury:fm I uwﬂﬁglm = fof A cu : ’,1: @ o - Therefore,




- Then, since the space Pk_l(ﬁ) is closed - it is a
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= |u|JI[u]HHJ: for any

llu‘[u]Ilﬂk B
(@B () L/, (@

tul e WSi)/p,_, (0 and any scalar <R

Finally, it remains to show that if:

[H %3 =0

X
HoGay /Ry, (8)

then, [ul is the zero element of the guotient space

H];(ﬂ)/l’k_l(ﬂ). Indeed, suppose that:

Bl = 0, or that:
HP(ﬂ)/Pk_I o

= 0, ... {2-103)

flu+P (o)t
k-1 a)

k
BL@ /) (

finite~dimensional space - (2-103) holds if and only

if there exists a sequence:

(un} € P Q)

k=1

such that:

futo (

' % + O, as n -+~ o
BO(E) /Py, (0}

yviiich implies that uePk_l(n) . and from which, in turn,
we have that: [ul = u+P, ,(2) =p, (9} =the zero ele~

wan* of the quotient space.
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2.3.5 Eguivalence of the Norm

Once the norm {2-102) has been introduced into the
quotient space H:(ﬂ)/?k_l(ﬂ) we shall next prove that
this norm is equivalent to the semi-norm (2-95) defined

over the space H};(m; ie, we sha:i prove that:

(2-104)

< ffull ¢ fuf PN
19;<m/pk_ @ u‘;m)

where C; is come numerical constant which does not depend
on the particular function u. The proof of the inequality
(2-104) is baseu nn the following two basic results which

can be found in C. Morrey [16]:

{A) Suppose that u ¢ H};(n). Then, there exists a unique
polyasomials
pix) € By (R}
such that:
D% (utp)dx = 0, for all |a| €k-1 . . . {2-105)
Q

and

{B} Let 9 be a bounded domain which satisfies a stxong
cone condition - ie, we say that @ satisfies a strong
cone condition {agmon {11} if its boundary 32 has a

finite open covering:

{01, 1si<n

and corresponding cones:
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(Ci}, lsicgn

with verticves at the origin, such that:

{(x+Cile @
for any x € on Oi—. Then, if h denoies Li-x diameter
of the domain @, we have:
duf ;0 sc L. (2-106)
H_(Q
P( )
for all functions usﬂ};(n) such that:
fp%udx= 0, for all |a|s k-1 ... (2-107)
k]

where C is some numerical constant which does not

depend on the function u.

Then, for a proof of the inequality (2-104), consider
the diameter h of the domain @ to be egual to one.
Thus, from (2-106) and for =1, we get:

lula;(m e ]ula’;m)
for all the functions ue ll {Q) such that (2-107) is
satisfied. From the defmltlcn now of the Hg - norm

together with (2-108}, we have:

k k-1
pony P o= 2 |u+u[pi = 5wl + luklP <
B s = uﬁ(m @

oy
<z wt|P, uﬂ’ ! fueul P, B
;" u’;m)

;O0sisk-1 . .. (2-108)

(2-109)
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But since vu ePk_l(ﬂ) ¢ We have:

lurol o

= |y
@) lH’;(n)’ for all ver, ,(9)

and, from (2-109}, we get:

Tusol® < e’ [uP

% , or
) i, Hp(fl)
Tuvol s ¢ lulak(n) ... (2-110)
P P
and, if we take the infimum over the space Pk—l(m
in {2-110), we obtain:
inf ool = fifull s ¢ |y
veR, (@ H g, m e

Finally, for the left-hand inequality in (2-104),

we have:

ool ) =lulp & f fud . =dCull
da i @ T H@/m_, @

which completes the proof.

The more general approximation scheme which will be des-
cribed hereafter, can briefly be outlined as follows:
With each function u in the Sobolev space Hl;(rz) we
associate a unigue interpolation dencted by Pu, where

P denotes some linear transformation with the sole assump

tion that it preserves all the polynomials of degree less
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than or equal to (k-1) -~ Note that a similar condition
is expressed by (2-65) for the case of Hermite interpo-
lation -, Then, we can show that the following approxi-
mation estimate holds:

topal,  schul , |, for my Osmsk ... @-uD
ia) )

where h denctes the diameter of the domain 9 and C is
some numerical constant which does not depend on the
domain . This new approach of the approximation problem
which is unavoidable since the variational problem is
posed on the Sobolev spaces H);(n) ;, is, of course, more
elegant from the mathematical point of view and it con-
tains the Lagrange and Hermite interpolation problems as

special cases.

2.3.6 Bramble and Hilbert Lemma

Suppose now that (I—i};(m)l denotes the (strong) dual space
of the space H’;(ﬂ). for any integers k21 and 1sp<e=,

and that F{w is a bounded linear functional on a’;(n); ie,

P ] < % by o P IS 3]

The smallest constant X for which the ineguality (2-112)
holds, we call the norm of the functional F(u); it is

given through the following formula:
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= inf K FL | K bully,  , for all neES (@) =
' ENT e

Fl
(o)

sp ... 2e113)
Fa B '
U 13

runctionals which annihilate polynomials of a certain
degree or less play an important role in this general
approximation problem, Thus, the following Lemma, which
was first introducaed by Bramble and Hilkert {51, consti-
tutes an effective tool for deriving approximation esti-

mates:

Lemma:

Suppose that:

k .
F o< (H
( p(ﬂ))
is a bounded linear functional on H};(Q); ie,
{Fia)] s IFy B o {2h11)
wEan ' Es e

and is such that:

F(y) = 0, for all uePk__l(n) « o . (2-115)
Then,
|F(w)| s ¢, gFn |l e (2-116)
m;m)) ' n’;(m

where C) is some numerical constant which does not depend

on the function u (it is the same constant as in {2-104))
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and the diameter h of the domain 2 is assumed to be equal

to one.

Proof

Indeed, from the ineguality (2-114) combined with (2-115),

we have:
fPtu | =[F (ko) | s usl
CHOIN )
] »
Thus,
|F )] £ 151 . dnf lued = 0E Lrai
w) v, (0 ww e /e, @
or,
|Fu | scp Pl el g
when' ase
since ILull . scy ful by the inequality
R () W)

{2-104) .

2.3.7 Multivariate Sobolev Interpolation

For any integer m with Osm<k, consider now the space
BO(a) ~ of which the space WS(s) 15 1 stbspace - and the
following linear transformation:

p:u:(n) - u;‘(n):u’;(n) su Pu(,Hg(n) Lo (zeu

which is swuch that:
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Pu=u, for all ue Pra a). voeo. (2-118)
ie, the mapping:
k m
PeL(H_{a); H_(
¢ b ) p( 13

defined by (2~117) and (2-118) leaves invariant all the

polynomials of degree less than or equal to (k-1).

Purthermore, for any element:
¢ e’
p( )
define the following linear functional:
F i ou-+ Flu) = G(u-Pu) e {2-129)

over the space H’;‘(n), O0sm< k, with its dual norm

defined by:

Gl =  sup S e {2-120)
[CNENE o PUTEN g
< H o (:
ey o p(sz) ()
Then, we can show that:
BEE o siel oo IRl C . f2-121)
HO(Q B(2
{ p( N { p( )
vhere, RE = I
. (9,
HI—PHL = f‘\? ““k e (2-122)
cH
ne p(ﬂ) Hp(ﬂ)
Indeed, from {2-120), we have:
{Glu-pu}| s IGY Jdu-Pul .. (2-123)
(HI;(H)) ' Hﬁ(

an¢, gince from (2-119):
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{Faai| = [G(u-Pu}{

from (2-123), we get:

[Flw |s kol Ju-pui o, or
(Hp(n)) Hp(n)
lu=Puall
LEG@l oy . o _
raf m B e .. (2-124)
W gt ' Ty
Upt Hy(®)

Therefore, by taking the supremum in both sides, of the

inequality (2-124), over the space H’;m), we have:

lu-pul o
H (2)
s)\:p ,11_._'?1“(“)’( ~ £ {G) ) sl\(xp TE
[
usHP(n) Hpm) P ueﬁp(fz) Hp(ﬂ)
or,
[k R T TPl

i
(Hp(n)) (Hp(n))

which completes the proof.

Next, a first bound for tue difference:

fu-pul Hg(ﬂ) , 0smsk

can easily be obtained and this is an immediate conse-
quence of the inequality (2~121) together with the Bramble
and Hilbert lemma and the following important result from
Frunctional Analysis (see Taylor [26] theor. 4.3-B, p.186):
Let u be an element of the space Hg(n) ~ actually it ap~

plies to any normed linear space - which is such that
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u # 0. Then, there exists an elemeat:

G e mMan'
(301
such that:

Gl =1 and lul = G(u)

m f m
(Hpm)) D

or, as a consequence, that:

bl sup  {6(w|
T e
P
or
. G(u) | -
\lullﬁm(m = f“up _IJGII - ; < . . (2-125)
P Ge(Hp(n)) (np(n))

Thus, from the lemma of Bramble and Hilbert combined

together with the inequality (2-121}, we get:

{r{u)| = Hel LCp. =Pl . |ul
W)y’ v ,H’;m)

i
ZI
4
or, since by definition F(u) = G{u-Pu): l

Glu-Pu) | sHGY LCyelI-Ph . fu
! W 1 v il

p(“)

Therefore,

IEIEE I A E = T
Hp

EGTH
(n@m))' (a)

and by taking the supremum of this inequality over the
dual space (Hgmﬂ' combined with the result (2-125). we

obtain:
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fu-pul ER S WA | , for my Osmsk c. . {2-128)
) )
P P

where the constant C; is the &. as in (2-104) and the

norm of the operator (I-P) is given by the formula (2-122).

Following the same steps, as for the pointwise approxi-
mation of the previous section, we shall give the final

errox bound for the difference:

ilu--l’ullm , Osmsk
o

under the general notion of equivalent domains defined
as follows: At first, with any domain 2 in R we asso-
ciate the following two geometrical parameters:
h = diameter of the domain @
e v . (2-127)
p = sup {diameter of the spheres contained in @}
and let us suppose that there exists a constant a such

that the following inequality is satisfied:
h < ap ... (2-128)

in analogy to that given by (2-70). Next, we choose,
once and for all, a domain:

&
and with it we associate, in a guite analogous way, the
two geometrical parameters of (2~127). Then, we define

the following affine transformation:

%= R&+r, Re LR, xeR” Lo (2-129)
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mapping the domain f into the domain & and is such that

the image of i under this transformation is exactly the
domain @. Then, we say that the domains o and § are
eqguivalent under the mapping (2-129) and the following
two important results hold {see P.G. Ciarlet and

P.2. Raviart [71):

1. With every function u{x} defined over @, we associate

a function ©{X) defined over fi by letting:

(%) = w(R&+r), for every % ¢ @ ... {2-130)
Then, the mapping:
u e G
is an isomorphism between the spaces rlg(ﬂ) and H:(fi)
for any integer m such that O<msk and any integer

lsp<e,

2. With every mapping:

k m
Pe L(llp(ﬂ); Hpm))

we associate a mapping:

A X, x ma
Pe L(upm) i Hp(n))
by letting: i
Bl = Fu,: for each ue H:(ﬂ) o eow {2-13D)

Then, if the mapping P leaves all the polynomials of

degree less than or equal to (k-1) invariant; ie,

Pu = u, for all UEPk_l(ﬂ)

from (2-131), we have that:
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B4 = Pu = 4, for all ﬁst_l(ﬁ)
which means that also the mapping P leaves invariant all

the polynomials of degree less than or egual to {k-1}.

By using next the inequality (from Fréchet differentiation):

fuf

we introduce a new norm over the space H’;(n) which is

%G| sifatdl € 5 D], Ix =k .. . (2-132)
=k Mptetint

equivalent to the usual norm defined by the formula (2-94).
This time, however, the Fréchet dexivatives of the func-
tion u, instead of the usual composite partial derivatives,
are involved. Indeed, by using the HOlder's inequality,
we can write:

va 1
Aofaa <0 5 oKl potue P
; ffetc P Ty

[uf=k u
<o . {2-133)
for any integers p >l and g >1 such that:
Vp + Yq =L
Therefore, the right-hand inequality in (2-132) can be

written as:

19%aan® s x, | ; [DHu(xs | P L. (2-139)
=k

where the constant k; is:

¢ p/q
ke st e 9 C . 2e138)
wi=
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Purthexmore, from the left-hand inequality in (2-132),
we get:

IpTuia) [P < 1050 ®,

: |p%u | P s ki oRaen?
=k

k2
with k; being equal to the number of all possible combi-

nations of the partial derivatives for which we always

have:
n
- -t
i=1
that is,
X = af ... (2-136)
Thus,
k7 pfeis 1P 5 woatn® ... (2-13D
frl=x

where ky = 1/k] and k] is given by (2-136).

ing now the inegualities (2-134) and (2-137), we obtain:

Xy ¢ |50 |P s ife0iP ek, ¢ |l |P L. . (2138
jef=% |x|=k

and the following new norm and semi-norm can be intro~

auced into the space H’;(m:

.
pat P =
W@ i

0o W

i B
1otatan ... (2-139)
. Lota)

and
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[ETREO Tt L. (2-140)
u’;(n) Lyte)

To prove that (2-139} is equivalent to the usual norm
{2-94) , we have: Integrating the double ineguality

(2-133) over the given domain 8, we get:

g |t [Pax < (1 a0 Pax sk £ 1 |0%u(e | Pax
Hrlsk @ Qx|=x
Thus,
.
N P T PR M L) L. (2-1a1
s () £SO 5 (2)
and
® *p ®
PR T AP T L (2-142)
5 (o) A% (a) (a)

which means, by definition, that the two norms are
equivalent, where the constants k; and k; are given by
{2-136) and (2-135) respectively. We conclude this sub-
section by giving the final theorem which gives an upper
bound for the error between any Function ue H’;(n) and

its approximation Pu e H:(ﬂ) , for any Osmsk:

THEQREM IT .

Let a function:
K
ueﬂp(ﬂ), kzl, lgp<e

be given and suppose that the linear mapping:

®
PeLEpm); H;(ﬂ)), Osmsk
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is such that:
Pu = u, for all ne Pkﬂ(fz).
Then, for any bounded and open subset @ of Rn, for which
the following condition:
h < ap

is satisfied, we have:

Ju-Pat . ° s Ch

P

k-m
[ul k

. , for all Osmsk e (2-143)
(9) H (@)

where the numerical constant C is the same for all the
rguivalent domains Q to 2 and is computed, once and for

all, for a domain § which is eguivalent to .
PROOF

Indeed, since:

Pucx e 1R

is ‘a linear operator, from (2-130), we have:

o316z, ., ed) =0lu(RReT)(REY Re2, ... RET)
for any vector (g1,e2,....ghhe(’, ter®, 12153
Thus,

1070 s yrid i airken
or, integrating over {:
suodacnPak = P pyoduirien Pak L. a-1ad)
@ Q
Then, since for every xef, x = Rk+r with Xed, ReL(KD)

and r ¢ B, we have that:
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dx=|J|ak, where the Jacobian of the transformation: |J] = |det(R)|

and, from (2-144), we get:

s o .
¢ ek < Plaet (| 0 utorPax
13
or

s ||m|j!aet(m1“/?1u|*j
H @ EX0)

By combining this inequality with that of (2-141), we

get:

k, N
B s iR aetm] P
we ! l‘ Ingm)

where the constants k; and kp are given by (2-136) and

{2-135) respectively. Followin¢ the same argument as

above, once more, from:

Putae! 82,80 = PGE (o) 1R RN, R

we get:

10%u0al s IR H %@ (e

and integrating over 9:

iatonPax s 1R IR o (xe) W Pax =

aQ Q

=i P e @] no%miPs. Thus,
Q@

Fal*s < iR jaeem | YR8,
H';(SI) J @

%, 14 .
EPREN T e TR T,
(@) g (@)

{2-145)

{2~146)

{2-147)
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Suppose now that the mapping R defined by (2~129) is

such that:
B30 R ... (2-148)

Then, from (2-147), we have:

m X. m -1 Sre
relfy = 3 u® s gRlee@| IRIPGE <
e g we 3=0 L)

X. - m
s D aem iE™® 5 | |"°j )
1 Je0 HI()
Therefore,
%, CLmoe 148
uuu:m S JER 1|1“‘P||u1§n i - (2-149)
iy (@)
Next, from (2-149), we get:
k, VP VP imoaon
topuh s @D laes@ | URTIN G ... (2-150)
LACIAS BN
and, since from inequality (2-126):
eFal s ¢y na-Bg 16
@ H @)
the inequality (2-150) can be written as:
VP Ve o umos (2~151)
Hu-pul s 65 l@etm] o aR By,
W N t L)
il 1
Furthermore, from (2-146) and for j =k, we get:
N X, -1/p
18 g ¢ GONRFlaem| (vl ... (2-152)
wH ) .
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and, from (2-151} combined with (2-152), we obtain:

k, 1/P VR m . Kk
llu—PunHm(m < {W’ jaet@®] R Clﬂl—ﬂli.{!—(—l—)."RH .
P
-1/p
Sjeet®)| fu ; or
)
P
prid/p N
TuPu) < cu}’—}) nkln"hm|kux~m£1u\ .. . (2-153)
e 1 war
P p
Then, sinces:
LM k
RSBl ana s B
e o

from (2-153), we have:

x
by
fu-Py £ €y , for all Osgmsk e, {27154
NCRRE )

where:

{pr1}/p pm
Yp) tPTHI/P R .. (2-155)

c=Q (H B_k“I 1

Finally, from (2-154) together with {2-128), we obtain:

k-m

[ S ] , for 21l Osmsk
ﬂp(n) H);(n)

where the numerical constant C = aC and C is given by
{2-155). Purthermore, C; is the constant involved in
the ineguality {2-116), k; and ky are given by (2-136)
and (2-133) respectively and according to the formula

{2-122):
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V-8 0
. H_{%)
HI-Pliy = sup —
o Koa K a
uek!p(ﬂ) Hp(ﬂ)

2.4 PAPPROXIMATION BY COt 'OLUTION

There still remains one inportant possibility which has
to be examined as far as the approximation problem is
concerned, viz: what happens if the function u (le, the
exact solution of the problem), which belongs to the
Sobolev space H;;(n) » k21, 1sp<w, does not satisfy the
pechssary continulty condivions for its interpolating

polynomial to be deterlned?

in order to cope with this new situation a natural remedy
arises from the ability to smooth (or molify} the given

funcgtion u sufficiently before we apply, say, the Hermite
approximation technigue of the section 2.2. In this case,
howaver, we have to distinguish between the following two

basic types of exror:

a. The error committed in replacing the given function

u by its smoothed version, always denoted by Ju, and

. The error committed in replacing the (smooth) Ffunction
Ju by its interpolating polynomial, generally denoted

by Pu.
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Then, the overall erxor between the function u and its
interpolate Pu, by using the triangle ineguality, is
given by:

fu-Pull £ fu-Juf + §Ju-Pui <+ . {(2-156)

in some norm f.4. Furthermove, if thase two types of
error are of the same order of accuracy, then, the func-
tion Pu will give an accurate approximation to u, even
when the .function u is not continuous. In this subsection,

however, we will mainly be concerned with the error in:

fta - Jut
since the second:
1Ju-Puj
can be obtained by a straightforward application of the

theorems I and II.

2.4.1 The Space H’;(R“)

Let:
(&
denote the class of all real functions which are infinitely
differentiable over the entire Euclidean space Rn, and
L)
CD ("}
be a subset of c®(R") consisting of those functions which
have a compact support contained in R Then, the comple-
tion of the space c:(Rn) wvier the norm:

frug?

LRy = Lfutx)Pax coa. (22570
»

R




'
'
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defines the space Lp(Rn) . Purthermore, for any nonnegative
integer k, the completion of the space C';(Rn) under the

norm:

p )
fulf = £ D™ ul n + .+ {2-158)
WO fafex (™)
with “D"‘ul]ip(Rn) defined as in (2-157), defines the

k
ace H R,
space Hy (, )

2.4.2 The Convolution OUperator

In orxder to smooth or molify a given function ue H:(Rn)

we make use of the technigue of convolving the given
function with a second sufficiently differentiable function.
In general, by definition, if u{x) and v(x) are two func-~
tions in Lp(Rn) . the convolution of u and u, denoted by
uxv, also belongs to the space Lp(Rn) and is defined

througl. the following integral:
wu{x} = I{“u(x—y)t.'(y)cfly = Lu(x-yldy = veu(x) « . (2-159)

where, in the second integral above, we have replaced,

for a fixed x, the variable y by x~y. Thus, for a func-

tion uel{;(Rn) and a sufficiently differentiable function:
I(x) e Cg(RY)

their gonv "ution is defined - by virtue of the definition

formula (2-159) = by:

Ju = wkI(x) = fule-y) Fly)ay - . . {2-160)
R
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The most important result about the convoluticn operator
(2~160) is that, under certain conditions imposed on the
smoothing funchion J(x), the function Ju behaves very
much like the function u - in the sense of the approxi-
mation Ju is, indeed, very close to u ~ but it is much
smoother than u, This last observaticn is a consequence

of the fact that, for any integer o:

Py = D*(ud (%)) = wDT(x)
and, since J(x) eC‘;(Rn) is infinitel ' differentiable,

the derivative of Ju always exist.

2.4.3 »npplication to the Approximation Problem

The problem of approximation by convolution having been
considered by G. Strang in onz of his published pavers
on approximation (see [23]) in a somewhat different way
by using Fourier transforms, we should like to tmke the
opportunity hera, of giving, whst we believe it to be,
a more elegant mathematical treatment of this same
problem by using the various results of the previous

section over the Sobolev spaces.

Thus, consider an arbitraxy function ucl{;;(nn) and let
T (%) ec:(Rn) be a smoothing function which has compact
support in some set K ~ subset of K - and satisfies the

following condition:

[T txax = 1 ... (2-161)
R
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Then, for any h s 0, we define the function:

EREIIES S IO .
It is obvious, from (2~161} and {2-162}, that by a
change of variables, y = x/h,the function Jh(x) defined
by (2-162) also satisfies the conditioca (2-161); ie,

i 1) n - -
!{nJh(x)dx—h I.{fnﬂ‘(x/h)dx—h é\h J(y)dy—énJ(y)dy—l

Next, by using the Hdlder inequality and the Fubini

theorem, we prove the following basic rasult:
4. e nwlel
| D Jhuan (g 2C K | Iiuile(Rn) , for all Os [af sk .

where the function uc H);(R“) , the function Jyu is given

by the convolution formula:
g = h'“énu(xw)s(y/h)ay e

and the numexical constant C does not depend on the
function u and the parameter h. Indeed, from {2-164),
we have:
pégpu = n T alx-y) DMT (y/n) Ay
)
or

|D°‘Jhu] < h""!{nl wlx=y) (0%J {y/n)) VPI D% (y/1) | )/qdy

for any intogers p> L and ¢ > 1 such thatb:

p+ 1g =1
Then, by applying the HOlder's inequality, we get:

{2-162)

{2~163)

(2-164)




2
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Then, for any h >0, we define the function:

3 (x) = 07T (x/h) Lo . (2-162)

It is ohvious, from {2-161) and (2-162}, that by a
change of variables, y = x/h,the function Jh(x) defined

by (2-162) alsc satisfies the condition {2-161); ie,

L3, (0 ax=h"" ¢ I (x/hdx =h " 0T (y)dy = [T (y)dy =1
FS % i / oo y)dy }{n y}dy

Next, by using the Hdlder inequality and the Fubini

theorem, we prove the follewing basic result:

1t DO, (Rn)sch' |uuuL oy + for all Osfal sk Loe - (2-163)
P )

where the function u < H’;(Rn) , the function Jyu is given

by the convolution formula:

. u = h " ulx~y)J{y/h)dy ... (2-164)
h R

and the numerical crastant ¢ does not depend on the
function u and the parameter h. Indeed, from (2-164),
we have:
P47, u = h™™ [ u(x-y)p*I (y/h)ay
h RO
or

1085 £ 571 [Geey) (07 (y/m)) VR [ ps gy | M ey
for any integers p> 1 and ¢> 1 such that:

/p + /g = 1

Then, by applying the Holder's inequality, we get:
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/P 1/q
10%, uf sh™ s Julep) [BID°T (oM fay) (S 1D%T v/ |ay)
D 3
or
1%, ul® <P s [u(x=v) 1T10% (w/mlap)- (1% v/ | )p/q
nal A v ¥ v, dY~Rn v/h) | &)
and, integrating the above inequality over R®, we obtain:
o P s Prp® &, B/
S 1% ulPaxs £ 0TPCC Tubey) PI (/B e O [0 o/ [ay) Jex
<2 m; R R

or, by using the Fubini theorem, that:

P —n; 1tp/g
I D%T, ul sh TP (s Julx-y) [Pax) (s 10% (y/h {ay)
h LP<R1") RO RO
since:
P
5 1%, u|Pax = K%, ul
R h h LP(RD)
Therefors,
0%, e (R,,)sh‘“‘nwtg (Rn)-(é‘]D"J(y/h)ldy)p L. (2-165)
P P F

Then, since:
0% ty/m| = ntel |o%cg/m |
from (2-165), ve have:

1%, ol b s g s enleli
i ‘men) ., A 1, )

Thus,

s
DTl ey % @ty
P P

2 bt et i e
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whex. “Jy{y/b)] £C is an upper bound for the function
n%3. . mpletes the proof for the inequality (2-163).
We sla.l use this result in order to obtain an estimake
for the error between the function u and its smoothed

version Ju, constructed by convolution.

Ancther technical result which will be of great importance
in the séquel, comes from a modification of the Bramble
and Hilbert lemma to cope with the situation when the
giameter of the domain g of R" is equal to h»> O and not
equal to one as was previously assumed. Therefore:
Suppose that: i

P e uan’

is a bounded linear functional on H‘;(m; ie,

[Flu){ = “F"(ngtn)) ’“u“Hl;(ﬂ) ... {2-186)
and sieh that:
F(u) =0, for all veP,_, (2}
Then,
Flw] scy 1wy u} < .. (2-16T)

N
3 i k
(HP(O)) Hp(ﬂ)

where, again, h denotes the diameter of the domain @

and C; is some numerical constant which does not depend
on the function u and the parameter h. For the proof of
the inequality (2-167) it makes sense to introduce into

the space Hg(ﬁ) the following norm:
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k P
ity = r a*Plelt,
H_(£)  i=0 HO (%
e (8
which is equivalent to the usual norm Gefined by the
formula (2-%4). As a result, the ineguality (2-104)

is written as:

s Ifull {2-168)

k k
nly| < b jul ..
@) w@ /e, @ @

which in turn gives:

|F@) | =|P(urv) | <IEH ol <
wsan' dm

< gzl inf Mud =
o

vep, (@) b

et

k
= liFil M rud 5 CyliF K |ul B
(H’;mn H’;mvpk_l @ m’; @) x-ﬂ;(m

where in the last inecnality above, we have used the right-

hand ineguality of {2-168).

We congider now a decomposition of ... space R inte hypexr-

cubes 2y with sides of length equal to h; ie,

with @, n nj =f or an edge of 2, for any two successive

indices i#3J. With any such hypercube 2; and any peint:

X ey
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we associate the following set of points:

i
vy = (nj:|x—y| sh, ysnj), XeQ, - . . (2-169)

and for the smoothing function:
e
Jh(x) e Cu iR
defined by the formula (2-162), we make the following

two basic. assumptions:

i. For any point xe @y, the function Jh(x) has compact

support contained in u.)}l\, and

ii. Jh(x) leaves invariant all the polynomials of degree

less than or equal to (k-1}; ie,

i

Tpu o=, for ais usz_l(mh)
where by Pk—l(mki:) we define the space of all the
polyncmials of degree less than or equal to (k-1)

restricted over the subdomain ug.

Then, under these assumptions and by following a process
analogous to that of the previous section for Sobolev
interpolation, we shall prove the result:

i a"(;rhu-u)n sC hk'}ml

o | s w £2-190)
B (R )

for all the integers a such that Ox [a| sk, vhere C is
some numerical constant which does not depend on the
function u and the parameter h. Indeed, for the proof

of the ineguality (2-170}, for any xe ay and any element:
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. E
T e (Lp(mh))
we define the following linear functional:
Hk i, )
F o H () 2w Flu) =20 (Gumw) o for all 0 fafs k C .. (2-171)

over the space Lp(mi:), and with its dual norm given by

the following fo~mula:

|2 (0% (7, umu) |

™ ()T 1D (3ol
P e p(wh) h Lp("’é)
Thus,
[7(0% (3 u-w)) | s HiTh el b Du(Jhu—u)HLp(m%) .. {2-172)
Then, since from (2-171):
[P ] = |70 @u-w|, uga’;(mg)

from (2~172), we get:

|7 (a) |l iy . 1% (T -l iy, or
thy (050 ) [i L ed)

1% (g, wmw (wd)

F{(u}
|uu'_|—k — =Tl (Lp(mﬁ))*“mTp— L {2-173)
Hp(wﬁ) 4 Hp"mh)

and by taking the supremum in both sides of {2-173) over

the space H:(ml_i‘) , we cbtain:

0% @ Wl s

" L (wl)

P nuf(:) W i) SR =
ucﬂ’;(mli;) Hp(g poo uzl-]];(m?{) zﬂp‘(mg)




or, by the definition of the dual norm over the dual space:

o
D" (3 ual (u%)
sup e e (2-174)

I .
A Heh

s{rl
.

i)

iy
oty

By using now the inequality {2-163), we get:

& . R a
0% 3, uubl i 1ol (mé)'HID ull, wh
SRy B s sup T =
¢ K (il 3 i
“‘H,;\“’%) Hp(mh) ueH};(mh) F;("‘h)
~|ol ® # )
o™ (m%)ﬂlb ully, sy sl
< sup
1% () Mkl ke
uely Ph ot R
senkl vy s anlel
for some numerical constant C, since by definition:
0%l gy € Nml g
b h H p(mb)
Therefors, from the inequality (2-174), we obtain:
Wl . s iT i el ol gor alloslelsk. . . . (2-175)
ey ) '

Next, we need the following result from Functional Ana-
lysis, which is nothing more than the formula {2-125)
considered in the previous section:

10% 4@, ua |20 G | (2-176)
AT IR e - revrer SIS
o e T )

Then, from the Bramble and Hilbert lemma combined with
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the inequality (2~175), we get:

EIOTRLR] g s cyiFl ¥l
. ; iy 5
R TR o S ()

k-lel
< ¢l T
‘Lp(“‘rj{)) lHk(h%“)

P
or, from (2-171):
20”0} s

k-lel
wohy Py
P n’ H’;(uh)

Thus,

and, combined with (2-176):

@
ko) (Jhu-u))lsc hk.'l“l bl

sup y N
T
Lplu) s

1D (3, u-a)
e (L () !

5, =
Lp(wh)
for all the integers o such that O< |af £k, fTherefore, for
any point x ¢ @ we have so far proved that:

WD (Tl (4 s C werlal |y ¢ S

ph Hp(uh)

The estimate (2~170) now comes from the local estimate
{2-177) upon swiming up for all the hypercubes:

o, < X such that y g = K.
i 1

Theraefore,
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x-{al
HD* (T, u-w I iy ¢ Ch |u , or
h L_(ed) ko3
8y ph 2y Hp(mh)
k~|af ]
0% (3, u-w) i ay SCh {ul for all Os |a sk
h By (R H’;(Rn)'

which complutes the proof for the inequality (2~170).

Finally, ‘ere “nllowinyg theorem gives an estimate for the
error betwecr an arbitrary function ueH‘;(n) and its

smoothed version Jhu constructed by convolution:

THEOREM IIT

Let u be any function from the space H!;(n), where 9 is
any bounded and open subget of the Euclidean space w
and Jhu is its smoothed version which belongs to the

space C:(R“) and satisfies the conditions (i) and (ii)

stated above. Then,

k-m
i1, u-ul s ¢ h* ] v . (2-078)
T u;(n)

for any integer O smsg k, where C is some numerical
constant which does not depend on the function w and the
parameter h.

PROOF

Indeed, from (2-170) and any integer Oszmsk, we have:
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P plk~la] )| 4 P
o A0* (T, u~udl s % Ch { vl
Jalsm h e H‘;(Rn)

and, by assuming that 0 <hs 1, we get:

IIJhu-ullpn <c nPk-lah) |u]pk , or
(R HC (R}
P P
“3h“~“‘\ mop 5 C R g K, n e (2.7
B0 (R B (R
p( } p( )
Next, since by definition:
I, w-ul s g, u-ull
h m h Tn
HD (0 HO(R
p( } p( )
for any bownded domain ¢ ¢ R', from (2-179), we have:
ey
7, -l $C Nyl . for all Osmsk .. . (2-180)
P Hhe) )

It remains now to find an upper bound for the semi-norm
|u[H;é(Rn> which. is defined over the entire space R in terms
of the game quantity, but defined this time only over the
subdomain g« R®. According to Calderon's theorem (Agmon

1 {11, p. 171} there exists a transformation & of the space

) H);(n) into the space H’;(R") such that, for any function

uelig(n) . the restriction of tu to p coincides with u, ie,

ew = u, for all u ¢ H‘;(n)

and, therefore, there exists a constant C such that:
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Bewl o o€ Ol for all e i@ ... (2-181)
p(R } Hp (g
Nevertheless, the Calderon's inequality (2-181) involves
the full norm of the fungtion rather than the semi-norm
which we actually need. However, following G. Strang
[23] we can replace the extension operator e above by the
following:
o= E(I_nk—'l) + E“k-—-l . voe (2-182)
where E is the operntor which extends a polynomial defined
on 8 to its equivalest polynomial defined on R® and L
is the projection operator of the space Hg(n) onto the
space thl(ﬁ) of all the polynomials of degree less than
or equal to (k-1) defined over @.
Then, from (2-182), we get:
{2-183)

= |e(T-ny Ju+El =le(z-n

iﬁku[ x ul ” Yul .
15 ~1
B ) H);(Rn) H‘;(Rn)

since the semi-norm is always zero for polynomials of
degree less than k. Thus, from (2-183) combined with

(2~181) , we obtain:
e u] < Be(I-T _ )l < Clur_ ull s¢lu
ity B NES e ' JH’;m)

where in the last inequality we have used the approxima-
tion reeult (2-143) of the theorem II, for m=k.
Finally, if we combine this result with the inequality
(2-179) ; we obtain:

Il s ™yl for all Osmsk
HP (e

H
p(ﬂ) '
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which completes the proof.

2.4.4 Some Useful Remarks

If we apply the two basic results (2-143) and (2-178)

of Theorems II and III, respectively, over any simplex:

gv

v, wel

of a partition A ~ satisfying the regularity condition

(2-128) - of the domein £ and by taking:

G=8; a=5, ver

we have:
lo-Puf s¢ hk_m1u| s, for all Osmsk, vel ... (2-184)
WEy v e
PR
and
k-m, .
uu—ahuu{“_v sChy || K my, ¢+ fOr 8Ll Osmsk, vel « . . (2~185)
xp(sn) Ho{

where P is the following linear mapping:

P H];(En) - I-l‘;(g;), for all Osmsk, vel

b ulE, vez
such that:

Pu = u, for all ve Pk—-l (5:) rvel
and Jh denotes the swoothing operator such that Jhu is

the smoothed version of any functiom
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k 5v .
uer(sn), vel.

The numerical constant ¢, again, does not depend on u

and b, vel.

Next, what is naturally expected and indeed it turns out
that this is the case, is the fact that the more general
approsimation schemes analyzed at the present and previous
sections .over the Sobolev spaces contain that of the
Hermite approximation as a special case. For, if we con~-

sider any simplex:

gv

nt vel

of the partition and any function:
k gv
uer(Sn). vel
such that the Hermite interpolating conditions (2-52) are
satisfied and, furthermore, that:
A < k-n/p . . . (2-186)
then, by vitue of the Sobolev imbedding theorem (2-99),
the ineguality (2-186} guarantees that:
k& Ay
HP(S;) e @), ver
and, therefore, the Hermite interpolating polynomial
w ) () is indeed well defined. However, since the
derivatives of the function:
ko av
u EHP(SH), vel

are unlikely to exist in the pointwise sense.and the

Taylor expansion for u is, therefore, in general meaningless,
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we have got to make use of the results from the Functional
Analysis as well as that of the Lemmn of Bramble and Hilbert

in order to obtain the following approximation estimate:

futd o 1 < CH Mg , for all Osmsk, vel

» D HED
... {2-187

for any function ne ”!;(5‘;;) , v eI, where the numerical

constant ¢ does not deperd on the particular function u

and the geometrical parameter hv' Whenever the inequality

(2-186} above, is not satisfied, instead, the interpolating

polynomial ulk™

1 X,z
. }(x) for any Function uer(S;:) , velI, does

not exist and we are faced with the problem, first of smooth-
ing the function u considerably and then applying to the
smoothed function T the pointwise approximation scheme

described in the section 2.2.

2.5 MULTIVARIATE APPROXIMATION OVER CURVED ELEMENTS

For sake of gompleteness in our analysis of the approxima-
tion problem, we shall simply outline in this section an
approximation technigue over gurved finite elements of
isoparametric type which is a generalization of the case
considered earlier, in paragraph 2.1.4, over the straight
quadrilateral finite element in the plane. An extensive
analysis of this technique, f£rom which this brief presen-
tation is taken, is given by P.G. Ciarlet and P.A. Raviart

(sce (81 or [3] pp 409-474) where a number of applications
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are also described to several types of elements which are

extremely useful from the practical peint of view.

Therefore, suppose that the domain 9 is a bounded and
open subset of the space R™ whose boundary 2f now is cur-
ved - ie, the closed domain @ = @ + 3R is no more a poly-
hedron as was assumed Lo be the case in our previous
analysis -~ and an elliptic boundary-value problem is
described over f. Then, again, its solution u can always
be approximated by the Finite Element Method: the domain
R is replaced by a finite union of finite elements which
for simplicity are assumed to be of simplicial type, the
case for hypercubic being similar under only minor
alterations being made on the several assumptions. Then,
it is obvious that for theose simplices which are situated
in the interior of the domain and have no point in common
with the boundary 2% are assumed to have plane faces,
whereas for those which share some points with the boun-

dary 3% are generally assumed t0 be curved.

Let us, once more, consider a partition:

L (EY
a: (S}, vel
of the domain @ into n-simplices (being straight in the
interjor and curved near the boundary) and let:

E;“, ver
be any simplex of the partition. With the simplex §), veI,

we associate its discrete set of interpolating points:

o™ R o Cy e




Sy -1, vel, k21

which contains exactly, as before,

k+n-1

N =<

k-1
members. Then. once and for all, with every simplex
8%, ve I, of the partition 4, we associate a straight refe-
n .
rence simplex §n which is related to the simplices 53,

v e I, through the following mapping:

Fr ke én > B (R) e R ... (2-188)
with:
FR =m0, F LR E, ()
such that:
55 =Bl ver

ie, the simplex §8°, ve¢ I, is the image of the reference
n

81 plex §n under the mapping (2~188) and, in particular:

Fo(8;) = o}, 1sisN, vel
where ai 5§nlk~l) and én (x-1) denotes the correspending
discrete set of interpolating points which is attached
to the reference simplex én' There are two possibilities
as far as the mapping {2-188) is concerned: in the first,
the mapping is linear and the simplex §:, vel, is straight.
This situation corresponds to the approximation problem
considered in the whole of our previous discussion. In
the second, the mapping Fv is not linear and in that case

the simplex 8., v eI, is curved.
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With every function:
e 8, > R

we asgociate a function:

defined by:
wixy = fioF™ (%), for all xe 5;, vel
and vice versa; ie, with every function:

ur 8° + R, vel
n
we assoclate a function:

d: 5 > =R
n

defiined by:
(k) = woF(X), for all ﬁeén.

By using now the same notation as before together with
the fact that in the iscparametric technigue one always
uses the same polynomials to express the coordinate trans-
formation between the simplices én and 8., veI, (which
is carried out through the mapping (2-188)) as well as
the interpolating function over each simplex 5:, vel,

the mapping ¥, for the special ‘cases corresponding to the
Lagrange and Hermite intsrpolation problems, respectively,

are given as follows:
{i) For the Lagrange problem:

N
B, o= iilwi(x)u‘;, lsisN, vel S (2m18w
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where &i(i), 1<i<WN, are the basis functions over
the reference (straight) n-simplex én and they may
always be expressed in terms of the barycentric co-
orainates of an arbitrary point % ¢ § with respect
to the {(n+l) vertices &i, 1<isnt+tl, of é“. Thus,
obviously:

“‘i“;j’ =854 lsidsn

whexre ;j € §n(k—1) s lsjsen,

(i1} For the Hermite problem:

o N v N v,
Foe r G r rd B P Gee
IR S B O 1o g e 000

.« . (2-190)

where the basis functions:

B0, 1siswg

B, (R, LeisN, lsush, 1sbsvy
satisfy the conditions (2-54), or, equivalently,
they are uniquely determined through the conditions

(2-54), and:

V.0 20
ai' =Fv(mi),lsian,vsI
and
R Vel A n
EilL = F\)(mi }gn, 1= 151\1”, Llsusga, l.sv.svi, vel.

Next, the following bound serves as a first measure forx
the difference between an arbitrary function u defined

over any simolex §;;, v eI, of the partition 4 and its
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interpolating polynomial generally denoted by Pu:

i/p - i
s max|a B0 P o swpliorloon

{upuyl
) ie1{2,m)

&Y

v
P o e %8

i k
2 I
Tk 3 o] .
N s P o L=V
min IJF“ | 2=1 Hp(Sn)

e

2 -1 m -1
APTE, G T DT

v

3 L3 3
. sl N0 GON 2L 0 R, veT L L L (2-19D)
JeL(d g & co
n

where P denctes the following mapping between the Sobolev

K, 5 v =y
spaces HP(S:" ¢, vel, and Hp(sn) cvel:

k zv m =y
P usHP(sn) >Puer(Sn), vel
for some integer m with Osmsk and is such that:
= F v
Pu = u, for all uEPk-l(sn)’ vel

Moreover, |Jp (%) denotes the Jacobian matrix of the
mapping T, defined as in {2-188) at the particular point
fe én’ I{e,m) and L(s,k) are the following sets of points
respectively:

mo m
Tl = Ldm (g daees iy eNm:vi Lo, iz, dsesn

and

=k}, lersk

k
TK = =3y 30 i) N 32 =4,

and C is gome numerical constant which does not depend
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on the function u and the geometry of the simplex 57, veI.
Again, for the special cases of the Lagrange and Hermite

interpolation problems and in accordance with the formulae
(2~189) and (2-190), the corresponding interpolating poly-

nomials are given, respectively, by the following functions:
N vy
Pu= 1 ufa)é;(x), vel
A

N N,y

O v,0y,9.0 ! Vel vl
Pu = I u(mj ”’i {(x) + 1 T [Du(ui' )13
i=1 } i=1op=l

v, 1
30 Jbyg (%) + .0
N v
AoV ehy Yok vk
et o2 E e u(ui’ )~;“ j“’iz (), vel
i=1 g=1
where,

a;'“ =Fv(a‘i‘), LsisNg, lsugi, vel.

All that is needed now, in order tc determine the asymp-
totic order of convergence between the Ffunctions
u sH:(ég) , veI, and Pue H?(E;:) , veI, for some integer
m such that Osmsk, is to f£ind an upper bound for the
varioug derivatives of the mapping Fv - as well as its
inverse F;l ~ in (2-191) under the assumption that F_ is
a ¢®-diffeomorphism over the simplex By, vel, (ie, the
mappings ¥ and E:‘ are of class Ck(§l‘;) , vel) as well
as an upper bound for the quantity:

max {Ip, (0 ]/ min | Ip (3]

XeS Xe8
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This problem, however, is considerably simplified by

introducing the following .auxiliary linear mapping:

[
E

. * . n
Foi xe -+ P {x) eR ... {2-192)
v v
where:

x P o PN

FR = BT R, E R
such that, if we assume that the first (n+l) points
aj, 1si2ntl, of the set §, (k-1), v ¢ I, constitute the
{n+l) vertices of the simplex Er"‘, veI, we always have:

* o~ v

Polag) =ay, lsisntl, vel

and for all the other points:

Bk
Folag)l = oy, at2s3isN, vel

Then, the image of the reference simplex §n under the

tinear mapping (2-192) defines the straight simplex:

w1

f,
sn - I‘\)(

W) ovel

which shares the same vertices with the simplex §l‘;, vel,
and the non-linear {(in general) mappings (2-18%) and
(2-190) are respectively given as follows, in terms of

the linear mapping (2-192)

P N *y, A
_F\’-I—‘51¢1(X) (rxi’ui), 1£isN, vel e (2-193)

*y L
oy =F (&), 11N, vel

and
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B = *“"’)«»Nrl ol G B

=F X) o hat*Y s i o (X N LY

v Vo gmy b i N i=1 9= i i
N)\ v,

w3 og m(x} aiEh .. (2-194)

i

where:
*y,0 * a0
P =R B]), lsisN, vel

andz

"
Bt = v”r el (1sisN, lgush, 1sesv) vel

We note, hewever, that whenever the simplex é'x‘;, vel, is
not curved, ie, the mapping F, defined by (2-188) is

iinear, then, we obviously have:

gv -

P
.
& =8, ver

%

Next, with every such simplex 5, v¢ I, we associate the

following two geometrical parameters:
2

h, = diameter of 5, vel

. . . {2-195)

*
p, = diameter of the inscribed sphere in SX‘;, ved

Then, for a regular partition 4 such that the regularity
condition (2-128) is satisfied, we can obtain the asymp-
totic order of convergence over the simplices §;‘1, vel,
provided that they do not differ too much £rom the simplices
éx\;' vel. Since, by definition of the linear mapping F:,

we always have for the first (n+l} points that:

P
of ~ o} =0, Isdsnil, vel
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a natural way of measuring this deviation between the

- 1

simplices §', veI and 87, v eI, is to consider the
n n

difference:

v *y N
o) -~ ay, n2SisN, vel

where again:

ey * . 3
ay = F (&), nt2sisN, vel
However, for the Jaccbian of the mapping F“, the following

result holds:

Cylapr ()| 5 [Ty (] s Calagr (0] ... (2-196)
v v v
with the constants C) and Cp explicitly given in [8],
and for the derivatives of the mapping F‘\J - as well as
those of its inverse F;l - under the assumption that the

*
linear mapping FV is Ck—diffeomcrphism:

supliD-)F“(f&)ll5Ksup||UF:(§{)|\3, 19k, yel L. (2-197)
£e§ R

n n
and,

supllUjF;)(le 2L sgputh"‘(?quj, 15k, vel . . . (2-198)
xf§x §s§x

with, again, the congtants X and L explicitly calculated
and given in [8]. Then, for a regular partition 4 of the
domain such that the geometrical paramcters defined by

{2-195) satisfy the inequality (2-128), we have that:

su“puw:(&)n = 0(hy), vel o (2-199)
ﬁcgn
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a natural way of measuring this deviation between the
+

simplices 8., v I and ., veI, 15 to consider the

difference:

v *y n
ay - ag, nt2$iEN, vel
where again:

*y * o s
ay = F“(ai), nt2 51N, vel

However, {for the Jacobian of the mapping F\), the following

result holds:

Cl”pg‘;‘” < 13Fv<%>i sc2§aF3(&)\ .o . (2-196)
with the constants C; and Cp explicitly given in [8],
and for the derivatives of the mapping F“ - as well as
those of its inverse F;l ~ under the assumption that the

linear mapping F: is Ck~d1ffeomo.rphism:

supNPjF\)(:E)NSKsuprW:(ﬁ)fl], 1855k, yeI L. (2-197)
265 2c

n n
and,
sup I 03F~ 1 (x) 0 SLsxipHﬂFiq(fc)I!j, 1<isk, veI . .. (2-198)
xe8Y %ek)

with, again, the constants X and L explicitly calculated
and given in [8]. Then, for a regular partition A of the
domain such that the geowetrical parameters defined by
(2~195) satisfy the Ilnaquality (2-128), we have that:

suplory (W) = O(h), vex Lo (2-199)
5ok,
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and
*s%pvllvf‘:—l()*c)ll =om M, ver .« . (2-200)
e

n
Finally, by combining the results (2-196), (2-197),
(2-198) , {2-199) and (2-200) with the estimate (2-191),

we get the following assymtotic estimate:

lu-pe] o scn= My ver ... (2-201)
[Ehe]

WEN uE @’
for any integer m with Osmsk, which gives the exact
order of convergence over any simplex 5;, vel, of the
partition A. The numerical cc:.stant C, moreover, which
does not depend on the function u and the parameter }:v,
vel, is, of course, very Aifficult tc compute exvlicitliy,
but nevertheless this fact does not lower the importance
of the result (2-201) which simply expresses that the

same order can be obtained in the approximstion, eithex
over straight elements or over curved elements. Of course,
one can easily notice that in the second part of (2-201)
the full norm for the function u appears instead of the
k-La order derivatives only and this is due to the fact

that one has to introduce, first the reference simplex

5, and then go back to the original simplex Sy, veI.
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PART Il

ERROR ESTIMATES FOR THE FINITE ELEMENT APPROXIMATION

3.1 ERROR ANALYSIS FOR CONFORMING FINITE ELEMENTS

3.1.1 A Model Problem

In this third and final part of our analysis we apply the
previously obtained results on approximation in order to
determine the correct order of convexgence of the finite
element approximaticn u to the exact solution u of the
particular problem under consideration. Therefore, let
us consider the following n-variable elliptic boundary-
value problem of order 2m as a general model problem

defined on a bounded and open subset R of &

Al = % (-l)lelDﬁttu(x)D“u(x)]=f(x),xen L. (3D
{a| lelsn

subject to the Dirichlet conditions:

vPu(x) = 0, for all xecda, |8| sm-1 L. (3m2)
where the functions tu(X) are required to satisfy
certain continuity conditions over the closed domain
Q5 viz:

Ty (0 e BeB

4
i
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and are such that, there exists a positive comstant C,
with:

: g qms(x)D“u(x)D’zu(x)dx?C,{lullfim L. (3-3)
[l o|8sm @

Then, by integrating the inner-product term (Au,u)Lz(m
by parts (see eg. P.M. Prenter [19] p.266), we get the

foilowing result:

o) = 8 f g tanfepPumant v, wyevera)

lel l8j<m
where the expression v{u,v), generally a surface integral,
vanishes because of the boundary conditions (3-2) which
have to be satisfied by the functions u,v e V. Therefore,

the follewing formula:

ala,u) = P { 9y (1D u(x) 0Py (x) ax L. (34
fal 6lsn’

defines a bilinear form on the product-space VxV and,

because of the inequality {(3-3), it sat!.fies:
letaywf 2ciul®  , wev .. (3-5)
()

for some positive constant ), which expresses the ellip-
ticity condition of the problem. On the other hand, one

can easily see that:

{alu )| = | f b1 a_, (x)0%(xspPu(x)ax| <
H of

lel l8fsm

< max omaxg (9] = éD“u(x)-l)su(x)dx=czllull;1 . Thus,
Jaf 8} em xeq Jof /|8l em H@
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lafuww| scalut® , wev L. (36)
HY (%)

where the numerical constant Cp; = max . maxiquﬁ(x) |.
lal fofsm xca
Inequality (3-6) expresses the boundedness condition and,

by combining the two inequalities (3~5) and (3-6), we get

the following basic result:

eyt s fata,w ]| s calui?y L. -
(9} HO(Q)

for some numerical constants C; and C;, with C; » 0. The
double inegquality {3-7) simply states, by the standard
definition of the equivalence norms, that the two norms

lhafl and a(u,u) are equivalent. The importance of
"

" (2)

that result rests upon the fact that, once an estimate
for the error in u-~u, has at first been derived in terms
of the energy norm a{u,u) - this always is the case since
the Ritz method is minimizing the appropriate functional
with respact to that kind of norm - then, we shall use
that ineguality in order to compute an equivalent estimate

for the erxor, this time, involving the B"-norm.

3.1.2 Adnissible Triangulation of &

In orvder to outline once more the essential points of our
previous analysis as well as to generalize them to include
any kind of finite element instead of the n-simplex which
was considered in the approximation problem of the pre-

vious part, suppose that the closed domain § has been

O
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replaced by a finite union of finite elements e such that:

G= u e
i
eisTh
We say that this union of elements consists of an admis-—
sible partition or an admissible generalized triangulation,
usually denoted by Th‘ of @ if and only if it is such that:
if e; and e; T, are two elements of the partition Th' then,

3
or ejnes = #oor e ney = 4 common vertex or a

L]
common side.

With every such element e; of the partition Th' we asso-—

ciate the following two geometrical parameters:

hei=diameter of the element e; ... -8)
o =sup {diameter of the inscribed sphere in e;}
and we let:

ho= max by, L (3-9)

eiETh B

Then, we say that a seguence Uk), heH, where H denotes
some collection of positive parameters h, of generalized
triangulations of the domain @ constitute a regular family

if and only if the following two conditions are satisfied:
(i) the parameter h, defined by (3-9), approaches O, and

(ii) Osaz min
eic‘fh

e (300

for all the generalized triangulations Th of the sequence
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{Th) , heH, where the constant a dces not depend on the
parameter h. The condition (3-10) can be regarded as a
generalized form of the mo.e particular angle condition
assumed by Zlamal [28] or that of the uniformity condi=
tion of G. Strang {231, which for the case where n=2
simply states that: there exists an angle &, > O such that
the interlor smallest angle & found in all the triangles
of the given triangulation Th’ satisfies:

Béﬂo coeoe (3511
Vext, for any such admissible triangulation of the domain
@, the method is applied, at first, over each element ey
at a time and, then, a xesult concerning the entire domain
2 can be derived by computing the several contributions

from within all the elements.

3.1.3 The Exror in the Bnergy Hoxm

For the ervor analysis the starting point is always the
same: If the function u, denotes the finitce element
approximation end u the exact solution of the problem,

it is well-known that:

afumu umg ) = min alu-vy cumup) e {3-22)
uhesh

ie, the approximate solution u_ obtained over the subspace

h
shcv is closer, in terms of the energy norm, to the exact

solution u than any other function ”h of the space Sh.
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Then, since the problem of convergence of the Finite
Blement Method is a question in pure approximation theory
in estimating the distance between the function u and the
subspace Sh. or particularly between the function u and
its intexrpolating polynomial, which is a member of the
space Sy, the essence of the entire analysis on the
approximation problem of the previcus Part, is that:
given a function ue Hk(ei) , restricted over an element
e« Th at a time, there exists a unique interpolating
polynomial Pu such that:
J-m

a2 ulf sCh
H

uf for any Osmsk . e. (3713)
Mo, s Wey” .

for some numerical constant C which depends neither on the H
function u nor on the geometrical parameter hei, defined
by (3-8). By adding the inequalities (3~13) over all the
elements e, into which the domain ¢ has been partitioned,

together with (3-9), we obtain:

hu-Pull £ Ch , for any Osmsk e e e {31
LS

™ (2) W ()

- ~ere, again, the constant C does not depend on the func-
tion u and the paramster h. Then, the approximation error
estimate {3-14) toyether with the minimum principle des-
cribed by (3-12), will give us the starting point in
order to give several error bounds for the difference

u-uy . Indead, from (3-12), we easily get that:

aluy oy ) < n(u—\;h,u-uh) ¢ for all y 8
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and, by taking uj, =PueS, that:

a(u-w u-u) S a{u-Pa,u-Pu} v (3-15

and we have now to compute an upper bound for the energy
in the difference between the function u and its interpo-
lating polynomial Pu. For that, we make use of the defi~
nition of the bilinear form a{u,v} which is given by the

formula (3-4); ie,

a(u~Pu,u-Pu) = ] ,{f,qus(x)Du(u—Pu)Dﬁ(u—Pu] ax =
lal,i8]{sm
s omax mmgg| @ soferw DB(u—Pu)dx=C'liu-PuII:m
Q
laf.]8]sm xe0 Ja| .| 8]sm (@

where the constant:

A

c' = max max|q“s(x)|

fal1Blsm xen
Thus,
afu-pu,u-pw) £ C'hu-pul® c . (318
HO{a)

and we make use now of the approximating result (3-14).
Thereforc, by combining the inequalities (3-16) and

(3-14}, we have:
«{u-Pu,u-Pu) s C hz(k—m)lu[zk ... (3717
" (R)
which is exactly an upper bound for the difference u~Pu

in enexgy. WNext, from (3-15) together with (3-17), we
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can obtain a first bound for the exror in u-ny in terms
of the energy rorm:

o lumy umy) 5 € hZ(k_m)lU] %oy ) ... (3-18)
H'(a

for any function ue Hk(n) , where the numerical constant
¢, as usual, does not depend on u and the parameter h

and the integer m here denotes the order of the highest
Gerivative which is involved in the bilinear form l(u,u)

associated with the problem (3-1) - (3-2).

3.1.4 The Constant Strain Condition

There is an important remark which has to be emphasized
as far as the convergence of the method is concerned:
from the error estimate (3-18) one can easily see that

convergence does occur when and only when:

k>m e (3-19)

Ineguality {3~19), in other words, means that any solu-
tion u which is a polynomial of degree m should exactly
be reproduced by the finite elcment method. This con-
dition is known, amony the engineers, as the constant
strain conditton and its validity has gradually been
cstablished from the numerical failures which were expe-

rienced whenever it was violated.
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3.1.5 The Error in the H'-norm

Once the error bound (3-18) has been established, it is
an easy task to give an eguivalent estimate in terms,
this time, of the H'-norm. Indeed, from the ellipticity

condition (3-5), we get:
2
Cilhu-u, |l s alu-u_,u-u ) ... (3-20)
' e gy RTTR

ox, from (3-20) combined with {3-18;, we obtain:

2 (k=m) Jul 2
% ()

2
Hu-u, i £ Ch .. {3-21)
R )

for any function uer(n) and some numerical constant C

which does not depend on the function u and the space

parameter h. Notice, however, that since convergence
in the energy norm essentially means convergence in
the m~th derivative of the finite element approximation
u, to that of the exact solution u, this derivative is

something spacial.

3.1.6 The Nitsche Trick

A different and somevhat more difficult problem arises
from the possibility of estimating the rate of convergence
in the s~th derivative, or in terms of the Hs—norm,
where s may be smaller or larger than m., This approach
requirves the application of an elegant variational argu-

ment which was derived simultaneously by Aubin and Nitsche




- 151 -

and is simply known as the Nitsche trick. Following

G. Strang and G. Fix [{24], we shall prove that the coxr~

rect order of convergence is not of h"5, but it must

also depend on the integer m as well as on k and s. The

whole strategy in proving that consists of introducing

an auxiliary differential eguation of the same order 2m;
Lu=g .. (3-22)

which, through the equation of the vanishing of the £irst

variation, can be written as:

alo v} = 49,0y, (0 for all vever™a) L. (3-23)
Then, for y = u—uh in (3~23}, we get:
alo,u-n) = (g,u—uh)Lz(m - .. (3-24)
or since,
alu,umng) = alowv, uegy)
since:

u(u—uh,uh) = 0, for all vy ssh
from (3-24), we have that:
alumu, umw ) = (gru-y, )
R B5, ()
or,

) | L. (3-25)

|ato-u, ru=u ) | = | (geu=y,
hTT L, {a)

h

By applying the Schwarz inequality, in terms of the

energy norm, on the left side of (3-25), we get:
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o (umvy ume) | 5 (e tamuy mup)) Fotomy w1 ¥ L L L (3226)

and suppose that the function Y is the best approxima-
tion to the exact solution w of the auxili ry differen-
tial equation (3-22}. We distinguish now between the

following two possibilities as far as the order s of the
derivatives is concerned, with respect to which an exror
bound for. the difference u-uy is sought, as well as the

~ther two parameters k and m. Thus:

1. For s22m-k: e . (327
Then, for any functicn me[{k(n) , since:
k z2m-s
or, by definition:

am—

w5 - g8 ()

it follows that:

w e E (q)
Therefore, if vy denotes the best approximation to
the exact solution u, from the approximation estimate
(3-17), we have that:

(a(m—uh,m-uh))% s‘.lh‘”‘“s)'“‘lmiE

(208 (o)
or

% P
{alo-u o 1) 0™ S |al .. {3-28)
h'™  h H2MS gy

for any function w eu’™ S(g).

On the other hand, from {3-18), we have:
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T
(& (umny umuy ) ¥ scon “‘lulﬂk(m L. (3-29)

Ior any function ue uk(m . Then, from the inequality
(3-26) combined with (3-28) and (3-29), we get:

.
N L i TP

@ Ee
ox,
. k-s
letw=u, ;u-n )| ¢ 0% w| N
n e, ) Iuluk(m ... (3-30)

Nexzt, since the solution w of the differential eguation
(3~22) is always 2m derivatives smoother than the data
g; ie,

< Kifglh _ soa e (3-31)
#2I-S gy HS ()

[of ,__ < [ wl
w5 )
from (3-30) together with (3-25}) and 3-31), we have:

k-s

[(g,u-u ) Is ¢ v Sran _ ful
T @ 8% ()
or
|(g,u-u )L,(ﬂ)l k—s‘ }
= —s £ C R u o ooo. (3w32)
e s 55 ()

@)
or, by teking the maximum ir (3-32) over the spaca

5(9), we obtain:

(g,u-u,) !
A . ) g ey L, (®) 25 )
a-u ko 2 max —2 _.cc k

T
w e gcu®(0) 1% () o)

Thus, for the first case where sz 2m-k, we have:
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k-s .
oo i, sc Sy , for my fuwction ue BS(R) . . . (3-33)
) @)

For s s2m-k .- (3734)

Then, again, if the function v, is the best approxi-
h PP

mation to w, for any function ms!lk(n) . we have that:
2 k-
(alomuy romup)) * s Cyh

and, on the other hand, for any function uch(n) we

have:

(a(amay came ) s e M) L. (3-36)

H (0)

Thus, from {(3-26) combined together with (3-35) and

{3-36}, we get:

O N P I T .. o3-31
H (a)  H(Q)
Next, for any function u sHk(n) s Ssince:
k < 2m-s
by definition, we have that:
lol S fol shell 5

B (a) ™ (a) w28 (g)

or, by considering the basic result {(3-31), that:
=Kigl _ ... (3-38)
1 (a) H% ()

Thus, from (3-25) combined with (3-37) and (3-38),

we get:

ful y C.. (3-38)
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_ > (kem)
Hgmmu)y, gyl sen ngﬂ_sm)]\liﬂk(n)

scn? ™ pay ... (3=39)
B (%)
and, by taking the maximum in (3-39) over tiw sjace
#%(a), we obtain:
| (g u-y,
fo-wl o = max 5 < ¢ p2kem ful
B gend(a) 1 (0 e
Therefore, for the second case where s < 2m-k, we
have:
Puegd s e n?® ™ pu) .. (3-10)
H” (a} e
for any function ueH(a). f£inally, by combining
the two results (3-33) and (3-40), as far as the
rate of convergence is concerned we can write that:
= o(nk78 4 p? (kom)y A D)

fa-u il
n ECH

for the H®-norm. Nevertheless, it happens that ~
with the majority of the cases in practice - the
first term in (3-41) governs ‘the rate of convergence
and this agrees with what naturally is expected from

the approximation theory.

v
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3.1.7 The Exror in Displacement

For the particular case where s =0, the error in dis-
placement - or the error in the Ly-norm - can be derived
by following almost the same steps as those of the above
analysis. Therefore, suppose that the auxiliary problem
(3-22) is again given and also suppose that the data g
now is taken to be equal to the error -y . Then, by

the vanishing of the first variation:

afw,v) = ‘“'“h’”)Lz(m' for all veV
and, by taking v = uny
o uegy) = fum ey o) = lmgll o) c . (3m2)
Then, since always:
u(u—uh.u—uh) = u(m,u-uh)

from (3-42), we have:

lotumvy um) | = lIu*uhl)ZLZ(ﬂ) Lo (343

By applying the Schwarz inequality to the left side of
(3-43), we get:

latomvp 8= | £ o bamuy somvy) ) Ho umuy umgy )y 5 o (3748

Thus, for any function us[-lk(n) and for the usual case

in practice where k > 2m since, by definition:
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&) e #2™as
it follows that:
weH™(q)

and, if v is again considered to be the best approxima-
tion to the exact solution w of the auxiliary problem,

we have:

m-m
),

X
(alw=u, 0=y, )" 5 Ch
n'" h B2y

or
% m
{elu=v, ;u-v, }} " < Crh|w
h4"n e R

Orc the other hand:

5 k-m k
(afu-u_,u=u,)) 7€ Con”™ ' fuf , for any ueH (8} . . . {3-46)
LA 2 #*(a)

Therefore, from (3-43) combined together with (3-44},

{3-45} and (3-46), we obtain:

2 X
D a-ul ¢ h'|ul jul Loe . (3-4T)
Y, @) 2% e
and since:

lw] slall SK lglt =R fu-ull
u2" B (a) Lz (8) Ly (@)

(&)

from (3-47), we get:

2 13
fu-u, I £ € hllu-u |uf
By, ey hp,ca) ()

or




]
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k
i a—u it ¢ h .. {3-48)
L WeS w5 ()

for any function uc}Ik(Q) , which gives the correct oxrder

of convergence in displacement.

3.1.8 The Phenomenon of Superconvergence

Let us consider now the case where § <0 and, in particular,

the case where s = -1, Then, by definitiocn of the dual
norm:
J1 to-uy ) dx]
Q
llu—n\.l,)llﬂ__}(m = rax W-l——
velil(n) H™(a)

from which, by taking the function y(x) = 1, we get:

|5 ta-u, }ax}
o

2z e o - (3=t
(

Ha-ull
» vola}

5740

or, the inequality (3-49), can be written as:

|7 (a-u ydx] s C Hu-u l _
2 uh uh!l l(fi)

for some numerical constant C, and by combining this
result with the error estimate (3-33) for the usual case

in practice where k> 2m, ie, with the exror estimate:

k+1
fau g < ¢ ity
) w¥ (q)

we chtaing




which expresses the avers
Q. If we compare now the
ie, the error in displac
erroxr over the entire d‘ it
is smaller than the £irsk
that somewhere within the
rapidly in sign. Hence,,

called spectal points wik

S ... (3-50)

v (2)
error over the entire domain
vo cstimates (3-48) and (3-50),
nt at a point and the average
n o, we see that the second
nd, therefore, it is expected
omain the error alternates

e problem of finding the so-

fin. each element where such

changes do oconr is in

great practical importance

and near these points th

naturally be of excepti

pproximate solution o, will

accuracy. This phenomenon

of super convergence at sh special points has bheen

analysed by Dupont and Ig

afilas (see eg. [11]) and the

following estimate can @dsfily be established.

futz ) gy tx 2 . ;ﬂ

for any function “n ‘;h',

} k]
FBp ) e (G muy /B mup)) .. . (3-51}

mere X, denotes one of these

speectal points and Go

the fund tal solution

corzesponding to the partl

wlar point x,, ie, G, satis-

fies the following equakby

a(Gurv) = (Lo

where;

£ = 6 (%

corrasponds to a point loi

Indeed, since:

Ly (0) for all yeV
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A(Ggr0) = (Eou¥lp, o) = (8(x=Xg) Wiy (o)

= i;Lé(x-xg)v(x)dx = u(xg}, for any veV

and a similar result holds for the approximating func-

tion uh, we have that:

wlxg) =y (%o) = alGo,m) ~a{Gg,uy) = a(Gg,u-yy) =

= oGy surmy)

since,
a(u«uh’uh) = 0, for all v, € Shcv.
Thus,
ulxg) —uh(xo) = u(c;o—uh,u—uh)
or .
lulag) = up (%0} | = JetGgmuy, cumuy) | . . . (3-52)

By applying the Schwarz inequality on the right side of
{3-52), we get:

ks
[uxg) = uy () | {a(Ggmup s Comup) ) ¥ (e (umgy yumig))
and since the term (m(Go-uh,Go—-uh))3l will certainly add
some finite power of the parameter h to the v"® obtained

by the other term, the convergence of the method at the

point xg will indeed be exceptional.

3.2 ERROR ANALYS1S FOR NON-CONFORMING FINITE ELEMENTS

We extend the above convergence analysis of the Finite

Element Method in order to include an extremely important
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case arising from the following situation: The finite
elements are non-conforming - it was stated at the very
beginning and consequently assumed that the varijational
problem yeguires the trial functions to have a certain
smoothness in order that they conform to the theory -
and the space Sh does not now constitute a subspace of
the energy space veu™q). When such a situation arises,
the application of a paxticular test is all that is
needed in order to determine whether or not convergence
may take place. Howevexr, since the inclusion Qh:v does
not hold in this case, the rules of the Ritz procedure
are violated and since:

n(uh,uh) =, for vy € Sy

the minimization process of the guadratic functional
{1-18) can no longer proceed. To compensate, the technigue
consists of computing the energies within each element ey
separately, by lgnoring the interelement discontinuities
of the trial fumctions and, then, to add together the
results. In so doing, however, we have replaced the
functional (1-18) by the following functional:

P lug) = e log ) - 208,07 ... (3-53)

Ly (n)

where,

* *
@ (ueud = L Calu )l § (Eu) = I (£eu)
h'n e, nrh e, “hnz(m o h'Ls ()

and the difference between (1~18) and (3-53) is that
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F(uh) = w for non~conforming elements. In this case,

the convergence of the method is no longer an automatic
consequence of the approximation properties of the sub-
space Sh and it becomes an exception rather than the rule.
However, since non-conforming elements havi: been success-
fully used to date - most commonly by the engineers vho
believe that the conformity requirement leads to compli-
cated finite elements - there exist a test, which was
first devised by Irons and is xnown as “.e pateh test,
wiiich when it iz passed convergence does occur. The
patch test ways (see G. Strang and G. Fix {24] p.174):
Suppose that within a patch of elements the exact solu~
tion u is equal to a polyncmial Pm(x) of degree ms k-1,
Then, since the constant strain conditien is still satis-
fied by non-conforming elements, this polynomial is present
at the subspace Sh and, therefore, the finite element
approximation u, coincides identically with the polyno-
mial P, (x). After that, the test consists of checking
out whether the non-conforming finite element approxima—
tion u;;, which minimizes the new functional (3-53) over
Sy is still identical to the polynomial Pm(x) in spite
of shifting from the functionz® (1-18) to the new func~
tional {3-53). This is the test devised by Irons. G.
Strang in [23], however, has shown that if, for any poly-
ncmial Pm(x) of degree m<k-1 and each non-conforming

basis ¢j(x) . the following equation holds:

" (B tx) 65000 ) = w (Rl 45 (0) ... {3-54)

then the patch test is passed and viece versa, Thus, what
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we actually do in practice is to prove whethexr or not
equality in (3-54) holds and, corresvondingly, we deter-

mine whether or not convergence doe .icur.,

By making the assumption hereafter that the patch test
is passed, we are again faced with the problem of giving
an estimate for the error between the exact solution u
and its non~conforming finite element approximation u;
Indeed, if we make the additional assrmption that the
function £ is sufficiently smooth, by the vanishing of

the first variation, we have:

* *
a* (wup) = (f,uh)LZ(m, for all v, ¢S, .« .. (3-55)

Then, since:

o) s vy e Sy .

alfo)’ =g,
Ly (0) Ly (@)

and:

aluyu,) = (£r0.) s vy €8 .. (3-87)
h hy 8) h ¢ h

2 (8
we can, as a first step torwards our final goal, easily

prove that:

u*(u~u;.uh) = u”(u,uh) = alugup) ... (3-58)

indeed, by using the equations (3-55), (3-56) and (3-57),

we have:

u*(\-\—\l;;mh) o« (9, o) ‘-a*(u;mh) =a*(u,nh) - (f,uh);‘ ) =
Q.

* *
=a () - (E0) =a (wu) ~alu,u).
Yy Y Ly (@) U !

{3~56)
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Suppose now that the function y e Sh denotes the orthogo-
nal projection of the exact solution u onto the subspace

Sy and consider the following triangle'inequality:
* % % * ¥ % o
fo funy e | € o ruue) | + o ey g ) | ... (3-59)

The first part of this inequality is exactly an expres-
sion of the error u—u;1 in terms of the energy norm and,
therefo:e., we shall make use of this ineguality in order
to estimate an upper bound for the error by giving special
attention to its second part. Then, by keeping in mind
that the function « is the closest element in 8, to u,

the term:
*
e (u=w,u-w)|

precisely reflects the error in approximation and, thus:

*
fe" (w2 min (o (amy umey ) |
Nhesh

For the other term; viz:

" (amv s amug) |

we note that:

-« . (3-60)

or




N
oMumu) = 0¥ (0} for all vy e s, ... 3-61)

from {3-60) combined together with (3-61) and (3-58), we

have:

* 2 * E o,k 2
Lo o) | e o o) "t o) I

o x
|e (m—\)h,m~uh)l = max s -
R e

R e L N A
x =
uheSh la’ (“h’uhH PREN la (Uh'uh)‘

Thevefore,

lu"lu,uh)-n_(u,uh)i2 .. (3-62)

fr‘"(m—u;,m—u;)l = max o
BESy [* top ) |

and the inequality (3-59) can be written as:

oty up) = (u,0,)
Ja* (gl umg) ) 8 min Iy (omy, )|+ max I————h-u———uh-l

*
S, ey [o* to ey} |
oo (3-63)
Then, since from the approximation-theory results, we
always have that:

2 K | (3-64)

*
min |o (u«mh,u-mh)| sC. X .
ey ()

1"
for any function ue Hk(ﬂ) and some numerical constant Cy,

the only problem that still remains to be solved is to

. - -
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find an upper bound for the other term in (3-63), ie, for

the term:

e (u, v, au,vy) |2

MaR e

opes, te® Gop o) |

for this, and in order to generalize the result given by

G, Strang and G. Fix in [24] p.180, we assume the following
important convention: The new trial space of non-conforming
elemente is regarded as a conforming one to which a numberxr
of non-conforming trial functions have been added. Thus,

any function vy € sh can be written as:

ulx) = N i_l (ex..xi#i(x) -x-ezbiwi(x)) . . . (3-65)

i°h Ti i
where,

ezlaiwi(x) + ezlbi\uitx)

i i

expresses the contribution within each element ey of the
given partition Th of the domain R and the wi(x) 's denote
the non-conforming basis functions which have been added
to the set of the conforming basis functions. WNote,
however, that since the basis functions ¢, () in (3-65)
are conforming, their contribution to the present kind
of error analysis will be egual to zero. Then, within

each element &« 711’ we have:

*
o {u,u ) ~alu.v,)
o (o, Wl

*
o (w, 2oy¥g) ~alu, Bbyps)| =
1 ey eq,

ey
*
= |« (u—Pm,ezbiv,iy - alu-Py, Ebi¥ )|
i 1 ey
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for some polynomial Pm(x) of degree msk-1. It is obvious
from equation {(3-54) that the inclusion of the polynomial
into the above expression has not any effect whatsocever.

Then:

lo" tary) - sl = lo* tapy, £y ~atug, 1| s
ey e; e;

oo
= o’ wr, thiug |+ fatgy, the| =
el ei ei ei

< C'luB il i ):b +c“nu—p ) I Ebel H
e, e TilMey) eyt HNey)
N e~y
s "l Il uz Wl <Ch ful . H bl
™ (e,) ei l-['“ €y Hﬁ(ei) ey B Hm(ei)

Thus, over €¢ach element ey €T, , we have:

N
lo' oy =stuu) | senMal o 1 sbu . (3-66)
b h ey ey Hk(e e H‘m
J.
By adding the inequalities (3-66) for all the elements
ey of the partition Th’ we get:
* .
o (v malusup )] = o (urup) alu,op) [ 5
€ h ei
k-m
£ Ch T |y| I zby,l
k iitm
ejely Hile;) ey H (eg) .. (3767

Next, from (3-67) and by using the Schwarz inequality,

we obtain:
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* k-m % by
lo (au)-a(uu)fsch™ (3 |u ) ( H Yt
ks B ety By ey 10 H’“( B
[N sCH l’.a*(uh,uh)]si
Fw P @)

or, by dividing by [u*(uh,uh))% we get:

lu*(u,uh)-«(u'\)h)i

k m|‘l|
* 1
Ca™ {uyrupd ] w* (n)
or,
* 2
(a0, ) ~alu,u ) ~
pax 1 b UL e n2 g2 L (36w
vy Sy, | & (uh,uh)l w5 (a)

Finally, from (3-63) together with (3-64) and (3-68), we
obtain the following estimate for the error in u_“l: in
terms of the energy norm:

[a* (amaf umuf) | s ¢ n? B ul? C .. (3-69)
B (a)

for any funotion ue Hk(n) and some numerical constant C
which does not depend on the function u and the geometri-
cal parameter h. From (3-69) we can see that the error
of convergence of non~conforming elements which hav
passed the test is the same as for the conforming ones

considered in the previous section of this error analysis.

3.3 TWO ILLUSTRATIVE EXAMPLES

To conclude, let us consider the following two simple

examples in one and two variables, respectively, which
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illustrate t¢ some extent the process which is usually
followed in practice in order to compute the approximate
solution uh(x), as well as to estimate an upper bound for
the error in u(x) =uy(x), where u(x) denotes the exact
solution of the differential equation under considera-

tion:
1. Examp‘le 1

Consider the following ordinary differential eguation of

second ordex:

2
~228 4 n(xy s ox, Oe<x<l < e (3-70)
ax?

subject to the boundary conditions:

u(0) = w(i) = 0. ve (3-71)

Its exact solutlon is:

wlx) = (e et 4 (e-e L (3-12)

and the associated variaticnal problem is to minimize the

following integral:

F{u) =}[(%)" + (ufx) - 2ulx) . x]dx L. {373
o

over the infinite-dimensional space VeH [0,1] defined
by

Vo= (u(x) ¢ H'[0,1]:0(0) = u(l) = 0}

where:

|
i
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du

H'L0,10 = (u(x)ulx) ¢ 12£0,11; e Lo00,11)

However, since it can easily be seen that the Qifferential

operator defined by:
Aulx) = - 824 uin

is a linear positive definite and symmetric operator, the
Rayleigh-Ritz version of the Finite Element Method can
be employed in computing an approximate solution of the
problem {3-70) - (3-71). The infinite-dimensional space
V is then replaced by a finitc-dimensional subspace Sh
of V and for such A subspace in this example we consider
the space of all the piecewise quadratic functions which
are continuous at the nodes belonging to the following

uniform partition:

4:0<h<2h<3h<dh = 1 ... (3-74)
of [0,1] and satisfy the boundary conditions (3-71). A
basis for the subspace Sh can be constructed by introducing
the following mid-points:
x = (23=1h/2, L5354 ... (3-75)
of the above partition A, in addition to the end-points:
% = jh, 1sjs4 0. (3-76)

Then, over the subspace Sh’ the guadratic functional

(3-73) is replaced by the following functional:

T 2
Floy,) = .‘l;[(—a{) + {og (x))7 = 2up (x) - xdax




- 171 -

or, subject to the partition (3-74) together with (3-75)

and (3-76), by:

4 m 4
Floy) = 3 I

2
o) + oD —20, (0. 0& . . . (327
3= (3-0h

Over cach sub-interval:

(3~Lhexs3h, 1lgis4

the quadratic function uh(x) € Sh vhich equals qj-l at the
node x = (3—1>h,q(2j_1)/2 at x = (23-1)h/2 and g; at the

node x = jh is given by the following general formula:

up () =;1c»%3‘ + (g2 ‘—’lll’—> E-ignilg s

L.x N
;E;‘— ti3-0? FEIG-DIG 5y
2 N
+2ez ;—2—”‘—21;-?—’——(3—1) 1 -t-n 25Dy, 15354
{3-78)
where,

po= -33(29-0) +3(G1) - 3G-D (235-1), Leigd L. . G-19)

By parforming a rigorous but simple computation on (3-78)

and (3-79), we can get the following results:

jh u
(j-l)h(d") dx=_”qJ—1*‘m“(ﬂﬂ)/z“L7q =164y A3y F

2y Ty YT T
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7 -8 1
N Ll .
= GGy 8 6 8

1 -8 T

i 2 h 2 2
I (o (00)) "ax =5 l2qs _ +8q 4
(3=1)n h s J=1 (23

B R R V7L Rl

2 1 -YZ
- h
R RTLTCERALTS - L
~1/2 1 2

and,

{J~1h

The matrix:

7 -8 1
RN A -
ky =gt -8 16 8
1 -8 7

b 2
I o0 = ey gy g 9

a
gy )
. L(zj—l)/ﬁ’ s lsisd
i |

oo

2
-1 /2¥295%20 9 5 2 T

%y
Uzgmryyz | 0 123 S

9 J
o

V3] ,lsisd .. . (3-80)
1/6

o . {3-81)

known as the elemont stiffness matrix is replaced, over

the entire domain [0,11, by a global stiffness matyix

K, by adding together the resulting element matrices

(3-81). Then, since the two cxtreme points =1 and q,

have to be discarded because of the boundary conditions

{3-71}, we get the following matrix:
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16 -8 0 ¢} 0 o] o]
-8 14 -8 1 Q 4] [o]
o -8 16 -8 o] [¢] ko]
X % . o 1 -8 14 -8 1 o
4 &) o -8 16 -8 [+
e} o) 0 1 -8 14 -8
0 [¢] 0 Lo o -8 16
Therefore,
Gz
9
1 ay 2

M,
g(ﬁ) A=y oy gy reee Dy ) Ky q?/z

2 ~1/2

= A
o=yt * 8 1
-2 1 2

known as the eletont mass matrix is xeplaced, over the

entire domain [0,1]1, by a global mass matrix:

58 1 0o o0 o o

1 4 1.2 0 0 O

c 1 8 1 0 o0 o©

Ky=fge| 0 w2 1 4 12 0

6 0o o 1 8 1 o©

6 o o -2 1 4 1

o o o o o 1 8

and,

Q/n

1 L
2 .
J;(%(x)) dx=(q‘/2vql,qs/2,...,(;,’1/2)1\6 q?/z

By

{3-82)

{3-83)
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Fin Lly, from (3-80), we get:
1
({Uh(X) dx = (ql/z'q:'qa/z"' <1y F
where the vector F i3 given by:
F o= h2{1/3,1/6,1/3,1/6,1/3,1/6,1/3) © ... (3-84)

Thus, from {3~77) combined together with (3-82), (3-83)

and {3-84), we obtain:

/2
4
Flu) =4 ra] 22, w
Un? TG gy gy e iy gy MR U2 N Tyt Yy
Y372
o o« (3-85)
The optims' vector:
Q= Q0 Qg pp e 10y yp)
fox which the above expre .3-85) attains its mini-

mum value can be computed if we differentiats that expres-
sion with respect to the parameters ql/z,:;l, qa/z"' .q7/2
and set the result equal to zero, This gives rise to the
following linnr: system:

K} =F < . . (3-86)

where the stiffness matrix:
K= KD + Kl

and the vector ¥ is defined as in (3-84). By employing




new the Gauss elimination procedure on the linear system
({3~86), the uptimal vector Q can easily be determined
and, subsequently, the f£inite element approximation uh(x)

to the exact solution (3-72).

Nevertheless, in ordex to give an upper bound for the
error between the exact solution u and its approximation

Uyt it is not necessary to compute the approximate solu-

tion vy explicity. Indeed, by recalling the minimum
principle:
o (= ) s a(u-uh,u—-uh) for all upe Sy . .. (3-87)

and by taking the function vy, € sh’ in the second part of
(3~87), to be the unigue piecewise guadratic Lagrange
interpolating polynomial dencted by ulu') (%) - in accor-
dance with its general definition given in {2-7) - which
interpolates the values of the function (3-72) at the

knots of the partition (3~74), we have that:

o (v umuy) s u(u-ul(”,u-—u]“)) s {3-88)

Then, since:

1 2
m(u—u{” ) « it ®upal?y” 4 (wal?) 8% =

-

o P ooy 2aer f raen®) Zax s (2) -
,;(Dm:u1 )dxrlu(u ) dx=lDu-Duy "Lz[ﬂ:l] 2 man ™

2
= pueul®h’,
H Lo,

£yom (3-8B}, we get the rosult:
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als umu g5 fuealPp? (3-89)
0" 1 TyiLo,nd

and the accuracy of the approximation uh{;:) depends on
the smoothnees of the function u{x)., However, since the
data £(x) ~ x is a continuous function and the solution
ulx) is alwavs 2m dorivatives smoothexr than the data £(x)
- where 2m is the order of the diffexential equation -
from the approximation theory, we have thak:

Ilu*ufz)li £ ¢ h?lu|
HlYo0,1] 130 ,1l

for some numorical constant C,or, since by definition:

|n] = todul, .
2] Laplo,]
that:
(2)
Hu=u " < ¢ h2ipdul c . (3.0
1 THlLe,] Lalo,1d

and the norm fD3u) ] ¢an be computed exactly since

Lyfo,1
the exact golution u!x) is known. Thexefore, from (3-89}
combined with {3-90), we get the following result:

- - s 3 ? ~
a(u-uy 0 u,) s ¢ i ““LlED,I] v oeo. (3891

which exprosses a £irst upper bound between the functions

u and u, in terms of the enorgy norm. Then, since:

H
w(n=uy uegy ) = {][ (PurDuy, roy (u—uh)szx =

2

. 2 2 I
= Il bu Duhlletn’” - !lu-—uh[frl’”,” = fu uh"u‘[o,ﬂ'

2
a{u~u,_,u-u b o= fu-ull oo . {3-82)
h' I i} nire, i
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from {3-92) and (3~21) we get the following result in

terms, this time, of the u! —norm:

(RN s ¢ nPpotuly 0,11 Ce e {3-91
2

Hifo,1]
which is an eguivalent result to those given by (3-91).
This, however, is quite naturally expected since conver—
gence in the energy norm egsentially means convergence

of the fixst derivatives of u(x) to those of uh(x)‘
2. Example 2

As a second example, consider the following partial dif-

ferential equation of second order:
=su = £, (x,yle #=00,1] x(0,1] s . - (3-34)
subject to the boundary conditions:

ulx,y) =0, (x,y) e 3@ .. . (3-95)

Suppose that the function £ is a continuous function

and there exists a unique solution u(x,y) to the problem
(3-94) - (3-95). One of the most frequent applications
of this problem found in practice is the torsion of pris-
matic bars (see eg [13] p.138) where the domain @ vepre-
sents the normal cross~section of the bar and 32 the

boundary of the section.

Then, the problem of computing the exact solution ulx,y)
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of the differential eguation (3-94) subject to the boun~
dary conditions (3-83) is again equivalent to that of
finding that function u(x,y) which minimizes the follow~

ing functional:

PRI BV TN _
F(u) —ji’zf[(ax) + (By) 2fuldxdy « « . (3-96)

over the infinite-dimensional space VcH!(Q) defined by:

Vo= {ul{x,y) e BN (Q):u(x,y) = O, x,y¢ 20}

where,
H1(@) = {ulx,y):ulx,y) €Ly (R): Dulx,y) eLy{a)}.

However, since the differential operator defined by:

2 . 2
- =_3_£(_x,£1)__ a_u(xzrx) .. (3-9T)
3x y

is a linear positive definite and symmetric operator,

the Rayleigh-Ritz version of the Finite Element Method
can be employed and an approximate solution uh(x,y) to
the exact solution u(x,y} can be computed in a process
guite analogous to that outiined in the first examvle.
For a finite-dimensional subspace Shcv we consider the
space of all the plecewise linear functions which are
plecewlse continuous at the nodes belonging to the trian-
gulation of the domain § = [0,L1] x [0,1] which arises when
it is divided into, say, 16 sguares of side 0.25 and
evory such sguare in two triangles by the diagonal paral-

lel to the axe of symmetry of the second guadrant.
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Moreover, “imetions of the subspace Sh have also

to satis? e boundary conditions (3-%5).

Thus, if by u') Gr,y) we denote the unigue piecewise
linear Lagrange interpolating polyncmial which interpo-
lates the values of the function u(x,y) at the nodes of
the described partition, we have:

{1

et -
L et .. (3-98)

alu-ug,u-w) < xlu-u

or, since:

(
11 9 {u,
B ¥ S
00

1 m
Yy g 3fuen,) o
atomul ) i) ey =

! 37

= P nteann 2 _ {1)y,2 o
;’J‘;(D(u v, )) "axdy IlD(u—u2 )"Iq(ﬂ)s Nl u, “HIm)
from {3-~88). -e get the following result:
atumy umu) s dumally’ C .. t3-99)
B! (Q)
Then, since:
tuma$thy < ¢ hiu ... (3-100)
ai(a) H2 (q)

for some numerical constant €, which is given through the
general formula (2-88), from {3-99) combined with (3-100),
we obtain:

alu-u, u-u) s € h2{uf? ... (3-101)
h' Th 1 iﬁz(m
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where the geometrical parameter h denotes the greatest

side of the triangles in the described triangulation.

Moreover, since by definition:

2 & 2
| = Z=21IDuIIL2(m

H2 () e
oy = 2% .
where a = (ay,up) . |a| = ay+ap and D%u = —f———, thé
3x lay 2
estimate (3-101) can be written as:
—y, ue 2 Sy 2 -
@ (u Ty ew Llh) £ C R !az 2IID u"Lz(ﬂ) . .. {3-102)

and, in order to give an a priori error estimate in
(3-102) , the problem depends upon the fact of whether
or not e are able to estimate the unknown quantity

I D"uuiz (q) 0 terms of the data £ of the problem. For
our particular example, however, it can easily be seen
(see Birman and Skvortsov Theorem [19] ».234) that the
differential operator defined by (3= <trongly co~

ercive, ie, there exists a constant i nat:

o
LR “"Lz(n) < I‘Ilfllem), for all |
and therefore, from (3~102), we can get:

2

Lo (a) .+« (3-103)

alu-u u-uy) $ C B2 5

for some numerical constant ¢, which gives an upper
error bound for the energy in u-uy, depending on the

data of the problem only.
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On the other hand, in order to find an estimate for the
error in terms of the li!-norm, from Friedrichs's inequality

{see [13] p.147}, we have:

a2 du 2. 11 2
ij;f(ﬁ) + (é—y—) Jaxdy 2 ko/_(f’(u(x,y)) dxdy « . {3104}
for some constant k, which for our particular example
here is ecqual to 1. Then, since:
_Moaw 2 ag, 2 _11 2 _
alu,u) —,s,g[(ﬁ) + (W) ]dxdy-éj“)(Du) dxdy . . . (3-10%)
by adding together the results (3-104) and (3-105) we
get:
11 11 gy 2 Ju, 2
2 2 34, 24
OJ{;Eu +(Du) 2Jdxdy < 2{{{’[(“) + (ay) Jaxdy
or,
1a® s Zafu,u) ... (3-106)

Hi(g)

Therefore, from (3-106) combined together with the

estimate (3-103}, we obtain the following result:
fu-u, I < C hlil £l
hiy @) Ly ()

which again depends only on the data of the problem.
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CONCLUSIONS

The conclusion which we draw throughout the preceding
discussion is that :he error bounds for finite element
approximations to elliptic boundary-value problems are

of the following forms:

tu-ufl < € h¥|ul

where |I-land | -| represent the norm and semi-norm, respectively,
of certain Scbolev spaces, h is a geometrical parameter
which is closely related to the size of the elements that
are used, C is some numerical constant which depends
neither on the parameter h nor on the particular function
u and the positive exponent s is the greatest possible
exponent such that the asbove approximation estimate holds.
However, although it is very difficult to give an explicit
numerical estimate £or the constant C, this is true even
for the very simple cases, and the value of the guantity

| ] can not be computed since the exact solution u is not
known, the importance of this result is by ne means in-
significant and it provides us with the exact vrder of
convergence of the approximate sclution v, to the exact
solution v. Whenever we are aile to estimate the semi-
norm {u] in terms of the data of the differential eguation,
we obtain an o priori error bound which depends on the

data of the problem only.
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It has been stressed throughout the analysis the wide
basis of the finite element process as a general approxi~
mation tocl and, although a great many papers have heen
published in the past few years, this will obviously
remain an area for active research in the years to come.
The pessibility, for example, of obtaining uniform con-
vergence - ie, convergenge in the L,~norm - of the
approximi{te solution uy, to the exact solution u has by
no means been completely analysed in the past and it
remains an open question for the future researcher.
Alsc, a few thecretical papers dealing with non-linear
boundary-value problems as well as time dependent prob-
lems have been published and they present a challenge
to the numerical analyst who is particularly concerned

with error estimates.
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