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Abstract

The AdS/CFT correspondence relates conformal field theories in d dimensions
to theories of quantum gravity, on negatively curved spacetimes in d+1 dimen-
sions. The correspondence holds even for free CFTs which are dual to higher
spin theories. Motivated by this duality, we consider a systematic study of

primary operators in free CF'Ts.

We devise an algorithm to derive a general counting formula for primary op-
erators constructed from n copies of a scalar field in a 4 dimensional free con-
formal field theory (CFT4). This algorithm is extended to derive a counting
formula for fermionic fields (spinors), O(NN) vector models and matrix models.
Using a duality between primary operators and multi-variable polynomials,
the problem of constructing primary operators is translated into solving for
multi-variable polynomials that obey a number of algebraic and differential
constraints. We identify a sector of holomorphic primary operators which
obey extremality conditions. The operators correspond to polynomial func-
tions on permutation orbifolds. These extremal counting of primary operators
leads to palindromic Hilbert series, which indicates they are isomorphic to the
ring of functions defined on specific Calabi-Yau orbifolds. The class of primary
operators counted and constructed here generalize previous studies of primary

operators.

The data determining a CFT is the spectrum of primary operators and the
OPE coefficients. In this thesis we have determined the complete spectrum of
primary operators in free CFT in 4 dimensions. This data may play a role in
attempts to give a derivation of a holographic dual to CFT4. Another possi-
ble application of our results concern recent studies of the epsilon expansion,
which relates explicit data of the combinatorics of primary fields and OPE

coefficients to anomalous dimensions of an interacting fixed point.
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Chapter 1

Introduction

The duality between quantum gravity on asymptotically Anti-de Sitter (AdS)
spacetime theory and Conformal Field Theory (CFT), which is known as the
AdS/CFT correspondence, is one of the major breakthroughs to arise from
string theory in recent years. The correspondence relates a strongly coupled
quantum field theory to the classical dynamics of gravity living in one higher
dimension. This kind of duality is sometimes referred to as the holographic
duality or the gauge/gravity duality. To be more precise the correspondence
is between a strongly coupled C'F'Ty in a large N limit and a semi-classical
theory of gravity living in the AdSgz;1 bulk spacetime. Every field in the
bulk (gravity side) can be mapped into a primary field living on the boundary
(CFT side). The correspondence is significant from both a conceptual and
practical point of view. Not only does it give valuable physical insight into
both sides of the correspondence, but it also provides new ways of performing
calculations where conventional methods are intractable. The original corre-
spondence is due to Maldacena[l]. It states that the 10-dimensional Type I1IB
superstring theory on the product space AdSs x S° is equivalent to N = 4
super Yang Mills (SYM) theory with gauge group SU(N), living on the flat
4-dimensional boundary of AdS5. This equivalence means that there is one-
to-one correspondence between all aspects of the theories including the global
symmetries, observables and correlation functions. Hence the theories are con-
sidered to be dual descriptions of each other. No form of the correspondence
has been proven in a rigorous manner, leading it to be also known as the

AdS/CFT conjecture.

This project was motivated by the idea of holography and the work carried out

in [2] where primary operators were constructed from a product of two scalar



fields operators. These primary operators constitute a tower of conserved
higher spin currents. The descendents are derived by acting with spacetime
derivatives on the primary operator, and the primary operator together with
its descendents form an irreducible representation of the conformal group. The
paper [2] then proceeds to calculate amplitudes (correlators) using Feynman
diagrams for these conserved higher spin currents and manages to match them

to the higher spin correlators of the dual gravity.

Apart from this motivation CFTs are interesting in their own rite. Conformal
Field Theories (CFT) are a class of Quantum Field Theories (QFT) that enjoy
a conformal symmetry. A conformal symmetry is a coordinate transformation
which preserves the angles between any two vectors. Most QFT’s that are
scale invariant are also conformally invariant. Actually scale invariance often
implies conformal invariance. This has been argued in d = 2[3] and almost
argued in d = 4 dimensions [4][5] but a small possible loophole remains. In
statistical systems/critical phenomena, scale invariance is realised when a sys-
tem is at its critical point [6]. At the critical point the correlation length of
the system becomes infinite and the system becomes scale invariant. Since
there is no scale left to measure distances, the physics of the system looks the
same at any length scale. In Quantum Field Theory an analogue of a critical
point is a fixed point. QFT is basically the study of Renormalization Group
(RG) flow, which is the flow of the theory from the high energy (UV) to the
low energy (IR). The theory flows in a space of couplings [7]. During the flow
the theory flows from a UV fixed point to an IR fixed point [§][9].

There are three possible phases in the IR region; (a) a phase with a mass gap,
(b) a phase with massless particles, and (c) a Scale Invariant (SR) phase with
a continous spectrum. Recently new phases, besides the three stated above,
have been discovered [10), 11, 12].



Fixed points are points on a space of couplings where the beta functions vanish
(B(g) = 0). When the beta function vanishes, the coupling strength doesn’t
evolve with the energy scale. Therefore a zero of the beta function means that
the theory has evolved to scale invariance. Fixed points of the RG provide
examples of conformal field theories. The fixed points can be in the UV or IR
and we have no guarantee that a theory flowing from the UV or IR along an
RG trajectory will end up in a fixed point. However this turns out to be the

case in many physical systems.

At the fixed point the theory is conformal invariant. The possible macro-
scopic behaviour of the system at large scales is defined by its fixed points. At
this point we can use techniques of conformal field theories to understand the
general macroscopic features of theory that do not depend on the knowledge of
microstates. Since CF'T theories are mathematicaly controlable, this is helpful
in the study of strongly coupled systems where perturbative techniques are of
no use. Consider a simple field theory example which is a massless ¢* scalar

field theory with a Lagrangian
— a (1 2, 9 .4
L= [ dz(50u0) + ;9" ), (1.1)

This theory is an IR free theory or trivial theory whose coupling become zero
in the IR limit. When the theory flows to the UV region the coupling flow
diverges, i.e. hitting the Landau pole. In the IR limit ¢ — 0, the theory
is a free massless field. This point is called a Gaussian fixed point. The
corresponding beta function at this point is 5(g = 0) = 0. In d-dimensions

the beta function is

dyg 9°
o (4—d)yg+3-2.
e (4~ d)g+37—

(1.2)

Analyzing the beta function for different values of d. When d > 4 this function
is positive and from dimensional analysis the coupling constant g is irrelevant,
meaning the coupling will low smoothly to zero at large distances, and the
Lagrangian will flow to the free field fixed point. When d = 4 the same
analysis takes place although from dimensional analysis the coupling constant
g is marginal. However when d < 4, the first term in on the RHS increases
at large distance whilst the nonlinear second term in decreases. There



is a value of coupling g = ¢g*, where the increase and decrease effects of these

terms come into balance giving a zero of the beta function

1677
-3

*

g

(4_ d)? (13)

This is a nontrivial fixed point of the renormalization group flow in scalar field
theory for d < 4. If we consider values of d close to 4, where d = 4 — ¢ and
e — 0, this fixed point occurs in a region where the coupling constant is small
and we can use Feynman diagrams to study its properties. This point is called
the Wilson Fischer point [7]. At this point the theory is scale invariant, which

technically implies the theory is conformal invariant.

The conformal group is generated by the Poincare generators plus scaling

and inversions generators. The conformal group generators are

B, M, K, D, (14)

where P, is a translation generator, M,,, is a Lorentz transformation genera-
tor, K, is a special conformal transformation (SCT) generator, and D is the
dilatation (scaling) generator. For a theory with scalar operators ¢ having
conformal scaling dimension A, these generators constrain the two and three

point function up to the constant factor,

G)o) = S (o)) Ao

Cr—ylBlr — 2By — 2]
(1.5)

where c is constant and Ageg is a structure constant. But conformal invarinace
is not enough to constrain four point and higher point corelation functions.
Therefore we cannot obtain all of the correlators of the theory just from im-
posing conformal invariance. Recently there has been an interest in the use
of associativity of the Operator Product Expansion (OPE) and Bootstrap to
study higher point correlation functions and also the spectrum of CFT’s in
strongly coupled regimes [13][14][I5][16]. While Bootstrap is one of the tech-
niques for understanding strongly coupled regimes, another popular technique
for understanding this, is the AdS/CFT correspondence [I].



The objective of the project is to construct all possible local primary operators
using a product of n copies of elementary fields, both in the free scalar field
case and in the free fermion CFT. From here we use these primary operators
to compute their corresponding correlators. We begin by focussing on a free
field CFT in 4 dimensions (CFT4). Here the elementary field will transform in
a representation of the conformal group SO(4,2). Using the results obtained
in [I7] which give character formulae for the SO(4,2) representation for the

scalar field and the spinor field as

o
xv (s, z,y) =s(1—s%) ) s™Fiy
p,q

(x)xe(y) (1.6)

N

q
2

() (1.7)

[S]}

00
3
Xv(sv$7y) =s2 ZX‘IQLl(x)X
q=0

where x,(x) is the character for the left hand spin, and x,(y) is the character
for the right hand spin and, s® records the eigenvalue of the dilatation oper-
ator. We use the given characters to derive the characters for the symmetric
product of n copies of scalar fields. Since the fermions (spinors) are Grassmen
variables, we derive the characters for an antisymmetric product of n copies of
the fermionic field. We then devise a general counting formula for the primary
operators constructed from n copies of scalar or fermionic fields. Then using
the duality between primary fields and multi-variable polynomials, we map the
problem of constructing primary fields into a many-body quantum mechanics
problem, where each primary corresponds to a multi-variable polynomial sub-
jected to algebraic and differential constraints. One of the constraints, which
comes from free field equation of motions, is a second order differential con-
straint which requires the polynomial function to be harmonic. Adopting an
isomorphism between R* and C? x C? we are able to satisfy the harmonicity
condition. We achieve this by working with holomorphic variables (z, w, w, z).
For the scalar fields, selecting an extremal sector built out of (z,w) holomor-
phic variables results in a ring structure for the primary fields. This choice
of isomorphism reduces the second-order differential condition to a first-order

differential condition, which is a holomorphic condition.



The ring structure shows a palindromic Hilbert series property. The palin-
dromicity implies that the primary fields correspond to functions on Calabi-

Yau orbifolds which are
(C"/C x C"/C)/S,, = (C*)"/(C* x S,,) (1.8)

where n is the number of the elementary fields ¢. Generalising to the O(V)
vector model gauge invariant primary fields correspond to functions on a
Calabi-Yau orbifold with the geometry

(C?)*"/(C? x Sy[Sa]) = (C*/C x C*/C) /S, [S], (1.9)

where S,,[S2] is a wreath product of S,, with S3. We also consider a matrix
model with fields qﬁg transforming in the adjoint of the group U(N). We find
that the holomorphic primaries correspond to polynomial functions on the
Calabi-Yau orbifolds

(C"/C x C"/C x 8,)/S, = ((C?) x S,,)/(C? x S). (1.10)

The geometric structure found in these polynomial functions is novel and raises

new questions about the geometry of the primary operators.

A general CFT is characterized by the CFT spectrum of primary operators{A, R},
where A is the scaling dimension of the local operator and R is the SO(D)
irreducible representation of the primary operator, and the OPE coefficients.
We have managed to charaterize the free CF'T4 spectrum of the primary oper-
ators in terms of {A, jr, jr} where ji and jg are respectively the left hand and
right hand irreducible spin representation of the primary operators. Having
the complete CFT data will help in the derivation of any postulated holo-
graphic dual to the CFT4. Another possible application of our results follows
from [I8] which relates explicit information of the combinatorics of primary
fields and OPE coefficients of free CFT4 to observables in the epsilon expan-

sion.

The thesis is organised as follows. In chapter 2 we give a brief introduction

to CFT. We will introduce CFT symmetries and explain the consequences of



these symmetries for correlation functions. We will discuss a special type of
operator called a primary operator. In chapter 3 we will introduce and explain
the AdS/CFT duality. We will show how the degrees of freedom are matched
from the AdS and CFT side. Then we will describe the AdS/CFT dictionary
and how it works. In chapter 4 we will give a summary of higher spin theory
and how the AdS/CFT duality applies to higher spin theory. In chapter 5
we specifically talk about the paper published in [19], which presents novel
results. We discuss the results obtained from constructing primary operators
using n-copies of the free scalar field, and we extend this construction to O(N)
vector models and matrix models. In the last chapter 6, we extend the scalar
field analysis of chapter 5 to fermions (spinors). We construct the primary
operators using n-copies of left hand spinors. We observe that the extremal
primary operators exhibit the same Calabi-Yau geometric structure as in the
free scalar CFT. These geometric structures present in both the free scalar

and fermion CFT were not observed before.



Chapter 2

CFT Background

In this chapter we will give a brief introduction to the basics of conformal field
theory. The basic CFT ideas introduced here will provide the background for
ideas covered in the following chapters. We will give a simple definition of
what a conformal symmetry transformation is and discuss the consequences
of these symmetries on the observables of the field theory. In particularly
we will explain how they constrain correlation functions. We will discuss the
conformal Killing vectors in any number of dimesnsions. After that we will
introduce primary operators and discuss their properties. Then we consider
the radial quantization of the CFT where we develop the idea of state-operator
correspondence. Finally, we discuss the conditions on states/operators to en-

sure that the theory is unitary.

2.1 Basics of Conformal Field theory

A conformal transformation is a transformation that leaves the metric g, in-

variant up to a scaling factor Q(z) that depends on the spacetime coordinates,

oz dxP
M (') :wwnaﬁ(ﬂf) (2.1)

=Q(@) 1 (2).
From now on we specialize to flat spacetime. Considering an infinitesimal

conformal transformation x’* = x# + e, Q(z) = 1 + w(z), the above equation

implies the conformal Killing vector equation



2
Oues + Doty = < (9%a). (2.2)

Acting on (2.2)) with the operator d, and interchanging indices we obtain the

following 3 equations

2

0,06, + 0,0,€, = g77M,,6p(8°‘604) (2.3)
2

0u0y€, + 0,0p€, = Enpyau(a“ea)
2

0y0u€p + 0,0,€,, = gn,may(aaea).

Adding the first equation to the second equation and subtracting the third

equation we obtain

1
0,0,€, = 8(77W8,, — NupOu + 1w 0,) 0% €q. (2.4)

Contracting the indices above with the metric n”” we get

05, = 210,00, (2.5)

Acting on the equation above with the derivative d, we get

9,0z, = %aya“(aaea). (2.6)

Acting on the Killing vector equation (2.2 with the operator 930° we obtain

0,050, + 0,050%¢,, = %nwaﬁaﬂ (0%¢a). 2.7)

Symmetrizing equation (2.6)) and comparing with the equation above we obtain

(2 - d)auauf(x) - nﬂuaﬁaﬁf@')a (2'8)

where we have f(x) = 0%4(x). Contracting with n** gives



(d—1)950° f(z) = 0. (2.9)

Now consider

2

aﬂ(a)\el/ + 81/6)\) = 8771/)\8#(8 : 6)7 (210)
2

8A(8Hel, + ayeu) = gnﬁwa,\(a . 6), (2.11)
2

0u(@per + Ores) = 1urdu(- ). (2.12)

Performing the sum, (2.10) + (2.12) — (2.11)) implies

2
20,,0,€x = g(nw\({)u + A0y — N 0x)0 - €. (2.13)

Acting with 0* on both sides yields

20,0,(0 - €) = 3(8,,8# + 0,0, — w0 - 0)0 - € (2.14)
=0
= 0,0,(0-€) =0.
Therefore acting with 9, on (2.13)) shows
0,0,0,€x = 0. (2.15)

When d > 1, the above equation implies that the conformal Killing vectors €,

must take the general form

€p = Cy + aux” + byyr’zl. (2.16)

Equation (2.16)) shows that the function f(x) = 0%,(z) is linear in z. We

10



make an ansatz that

0% (z) = —(2b-x — N)d, (2.17)

which will be helpful shortly. Making the trick

0p(Ou€r — Ovey) =0,(0p€n + Ou€p) — 0,(0p€ + Op€p) (2.18)

2 2
zﬁu(dgpya . e) -0, <dgp,,8 . e)

=2 (gm0~ (20 2= ) = g D202 = X))

= — 49,0, + 4gpuby.

Integrating the equation above, we obtain

Ouer — Opey =4(gppbua” — gpubpa?) + 2wy (2.19)
=4(byx, — buxy,) + 2wy,

which implies that

Oper =Wy + 2(byxy, — byxy) — (202 — N g (2.20)

= €, =a, +wy ! + b,x> —2b-xxy, + ATy

(d+1)(d+2)

In d dimensions the conformal transformation has 5 transformation
parameters, given by
2" =z" + a#, Translations has (d + 1) parameters (2.21)
a'* =z# 4+ \x#, Dilatations has 1 parameter

d(d—1
't =t + wla¥ Lorentz has (2) parameters

2" =gt 4 2(box®) 2" — x?b" Special Conformal Transformation (SCT) has d parameters.

11



There is one transformation missing which is not connected to the identity
of the conformal group. It is a discrete transformation. This is the Inversion

transformation and is denoted as follows

o T
I.x“—ﬁ. (2.22)
The special conformal transformation can also be obtained by performing a
sequence of inversion, translation and inversion transformation. This is easily

demostrated as follows

o't =(Ie® T, (2.23)
:I(% + bu)
_ b
(55 0)?
xh 4 bHa?
14203+ 0222

. il Lt i ibH
Consider the conformal group element g = (10 Put 5w Myy +iAD+ib" Ky - o,

tained by taking the exponential of the conformal generators, P, M, D and
K,,. The conformal group element g, when it acts infinitesimally on the space-

time vector x® it transforms the vector in the following way

«

il MV 1 b
gz :e(za Pu+5wh” My, +iAD+ib Ku)xa (224)

=x% 4 dz°
—2° + (ia"P, + %w‘“’Mw +iAD + b K, )
=x%+a% + wo‘ﬁxﬁ + Az + 220 — 2b - zz®.
We can get the explicit expression of generators from the equation above by

comparing the terms in the last line with 3™ line terms. The comparison is

from the equation

a® + w*Prg + A + 220" — 2b - xx® = (ia" P, + %w“”MW +iAD + b K, )2,
(2.25)

12



Comparing the terms we find,

a® =ia" P,x” (2.26)
=ia'oy,
0
Y o
—z( ia &Uu)x ,
which implies that P, = —i%. Comparing the terms that involve Lorentz
transformation we see that
0By, L pg o 2.27
wag =50 My (2.27)
:%w“l’(cSﬁ:E,, 6o xy)
i 0 0
:iw/'“/ (‘Tyal'ﬂ "'UM axu>$a

, 0 0
= M/,LV :Z(x'uaxV — xyax,u)

For the Dilatation operator we have,

Ax® =i\Dz® (2.28)
:i)\x“@‘f
0
_ uw Y\«
=i\ <£L' E):U“)x
=i\(z - 0)z“
=D=—1ix-0

For the Special Conformal operator K, we have
2?0 — b xa® = M K,a°. (2.29)

The special conformal operator is

K, = a" + b'z* — 22b - 1. (2.30)

13



In d = 2, the Killing vector equation ([2.2)) becomes
Op€v + Ov€y = G (0a€”). (2.31)

We take the coordinates as (x1,x2). When p = 1 and v = 1, the metric

guv = 1 and the Killing vector becomes

O1€62 + 091 =0 (2.32)
e _ da
oxl a2’
This equation is one of the Cauchy-Riemann equations. Similarly when pu = v
we obtain
861 862
— = . 2.33
oxt Oz (2.33)

A function that satisfies the Cauchy-Riemann equations is an analytic func-
tion. Going to complex co-ordinates (z,Z), the conformal transformations in

two dimension are represented by analytic reparametrizations of the form

2z — f(2) z — f(2). (2.34)

Analytic functions satisfy the Cauchy-Riemann equations, which can com-

pactly be written as

)
= fz) =0. (2.35)

To obtain a basis for the conformal transformations, we consider co-ordinate

transformations of the form

L and . 27 =72, 2" ! (2.36)

/
Z— 2 =z —€,2

=z 40z Z+4+ 6z

The generators of the transformation are specified by

N
3
Rl
Il
=3}
Ql

lnz =02 and (2.37)

14



so that we identify the generators as l,, = —2"119, and [, = —z"t10;. These

generators satisfy the well known Virasoro algebra

[l ln) = (M — n)lman. (2.38)

2.2 Conformal Algebra

The generators of the conformal group SO(d,2) satisfy certain commutation
relations which give the conformal algebra of the group. The conformal group
algebra is (for d > 2)

[Myw, Pp] =i(60p Py — 0ppPy) (2.39)
[My, K| =i(00p Ky — 6p Ky (2.40)
(M, Myo| =i(00pMpue — 6pMye + 6vo Myup — e M) (2.41)
(D, P,] =iP, (2.42)

[D, K] =—iK, (2.43)
(K, P)] = — 2i(8,,D — My,). (2.44)

The first three commutation relations show that the operators M), generate
rotations in SO(d) and the operators K, and P, transforms as vectors. The
fourth and fifth commutation relations shows that the operator P, can be
viewed as the raising operator and the operator K, can be viewed as lowering
operator. For d = 2 the generators close the Virasoro algebra as commented

in the last section.

2.2.1 Primary Operators

The representations of the conformal algebra we are interested in, are those in
terms of local fields. Each irreducible representation of the conformal algebra

has a unique primary field. The conformal algebra of the generators on the
field Oa(z) with dimension A is
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[Py, Oa(z)] = — 10,04 () (2.45)
(D, Oa(x)] = — i(A + 21,)Oa () (2.46)
(M, Oa(x)] =i(2,0, — 2,0, + Mﬁ,)OA(x) (2.47)
(K, Oa(2)] =i(2w,A + 22" Mf + 23,2 - 0 — 220,)Oa(x). (2.48)

The action of the special conformal generator lowers the dimension of the

operator, since

DK, Oa(z) =D, K,)Oa(z) + iK,DOA () (2.49)
= — iKMOA(x) + AKHOA(.Z')
—i(A — 1)K,0(x).

If we keep on acting with the operator K, on the operator Oa(x), the dimen-
sion of the operator will keep on decreasing. Since dimensions are bounded
from below in physically sensible theories, the process of acting with K,’s
should terminate at some point. Operators that are annihilated by the action
of the conformal generator K, are called primary operators. They are defined

by the property
(K, 0a(0)] = 0. (2.50)

This is the standard defining property of a primary operator. We create the
descendents of the primary operator Oa by acting with the momentum gen-
erator on the operator Oa(z), which increases the dimension of the operator

since

DP,Oa(z) =D, P,JOA(x) + P,Oa(z) (2.51)
=iP,Oa(x) +iAP,On(x)
=iP,(A +1)Oa(x).

We can fill out the multiplet of the representation of the primary operator

Oa(z) with its descendents. Schematically
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Py, P, P,
OA(2) =D Ops1 () =D Opso(x) — =3 Opnpn(2). (2.52)

This representation is analogous to an irreducible representation of SU(2),
where we raise the weight of the state by acting with the angular momentum
raising operator. In our case the raising operator is represented by the mo-
mentum operator P, and, the lowering operator is represented by the special

conformal operator K.

It is straightforward to argue that invariance under the action of P,, M,,,
D constrain the two point correlation function of primary operators Oa(z) to
be

(O, (21) 0220 = (o (2:53)

We have not accounted for the constraint imposed by the special conformal
transformation (SCT) operator K,. We can apply the SCT to constrain c.

The action of the special conformal operator on spacetime co-ordinate x is

ot — = ——. (2.54)
xT-x
A useful identity is
1 ~2 52
=% (2.55)
w1 —@o|  |Z] — T3]

The primary operator transforms as follows under a conformal transformation

On (i) = (;)AOA(x). (2.56)

Therefore the action of the SCT generator on the two point function is
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(O, (21)0n,(%2)) = (On, (21)0a, (22)) (2.57)

The last line implies that

‘xl _ x2|A1+A2 7@1 _ j2|A1+A2 ’
= Al :AQ.

Since A1 = Ay this shows that ¢ = da,,a,, and consequently the two point

function becomes
0A1,A;
(Oa, (71)0na,(22)) = |z1 — x2‘A1+A2' (2.59)

Following a similar procedure for the three point function, conformal invari-

ance constrains the three point function to be

A000
<OA1 ($1)OA2 ($2)0A3 ($3)> = |x1 _ x2|A1+A3*A2|$1 _ x3’A1+A3*A2|x2 _ x3|A2+A3*A1 ’
(2.60)
A conformally symmetric 4 point function is constructed as follows
4
(O, (21)On, (22)Ony (23) O, (24)) = F(u, ) [ lwig|*7 (2.61)
1<J
where v = Vji, 2z %; = —24; and F(u,v) is an arbitrary function of
variables u and v,
_ |z1af|z34] _ |x12|!w34!’ (2.62)
|13] w24 |23||z14]

where z;; = x; — ;. These variables, called conformal cross ratios, are invari-

ant under conformal transformation. We can decompose the 4-point correla-
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tion function by using conformal blocks,

(Oa(21)OA(22)Oa(23)Oa(24)) =Y (A066)*Co(21401)Co (223, 02)(Onp (22)Onp (24))

6]
(2.63)
GO(“?“)
:Z()‘@@é)z Ao 270
) L1o " T3g

where Go(u,v) is a conformal block A\p5p is an operator product coefficient

and

Col(x,0y) ! v (1 + 02,0, + axtz" 9,0, + Bx?0* +---) (2.64)

= |x|A1+A2*
where o, o and [ are fixed by conformal invariance. The conformal block
Go(u,v) collects the contribution from the primary O and all of its descen-

dents, to the four point function.

2.3 Radial Quantization and State Operator Corre-

spondence

The Hilbert space in QFT can be constructed by foliating spacetime in d
dimensions with d — 1 dimensional spacelike surfaces. Each surface has its
own Hilbert space and these surfaces are all equivalent since they are related
by a unitary transformation. States are created on these surfaces by inserting
local operators. Usually the foliation is choosen to respect the symmetry of
the theory. In a system with Poincare symmetry, the spacetime is foliated
with surfaces of equal time and the states |1);;,) are defined in the past of the
surface and [1)y,:) are states defined in the future of the surface. An overlap

of these states living on the same surface is

<¢7anjout>‘ (265)

The unitarity evolution operator U is used to write the overlap as
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<¢in’U|7pout> = <¢in|eiHAt|¢out>a (2.66)

where H = PY is the Hamiltonian and At is the time. In a Poincare invariant

theory, states can be characterized by their energy and momenta,

PH|p) = p"|p). (2.67)

In CFT we apply a foliation process called radial quantization. In d-dimensional
CFT we foliate spacetime with S%! surfaces. This is related to a more con-
ventional quantization by a conformal transformation from R? to R x S%~1,
In radial quantization, the dilatation operator D is used to move between the

S9=1 gurfaces and the evolution operator is

U =elr (2.68)

with 7 = log(r) where 7 is the time. States living on these spheres can be

characterised in terms of their scaling dimensions

D|A) = iA|A)Y, (2.69)

and the SO(d) spin [

M|y = M AL, (2.70)

In the context of radial quantization we have a correspondence named the
state operator correspondence, which asserts that for each state there is local
operator corresponding to the state and the converse is true. Assume in radial
quantization there are no operator insertions. This correspond to the vacuum
state |0), invariant under all global conformal transformation. The dilatation

operator gives

D|0) = 0. (2.71)
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Inserting the spinless local operator Oa(xz = 0) at the origin creates the state
Oa(0)[0) = |A) (2.72)

since

DOA(0)|0) =A0A(0)[0) (2.73)
= 0a(0)[0) =|A).

Inserting the operator Oa(x) at the position z, we obtain the states

O (2)]0) =eF*OA (0)e 7 (2.74)
=" 0 (0)[0)
—¢iPT|A)
> ),
which is a superposition of states with different eigenvalues. Therefore local

operator Oa(z) is not an eigenstate of operator D.

2.3.1 Unitarity

Unitarity requires that all states in the Hilbert space have positive norm,
which leads to a bound on the scaling dimensions of the operators of the
theory. This means that the scaling dimension of the operators must be above
a certain value. Consider the kets |[{s}), where {s} = {s1,s2- -, sp} are SO(d)
weights and n = . The kets |{s}) represent the irreducible representation
that contains the lowest weight state. We will impose unitarity on the states
I{s}) = [I,A), where [ is the spin representation and A is the dimension of

the primary state. The action of the dilatation operator D on these states is

iD|{s}) = iD|l, A) (2.75)
= All, A).
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The state P,|l, A) has dimension A + 1. Since P;j = K,,, the requirement of

unitarity is equivalent to

{sHE WP {s}) =0 0K P A) > 0 (2.76)
=0, i(0 D — My)|l, A) >0
=(AN, (A — iMy,)|L, A) > 0.
For a positive norm state,
ANy > (NUiM |l D). (2.77)

The task that is left is to determine when the condition above is satisfied.
To compute (A, l|iM),,|l,A), we will use methods usually used to treat the

spin-orbit interaction. Towards this end, we write M, as follows,

) 1.
iM,, 252(5,“1(51,5 — 0u800a)Mag (2.78)

:(V : M)MVv

where (Vo) = —i(0padug — 6480ua) are the SO(d) generators in the vector
representation. (V'-M),, is a tensor product of two representation spaces, the
vector space and the spin representation space. We manipulate the operator
(V- M) as follows

1

V-M 5

((V+M).(V+M)—V.V—M.M). (2.79)

This is an analogue of a spin-orbit interaction in quantum mechanics

L-S:;((L+S)2—L2—52). (2.80)

The operator L in quantum mechanics is an analogue of V,,3 and the operator
S in quantum mechanics is an analogue of M,g. We know that the operators

S? and L? are Casimirs and their eigenvalues are

1 (l+1
LCED R (ER)

(2.81)
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respectively. We also know that the operator (L + S)? has Casimirs in the

tensor product [ ® s and the eigenvalues are

(11
M’ (2.82)
2
where j = |l — s|,--- ,l + s. The same treatment applies for the operator
1
V.M:2<(V+M).(V+M)—V.V—M.M), (2.83)

if we move to a Clebsch Gordon coupled basis in the tensor product space. On
this basis, (V + M)?2, V2, M? are good quantum numbers. If M transforms in
the representation R, then V2 and M? have Casimirs co(V) and c2(R = 1) and
the operator (V + M)? has Casimir in the tensor product V x R. Denote by R’
(R’ € V ® R) the representation with smallest quadratic Casimir. We choose
the Casimir co(R’) so that the we obtain the strictest bound. The equation

(2.77) becomes

Az (CZ(R) +eo(V) — CQ(R')) (2.84)

From [20], in an arbitrary dimension d, special representations obey
A >0 scalar

A >=(d—1) spinor

—~ N =

A >(d—1) vector.

The results found above are sensible since, the identity is a scalar representa-
tion with A = 0. For the spinors, the bound is saturated by the free Dirac

field, since
[VMP#7 w] = 0

gives the smallest Dirac representation and the scaling dimension bound A >
%(d — 1) has the canonical dimension of the Dirac field. For the vector field,

the vector operators that saturate the bound above satisfy
[P*,4,] = 0.

An example of operators which satisfy this condition are conserved currents.

The vector field A, from Maxwell theory is not constrained to have positive
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norm, because it is not gauge invariant. Its canonical dimension violates the

bound on the scaling dimension of vector fields.
Equation (2.84)) can be phrased in terms of spin [ and scaling dimension A as

Az (CQ(R) +eo(V) — CQ(R')) (2.85)

2;((d—1)+l(l+d—2)—(l—l)(l—1+d—2)>

>d—2+1.

So far the bounds we have found are from the norm of states which are de-
scendents of the primary. We can find new bounds which are from second

descendents by computing

(AN K KPPy | AL,

and demanding that we get positve norm states as follows,

0 < (ALK, K, PaPs| A1) (2.86)
= (0K ([Ky, Pol Py + PalK,, P, A)
= (A 20K, (6yaD — Myo) Py + 2K, Pa(8yeD — Myo)|l, 2).

We will compute results for [ = 0. For [ =0, M, |l, A) = 0. Therefore

0 < 2(A + 1)0pa (A K, Py |AY — 2i(A| Ky My Py | A) 4 28,6 (A K, Pa| )
(2.87)
= 2(A + 1)8,0 (A[2i(0u0D — Muo)|A) + 208,65 (A2i(8paD — Mpua)|A)
— 2((A|Ku[Mya, Pol| D)
= 4N (A 4 1)bpabuo + 406005000 — 2i(A| K (—i(0sa Py — 0vPa))|A)
= AN(D + 100000 + 40%0000 0 + 400500, — 40651010,

taking the trace by setting 1 = v and o = o, we obtain

0 <AA(A +1)d + 4A%d — 4Nd? + 4Nd (2.88)
<2A+2-d
d—2
A>—=.
T
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This is a sensible bound for a spinless operator or state. It correspond to the

dimension of the free scalar.

We have seen that unitarity bounds of the scaling dimensions A in terms of
the spin s of the primary operator. Primary operators with scaling dimension
below the unitarity bound will have negative norm states, which violates uni-

tarity.

In radial quantization, overlaps and states can be interpreted in a quantum
mechanical sense, where states evolve using a unitary operator U. Further,
overlaps of states map to correlation functions of operators. This implies
useful parallel between CFT and Quantum mechanics. This completes our
introduction to CFT. In the next chapter we develop some of the ideas behind
the AdS/CFT correspondence.
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Chapter 3

Basic Introduction to

AdS/CFT

In this chapter we will unpack and discuss the idea of AdS/CFT duality and
the AdS/CFT dictionary. We begin by discussing the geometry of AdS space-
time. Since the AdS gravity and the CFT theories live in different dimensions,
it is not obvious that the two describe the same degrees of freedom. We show
how the number of degrees of freedom are matched by relating the entropies
between the two theories. In order to illustrate the AdS/CFT dictionary we
discuss the well studied example of the AdS/CFT correspondence between the
N = 4 super Yang Mills theory and the type I1B string theory on AdSs x S°.

We will discuss the matching of parameters between these two theories

3.0.1 AdS/CFT

The AdS/CFT correspondence states that a Quantum field theory which is
a Conformal Field Theory living in d spacetime dimensions can be described
by a quantum gravity theory on d + 1 dimensional AdS spacetime. This CFT
lives on the boundary of the bulk gravity theory. The duality between these
theories is a weak/strong relation. When the CFT is strongly coupled, the
gravity side is weakly coupled and the converse is also true. This implies that
the correspondence relates strongly coupled QFT to a classical description of
gravity on the AdS,;y1 spacetime. The duality can also be used to handle a
generic strongly coupled conformal field theory living on the boundary of a

classical AdSyy1 bulk. The most well studied example of this correspondence
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is between N = 4 SYM with gauge group SU(N), in the large N and type
I1B superstring theory on AdS5 x S°.

3.1 Anti-de Sitter space

Finding the dual geometry associated with the given QFT is not trivial in
general. But if the theory is at a fixed point, the 8- function vanishes and the
theory enjoys conformal invariance, which means at the fixed point the QFT
becomes a CFT and thanks to the extra symmetry we can now easily find
the metric for the theory. For a QFT in d-dimensional spacetime, the most

general Poincare invariance metric is

ds® = Q%(2)(—dt* + dz? + d2?) (3.1)

where (Z = x1,x9, -+ ,x24-1), 2 is the coordinate of the holographic-dimension
and Q(z) is determined by enforcing conformal invariance. When the theory is
conformally invariant, under the transformation (¢,7) — A\(¢,Z) and z — Az,

Q(z) transform as
Q(z) = A71(2), (3.2)
which fixes

Qz) = é

, (3.3)

where L is a constant. Thus, the metric becomes

L2

d32—72
z

(—dt? + dz?* + d2?). (3.4)
This is the line element of AdS in (d+1)-spacetime dimensions, which is de-
noted as AdSg11, The constant L is the Anti-de Sitter radius. In the
conformal boundary of the AdS space is at z = 0. The metric is singular
at this point, which means we will have to introduce a regularization scheme
in order to physically define the observable quantities in the boundary of the
AdS. The AdS metric is a solution to the equation of motion of a gravity

theory with action
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1

_ 1, /= _ oA 2 3 > .
167TGN/d xy/ g( + R+ aR*+ bR’ + ) (3.5)

where Gy is the Newton constant, a, b are constants, and g = det{g.}. R
is the Ricci scalar (R = g"”R,,) and A is the cosmological constant. When
a=0b=-..--=0, the action in becomes the Einstein-Hilbert action of
general relativity with a cosmological constant. In this scenario the equations

of motion are just the Einstein equations,

1
R,uzx - §Q;WR = Ag,uu (3'6)

where R, is the Rici tensor. AdS is a special case of the known maximally

symmetric spacetimes for which

1
RaﬁWﬂ = _ﬁ(ga’ygﬂp - goapgﬁ'y)' (37)

The reason for why the underlying spacetime of the dual bulk gravity theory
is Anti de-Sitter is hidden in the symmetry structure of the spacetime. To see
the isometries it is useful to construct the AdS;,1 spacetime by embedding it
in R%2 with the metric

d
ds® = —dyg + > dy? — dyg, (3.8)
=1

where go3 = diag[—,+,--- ,+, —| and the AdSy; spacetime is described by

the surface

d
—5 + D _dyi — yqp = —L% (3.9)
i=1

Using this metric different forms of the AdS metric can be obtained by us-
ing particular transformations. For example, we can obtain a global AdS by

making the following transformations
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yo = L(1 + %) cos(7), Yar1 = L(1 + )2 sin(r), yi = LrQ5_,
(3.10)

where r € (0,00) and 7 € [0, 27].

3.1.1 AdS and CFT Degrees of Freedom

The gauge/gravity duality raises many conceptual questions, including the
matching of the number of degrees of freedom on both sides of the corre-
spondence. The number of degrees of freedom in a system is measured by
its entropy. On the QFT side in d-spacetime dimensions, the entropy is an
extensive quantity, proportional to the volume of the system. If R; ;1 is a

(d-1)-dimensional spatial region of the QFT at a fixed time, the entropy is

SorT X Vol(Rg—1). (3.11)

On the gravity side, the theory lives in a (d+1)-dimensional spacetime. It
sounds a bit absurb that a theory in (d+1)-dimension contains the same en-
tropy as its dual with a lower dimension. The entropies are the same because
the entropy of the gravity theory is subextensive. On the gravity side, the
entropy in a volume is bounded by the entropy of a black hole that fits inside
that volume and, the entropy is proportional to the area of the surface of the

blackhole horizon. According to the Bekenstein-Hawking formula

S=—_, (3.12)

where A is the area of the event horizon and G is the Newton constant. We

now want to explain how to match the entropy in (3.11)) and (3.12). Let R, be

a spatial region in the (d+1) dimensional space time where the gravity theory
lives. Then R, is bounded by a (d-1)-dimensional manifold Rg—1 (R4—1 =
ORy). From (3.12) the gravity entropy is proportional to

S(Rg) x Area(0Rg) x Vol(Rg-1) (3.13)
which roughly agrees with the entropy result of QFT in (3.11]).
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More concretely, on the QFT side, we can regulate the theory by putting
in both a UV and an Infrared (IR) regulator. We place the theory in a spatial
box, which serves as an IR regulator. We then descretize the system by putting

it on a lattice with spacing e, which serves as a UV regulator. In d-spacetime
R

dimensions the system has (?)d_l cells. If we identify corr to be the number
of degrees of freedom per lattice site, where cgpr is the central charge, then

the total number of degrees of freedom is

SQFT = (6) CQFT- (3.14)

The number of degrees of freedom on the gravity side, which is AdSg.1 is

given by the Bekenstein-Hawking formula,

Ap
S = — 3.15
AdS 4GN’ ( )

where Ay is the area of the region of AdSy,1 at the boundary when z — 0. Ay
is found by integrating the volume element corresponding to the AdS metric,
ds? = L (—dt? + di? + dz?) sliced at z = € — 0,

41
_ d—1 _ (L d—1
Ay = /Rdl,zed T\/g = (e) /Rdl,zgd z. (3.16)

The integral on the RHS is the volume element of R, and it is infinite. We
regulate the infinity by placing the system in a box of size R, the same way
we did on the QFT side, so that

/dd_lx = R4L. (3.17)

Therefore

Ay = (L>d_1Rd—1. (3.18)

€

If we introduce the Planck length [p and the Planck mass Mp for a gravity
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theory in d + 1 spacetime dimesnions, and identify

Gy = (lp)" " = (]Wpl)d—l’ (3.19)

then the number of degrees of freedom in an AdS,4y1 space is

Sads = i(f)d_l (i) (3.20)

Comparing the entropy of the QFT (3.20) and AdS (3.14]) side we conclude
that

1/ L d—1

which shows that S44s and Sgrr scale in the same way with the IR and UV
cutoffs R and e.

This is the matching condition between gravity and QFT. The action of the

rd-1 L\d—1
Gn (E)

multiplying it. We know that a theory is semi-classical when the coefficient

gravity in the AdSy41 space of radius L, has a factor of

multiplying its action is large, so that the theory is dominated by a saddle

point. This means that the classical gravity theory is reliable when

L\41

— () > 1. (3.22)
lp

This happens when the AdS radius is large compared to the Planck length [p

and, since the scalar curvature goes like 1/L?, the curvature is small compared

to the Planck length. This means QFT has a gravity dual when the central

charge cqpr is large, so that the number of degrees of freedom per unit volume

is huge.
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3.2 Large N Limit

The dual stringy description of a gauge theory can be perfectly illustrated by
looking at a U(N) Yang-Mills theory with Lagrangian

1
E - —TFMVQFGMV, (323)

9y M

where Fy, is the non-Abelian gauge field strength written as follows

Ff, = 0,A% — 0,A% + i fp AL, AT (3.24)
Al — At =UVALU —iUT0,U, (3.25)
where f{ is a structure constant of the SU () group and Aj,a=1,--- ,N?is

the gauge field. It can also be written as an N x N matrix [4,],g. Introducing
the 't Hooft coupling A = g%-,, N, the Lagrangian is written as

N
L=~ Tr(FuF"]. (3.26)

Perfoming a 't Hooft expansion [21], A is kept fixed and the expansion of the
amplitudes is a double expansion in powers of N~2 and A. Using the double
line notation (Feynman rules), each Feynman diagram triangulates a surface

and different powers of IV corresponds to different topologies of the surface.

Computing Feynman diagrams for a matrix model we realise that every index
loop contributes with a power of N to the diagram amplitude. In general the

amplitude is given by

A E N \%4
Aamplitude"’ <N> (V) NF, (327)

where F is the number of propagators (edges), F' is the number of loops (faces)

and, V is the number of vertices. The sum of terms
F—-FE+4+V =y, (3.28)

is called the Euler characteristic, and it depends only on the topology of the

surface associated to the Feynman diagram. For diagrams which triangulate
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a surface with A handles
Y =2 2h. (3.29)

The perturbative expansion (genus expansion) of a generic amplitude takes

the form

Fn(N) =) Cp pN2-2hy2h=2t] (3.30)
hf

3N (),

h=0

where fi(\) = S A24/Cy, ¢ and fi(\) is the sum of all the diagrams with
h handles. In summary, correlation functions of gauge invariant operators can

. . 1
be arranged as an expansion in 5.

3.3 Dictionary of AdS/CFT

The most well studied version of the correspondence is between N' = 4 SYM
and IIB string theory on AdSs x S°. The action for the CFT is

1 0 . _ : 6
L=tr( = o Fu g o P = (0" Doty — Y (D) (D)
295 s 8 =

(3.31)

+ gy MO il o™ 5] + %Q%M > oM, ¢N]2>

M,N

where ! and 1/1;3 are Weyl fermions C}& are the structure constants of the R-
symmetry group SU(4), M are the scalar fields and F),, is the non-Abelian
field strength. We can often use the supergravity approximation to string

theory. The action for supergravity is

1 10 ( 1 T 2 o 1 2)
= - —Z|F -
Sitb =15 | V(R = gz g = 4IB = [Gaf = 517
(3.32)

10
32mG /d zA4 A Gs A G3 + fermions.
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G is a 3 form field strength, F; is a 1 form field strength, F5 is a self dual 5
form field strength, G5 is a 3 form field strength which is dual to G3, R is the
Ricci scalar and 7 is a complex scalar field. The dictionary of the correspon-

dence is partly determined by matching

1. Parametrs
2. Spectrum

3. Correlators.
Each of these three aspect will be discussed below.

3.3.1 Parameters

The CFT living on the boundary has two parameters, A and N. A determines

the strength of the interactions. This parameter translate as follows[I] 22} 23]

2 L !

where [ is the string length and L is the radius of curvature of the AdS

spacetime. The above equation can be rewritten as[I], 22, 23]

g_i (3.34)
TR .

When

A>1=L> I, (3.35)

and string corrections can be neglected since curvatures are small. The clas-
sical supergravity action can be used. The 10-dimensional Newton constant
will now be related to string parameters as follows

167G = (2m)"g212, (3.36)

with g% M = 4mgs, where g is the string coupling strength. Using this the

equation above becomes][ll, 22| 23]
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s_ T4 s
Finally the relation between the Planck length [, and the radius of the AdS
space is given by[ll 22} 23]

L, 8 gt
Spectrum

In gauge theory the observables are gauge invariant operators which can be
both single trace and multi traces. Consider local single trace operators of the

form

trip™ (z)p™ (2)], trlp™ () - oM (2)). (3.39)

These single trace local operators correspond to the fields on the gravity side[2]
24]. Any field in 10 dimensional supergravity on the AdSs x S° background
can be decomposed into an infinite set of fields on AdSs;. This technique is
referred to as Kaluza-Klein decomposition. Compactification on S° creates a
discrete set of modes in the spectrum with only the zeroth mode surviving
in the low energy effective action. Here is an example of the correspondence

between operators in the CFT and fields in string theory [2] 24]

Ty (z) (Stress energy tensor) < g (x) (3.40)
Ji7 (z)(Conserved current) +» A}/ (r) (Gauge field in AdS).

3.3.2 Correlators

The boundary of AdS;11 spacetime is a conformally flat d-dimensional space-
time on which the CFT is formulated. String fields in the bulk spacetime are
fixed to value J at the boundary of AdSg;1. The boundary values J behave
as sources for the CFT operators. This is possible because for every string

observable at the boundary of AdS;1 there is a corresponding observable in
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the CFT. More concretely the CFT Lagrangian with the source term J(x) is
L= L+ J(x)O(x)=L+ Ly, (3.41)
where O(x) is the CFT operator and the corresponding generating function is
ZewrrlJ] = (exp| / L) err. (3.42)

The connected correlators are obtained from (3.42)), by taking derivatives of
the logarithmic of Zgpr as follows

(100} =TT 57 o8 Zor 1] (3.3

J=0

On the gravity side we have a bulk field ¢(z, z) fluctuating in AdS with ¢g(z)
being the boundary value of ¢(z, x),

do(x) =¢(z — 0,x) (3.44)

=0|y4ps()-

As mentioned earlier, the ¢ field is related to a source J(z) for the dual oper-
ator O in the CFT. The AdS/CFT correspondence implies that the generating
function is given by [25][26],

Zorrpe] = (exp| / $0O)CrT = Zgravityld — o) (3.45)

The most important take away from this chapter is the AdS/CFT dictionary.
A correspondence was formulated using the parameters between the two the-
ories. With this correspondence we can now see clearly the interplay between
weak and strong coupling. In the next chapter we will consider higher spin
theory and its duality to the free O(IN) vector model. This is the example of
AdS/CFT of most relevance for this thesis.
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Chapter 4

Lightning Review of Higher
Spin Theories

In this chapter we explain the relevance of studying higher spin theories for
understanding AdS/CFT. We will review relevant work that has contributed
in the field of higher spin theories. We will then discuss some interesting re-
sults that have been achieved in the free field CFT. Through the discussion
we will see what kind of higher spin operators have been constructed thus far.
This chapter connects the objective of this project with higher spin theories

and more generally with AdS/CFT. It clarifies the purpose of this project.

4.0.1 Higher Spin/CFT duality

Since the AdS/CFT duality was proposed by Juan Maldacena, there has been
no formal mathematical proof for the duality. A significant task is left to
prove and understand the duality at a mathematicaly rigorous level. Study-
ing Higher Spin (HS) gravitational theories might lead us to a better under-
standing of how the AdS/CFT duality works. The higher spin theories are
favourable in helping understand the duality because they have the right struc-
ture to be dual to a free vector model CFT at the boundary of AdS.

Higher spin theories were conjectured to be dual to a vector O(N) model
by Klebanov and Polyakov [27]. This conjecture was followed by a N' = 1
supersymmetric generalization by E. Sezgin and P. Sundell [28] and [29]. This

was then followed by conjectures relevant to Chern-Simons gauge theories cou-
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pled to vector models [30} 31], and the 3d bosonization duality [32] B3] relating
scalar and fermionic theories coupled to Chern-Simons. Before AdS/CFT was
conjectured, a Russian Physicist, Vasiliev, constructed a fully non-linear the-
ory of interacting higher spins in AdS [34] and exact non-linear equations of
motion for the theory. In higher spin theory, the interactions are in the form
of higher derivatives and the spectrum contains gauge fields starting with spin
s = 2 followed by an infinite tower of HS fields. Since HS theory always con-
tain gravitons s = 2, this means that they are a theory of quantum gravity.
The higher derivative (interactions) are in inverse powers of a cosmological
constant. Because of their infinite dimensional HS symmetry, the theory can

be identified as a UV complete theory of quantum gravity.

4.0.2 Free Field CFT with Higher Spin Currents

[35] studied a simple free field CFT with the action

5= ;/ddx(ﬁu¢)2. (4.1)

From ordinary standard QFT we know that the theory has a symmetric trace-

less conserved stress-energy tensor

Ty = 4(d = 1)0,00,¢ — ((d — 2)0,0, + guV82)¢2- (4.2)

This stress energy tensor has spin s = 2 and, dimension A = 2(% —1)+s=d.
The above CFT has a much larger symmetry than just conformal invariance
which is realised through the construction of the conserved HS currents that

are bilinear in scalar fields and have spin s [35],

z - (81 —82)

2 (O £ ) (4.3)

Jo=(z- (0 + 02))505/2—3/2( )¢(w1)¢(fc2)

Ty, L2—T

C’g /2-3/ 2(33) is a Gegenbauer polynomial and z is a polarization vector. This
tower of higher spin currents is conserved 0"J,,..,,, = 0, symmetric and

traceless which corresponds to an irreducible representation of SO(d) of spin
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s. In the SO(d) representation the spin operators satisfy the unitary bound
A<d—2+s, (4.4)

which means that for the currents above the unitary boundary is saturated.
For s = 2 spin currents, we can verify that J,, is equal to the stress energy
tensor (4.2]). The conformal algebra for a s = 2 theory is the normal conformal

algebra with the conformal generators of the group being
P, My, K, D, (4.5)

where P, is the translation generator, M,,, Lorentz generator, K, special con-
formal generator and D is the dilatation generator. These generators can be
recovered from a CFT argument. For a CFT with a conformal Killing vector
¢*, satisfying the conformal Killing vector equation 0,,(, +0,(, = % 9 (0,CP),
we can construct a conserved current J, 5 = T,,¢" from T}, (stress-energy ten-
sor). Using standard QFT techniques we can obtain the conserved charges
from the conserved currents. The conserved charges are the generators of the
symmetries of the theory. The Killing vectors are in one-to-one correspon-

dence with the generators.

When we go to higher spin theory, since the theory (CFT) has conserved
higher spins currents, the theory has infinte dimensional extension of the con-
formal algebra, which is called the HS algebra. One needs an infinte tower of

charges to close the algebra.

4.1 O(N) Vector Model

We will now consider a free O(N) vector model with N massless fields. The
model has a global O(N) symmetry where ¢ transforms in the fundamental

representation. The O(N) vector model action is given as

1 o
S=3 /ddxamlauqs% i=1,.-. N, (4.6)

the equation of motion is pretty much the same as in the free scalar case,
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9,0"¢" = 0. (4.7)

The model has the same conserved higher spin (HS) currents, but now with
additional O(N) indices

.¢j'

These operators can be be decomposed into irreducible representations of
O(N)

J9 = J+ JW) 4 gl (4.9)

where J; are O(N) singlets, Js(ij ) are symmetric traceless and Js[ij] are anti-
symmetric representation operators. Consider truncating to the O(N) sin-
glet sector which corresponds to taking the single and multi-trace opera-
tors. In the AdS/CFT correspondence, these single trace operators ¢'0,¢’
correspond to the single-particle states in AdS and the multi-trace operators
(105, ) (9205, 9'2) - - - (¢ s, p') correspond to the multi-particle states in
AdS. Single trace operators are bilinears in the fields ¢‘. The full list of these
single trace operators J includes s = 0,2,4,6,---. The operator Jy = ¢'¢’
and its dimension A and spin s are (A, s) = (d — 2,0). The singlet operators
Js have dimension A and spin s, being (A, s) = (d—2+s,s). The CFT single
trace spectrum (A, s) should match the single particle spectrum of the bulk
dual, and also the multi-trace operators spectrum ((A,s)) should match the
multi-particle spectrum in the bulk dual (AdS). The conserved currents in the
CFT correspond to the massless gauge fields in the AdS. A familiar example
is the spin 1 conserved current in CF'T corresponding to a gauge field in AdS,

and the spin 2 stress energy tensor in CFT correspond to the graviton in AdS,

0-Js=0 & Massless HS gauge fields (4.10)
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When interactions are switched on, the current operators are not conserved
anymore and they now correspond to a massive gauge field 15 in AdS. Consider
the scalar current operator Jy = ¢‘¢’. Even though it appears in the free CFT,
it is dual to the bulk scalar field ¢ with mass m?,

Jo & Scalar field o with m* = A(A — d) /144, (4.11)

where A is the scaling dimesion of the operator Jy, so that m? = —2(d—2) /1% 5
in the free CFT where A = d — 2. The global HS spin symmetry on the CFT
side correspond to the HS gauge symmetry on the AdS side, generated by s—1
gauge parameters. This will be discussed in more detail in the next section,
when we talk about the Fronsdal equations in AdS. The spectrum in
and correspond to the minimal bosonic higher spin theory in AdSgyq
[36]. After matching the CFT operators with the bulk gauge fields, the next
thing to do is to compute the correlators on both the CFT and AdS side. The
CFT correlators are computed using J; singlet current operators. As usual
we sum the Wick contractions between the fields in these Jg currents. The
results from the three point function computed in [24], 2, 37] for a normalized

current Jg ~ ﬁgbi&gqﬁi give

(Js1 Tsz Jss) (4.12)

1
Nﬁ.

These correlators can be represented by a triangular diagram as shown below

Jsi1 ~ ¢0% ¢

(Js1Js2Js3)crr =

Joo ~ 326 T3 ~ ¢3¢
Figure 4.1: 3 point function of higher spin operators in CFT
In the diagram above each line represents a scalar propagator and the vertices
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contain appropriate derivatives. These derivatives of the AdS Vasiliev theory
are linked to the interactions between the bulk dual fields. The correlator in
(4.12) should be matched to the dual Witten diagrams [24] 2 [37] which are

(Js1Js2Js3)crr =

Figure 4.2: Holographic 3 point function

Here the factor \/% sets the coupling of the higher spin gravity

1

Gbulk ™~ \/7N (4.13)
Now the action in the bulk is written as follows
1 d+1 1 d+1
GN/d Lyuik = 7 d 2 Ly (4.14)
bulk

with the Newton’s constant Gy ~ N~!, showing that the % expansion on
the CFT side is mapped to the pertubative expansion on the AdS gravity
side, as powers of Gy. This non-trivial computation [24] 2] 37] shows that
the free O(IN) vector model (singlet sector) is dual to the HS gravity in AdS,
sometimes referred to as higher spin/vector model duality. One can generalize
the O(N) vector model to the U(IV) vector model by working with complex

scalar fields and develop the same ideas and computations [35].

4.2 Fronsdal Higher Spins Equations in AdS

We now focus on the AdS side. We will discuss what has been achieved for

the massless higher spin fields. These are the fields related to CFT conserved
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HS spin primary operators. We will first discuss the Frondal equations in
flat spacetime. We start by discussing the dynamics (equations of motion) of
the familiar spin s = 1 and s = 2 cases of HS fields, before considering the
dynamics of general HS fields. Consider the gauge field A, that has spin s = 1
with gauge symmetry

A, = e (4.15)

where € is the gauge parameter. The Lagrangian for this field A, is the known

Maxwell Lagrangian with the action

1 v
S = ~1 /dd:r:FWF“ F,.= 8uA,, — OV Ay, (4.16)

and the Maxwell equation of motion follows,

O F™ =0 or 0,0%A, —0,0"A, =0. (4.17)

For s = 2 we have the Einstein equation of motion with zero cosmological

constant

1
R/“/ — igul,R =0. (418)

Expanding around the flat metric g,, = 7y + hy, the linearized equations

for hy, is

000Ny — 0,0 N, — Dy hpy + 0D 1 = 0. (4.19)

This is invariant under the gauge transformation

Ohuy = Ou€y + Opep. (4.20)

We now want to generalize this to the massless HS fields 1, 4,....,. The HS

field ¥, yy--.pu, is required to be totally symmetric and double traceless
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Y 0. (4.21)

BoVps s

The gauge transformation of the HS field is

5¢“1...#S = G(Mem.uus), (4.22)

where the closed brackets on the indices symmetrize the enclosed indices. For
the HS field in (4.21)) to be gauge invariant, the spin s — 1 gauge parameter

€11 25—, De€ds to obey the traceless constraint

 ppigeopsy = 0- (4.23)

Then, the general equation of motion for a HS gauge fields is

s(s—1)

Fiuvetis = 000Uy sy = 50 Vg + =

8(,“ Ops 1/1%.““5)“” = (s.
(4.24)

These equations generalize the previous s = 1 and s = 2 cases. The Lagrangian

for these HS gauge fields is

(4.25)

1 P
S:/WMW“Wﬁwm,Tf@—U%W3mfwy%)

To remove unphysical degrees of freedom from the HS gauge fields, the gauge
is fixed by choosing 1,,...,, to be transverse and traceless. The equation of
motion in (4.24) will reduce to the Fierz-Pauli equations

ety = 0 (4.26)
8M¢uu2--~us =0

iz —
Vs = 0-

To completely fix the gauge, there are also gauge parameters €,,..,,,_, that

need to be gauge fixed. They satisfy similar Fierz-Pauli equations
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0a0%€p; s, =0 (4.27)
0" €ppn- g1 =0

n _
€ ppzeops—y = 0-

These are constraints on the Fronsdal field in flat spacetime. Next we will

look at the Fronsdal equation in curved space.

4.2.1 HS gauge fields in AdS

To generalize the Fronsdal equation from flat to a curved space it is not straight
forward. Simply replacing spacetime derivatives with covariant derivatives
only works for minimally coupled (to gravity) HS fields. For a general curved
background this procedure doesn’t work since the covariant derivatives do not
commute and the Fronsdal equations are not gauge invariant. A maximally

symmetric background [38] with the Riemann tensor

1
Ruvpo = *%(gypgua - g,uagup)a (4.28)

solves this problem. The gauge invariant Fronsdal equation of motion in AdS

is

s(s—1 .
gv(mvuzww...us) f (4.29)

2 2
1
<((5 —2)(s+d—3) = 8)Yuyp, + 8(84)9(u1u2¢u3---us)u) =0,

V2 hpyeopsy — SV (s Vi gy

o
lAdS

where the second term in the second line is the compensating term needed to
make the equation of motion gauge invariant. The equation above is invariant

under the gauge transformation

Oy = V(1 €pgeropis) - (4.30)

Applying the gauge fixing by requiring the field 1,,...,, to be transverse and

traceless, the equation of motion then reduces to
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s—2)(s+d—3)—s
<v2 _ (3= P ) >11)m...“8 =0 (4.31)
V% gy = 0
ZILS"'HS = O’

which are the Fierz-Pauli equations on a curved space. To completely fix the

gauge, the gauge parameter €,,...,,_, should satisfy the equations

(s —1)(s+d—3)
(v2 — P €proppe 1 =0 (4.32)
V¥ gepps_y =0
& ypgns s = 0-

Fronsdal equations are linear and are based on a metric-like formulation. Next
we will discuss HS gauge fields in the frame-like formulation. This is relevant

for introducing interactions, as shown by Vasilliev.

4.2.2 HS Gauge Fields in Frame-Like Formulation

Vasiliev’s non-linear HS theory is based on the frame-like formulation and gen-
eralizes the vielbein approach to gravity using the differential forms language.

In gravity we can introduce respectively the vielbein and spin connection

ey wzb. (4.33)
The vielbein is related to the metric by
I = nabeZel,j. (4.34)

correspond to a gauge field with the local Lorentz

Here the spin connection wfjb

a

rotations acting as gauge symmetries. The vielbein e,

and spin connection wzb

can be combined as components of the one-forms,

e = ey dx" w? = wzbd:z". (4.35)
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These forms obey the Cartan structure equations

de® + wi Neb =T° (4.36)

1
dw® + wi N w = R R = SR dat A da”,

where T is the torsion two-form and R is the Riemann tensor two-form.
When 7% = 0 we have

Rywpe = R epaton. (4.37)

b

Since w® is a gauge field of local Lorentz transformations and €* transforms

as a vector under Lorentz transformations, the Lie algebra is of the form

[Maln Mcd] = Z.(lec]\4ad - nbnda - nachd + nandb) (438>
[Maba Pc] = i(nbcpa - nacpb)

7

[Paa Pb] - Maba

Bras
where P, corresponds to the generators of local translations. This is the AdS
algebra SO(d,2). We can build a one form W as follows

1
W = —i(e®P, + 5uf“izmd,), (4.39)

which is intepreted as the gauge field of the Lie algebra in (4.38). The curvature
of W is

1 1
dW + W AW = —i(de® + wi A e®) P, + i(dwab +wd Aw® + P—ea A €?)Myp)

AdS
(4.40)
- (a 1 ab 1 a b
=—i(T"Py + (R 4+ 5—e" Ne”) Mgyp).
2 Faas
For a flat connection on W the above equation becomes
dW +W AW =0. (4.41)
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The solution to this equation is

1 1
T*=0 and R% = —%e“ Ne’ = Ryypo = —%(gm)gw ~ GuoGup)-

(4.42)

This shows that the flat connection is related to a maximally symmetric back-

ground. The gauge transformation for W is

W = de + [W, €] (4.43)

1
€= —i(e" Py + §eabMab),

where €* and € are the gauge parameters for local translations and local
Lorentz transformations respectively. The generators P,, M, are combined
into @ generators Typ, where A, B=0,--- ,d and W = —iw?BTyp [39].

Generalizing to higher spins, the vielbein is given by the one-form
ettt ml = et et dh (4.44)

where e®17"%s-1 ig totally symmetric and traceless in the indices a; - - as—1,

Nape™3 %=1 = 0. (4.45)

We will use the Young tableau notation [ni,ng,ng,---,ng] where n; is the
number of boxes in the i** row. The tensor e®%-1 is in a reducible SO(d)

representation and it decomposes as follows

[1,0,0,---]®[s—1,0,---] =[s,0,--- ]+ [s—2,0,--- ]+ [s —1,1,0,-- -]
(4.46)

where the first two representation on the RHS represent a symmetric and
double traceless HS field, which is the Fronsdal field (¢,,...,,). The third
representation on the RHS is a hook Young diagram representation which
corresponds to gauge redundancies, so the corresponding gauge field has to be

a1-Gs—1,

of the form wy, > This is the general spin connection in HS field theory.

Unlike the s = 2 case, solving the analog of (4.41]) in HS theory does not give
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. . . al-as—1,b . .
a unique spin connection w,f *~17 Rather a tower of HS spin connections

are required to fix this gauge redundancy. Therefore HS fields in the framelike

description have the following vielbein and spin connections [39],

eqras (4.47)
wi e =12 s~ 1L

The HS analog of (4.41)), which will allow the HS spin connection to be solved

in terms of an HS vielbein is given by the equations

R™M =1 =() (4.48)
RMas-1,0 ()

R as—1,01bs—1 g O as—16b1bs—1d

(0)c N €(0)a
where R @s-1:b1-0s—1 are curvature two-forms that generalize and
Coras—16b1-bs—1d i the HS generalized Weyl tensor. It is built out of s deriva-
tives of the Fronsdal field, and 6?0) is the tree level vielbein field from the fluc-
tuation ej; = e?o)u + ¢€),. Just as in the s = 2 case, e*'"%~1 and W @s—1,b1be
can be combined into a gauge field w1 As=1:B1Bs-1 where A, B =0,--- ,d.
This gauge field is now in the representation [s — 1,s — 1,0,---] of the AdS
algebra. Each gauge field can be associated to a generator T's,..a, , B,.-B,_,

in the same representation. These HS fields can be combined into one field

W=—i) whrdsnBrBoar, 4 s, (4.49)
S

The generators T'a,...a,_,.B,..B,_, are the same generators from the CFT HS
algebra constructed in terms of Killing vectors. These generators on the AdS
side form the gauge algebra. To linearize (4.49)), expand around the AdS

background to linear order in the fluctuations w = wy + wy, to obtain

. AB . AyAs—1,B1--Bs 1
W = —iwy " Tap — szl s *'TA Ay ,B1Bo_1- (4.50)
S
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The linearized gauge transformation becomes

dwy = de + [’u}o, 6] (4.51)
where wg = w§'PTap and ¢ = ¥ eAl"'AS*l’Bl”'BS*lTAl...ASﬂ’BI...BSﬂ. The
linearized curvature in (4.48]) becomes

dW + W AW = dwy + [’LU(), wl]. (4.52)

The Vasiliev HS gauge theory is non-linear. Its non-linear gauge symmetry is

given by

OW = de + [W,€]. (4.53)

This is the extent to which we will discuss the HS gauge theory. If we are
ever to reproduce the full non-linear structure of this theory from CFT, it is
clear that we need a good understanding of the free CFT. This is a major
motivation for this PhD.

We have seen that the free scalar field CFT has a tower of higher spins primary
operators packaged in a Gegenbauer polynomial. These higher spin primary
operators are constructed using bilinears (2 copies of) of the scalar fields. This
does not exhaust the spectrum of primaries of the CFT. Indeed, as we will see
in the next chapter, even the spectrum of a single free scalar field theory is

much richer than this.
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Chapter 5

Primary Fields in Free Scalar
Conformal Field Theory in

4-dimensions

This long chapter will contain the work of the papers that were published in
[19][40]. This work contains novel results for the free conformal field theory of
a scalar field in 4 dimensions (CFT4). Using representation theory a general
generating function for the number of primary operators constructed from
n copies of the free scalar field is derived. The generating function yields
the correct counting for the primary fields. The counting is then specialised
to counting primaries which obey extremality conditions defined in terms of
the dimensions and left or right spins (i.e. in terms of relations between
the charges under the Cartan subgroup of SO(4,2)). The construction of
primary fields for scalar field theory is mapped to a problem of determining
multi-variable polynomials subject to a system of algebraic and differential
constraints. For the extremal primaries, we give a construction in terms of
holomorphic polynomial functions on permutation orbifolds, which are shown

to be Calabi-Yau spaces.

5.1 Introduction

In [41] we showed that free scalar four dimensional conformal field theory
can be formulated as an infinite dimensional associative algebra, admitting
a decomposition into linear representations of SO(4,2), and equipped with a

bilinear product satisfying a non-degeneracy condition. This algebraic struc-
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ture gives a formulation of the CFT4 as a two dimensional topological field
theory (TFT2) with SO(4,2) invariance, where crossing symmetry is expressed
as associativity of the algebra. TFT2 structure had previously been identified
as a unifying structure in the study of combinatorics and correlators in BPS
sectors of N = 4 SYM, quiver gauge theories, matrix models, tensor models,
and in Feynman graph combinatorics [42} [43], 44], 45]. The theme of TFT2
as a powerful unifying structure for QFT combinatorics was also developed
in [41] in the context of counting primary fields. In this chapter we return
to a systematic study of primaries in free field theories in four dimensions.
We consider scalar, vector and matrix models. Another motivation for the
detailed construction of primary fields in four dimensional scalar QFT is that
free field calculations have been found to be useful in calculating the anoma-
lous dimensions of operators at the Wilson-Fischer fixed point in the epsilon
expansion [18], 46] [47, [48], 49].

We start by developing some explicit formulae for the counting of primary
fields, using characters of representations of so(4,2). This makes extensive
use of previous literature on the subject, notably [I7]. This is followed by
considering the problem of constructing the primary fields. A useful remark

is that the algebraic problem of finding composite fields of the form

0 0)(D---0¢) - (0---D¢) (5.1)

where there are n ¢ fields involved, can be conveniently rephrased in terms of
a question about multi-variable polynomial functions of 4n variables : ¥(z,)
where p runs over the space-time coordinates and I runs from 1 to n. This re-
lies on a function space realisation of the conformal algebra. We explain how
this function space realisation arises naturally in radial quantization. The
question of constructing primaries, when phrased in terms of the functions
U(x,) can viewed as a many-body quantum mechanics problem, where F is
a many-body wavefunction of n particles moving on R*. These many-body
wavefunctions have to obey three simple conditions :

e They have to obey Laplace’s equation in each of the variables x,ﬂ for I =
1---m.

e They have to be invariant under the simultaneous translation xﬁ — :Bﬁ +ay,
forp=1...4.

e They have to be invariant under permutations l‘ﬁ — ZL‘Z(I) for any permuta-
tion o € S,,.
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An infinite class of solutions of the Laplacian condition are obtained by choos-
ing a complex structure to identify R* = C? so that x, — (2,w,Zz,w) and
considering holomorphic functions of z,w. These primaries correspond to

holomorphic polynomial functions on

(C)"/(C? x S,) (5.2)

which can also be written as

(C"/C x C"/C)/S,. (5.3)

The modding out by C? is the condition of invariance under the shift while
the S, invariance comes from the permutation symmetry. A special class of

these primary fields correspond to functions of z only i.e functions on

(C")/(C x Sn). (5-4)

These primaries were constructed in [50] using an oscillator realization of the
conformal algebra, which is close to the differential realization used here. An
extensive study of the representation of so(4,2) on function spaces with em-

phasis on relations to quarternions, is developed in [51].

The association of primaries to functions on the orbifold has several inter-
esting consequences. Since the holomorphic polynomial functions form a ring,
and a class of primaries are in 1 — 1 correspondence with these functions, we
are finding a ring structure on this subspace of primary operators. This ring
structure is different from the algebra structure related to the operator prod-
uct expansion. The interplay between this product and the OPE would be an
interesting subject for future study. The Hilbert series of the polynomial ring
has a very interesting palindromy property which we prove. The proof
relies on an interesting algebraic structure based on symmetric groups in the

problem. For fixed number of primaries n, this is
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P C(Sn) © C(Sn) ® C(Sk) @ C(S)) (5.5)
k,1=0

where C(S,,) is the group algebra of the symmetric group S,. As recently
discussed in the context of Hilbert series for moduli spaces of supersymmetric
vacua of gauge theories [52, 53], the palindromy property of Hilbert series is
indicative that the ring being enumerated is Calabi-Yau. The precise math-
ematical statement is due to Stanley [54]. We show that the orbifold
indeed admits a unique non-singular nowhere-vanishing top-dimensional holo-

morphic form, which is inherited from the covering space.

Our work involves an interesting interplay between representations of so(4,2)
and representations of symmetric groups. Let V. be the lowest weight repre-
sentation corresponding to local operators built from derivatives acting on the
field ¢. The construction of primaries built from derivatives acting on n copies
of ¢, amounts to finding explicit formulae for the lowest weight states of irre-
ducible representations in the symmetrized tensor product Sym™(V,). If we
consider the primaries which arise at dimension n + k, of the class associated
to the geometry this can be mapped to a problem about multiplicities of
Sn X Sk irreps in V; * where Vi is the n — 1 dimensional representation of \5,,.
A formula for these multiplicities, derived in [50], is found to be useful in the
study of the geometry of . The connection between representation theory
of symmetric groups and that of non-compact groups has also been discussed

in [55] in the context of higher spin theories.

We extend this approch to primary fields to the case of vector fields in four
dimensions. The underlying orbifold geometry for holomorphic primaries in

this case is

(C?"/C x C*/C)/S,[Sx]. (5.6)
The group S,[S2] is the group of S, which is generated by the n pairwise
permutations (1,2),(3,4),---,(2n — 1,2n) along with the n! permutations of

these pairs. It is called the wreath product of S, with S5. We establish the

palindromy property of the Hilbert series in this case. For the case of primary
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fields in the free theory of matrices in four dimensions, we again find the

underlying orbifold geometry

(C*)" x S,,)/(C* x S,) = (C"/C x C"/C x S,)/ Sy (5.7)
with a palindromic Hilbert series.

The chapter is organised as follows. In section 2 we describe a realisation
of the conformal algebra so(4,2) in terms of differential operators acting on
polynomial functions of spacetime coordinates x,, in R%. This is related, by a
duality which we explain, to the standard realization of the conformal algebra
in terms of derivatives acting on a scalar field. In section 3 we obtain a number
of useful general formulae for the counting of primary fields. The first step is
to start from the character of the irrep Vi of so(4,2) which contains all the
local operators consisting of derivatives acting on a single scalar field. This
is a function of variables s, x,y which keep track of dimension, left spin and
right spin i.e eigenvalues of D (the scaling operator) and Jr, Jg ( the Cartan
generators for the two SU(2)’s in SO(4) = SU(2) x SU(2)). We then derive
a generating function for the Cauchy identity. We describe a specialisation
of these formulae relevant to what we call extremal primaries. These include
the leading twist primaries studied in the context of deep inelastic scattering
in QCD. Taylor expansion of the generating function leads to explicit results
for n = 3,4 which take the form of rational functions of s,x,y. In section 4
we describe the construction of the primary fields using the polynomials rep-
resentations. A new counting formula for the extremal primaries is obtained
by exploiting the permutation group algebras C(S,,) ® C(S,) ® C(Sk) ® C(S))
in the problem of building primaries from n fields ¢ and corresponding to
polynomials of degree k in one holomorphic variable and degree [ in the other.
This is shown to be consistent with the derivation based on the Taylor ex-
pansion method of the previous section. These primary fields form a ring and
the counting is recognised as a Hilbert series, which encodes aspects of the
generators and relations of the ring. This is a ring of functions of an orbifold
which we identify. The counting formula based on S, x S x S; symmetry
for the extremal sector is shown to have a palindromy property indicative of
a Calabi-Yau nature of the orbifold. As further support for the Calabi-Yau
nature of the orbifold, we construct the explicit top-dimensional holomorphic

form. In section 5 we extend the results on counting and construction of pri-
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maries, and the underlying Calabi-Yau orbifold geometries, to the case of a
four dimensional vector model. In section 6 we develop the story for the case

of free four dimensional 1-matrix theory.

5.2 Representation of so(4,2) on multi-variable poly-

nomials

The generators of SO(4,2) form the algebra

K, P, = 2M,,, — 2Dé,,, (5.8)
D, P, =P,
D, K, = —K,

The representations of this algebra play a central role when the constraints
that conformal invariance places on the dynamics of a CFT are developed.
To develop the representation theory, one uses the fact that there is a unique
primary operator O for each irrep, formed by taking products of the funda-
mental fields of the theory and derivatives of these fields, with each other. The
primary operator is distinguished because its dimension can not be lowered.
Consequently, primaries are annihilated by the generator of special conformal

transformations
[K,,O0] =0. (5.9)

The complete irrep is then formed by acting on the primary O with traceless
symmetric polynomials in the momenta P,. The spectrum of dimensions of
the primaries and their OPE coefficients provide a list of data that completely
determines the correlation functions of local operators. Clearly then, it is
interesting to determine the spectrum of primary operators of a conformal
field theory. Our goal is to determine this list for the free bosonic field ¢
in four dimensions. The states corresponding to ¢ and its derivatives in the

operator-state correspondence consists of a lowest weight state |v)
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Dluy) = [os) (5.10)
Kylvy) =0

This state obeys
Ko(PuB,)[0)) = 0 (5.11)

which means that P, P,|0) can be set to zero to give an irreducible represen-
tation. The states in this representation are of the form

(SUyyibizet P Py Py fug) (5.12)

where (SW)yLk2 M s symmetric and traceless in both upper and lower in-
dices.

Solving for primaries O is a representation theory problem of finding the de-
composition of the symmetrized tensor product Sym™ (V. ) into irreducible rep-
resentations. A particular convenient realization of V. is in terms of harmonic

polynomials. Indeed polynomials of the form

(SOY b (5.13)
are annihilated by the Laplacian

o 0
_— .14
0%q 024, (5.14)

and hence are harmonic. The algebra so(4,2) is realised on these polynomials
as [41]

0

Ko = g0 (5.15)
P, = (%0, — 2x,2 - 0 — 22,

D=(z-0+1)

M,, =x,0, —x,0,

Note that in radial quantization (P,)" = —K, and (K,)" = —P,. Thinking
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of x, as the co-ordinate of a particle, this is a single particle representation.
The tensor product me can be realized on a many-particle space of functions
\I'(ajﬁ), where 1 < I < n labels the particle number. The generators of so(4,2)
now include

LI
Ky=> - (5.16)
=1 Oz},
” 0 0
_ Ip I I I
P, = Z (m pmpa—xu — 2x#xpa—%£ — QxM)
=1

along with the many-particle versions of D, M,,, of . In this polynomial
representation, the state of the scalar field lim|,|_,o #()|0) corresponds to the
harmonic function .

This polynomial representation is naturally understood in the context of radial

quantization. Towards this end, consider the mode expansion of the field

Qb(xu) = Z Z a;f;my'l’m(x) + Z Z al;m|$‘_2n,m(x/) (5'17)

=0 meV; =0 meV,

The sum over m is over the states of the symmetric traceless tensor irrep V;
of SO(4). Acting on the vacuum, which is annihilated by the a;,,’s, we have

the usual operator-state correspondence. For example, we find

lim ¢(2)[0) = afyo|0) = |¢) (5.18)
lim 9,6(2)|0) = al,,|0) = |9,¢)

il_r% aua,ud)(x)‘(» =0

The last equation above is expected because the free scalar field is a represen-
tation with null states. It expresses the free equation of motion. The scalar
field and all its derivatives as z — 0 lead to states in an irreducible lowest
weight representation V' of SO(4,2), consisting of a lowest weight state of di-
mension A = 1 along with states with higher dimension.

Let us rewrite the positive part of the radial mode expansion
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o0
o (@)|0) =Y af, ., (ShE g o) (5.19)
=0

where S is a projector, projecting to symmetric traceless tensors. We take

T
Dy yoeopa

traceless in the p as well as the v indices. The operator state map identifies

, to be symmetric and traceless in the p indices. S® is symmetric and

lim 9y, -+ 9, $(«)[0) =(SOy o gf 10) (5.20)

0 [P ) R S IR 7]

Note that we have a duality

(SOl gD 610} ) {0l (SO 00 0) (520

—(gDya1, 0
=(SY) ey Ty

where we have used the projector property of S(). Unpacking this a little, if
we apply 0, to the local operator, go to zero to get the corresponding state

and then do the duality, we will get new polynomial as the outcome
. 1
il—rfll) 6#8#1 e aﬂl¢($)|0> = (S( ))11177211’7'“7:51a;-i-l;%l/l'"l’z ‘O> (5'22>

If we take the overlap of this with ¢(z)|0) then we get

(SOt o, - w, (5.23)

This polynomial of degree one higher is related to the previous polynomial by
applying P, = (220, — 2z, (x -  + 1)). We have the following identifications

between operators and states, and then states and polynomials

O — |0) = Po(x) (5.24)
0,0 — |0,0) = P,Po(x)

This provides a concrete correspondence between applying d, to local opera-
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tors made from a scalar, and applying P, as the dual differential operator on

dual polynomials.

Primaries in the free theory are given by acting with traceless symmetric poly-
nomials in momenta on the scalar field. Tracelessness is often implemented

[56], 57] by using variables z - 2/

= z“x/{ with z# a null vector, i.e. z¢z, = 0.
Thanks to the fact that z* is null, any polynomial in z-z! automatically gives
a traceless symmetric polynomials in xﬁ after the z#s are stripped away. In
what follows we will solve the algebraic primary problem, to obtain a polyno-
mial that corresponds to the primary. To obtain the primary operator written
in terms of the original scalar field, we need to translate between the poly-
nomials and operators. For the current polynomials, the translation between

polynomials and operators is

(z- )k & (—1)*2Fk!(z - x)F (5.25)

The construction is convenient because of its simplicity. However, it is not
completely general, since there are primary operators that are not symmetric
in their indices and hence can’t be represented as a polynomial in z - . The
general discussion makes use of projectors that project from symmetric tensors
to traceless symmetric tensors. It is useful to consider a concrete example. The

tensors of ranks 2 and 3 are given by

(S@)as = 5eof — iéwéaﬂ (5.26)
(S5l = 26063 — G008+ 6,876 + 675713,

These operators are projectors in the Brauer algebra of tensor operators that
commute with SO(4)[58]

g2 _q_ G2

(5.27)
1
SB) =1 — 5(C1a + Ciz + Ca)

The terms correcting the 1 above subtract off the trace of the tensors they act

on. They satisfy
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(8™M2p, = s™p, (5.28)

where P, projects onto the totally symmetric polynomials of degree n

Py=— Z o (5.29)

" o€Sh
The multiplication (5.28]) is in the Brauer algebra, where loops are assigned the
value of 4. These elements of the Brauer algebra are completely determined
by the projector property (5.28) and the property that they start with 1. In

general

P, P, 1= (_1)]€2kk!(S(k))l/l...'..l/k PR (5.30)

1
The above factor is easily obtained by deriving a recursion formula. Note that
the term azgc?u does not raise the rank of the tensor. The other two terms both
raise the rank by one, which then leads to the recursion relation. In the many-
particle realization such a traceless polynomial made of the I'th coordinates
corresponds to derivatives acting on the I’th copy of ¢ in a sequence of n of
these.

To construct primaries using n scalar fields we consider a multi-particle system
with wﬁ the coordinates of the n particles. Primaries at dimension n + k are

obtained by allowing k derivatives to act on the n fields. In the dual polynomial

I
w

of degree k. Primaries at dimension n + k correspond to degree k£ polynomials
U(z}) that obey the conditions

language, states at dimension n + k in V®" correspond to polynomials in x

0
K, ¥ =>" 87!5\1/ =0 (5.31)
1

LU = Zalaxf =0

The first condition above is the familiar condition that the special conformal

generator annihilates primary operators. The second condition implements
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the free scalar equation of motion which implies that the image of states like
P, P,, with only ¢ summed, in the Fock space, is zero. This null state appears
because the dimension of free scalar field saturates a unitarity bound. To see
that the second constraint is indeed implementing the equation of motion,
note that with the second of (5.15)) we can calculate

P,P, = 20,0, (5.32)

Simplifying the product of differential operators, it is simple to verify that
terms like 22, 22z -0 and x%ux,,auay cancel out. The final condition in
above ensures that our polynomials are S, invariant. By constructing S, in-
variant polynomials, we are implementing the bosonic statistics of the scalar
field.

In what follows we will focus on primaries (and hence polynomials) that trans-
form in a definite representation of the SO(4) = SU(2) x SU(2) subgroup of
SO(4,2). To make the SO(4) transformation properties of the polynomials

more transparent, our construction makes use of the complex coordinates

z =21 + 1T W= x3 + 124 (5.33)

Z=1x1 —1x9 W = T3 — 124

This amounts to choosing an isomorphism between R* and C? = C x C. In our

conventions, these coordinates have the following (j3, j3) charge assignments

11 B 11
o vl
Wl Ty YTy

We will construct a class of primaries corresponding to holomorphic polyno-

mial functions on the orbifold

(CH"/(C* x Sy) (5.35)
The division by C? is a consequence of the first of (5.31])). These will not form

62



the complete set of primaries but a well-defined subspace of primaries, which
we will call extremal. Before explaining this construction in more detail we
show, in the next section, how characters of so(4,2) representations can be
used to get a complete counting of general primaries built from n fields. We

will then specialize to the extremal primaries.

5.3 Counting with so(4,2) characters

In this section our goal is to enumerate the SO(4, 2) irreducible representations
appearing among the composite fields made out of n = 2,3, --- fundamental
fields. These multiplicities will, for example compute the spectrum of primary
operators in the free CFTy. This enumeration entails decomposing, into ir-
reducible representations, the symmetrized tensor product Sym™(V;.), where
Vi = Dy 0,0 in the notion of [17]. The three integer labels in Dya j, ;. are the
dimension and two SO(4) spins. After obtaining a general formula in terms
of an infinite product, we specialize to primaries that obey extremality con-
ditions, that relate their dimensions to their spin. For these primaries using

results from [59], we find simple explicit formulas for the counting.

5.3.1 General Counting Formula

Consider a matrix M belonging to any matrix representation R of SO(4,2).

A key result for the analysis of this section is

1 <
det(1 —tM) nz::ot Xsymn(r) (M) (5.36)

This is a special case of the Cauchy identity which states that

(e}

N M 1
1:[1 1:[1 A —twy;) > D t"xa@)xr(Y) (5.37)

z‘yj) n=0 Rrn

where x g is a Schur polynomial in the N variables x; and the M variables
yi, labelled by a Young diagram R with n boxes and height no larger than
the minimum of M, N. When one of these variables is 1, then we sum over
single-row Young diagrams. This formula (5.36]) is easily proved by using the
identity (this is just Wick’s theorem)
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N
7. )\Jdn :i dz»dZ-efzkzkzkiz- ez BN g 5.38
(n) gy 7'['N ) () nl 1 (2

ol Z 5j2 : 5f§(n)

T oesS,

to evaluate

1 N =5 (6] —tM)E 1
7_‘_]V‘/Zzl_[ldZJk»dZJke »J = m (539)
Now, apply (5.36]) to the case that
M = sPy’s. LyJ3»R (5.40)

and specialize to the representation V, spanned by the free scalar and all the
derivatives acting on it. Here we have chosen D, J3 1, J3 r to span the Cartan
subalgebra of SO(4,2). It is straight forward to see that

det 1;[ 1_[ H tsq—Hxayb (541)

—_4y
2

This generating function of the characters of the symmetrized tensor products

of the free scalar representation will be denoted by Z(¢, s, z.y). So we have

q q
© 3 3
1
Z(t,s,z,y) = H H H W Zt XSym"(V+)(S z,y) (5.42)
g=04="1p=_1 s n=0

where we have denoted xgymn (v, )(M) by Xsymn(v,)(8;2,y). The characters
for Sym™ (V) follow by developing the infinite product above in a Taylor series
in t. The decomposition of Sym™(V,.) into irreps is now achieved by writing
XSymn(vy) (8, T, y) as a sum of characters X|a j, j, (5,2, y) of M, in the irrep of

dimension A and spins j1, jo

Xsymn (V) (5:,0) = D Niajy o] X[Aj1 o) (52, ) (5.43)
[A,71,72]
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The coefficients Nia j, j,] are non-negative integers, counting the number of
times irrep Aa j, j,] (in the notation of [I7]) appears in Sym™(V,). If we
restrict to the case that n > 3, the only characters X[A,jl,jQ](S,%Q) which
contribute are labeled by dimension A that do not saturate the unitarity

bound and hence do not have any null states. In this case we have [17]

SAle (x)ij (y)
X[A.1.32) (82, Y) = = - (5.44)
(1= syag)(1 = s,/3)(1 = s,/ = )
It is useful to define
Zn(s,2,9) = Y. Najiim s X (@)X 1) (5.45)

[A,71,72]

It follows that

Zalos ) = (L= o)1 =3[0 =9/ = sy (5,20
(5.46)

The right hand side of this last equation is precisely a sum of (products of)
SU(2) characters, so we can treat this, following [60], using the orthogonality of
SU(2) characters. The result is mostly easily stated in terms of the generating

function

o0

Gn(s,7,y) = Z Z N[n—i—d,jl,jz}sn—i_dleyh (5.47)
d=0j1,J2

which is given by

1 1
Gn(s,z,y) = [(1 — ) (1 — )Zn(s,x, y)} (5.48)
x Yy >
where the subscript > is a notation to indicate that the above function should
first be expanded as a Laurent series in both x and y, and then negative pow-
ers of x and y should be discarded. The infinite product in the above formula

makes it difficult to evaluate G (s,z,y) in closed form. For that reason, in
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the next section, we focus on specific classes of primaries for which G,,(s, x,y)

can be evaluated.

To end this section let us explain how the above derivation is generalised when
irreps that include null states appear in the tensor product Sym™ (V). This
is the case when n = 2. Naively computing Ga(s, z,y) using (5.48)), we obtain

the following terms

Go(s,x,y) = s* + stay — Vo fy + s2%y? — sTad/2y32 4 (5.49)

The negative coefficients in the above expansion show this answer is manifestly
wrong. The problem is that we have some null states that have not been
removed correctly. There are two types of primaries that appear in the above
sum. We have a primary with A = 2 and j; = jo = 0 and primaries with
A =2+2jand j; =i = j for j = 1,2,3---. The condition for a short
multiplet[50] is that A = f(j1) + f(j2) with f(j) =0if j =0or f(j) =j+1if
j > 0. The primary with A = 2 and j; = j2 = 0 is not short and nothing needs
to be subtracted. The primaries with A = 2 + 25 and j; = jo = j are short
irreps and hence have null states. These null states (and their descendants)
must be removed. To understand how this is done, note that the primary with
A =2+42j and j; = jo = j is a conserved higher spin current J+1#2"Hi and

the null state is nothing but the conservation law

By JHH s = () (5.50)

The null state thus has A = 3+ 2j and j; = j — 5 and so the subraction
of null states is achieved by removing the primary that does not need to be
subtracted, dividing by 1—s/,/zy and then putting the original primary back

in. In the end we have

(s,z,y) K ) <1 - ;)(Zg(s,x,y) — 32)1_% + 5* (5.51)

9]
Z 2+2]

This is indeed the correct result.
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5.3.2 Counting the Leading Twist Primaries

Consider the leading twist primaries, which have quantum numbers [A, ji, jo] =
n+ g, %, %] Each such primary operator comes in a complete spin multiplet
of (¢ + 1)? operators. Choosing the operator with highest spin corresponds to
studying polynomials constructed using only the single complex variable z, as
we can see from . This corresponds to the fact that all primaries are con-
structed using a single component P, of the momentum four vector operator.
We will now count the leading twist primaries by counting this highest spin
operator in each multiplet. Denote the corresponding generating function by
G (s, z,y). To determine this generating function we will modify the above

results in three ways:

1. We modify the formula (5.42) by replacing Xgymn(v)(s,,y) with a new
(s,z,y) and we keep only the highest spin state in the product

max

function xj,

(e.) 1 [o¢]
H m = Z t"xn (s, 2, y) (5.52)
q=0 + n=0

2. The leading twist primaries are all constructed using a single component
of the momentum, that raises both the left and right spin maximally. Conse-
quently in (5.48]) we keep only the factor that corresponds to this component

of the momentum, which amounts to replacing

(1 - s@> (1 - s\/j) (1 s z) (1 - Z:*y) —(1-syzy) (5.53)

3. For each spin multiplet we keep only 1 state so there is no longer any need

to replace the multiplet of spin states by a single state when we count. Thus

in (5.48) we replace
1 1
(1 - ) (1 - ) 1 (5.54)
€T Y

The final result is
G (s, 2, y) = X (s, 2, y) (1 — sy/zy) (5.55)
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In this formula we don’t need to track the dependence on z and y since for
this class of primaries, once n and the dimension of the operator is specified,

the spins are determined. For simplicity then, we will study

[e.9]

S G (s) Z (1 — 8)x™(s) (5.56)
n=0
a 1

:(1—8)HOW'

q=

To extract G***(s) we need to develop the infinite product above in a Taylor

series in ¢. To do this we introduce the functions

- 1 oF ak*1f1
F(t,s) = H 1 fgatl ot = fF Jk= i1 (5.57)

q=0

It is straightforward to find F'(0,s) =1 and

o0 ka+k k’

fr(t,s) Z [y fx(0,5) = (k —1)! m (5.58)

Using these quantities, we have

oF
otn

n1k1 + - +nq 7)! ng
" ky, ~ng! (k)™ - -« (kg!)ma i = Fig Ottty

(5.59)

Inserting the formulas for the f;s we have

O"F
ot" |

N1, ng ky e kg
(5.60)
kq

— (n1/€1 gk ) (o sF ™ ska %5
RSP mleonglkl kgt \1—sk1 )\ 1= ska nniki+oAngk

nls™ s \™ s "q(S
Z Z -y knl . k;’;q 1 — k1 T 1 — sFa n,n1ki+-+ngkq

N1, Mg k17 7

Notice that this is a sum over conjugacy classes of S,. The conjugacy class

collects permutations with nykg-cycles. This interpretation follows because
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the coefficient

n!

nal - nglk kg

(5.61)

is the order of the conjugacy class. There is a factor of (1 — s¥)~! for each

k-cycle in the permutation. Here are a few motivational examples

oF s

= — .62
otl,_, 1-—s (5:62)

82l _ 52 n 52 _ 252

o |,y (1—s5)2 1-—5> (1—s)(1—s?)

PF 53 53 253 653

913 - +3 5y T 3~ 2 3
o |,_, (1—s)3 (1-5)(1—-52) 1-s (1—39)(1—5%)(1—s3)

It is easy to identify the above expressions: Recall the lowest weight discrete

series irrep of SL(2), denoted Vj, has character

S

x1(s) = Try, (sT0) = (5.63)

1—s

It then follows that (P, projects onto the symmetric irrep i.e. a single row

of n boxes)
oF s
i, 1—s (5.64)
=x1(8)
1 0°F 52 &2 .
20082 |, 2(1-s) " 2(1 —s2) Tr(Plzys™) (5.65)
:Trsym(vl®2)(SL0)
1 83F 33 352 283
3! - = Tr(Pgs™) (5.
Lot |,y 3'(1—s)? BT T S G g r(Pgs™?)  (5.66)
:TI.Sym(V1®3)($LO)
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This interpretation follows for general n as proved in (5.60). Thus the general

formula is

STL

(1—8)(1—-52)(1—=83)---(1—s")

= Tr(Py,s™) = (5.67)
where the last equality follows from ((5.46|) of [61], where these SL(2) sector

primaries were studied in the language of oscillators. Consequently we have

n

(1—-s)0"F
n!  Ot"

o -5 (s (5.68)

G (s) =

Note the close connection between counting leading twist primaries and the

multiplicities of V)\S:Léi)k ® V[;S;]”, which is given by the coefficient of ¢* in

ﬁ 1

1=2

, 5.69
— (5.69)
The result ((5.68) was also recently obtained in [62].
There are three other sectors of primaries that are closely related to this
one: polynomials in Z corresponds to primaries of the form [n + ¢, —q, —q],
polynomials in w to primaries of the form [n + ¢, ¢, —¢| and polynomials in @

to primaries of the form [n + ¢, —q, q|.

5.3.3 Extremal Primaries

We now come to a more general class of primaries with charges

A=n+q ; JigL:g (5.70)

The charge J&, which is part of SU(2)g, is not constrained. These primary
operators belong to complete multiplets of SU(2)r. They correspond to poly-
nomials constructed using the pair of complex variables zy,w;. This is clear
from inspection of the charges in . Translating from the polynomial
representation back to the usual scalar field representation, this corresponds
to the fact that all primaries are constructed using only two components of
the momentum four vector operator. The two components are complex linear

combinations of the (hermitian) P,. Arguing as we did in the previous section,
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we introduce a generating function G2"(s, x,y), which is now given by

G2V (s,x,y) = [(1 - gl/) Zfl’w(s,x,y)] (5.71)

>
where Z,(s,x,y) is obtained from

1 oo

IT 11 = > _t"Xn(s,2,9) (5.72)

1.2 ;4
q=0m=0 (1 — tstt 2y 2) n=0

2" (s,2,y) = (1 - sy/@p)(1 - sy/z/y)xals,2,y) (5.73)

The two brackets multiplying Z, (s, z,y) in is a consequence of the fact
that two components of the momentum four vector are used when construct-
ing the primaries. From it is clear that we are selecting the state from
the Js 1, multiplet (recorded using the variable ) with the highest spin. The
product over m in indicates that all the states in the J3 g multiplet are
counted. The factor of (1 — %) as well as the instruction (indicate with the
subscript > in ) to keep only positive powers of y ensures that we count
each SU(2)g spin multiplet once. It is clear that the expansion of has
only positive powers of . This is a consequence of the fact that we kept only

one state from each SU(2);, multiplet.

It is again possible to derive closed expressions for the generating functions

Z5" (s, x,y) and GZ" (s, x,y). Introduce the functions

Fy(t,s,x,y) = ﬁ H

1 o
= t"xn(s,3,y) (5.74)
g=0m=0 Jopur

1— tquFlaz%ym* 2
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q

P o q Sq+1$gym—§
—Fy(t,s,x,y) = Fs(t, s, x, 5.75
o2t 52,y) 2;%;;;)1-—tsq+1x§ym=3 (t,5,2,9) (5.75)

= fl(ta vavy)FQ(tv S, ‘T)y)

k=1 q gka+kg & ykm—ﬂ

G, 5
ﬁ@&%wzgﬁjﬂz E:Z: . (5.76)

q=0m= 0 1_t3q—Hm2ym_§)k

It is simple to establish that F5(0, s, x,y) = 1 and

1 1
fr(0,8,2,y) = Sk(k - 1)! k& k& (5.77)
1—skxayz 1 — ska2y 2

Exactly as above we have

OF nMH— +%k)
6tn - an klz 7’Lq kl) ( ) f f nn1k’1+ Fnakg

(5.78)
Inserting the formulas for the fi’s and streamlining the notation by using

a=s xyandb:s\/%,weﬁnd

1 0"Fy
n! otn

S wri e (e
N1y Mg ey g (VLT 'knl e k (1 - akl)(l - bkl)
(5.79)

1
(1 — a )(1 — bkq)>5n,n1k1+...+nqkq

=Xn(s,2,y)

The expression for Z,(s,z,y) now follows from (5.73).
It is not easy to proceed for general n, but it is straight forwards to obtain

explicit formulas once a specific n is chosen. For example, the final result for
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n = 3 fields is

s3 (36333 +str2 2+ 1+ 3335% <\/g +

)

)2)

VY
(1= s2ay)(1 — s3(ay)2) (1 — s22)(1 — 83

Z7(zw) = (5.80)

-
Njw ~—

z
Y

To extract spin multiplets, we need to compute

Gy (z,w) = [Zg(s,:r,y) (1 — ;)]> = % %dz(l — i)_Zg\(/zx,z2) (5.81)

The contour C' must have a radius larger than ,/y. We assume that s,z and

y are all less than one so that the expansion of Z5"(s, z,y) converges. Thus,
we can take C' to be the unit cicle. The integrand has poles at z = +sy/x,
2=y, z=%"= 2= -1 +iV3) and z = —%. To compute the
integral we need to pick up the residues from poles at z = £s\/x, z = /7,

and 2z = — 2% (1 £4+/3). We obtain

53(1 o 510x5y3)
=5 (5.82)
(1 —s%22)(1 — s3y/23y3) (1 — s2zy)(1 — sPx2y?)

It is easy to check, using mathematica, that this expression has the correct

Gg,w (Z7 w) =

expansion. The check tests that the expansion, as a polynomial about s = 0,
of the above generating function matches the counting following from the ex-
pansion of the function appearing in ([5.48)).

Consider next the final result for n = 4 fields, which is

o 10'F
2y (s,%,9) =5 . (5.83)
— S4Q(S’$’y)
(22 — )2(1 — s2zy)2(s22 + y)(—s*x2 +y2) (1 + s2ay)(1 — sBaiy?)
7
Q(s,x,y) =y?

(y + s2xy + %%y + 51225y + s%gy% (1+y) (5.84)
+5%a3y3 (1+y) + 57wy (1+y) + 2x3y2 (1 +y) + s'2(1 + y)?
+5%2%(1+ y)? + %2 (1 + 9)?)
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To extract spin multiplets, we again need to compute

(1 — Z%)ZZ’M(S,HJ, 22)

e

1 1
zw = ZZ,”LU 1 —_ = = —
G4 (87 x’ y) |: 4 (87'%.7 y)( y):|> 27_‘_2 %;dz

(5.85)

The contour C' must again have a radius larger than /Y, so we again choose the

unit circle |z| = 1. The integrand has poles at z = +s\/z, 2 = /Yy, 2 = iﬁ,

2= sy, 2 = —2Fi(1£iv3), 2 = £L and 2 = D) The integral
above recieves contributions from poles at z = +s\/x, z = |/y, 2 = Fisz, and

z = —2Y%i(1+1iv/3). We obtain

o s*R s, T,
G2 (5,,) = (5,2,9)

(1—s2zy)(1 — SSx%y%)(l — s4x22y?) (1 — s*22) (1 — s623)(1 — s8x?)
(5.86)

where

R(s,z,y) =1+ 5590%(\/@ + SSx%y + 85.%'%3/ +9° - 36x3y% - 383543/% - sl%gyg
(5.87)
; .
—sMa T 21+ y) + 5723 (1 - %) + sh2?y2 (1— %) + 2o /(1 + 2)
9 3
—s"zzy(L+y°) — sy (L+y — ) — sva(l —y — 7))
It is again easy to check, using mathematica, that this expression does indeed

have the correct expansion.

There are other sectors of primaries that are slight variations of the extremal
sector studied in this section. Polynomials in z,w; correspond to primaries
with (A = n+q, J& = ¢). Polynomials in Z;,w; correspond to primaries with
(A = n+q,J8 = —¢q). Polynomials in z;,w; correspond to primaries with
(A=n+gq,J§=—q).

5.4 Construction with symmetric group

In this section we would like to provide construction formulae for the extremal

primaries have counted in section 3. To accomplish this the polynomial rep-
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resentation of SO(4,2) introduced in section 2 will play a central role. These

polynomials are constructed using the coordinates xl]“ I =1,---,n which

admit a natural action of S,,. Constructing primaries then amounts to con-
structing polynomials that are consistent with (5.31]). The first of ([5.31]) can be

satisfied by constructing n — 1 translationaly invariant ”"relative coordinates”
I
-
convenient choice makes use of the variables

out of the z7,. This construction is not unique. Following [50], a particular

1

x@ - -
H ala+1)

(as!lt T — a:cZH) (5.88)
These variables are in the [n — 1,1] irrep of S,. To satisfy the second of
(5.31)) we need to build polynomials that are harmonic. In terms of complex

coordinates the Laplacian is

o 0 g 9 o 0
2 5l 0af, ~ 92707 Bul Bt (589)

It is clear that we can build harmonic polynomials by considering polynomials
that are functions only of the 2!, which gives the leading twist primaries,
or that are functions of the z! and w!, which gives the leading left twist
primaries. Notice that the harmonic constraint is not a first order differential
constraint. By replacing this with a holomorphic constraint, which are first
order equations, the resulting problem entails finding families of polynomials
that obey first order equations. This imploies that the problem will now have
a natural ring structure, something which will be visible in our construction.
The final constraint that needs to be obeyed is that the polynomials are .S,
invariants. The counting formulas we derived in the previous section will give

valuable insight into how to handle this final constraint.

5.4.1 Leading Twist Primaries

Specializing to n = 3 and employing complex variables, we have

2t — 22 7 _ 2l 422 — 223

AO
V2 G

(5.90)

plus the obvious formulas for Z(®, (@) The nice thing about these variables
is that S, acts on these variables with Young’s orthogonal representation of

[n —1,1], i.e. for n = 3 we have[63],
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no@2 = |0 resy = |2
= 0 1 V3

2

w
| w‘
D= w

] (5.91)

The remaining elements of the group can be generated using these two. When

acting on a product of variables, say Z(@) Z(@2) ... 7Z(ak) we have

Fk(U) = FHj(O') X X FHj(O') (5.92)

Where we take a tensor product (the usual Kronecker product) of k£ copies of
the matrices of the hook irrep. Any polynomial in the hook variables automat-
ically obeys (5.31)). Thus, all that is left is to project to S,, invariants in Vg?k
. We can build these by acting with the projector from the tensor product of

k copies of the hook onto the trivial irrep

Rrm=g Y Tilo) (599

' oeSs

Acting on Z®% we obtain an expression of the form > 7iP;(z) where n; are
unit vectors inside the carrier space of H%k and Pi(z) are the polynomials
that can be translated into primary operators.

It is useful to consider a few examples. Acting with the projector on
the tensor product of k£ copies of the hook, we find

Piiayoa, = Z Fk(o')alaz---ak,blbg---bkZ(bl)Z(bz) . AUY) (5.94)
oES3

It is simple to implement this projector in mathematica. For £ = 1 we find

P,, = 0. For k = 2 the projector is

Paia, = (21 — 22))% + (21 — 23)% + (22 — 23)?) (5.95)

= O O o=

so the invariant polynomial is
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P(z) = (21 — 2))* + (21 — 23)* + (22 — 23)°) (5.96)

By inspection, this obviously obeys (5.31)). For & = 3 the projector is

o ]
_ 1
616
1
~6v6
0
Pa1a2a3 = (Z1 + 29 — 22’3)(2’1 + 23 — 222)(2’2 + 23 — 2,21) 1 (5.97)
- 6v6
0
0
1
L 6V6
so the invariant polynomial is
Poiagas = (21 + 22 — 223) (21 + 23 — 222) (22 + 23 — 221) (5.98)
This polynomial again obeys (5.31). Finally, for k¥ = 4 the projector is
Puyazagas = ((21 = 22) + (21 = 23)" + (22 — 23)") (5.99)

- o g8 o o&-g- o~ o o=

so the invariant polynomial is
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P(z) = ((z1 — 22)" + (21 — 23)" + (22 — 23)") (5.100)

This clearly obeys (5.31)), so this is again the correct answer.

The polynomials we constructed in this way will obey the conditions spelled
out in (5.31)). In fact, they obey an even stronger linear condition

0;1P(2) =0=041(2) (5.101)

which imply the Laplacian constraint. As a result, taking all possible values
of k we find that the polynomials constructed exhibit a highly non-trivial
structure enjoyed by the leading twist primaries: the polynomials P;(z) are
a finitely generated polynomial ring. The counting formula (5.68|) gives the
Hilbert series for holomorphic functions on (C"/C)/S,. The quotient by C
sets the center of mass momentum of the many body wave function to zero
as dictated by the first of . The orbifold by S,, implements the last of
(5.31)). The counting formula implies that the ring has n — 1 generators.
These generators are given by constructing the n — 1 possible independent S,
invariants out of the hook variables introduced in ([5.88f). For example, for

2

n = 2 fields the polynomials are generated by (z; — 2z2)°. The polynomials

corresponding to primaries are

(21 — 29)*" (5.102)

Using (5.25)) it is easy to see that (these vanish if s is odd)

Os 2(21 — ZQ)S (5.103)
sl & (—1)F

G s 05 00k
25 2= (kl(s — k)))2

reproducing the higher spin currents, given for example in[35]. For n = 3 fields

the ring of polynomials that correspond to primary operators is generated by
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(Zl — 22)2 + (21 — 2’3)2 + (22 — 23)2 (5104)

and

(21 + 29 — 223)(23 + 29 — 221)(21 + 23 — 222) (5.105)

In general, the generators of the ring are a product of the variables Z(®) in-
troduced above, such that the product is S,, invariant. For n = 4 the ring is
generated by (21 — 22)% +- -+, (21 4+ 20 +223) (23 + 20 — 221) (21 + 23 — 229) + - - -
and (z1 422+ 23 —324) (23 + 22+ 24 —321) (21 + 23+ 24 — 322) (21 + 22+ 24 — 323),
where --- stand for terms that must be summed to obtain an S; invariant.
The ring structure that has appeared is rather interesting. The product on
the ring is simply multiplication of polynomials. This is a natural product
in the polynomial language, but is highly non-trivial in the original CFT de-
scription. A natural guess would be that this is somehow connected to the
OPE of primaries, which is the natural product on the primaries of the CFT.
However, this cannot be correct because the polynomial ring exists for a fixed
number n. Thus, in terms of the CFT language, the ring multiplication is
a product between two primaries, each of which has n fields, and the result
is again a primary with n fields. The operator product of two local opera-
tors, each containing n fields, is a sum of operators containing 2n — 2k fields
with £ = 0,1,--- ,n. For odd n the product of elements of the ring gives
an operator with an even number of fields. This product can therefore not
even be a subalgebra of the CFT operator product algebra. This product and
the associated ring structure of primary fields in free CFT4 appears to be a
genuinely new structure, not previously noticed. A natural question to ask is
whether or not these primary operators are orthogonal. We can translate any
polynomial into an operator and then compute the two point function of the
operator. The computation can also be carried out by a judicious choice of an

inner product for the polynomial. For example, consider the correlator

(2 _ 2/)k+l
(= 2P + o — wP e

(050 (2)0d(2")) = (—1)*(k +1)! (5.106)

Everything in the above result is determined by conformal invariance, except
the overall number = (—1)¥(k + )!. Recalling that 2" translates into 297 |
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this number can be computed if we use the following inner product for the

polynomials

(k+1)!

() = 0

(5.107)

Notice that the norm following from this inner product is not positive definite.

For n fields we have polynomials in zj, for the primary at  and in zj, for the

primary at z’ , with & = 1,--- ,n. In this more general setting, the inner
product is
n n n
/ (k. + a)!
(L2 1T 2" = [T D= (5.108)
k=1 I=1 k=1 P>k

In addition, due to Wick’s theorem, there are a total of n! Wick contractions
contributing, which introduces a factor of n!. In the end, if polynomials P; of
degree k; in n variables translate into primaries O; constructed from n fields

with dimension n + k; , then we have

(O () — cij (2 — Z)kithi

with

iy = nl(Pilz) Py (), (5.110)

Using the above formulas, it is easy to check that primary operators with
different dimensions are orthogonal, as they must be. Further, we also see
that although our ring of primaries is a basis, the operators in the basis are

not orthogonal.

5.4.2 Extremal Primaries

The above construction is easily extended to the other classes of extremal
primaries we have counted. The leading left or right twist class is provided by
polynomials in two holomorphic coordinates, z and w. Consider polynomials of
degree k in Z and of degree [ in W |, with Z, W the hook variables transforming

in the hook representation Vi of S, , described by a Young diagram with row
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lengths [n — 1,1]. These polynomials belong to a subspace of ng ® Vgl of
Sn . To characterize this subspace using representation theory, start with the

decompositions in terms of S, x Sj irreps

vit= @ v eviH e (5.111)
Arkn,Aokk
Vf]@l - @ V/&gn) ® V[&fk) ® VAC?’?}CL(S”XSZ)
AgFn,Agt

Com(S,, x Si) is the algebra of linear operators on Vl?k which commute with

Sp X Sk. The tensor product ng ® Vgl is a representation of

C(S,) ® C(Sk) ® C(Sn) ® C(S)) (5.112)

These decompositions have been studied in detail in [50] where they
were used to construct BPS states of NV = 4 SYM. In the application we
consider here, the Z and W variables are commuting which implies that they
are in the trivial rep Ao ® Ay = [k] ® [I] of Sk x S;. The multiplicity with
which a given S,, x Sy irrep (A1, As) appears is given by the diemension of
the irrep of the commutants Com(S, x Sk) in Vg’k. We want to project
to states in Vf?k ® Vf?l which are invariant under the diagonal C(S,) in the
algebra . This constrains A = A;. Thus we find that the number of

Sk XS] x S, invariants is

> Mult(Ag, [k]; Sn % Sp)Mult(Aq, [I]; Sy x S) (5.113)
A1FTL

The generating functions for these multiplicities have been derived in [61].
Mult (A1, [k]; Sn, x Si) is the coefficient of ¢* in

Zi%(%—l)
Zsu(a: M) =(1—q)g— 2 H(l_lqhb) (5.114)
b

= qung(Al)
k

Here ¢; is the length of the ¢’th column in Ay, b runs over boxes in the Young
diagram A; and hy is the hook length of the box b. Thus, for the number of
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primaries constructed from z;, w; we get

Z ZE1 (M) Zs (M) (5.115)
Aibn

The above integer gives the number of primaries in the free scalar theory, of
weight n + k + [, with spin (JI, Jf) = (%, kT_) For the generating function

Z72"(s,x,y) which encodes all k, [, we have

Zzw(S x y =s" Z ZSH S\/ T ,Al ZSH \/7 A1 (5.116)

Aibn

where Aj is a partition of n and we can use the formula (5.114)).

We can in fact see that the above discussion is consistent with the Taylor
expansion formula (5.79). We can recognise this formula as Tr(P[n]aLObLO)

where the trace is being taken in

P Sym* (Vi) (5.117)
k,l=0

which can be identified with a tensor product of discrete irreps of SL(2), which
we may denote as V?L?z) ® V?LTEQ); one factor corresponds to the z variables
and another to the w variables. P, is the projector for the symmetric irrep
of S,,. Factor out the trace into the separate SL(2) factors to get (see (5.73))

v . =Tr(Ppya°b™) (5.118)
= > Tr(Pp,a")Tr(Py, ™) (5.119)
AiFn
Note also that
1
- aZSH(a, A) = Tr(Ppa™) (5.120)

which follows by recognising that the raising operators of the SL(2) represen-
tation on zj - - - z,, can be separated into a weight one centre of mass coordinate

and the differences which span the hook representation of S, . This demon-
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strates the equivalence between the Taylor expansion formula ([5.79)) and the
Sn X Sk x S; formula (5.114)). It is important to note that this is a non-trivial
equivalence: both formulae are self-contained ways of calculating the multi-

plicities.

We have thus re-expressed our earlier Taylor expansion in a way that makes
the representation theory content of the counting manifest. This structure in
the counting problem can be used to provide an explicit construction formula.
First we need to decompose the Z and W polynomials into definite S,, irreps.

The projector onto irrep r from the tensor product of k copies of the hook is

prk = % 3™ xe(0)T(0) (5.121)
" o€Sn

We also need the projection onto the symmetric irrep

1
PR — ~ > Tiqalo) (5.122)
' O'ESn

Using these two projectors, the polynomials corresponding to primaries con-

structed using two holomorphic variables are now given by

> Py(z,wyiit = PN (Pl x prkyz@k el (5.123)
A rkn
where 714 are unit vectors inside the carrier space of HH®k+ and Pa(z,w) are

the polynomials we want. In fact, the construction formula given in
constructs a larger class of polynomials than those counted in . This is
because the polynomials counted in are extremal and hence they are
annihilated by J f . We will return to this point in the discussion below. The
construction formula that has been sketched above can easily be implemented
numerically. To implement , we need the projector onto irrep r in the
space obtained by taking the tensor product of k copies of the hook

1

ay--Q,

P"" b1-~~bk = Z X?‘(0>Fk(o—)alaz“'ak,lnbgn-bk (5124)

: UES’n
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and we need the projection onto the symmetric irrep

1

Pal”'an:bl"'bn - nl Z Pk(o')al---ambr--bn (5'125)
" oeSy

We find that ((5.123]) is now given by

> A _ T T b b di d
Z PA(Z’ w)nel'“ek_H - Pel"’ek+l7al"’ak7cl"'ClPalmak,b1--~kaC1~~-cl,d1“-dlZ( 2 e Z( k)W( ) T W( )

A
(5.126)

where 74

consider £k =1 =1. We find

are unit vectors and P4 (z,w) are the polynomials we want. To start,

o

1
0
erex — (_wB(zl + 29 — 2Z3) + w1(221 — 22 — ZS) — w2(21 — 229 + 23)) 0
1
12

(5.127)

so that the invariant polynomial is

P(z,w) = —ws(21 + 22 — 223) + w1(221 — 22 — 23) — wa(21 — 229 + 23)
(5.128)

This polynomial is not extremal. This is easily verified by computing

0 P(z,w) = (21 — 22)% + (21 — 23)° + (220 — 23)®  (5.129)

~Jip = z
+ (va) Zi w;

so that this is another state in the multiplet of the & = 2 primary we built in

the last section.

To focus on the extremal polynomials counted in (5.71) we must implement
the constraint that these polynomials are annihilated by J. f‘ . Towards this
end, note that the polynomials in Z, W carry a representation of SU(2)g,

so that we can further decompose the polynomials according to their SU(2)g
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quantum numbers. Z, W form an SU(2) doublet with Z the +1 state and W
the —% state. There is an action of Sk4; on these polynomials that commutes
with SU(2)g. This Spy; action acts to permute the W(® and Z(® factors.
Denote the matrix representing o € Sg4; by I'(0). This rep is generated by the
adjacent permutations which are easy to build. Towards this end, note that
swapping two factors in the tensor product is accomplished by the permutation

P which obeys Pr ® y = y ® x, i.e. we have

11 11 1000
0 01 0

p |t R L po (5.130)
T2Yy1 T1Y2 01 0O
T2Y2 T2Y2 0 0 01

Using the adjacent permutations we can construct any I'(c) and then any

projector

1

KR =
(k +1)!

> xw(o)T(0) (5.131)

0ESkt1

with xgr(0) a symmetric group character. The label R is a Young diagram
with at most 2 rows. The spin of the SU(2) irrep that K R projects to is given
by (R; — R2)/2 where R; and Ry are the lengths of the rows of R. As an

example, consider £ = 2 = [. The rep of Sy we need is generated by (1 is the
2 x 2 identity)

T((12)=P®1e1 T(23)=10P®1 I((34)=1212P (5132)

2

To construct the primary corresponding to s7z? we need to project on the

SU(2)g irrep with spin zero. This is accomplished by using the projector

H 1
Ka1a2a3a4,b1b2b3b4 = E Z XHE‘(O-)F(IIGQ(13@47b1b2b3b4 (J) (5133)
" oeSy

It is simple to compute
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O whke O O O

|
Ll oo

D, 2
K asasas bybabsby Porbabsbs = (W1(22 — 23) + wa(z3 — 21) + w3(z1 — 22))

| o O

WIN WIN

S O O we O

(5.134)

Thus the invariant polynomial is

P(z,w) = (w122 — 23) + wa(23 — 21) + w3(21 — 22))? (5.135)

By inspection it is obvious that this polynomial obeys the conditions ([5.31))
and further that it is a highest weight of SU(2)g, i.e JE(z,w) = 0. The
above polynomial suggests a natural generalization: consider the family of

polynomials indexed by the integer n

2n
U, = (w(3>(g(2> _20) 4 @ () _ 56)) 4 (D (56) _ 2<2>)> (5.136)

It is obvious that they obey (/5.31]) and hence that these polynomials do cor-
respond to primary operators. It is also clear that they are extremal, i.e.
J4 VU, = 0. These primaries have spin [2n,0] and dimension A = 3 + 4n. The

translation into the free field language is
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2n 2n—r r s 2n—r—s (2n>!(_1)t+u+v

Ohno 7 = ZZZZ )N e TTIE

r=0 s=0 t=0u=0 ov=0

wlul(2n —r — s —v)W!
(5.137)
(P2 PLH 1) (PP 6) (P P2 =)

The polynomials we have constructed in ([5.123) obey all of the conditions
spelled out in (5.31)). In fact, they again obey an even stronger linear condition

0.1 P(Z,%) = 0 = 0,1 P(Z, ) (5.138)

which imply the Laplacian constraint. As a result, taking all possible values
of k, | we find that the polynomials P4(z,w) are again a finitely generated
polynomial ring. This is a consequence of the Leibnitz rule for the derivatives
of a product of functions. The ring of polynomials that correspond to extremal

primaries is the polynomial ring of holomorphic functions for

(C*)"/(C* x Sn) (5.139)

In , we have computed the Hilbert series for the polynomials in two
holomorphic variables, that correspond to extremal primary operators built
using two scalar fields. Using generalities about Hilbert series for algebraic
varieties (see [52, 53] for applications in the context of moduli spaces of SUSY
gauge theories), we know that if the ring is generated by h homogeneous
elements of positive degrees di,---dp, then the Hilbert series is a rational

fraction

Q)
[T/ (1 — tdi)

where @ is a polynomial with integer coefficients. Thus, we see from (/5.82)
that for n = 3 the polynomials P4(z,w) are a finitely generated polynomial

Hg(t) = (5.140)

ring with 4 generators and one relation and that this space of polynomials
is a complete intersection and it is 3 dimensional. Using this Hilbert series
and the explicit constructions described above, we can identify the generators

(21 = zi = 2j)
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Gr = (212)* + (213)° + (223)° ¢ s°wy (5.141)

Ga = (213 + 203) (231 + 221) (212 + 232) &> 87/ a3y3 (5.142)
2
w1, wy wWs
Gs=|z1 2z 23| < sia? (5.143)
1 1 1
Z% Z% Z?Q) w1 w2 w3
Gi= |1 2z 23| X|z1 2 23| s%gy% (5.144)

1 1 1 1 1 1

of this ring. Consider the last generator above: either of the determinants
being multiplied is antisymmetric under permuting 1, 2 or 1, 3 or 2, 3 so that
the product is symmetric. The relation obeyed by these generators is easily
identified

27(G4)* + Gg((GQ)Q - ;(Gl)ff) =0 (5.145)

Once again the ring structure exhibited by the polynomials implies a genuinely
new structure for the extremal primary operators that was not previously rec-
ognized. The Hilbert series in more complicated situations encodes detailed
information about the generators of the ring, relations between these genera-
tors, relations between the relations and so on. An example of this structure

is given in Appendix I.
The Hilbert series we have computed so far exhibit a palindromic property

of the numerators. This can be verified for Z"(s,z,y) and Z;"(s,z,y). A

general property of the numerators
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D
Qu(s,,y) = > ap(z,y)s" (5.146)
k=0

is that ap_g(z,y) = ag(z.y). A theorem due to Stanley[54] suggests that this
palindromic property of the numerators implies the Calabi-Yau property of the
underlying orbifolds. It is fascinating that non-trivial properties of the combi-
natorics of primary fields in four dimensional scalar field theory is related to
the geometry of Calabi-Yau orbifolds . Motivated by this connection,

we will prove this palindromic property of the numerators in the next section.

To obtain G5 (s, z,y) from Z,(s,z,y), we have kept only the highest weight
operator (under SU(2)) from a complete spin multiplet of primary operators.
Geometrically, this can be viewed as modding out by the action of G, gen-
erated by the SU(2) raising operator J* |, i.e. G4 is the unipotent group of
upper triangular 2 x 2 matrices with 1 on the diagonal. Consequently, the

Hilbert series Gy, (s,x,y) is the polynomial ring of functions for

c)"

14
(C2x G4+ x Sy) (5.147)

5.4.3 Palindromy properties

The palindromic property of the Hilbert series can be stated as follows

ZP () = (@) 2 (a1, q2) (5.148)

In this section we will prove that our Hilbert series Z2"(q1, g2) do indeed enjoy

this transformation property.

Our starting point is the formula

Z2(qu,q2) = 8" Y Zsu(q1, A) Zsm (g, A) (5.149)
AFn

where q1 = $,/TY, q2 = s\/%. This has the property Z2" (q1,q2) = Z7* (2, q1)-
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The exchange of g1, g2 amounts to the inversions of y. Now, observe that
Zsu(g'\A) = (=9)" ' Zsu (g, A") (5.150)

This is easily demonstrated using the explicit formula ([5.114]) and the identity

zb:hb :;(ch ci+1) Zrz ri + ) -n (5.151)
-3(X-2)

Here ¢; is the length of the i’th column and r; is the length of i’th row. Also
note that the row lengths of A7 are the column lengths of A and vice versa.
The identity can be understood as follows. As we sum over hook lengths, for
each column of length ¢; we have a contribution to the sum of 14+24---4¢; as
we start from the bottom and go up to the top. For each row, we can similarly
sum 1+ 2+ --- + r;, but this over counts 1 for each box. Hence the identity.
Using this result

Z2(g ) =" (@)Y Zsu(ar, A7) Zsu (g2, AT) (5.152)
AFn

=s"(q102)""" > Zsu(q1, M) Zsu gz, A)
AFn
=(q1q2)" ' Z2" (q1, @2)

In the last step, we used the fact that transposition is a symmetry of the set

of Young diagrams. Summing over A7 is the same as summing over A.

The Hilbert series GZ* (s, z,y) also exhibit the palindromy property. We know

Zrzl,w(sfl? :1:717 yfl) — 82n72xnflzz,w(8, z, y) (5153)

Also (CCW for counterclockwise and CW for clockwise)

1 1 1

G>v = dz[1 - = | z7v 2 5.154
e =g a(1- ) A et o (1)
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We will study /yG7" (s, z,y) which can be written in two equivalent ways

1 1 \/g
G>v = dz(1 - = | z7v 2 5.155
\/ﬂ n (S,x,y) 27TZ f;’CW Z( 22> n (S,HZ’,Z )Z—\/g’ ( )

since the integrand doesn’t have a simple pole at z = 0, we perform the

following manipulation,

1 1 /i

Gv s Ly = f d <1_>ZZ7w s Ly 2 )

Vi ) =g as(1 )z st
1

1
=-— dz(1— = ) Z7" 2
27ri7{ccw z( 22> Wz )Z—\/ﬂ

Both of the representations will be needed below. Now, study

(5.156)

1
1 1 1 Woi
—GEw 5_1,56_1, -1 :7% dZ(l)ZZ’w 5_1,56_1,2’2 VY
Oy =g (1= 5 )z =T
(5.157)

1 1 1
= dzl1— AW (=1 =1 2
27ri7{ccw Z( 22> S ’Z>Z\/37_1

Now change integration variables from z to w = % to find

1 1 dw w
B B :7f{ QW 1w 2501 1 =2
\/g n (S 7'r 7y ) 271—2 COW w2( w ) n (S 7x 7w ) y_w
(5.158)
2n—2,.n—1 d
:%]{ —U;(l —w?) Z2Y (s, x,w) _w
cow w w \/ﬂ

:Sananfl \/’IijL’w(S, z, y)

5.4.4 Gorenstein, Calabi-Yau and top-forms

In this section we would like to return to the issue of the Calabi-Yau property
for the permutation orbifolds relevant for the combinatorics of the primaries.
Stanley’s theorem[54] tells us that a Cohen Macauly ring that is an integral
domain and has a palindromic Hilbert series, is a Gorenstein ring. Further,
since our rings are defined over an affine space the canonical bundle in this

case is trivial, establishing the Calabi-Yau property. According to [64], the
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rings that we consider are Cohen Macaulay because they are the quotient of a
Noetherian ring (C?)"/C? by a reductive group S,. However, in general, the
relevant rings are not an integral domain. It is therefore not clear that we
can apply Stanley’s theorem to conclude that our permutation orbifolds are
Calabi-Yau.

An alternative approach to demonstrating the Calabi-Yau property, is to con-
struct a nowhere vanishing top form. To motivate the general formula, it is

useful to start with some simple cases. For n = 2 the top form
Q(n_l)(dz) = d212 = le — dZQ (5.159)

is clearly a translation invariant form on C? so it is clearly a top form on the
quotient C2/C. It is odd under S . For n = 3, a translation invariant, S,-odd

top form is given by

QP Y(dz) = dzia A dys = dz1 Adzy — dz1 A dzs + dzg A dzs (5.160)

For general n, we have

QY (dz) =dzio Adzog A+ Adzp—1n = Y Igdzr Adzo A-- Adzy,
k=1
(5.161)

The operator Iy, removes the dzj in the n-form and leaves an (n — 1)-form,
with a sign (—1)¥~1. In terms of these, the top forms for the orbifolds relevant

for the extremal primary primary are

Q=Y (dz) A QY (dw) (5.162)

5.5 Vector Model Primaries: Symmetry breaking
Sgn — Sn[SQ]

Up to now we have considered a single real scalar field. However, the methods

we have developed readily apply in more general settings. For applications to

holography[27], it is natural to consider the free gauged O(N) vector model,
conjectured to be dual to higher spin gravity[65]. The scalar field is now an
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O(N) vector and primaries must be O(N) gauge invariants. In this section
we will explain how the techniques we have developed in this chapter apply to
the counting and construction of primaries in the gauged O(N) vector model.
To obtain a gauge invariant, all vector indices must be contracted. Thus, to

construct a primary, we now distribute the derivatives among

¢I1¢I1¢12¢12 T ¢In¢ln (5'163>

where the vector indices I are summed from 1 to N . We no longer have an
Son, symmetry acting to swap the bosonic fields. The symmetry is broken to
a smaller group which can swap the fields in a given contracted pair, or it can
swap the pairs. This symmetry group is the wreath product S,[S2]. Thus,
we don’t want to project V**" onto the trivial of S, (i.e. Sym(VZ?")), we
rather want to project onto the trivial of S,,[S2]. We will restrict attention
to the case where 2n < N . This avoids subtleties due to finite IV relations,
associated with the stringy exclusion principle in the context of matrix invari-
ants. These can be dealt with using a Young diagram basis, which is left for

a future discussion.

We know the character for the fundamental representation V. of SO(4,2). To
repeat the analysis we carried out for the free scalar, we need the character for
the tensor product of 2n fields, after projecting to the trivial of S,,[Ss]. This

gives

1
X (5:2,9) = g D Tryean (0ME) (5.164)
" 0€S,[52]

where M is again given by Py y‘]§ . This is equal to

X (s, 2,y) = > Z5 S T (TeM?yP (5.165)
pH2n =1

N\ Pi
=3 7] (St

pH2n

where m, are the eigenvalues of M and ZZ‘? nl5]

is the cycle index, which gives
the number of permutations in S, [S2] with cycle structure specified by p;. The

generating function for these cycle indices is known (see e.g. [59]) and can be
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used to find the following generating function for the characters

o

n
ngot Ty, (M H V11— tm2 H \/ tmamb)
1

_H wl—tmz ];[b 1_tmamb)

We can now argue as we did in section 3. Using the known eigenvalues of M

the generalization of (5.42)) is given by

(5.166)

oo
Z(s,x,y) = Z t"xu, (s, 2,y) (5.167)
n=0
iR
=0 o qb* q t82q+2$2ay2b
a2
2 1
X H H H H (1 — tsntat2ypartazybitba)
22=0 ag=—22 by=—22 (q1,a1,b1)<(q2,a2,b2)

This can be simplified further. We can order the triples (¢, a,b) as follows
<QQaa27b2) means: g1 < ¢z Or g1 = ¢z, a; < az oOr

The inequality (q1,a1,b1)
q1 = q2, a1 = ag, by < by. Alternatively, we can write

i
Z(s,2,y) = (5.168)
0 a:—% b:—% \/1 t32q+2x2ay2b
a2 a2 a2 a2
00 2 2 00 2 2 1
X H H H H H H (1-— tsq1+qQ+2$a1+a2yb1+b2)
=224, %(I1:0a1=*q72 blzf%

We can now define the generating function (here we take n > 1 to avoid

complications with null states)

N P (5.169)

O(N (s,z,y) Z Z [2n+d,j1,j2]

G2n
d=0j1,j2

which is given by
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GQOn(N)(Sa x,y) = Kl — ;) (1 — ;)Zgn(s,x,y)] (5.170)

>

where

ater) =l (1= ovm) (1= 7) (-0 3) (- )

(5.171)

o0
— O(N) on+d
=22 NowragilS X (@)X ()
d=0j1,j2
For n = 1 we need to subtract out the null states that are present since the

primaries being counted include conserved higher spin currents.

We can again specialize to the counting of extremal primaries. For example,

(N),max(

the leading twist primaries are counted by Gg)n s,x,y) where

o0
S G g y) ztn — VX (say) (5072)
oo 1
max
X 3 T y
Z 2n H \/W o \/1_t8q1+q2+2$<n;q2ym+q2
(5.173)

It is now straightforward to obtain the Hilbert series for leading twist primaries
built using 4 fields

84(1 _ 36x3y3)

GO(N) max
( 3 3
(1= s22y)*(1 — sPw2y2)(1 — sta?y?)

s, x,y) = (5.174)

This shows that there are 4 generators and a single relation, that this space of

operators is a complete intersection and it is 3 dimensional. In a similar way

we have
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T3 10,5, 5
GO(N),max( ) (1 — ST +$ .%'2 — S .1‘2y2 + 9 ,1‘2y2 sy )
S""E7y = -
‘ (1 —syxy)(1 — s2zy)?(1 — s3x %y%)(l — s4a2y?)(1 — s6a3y3)
(5.175)

The Hilbert series for these primaries are again plindromic. For the case of
one-complex variable that we are discussing, we have

Go gy =5 S Zsu(a, ) (5.176)
AF2n,Aeven

Using this formula and (5.150f) we find

GQTEN),maX(q—l) =52 3" Zeu(g 7', A) (5.177)
AF2n,Aeven

=—¢" ' > Zsn(q,AT)
AF2n,Aeven

n—1,~O(N),max
(@) QoM (g)

This demonstrates the palidromy property for the Hilbert series associated to
the orbifold

(C)*"/(C x Su[S2])

(5.178)
Now consider the two complex variable case
°° 1
(s, 2,9) H (5.179)
\/W 1,92 \/1 _ psntaat2 1R yqlﬂ?

—Zt" sa:y

It is natural to consider the generating functions

28070 (s,2,) = (1= sy (1[0 Jiit(san) (5150
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and

Gg(N),zw — |:<1 _ 1)ZT?(N)’Zw(S7$,y):| (5181)
Y >

A straightforward computation gives

Z4O(N),zw(8’x7y) _ g(s,z:,y)
(1- 8\/5)4(1 —sy/my)H(1 + S\/%)Z(l +5y/@y)*(1+527)(1 + s*ay)
(5.182)
where
_84 — SV Ssx% 8533% 87117% L .
gls,z,) =t (1= (v + Pt 4 ot 4 Wi+ ) (5.183)

1
+ (882 + s*2? + 25%x + 25%23) + (s'2? 4 5% + 02 (y + 1+ )>
Yy

This result can be recovered by using the generating function

st Y (O A, Ay) +C(Hﬂ,Al,Ag))ZSH(Al,s\/@)ZSH(AQ,s\/f)

A1,A2
(5.184)

Recall that

ci(c;—1) 1
Zsa(Aq) = (1—q)g2i 5[]

a=a (5.185)
b

Formula ([5.184]) is a consequence of the fact that an irrep A of Ss, contains
the trivial of S,,[S2] with multiplicity 1. For the example given above, using

the fact that the non-zero terms are
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O, A1, A2) = Aay s (5.186)
C(om,HH) = clHom o) =1

cEH B H) = c@jﬁjﬂ}) =1
C(EH,BEE}) = C(Hﬂ,ﬁjﬂﬂ) =1

C(E,HH,BH) = C(EE,E,BH) =1
c(EHHH) =1

we obtain complete agreement between (5.182)) and (5.180). The geometries
O(N),zw

associated to Z, (s,x,y) are
()"
— 5.187
(C% x Sp[S2]) ( )
and, after we impose the G4 condition, the geometries for GQOn(N)’m(s,x,y)
are
(C2)2n
—_ 5.188
(@ 5,05 (0159

G+ is the unipotent group of upper trianglar 2 x 2 matrices with 1 on the

diagonal. For the 2-complex variables case, we have the Hilbert series

ZOWN)20 (g go) = 27 > > C(A1, A2, M) Zsu(qr, M) Zsr (g2, As)
A1,A2F2n AF2n,Aeven

(5.189)

where C(R, S, T) is the Kronecker coefficient giving the number of S,, invari-

ants in the tensor product of three irreps R, S, T of S,,. Applying the inversion
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ZgN* (gL, gy ) =57 > Y C(A, A M) Zsh(qr ', M) Zsu(gy ' As)
A1,AoF2n AF2n,Aeven

(5.190)

=) Y > C(AL A, N Zsr (g A Zsa(ay ', AS)
A1,A2F2n AF2n,Aeven

=s""(qg2)" Y S O AL N Zsp (a7 M) Zs gzt As)
A1,A2F2n AF2n,Aeven

=) Y > C(Ar, A2, M) Zsu(qr, M) Zsi (g2, As2)
A1,A2F2n AF2n,Aeven

=(q1q2)*" 12O (g go)

In going from the second to third line, we renamed A; — AT, Ay — AL In
going from the third to fourth line, we used an invariance of the Kronecker

multiplicity

C(A1, Ay, A) = C(AT, AT A) (5.191)
which follows from
C(A1,Ag,A) = o) xa,(0)xa (o) (5.192)
‘ 0'65271,
and
xar (o) = (=1)7xa (o) (5.193)

where (—1)7 is the parity of . The formula (5.190) demonstrates that the
palindromy property of the Hilbert series for the counting of vector model

primaries.

5.6 Matrix Model Primaries

Another interesting generalization of the single real scalar field, is to a matrix
scalar. We gauge the free theory. The net effect is that we look for primary

operators with all indices contracted. There are many ways that the indices
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can be contracted, corresponding to the different possible multitrace structures
that can be written down. Thus, generalizing to the matrix scalar introduces

an interesting non-trivial structure to the problem.

The large N counting of gauge invariant functions of a single matrix, is

achieved by integrating[66]

(o]
dU t7’UI trU“ )
/ e =1l —— Ty (5.194)
z:l
For multi-matrices, the large N counting is [66]
(Za a) 7 7 e
Z(z;) / dU e (U ErUt) H S (5.195)
i (1= 0L, )

where M is the number of matrices in the model. Specializing to the 2-matrix

case, this is

o0
5.196
For the matrix scalar, we have matrix fields
m ' (5.197)

[ denotes a symmetric traceless irrep of SO(4) and m runs over the states in
this irrep. There are known methods that can be used to write diagonal bases
for the local operators of this theory[50, 67]. For the large N counting of gauge

invariants built from derivatives of a single matrix, we have [6§]

o0 3 (s Daayba)! iy ot
Z(t,s,x,y) = /dUez:Z 2 Ozaq bg=—% ’ (oD (5.198)

Note that this can also be written as

Z(t,s,x,y) = /dUeZitT‘ixv+(Si’f”’i’yi)("Ui)(t’”U“) (5.199)
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By repeating steps similar to the ones we did for the integral encountered in

case of multi-matrices, we get

1

Z(t,s,z,y) = —
(1-300 qu,bq_f sitdigitayibs)

(5.200)

'1.:18

To simplify this further, we will derive an identity quoted in [66]. The state
space of a single scalar V., is obtained by acting on the ground state with
products of the operators P, . This is a 4D irrep of SO(4) = SU(2) x SU(2)
with spins (1/2,1/2). The equation of motion says that P,P, acting on the
ground state is zero. An immediate consequence is that the independent states
in V. generated by g copies of P transform as the symmetric traceless irrep
of SO(4), corresponding to the Young diagram with a single row of length g.
This irrep of SO(4) is the (¢/2,q/2) irrep of SU(2) x SU(2). It immediately
follows that

XV (Saxay) :tI'V+ (SD:Z:JLy ) (5201)

_SZSqu/Q Xq/?( )

“ & 4
=3 Z s Z % Z yb‘?
=0 ag=—1% bg=—1

This character was used above in ((5.198)). The state space obtained by acting
with all the P,’s, without setting P, P, = 0 has character

Xy, (s,2,y) = try, (sP2 by ) —SZZS PRy (@)X p(y)  (5.202)
p=04=0

The p summation is over the number of powers of P2. A basis in V, can be
given by multiplying powers of P? with traceless products. Doing the sum

over p, we find

Xy, (5,2, y) = s(1 = %) " Ixy+ (s,2,9) (5.203)

so that

101



Xv+ (S, x,y) = 5_1(1 - 52)X17+ (s,x,y) (5204)

Now by thinking about VJF as isomorphic to the Fock space generated by four
oscillators P, (which transform in the (1/2,1/2) of SU(2)x.SU(2)) it is evident
that

Xy, (8,2,y) = = sP(s,2,y)

(5.205)

and so we find

(M)

xv+(s,z,9) = (1 — s*)P(s, x,y) —squ Z Z yba (5.206)
bg=—

_ g
2

l\J\Q

Thus, we have the identity

3 : : by — _<3 — 371)
g —Zg bq—z—gy (1= syag)(L - s, /D)1 - )1 - sy/%)
(5.207)

Using this identity, we can now rewrite (5.200)) as

e (ts)i(si _ S—z‘) -1
Z(s,x,y) = 1 : .
) H( NN RN >)

[ee]
=Y t"xu(s, 7,y)

n=0

As we did above, we can define two primary generating functions as follows
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W(s2,y) =3 SN @)x () (5.209)

A j1,J2

zxn(sax,y)(l - S\ﬁ> <1 - S;) (1 a Si) <1 - \/(-;’6‘7/>

and
(s,z,y) Z Z AJl AL sATyl2 (5.210)
A j1,j2
1 1
A|(-2)(1-5) )
x Yy >
Here N7V counts the number of primaries of dimension A and spins (j1, j2)

[A,51,52]
that can be constructed using n matrix fields. We can again specialize the

counting to counting leading twist primaries, or to count extremal primaries.
The relevant generating function for the counting of extremal primaries is

given by

Z2(s,ay) =8" > > Zsu(svay,M)Zsnu(s \/jAQ)C(Al,Ag,A)C(R,R,A)

A1,Aobn R, AFn
(5.211)

This follows from the general counting of matrix gauge invariants in the case
where the matrices X, transform under some global symmetry group G, given

in [50]. The resulting Hilbert series, for n = 3, is

Z, W 83Y(87x7y)
Z5Y =
P (s D245 D)1+ sy (L + s @) (7L + 5y 5+ 1) (L4 5T + s2ay)

(5.212)

1
Y (s,z,y) =3+ 3s%23 + (sv/z + 55933) <

\/17+\/§> +(52x+54x2)(;+5+y>

(5.213)

1 5
+s3x3(3 f+5f+y3>
2
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This counts the total number of primaries we can build from 3 matrix fields.
We can refine this counting by specifying the trace structure. Schematically,

the primaries we study have the form

= L Angmi gt n2 gm2 (12 n3 ams 43
O - Z Cn,mazl 811)1 io(l)az2 a’wQ ia(2) 823 8w3 io‘(S) (5214)
2 =2,W=W

3
3

)

i.e. they are specified by allowing derivatives to act on some gauge invariant
operator specified by the permutation o € S, . After we translate to the
polynomial language, primaries are specified by polynomials in n variables z;

and w;, as well as by the trace structure, i.e. they are functions on the space

c)"
C2

X S (5.215)

These functions have to be invariant under an action of v € .S,

v (wr,z5,0) = (w,y([),ZV(I),'y_lafy) v € Sy (5.216)

Modding out by this symmetry we find the primaries are functions on the

space

((C*)" x Sn)

&5 (5.217)

We can also obtain a description by fixing a specific permutation, and then
dividing by those permutations v that fix 0. Lets work out this description
for n = 3. For primaries obtained by acting with derivatives on Tr(¢)3, o =
(1)(2)(3) which is left invariant by v € S3. Thus, we need to consider

(02)3

TN (5.218)

We need to project to the trivial of S3 and hence
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X
Zivigy = 5" > Zsn (s vA)ZSH(S\/;, A) (5.219)

A3

3 2 4.2 1 6,3 4 3.5 1
s (1+s T+ sz + sz’ + s x2(\/§+\/§)>

(1= sy@)2(1+ sy/TP)2(~1 + sy/TP)2(s25 + 5[5 + (L + s/77 + s%ay)

For primaries obtained by acting with derivatives on Tr(¢?)Tr(¢), we can
choose ¢ = (12)(3) which is left invariant by Sz x S;. Thus we need to

consider

(c?’

TN (5.220)

where Sy contains permutations of (z1,w;) and (z2,w2). Thus, we need to
project to the trivial (f13,00) of the So x S; subgroup. This representation is
subduced once by (111 and once by . Thus

€ T
Z35(62)Te(0) :SszSH(sﬁ,mZSH(s\/;,m) 4 28% Zom (sv/ag, ) Zou (s \/;Bj>
(5.221)

+ 53ZSH(S\/@, EZSH(S\/ja E) =+ S3ZSH(S\/@, E\:DZSH(S\/j, H:‘)
+ SSZSH(S\/@, BIZSH(S\/j, E\:\]) + 83ZSH(S\/@, H:‘ZSH(S\/§7 @)
+ 53 Zsm(s\/Ty, EZSH(S\/j, Hj)

s3(1+ s’z)

(1 = sy/xy)?(1 + sy/xy) (1 + s./2Y)2(1 + s\/Ty)

For primaries obtained by acting with derivatives on Tr(¢%), we can take

o = (123) which is left invariant by Z3. Thus, we need to consider

(C*)°

A (5.222)

where Z3 is the group comprising {1, (123), (132)}. We need to project to the
trivial of Zs. The trivial of Z3 is subduced once by (111 and once by, E Thus
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28 g0y =5 Zsn (5y/7, D:DZSH(S\/j, 1) + 26° Zsp (517, BH)ZSH(S\/? +)
(5.223)
+5° Zsm (s/7y, EZSH(S\/§7 @) +5° Zon (s a:y,DE)ZSH(s\/j E)
1 82 Zsn (5/T, @zsﬂ(s\/j, o)
33(1 + s'2? — (sy/z + 8390%)(% +/9) + s%(% +3+ y))

(1= 5,/3)2(1 = sy/am)2(s2) + 5,/ + D(L+ /7y + s%2y)

Note that

Z3" = Zé};’fw + Z%i‘i¢2)Tr(¢) + Zﬁ”wg) (5.224)

as it must be. The permutation quotient geometry which includes all trace

structures is

(C?)" x S,

x5 (5.225)

This has an SU(2) action. We can again look at functions which are anni-
hilated by J;. Let G be the subalgebra of GL(2,C) generated by J;. The
Hilbert series in this case is G7”. The algebra of functions annihilated by Jt

corresponds to functions on

(C*)" x Sn
(C?x S, xGy)

(5.226)

It is again possible to establish the palidromic property for the Hilbert series

relevant for the matrix case. In the matrix case, we have the counting function

ZF(quq2) =s" Y > C(A1, A, A)C(R, R, A) Zsp(q1, M) Zsm(qo, A2)
A1,AoFn Rbn

(5.227)

1

The symmetry under q; < ¢o, equivalently x — x,y — y~ " is clear. Now
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apply inversion

ZTZLw(Q1 7Q2 - Z Z C A17A27 C(R7 R7 A)ZSH(ql_17A1)ZSH(q2_17A2)
A1, AFn Ren
(5.228)

(11<]2 Z Z C Al,AQ, C(R7 R7 A)ZSH(QlaA{)ZSH(Q%Ag)
Al,AQFn Rkn

Mqug2)"t Y Y C(A A, NC(R, R A) Zsp (g1, M) Zsu (g2, As)
Al,AQFn RFn

Mqg2)"t Y Y C(M, Ay, M)C(R, R, A) Zs (g1, M) Zsm (g2, As)
A1,A2Fn RFn

=(q1¢2)" "' Z2" (q1, q2).-

5.7 Summary and Outlook

We mapped the algebraic problem of constructing primary fields in the quan-
tum field theory of a free scalar field ¢ in four dimensions to one of finding
polynomial functions on (R*)" subject to constraints involving Laplace’s equa-
tion on each factor, a condition of invariance under translations by the diagonal
R* and an S,, symmetry related to the bosonic statistics of the elementary field
(5.31). By considering holomophic solutions to the Laplacian conditions, we

mapped the primary fields to functions on the complex orbifold

(C*)"/(C* x Sp) (5.229)

We showed that this space has a palindromic Hilbert series and is Calabi-Yau.
We generalized the discussion to the quantum field theory of free vector fields
gf){ () in the large N limit and found that the orbifold

(C?)?"/(C? x S,[S2]) (5.230)

plays an analogous role. We established the palindromy property. We then
considered the free matrix scalar in four dimensions ¢g (x) again in the large
N limit. The orbifold is now

107



((C*H)™ x 5,,)/(C? x S,,) (5.231)

We established the palindromy of the Hilbert series.

In this chapter we have focused on the explicit construction of extremal pri-
mary fields. However, the formulation of the problem of constructing gen-
eral primary fields given in , as a system of equations for harmonic
polynomal functions on (R*)" , should be useful beyond the extremal sector.
In this more general case, we have to include non-holomorphic solutions to
the harmonic constraints-solving this simultaneously with the symmetry and
translation constraints proves surprisingly tricky. In this case, we do not ex-
pect the ring structure of the extremal primaries to survive. Our preliminary
investigations indicate that this most general problem has a graph-theoretic
formulation, which will be interesting to exploit. At the level of counting
these primaries, we still have the full expressions for the so(4,2) characters of
Sym™ (V) which, once expanded in terms of irreducible representations, will
in principle yield the counting for the general case. However finding explicit
expressions analogous to or looks challenging. It would very
interesting to explore the possible application of the higher spin symmetries
and twistor space variables of [69, [70] in shedding light on this problem. It
is interesting to note that symmetric group representation theoretic questions
close to (but not identical) to the ones we have used have played a role in the
discussion of higher spin symmetries in [55]. Some recent mathematical results
on these symmetric group multiplicities are in [71]. A number of immediate
generalizations of the current work are: free fermions, gauge fields, the free
limit of QCD and supersymmetric theories. Some of the early constructions
of primary fields - in the SL(2) sector which is a special case of the extremal
operators we considered were done in the context of deep inelastic scattering
in QCD (see for example the review [72]). It will be fascinating to explore
QCD applications of the holomorphic primaries considered here. The explicit
enumeration and construction of superconformal primary fields in N =4 SYM
will give a better understanding of the dual AdS5 x S5 background. While the
map between branes and geometries in the half-BPS sector of the bulk and
the half-BPS states in N' = 4 SYM[73], [74] [75] is reasonably well understood,
there are important open problems, most notably in the sector of sixteenth

BPS states [76] but also in the quarter and eighth-BPS sectors (some progress
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on branes states in these sectors is in [77, [78 61, 79, [0, 81, 82 83]). A
better understanding of operators with derivatives is a step in the direction
of a more complete picture of the duality map in general. The construc-
tion of holomorphic primaries for the l-matrix case should admit, without
much diffculty, generalization to multi-matrix systems and more generally to
quiver theories by combining the methods of the present chapter with those of
[43, 50, 84, [85], [86), 87, 88]. Another natural direction is to consider correlators
involving the extremal primary fields and the determination of anomalous di-
mensions for these fields at the Wilson-Fischer fixed point using the techniques
of [18].
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Chapter 6

Counting and Construction of

Free Fermion Primary
Operators in CFT4

This chapter is basically an extension of the previous chapter. We extend
the analysis of the previous chapter to the fermion CFT. We follow the same
approach, using representation theory to derive a general generating function
for the number of primary operators constructed from using n-copies of the
left hand or right hand spinors. We use this generating function to obtain
the correct counting of primary operators. We then translate the problem of
constructing primary operators from n-copies of the fundamental spinor, into
a problem of determining a multi-variable polynomial that obeys a number
of algebraic and differential constraints. Focussing on extremal primaries we
find that these primary operators display the same Calabi-Yau geometries as
in the free field scalar operator case. The work carried out in this chapter has

been submitted for publication in [89].

6.1 Introduction

The remarkable success of the conformal bootstrap[90, 911 [92], 93] suggests that
algebraic structures present in conformal field theory (CFT) can profitably be
exploited to extract highly nontrivial information about the CFT. In the pa-
pers [41], [94] a systematic approach towards manifesting and exploiting some
of these algebraic structures was outlined. The key result is that the algebraic

structure of CFT defines a two dimensional topological field theory (TFT2)
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with SO(4,2) invariance. Crossing symmetry is expressed as associativity of
the algebra of local CFT operators. A basic observation which is at the heart
of this result, is that the free four dimensional CFT of a scalar field can be
formulated as an infinite dimensional associative algebra. This algebra admits
a decomposition into linear representations of SO(4,2), and is equipped with
a non-degenerate bilinear product. A concrete application of these ideas has
enabled a systematic study of primaries in bosonic free field theories in four
dimensions, for scalar, vector and matrix models[40, 19]. For closely related
ideas see [95].

We know from the AdS/CFT correspondence[l, 26, 25] that strongly cou-
pled CFTs have a dual holographic gravitational description. The combi-
natorics of the matrix model Feynman diagrams plays an important role in
holography. In this setting the TFT2 structure also appears as a powerful
organizing structure, explicating algebraic structures that were not previously
appreciated[42] [43, [44] [45]. Thus, it seems that the TFT2 idea is rich enough
to incorporate the algebraic structure emerging both from the conformal sym-

metry, and from the color combinatorics.

In this chapter we extend the study of [40, 19] by carrying out a system-
atic study of primaries in free fermion field theories in four dimensions. In
section we obtain formulae for the counting of primary fields constructed
from n copies of the fundamental fermion, using the characters of represen-
tations of so(4,2). For a beautiful discussion of these characters, see [I7].
By specializing the particular classes of primaries, we can make the counting
formulae very explicit. These special classes of primaries obey extremality
conditions stated using relations between the charges under the Cartan sub-
group of SO(4, 2)). The construction of primary fields is then mapped to a
problem of determining multi-variable polynomials subject to a system of al-
gebraic and differential constraints. This relies on a function space realization
of the conformal algebra, which is explained in section We give concrete
examples of polynomials obeying the constraints and the associated primary
operators. Finally, in the last section we verify that the Hilbert series for the
counting of extremal primaries are palindromic. The palindromy property of
Hilbert series is indicative that the ring being enumerated is Calabi-Yau. It
it interesting that palindromic Hilbert series also arise for moduli spaces of

supersymmetric vacua of gauge theories, as found in [52} [53].
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6.2 Counting Primaries

We enumerate the SO(4,2) irreducible representations appearing among the
composite fields made out of n = 2,3,--- copies of a free chiral fermion field.
The fermions are Grassman fields, so there is a sign change when two fields are
swapped. Consequently, we should be taking the antisymmetric product of the
SO(4,2) representations. Enumerating the primaries entails decomposing, the
antisymmetrized tensor product Asym”™ (W, ) into irreducible representations,
where W =D Lo in the notation of [I7]. After obtaining a general formula
in terms of an infinite product, we specialize to primaries that obey extremality
conditions, that relate their dimension to their spin. For these primaries using

results from [50], we find simple explicit formulas for the counting.

6.2.1 Generalities

The basic formula we use in this section states

det(1 +tM) Zt X(1m) (6.1)

where x (1) (M) is the trace over the antisymmetrized product of n copies of
M. From formula (3.44) of [I7] we know the character of a left handed Weyl

fermion is

X (s,2,9) =87 (x1(2) — sx3 (1)) P(s,2,)
=57 ) sty (2)xg(y)
q=0
=Tryy, (M) (6.2)

with M = sPa’s.Ly/s.r Tt is straightforward to verify that

a1 g
© 2 3
det(1+tM) = H H H (1+ts2+q$ y") (6.3)
q=0,—__a+1l p—_4
2 2

Applying (6.1) we find the generating function of the characters of the anti-

symmetrized tensor products of the free Weyl fermion representation

q+1

2

oo o
Z(t,s,z,y) H H (1 +t32+qac by = Z t"xam (s, z,y)  (6.4)
q=0, n=0

—_atl p——
)

q
2

l\?\ﬂ
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By expanding Z(t, s, x,y) as a series in t we can easily read off the character
of the antisymmetrized tensor products of n copies of the free Weyl fermion
representation X(ln)(s, x,y), as the coefficient of t". To be completely clear,
X(1m)(8, z,y) is the character of M in the representation given by the antisym-
metrized tensor product Asym”™(W,.). The next step is to decompose this into

a sum of SO(4,2) characters, for irreps of dimension A and spins jr, jr

Xy ($2,9) = Y Niajy jrlX(An.ir) (5:2,9) (6.5)
[AjL,dR]

The coefficients N j, j,] count how many times irrep Aa jy jo] (in the notation
of [I7]) appears in Asym"(W,). Hence, Npa j, j,] are non-negative integers.
The case that n = 2 is subtle because some of irreps appearing in the above
decomposition are short. We will consider n = 2 separately in detail below.
For n > 3 we have[17]

SAle (x)XJé (y)
X(a,j1,721 (8, ) = - ; (6.6)
(1= symg)(L -5, /D1 s/H)(1 - )
It is useful to define
Zn(s,2,9) = D Niajii 8 X5 (@)X, () (6.7)

A7j17j2

so that

Zu(s,wy) = (1= syFD(1 =3, [D)(1 =5 D=

The right hand side of (6.7)) is a sum of (products of) SU(2) characters. Fol-
lowing [60], it can be simplified by using the orthogonality of SU(2) characters.

) X(1m) (57 €, y) (68)

The result is most easily stated in terms of the generating function

Gulsy) = (1= D1 = 2)Zus.2.0)]|

= Z N[A7j17j2]8ijlyj2 (6.9)
A7j17j2

The subscript > is an instruction to keep only non negative powers of x and

Y.

It is easy to check that this agrees with standard character computations.
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For example, the expansion

153

G(Sxy)—s233f+s2m2—1—82m2y+32y2—|—82my2+s2xy2+s2:c2y

ot

+37x5y +37x5y —i-s?x y5 —l—sTxy? +2s7az y§ +s?:c Y

(6.10)

can be reproduced using characters. The relevant Schur polynomial for this

case is calculated as follows

1
Xy (s.2.y) = ¢ [(c(s,2,9))° = 3xe (s 2%y )xe(s,2,y) + 20 (5% 2%, )]
(6.11)
Using Mathematica, we find the following terms
X(]_S)(S,l‘,y) A[ll 1 + ./4 75’%70] + A[Q 3 1] (612)

2727

+A%@%+A%za+A%&a
+ A[%ﬂZ’l + «4[11,572] + .A 17 5 9
+A[19 4,3] + +A[19 1,3] + 2.4[19 3,3] +A[19 4,8]

2772

+A[21 9.0] +«4[%,%,2] +./4[27217%73] JrA[%’g’g] +A[%’%’3]

PREPE

+ A[Ql 9 3}

22

in complete agreement with (6.10]).

The case that n = 2 is complicated by the fact that representations that
include null states appear in the decomposition. The condition for a short
multiplet[20] is A = f(j1) + f(j2) with f(j) = 0if j =0or f(j) =j+1
if j > 0. For n = 2 the decomposition includes a primary with A = 3 and
J1 = j2 = 0 which is not short, as well as primaries with A = 2j j; = (2j—1)/2
and j2 = (25 —3)/2 which are short representations and hence have null states.
These null states (and their descendants) must be removed. These short rep-
resentations arise because their primary operators are conserved higher spin

currents

By JHH s — () (6.13)
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The subtraction of null states is achieved by removing the A = 3 primary that
does not need to be subtracted, dividing by 1 — s/,/zy which removes the null

descendents and then putting the original primary back in. In the end we have

1 1 1
G2(5ax>y): [(1_)(1_) (ZQ(Sax7y)_83> 1 S +S3
v y T Vayls
o0 b
=3 Pyt (6.14)
=0

This is indeed the correct result[96].

6.2.2 Leading Twist Primaries

By restricting to well defined classes of primaries, we can significantly simplify
the counting formulas of the previous section. The biggest simplification comes

from focusing on the leading twist primaries, which have quantum numbers

[A, g1, 52] = [n(n2+2) + q, n(njl) + 1, % + 4]. Each such primary opera-

tor comes in a complete spin multiplet of (% +q+ 1)(@ +q+1)

operators. Choosing the operator with highest spin corresponds to studying
primaries constructed using a single component P, of the momentum four
vector operator. To count the leading twist primaries we can count this high-
est spin operator in each multiplet. The corresponding generating function is
G (s, z,y). This generating function is obtained after a simple modification

of the results of the previous section. First, we replace x Asymn(v)(s, x,y) with

max

a new function x>

(s,z,y), by keeping only the highest spin state from each
multiplet in the product

(o) (o]
[T(1+ts20a0t3y) = 37 6235, 2, y) (6.15)
q=0 n=0

The leading twist primaries are constructed using a single component of the
momentum, that raises left and right spin maximally. Consequently in

we replace

(1= sy (1= s/ D)1 =5y /D) - ) (msvam) (616)

Finally, for each spin multiplet we keep only 1 state so there is no longer any

need to replace the multiplet of spin states by a single state when we count.
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The final result is

G (s, m,y) =(1 = sv/zy)xn ™ (s, 2, y)

Z N[n&a;(mz]s Iyl (6.17)
A,j1,J2

where NV, [rga;.‘l o] is the number of leading twist primaries of dimension A and
spin (j1, j2). For the leading twist primaries, once n and the dimension of the
operator is specified, the spin of the primary is fixed. Consequently, we need

not track the x and y dependence. This leads to the formula

G (s)=(1—s H (1+ts279) = (1 — s)F(t, 5) (6.18)

We can obtain explicit expressions for Gj'**(s) by developing F'(¢,s) in a

Taylor series. Define

fq(t,s) = gt log F'(t, s) (6.19)

Straight forward computation gives

= ()" (g - 1)l

t,s) = 6.20
) = 3 = (6:20)
so that, after reinstating x and y, we have
3k k
_ s2x2
fk(0787$7y) = (k - 1)'(_1)k ! k k (621>
1 —skx2y?
Explicit expressions for G'** are now easily obtained. For example
G (s,2,1) = (1 — y/3)
S, x — S\/xY)——5
KT AT TER P
1
:g(l — sv/ay)(fs + 3f1f2 + )
' 3125a:3y2
= (6.22)
(1— s2ay)(1 — s3w3y3)
Similarly
12,..5,,3
Gflnax(svx’y) = i (623)

(1— $2ay)(1 - s*ady?)(1 - sta2y?)
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It is possible to obtain a general closed formula for G***(s). To make the
argument as transparent as possible, again set + = 1 = y. Evaluate the

derivative

8"F _ Z Z n1k1+ +nq ) f f’?q(;

n,n1k1+--nqgkq F

otn e ‘gl (kal)™ - (kg!)na ‘
(6.24)
and use the formulas for the fi’s to find
n 3k1 3kq
O"F Z 1n'532 sz \p S 2 n
at” ‘t 0 ni Zn k Z n 'knl st kq 1 - Skl) o (1 — Skq) q(sn’nlkl—‘r”.nqkq
q K1, 7
(6.25)

Notice that this is a sum over conjugacy classes of S,,. The conjugacy class
collects permutations with n, kg-cycles. This interpretation follows because

the coefficient

n!
m!---nq!kl”l---kgq

(6.26)

is the order of the conjugacy class. Each conjugacy class is weighted by the

factor ( —1)"722' " which is the signature of the permutation with n, kq-cycles.

3k
S

There is a factor of = for each k-cycle in the permutation. The lowest Welght
discrete series 1rrep of SL(2), built on a ground state with dimension 3 has

character

x1(s) = Trvl(sLO) = — (6.27)

Denote this irrep by W1. It then follows that (P;») projects onto the antisym-

metric irrep i.e. a single column of n boxes)

1 0"F B Loy _ 5%
P T P LGt L el s e G e ey ey

(6.28)
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where the last equality follows from eqn (49) of [50], where these SL(2) sector

primaries were studied in the language of oscillators. We now easily find

n

nn— 1) 3
G (s,m,y) = (sy/zy) 2y/x)" ]}_[2 1= \/7) (6.29)
6.2.3 Extremal Primaries
We now consider the class of primaries with charges
A= 3—n+q, J§:g+g (6.30)

The charge J#, which is part of SU(2)g, is not constrained. These primaries
fill out complete multiplets of SU(2)r. They are constructed using two com-
ponents of the momentum four vector operator which are complex linear com-
binations of the (hermitian) P,. Introduce a generating function G;"(s, z,y),

given by

G2V (s,x,y) = [(1 - ;) Zfl’w(s,x,y)}> (6.31)

where Z,(s,z,y) is defined by
Z (s, ,y) = (1= sy/my)(1 = sy\/x/y)xals, €, y) (6.32)

with

q
o0 o0 §
Zt”m(s,x,wzﬂ H (141521927 ) = Bo(t,s,2,y)  (6.33)

[0S

It is again possible to derive closed expressions for the generating functions
Z2% (s, x,y) and G2Y (s, x,y). Introduce the functions

akl

iltss,,9) = oo

log F»

3k (¢t+Dk
qJF* s

=(-1 Yy S Sl (6)

oy (L tsT 3" ym)
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It is simple to establish that

3k k
_ s2x2
fk(0757$ay):(_1)k l(k_l)! E & T _k (6.35)
(1 —ska2yz)(1 — skoz2y™2)

Exactly as above we have

0" Fy n1k1 +o nqk: )!
otn ‘t 0 anklz ! ]ﬁ) - (kg f f On,nky+-ngkg

(6.36)

Inserting the formulas for the fi’s expressions for the Z,(s,x,y) now follows
from (6.32)). To extract spin multiplets, we need to compute

Gy (z,w) = {Zn(s,x,y) (1 — ;)} = % i)dz (1 _ i)_Z”\/(;’x’z2)

(6.37)

As an example, the generating functions counting the extremal primaries con-

structed from 3 fields are given by

ol
, 21—1—3\[—1—3

Z37" (s x,y) = s2x
(1= s?zy)(1 - 535'353/5)(1 — S5 - 2
2

N

(1+s\ﬁ+3 xy)
b

w\w
w\w‘ o

Y

Yy
(6.38)
F2301 4 syaud)
7 52 12 s\/Ty?
Ggw(S,l‘,y): 3 3
(1 —s*2?)(1 — s2xy) (1 — s3z2y2)
1B 5 15 33 17 71 9 43, 10 408 A9
321-2+32xy2—|— S 2 2y—|—32(1;y2—|— S 2 y2—|—32x2
—|—s%x3y2—|—s%ajgy3—l— (6.39)

6.3 Construction

In this section we will explain how the counting of the previous section can be
used to provide concrete formulas for the construction of the primary opera-

tors in the free fermion CFT. For the leading twist counting this is manifest.
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For the counting of extremal primaries, we will argue that our formulas can
naturally be phrased as counting the multiplicities of the symmetric groups
representations. The quantities being counted are then easily constructed
using projectors onto these representations. In this analysis, a polynomial
representation of SO(4,2) will play an important role. This representation is
described in the next subsection, after which we describe the construction of

leading twist primaries and then extremal primaries.

6.3.1 Polynomial rep
We use the following representation of SO(4, 2)

0

h= (6.40)

D=z aag; -3 (6.41)

My, = xM% - u% + M (6.42)

P, = (mQaiu — 22,7 - ;x + 3z, + 22" M) (6.43)

In the formula above we should replace M,,, by the relevant matrix represent-
ing the spin part of the conformal group. In Minkowski spacetime we have
(the two possibilities correspond to taking either a left handed (3,0) or a right
handed (0, 1) spinor)

M = gt or ok (6.44)
where

1
(J’“’)aﬁ =1 (ota” —o¥a"), B (6.45)

. 1 .
()5 = 5 (00" —a"ab)"

5 (6.46)
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and

o5 =(1,3) ghhe = (1,-&) (6.47)

1
MH =g = 1 (cta” — a”at) (6.48)
or
_ 1 _
MW =gt = 1 (gho” —a"at) (6.49)
where now
ot = (—id, 1) ot = (id, 1) (6.50)

The generators in Minkowski space close the algebra

[Mpo'7 M¢>9} = 779pM¢a + 77¢UM9p - 7790M¢>p - nd)pMGU
[P, P)) = 0= [K,, K] [Ps, Ka] = 200D — 2Map
[(Mpp, Kol = NapKs = napKp  [Mpp, Pol = 110pPs = Nap P

[D’PM] =Py, [DvKH] =—K, [D,Mm,] =0 (6.51)

The Euclidean generators obey the same algebra with 7, replaced with d,, .
States in this representation correspond to polynomials in the spacetime co-
ordinates z,, times a constant spinor (,, which transforms in the (3,0) if we
study the theory of a left handed fermion, or in the (0, %) if we study a right
handed fermion. The 2x2 matrix M, acts on this constant spinor. Further,
Co is Grassman valued to account for the fact that the fermions are anticom-
muting fields. Concretely, each operator corresponds to a state (by the state
operator correspondence) and each state corresponds to a polynomial times

the spinor (thanks to the representation we have just described)

Ty Ty Ca (6.52)
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To deal with operators constructed from a product of n copies of the basic
fermion field, we consider a “multiparticle system”. When we move to the
multiparticle system, we have polynomials on the n particle coordinates :Eﬁ,
times the n particle spinor, obtained by taking the tensor product of n copies

of Ca
(C ® < QK ® C)alag---an (653)

To write the generator of the conformal group, for the multiparticle system,

we need the matrices
MB =18 ®18M, @18 ®1 (6.54)

where the matrix M, on the right hand side is the 2x2 matrix we introduced
above and it appears as the Ith factor on the right hand side. In total ./\/l,(f,,)

has n factors. The n-particle representation of SO(4,2) includes

9
Kp=)Y -7 (6.55)
= 97
= T m”@:ﬁﬁ T 5T T, + 2% o .
I=1

The representations introduced above all have null states. This is to be ex-
pected, since the dimension of the free fermion field saturates the unitarity
bound. For the (%, 0) field in Minkowski space, for example, the null state is
exhibited by verifying that

5" P, ¢ =0 (6.57)

for any choice of (. Let us now spell out the conditions that the polynomial
Pp corresponding to an operator O must obey if the operator O is a primary
operator. The general polynomial Py will have spinor indices (it is constructed
from a tensor product of copies of () as well as four vector indices inherited
from the spacetime coordinates. There are three conditions that must be

imposed: Primaries are annihilated by the special conformal generator K,

[K,,0] =0 (6.58)
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This implies that the corresponding polynomial is translation invariant
3 (;;PO ~0 (6.59)
I=1""p

Secondly, the equation of motion must be obeyed by each fermionic field. Fi-
nally, we require that the polynomials are in the antisymmetric representation
of S,,. Since the (s are Grassman variables, we must impose this condition if
we are to get a non-zero primary upon translating back to the language of the

fermion field theory.

The above set of constraints on the polynomials corresponding to primaries is
not yet very useful. To obtain a more manageable set of constraints, we will
motivate replacing the constraint coming from the equation of motion with
a constraint that simply requires that each polynomial is holomorphic. Our
first observation is that the operator ¢#P,, known as the Cauchy-Fueter op-
erator, has been used to define regular functions of a quarternionic variable.
This theory of regular functions is well developed[97]. An important result,
is Fueters Theorem[98], which gives a method for constructing Cauchy-Fueter
regular functions in terms of holomorphic functions. In view of Fueter’s theo-
rem, we will replace the equation of motion constraint with the constraint that
the polynomials are holomorphic. Thus, in the end we search for translation
invariant, holomorphic polynomials that are in the antisymmetric representa-
tion of S,. We will manage to test that the counting of these polynomials
matches the counting of primaries in complete generality, and for a number of
examples, we will construct the primary corresponding to a given polynomial

and explicitly verify that it is annihilated by K.

6.3.2 Leading Twist

The leading twist primaries are given by polynomials in a single complex
variable 2/, I = 1,2, ...,n. Any such polynomial is automatically holomorphic,
so we need not worry about the equation of motion constraint. To solve
the translation invariance condition, we work with the hook variables Z¢,
a=1,2,...,n — 1 defined by

1
go_ L L@ @ gt 6.60
CES)) A e R o az\ ") (6.60)

123



Our problem is now reduced to constructing antisymmetric polynomials from
the hook variables. By construction, it is clear that the degree k£ polynomials
belong to a subspace of Vflgk of S,,. We can characterize the antisymmetric
subspace, that we want to extract, using representation theory. Towards this

end, consider the following decomposition in terms of .S,, x S} irreps

vik= @@ v e ek gyl (6.61)
ArFn, Aokk

In the above expression, Com(S,, x Si) is the algebra of linear operators on Vf?k
that commute with S, x Sj. This decompositions has been studied in detail
in [50]. The Z variables are commuting so that we need to consider the case
that Ao = [k] the symmetric representation given by a Young diagram with a

single row of k£ boxes. The resulting multiplicity is given by the coefficient of

¢* in
Zicz‘(cz'*l) 1
Zsp(g; M) = (1-q)q 2 : m
= Y " ZE (M) (6.62)

k

Here ¢; is the length of the ¢’th column in A1, b runs over boxes in the Young
diagram A; and hy is the hook length of the box b. Evaluating this formula for

the antisymmetric representations, for which A; is a single column, gives[50)]

(n—1)

w3

q
2

(1-¢*)--(1-q") (6.63)

After accounting for the dimension of n elementary fermion fields, this is in
complete agreement with (6.28]).

Now that we have verified that the number of translation invariant, holo-
morphic polynomials in the antisymmetric representation of S, agrees with
the counting of leading twist primaries, we can move on to a construction
formulas for these primaries. Indeed, the relevant polynomials are given by
acting with a projector onto the antisymmetric representation, on the hook
variables. This polynomial multiplies an anticommuting tensor product of

Grassman valued constant spinors. The projector from the tensor product of
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k copies of the hook onto the antisymmetric representation of S, is

1
Plny = — > sgn(o)T(o) (6.64)
’ O’GSn

where sgn(o) is the signature of permutation 0. When acting on a product of

variables, say Z(@)z(@2) ... 7(ak) we have
Lp(0) =Tn1,)(0) @+ @ L1 1)(0) (6.65)

where on the right hand side we take a tensor product (the usual Kronecker
product) of k copies of the matrices of the hook representation of S,,, labeled
by a Young diagram with n — 1 boxes in the first row and 1 box in the second

row. Our construction formula is

1
E Z Sgn(g)rk(U)alaz---ak7blb2-"bkZbl Zb2 T Zbk (Cl & CQ e ® Cn)ocr'-an
: CTESn

(6.66)

The above formula produces an expression of the form >, n; P;(Z) where 1n; are
unit vectors inside the carrier space of Vg * and P;(Z) are the polynomials that
correspond to primary operators. To translate polynomials into momenta, the
formula [40]

k (—1)FPF

AR Skl (6.67)

is very useful. We will now gives some examples of polynomials obtained from
formula . We will also translate these polynomials into primary opera-

tors.

If we consider n = 2 fields, there is a single hook variable given by Z = z; — zo.
To find a polynomial that is antisymmetric under swapping 1 < 2, we must
raise Z to an odd power. Thus, we predict that primaries for the fermion fields

correspond to the polynomials

(25 +1)!
(21 —29)% = ) m(—l)kﬁs_kﬂzg (6.68)
= k! !
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Translating the polynomial variables into momenta we find the following pri-

mary
2s5+1 k
(1) k3 1 25—k+15 1
= P*l=, -0 P~ - =,0 6.69

where, because our fields are fermions, we have

31 31 31 31
|§7§,0>1® |§,§,0)2—*\§,§70>2® |§,§,0>1 (6.70)

Thus, our expression for the fermionic primaries built from two fields are

2s5+1 (_1)k‘ . . ' oo il
2 (@ — ke O T V@E 0T @) (6T
k=0 b

which exactly matches the form of the higher spin currents[99, [100].

For n = 3 fields it is easy to see that

(21 — 22)(21 — 23) (22 — 23) (6.72)

is holomorphic, translation invariant and in the antisymmetric representation

of S3. The corresponding primary operator can be simplified to

() (01 + i02)1p(x) (01 + i0)* () (6.73)

It is not difficult to see that this operator is indeed annihilated by K.

6.3.3 Extremal Primaries

In this section we will consider the construction of extremal primaries, which
correspond to polynomials in two holomorphic coordinates, z and w. We
will characterize these polynomials by two degrees, one for Z and one for W.
Polynomials of degree k in Z and of degree [ in W belong to a subspace of
ng ® Vlﬁ?l of S,. The relevant decompositions in terms of S, x Sj irreducible

representations are

ng _ @ V{gSn) ® V/E;gk) ® VACI?XZ(SnXSk)

ArFn,Agkk '
n S Com(Sn xS
Vil= @ v v gy s (6.74)

Azbn,Aqtl
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The tensor product Vl?k ® VI?Z is a representation of
C(Sn) ® C(Sk) ® C(Sy) ® C(S1) (6.75)

The Z and W variables are commuting so that Ay ® Ay = [k] ®[{] is the trivial
representation of Sg x S;. The multiplicity with which a given S, x S irrep
(A1, A2) appears is given by the dimension of the irreducible representation
of the commutants Com(S,, x ;) in V¥, Since our polynomials multiply
a product of anticommuting Grassman spinors, we want to project to states
in Vf?k ® Vf?l which are in the totally antisymmetric irreducible representa-
tion of the diagonal C(S,) in the algebra . This constrains Az = AT.
Thus we find that the number of S x S; invariants and S,, antisymmetric

representations is

> Mult(A], [k]; S x Sp) Mult(Aq, [I]; S, x S)) (6.76)
All—n

Thus, for the number of primaries constructed from z;, w; we get

" ZEp (M) Z5 (AT) (6.77)
AiFn

The above integer gives the number of primaries in the free fermion CFT, of
weight 37” + k41, with spin (JI, J&) = (W%, kT_l) The generating function
ZE" (s, x,y) which encodes all k,[ is given by

Z2%(s,x,y) = 53t > ZSH(S\/xy,A)ZSH(s\/j, AT) (6.78)

AFn

where A is a partition of n and we can use the formula (6.62)). It is straight

forwards to check, for example, that

ZTZLﬂU(S?x?y) :S%x% (ZSH(S\/«T7 D:D)ZSH(S\/§7 E) + ZSH(S\/@7 BH)ZSH(S\/j,B:‘)
+Zsn(5/5. 9 Zsi (s, [.0)

(6.79)
reproduces ([6.38]).
For n = 3 fields, it is easy to see that the polynomials
w3 (ze — 21) + wa(z1 — 23) + wi (23 — 22) (6.80)
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and

2w1wng — w%z% — 2w1w32% + wgz% — 2w%2122 + 2w§zlz2 + 4w wszz1 29

— dwowsz1 29 + w%zg — 2w1w2,z§ + 2w2wgz§ — wgzg + 2’[0%2123 — 4dwwez1 23
+ dwowszz123 — 2w§z12’3 + dwiwozozz — 2w§z223 — 4wiwszozg + 2w§ZQ,23
—wizi + wizs + 2wiwszs — 2waws 23

(6.81)

are holomorphic, translation invariant and in the antisymmetric representation
of S3. To translate these polynomials into primary operators, we use the

dictionary

k (—1*PE K (=D*Py

AR Skl w® k] (6.82)

where we have set P, = P, —iP, and P, = P3 — iP;. After a little work we

finally obtain the following two primary operators

(@) Py () Putp(x) (6.83)

and

2P, P2(x) Pyt (x)y () + 2P, (x) Py Pt () ()
+P2(2) P2 (2)1h(x) + APy Potp() Pt () Pytp () (6.84)

6.4 Geometry

In this section we comment on the permutation orbifolds relevant for the com-
binatorics of the fermion primaries. The leading twist primaries are holomor-
phic polynomials in n complex variables. We mod out by translations and
restrict to the antisymmetric representation of S, so that the leading twist

primaries correspond to holomorphic polynomial functions on

(C)"/(C x Sn) (6.85)
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A very similar argument shows that extremal primaries correspond to holo-

morphic polynomial functions on

(C)?"/(C% x Sy,) (6.86)

We will now argue that the Hilbert series of the fermionic primaries are counted
by palindromic Hilbert series, suggesting that they are Calabi-Yau. We leave
a more detailed study of these issues for the future. A palindromic Hilbert

series obeys

Z2 (g = (@) 20 (41, q2) (6.87)

Our Hilbert series Z2"(q1, g2) enjoy this transformation property. To demon-

strate this, our starting point is the formula

3n n
ZFq,q2) =sz a2 Y Zsu(q, N)Zsu(g, A) (6.88)
AFn

where we have introduced the variables ¢; = s,/Zy, g2 = sy/x/y. This has the
property ZZ"(q1,q2) = Z7"(q2,q1). This follows because exchange of q1, g2

amounts to the inversion of y, and by using the identity [40]
Zsu(at,A) = (—a)" ' Zsu(q, A") (6.89)
Using this result

Z2aq aph) =s"(@1a2)" Y Zsu(ar, AT) Zsu (g, A)

AFn
"(q1g2)" "D Zsu(qr, M) Zsn (g2, AT)
AFn
=(q192)" ' 27" (q1, 2) (6.90)

The results of section (4.3) of [40] now imply that the Hilbert series G5 (s, x, y)
also exhibit the palindromy property.
6.5 Summary and Outlook

Previous studies [40] have explained how to map the algebraic problem of con-
structing primary fields in the quantum field theory of a free scalar field ¢ in

four dimensions to one of finding polynomial functions on (R*)" that are har-
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monic, translation invariant and which are in the trivial representation of S,.
In this chapter, we have extended this construction to describe primary fields
in the free quantum field theory of a single Weyl fermion. Concrete results
achieved with this new point of view include a complete counting formula for
the complete set primary fields, explicit counting formulas (Hilbert series) for
counting special classes of primaries, as well as detailed construction formulas
for these primary operators. We have also established the palindromy of the

Hilbert series.

One weak point in our analysis, that warrants further study, is the treatment
of the constraint coming from the equation of motion. Motivated by results
for Cauchy-Fueter regular functions, we simply stated that we will consider
holomorphic polynomials. This has been verified explicitly, by checking that
this leads to the correct number of primaries and further that when the poly-
nomials are translated back into the operator language, that we do indeed
obtain operators annihilated by K. It would however be nice to perform a
detailed analysis of the equation of motion constraint, which has to be carried

out before the complete class of primaries can be treated.

Immediate generalizations of the current work include studies of CFTs which
include gauge fields. The free limit of QCD and supersymmetric theories
would be good starting points. Indeed, early constructions of primary fields
in the SL(2) sector (leading twist primaries) were performed in the context
of deep inelastic scattering in QCD (see for example the review [72]). Do the
holomorphic primaries considered here have QCD applications? Explicit enu-
meration and construction of superconformal primary fields in N' = 4 SYM
will give a better understanding of the dual AdS5 x S° background. Finally,
another natural direction is to consider correlators involving the extremal pri-
mary fields and the determination of anomalous dimensions for these fields at
the Wilson-Fischer fixed point using the techniques of [18] [46l, 47, [48|, [49].
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Chapter 7

Conclusions

The thesis was motivated by the AdS/CFT correspondence. It focuses on the
correspondence that relates a free conformal field theory in 4 dimensions to a
quantum gravity (higher spin) theory in 5 dimensions, in a negatively curved
spacetime. We preferred to study the CFT4 side of the correspondence since
it is free and hence a solvable theory. Computations carried out in [2, [17] gave
insight into how we should formulate the CFT4 problem. We begin with a
counting of primary operators followed by the construction of primary opera-
tors. The construction translates a problem of constructing primary operators
into a problem of constructing a mult-variable polynomial obeying algebraic

and symmetry constraints.

For the counting, we start by writing the character of the free scalar field
as a representation of SO(4,2)[17]. We start by taking the SO(4,2) charac-
ter of n of the fields and symmetrizing to get the Sym™ (V. ) representation.
This is done because the scalar fields obey bosonic statistics. Expanding this
character as a sum of characters of irreducible representations, we obtain the
counting for the primary operators. Analysing the spectrum of 2 copies of the
scalar field, shows no degeneracies. However the spectrum of n > 2 copies of
scalar fields contain primary operators which are degenerate. The degeneracy
is between primary operators having the same scaling dimension, left and right
hand spins. This indicates that the spectrum of n > 2 copies of the scalar

field is much richer than that of n = 2 copies of the scalar field.

Focussing on the extremal or leading twist primaries, in (5.116]) we obtained a
symmetric group interpretation of the counting and demonstrated agreement

with the group representation theory results. The generating function of the
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leading twist primaries forms a palindromic Hilbert series. The relevant pri-
mary operators with their corresponding harmonic and translation invariant

functions, are functions on the Calabi-Yau orbifolds

(C"/C x C"/C)/S,, = (C*)"/(C* x S,,). (7.1)

It becomes difficult to obtain the whole counting of primary operators from
(5.48) as n increases, especially when n is beyond n = 5. This could be at-

tributed to the lack of effective mathematica code.

Employing the same counting and construction strategy developed for scalar
fields to the vector models ®%i, we find similar results. The generating func-
tion for the vector model primaries again form a palindromic Hilbert series
and the primary operator polynomial function is a function on the Calabi-Yau
orbifold

(C*H2"/(C? x 8,[S3]) = (C*/C x C*/C)/S,[Sa). (7.2)

Employing the same counting and construction to matrix models ¢g we again
find a palindromic Hilbert series. The primary operator polynomial functions

are functions on a geometric Calabi-Yau orbifold of the form

(C"/C x C"/C x S,,)/Sn = ((C?) x S,)/(C* x Sp). (7.3)

In the last chapter we extended these methods of counting and construction
to the Weyl spinors. We formulate the counting problem by taking a tensor
product of n copies of Weyl spinors. We then map these products of n copies
into a totally antisymmetric subspace Antisym”™(V,). This is done because
the Weyl spinors obey fermi statistics. Decomposing in terms of irreducible
representations produces the counting for the primary operators. Restricting
ourselves to the extremal or leading twist primaries, in we managed
to again interpret the counting in terms of permutation algebras. Again we

observe that the generating functions of the leading twist primaries form a
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palindromic Hilbert series. For the construction of the fermionic primaries,
the algebraic constraints require the primary polynomial to be translation in-
variant and holomorphic. The holomorphic requirement is motivated by the
Cauchy-Feuter Theorem[98]. The primary polynomial functions of the Weyl

spinor CF'T has a geometric Calabi-Yau structure given by

(C)2/(C? x Sp). (7.4)

The weak part of this construction is that the general constraint implied by
the equation of motion has not been understood. Further exploration of this
point is needed. Translating the primary polynomial back to the operator
language, the primary operator is indeed annihilated by the special conformal

operator K, which confirms the construction is correct.

The future direction of this work is to extend it to superconformal field theo-
ries (N =4 SYM) that is, to theories that contain gauge fields. By considering
gauge theories such as N/ =4 SYM we will be moving closer to studying the-
ories of nature and AdS/CFT. We can also extend this work to study gauge
theories with interactions at the zero of the beta function where the theory will
be conformal invariant. We could also extend this work to theories such as the
UV fixed point of the Gross-Neveu model in 2 4+ ¢ dimensions. Another good
example of an interacting theory that we could consider is to consider correla-
tors involving the extremal primary operators and determining the anomalous
dimensions for these fields at the Wilson-Fischer fixed point using techniques
of [18, [46], [47, 48, [49]. A more challenging future direction for this work is to

consider these computation in general d dimension instead of 4 dimensions.
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Appendix A

Introduction to Hilbert Series

Since Hilbert series may not be familiar to a physics audience, we will in this

section introduce the basic ideas in a series of examples.

A.1 Hilbert Series

Define the polynomial ring R[X], in X over the field R as the set of the poly-

nomials

P(X)=po+pmX +p2X>+ - +p X+ (A1)

where p, € R, a = 0,1,--- ,q---. If we take the variables X to be any m!"

root of unity, we know that

27

X=em m e Z. (A.2)

Thus X™ = 1. This relation severly limits the independent monomials we can

form. Indeed, the complete set is given by

{LXvXQa"' 7Xm71}' (A3)

In this example we say the ring is generated by a single generator X subjected
to a single relation X™ = 1. The Hilbert series of a graded ring is a function
that counts the number of independent monomials that can be formed. For

the free conformal field theory we have graded using dimension and the two
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Lorentz spins. Here our grading is the degree of the monomial. The Hilbert
series is given by a rational function whose numerator encodes constraints and

whose denominator encodes the generators. For the case at hand

Ha(t) =0 (A4)
s(t) = .

1—t¢

o

= Z cnt™,

n=0

where ¢, counts the number of monomials of degree n. In our example
Hs(t)=14t+ - +tm! (A.5)

corresponding to the fact that there is a single monomial for each degree

starting from 0 to m — 1.

A.2 Hilbert series on S and 5?2

Functions defined on S! are functions of 6 that are periodic

h(0) = h(6 + 27), (A.6)

We can embed S' in R? by using the co-ordinates

x = cos y =siné. (A.7)

Equivalently that we can work on R? as long as we impose the constraint
z? +y? = 1. Noting that

B = (z £ iy)™ = e, (A.8)

we see that a complete set of monomials is given by

1, (z £ iy), (x £iy)?, (x +iy)>, -, (x Eiy)™, - . (A.9)
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The generators of the ring are x and y, and they obey a single constraint

(relation) which says

22+ =1. (A.10)

We will again grade the ring by the degree of the polynomial. Since we have
two generators x and y, and one relation of degree 2, our Hilbert series in this

case is

2
H(t) :(i = ;2 (A.11)

=1+2t4+22 4283+ 2t + - ..

The coeflicients of 2’s in the above expansion of the Hilbert series indicates
that there are 2 independent monomials at each degree above zero. These

monomials take the form

(x +iy)™ (x —ay)™. (A.12)

We will now determine the Hilbert series on a two sphere S2. Functions

defined on S? are functions of § and ¢ that are periodic

f(0,0) = f(0+2m,¢). (A.13)

We embed the sphere in R? with co-ordinates

x = sin ¢ cos b, y = sin¢sinf, z = cos ¢. (A.14)

that obey the constraint 2% + y? + 22 = 1. A basis for functions on the sphere
is given by the spherical harmonics Y, (0, ¢),
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(20+1) (1 —1)! ’
Yo (0, 6) = P™(cos 0)e™™? Al
m ( ’¢) \/ A (l + 1)' ! (COS )6 ( 5)
where for each value of [, m = —[,l+1,--- ,l—1,l. The generators of the ring

are x, y and z. The equation that constrains these generators is

24422 =1, (A.16)

which is of degree 2. Since our ring is generated by 3 generators with a single

degree 2 relation, therefore the graded ring Hilbert series is

2
Hs(t) :é_;g (A.17)

=14+3t+52+ 73+ 9t 4.

We have anticipated this counting in our discussion of the spherical harmonics
(Y;u1). We know that for each degree [ there are (21+1) independent monomials
we can construct. The table below shows, for finite [, the different kinds of

monomials we can get.

Monomial degree =0 =1 =2 =3
Number of monomials (2] + 1) 1 3 5 7
Types of monomials Yoo | Y11, Yio, | Yoo ,Yor1, Y33, Y3,

A.3 Hilbert series on S3

Considering the polynomial ring defined on S®. There are (A + 1)? monomials
for each degree \. We can understand where the multiplicity (A 4 1)? comes
from, by counting the number of components of a symmetric traceless tensor
TH1Px of degree X\ in d = 4 dimensions. We use the Young diagrams to

compute the number of components;
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VN VR N IR TN | 4 | 4a+1

© A3

Number of components = —

(A.18)
(A+A—1)!  (4+xr—3)

TTEA-DI T @d-1DIh—2)
4@+n@+2y~@+x—a(@+mm+xy_o

310\ — 2)! AN —1)

=(A+1)%

We can embed S? in R? as follows

21 = sin 65 sin 01 cos ¢ (A.19)
To9 = sin 65 sin A sin ¢
T3 =sin fs cos ¢

T4 = cos 05.

These coordinates obey the constraint

it at =1 (A.20)

The ring is generated by 4 generators x1, 2, x3 and x4, and these generators

have a single degree 2 relation. Taking this into account, the Hilbert series is

1—¢2
(1—1t)4
=1+ 4t + 9% + 16t + 25t + 36> + - - - .

Hs(t) =

(A.21)

The counting for the different kinds of monomials implied by the Hilbert series
is the same counting that we obtained by counting the number of components

in a symmetric traceless tensor.

We can now infer the Hilbert series in S% In S% we have coordinates in
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R*1 that obey the constrain

i+ a3+ i+ ai, =1 (A.22)

The ring is generated by d + 1 generators x1,Zo,--- ,xgr1. Since the ring is

generated by d+ 1 generators with a single degree 2 relation, the Hilbert series

2
H&@)—(i_iw. (A.23)

The number of monomials are determined from computing the number of

components of a symmetric traceless tensor TH*#2""#x in d + 1 dimensions,

d+ N (d+A—2)

Number of components = N A=) (A.24)
(d+X—2)! < )
=————2(d+2) -1
(d—1)I\! +
Hence
1— ¢
Hs(t) :(1 Y (A.25)

d
:1+(d+1)t+§(d+3)t2+---.
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Appendix B

Unpacking the Counting
Formula 7" (s, z,y)

In this appendix we are going to show how to compute (5.116)) from chapter

5. Consider the equation

Zzw 8 T y Z ZSH 5\/73A1 ZSH \/7 A1 (B.l)
A1bn
where
ci(ei—1) 1
Zsu(g,M) = (1— )= 5[] T (B.2)

and ¢; is the length of the Young diagram column, h;, is the hook length of the
box number b in a Young diagram. For n = 3 (B.1]) becomes

25 (s, 2,y) =Zsir(V/TT, E)ZSH(\/j, D) + Zen(Vaw, BH)ZSH(\/j ) (B.3)

T
+ Zsu( l‘y,E\j:[)ZSH(\/;,DZD).
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Let g1 = s/7y and ¢o = s\/%, then

E 3(3—1) 1
Zsu(q1,0) = (1 —q1)q; * i (B.4)
b 1—q
1 1 1
=(1—aq)q}
SOk Sy S S p—
g1
1—q1—qf’
and
us 1
Zsu(q, )=(1—Q1)Q11;[1_qhb (B.5)
1 1 \?
—(1—
( QI)QIl—qi”<1—q1>
l-—gil—q
_alp+l) 1
l-q¢f 1-¢*
Then
1
Zsi(ar, o) =(1 - ) [[ — (B.6)
b 1—q
1 1 1
oo gy
11
- 1—gf
Therefore
3 3
, q; 1 0 1 a(p+1) 1 @le+1) 1
Z3zw(87$7y):<1_ 31_ 2)(1_ 31_ 2>+< 1_3 1_2 1_3 1_2
a1 a7y 43 a3 q1 a7y ds q5
(B.7)
1 1 1 1
+ 3 p) 3 2
L—qi1l—qq L—gy1—q3
3
_ (%27 + s*a® + 5”0 + 1+ 22 (V5 + 7))
x

(1= s2ay)(1 — s3(xy)2)(1 — s22)(1 — $3(2)3/2)

Finally, we should multiply by s? to account for the fact that ¢ has A = 3.
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Appendix C

Review of Characters
Methods

In this Appendix we give a quick review of some background from the theory
of characters. This will help to orient the reader for our counting methods in
free CFT.

C.1 Example using SU(2) characters

To illustrate the idea involved in computing the CFT characters we begin by
deriving the usual rules for the addition of angular momentum in quantum
mechanics. In non-relativistic quantum mechanics we know that the product
of a wave function with spin j; with a wave function with spin jo, gives a wave
function with possible spins j in the range |j1 — jo| < j < j1 + Jo2,
J1®J2 = @f;f_j;ﬂ J

Rotations are generated by the three components of angular momentum. We
call these the generators of angular momentum and we call the commutator

algebra the Lie algebra of rotations

[JZ', J]] = ihEiijk.

We obtain the elements of the group by exponentiating the group generators.
Denote g = €9/3 with J3 € su(2) and denote z = €. From our knowledge of

angular momentum in quantum mechanics, the character for the spin j irrep
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xi(g) = Tr(e’) (C.1)

= Z <m|ew‘]\m> (C.2)

J
= Z (mle™™|m) (C.3)

e A R S A S

Sy .1
pIts i3

|
—
a
o
N—

1 1
T2 —x 2
The product of two characters assuming jo > ji, is given by

. . ) . xj2+% — {L‘ijQié
X1 (x)XJé(x) :(le + alt +ooet pm it + xiﬁ) 1 _1
xr2 —x 2

. . 1 . 1
N gatkty _ p—jatk—3

1 _1
k=—j1 rz—x 2

- . 1 - 1
J1 .'13]2+k+§ _ x*jszfi

k=—7j1 rz —T 2
Jet+ij1 k41 —k-1 Jet+
T — g 2
= > = > xl (C.5)
k=jo—j1 X2 — T 2 k=j2—j1

This illustrates the approach we will adopt to compute characters in a CFT. If
we have the characters of SO(4,2) we can easily compute the products of irreps
in the CFT. In particular, denoting the representation that the free scalar field
belongs to by V, we want to decompose the character for xg,myen) into a
sum over characters of irreps. Here we have the symmetric product Sym(V®")
because we must respect the bosonic statistics of the field. We will project to
the symmetric product by employing Young projectors. The projector to the

symmetric product of n copies of V is

where o acts on V®" by permuting the factors in the tensor product and we
have used the fact that the character for the symmetric representation is 1 for

all group elements.
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C.2 Characters of SO(4,2)

In the paper [I7] Dolan has computed the characters we need. The basic result

we will use is given by

o0
xv (s, z,y) = s(1—s%) Y s
p,g=0

(=)x2(y) (C.6)

[N

The character is a trace of some group element. Lets start by spelling out what
group element is being traced. Inside SO(4,2) we have the maximal compact
subgroup SO(2) x SO(4). The generator of SO(2) is the dilatation operator D.
We can decompose SO(4) into SU(2)r, x SU(2)g. Extract J3 1, € SU(2)r, and
J3 r € SU(2)g. Using the generators D, Js 1, J3 r define the group element

__ _tD+1i01,J3 1, +iORJ.
g=ce wWrJ3, L TWR 3,R7 (07)

every irrep of SO(4,2) is built on a primary field and we label the irrep by the
quantum numbers of the primary. The scalar field has [D, J3 1, J3 gr| = [1,0,0].
The character quoted in ((C.6) is for group element g . An extra point to
be aware of is that since SO(4,2) is not compact, it can have null states. The
free scalar has a null state since 9*9,¢ = 0. The factor (1 — s*) subtracts this
null state and its descendants out. Towards this end we show the maximal
compact subgroup of SO(4,2) is SO(2) x SO(4), and we can decompose SO(4)
into SU(2), x SU(2)x.

Consider the interval
ds® = dt? + dt3 — (dx? + das + dz? + da?), (C.8)

which is invariant under SO(4,2). Since we boost to frames with v < ¢, any
transformations (boosts) that mixes time components with spatial components
will not form a compact subgroup of SO(4,2). However, transformations that
mix only time (or space) components will form compact subgroups. In partic-
ular, SO(2) (which mixes the time components) and SO(4) (which mixes the
spatial components) will form compact subgroups. Therefore, the maximal

compact subgroup of SO(4,2) will be a direct product of these two subgroups.

144



We can decompose group elements in SO(4) into group elements of SU(2) x

SU(2). First, note that we can write any group element g in SU(2) as
g=e07, (C.9)

where 0 stands for three parameters and J; = G, Jo =%, and J3 = % (0;

are the Pauli matrices). These generators close the Lie algebra
[Jz', Jj] = ieiijk. (0.10)

Now, we can parametrize SO(4) using the following six parameters and six

generators:
r=¢ twA-ibE (C.11)
where
00 0 —i 0 0 i 0
1lo 0 =i o0 1] o0 0 —i
200 i 0 o7 2|00 0 (C-12)
i 0 0 0 0 i 0 0
0 —i 0 0 0 —i 0 0
1li 0 0 0 1li 0o 0 o
Au— & By == C.13
72010 0 0 i7" 200 o i (C.13)
0 0 i 0 0 0 —i 0
00 0 i 0 0 i 0
110 0 —i o 1lo o o0 i
B = — 7B = — C.14
7200 i 0o ol 2|l 0 00 (C-14)
i 0 0 0 0 —i 0 0

The benefit of using these generators is in their commutation relations:
[Ai, Aj] = ieiji Ay, [Bi, Bj] = i€ijx B, [Ai, Bj] = 0. (C.15)

These are the same commutation relations as SU(2). Therefore, A and B
generates subgroups of SO(4) that are equivalent to SU(2). A, B are 4 di-

mensional representations (where as J; is 2 dimensional). Through a change
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of basis using

1 0 0 -1 1 —i 0 0
1 0 0 110 0 -1 i
S=—|" st ! (C.16)
V210 =1 =1 0 V210 0 -1 4
0 —1 7 0 -1 —2 0 O
observe that
ST1AS=J®1, S 'BS=1®J, (C.17)

where 1 € SO(4). We can therefore rewrite r as
S_17“S — €—i6~j ® e—ig-j

where e=@7 =7 ¢ SU(2).
The character is a trace of the group element ¢ of the group. Thus it can be

written as
Tr(etD+i0LJ3‘L+i'9RJ3'R) _ Z<Z~‘etD+i9LJ3,L+i9RJ3,R |Z> (0‘18)
[

o
:S(l —82) Z 82p+qX
p,g=0

(@)xa(y) (C.19)

(SIS

One of the states appearing in the sum over 7 is the primary operator. The

remaining states are from the descendents in the representation.

Expanding the character (C.18) by writing the sum out and expanding LHS
and RHS up to order s%, we can illustrate the equivalence of both equations.

Begin by expansion on the RHS,
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xv(s,2,y) =s(1—5%) Y s xa(2)xg(y) (C.20)

() + s*xa(@)xa(y) + s*xz (@)xay) + )

:s<1 sz +a )i +y )+ 2@ 1+ D)+ 14y

Moving to the LHS equation we are now aware that the character is a trace

over the group element g = e!P+01Js,L+0rJs.r Tt is written as follows

T\r(etD+i9LJ3,L+i0RJ3,R) — Z<i|etD+iGLJ3,L+i0RJ3,R |Z> (0‘21)

i
where 7 is a sum over states. Using the group element to act on the state of a
primary field and its descendents, we can recover equation . The states
of a primary field and its descendents are represented bythe quantum numbers
[D, Js,,J3,r]. The primary field has quantum numbers, [D, Js,1., J3,r]| =

t

[1,0,0], which we represent as a state, |1,0,0). If we let s = e, 2 = €~ and

y = €'’ _for the primary field state we have,
glg) =P HOLTLtORTR |10, 0) (C.22)
= ¢'[¢)
= s|¢)

The state for the descendent 0,,¢ is a combination of the states,

11 1 1 11 1 1
2,52 S — = — =) 2
|8u¢> {27272>7 2727 2>7 27 272>7 27 27 2>} (C 3)
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Therefore

A ) 11 . . 1 1
_ [ D0y Js, +i0RJs, tD+i01, J3, L +i0 R T3,
(610,00} = {eDritaOntunly, 2 O, D 0T nlg, 22,
(C.24)
et D01 3,1 +10RJ3,R |9 _1 1> et D01 3,1 +10RJ3,R |9 _1 _1>}
) 27 2 ) ) 27 2
_ {e2t+w;+w§ 2’;’;>’e2t+wf—wf 2’;’_;>7e2t—“}+”§3 2’_;;>7
2" 2
11 1 1 11
_ {821,1/23/1/2 2,5 2>,32x1/2y_1/2 2,5 —2>,323:‘1/2y1/2 2,2, 2>7
1 1
2,-1/2,-1/2|g _1 _>}
ST y 9y 27 2
Taking the trace we end up with
I |
(0udlglOud) = % (22 +272)(y% +y7%) = s"x1(2)x1 (v) (C.25)

For the descendent state d,0,¢ we have,

{g’a,ual/¢>} :{9‘37 17 1>7g‘37 170>ag’37 17 _1>7g’37 07 1>ag|37 07 _1>7g’37 07 0)7
(C.26)

g|37 _17 1>7g|35 _17 O>a g|37 _1a _1>}
={s3zy|3,1,1), s°2(3,1,0), s>y~ 1|3, 1, —1), s3y|3,0, 1), s3y 13,0, 1),
53(3,0,0), s3x " 1y|3, —1,1), s°27 13, —1,0), s’z 1y~ 13, 1, —1)}

Taking trace we end up with

(040, $|9|0,0,0) :sg(acy +r4ay t+y+y i1+ ly+a 4 xilyfl)
(C.27)

=S3X1($)X1 (y)-
Continuing in this way to higher descendents we learn that

Tr(etD+i9LJ3,L+iQRJ3,R) — Z<i|etD+i9LJ3,L+i9RJ3,R’i> — XV(&%ZU) (028)

i
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C.3 Product of Two copies of scalar Operators

Now we want to take a product of two copies of the representation that the free
scalar field belongs to. By decomposing this into irreducible representations,
we will learn what primary operators we can construct from a product of two

scalar fields. The character we want to compute is

Xsym(vez)y = Y (il ® (jlg ® g Pli) @ |5) (C.29)

.3

where P = % > ses, O projects us onto the symmetric subspace

5 @ 15) + 17) @ [9)] (C.30)

N =

Pli) @ j) =
Thus
— 1 (g + (g2 C.31
XSym(V®2) = 9 (g) + r(g ) ( : )
We can argue the equation above as follows: Denote the matrix representation
M on the basis |i), for the group element g belonging to the group G as
(1M L) = My, (C.32)

The trace of this matrix is

> (EIMiy = M, (C.33)

7 7

The tensor product has matrix elements

(i1i2| M @ M|j1j2) = Mi, j, Miyjs- (C.34)

Thus, for example
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Tr(M®?) = (i1, ig| MMliy, iz) (C.35)

11,82
= g M i, Miyi,
11,82

=Tr(M)2.

The symmetric character is defined as
21
Xsym(vez) =Te( M®25 3 o (C.36)
" 0eSo
=Z<m2 ¢1,¢2>,

1
11,12
where S5 is the symmetric group of order 2. Since we are summing over the

oeS2

group elements we have

XSym(V®2) = Z <i1’i2

11,82

M® M% (1 + (12))

i1, i2>- (C.37)

The identity element leaves the state unchanged and the element (12) swaps

the states 417 and 79. Therefore

1
XSym(V®2) 25 Z(MililMiziz + Miy i, Miyiy) (C.38)

11,82

:%(Tr(M)Q + Tr(M2)).

We can also compute

1
X Sym(V®3) —Tl"<3, Z 0M®3) (C.39)
" 0eS3
1
- <i1,¢2,z'3 ME3 (1 +(12) + (23) + (13) + (123) + (132)) z’l,ig,z’3>

11,02,13

1
=3 > Miyiy, Migiy Miyiy + My iy Migi, Migiy + Miyi, Miyiy My,

11,02,13

+ M iy Miyiy Migiy + My iy Miyin Mg + My, My, M137,2>

zé (Tr(M)3 + 3T (M) Tr(M) + 2Tr(M3)>.
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We can generalise the computation above to

1
X Sym(Ven) —Tr(n' Z O'M®n>. (C.40)

" oeSh

Now using the fact that Tr(g) = xv(s,2,y) we can show that Tr(g?) =
XV(827x27y2)‘

We know that

TI‘(g) — Tr(etD"ri@LJB,L""wRJS,R) — Z<i|6tD+i6LJ3’L+i0RJ3’R|’L'>. (041)

%

Therefore

Tr(gQ) — Tr(62tD+2i9LJ3,L+2i9RJ3,R) — Z<’i’€2tD+2i6LJ3’L+2i9RJ3’R‘Z.>. (042)

i

We continue the same way as in the previous computation. We do an expansion
on the states ¢ containing a scalar primary and its descendents. We begin with

the primary state

92|¢> — thD+2i9LJ37L+2i9RJ37R|1’ 0’ 0> (043)
= 52[1,0,0).
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Now consider the first descendent state 9,¢,

{92‘au¢>} — {62tD+2i9LJ3,L+2iGRJ3,R

1 1>
2777_7 )
27 2

(C.44)

>0}
27_77_7
27 2

o L L\ tD+iors,+ionds.n
) 2’ 2 ’e

etD+’i9LJ3,L+ieRJ3,R
2’2

9 _L 1> tD+if S5, +i0R TR
s , €

2°2 2° 2 2°2
a-tp-fpl, 1 _1>}
‘ T2
11 1 1 11
4. 1.1 4.1, —1 4 —1,1
- 2, =, = P P
{Sxy 7272>7$x 727 2>7S y ) 272>7
1 1
4 -1, —1
2, — =, — =)\,
wt )
Taking the trace we obtain
(0u01910u0) = s*(wy + 2y + 2y +27y ) (C.45)
=ste+a DNy+y )
= s'x1 (@)x ()

Carrying on this way to higher descendents we will learn that

Tr(gQ) — Tr(€2tD+2i0LJS’L+2i9RJ3’R) — Z<i|€2tD+2i0LJ3’L+2i9RJ3’R’7:> =Xy (82, .’132, y2)

i

Thus, the character for the representation obtained by taking the product of

two copies of the representation that the free scalar field belongs to is

1
Xsym(ve?) = 3 ((XV(& z,y))* + xv(s?, 2%, y2)) (C.46)

Now how do we compute the LHS of (C.46). We begin by defining

1
(1 — sz1/24172) (1 — sz1/2y=1/2)(1 — sz 1/2y1/2)(1 — sz~ 1/2y~1/2)
(C.47)

P(s,z,y) =
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By expanding P(s,x,y), we find that
[o.¢]
P(s,z,y) = Y s xg(2)xg(y)-
P,q=0
Using the identity

1 1 1

1—t2 1—t1+t¢t

for each of the four factors in P(s,z,y), we find

P(82,$2,y2) = P(S,l’,y)P(—S,l‘7y)

o0

_ Z (—s)Qerng(x)Xg(y)P(S’x’y)'

p,q=0

= 32(1 — 34)P(s, z,y)P(=s,x,y)
=s"(1—s)P(s,z,y) Y (=) Ixg(2)xg(y)
P,q=0
= 32(1 + sz)P(s, z,y) Z(—s)ng(ar)Xg(y)
q=0
= 8 P(s,2,y) = Y (=17 [s* X a1 (@) X222 (9)
q=0
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Note also that

(xv (s, , Z/))2 =X[1,0,0] X X][1,0,0]

= i sTxa ()xg(y) x (1 = 5°) P(s,2,y)
q=0

="P(s,2,y) + Y [s* Xass (@)xan (v) — s xg (0)xg ()| Pls.2.y)
q=0

=s’P(s,z,y) + i s a2 (@)X a2 (y) — 8T X s (2)X s (y)} P(s,z,y)
d=3

Thus,

1
Xsym(ve2) =5 ((><v(879:,y))2 + XV(SQ,x27?J2))

o0
=s*P(s,0,y) + Y [ x2 ()2 (9) = 8 X2 (2)x 201 ()| Pls, )
d=1

(C.54)

Thus, we have

Sym(Diog) ® Dpioo)) = Apog) + Y Digpy o2 261 (C.55)

k=1 22

The term Apgq is the representation for a spinless scalar of dimension 2 -
the corresponding primary is ¢?. This rep has no null states. The terms

261 26y A€ conserved currents. These reps have null states.

D
[2k1+2, 5 5

In the work [35] solving the conservation equation
0"D,O4(z,x) = 0.

they gave the result

aSC;’(g) ~ 0, (C.56)
_V/(d/2+ s = 1)0(d+5—3) $ (=1)F(z- 01)* (2 8n)*
B 2441 (453) ;)k!(s—k)!r(wrdﬂ— DI(s—k+d/2—1)

where O is a conserved spin current with spin s and dimension s+ d — 2 and,
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the function C7( g) is a Gegenbauer polynomial. In 4 dimension

S (DM 0 (2 0)'

O, =(T'(s +1))? g::o (s — KOk + )T(s —k + 1)

S (= 1)k(z - 8) k(2 - D)o
—p 3 CC ootz 0%

(C.57)

k=0

The term Ap ) is the representation for the term ¢?, which is a primary.
Each O, from above is in representation D[s+2,g,§}- If s is odd, Os = 0 so we

have a primary for each representation on the right hand side of ((C.55)).

C.4 Character For Product of Many Scalar Field

Operators

The character relevant for a product of three fields is

1
Xsym(ves) = ((XV(&«T; ¥))? + 3xv (s, 2, y)xv(s®, 2%, y%) + 2xv (s°, 2%, yg))

(C.58)

The character relevant for a product of four fields is

1
Xsum(ven) =g (v (s, 4+ 600 (s,2,9) xv (s 2%, y%) - (C.59)
+8xv (%, 2%,y )xv (s, 2,9) + B(xv (5%, 2%, y?))?
+ 6XV(84> $47 y4))
The character relevant for a product of five fields is
1 .

Xsym(Ves) =To5 ((XV(Sa z,9))° +10(xv (s, 2,9))*xv (s>, 2%, y°) (C.60)
+ 2OXV(S3a I‘S, yg)(XV(sa z, y))Q + 3OXV(S45 ZE4, y4)XV(S7 z, y)
+150xv (5% 2%, 4%)*xv (5, 2,9) + 20xv (s, 2%, y?)xv (5%, 2%, ¢%)
+ 24y (s°, 2, y5))

Using the above characters, we can compute the products
Sym(Dyo0) ® Diioo) @ Diioo)) (C.61)
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which correspond the product of 3 scalar operators, ¢ ® ¢ ® ¢ = ¢> together
with the descendents obtained from acting with the spacetime derivatives 0.

We also look at products

Sym(D(100) @ Di100] @ Dj1oo) @ Diioo)) (C.62)

which correspond to the scalar operator product ¢ @ ¢ ® ¢ ® ¢ = ¢*. And also

Sym(Dpioo) ® Dpoo) ® Dpog) @ Dpioo) ® Diioo)) (C.63)

To be able to calculate these products we first revert back to the idea of a

characters in quantum mechanics. Consider the character of spin j

(o) =a) a2l o I g (C.64)
2ITE i
- 1 1
Tr2 —x 2
Using this we find
nk n(k—2) _n(k—=2) _nk
Xe(z") =22 +2x~ 2 +---+ax 2 +ax 2 (C.65)
2
nk n(k—2) _n(k=2) _nk
(:p2 +x 2+ + 2+ 2) 1 _1
= 1 1 (xQ -z 2)
r2 —x 2

k-1)/2]
Z X kn 7nl71(”rc)

2
=0,1,...

= Z X’%”fnl(x)_

Lk/2] (
1=0,1,... !

To obtain the last line, multiply the numerator out and collect terms.
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Using the formulas for x g (x™) that we have just derived, we find

o0

P(s", o y") = 3 s (1) xg (4") (C.66)
P,q=0
1 - ng n n
= T 25 @y (V)
q=0
1 0o La/2] L(¢—1)/2]
= 1_ s2n Z s Z qun —nl(x) - Z X%—nl—l(x)
q=0 1=0,1,... 1=0,1,...
la/2] L(e—1)/2]
<1 D xea® = D X (y)
1=0,1,... 1=0,1,..
Thus,
Xv+ (Snv xnv yn) = P(Sn7 xn7 yn)sn(l - 82”) (067)

lg/2] [(a—1)/2] ]

:s"Zs"q{ Z X%—nl(ﬁ)* Z X%—nl—l(x)
q=0

1=0,1,... 1=0,1,...

la/2] [(a=1)/2]
X1 > Xem_u(y) - X -1 (y)
1=0,1,... 1=0,1,...

We also need an identity which rewrites xy+(s", 2", y") as SU(2) characters

multiplied by P(s,z,y); these can very easily be translated into Ay . js. To-
wards this end, note that

1= P(s,2,y)(1 — sz'/ 2y (1 — sa'Py=1/2) (1 — sa™12Y12) (1 — sa71/2y~12)
(C.68)
= P(s,z,y)[1+ 5" = s(1+s°)x

(@)x1(y) + s*(xa(@) + x1(v))]

N |=
N[
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A straight forward computation now gives

Xv+ (", 2" y") = P(s", 2", y")s" (1 — s°") (C.69)
o la/2] [(¢=1)/2]
(1 +s ) Z s Z X4 —nl1 Z X%—nll—l(x)
= 1h=0,1,... lh=0,1,...
la/2] [(¢—1)/2]
Yo Xz, W)= D X1 ()
l5=0,1,... 12=0,1,...
00 La/2] [(¢—1)/2] la/2]
s8> ™| D X, () = X Xy @) Y Xan oy, (@)
= 11=0,1,... Ih=0,1,... 1h1=0,1,
(¢—1)/2] la/2] L(¢—1)/2]
- Z an+1 —nli— 1 Z an+1 —nly\Y ) an;l_"b_l(y)
1h=0,1,... lo=0,1,... lo=0,1,...
la/2] [(¢—1)/2]
+ Z an i \Y ) Z X%ﬂfnlgfl(y)
lo=0,1,... la=0,1,...
) la/2] L(g—1)/2]
+s Zs"q > e @ Y X @)
= 11=0,1,... 1h=0,1,...
la/2] L(¢—1)/2] La/2]
Z X ;—nlz—i—l(y) - Z X%—nlz + Z X4 —le
lo=0,1,... lo=0,1,... la=0,1,...
[(¢—1)/2] la/2] L(¢—1)/2]
= D Xeowa W)+ D X1 () - Z x%fmrz(y)
lo=0,1,... lo=0,1,... lo=
, & La/2] L(g—1)/2]
+s Zs”q > oxam o, (Y > X gy —1(
= 1h=0,1,... Ih=0,1,...
la/2] [(¢—1)/2] La/
Z X%fnlﬂ»l( ) - Z X%*ng (.’L‘) + Z X%fnlz(x)
l5=0,1,... lo=0,1,... Io=0,1,...
L(a—=1)/2] la/2] L(g—1)/2]
- Z X%—nlz—l(‘r) + Z X%—nlz—l(l‘) - X%—nlg—?(l‘) ]P(va y)
lo=0,1,... la=0,1,... lo=0,1,...
Return to
1
XSym(V®3) = 6 ((XV+(37xay))3 + 3XV+ (37$79)XV+ (82,$2,y2) + 2XV+ (837x37y3))

(C.70)

We know the decomposition of (xv, (s,z,y))? into irreducible characters - all
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2,22, 9?)

use (C.67) to evaluate xy:, (52,22, y?) and use the known formula for v, (s, 2,y).

we need for this is the SU(2) character product rule. For xv, (s, z,y)xv, (s

For xv, (53,23, 43) use (C.69). The result is (each term in square brackets col-
lects all reps of a given dimension; I have tried to indicate the origin of each
term by keeping the coefficients 2 and 3 that appear in (C.70))

1
Xsym(ves) = & [ {A[:s,o,o} +3 X Ao +2 X -A[3,0,0]} (C.71)
+ :2,4[47%7%] +3x0+2x (—Ay11))]
+ 134511 + Ao T A0 +3 X (A1) — Ao+ Apsag) +2(Aise + «4[5,1,0})}
|44 3,3+ 21,9 2 1+ 3 X 0 2% (A a s — Ay — A1 )]
+ :5A[7,2,2} + A7 02 + A 20 + 3A71.2) + 3A[7 2.1
+3 x (A2, + A2 + Ar20 — Az — Apaz) +2 X (=Apag + Apzo + A[7,0,2])}
+ -6”4[8 5 §] + 4"4[8 3 § + 4"4[8 5 é} + 2"4[8 ] + 2“4[8,2,2
#3302 X (A s g = Ay~ A g g + A 3)]

+ [TAjg33 + 5«4[9,2,3} +5A19,3.9) + 3A9,1,3 + 3A9.3,1) + Apg,0,3] + Ap9,3,0]
+3 x (A[9,1,3] + Az — Ap,o0,3 — Ap,2,3 — Apso — Apsz + «4[9,3,3])
+2 x (A3 +Apso — Aoz + Apgo3 — Apz23)
[SA 0.1.1] +6A[10 5 1] +6.A 10,2, +4A[101 3] +4./410
— Apo,z,11 = Apo, 2,1

31+ 240024+ 24001 1)

2] 3
3] 20

_% 3 X 0 —F 2 (J4[10 7 3} _% J4[10

1202 1202 1202

+ ...
= Aiz0,0 +Ap, + «4[6 33+ A2, + A2 + Apr.2,0

+‘A[8 +A[8 3 5} +‘A[8 5 3] +2A[933 +.A[97173 +.A[931

7272}

+ Apo,11+ Apo, .5+ Apos 1 T Apo 1,8 T Apos e
In a similar way we find

Xsym(ver) = Ap,0,0 T A1) + Az 3 31+ A 0,0 + Aoz T Ag2,0 + Ajg1) + 2Ai,2.
(C.72)

+A[97%7%} JrA[g,%,%} +«4[97%7%} +A[g7%7%] +A[97% 8] +.»49 2.5 +A[9’2’2

Ap10,0,00 + 2A00,1,1) + Aoz, + 2An0,31 + Apon,2 + 2An0,2,2) + Apo,3,2]
+2A10,1,3) + Apo,z,3) + 3An0,3,3 + -
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Xsym(ves) = Ap0,0 T Ar1,1) + A[g,g,g} + Ap,0,0) + Ap,1,1) + Ap 2,00 + Ap,0,2) + 2A[9,2.2)
(C.73)
+ Aoy +Apos 1+ Aot 3+ Apo s s+ Apo L s Apo sy Apo s 3

7272

+ A[lo 3 5] + 2,4[10’%’%] =+ ...

1272

C.5 Generating Functions for Primary Operators

Here we will derive the generating function for the primary operators by first

showing the basic idea with the matrix

M= (C.74)
0 b
From here we can verify that
x((M)=a+b (C.75)
x (M) = a* + ab + b? (C.76)
xT (M) = a® + a*b+ab® +b* (C.77)
x1T(M) = a* + a®b + a®b* + ab® + b* (C.78)

We can continue this way to higher order terms. We introduce a formula which
can easily compute the characters x,. This formula contains a parameter t"

which collects terms belonging to the character y,,

1 1
det(1—¢M) (1 —ta)(1— tb) (C.79)

= "Xy (M) (C.80)

where M is a matrix, a and b are the eigenvalues of M. We verify this formula

by simply expanding the RHS as follows
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=(1+ta+t?a®>+3a®+-- )L +tb+ 20> + 3% +...)

(1 —ta)(1—th)
(C.81)
=1+ (a+b)t + (a® + ab + b)t* + (a® + a®b + ab® + b33 + - -
=1+ X1t + xat® + x3t® + - --
= "X (m)(M)

We will now motivate how the term

1
det(1 — tM)

in (C.81)) comes from considering the Guassian integral

ip i
1 n n

N
i 1 -k 1 ; .
(I, = — / | | dzdz;e” ok Z’czkf'zil ceezg B g (C.82)
7r 4 !
=1

To evaluate the integral above, we study the generating function below
1 N k “k k
1= 7rN/l_[ldzidzie 2ok w240, antdnzt) (C.83)
1=

We can evaluate this integral by completing the square. After that we obtain
I, in by taking derivatives of I and setting j; = j¢ = 0. This is carried
out as follows:

Start with the I integral,

1 N _ . o
I= W/il_[ldzidzie_ 25 Y (et E) (C.84)

We shift z — 2+ j and Z — z + j and end up with
1 - k-
1= / dzidzie” 22767 +223%0k, (C.85)
Performing the Guassian integral, we are left with

I =e2nd'it, (C.86)
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Applying the derivatives with respect to j and j as follows

56 4§ 4 I B S B 5 S
0jj 0ji 0j7 052 S Sjy 8js, 05 G5 S
(C.87)
- 1 6 6 o6 9 o - -
A L 0 90 O Gk Gkng
Ul =357, g, g b e
1
== 300 s
nl 22 Yo Yoy

where S, is the symmetric group and o is an element of a group. This shows
that

]1 Jn Jn
(In) i1l nl Z 0'(1) 5 (2 ”.5ia(n) (C.88)

O'Gn

From here we will argue that

MM - M (L)1 = xR(M) (C.89)

N )41 vin
where R is a Young diagram with one row of n boxes. We argue this as follows,
(L) MM - M = ~ Z 61t gy -+ O MGIM2 - MG (C.90)

21 ]n
oeSn

n! Z i (1>” a(n)

oeSn,

®
= Z Tr(cM®™)
o€eSn
=xr(M).
In the above R is a Young diagram with a single row of n boxes.
Now, consider the integral
1 N _ Oi5i 1 N _ (ST MY 5d
—N/Hdzkdéke 22551057 _ ﬁ/HdzkdEke 25,5 78 —tMp)
i=1 =1

(C.91)
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We know that this integral evaluates to

1
detO

1 N — 20179
W/Hdzkdéke 20505 (C.92)
A

Thus, we have

1

2= qod—an (C.93)

Now compute Z by expanding in ¢
1 N L o . , ,
Z =N / H dz;dy;e” 2272 Z MM M2y e 2, 2 2
i=1 n=0
= Z tnX(n) (M)
n
(C.94)

Comparing (C.93)) and (C.94)) now proves (C.79). For our character problem,

we are interested in the case that
M = sPylarylsr (C.95)
Looking at ((C.6|), we can see that

g q
1 3 3 1
det(1 —tM) II IT II T fsatigayh (C.96)

= ——49p—_49
q=0¢g= 2b— 3

The remaining task is to decompose this into SO(4,2) representations, then
we will be able to generate the spectrum of primary operators for n copies of
the scalar field.

C.5.1 Partition functions

Consider a partition function that is a sum of SU(2 characters [60]

Z(x) = Tr(xJB) = ZNij(x) =Zy+ i Zk(:vk + x_k) (C.97)
7 k=1

Since all characters are invariant under the transformation z — % Z(z) must

also be invariant under this transformation. The last equality manifests that
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symmetry. N; counts the number of times the spin j rep appears. To deter-

mine N; we make use of the orthogonality of characters.

If we set x = €%, the results in (C.1]) already imply that

sin ((j + %)0)

x;(z) = (C.98)
! sin (g)
We can verify character orthogonality
ar gin? ¢
do Zxj(@)xk(z) = dj (C.99)
0 2

as follows

2w\ g ]
(C.100)
am  sin((j +1/2)6
0 2w
An qg /eii+5)0 _ o—i(i+3)0N 7 pilk+3)0 _ —i(k+5)0
- /0 27 ( 2 ) ( 2i >
== /47r dj (ei(”k“w — =R)0 _ ilk=5)0 e—(j+k+1)0)
o 8m
1
1
= — 8771- — 47r5j’k — 471—5]’,]@
=0k,
We can also show that
dm gin? g P
/0 df— = xj(@) (" +a77) =05k = Ok (C.101)

ar sin? ¢
do 2 v (z) =6,
/0 o Xj(w) =650

as follows:
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ar sin?(9) & 4m sin?(9) sin((j + 1/2)6)

df (z)(2F +27F) = de kO | ikt
0 2 X3 (@) ) 0 or Sm(g) ( )
(C.102)
rdg 0 . k6 1 ik
=/, 7T81n2s1n<(j+2)9)e + A smsm<j+2 )
Am 49 [ e—10/2 _ o=i0/2\ 7 i(i+1/2)0 _ —i(j+1/2)0
_/0 27r< 2 ) ( et

+/47r d9< —7,9/2 —i9/2>( (]+1/2) (]—‘,—1/2)9) 7zk€
21 27

Multiply out the exponentials to obtain

™ in2(8 ™
a0t ) @ ey = - / i df <ez‘(j+k+1)6 L ilk=0)8 _ ikt e—z‘(j—k+1)0>
0 2 0o 8m
(C.103)
_ /47T ?(ei(j—kﬂ)e _ ik DO _ ilh—)0 | e—i(j+k+1)9)
0o 8w
1
= — g <47T5j+1,—k — 47r5j,k — 47T5j,—k + 47r5j+1,k)
1
— 87 (47T(5j+1,k - 47753',714 — 47T(Sj,k + 47T(sj+k,k>
=0k — 0j+1,k»
Finally,
4m in2(¢ 4 P 0
/ 6> (Q)Xj(x) = — sin —sin((j + 1/2)0) (C.104)
0 2 27 2

=3 /47r d0 (cos (j0) — cos((j + 1)0))

Using the orthogonality of the characters we can see that

26 20

m gin? ¢ 4” Sl 3
f, a0zt = [ 0= () Y Neate)

= N; (C.105)
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We also have

4 gip2 8 4r gin2? )
22 @20 = [ a2y ><zo+zzk<mk+xk>>
0 0 k=1

=Zj—Zinn  (1>0)
=Zy (j=0)

(C.106)

If we define the generating function
x) = Z zJ N;
J
and the “regular part of a function” as

o0
lz anx”] = Z anx"
n > n=0

we remove the negative powers of x by writing Z(z) as
1
Gla) = {(1 - )zg)} (C.107)
>

where the multiplication with the factor (—%) removes negative powers.
Now, considering the SO(4,2) group. In our case, the partition function

Zn(s,2,y) is given by X gym(ven(s,z,y), where we have
Zn(5,2,Y) = Xsym(ven) (5,2:9) = D Nagija)Xa o) (s2,y)  (C.108)
Ajj1,52

We will restrict to the case that n > 3. In this case, we know that the
only characters x|a j, j») (8, 7, y) which contribute do not saturate the unitarity

bound and hence do not have any null states. In this case we have

SAle (x)XjQ (y)

(1= syag)(1 - s,/ 1—s/9)(1

X[A,j1,52] (37 €, y) = (C.109)

§
<
~—
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Zu(s.a )1 = sy (1 = 5, D)1 = s/ D)(1 - )= L Naaas e @x)
Aj1,J2

(C.110)

The right hand side of this last equation is a sum of (products of) SU(2)
characters, so we can treat this using our SU(2) method derived above. To
remove terms with negative powers we multiply both the expansions above
with the factors (1 — 2)(1 — %) This results in

Gl .9) = [(1= D1 = 2)Zu(s, ) (1 = sy/@)(1 =,/ D)1 =51/ D1 = = >L

X T \/@
(C.111)
= D Ninjrga)s 2 y” (C.112)

1,J1,J2

where G, (s, x,y) is the generating function for primary operators. Recall that

1

o 3 3 ~
H H H W = Zothn(57x7y).
= n=

Expansion of G, (s,z,y) for n = 3,4,5 we find

Gs(s,z,y) =s° + sSxy + sz%y% + 822y + 5T + sy + sga:%yg (C.113)
+ 881‘%3/g + sga:gy% + 259x3y3 + sgxy?’ + sgxgy + slox%y%

7 5 5 7 7 3 3 7
+ s0%23y2 + 50292 4+ s1002y2 + sV22¢y2 + ...

Gy(s,z,y) = s + sCzy + s7x%y% +25%2%9° + B2 + SSxy + 5y2 (C.114)
+89.CC%% g 5 3 g 5 1 g 3 35 g 3 1 g L 5
Y2 +8°x2Y2 +8°xr2Y2 + 8 r2yY2 + 8292 + S5 r2y2+

+ g 1 3
s'rzyz + ...
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Gs(s,z,y) = s° + s zy + ssz%y% +25%2%9% + %2 + %y + SPzy  (C.115)
+ slox%y% + sloxgyg + slox%y% + sloxgy% + ZSloa;%y%
101,%?;% + Sloxéyg + 510

105 L1 1 1
+ s x2y2 + 8 r2y2z + ...

C.6 Generating Function for free fermion

When considering the generating function for the free fermions, we should
bare in mind that the fields are Grassman fields, they anticommute. Conse-
quently, instead of taking the symmetric product of representations, we should

be taking the antisymmetric product. Consider the matrix

a 0 0
M=10 b 0 (C.116)
0 0 ¢
The relevant Schur polynomials are
x((M)=a+b+c
XH(M) = ab+ ac+ be
X@(M) = abc
This gives the formula
det(1 +tM) = (1 + ta)(1 +tb)(L+tc) = > t"xn)(M) (C.117)
n=0

We can prove the formula quoted above in (C.117)) by starting from the integral

N i .
/ H diidip'e” > (0 MDD
i=1

which runs over the Grassman variables 1);,1’. Consider the integral
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N . 7 i
/Hdwidw’e‘zw 1 VG M9 (C.118)
=1

We will evaluate this integral with NV = 3 and comment on the general case.

We convert the summation in the exponential to a matrix multiplication,

3 1 00 a 0 0 1

>0 w4+ M)F =[un v w] (o 1 o) +efo b o ) [

L=l 00 1 0 0 ¢ s
(C.119)

=(1 + tM).

The index ¢ in the products run from 1 to 3. We expand the exponential as

follows,

N
/ [ dwidyte Xt VT /d¢1d¢1d¢2d¢2d¢3d¢3 (1 — (L +tM)y
i=1
(C.120)

+ UL DG — 0L+ M) 4 )

Only the fourth term yields a non-zero integral, therefore
N ' . _
/ Hdwidwle‘ O i dadiadisdi (W4 M)

3
= [ ardiidvadbadsdig; (wlu + ta)y + a(1 + th)dy + (1 + tb)&g)

— /d%d?ﬂld%d%d?ﬁadiz’) <(1 +ta)(1+tb)(1 + t0)>¢1&1¢2d—}2¢3¢_}3

=(1+ ta)(1 + tb)(1 + tc)
=1+ (a+b+c)t+ (ab+ ac+ be)t? + (abe)t?

=) t"xamy (M
n=0

=det(1 +tM)

In general, only the term of the form — g L ((1 + tM)p)N would contribute.
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For the case that M = sPz/3.Ly/3.r we have

g+1 q
00 2 2
det(1+tM) H H H 1+ t82+qx“yb)
04= qgl b=—1

From [I4] the character of a left handed Weyl spinor is

Nl

XL(s,x,y) =S (X (x) - SX%(y))P(vaﬂy)

1
2

This formula can be simplified into

(y).

[0S

XL(5,%,y) —szzsqxw( )X
q=0

The simplification is carried out as follows:

2 (x1(2) = sx1 (1) Ps,x,y) = s*2 (x1(2) = sx1 (y Z 2Py (2)x1 ()
P,q=0
(C.121)
Using the formula
i+
Xjei (@) = xj(@)xp(z) = D x.(2), (C.122)
k=|j—7'|
we obtain
0o i+3 43
Gl =25 (Y o) —s Y xglha))
Pa=0 k=l§-3] k=l§-3|
(C.123)
3 fe'e)
=5 ZO s (Xé—é(‘”>xé(y) + X1 (@)xg(y) = sxg(@)xa_1(y) = sxyg (:U)Xu;(y))
p,q=

If we shift ¢ — 1 on the first and third term, the first term then cancels with

the last term and, the second and third terms simplify into

xL(s,z,y) = s*(1 Z P01 (@)X (9)- (C.124)
p,q=0
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Summing over the p terms we obtain

[e.e]

Xo(s:2,9) = 3524 1 (@) g () (C.125)
q=0

The generating function for primary operators in the free fermion CFT is given
by

= Lt s, — 5T — 5 /51 - s/ - =2
Coulo) = | (L= D1 = ) Zu(sp)(1 = s/ (1= 5[ D)1 = 5D \/@)L

where now Z,,(s,z,y) is defined by

a1 g
o0 2 . 0
det(1 4 tM) H H H (1+ ts%+qx“yb) = Z t"Zn(s,2,y)
t=0 4—_ 1 bf_, n=0

An expansion of Gy, (s, x,y) for n = 3 yields
Gs(s,z,y) = s%w\/@—i— sTas 4 s%y% + s%a;g‘y% + ...

C.7 Generating function of O(/N) vector model char-

acters

To count the primaries in the O(N) vector model, we needed explicit expres-
sions for the characters of V¥ projected to the trivial of S,[Ss]. Here we will

derive

=S (@) (C.126)

The generating function of characters for H,,, the S,,[S2] invariant subspace of
ven s
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o0 "
Z Z try ez (0Q®2n) (C.127)
= ' O'ESn[Sﬂ
S Snls2]
SIUDIELh ) (e
n=0  pF2n
S SE L1 Ok
n=0 pF2n
where ZS"[SQ] is the number of permutations in S,[S2] with cycle structure p,

divided by the order of S,,[S2]. The cycle polynomials are

ZSn[S2 Z an [S2] H Di (0128)

pH2n

The generating function of the cycle polynomial is given by

7) = Z tn ZSnl%] () (C.129)

[ee]

—elvi=12i ($2’+x2)

Comparing (C.127) and (C.129)) we see that

Z(t,Q) =Z(t,xi — an (C.130)
:eZi:l (X, 00+, a2
:eZil %(Za Zb qéqi+2a az’)
—eza bzoo a qaqb Z Zz 21

o3 2oayp log(1-taag) =3 3, log(1-te7)

H\/l—qQH\/l—tqqz))

a a,b

:1;[\/1 2H

a7 oop V(1 — tqaqb)
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Appendix D

Counting Primaries from

State Counting

In this appendix we will explain how ([5.85|) was derived. Consider the equation

1 1 (1—%)Z5(s,2,2%)
zs<s,x,y><1—y>}>—2m74 e L3}

This equation can be represented in a more simple form as follows,

1 1 (=%, ,
1—--)Z =— ¢ —=27(27). D.2
(0 Z@lez0 = 5 § =2 2() (D.2)
The LHS of this equation is obtained by performing a Laurent expansion which
is truncated by removing terms with negative powers of a. The RHS is equal

to the LHS since we can consider a Cauchy integral

1 2"

2t Jo z — a

dz (D.3)

where n is an integer and C is a contour around a circle with radius |a|. From
Cauchy integrals we know that for n < 0 the integral is zero and, for n > 0

the results is a™. Therefore we can conclude that

[Z(a)]az0 = ]{ ZZEZZLdz. (D.4)
If Z(z) is a Laurent expansion
Z(z) = Z cn2". (D.5)
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This integral

j{ 2() 4, (D.6)
z—a

will only keep terms with positive powers. This analysis only works for function
Z(z) with positive integer powers. In our case where we are dealing with
the SU(2) partition function Z(z), half integer powers arise. We avoid this
problem by taking a — a? before we compute the contour integral and then

we take a — /a afterwards. Mathematically it is implemented as follows

52
[Z(a)]a>0 = 217”}{’ ZZ_( \/)E (D.7)

Therefore
_ 172
(- Do = o f122E) D3

In our case we have

Zs(s,z,y)(1 — = } %d — Z3(2 v y)7 (D.9)

which performs Laurent expansion of Z(s,z,y)(1 — %) and keeps only terms

with positive powers of y.
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Appendix E

Constructing Primary

Operators

In this appendix we will describe the construction of some non-trivial pri-

maries.

E.1 Higher Spin Operators

To construct higher spin primary operators for a n scalar fields, the operators

must obey the condition

LA
K,0 22 axg‘o (E.1)
=0,

where K, is the generator of special conformal transformations. The condition
above shows that the polynomial should be translational invariant. From these

operators we need to remove null states set by the equation of motion,

9 9

zu: ozt Ox

0 =0. (E.2)

RS

This shows that O is a harmonic polynomial. We can move into the complex

plane and write the x, as follows

2 = x} +ix?, w; = x5 + iz (E.3)

175



The translational invariants we can use to build the polynomial are

Z1 — 29 21+ 29 — 223 21+ 20+ 23 — 324
\/§ 9 \/6 ) /712 ’

which are in the hook representation of S4. Any polynomial built using these

(E.4)

invariants are harmonic since

o 0 0?2 H?
2 a7 g O 2220 20) =G b

)O(21, 22,23, 24)  (E.5)
=0.

The polynomial we want to build is constructed from scalar fields, so we have

to enforce bosonic statistics. We achieve this by acting with a projector

Pr="3" xnlo) -0 (E:6)

© oeSy

where R = 1111. In the representation space this projector is given as

Pp = jif S~ xr(0) - Ts(o). (E.7)

" o0eSy

where

s = TDe- o0 (E.8)

k times
_Hjjj®k
1 M

and I'g(o) is the matrix representation of group element o and is given as

I's(o) =T'grm(o) @ -+ © Igrm(o) (E.9)
k times
=(Trrr(0)) ™"

We let the projector Pr act on the polynomial,
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i 21—22 T 21—22
(&) €1 \/i ﬁ
—2 —2
| @@ |eg| = MTZB Q- ® MT% (E.lO)
€3 es z1+22+23—324 z1+2z2+23—324
V12 i V12
k times k times
L T
€1 \/5
e =| s
es z1+22+23—324
L V12 J
where
Z1—%Z2
el \/5
_ z1+20—22
e z1+29+23—324
3 V12

The polynomials ej,es and es are harmonic and correspond to the Young-

Yamanouchi states

el < €9 <> €3 <> ,

and further more the monomial z; corresponds to the Young diagram box
labelled 1 on each Young-Yamanouchi state, zo corresponds to the box la-
belled 2, z3 corresponds to the box labelled 3 and z4 to the box labeled 4.
This irreducible representation has dimension dgm = 3, and the basis for this

representation are given by the Young-Yamanouchi states,

1 0 0
€] = 0 €y = 1 €3 = 0 (E.12)
0 0 1

We obtain the matrix representation I'g(o) by acting with permutation group

elements on the Young-Yamanouchi states (polynomials). Consider the action
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of the permutation group element (23) on the Young-Yamanouchi state ey,

21 — %9
23)e1 = (23 E.13
@3)er = (28) (12 (B.13
this action exchanges the position of zo and z3, therefore
Z1 — 22
23)e; =(23 E.14
(23)er =(23)( 222 (8.14)
21— 23
V2
_1<Z1 - 22> n \/g(zl + 29 — 2Z3>
2\ V2 2 V6
1 3
T f”

The action of the group element (23) on ey is

(Zl + 29 — 223)

23)es =(23 E.15
(23)e2 =(23) 7 (E.15)
st z3— 229
V6
o 3(21—Z2> _1(21—1—22—223)
V2 V2 2 V6
\/? 1
=1/-e1 — —ea.
271 2"
Lastly the action of the permutation group element (23) on ej is
21+ 29+ 23 — 324)
23)es =(12 E.16
(23)es =(12)( 222 (E.16)
Atz t 23— 324
V12
=€3.
Therefore the matrix representation for the group element (23) is
€1 —% @ 0 €1
To((23) |ea| = [ 1 0f [ea]- (E.17)
€3 0 0 1 €3

One finds the matrix representation I'g ((12)) by following the same procedure
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as above. We act with the group element (12) on the states e, e2 and es, this
time the group element (12) interchanges the position of z; and zo. We find

the matrix representation

€1 -1 0 0 €1
To((12) [ea| = 0 1 0] len (E.18)
€3 0 01 €3

The matrix representation for the group element (34) is obtained by inter-
changing the positions of z3 and z4 on the states ej,es and e3. The result

is

€1 1 0 0 €1
To((34) [ea| = [0 L1 B |ey. (E.19)
€3 0 % —% €3
The identity is
100
Fo((1))=10 1 0f. (E.20)
0 01

We can find the matrix representation of the remaining group elements of Sy
by multiplying the matrices above. When k = 2 we have the projector acting

on the polynomial as follows

Pre = BB S (o)1 (0) @ T(0) -

oeSy

(E.21)

where dg = 1 and yg(0) = 1. Using mathematica we find the following result
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for Pge

®2

d
Pra === (0)'(0) @ (o) - (E.22)
oeSy
[4]
Lp
0
0
0
= %p
0
0
0
5P

where

P=(z1 —22)* + (21 — 23)° + (21 — 24)* + (22 — 23)° + (22 — 24)* + (23 — 21)°

(E.23)
4
:Z(Zz z])Q’
1<j
and 7,5 = 1,---4. The results for Pgrs are
8
Pps = — = Z x(o)T'(o) @ (o) @ T'(o) - (E.24)
oeSy
(()111()010010001101
74\/678\/374\/67 ) 9y \/>7 ) 74\/6’ ) ) ) 4\/678\/§7 ’8\/37
1 1
0, 0,0,0, 0,0,0,— )
'8v/3 8V3’ 4v/6
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where

Py =(z4 + 20 — 223) (24 + 23 — 229) (22 + 23 — 224) (E.25)
+ (21 + 24 — 223) (21 + 23 — 224) (24 + 23 — 221)
+ (21 + 20 — 224) (21 + 24 — 229) (22 + 24 — 227)
+ (21 + 22 — 223) (21 + 23 — 229) (22 + 23 — 221)

4
= Z (zi + 25 — 21) (25 + 21 — 2i) (21 + 20 — 25).
i<j<k

The construction for both Pr2 and Pgks give one solution which shows that
there is only one invariant symmetric subspace. This can also be seen from
the eigenvalue spectrum of both Pr2 and Pgs projectors, where their spectrum
contains a single eigenvalue of 1 and the rest of the eigenvalues are 0. This
means there is only one possible way to write a symmetric invariant polyno-

mial.

For the case of Pgs, the eigenvalue spectrum of the projector contains 4 eigen-
values of 1 and the rest are 0. And the results of the Pra projector contain
4 different solutions, which implies that there are 4 possible ways to write a
symmetric invariant polynomial. This way of counting is related to the num-

ber of times the representation r ( = crrm) appears in a tensor product H-E®F,

We know that the matrices with the same cycle structure have the same trace
and the character of tensor product is equal to the product of the characters

of each representation. Therefore

XB:Dj((l)) =3, XB:E(()) =1 for 2 cycles, XB:E(()) =0 for 3 cycles,
(E.26)

XBE(()()) = —1 for 2 2 cycles, XB:\:\](()) =1 for 4 cycles,

and the character of the tensor product is

XEF\:D®2((1)) =32, XBE®2((..)) =1 for 2 cycles, XBE®2((...)) =0 for 3 cycles,
(E.27)

XB:m@Q((..)(..)) = (=1)? for 2 2 cycles, XB:\:D®2((....)) =1 for 4 cycles.
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The formula for the number of times n, (k) the represenatation r (r = )

appears in a tensor product S = H®? is given as

= 3 xo(0)xs(0) (B.28)
24

oeSy

= 3 X)X ()

oeSy

:i (ijjj((l))XBEﬂ®2((l)) + 6xrrm( () X, () + 8xerrn((+)) X, ()

BArn(-) )X () () + OXe( DN ()

:i ((1)(3)2 +6(1)(1)2 4+ 3(1)(0) + 3(1)(=1)% + 6(1)(_1)2>

=1
and for S = H793 we have

nr =3 3 Xerolo) X, (0)

o€eSy

25(1(3)3 +6(1)(1)% 4+ 8(1)(0) + 3(1)(—=1)% + 6(1)(_1)3)

—1,
and for S = H7®* we obtain

n =57 Y- Xerm(O)NgEEL () (E.29)

oeSy

=4.

In general n,(k) is

~ 3R+ 6(1)F +9(-1)*
N 24

nerrr(k) k> 1. (E.30)
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E.1.1 Primary Operators built with z and w operators

Note that the operators z,z,w and w have the spin or charge assignments

(jr,Jr) given as

20 Gy
o3y
U_JH(—%,%).

Primary operators built above using the projector Pr and the translation

invariants given above have spin or charge assignments

We can also build another set of primary operators from using the monomials
z=xp Fixd,  w; = x5 + iz}, (E.31)

The translational invariant states we use to build these primary operators are

21—22
(&) \/i
es| = % : (E.32)
es z1+22+23—324
V12

from the complex z subspace and, for the w complex subspace the translational

invariants monomials are

w1 —w2
C1 V2
c _ w1 +w2—2ws (E 33)
20 V6 : :
3 w1+ wa+w3—3wy
V12

We combine these by forming a tensor product as follows

®k ®I 21—22 ®k w1 —w2 wl
€1 C1 \/5 \/Q
9 ® |ey — % ® Wwij(fm . (E.34)
es c3 z1+22+23—324 w1 twatw3z—3ws
V12 V12
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We project these states onto a symmetric subspace by acting with a projector

Pg.,,, where we have projector I'g_(o) acting on the state

€1
€2 (E35)

€3

and, projector I'g, acting on the state

C1
C2| (E36)
C3
as follows
®k ®l Rk
el cl €1 C1
Psz €2 ® C2 D]:D Z XD:D:[ ))®k T e2 ® (Psw (U))®l T C2
€3 C3 7€Sa €3 C3
(E.37)
Rk Rl
1 (&) C1
=5 > Ts.(0)™ & (Ts, (o)™ - e2|  ® [ep
e €3 C3

The primary operators built using z and w co-ordinates have the spin or charge

assignments

I+k  I—k
<JL IR ) (E.38)

We can build another set of primary operators using z and w co-ordinates in

the same way,

ok q®l ok Lol
€1 C1 €1 C1
Pr o] ©|a| =4 Es@) e @@ o ©|a
€3 C3 S oeSs €3 C3
(E.39)
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These operators will have the charge assignments
<JL2 IR ) (E.40)

The number of times N,—(k, 1) the representation r = [IT1J appears in the
tensor product 2+ jg

3R+ 4 6(1)FH 4 9(—1)k A+

NT(k7l): 24

k1> 1. (B.41)

Using (E.37), k =1 and [ = 1 we obtain that

€1 C1

o 1 1
Prow lea| @ |co :(’)(kl’ll)(z,w)<,0,0,0,

1
— — E.42
- L.0,0,0, 12), (E.42)

€3 C3

where OF=11=1) (5 ) is

O (2 w) =(21 — 22) (w1 — wa) + (21 — 23) (w1 — w3) + (21 — 24) (w1 — wy)

(E.43)
+ (22 — 23) (w2 — w3) + (22 — 24) (w2 — wa) + (23 — 24) (w3 — wy)
4
= Z(Z’ — zj)(wi — wj).

The projector Pg,,, maps the translational invariant state

€1 C1
e2| ® |c2 (E.44)
€3 C3

into a symmetric subspace (1111, where the polynomial is made up of the
invariants (z; — z;) and (w; — wj). These invariants combine into a product
(zi — 2;j)(w; — wj), and all the possible combinations of , j of this product are

summed with the restriction that ¢ > j. Hence
4

O (z,w) = z:(zz — zj)(w; — wj). (E.45)
1<J

185



When £ =0 and | = 2 we find

®2
“ 1 1 1
P = Ok=0i=2 < 0,0,0,—.0,0,0 > E.46
Rzw | C2 (’LU) 127 s Uy a127 s Uy 712 ) ( )
C3

where O*F=01=2) (1)) is

0(0’2) (w) :(w1 — 'LU2)2 + (w1 - ’LU3)2 + (w1 — UJ4)2 + (wz — w3)2 + ('LUQ — w4)2

(E.47)
+ (w3 — 11)4)2
4
= Z(’wz‘ —wj)*.
1<j

Here the operator Pgr,,, maps the translational invariant polynomial

into a symmetric subspace where the polynomial is made up of the invariants
(w; — w;)? and, all the possible combinations of (w; — w;)? are summed with

a restriction that ¢ < j.

When k£ =2 and [ = 1 we obtain

®2

“ “ 1 1 1 1

P ® =0V (2 w (0, - - , 0,0, ————,
fzw | €2 @ (z,w) 726" 1443 726 1443
es c3
(E.48)
1 1 1 1
0a07_77070701 s T 707_ 70a
726 7267 1443 144/3

1 1 1
- 7070707_ 7070707 9
144/3 144+/3 72\/§>

where O (2, w) is
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O (2, w) =(21 + 24 — 223) (21 + 23 — 224) (w4 + w3 — 2wy) (E.49)
21 + 24 — 223) (w1 + ws — 2wy) (24 + 23 — 221
w1 + wy — 2ws3) (21 + 23 — 224) (24 + 23 — 221
w1 + wy — 2wy) (21 + 24 — 229) (22 + 24 — 221
21 + 29 — 224) (w1 + wy — 2wa) (22 + 24 — 221

21+ 29 — 22’4)(2’1 + 24 — 222)(1112 + wy — 2wy

+( )
+( )
+( )
+( )
+( )
+ (w1 + we — 2ws) (21 + 23 — 222) (22 + 23 — 221)
+ (21 + 22 — 223) (w1 + w3 — 2we) (22 + 23 — 221)
+ (21 + 22 — 223) (21 + 23 — 222) (w2 + wg — 2wy)
+ (wg + wo — 2ws3) (24 + 23 — 222) (22 + 23 — 224)
+ (24 + 29 — 223) (wyg + w3 — 2w2) (22 + 23 — 224)
+ (24 + 29 — 223) (24 + 23 — 229)(wa + w3 — 2wy)
4

= Z [(zZ + 2z — 2) (25 + 21 — 2i) (Wi + w; — wy)
i<j<k
+(2i + 25 — z1) (wj + wp — wi) (2 + 20 — 2)
+(w; +wj —wg)(z5 + 2k — 2) (26 + 20 — 25) |-
Here the projector produces a symmetric polynomial (9(271)(2, w) which is

composed of invariants (z; + z; — 22;) and (w; + w; — 2wy). The polynomial

O21) contains a sum of all the possible distinct products of

(zi + 25 — 221) (25 + 21 — 2i) (Wi + Wi — wy).
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E.1.2 Primary operators for 3 scalar fields

Consider the projection operator for 3 scalar fields

Rk ®l 1 Rk
e c e
Praw- | | @ | =23 xam(@)Ts.(0)® @ s, (o)™ - || @
€2 c2 6 oeS3 €2
(E.50)
where
el _ Zl\;gQ 1 _ wl\;i'LUQ
s zﬁ—i;g—ng s w1+w\/26—2w3 ’
and
(D, (0))% = Typ(0) @ -+ @ Tips(o) (E51)
k times
From equation (E.50|) above the representation i appears No(k, 1) times,
2k+1 2(—1 k+1
N (b, 1) = 2 221 (E.52)

6 Y

in the tensor product F7®*+) . This integer counts the number of different
solutions equation (E.50|) can have. When k = 3 and [ = 1, this equation will

have 3 solutions since

2k+l +2(—1 k+l1
Nero(k, 1) = 6( )

- 23+1 4 2(_1)3+1
- 6

(E.53)

=3.

Which means there are 3 different subspaces carrying the representation .
To obtain a single solution we act with the projector By on equation (.50,

given as

= Y xgo)re) (E.54)

oeSy
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where ng =2 and

[((12)) =Pixa @ laxa @ laxa T((23)) = laxa @ Pixa ® laxo (E.55)
['((34)) =lax2 ® lax2 @ Pixa (E.56)
and
1 0 0 0
0010
Pios = E.57
001 0 0 (E-57)
0 0 01

The matrix representation I'py(o) corresponding to the character xp(o) is

1 0 ~1 3 1 0
r<<12>>=[0 _1] r(<23>>=[¢2§ ] r<<34>>=[0 _1]
(E.58)
Therefore
xp((-) =0, xm(())=2 xp-))=-1  xg-)=0.
(E.59)

The projection operator By - Pr.q has eigenvalues
Eigenvalues[ Ry - Pr.o| = (1, 1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0), (E.60)
and it projects the state

®3 ®1
€9 (&)

This results in the formula

®3 ®1
R Pra tj @ H — R+ |5 & xam(o)(Ts. ()% © (s, (0))°" [

C2

(E.61)
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Appendix F

Testing the Primary

Condition

F.1 Primary Operators

In this appendix we will illustrate that the many-body polynomials we have
constructed are indeed primary operators once we transform back to the CFT

language. We will make use of the conformal group algebra

K,,P,)) =2M,, —2Dj,, (F.1)
7PM] - PM

Consider the polynomial
U= (w® (@ — z10) 4 @M — 200y M (z6) — z(2)))2n (F.2)

A simple case we will take is n = 2. We will make the translation

Pkp! papr ptpy
bt o (00) (550 (559) o

to obtain
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1 1
V= 0PI6PL6 — 5

PEO(Pus)? — G(P:Pud)’ — (P9 P26 + 2(P:Put) (Pud) (Pe9)

(F.4)

where P; = P — iP; and P, = P3 + iP;. Acting with the special conformal
operator K, on ¥, the operator ¥ should be annihilated if it is a primary

operator. Action of K, on ¥ gives

1 1
K :Zd)KMPZquPngZ) + quPZQqSKMPngZ)

1 1 1
— 5 KuP20PudPut = 5PLOK PudPud — S P2OPu¢KuPud

— OKuP:Py@P:Put = 9P Pyd K Pz Py
1 1 1
— 5 KuPz0P:0 P — S Pz K P:oPé — S P:oP:0 K, Po

(F.5)

(F.6)

+ 2K, P Py¢ Py P:¢ + 2P: Py K Py o Pz + 2P: Py Py ¢ K Pz b

First consider the term

m—1
K P'¢ = PI[K, PP""'"¢

ﬁ
Il
~ o

3

PI[K,, P, —iP)PI "¢

z

%
Il
=)

3

Pr (2MM1 —2Db,1 — 2iM0 + 2¢D5#2) pri=rg

T
1L

ﬁ
Il
o

Using the formula
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m—1 m—1m—r—2
25 PIM Pl 1T =2 >y PLPS[My, PPl 572¢ (F.9)
r=0 r=0 s=0

m—1m—r—2
=2Y" > PIP{[My, P —iP] P52
r=0 s=0
m—1m—r—2
=2y > PP (51113“ — 0,1 Py — 012 P, + ¢5NQP1)P;1—T—S—2¢
r=0 s=0
m—1m—r—2

-y 3 (pu—aulplﬂ'auzpl)P;”‘%

r=0 s=0

=—2(0u1 — i6,2) nf(m —r—1)P P 2¢ + 2mi(m —r—1)P,P" %%
r=0 r=0

= — 281 — i6,0) <m2 - m(mz_l) - m) PP 2

+ 2<m2 — 'm(m2—1) — m> PP 2¢,
it follows that
m—1
23" PIM PP "6 = 28,0 — i6,0) <m2 - m(m2_1) - m) PP 2

r=0
(F.10)
- 2<m2 - m(m2_1) - m) PP,

Note that in the computation above we have used the fact that M,,¢ = 0.
We also know that

DP.¢™ "t = (m — )Pl Lo (F.11)

Plugging (F.9)), (F.10), (F.11) back into (F.7]) into we obtain

K, P'g = —2m? (6,1 — i) P ' ¢. (F.12)

For m =2
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K, P2¢ = —8(6u1 — i02) Psop (F.13)

Using the same idea to treat the term K, P;P,¢ we find

K, P:Pyd = —A(8,1 — 16,2) P — 4(S 3 + 10,4) Pop. (F.14)
Denoting A = —(du1 — id,2) and B = —(d,u3 + i0,4) and plugging back the
above results back in (F.5)) we find
K, U =0. (F.15)
This shows that the operator ¥ is indeed a primary operator.

Lets consider another set of primary operators that are constructed from tak-

ing a determinant of the coordinates variables. Consider the operator

JUC) B BN C R O
B (Z(l))Q (2(2))2 (2(3))2 (2(4))2
@=det 1" ) Ly L s (F.16)
1 1 1 1

For odd powers of @ acting on the scalar field ¢(z1)@(2z2)d(23)d(24)|

yield zero operators and even powers of ) give non-zero primary operators.

Consider @ acting on ¢(z1)¢(22)¢(23)(z4)|

21 24=2

21+24=2"
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Q[o(21)P(22)9(23)p(24)]

:(2(1)(2(2))25(3) — 2M(x@)2z(40) _ (1) (5(3))2z0)

(F.17)

21 24=2

LW (@)256) L) (,6))250) 4 L@0)(,(3))2 Z(z))

X [p(21)@(22)P(23)P(24)]

2124=2

k

Making the transformation =% — %c we obtain

P2 PQ P2
Q[d(21)B(22)(23)B(24)] = z¢7?¢Pz¢¢ - Pz¢7?¢¢Pz¢ - Pz¢?T¢Pz¢¢

21 24=%

(F.18)
+ P66 6P+ Pao'e 0P00 - Pt oPigo
L opopao+ Zorooro+ z0P6 o0
PG RGP — P06 6+ 0P.0P.6
+ B oPoPoo - B 60P.0P - Pao Pugo
+ 652 6P.0P.0 + 0P.0P.6 6 — oPu0P.6 o
B oPb0P.6 + Eo0Pe0P.6 + P 0P
02 0P0P — Paoo 0P.g + R0 0P
=0

For even powers of Q we get non-zero results. For Q? we get
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(F.19)

Note that when the derivatives act on the fields, the cross terms are equal and
we add them together. The non-cross terms are also equal and we add these

together too. Therefore we have

(22)? ()2 (20)7 (22)* (23)% (22)?]|(21)? (23)% (24)°
Q> =42 z, 2| — 122120 | 5 Zs oz || & Zs  z |,
1 1 1 1 1 1 1 1 1
(F.20)

and

2
Q%[6(21)d(22)b(23) b(24)] =427 ((22)2(23 —Z1) — (23)% (%2 — Z1) + (20)*(Z2 — 23))

(F.21)

21, ,24=2

2
— 122921 ((22)2(23 — 24) — (Z3)2(52 — 24) + (2’4)2(52 — 23))

x ¢(21)p(22)p(23)p(24)

Y
R, ,24=2

these becomes at 21, -+ ,24 = 2
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Q?64(2) = —  PPOPLOP-6P- — 2P2OPR P2 PopPst — PROP2Poi P2 Pehd

=3
(F.22)
— 3 P2OP26P26P? 0 + AP26P-0 P Po P26 — 2P P2 Po0 P Pego

+ TPROPIOP2 00 — SPIOPYOP200 + S PGPS oP0P:s

~ P.P.OP.P:gPioo + 2P-0P.Po0PY6Pe6 — L Po6Po0 PY6 P26

+ 6P, Pz P-P:o P2 P2 ¢ — 12P: 0 P.P:¢P* P:6 P16

+ 6P-¢P.0 P Pz P Px¢ + AP Pp P ¢ P Pz6¢ — AP.¢ PP P P=¢

1
— 4P, P P3¢ P2 s + §PZ¢P3¢PE¢P§¢-

We can verify that Q2¢*(z) is a Primary operator by acting with a special
conformal operator K,,. We will first act on each term on (F.22)) by K, then
add up the terms together. Let A = §1,, — idy, and B = d3, + id4,. Then

K, (P2¢Pl¢P:pP:¢) =8 BP,¢PL¢P:¢P:¢ + 32BP2$P2¢P:pP:p + 4AP2$PLoP: b
(F.23)

—0,

K, (P2¢P2$P;P;:¢P:¢) =16BP.¢P; P> P:¢P:¢ + 8BP}$P. P, P:¢P:¢
(F.24)
2AP2$ P2 P2¢P:¢ + 2AP2 9P ¢ P2 Pz
2027

K, (P:¢P2P;¢ P2 P;¢¢) =8BP,¢ P2 P;¢ P2 P:¢¢ + 16 BP2¢ P, P;¢ P2 Pz
(F.25)

+ 4AP2pPIP:¢p P2
:O37

K, (P2¢P2¢P2$P>¢) =24BP.¢P?pPrpP*¢ + BAPZ$P:pP2pP*¢  (F.20)
2047
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2 2 2
K, (P2¢P:¢P?P:¢P}¢) =16BP,¢Pz¢ P> P:¢P2¢ + 2APZ P2 P:¢ P26
(F.27)
+ BP2¢P:¢P,P;¢P2¢ + 2AP2pP.p P2 p P2 ¢
2057

K, (P2¢P?P,¢P?P:¢) =8 BP,$ P2 Pz P> P + 16BP2 P, P.p P> P:p
o (F.28)
+ 4AP2¢P2$pP*P.¢p¢
:Oﬁa

K, (P2¢P}¢P2¢p) =8BP.¢ Pl pP2¢¢ + 32BP2o P P2 ¢ (F.29)
+8AP2¢P}¢P: o
2075

K, (P2¢P2¢P26¢) =36 BPZ P2 $PZ ¢ + BAPI G P2 ¢ Pz (F.30)
2087

K, (P3¢P3¢P:pPs¢) =36 BP2pP2¢P;¢Psp + 4AP3 P3¢ Psp¢p  (F.31)
2097

K, (P,P;¢P,P;¢pPp¢p) =ABP;P,P;pPipp + 4AAP, P, P:pPldp  (F.32)
+ 32BP,P;¢P, P;¢ P2
:0107

K, (P.¢P.P:¢P!¢P:¢) =2B¢P.P:¢ P} ¢ Ps¢p + 2BP.¢P:¢ Pl Pz (F.33)
+2AP.¢P.¢ P} ¢P:¢ + 32BP.¢P. P:p P2 Ps¢p
+2AP.¢P.P;¢p Pl

=011,
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K, (P.¢P.¢P}¢P2¢) =4BoP.¢PlpP2¢ + 32BP.¢P.¢P2pPr¢  (F.34)
+ 8AP,¢P,pPLpP:p
20127

K,(P.P:¢P. P:pP2$P2$) =ABP:¢P, P-p P> P2 + AAP.¢ P, Psp P2 P2
(F.35)
+16BP. P:P. P:pP.¢P2¢
:Ol37

Ku(P:0P.P:¢P? P:¢P2¢) =2BOP.P:oP2P:¢P¢ + 2BP.¢ PP P:p P2
(F.36)
+2AP,¢P.¢P?P:¢P2¢ + 8BP.¢ P, Ps¢ P, P:¢ P2 ¢
+2AP.¢P.P;¢P2$P2¢ + 8BP,¢ P, P:¢ P} P;¢ P,
=014,

K, (P.¢P.¢P?P;¢ P} P;:¢) =4B¢P.¢ P2 P:¢PZ P:¢ + 16 BP.¢ P, P, P:¢ P2 P:¢
(F.37)
+4AP.¢P.¢P2¢P2Ps¢
20157

K, (P.P:¢P}¢P2P;¢¢) =2BP:¢P}$P>P:¢$ + 2AP, ¢ P2p P2 P:6p  (F.38)
+18BP,P:¢P2¢P?P:¢¢ + 8BP. P:p P3¢ P. P: ¢
+ 2AP, P P3¢ P2
=01,

K, (P.¢P2¢P2P;:¢P:¢) =2B¢P2¢ P2 P:¢P:¢ + 18 BP,¢P2p P2 P:pPs¢p

(F.39)
+8BP,¢P2¢P.P:¢Pz¢ + 2AP.¢ P2 P2 Psp
+2AP.¢P}¢P? P:¢

=017,
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K, (P.P:¢P}¢P2¢P:¢) =2BP:¢ P2 P ¢P:¢ + 2AP.¢P $PI¢P:¢  (F.40)
+ 18BP,P;¢P2¢P2¢P:¢ + 8BP,P;¢p P3¢ P, Pp
+ 2AP, P P3¢ P2
=013,

K, (P.¢P*¢P2pP2¢) =2BoP*¢P2¢PZ¢ + 18BP,¢ P’ ¢P2¢PZ¢  (F.41)
8BP,¢pP3¢P,pP2p + 8AP,pP3 ¢ P2 Ps¢)
=01g.

Summing these terms we find

1 3 1 1 2
KM(Q2¢4(2)) =— 501 — 209 — O3 — 504 + 405 — 206 + 107 — 308 + 509
(F.42)

1
— 010+ 2011 — 5012 + 6013 — 12014 — 6015 + 4016 — 4017

1
— 4018 + 5019

=0.
This shows that (Q%¢*(z)) is a primary.

F.2 Transformation between coordinates variables

and spacetime derivarives

We can translate polynomials back to momentum operators by using the fol-

lowing transformation
PF = q;.7" (F.43)
where Z = x1 — tx9 and P; = P, — iP,. We determine aj as follows,

P — g 2P (F.44)
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and

ap12° T = Ps(ar ") (F.45)
=ay (P, — in)Zk

using the expression P, = x28u —2x,x - 0 — 2z, for the momentum operator.

We can further simplify the expression above,

ar(P — iPy)Z" =ay(ka® — 2kay (v — iwg) — 221 2)28 ! (F.46)

— dap(—ika® + 2ikxo(x1 — ixg) — 2292) 281

= — 2a;(k 4 1)zF 1,
Thus
ak+1 = —2(k + 1)ag, (F.47)
which implies that
ar, = (=1)F2Fk!. (F.48)
Similar reasoning shows that

PF Sbw® (F.49)
b, —(—1)*2"k!, (F.50)

where w = z3 + iz4 and P, = P35 + iP;. Therefore the transformation of a z

and w polynomial is as follows,

k [
k PZ l Pw

zZ° — 1)k w' — 2 (F.51)
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Appendix G

Formulas for Fermions

Consider the character generating function for the fermions

OO B
F(t,s,z.y) = [[(1+ s 325 y#), (G.1)
q=0

. . . atl a . o
Before making an expansion we will drop the terms 2 and y2 since it is

easy to reinsert these variables after expansion. Therefore

F(t,s) = ﬁu +1s7t2). (G.2)
q=0

The derivative with respect to the parameter ¢ yield

oF & s2ta s 3
= I 1+ ts772) (G.3
ot ;(1“3%“) ql;[O( )

=fiF
where
00 sk(a+3) o gats

fet,s) = (D1 ——— and fi(t,s)=> ——,
{26 = (D= D T wd ) =3
(G.4)

The 27, 3™ and 4" t-derivatives of F' give us
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2 2(3+a) (3+a) ((2+b) o0
651:(_ S 23 S; S\2 . b>H(1+tsg+q)
ot @ (1—{—t5§+a)2 7 (1+t8§+a)(1+t55+) =0
(G.5)
=(ff + f2)F,
3 3(3+a) $2(3+a) o(3+b)
8{;:(223 -3y SR (G.6)
ot (1+ts2t)3 43 (14 ts379)2(1 + ts310)
(3+a) (3+D) (340) 00
+Z 332 s\2 332 i )H(l—l—thJrq)
are (L4120 (14 ts2T0) (1 4+ ts21¢) /) 5
=(f3+3f2f1 + f})F.
and lastly
O'F A
W:(f4+4f3f1+3f2f2—l—6f2f1f1+f1)F- (G.7)
In general
o" 711/<31 + -+ ngk n
%F (¢, 5) Z Z “ng! k1) q( 0 f)na Tl 'fqu5”7”1k1+”'+nqqu(t’ s).
N1, 5Ng k17 7

We can see that F'(0,s) =1 and

fk(ov 5)

k

o

N

(-1 - Dy

(=)

(G.8)

Plugging the simplification of f;(0, s) into equation (G.8) we obtain
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o"F
ot |,_,

CE ngl(kp)™ -+ (kg)™a \1 — sk

N1, 5Ng ke,

(_1)k1_1 Xoeee X (_ )kq_15n7n1k1+"'+nqkq

nlsa™ gak \™
Z Z n'kl) (kq)nq(1_8k1>

N Ky,

(_1)k1_1 X oo X (—1)kq_15n7n1]€1+"'+nqkq.

In the end we have

1 o"F
n! ot

:XTL(Sv z, y)
:S%TT(P[ln]SLO).

Using the general formula in (G.10) for finite n cases we obtain

B Z Z (n1k1+...+nqkq)! ( S%kn )m

1 92 s3 s3
PR Nt e o) B s
34
(1—35)(1—s2)
—8T1“(P[12]S )

1 03 952 3s2 52
it ) o 3N(1—s3)  3(1—s2)(1-s) HETERSE
15
S 2

T
:S%TF(P[13]SLO),

and
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1 0% 66 836 356 658

——F(t =— —
4! ot (t:9) —o0 41(1 — %) * A1 -s3H)(1-9) * A1 —s2)(1—s2) 41 —3s2)(1—5)?
(G.14)
P
411 —s)4
B 512
(1 —8)(1 —s2)(1 —s3)(1 — s%)
:szTr(P[lﬂsLO).
From the cases above we can infer that in general we have
10"F &
o S Tr(P[ln]sLO) (G.15)
ﬁ g5 (n+2)
i=1 (1—s")
Reinstating  and y we have
> 3 1 q
F(t,s,z,y) = H(l + tstt2p2latl)y D) (G.16)
q=0
and
0F(t,s,z,y) > s‘”%x%(‘”l)y%
— 5 - Z T F(t,s,x,y) (G.17)
t a—0 (L4 ts*Tzx2l9THy2)
00 k(a+32),.5(at+1), ko
filtys,0,y) = (D - 2 Y
50 (Lt 2aale Dy s
Therefore
L
Filt,s,x,y) = (=11 (k = 1)! s (G.18)
(1 - shabyh)
and hence
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1 0F - Z Z S%nx% < 1 )nl < 1 >”qx
n' 8t +=0 s g oy oo ,kq ’I’Ll! PN nq!(kl)nl e (k-q)”lq 1— Sklfﬂ%y% 1— Sk.qx%ly%l
(G.19)
(_1)k1_1 Xooe X (_1)kq_15n,n1k1+m+nqkq
Using the equation (G.19)), we find
19F| strays G20
Ao|_, > T T (G.20)
: t=0 (1 —s?zy)(1l —szxzy2)
1 0F sy’ o)
B0y (1- s322y2)(1 - s2ay)(1 — sw3y?)’ '
and
o] = L . ()
Aoty (1 - st22y?)(1 — s322y2) (1 — s2ay)(1 — sx2y?)
In general
10 nlne N n
nt Ot |1 i—1 (1 — stz2y?2)

The generating function GZ"(s, z,y) for the extremal primary operators with

dimension and charges respectively,

1 q
A=n+gq J:(J?{I7J3R):(§+Q7§_m)v (G24)

is given as
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1 0"F

G (s 2,y) =(1 — VoY) — — (G.25)
n! ot |,_,
:(1 - 8\/@))(”,(8, z, y)
:Zn(su x,y),

where Z, = (1 — s\/7y)xn(s,z,y). From the numerical computation, the

expansion of Gs(s,z,y) is

Gs(s,z,y) = s%m?’y% + s )
(G.26)

From here we will consider another set of extremal operators. We consider the
set of extremal operators with dimension A = n+q and J¥ = 5 3 + ¢ maximum

spin. We begin by studying the character generating function

Fy(t,s,x,y) H H (1+ts?t s2'T m=3). (G.27)
q=0m=0

The derivatives with respect to parameter ¢ yields

o > sa""%xaTHym_%
7F2(t7 87x7y) = a a (G28)
:fl(t,s,x,y)Fg(t,s,x,y),

where

k—1 0 a k(a+ ) k( Ly k(m—2)

y 2
fk:(tasvxvy) 7F (t 5, T y) ( ' N
(G.29)

We know that Fy(t,s,x,y) =1 and
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Dykm=5) (G.30)

fk(o,s,l',y) :(_l)k_l(k - 1)' i Za: s

a=0m=0
3k 1k
=( l)k_l(k 1)! k Sk2 = N
(1 —skzzyz)(1—shaxzy 2)
Thus
1 0" nlzzmsan 1
— I t7 s Ly
T A S — e (g
(G.31)

1 Tq 1 o
17 —
' <1 - Skquqykq/2> (—1) X oo x (—1)ka
X 5n7n1k1+...+nqkq

:Xn(sa z, y)

The generating function for the primaries with dimension A = n + ¢ and

maximum spin J3L = % + q is given as

GE(s, 3, y) = {(1 - ;) Zﬁ’w(s,x,y)] , (G.32)

>0

where Z,,(s,x,y) is given as

Zn(s,x,y) = (1 - 5\/:Ty> <1 - sﬁ) Xn (8, 2,7). (G.33)

The expansion of G5 (s, z,y) is

Gy (s,r,y) =s2x2 +s2x y%+s7x§y+s2x4y§ —1—82901/%4-32902
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G.1 Fermion Projectors

Using the formula (G.31]), for n = 2 we find that

s\/Ty + s\/%
x2(s7,9) = $3x<(1 — s2ay)(1 — s22)(1 — s,/z7)(1 - s\/f))’ (G-35)
and consequently
Zsy(s,x,y) = S3$< S S\/%) (vew S\/%) > (G.36)

(1= s?zy)(1 —s*7)(1 — s/my)(1 - S\E)

The generating functions used to construct Zs(s, x,y) are

ZQ(S, x, y) :s3a; (ZSH(Q1,H)ZSH(Q2,D:I) + ZSH(Ql,D:‘)ZSH(QQ,H)) (G.37)

sz (1 —s/xy) (1 — s\/%)(s\/@—i— s\/%)

(1= s2ay)(1 = 25)(1 = sy/ap)(1 = 5,/3)

where g1 = 5,/2y, g2 = s\/% and

ci(e;—1) ]_
Zonta:A) = (= a)e= 17— m (G-38)
For n = 3 we obtain
sl 21) :sgxg( @ +a3+a(1+g)e+a(1+a)n ) (G.39)
o (1—q)(1—g2)(1—¢)(1—g3)(1—q})(1 - g3)

G+aE+30+R)e+a0+a)a

3
2

(1= a)(1 - )

Zg(S,.’B, y) :S%.f

We can construct Z3(s, x,y) using the generating functions below
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Za(s,x,y) =s2a? (ZSH(%E)ZSH((D,DE) + Zsu(q1,5) Zsu (g2, ) + ZSH(Ql,DE)ZSH(%E))
(G.40)

G+aE+ad1+@)e+dl+a)a >
I—q)1—qg)A-¢)1-—g)1—g)(1—q))

Njw

9
=S2x

(1—q)(1— qz)<

Performing a power series expansion of Z3(s,x,y) we find

Zs(s,x,y) =2+ + @+ )t a(l+ @+ +aS+ ) Tl ta+ad+)
(G.A1)

+3l+ @B+ G+ )+ d @+ +d+ o)A+ GG+

o o
=> > (@G d" + @ ™)

n=0m=0
-2 2 () e (o) o)

11 11 3 3 _3 3 3 _1 3 31 3 3 3 5 5 _5
=sx2yY2 + sxr2y 2 +S°sxr2y 2 + S w2y 2 +S8°sx2y2 + s°sxr2y2 + s w2y 2

5 5 _3 3 5 _1 5 5 1 5 5 3 5 5 5
+ s x2y 2 +8°x2y 2+ s x2yY2 +Ss"x2y2 +S"x2Y2 + -

From the last line of (G.41) we observe that Z3(s,z,y) contains primary op-
erators with negative spin (momentum) powers. To eliminate these primary

operators, we have to compute

Gs(s,z,y) = [(1 — ;)Zg(s,x,y)] . (G.42)

>0

We also note that the primary operators generated by Zs(s,z,y) at each di-

d

mension s%, is a series of primary operators with an extremum jz, spin (2/-).

This series is of a particular form

JL
2L Z ijij_Qm’ (G.43)

m=—jr,

where jr, is the maximum left spin.
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For n = 4 we find

B s522Q
xa(s, z,y) TA-Ha-AH1 -1 - -A1 - @)1 —q)(1 — )
(G.44)
. o (1-q)(1—q)Q

=S ! )
S N G TG P e e Y gy Y gy

where

Q= +E+del+a+a)+adl+ae+ad)+dael+20+d+4d)
(G.45)

+@BA+ @ +283+ @)+ Ba(l+q+ 20+ 6 +a3)).

We construct Z4(s,x,y) using the projectors

Zy(s,x,y) =52 (ZSH(%E)ZSH(%DHE) + ZSH((AEH)ZSH(%HE) (G.46)
+ Zsu (q1,1) Zsp (g2,H) ZSH(QLHE)ZSH(QQEH)

+
+ ZSH(QLDE)ZSH(%E)),

to find

Zy(s,x,y) = 5022 (1—q)(1—q)Q
- [ [ [ [ [ [ [y
(G.47)

where @ is the same as in (G.45)). One more last check for n = 5 before we

give a generic formula for counting. From Taylor expansion we find y5(s, z,y)
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and Zs5(s,x,y) to be

3175ng
) = = )= a1 - — (- @ - - @)1 - a1 — )
(G.48)
Zifoz.y) = 2ol )1 -
" (I=g)1 =) —g1)(1—g3)(1—¢)(1 =) (1 —g})(1 - ¢3)(1 — q1)(1 — g2)°
where P is
P=¢i+a" +{e2(1 + @2+ @ + ¢3) + q1aS(1 + @2 + 5 + @3) (G.49)

+qrqa(1 4292 + 265 + 265 + 42 + 5) + ¢i g5 (1 + g2 + 265 + 245 + 2¢5 + 43)

+1q2(1 + 292 + 3¢5 + 3¢5 + 30> + 265 + 45) + 4745 (1 + 2g2 + 3¢5 + 3¢5 + 3¢5 + 265 + ¢5)
+q7a5 (1 + 3q2 + 45 + 645 + 4g5 + 305 + ¢5) + @Y q2(1 + 2¢2 + 365 + 45 + 4g5 + 305 + 265 + ¢3)
+ 4165 (1 + 2q2 + 3¢5 + 4q3 + 3¢5 + 245 + ¢3).

Using the generating functions we construct Zs(s, z,y) as follows

Zs(s,x,y) —sT a2 (ZSH(%,E)ZSH((D,DEE) + ZSH(QLE])ZSH(Q%HE)
(G.50)
+ ZSH(QMEH)ZSH(QLBHH) + ZSH(CHEE)ZSH(QQEE) Zsn (g1, 2 )ZSH(QQ,EH)

+
+ ZSH(QMEE)ZSH((D;EJ) + Zsu(q1,010) Zs (g, )

15

_ 871‘3(1—@[1)(1—(]2)P
(1-¢))1-g3)(1—g})(1 =)A= ¢})(1 —g3) (1 —¢7) (1 — ¢3)(1 —q1)(1 — q2)°

The general formula for counting primaries constructed using n fermions is

Zu(s,2,y) = 52”23 Y Zsu (a1, N) Zsm(ga, AT). (G.51)
AFn

Note that the coefficient 2"z originates from the dimension and spin of n
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Weyl spinors. A left handed Weyl spinor is in the following representation

. 31

The product of n left handed Weyl spinors is an sy irrep. As we can see

from the example of the Z,(s,x,y) generating functions, we pair Zsg(q1,A)
with Zsg (g2, AT). Note that by the transpose of Young diagram we mean,

r T
E = 1o E] == F=fF (G.53)

G.1.1 How Z,(s,z,y) Fermion Generating Functions Work

Consider the Z3(s,z,y) in (G.40). The product of generating functions for Z3

are

ZSH(QlaE)ZSH(QQ,ED:[)a Zsu(q1,0) Zsu(q2,15), ZSH(thE)ZSH(CDE)-
(G.54)

These products are actually counting for a tensor product of Young diagram
representation space. The tensor product of these Young diagrams yields the

following subspaces

E@DZD:E (G.55)
F@szmj@ﬁjeaﬁ
e A

We see that from the tensor product of Young diagrams above, every sum
of the representation subspaces obtained on the left hand side contains an

antisymmetric subspace representation,

H (G.56)

Further, the antisymmetric representation always occurs with multiplicity 1.

Thus the product of these generating functions count the antisymmeytric sub-
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space representation, which is the kind of representation we want to project

to, since we are dealing with Fermions.

The product of generating functions contained in Zy(s,z,y) in (G.46) have

a tensor product that gives the following sum of subspaces

P (G.57)
ﬁ@?kéMF@E@?
EF@?:i%@@$@?

E®$:mz@E@E

e

One can check whether the sum of Young diagrams appearing on the RHS are
correct by computing the sum of the dimensions of Young diagrams on the
RHS and, compare the answer with the dimension on the LHS. We can see
that every tensor product contains an antisymmetric representation. Which
means that these tensor products do contain the antisymmetric subspace. In
a nutshell a tensor product of a Young diagram with its transposed Young

diagram will contain an antisymmetric representation with multiplicity 1.
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Appendix H

Total Spin Operators

In this appendix we will compute the total spin of the polynomials we con-

structed in chapter 5. The total spin is given by
J - JO(z,w) = s(s + 1)O(z,w), (H.1)

where s is the spin of the polynomial and J - J is the total spin operator given

JE TR = (T2 + (J5)% + (J5)?, (H.2)
JETE = (T + (J5)? + (J§)*. (H.3)

The SO(4) generators are given as

JE = zii - zii, - wii - wii
0z; 0z; ow; ow;
Jf w"a(; -2 8??12 Ji =13 8?01 — W; ai
Ji = Zi;)zi ziaii “’ia?u,- +wi€)(9m
Jf—@i(;;—ziaii Jf—Ziaii—wi(;;-

Using the SO(4) generators given above we can find the generators J¥, J&,
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JI and JI, since

1 . 1 .
Jf = i(Jf%—f—szR) and JE = §(J1R _ij) (H.4)

1 1
JE = §(J1L +iJF) and Jf = §(J1L —iJE).

Hence we find the generators are

JE zzaaz Zia?uz +wiaazz» u‘;iai (H.5)
Js z(zzaa_z +zi8?ui wiaazi w%) (H.6)
JE :wi;%—ziaiﬂiffm—wi;% (H.7)
JE :i(zi(fm_wi;%Jrzi(;)w_wiéi)' (H.8)

The total spin operators become

9
 Wiwj

JRJE = 5 4 2w —— — i , H.9
ZZ] Ozi aZj + zw] 8ZZ wj 38 i@wj ( )
and
o 0 0 0 o 0 o 0
JE gk = i T 2 AW W
1% 0z; 0z it 0z; w; T Wi 0z; Ow; + Wi ow; Ow;
(H.10)

Now we can compute the spin of the polynomial in Qg4 constructed from 3
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scalar fields,

TR TRO (2, w) =T TR (21 — 29) (21 — 23) (22 — 23) X (H.11)
(w321 — 22) +wi (22 — 23) + w223 — 21))
220(’)((;2;) (z,w)
=4(4+1)0fg) (z,w),

therefore the operator Ogeg(z, w) has right spin s = 4. The left hand spin is

computed as follows

JE TR Oy (z,0) =T5 - T (21 — 29) (21 — 23) (22 — 23) % (H.12)
(w3(z1 — 22) + w122 — 23) + wa(z3 — 21))
:30(’)((;;;) (z,w)

=5(5+ 1)O55Y) (2, w),

so that s = 5 for the left hand spin.
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Appendix I

The Hilbert Series for
Z3(s,x,y)

Here we consider the Hilbert series Z3(s,x,y) for counting of extremal pri-
maries built using 3 scalar fields. This Hilbert series has a non-trivial numer-

ator

s3(1 — ssxg(\/@—l— ﬁ) - 56563(% +1+4y)— st + Sty +1+ i) + ng%(\/g—#— ﬁ)

zZ3" = - ~ —
(1—s%y)(1—s22)(1 —sv)(1— s%gy%)(l — S%‘gy%)(l — 83x%y71)(1 — 33:U%y73)

(L1)

Our goal is to explain how the numerator of Z3(s, z,y) encodes relations be-

tween the generators of the ring as well as relations between those relations.

From the denominator of the Hilbert series, we have 7 generators. We can

easily identify them as follows
G1 = (212)% 4 (213)% + (223)? & s*xy

2
G2 = z12W12 + 213W13 + 223Wa3 > T

Gz = (ZU12)2 + (w13)2 + (w23)2 > 3237:(]71

3 3
Gy = (213 + 223) (231 + 221) (212 + 232) > 85”2292
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G5 =(wi3 + wasz)(231 + 221) (212 + 232) (1.2)

+ (213 + 223) (w31 + wa1) (212 + 232)

+ (213 + 203) (231 + 212) (w12 4+ Ww32) > s°x

Njw
N|=

Y

Ge =(w13 + waz) (w31 + w21)(212 + 232) (1.3)

+ (213 + 223) (w31 + wa1) (w12 + w32)
-3

+ (w13 + wa3) (231 + 212) (W12 + w32) <> 339321/ 2

From the numerator of the Hilbert series, the terms with a negative sign
should correspond to relations between the generators of the degree given by
the monomial. From —551‘%(\/37 + 563:3(% + 14 y) — 527 we have 6

-
relations. They are
X1 = 3G3Gy — 2G2G5 + G1Gs = 0 > s723 /3
Yo = G3Gs — 2G2Gg + 3G1Gr = 0 ¢ sSa3y?
x3 = 4G1G3 — G2G3 = 0 + %23y
x4 = 4G5 — G1G2G3 = 0 & %23
X5 = 4G%G3 - G1G§ =0« 36:(:3y_1
x6 = G5 — G1G5G3 + %G§G5G6 — G3G4Gr =0 & M2

Again from the numerator of the Hilbert series, the terms with positive sign
should corresponds to relations between the relations, again of the degree given
by the monomial. From s8z%(y + 1 + %) + 022 (VY + %) we have 5 relations

among the relations. They are

4x5Go + x4G3 = 0 & Sty ™! (1.4)
X5G1 — x3G3 = 0 ¢ s%2*
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x4G1 + 4x3G2 = 0 < s2zly (L5)

9 =1
292

1 1
x2G5 — 126163 = X565 — SxaGe — 3xsGr =0 ¢ sPzay
9
2

1
—4X1G% + X1G1G3 + 12X5G4 + 2X4G5 + 4X3G6 =0« ng Y2
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