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Abstract

The AdS/CFT correspondence relates conformal field theories in d dimensions

to theories of quantum gravity, on negatively curved spacetimes in d+1 dimen-

sions. The correspondence holds even for free CFTs which are dual to higher

spin theories. Motivated by this duality, we consider a systematic study of

primary operators in free CFTs.

We devise an algorithm to derive a general counting formula for primary op-

erators constructed from n copies of a scalar field in a 4 dimensional free con-

formal field theory (CFT4). This algorithm is extended to derive a counting

formula for fermionic fields (spinors), O(N) vector models and matrix models.

Using a duality between primary operators and multi-variable polynomials,

the problem of constructing primary operators is translated into solving for

multi-variable polynomials that obey a number of algebraic and differential

constraints. We identify a sector of holomorphic primary operators which

obey extremality conditions. The operators correspond to polynomial func-

tions on permutation orbifolds. These extremal counting of primary operators

leads to palindromic Hilbert series, which indicates they are isomorphic to the

ring of functions defined on specific Calabi-Yau orbifolds. The class of primary

operators counted and constructed here generalize previous studies of primary

operators.

The data determining a CFT is the spectrum of primary operators and the

OPE coefficients. In this thesis we have determined the complete spectrum of

primary operators in free CFT in 4 dimensions. This data may play a role in

attempts to give a derivation of a holographic dual to CFT4. Another possi-

ble application of our results concern recent studies of the epsilon expansion,

which relates explicit data of the combinatorics of primary fields and OPE

coefficients to anomalous dimensions of an interacting fixed point.
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Chapter 1

Introduction

The duality between quantum gravity on asymptotically Anti-de Sitter (AdS)

spacetime theory and Conformal Field Theory (CFT), which is known as the

AdS/CFT correspondence, is one of the major breakthroughs to arise from

string theory in recent years. The correspondence relates a strongly coupled

quantum field theory to the classical dynamics of gravity living in one higher

dimension. This kind of duality is sometimes referred to as the holographic

duality or the gauge/gravity duality. To be more precise the correspondence

is between a strongly coupled CFTd in a large N limit and a semi-classical

theory of gravity living in the AdSd+1 bulk spacetime. Every field in the

bulk (gravity side) can be mapped into a primary field living on the boundary

(CFT side). The correspondence is significant from both a conceptual and

practical point of view. Not only does it give valuable physical insight into

both sides of the correspondence, but it also provides new ways of performing

calculations where conventional methods are intractable. The original corre-

spondence is due to Maldacena[1]. It states that the 10-dimensional Type IIB

superstring theory on the product space AdS5 × S5 is equivalent to N = 4

super Yang Mills (SYM) theory with gauge group SU(N), living on the flat

4-dimensional boundary of AdS5. This equivalence means that there is one-

to-one correspondence between all aspects of the theories including the global

symmetries, observables and correlation functions. Hence the theories are con-

sidered to be dual descriptions of each other. No form of the correspondence

has been proven in a rigorous manner, leading it to be also known as the

AdS/CFT conjecture.

This project was motivated by the idea of holography and the work carried out

in [2] where primary operators were constructed from a product of two scalar
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fields operators. These primary operators constitute a tower of conserved

higher spin currents. The descendents are derived by acting with spacetime

derivatives on the primary operator, and the primary operator together with

its descendents form an irreducible representation of the conformal group. The

paper [2] then proceeds to calculate amplitudes (correlators) using Feynman

diagrams for these conserved higher spin currents and manages to match them

to the higher spin correlators of the dual gravity.

Apart from this motivation CFTs are interesting in their own rite. Conformal

Field Theories (CFT) are a class of Quantum Field Theories (QFT) that enjoy

a conformal symmetry. A conformal symmetry is a coordinate transformation

which preserves the angles between any two vectors. Most QFT’s that are

scale invariant are also conformally invariant. Actually scale invariance often

implies conformal invariance. This has been argued in d = 2[3] and almost

argued in d = 4 dimensions [4][5] but a small possible loophole remains. In

statistical systems/critical phenomena, scale invariance is realised when a sys-

tem is at its critical point [6]. At the critical point the correlation length of

the system becomes infinite and the system becomes scale invariant. Since

there is no scale left to measure distances, the physics of the system looks the

same at any length scale. In Quantum Field Theory an analogue of a critical

point is a fixed point. QFT is basically the study of Renormalization Group

(RG) flow, which is the flow of the theory from the high energy (UV) to the

low energy (IR). The theory flows in a space of couplings [7]. During the flow

the theory flows from a UV fixed point to an IR fixed point [8][9].

There are three possible phases in the IR region; (a) a phase with a mass gap,

(b) a phase with massless particles, and (c) a Scale Invariant (SR) phase with

a continous spectrum. Recently new phases, besides the three stated above,

have been discovered [10, 11, 12].
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Fixed points are points on a space of couplings where the beta functions vanish

(β(g) = 0). When the beta function vanishes, the coupling strength doesn’t

evolve with the energy scale. Therefore a zero of the beta function means that

the theory has evolved to scale invariance. Fixed points of the RG provide

examples of conformal field theories. The fixed points can be in the UV or IR

and we have no guarantee that a theory flowing from the UV or IR along an

RG trajectory will end up in a fixed point. However this turns out to be the

case in many physical systems.

At the fixed point the theory is conformal invariant. The possible macro-

scopic behaviour of the system at large scales is defined by its fixed points. At

this point we can use techniques of conformal field theories to understand the

general macroscopic features of theory that do not depend on the knowledge of

microstates. Since CFT theories are mathematicaly controlable, this is helpful

in the study of strongly coupled systems where perturbative techniques are of

no use. Consider a simple field theory example which is a massless φ4 scalar

field theory with a Lagrangian

L =

∫
d4x

(
1

2
(∂µφ)2 +

g

4!
φ4
)
, (1.1)

This theory is an IR free theory or trivial theory whose coupling become zero

in the IR limit. When the theory flows to the UV region the coupling flow

diverges, i.e. hitting the Landau pole. In the IR limit g → 0, the theory

is a free massless field. This point is called a Gaussian fixed point. The

corresponding beta function at this point is β(g = 0) = 0. In d-dimensions

the beta function is

µ
∂g

∂µ
= −(4− d)g + 3

g2

16π2
. (1.2)

Analyzing the beta function for different values of d. When d > 4 this function

is positive and from dimensional analysis the coupling constant g is irrelevant,

meaning the coupling will flow smoothly to zero at large distances, and the

Lagrangian will flow to the free field fixed point. When d = 4 the same

analysis takes place although from dimensional analysis the coupling constant

g is marginal. However when d < 4, the first term in (1.2) on the RHS increases

at large distance whilst the nonlinear second term in (1.2) decreases. There
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is a value of coupling g = g∗, where the increase and decrease effects of these

terms come into balance giving a zero of the beta function

g∗ =
16π2

3
(4− d), (1.3)

This is a nontrivial fixed point of the renormalization group flow in scalar field

theory for d < 4. If we consider values of d close to 4, where d = 4 − ε and

ε→ 0, this fixed point occurs in a region where the coupling constant is small

and we can use Feynman diagrams to study its properties. This point is called

the Wilson Fischer point [7]. At this point the theory is scale invariant, which

technically implies the theory is conformal invariant.

The conformal group is generated by the Poincare generators plus scaling

and inversions generators. The conformal group generators are

Pµ Mµν Kµ D, (1.4)

where Pµ is a translation generator, Mµν is a Lorentz transformation genera-

tor, Kµ is a special conformal transformation (SCT) generator, and D is the

dilatation (scaling) generator. For a theory with scalar operators φ having

conformal scaling dimension ∆, these generators constrain the two and three

point function up to the constant factor,

〈φ(x)φ(y)〉 =
c

|x− y|2∆
〈φ(x)φ(y)φ(z)〉 =

λφφφ
|x− y|∆|x− z|∆|y − z|∆

,

(1.5)

where c is constant and λφφφ is a structure constant. But conformal invarinace

is not enough to constrain four point and higher point corelation functions.

Therefore we cannot obtain all of the correlators of the theory just from im-

posing conformal invariance. Recently there has been an interest in the use

of associativity of the Operator Product Expansion (OPE) and Bootstrap to

study higher point correlation functions and also the spectrum of CFT’s in

strongly coupled regimes [13][14][15][16]. While Bootstrap is one of the tech-

niques for understanding strongly coupled regimes, another popular technique

for understanding this, is the AdS/CFT correspondence [1].
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The objective of the project is to construct all possible local primary operators

using a product of n copies of elementary fields, both in the free scalar field

case and in the free fermion CFT. From here we use these primary operators

to compute their corresponding correlators. We begin by focussing on a free

field CFT in 4 dimensions (CFT4). Here the elementary field will transform in

a representation of the conformal group SO(4, 2). Using the results obtained

in [17] which give character formulae for the SO(4, 2) representation for the

scalar field and the spinor field as

χV (s, x, y) =s(1− s2)
∞∑
p,q

s2p+qχ q
2
(x)χ q

2
(y) (1.6)

χv(s, x, y) = s
3
2

∞∑
q=0

χ q+1
2

(x)χ q
2
(y) (1.7)

where χa(x) is the character for the left hand spin, and χa(y) is the character

for the right hand spin and, sb records the eigenvalue of the dilatation oper-

ator. We use the given characters to derive the characters for the symmetric

product of n copies of scalar fields. Since the fermions (spinors) are Grassmen

variables, we derive the characters for an antisymmetric product of n copies of

the fermionic field. We then devise a general counting formula for the primary

operators constructed from n copies of scalar or fermionic fields. Then using

the duality between primary fields and multi-variable polynomials, we map the

problem of constructing primary fields into a many-body quantum mechanics

problem, where each primary corresponds to a multi-variable polynomial sub-

jected to algebraic and differential constraints. One of the constraints, which

comes from free field equation of motions, is a second order differential con-

straint which requires the polynomial function to be harmonic. Adopting an

isomorphism between R4 and C2 × C2 we are able to satisfy the harmonicity

condition. We achieve this by working with holomorphic variables (z, w, w̄, z̄).

For the scalar fields, selecting an extremal sector built out of (z, w) holomor-

phic variables results in a ring structure for the primary fields. This choice

of isomorphism reduces the second-order differential condition to a first-order

differential condition, which is a holomorphic condition.
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The ring structure shows a palindromic Hilbert series property. The palin-

dromicity implies that the primary fields correspond to functions on Calabi-

Yau orbifolds which are

(Cn/C× Cn/C)/Sn = (C2)n/(C2 × Sn) (1.8)

where n is the number of the elementary fields φ. Generalising to the O(N)

vector model gauge invariant primary fields correspond to functions on a

Calabi-Yau orbifold with the geometry

(C2)2n/(C2 × Sn[S2]) = (C2n/C× C2n/C)/Sn[S2], (1.9)

where Sn[S2] is a wreath product of Sn with S2. We also consider a matrix

model with fields φji transforming in the adjoint of the group U(N). We find

that the holomorphic primaries correspond to polynomial functions on the

Calabi-Yau orbifolds

(Cn/C× Cn/C× Sn)/Sn = ((C2)× Sn)/(C2 × Sn). (1.10)

The geometric structure found in these polynomial functions is novel and raises

new questions about the geometry of the primary operators.

A general CFT is characterized by the CFT spectrum of primary operators{∆,R},
where ∆ is the scaling dimension of the local operator and R is the SO(D)

irreducible representation of the primary operator, and the OPE coefficients.

We have managed to charaterize the free CFT4 spectrum of the primary oper-

ators in terms of {∆, jL, jR} where jL and jR are respectively the left hand and

right hand irreducible spin representation of the primary operators. Having

the complete CFT data will help in the derivation of any postulated holo-

graphic dual to the CFT4. Another possible application of our results follows

from [18] which relates explicit information of the combinatorics of primary

fields and OPE coefficients of free CFT4 to observables in the epsilon expan-

sion.

The thesis is organised as follows. In chapter 2 we give a brief introduction

to CFT. We will introduce CFT symmetries and explain the consequences of
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these symmetries for correlation functions. We will discuss a special type of

operator called a primary operator. In chapter 3 we will introduce and explain

the AdS/CFT duality. We will show how the degrees of freedom are matched

from the AdS and CFT side. Then we will describe the AdS/CFT dictionary

and how it works. In chapter 4 we will give a summary of higher spin theory

and how the AdS/CFT duality applies to higher spin theory. In chapter 5

we specifically talk about the paper published in [19], which presents novel

results. We discuss the results obtained from constructing primary operators

using n-copies of the free scalar field, and we extend this construction to O(N)

vector models and matrix models. In the last chapter 6, we extend the scalar

field analysis of chapter 5 to fermions (spinors). We construct the primary

operators using n-copies of left hand spinors. We observe that the extremal

primary operators exhibit the same Calabi-Yau geometric structure as in the

free scalar CFT. These geometric structures present in both the free scalar

and fermion CFT were not observed before.
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Chapter 2

CFT Background

In this chapter we will give a brief introduction to the basics of conformal field

theory. The basic CFT ideas introduced here will provide the background for

ideas covered in the following chapters. We will give a simple definition of

what a conformal symmetry transformation is and discuss the consequences

of these symmetries on the observables of the field theory. In particularly

we will explain how they constrain correlation functions. We will discuss the

conformal Killing vectors in any number of dimesnsions. After that we will

introduce primary operators and discuss their properties. Then we consider

the radial quantization of the CFT where we develop the idea of state-operator

correspondence. Finally, we discuss the conditions on states/operators to en-

sure that the theory is unitary.

2.1 Basics of Conformal Field theory

A conformal transformation is a transformation that leaves the metric gµν in-

variant up to a scaling factor Ω(x) that depends on the spacetime coordinates,

η′µν(x′) =
∂xα

∂x′µ
∂xβ

∂′ν
ηαβ(x) (2.1)

=Ω(x)ηµν(x).

From now on we specialize to flat spacetime. Considering an infinitesimal

conformal transformation x′µ = xµ + εµ, Ω(x) = 1 +w(x), the above equation

implies the conformal Killing vector equation

8



∂µεν + ∂νεµ =
2

d
ηµν(∂αεα). (2.2)

Acting on (2.2) with the operator ∂ρ and interchanging indices we obtain the

following 3 equations

∂ρ∂µεν + ∂ρ∂νεµ =
2

d
ηµν∂ρ(∂

αεα) (2.3)

∂µ∂νερ + ∂µ∂ρεν =
2

d
ηρν∂µ(∂αεα)

∂ν∂µερ + ∂ν∂ρεµ =
2

d
ηρµ∂ν(∂αεα).

Adding the first equation to the second equation and subtracting the third

equation we obtain

∂ρ∂νεµ =
1

d
(ηµρ∂ν − ηνρ∂µ + ηµν∂ρ)∂

αεα. (2.4)

Contracting the indices above with the metric ηρν we get

∂β∂
βεµ =

2− d
d

∂µ(∂αεα). (2.5)

Acting on the equation above with the derivative ∂ν we get

∂ν∂
β∂βεµ =

2− d
d

∂ν∂µ(∂αεα). (2.6)

Acting on the Killing vector equation (2.2) with the operator ∂β∂
β we obtain

∂µ∂β∂
βεν + ∂ν∂β∂

βεµ =
2

d
ηµν∂β∂

β(∂αεα). (2.7)

Symmetrizing equation (2.6) and comparing with the equation above we obtain

(2− d)∂µ∂νf(x) = ηµν∂β∂
βf(x), (2.8)

where we have f(x) = ∂αεα(x). Contracting with ηµν gives

9



(d− 1)∂β∂
βf(x) = 0. (2.9)

Now consider

∂µ(∂λεν + ∂νελ) =
2

d
ηνλ∂µ(∂ · ε), (2.10)

∂λ(∂µεν + ∂νεµ) =
2

d
ηµν∂λ(∂ · ε), (2.11)

∂ν(∂µελ + ∂λεµ) =
2

d
ηµλ∂ν(∂ · ε). (2.12)

Performing the sum, (2.10) + (2.12)− (2.11) implies

2∂µ∂νελ =
2

d
(ηνλ∂µ + ηµλ∂ν − ηµν∂λ)∂ · ε. (2.13)

Acting with ∂λ on both sides yields

2∂µ∂ν(∂ · ε) =
2

d
(∂ν∂µ + ∂µ∂ν − ηµν∂ · ∂︸ ︷︷ ︸

=0

)∂ · ε (2.14)

⇒ ∂µ∂ν(∂ · ε) = 0.

Therefore acting with ∂ρ on (2.13) shows

∂ρ∂µ∂νελ = 0. (2.15)

When d > 1, the above equation implies that the conformal Killing vectors εµ

must take the general form

εµ = cµ + aµνx
ν + bµνρx

νxρ. (2.16)

Equation (2.16) shows that the function f(x) = ∂αεα(x) is linear in x. We

10



make an ansatz that

∂αεα(x) = −(2b · x− λ)d, (2.17)

which will be helpful shortly. Making the trick

∂ρ(∂µεν − ∂νεµ) =∂µ(∂ρεν + ∂νερ)− ∂ν(∂ρεµ + ∂µερ) (2.18)

=∂µ

(
2

d
gρν∂ · ε

)
− ∂ν

(
2

d
gρµ∂ · ε

)
=

2

d

(
gρν∂µ(−(2b · x− λ)d)− gρµ(∂ν(−2b · x− λ)d)

)
=− 4gρνbµ + 4gρµbν .

Integrating the equation above, we obtain

∂µεν − ∂νεµ =4(gρµbνx
ρ − gρνbµxρ) + 2wµν (2.19)

=4(bνxµ − bµxν) + 2wµν ,

which implies that

∂µεν =wµν + 2(bνxµ − bµxν)− (2b · x− λ)gµν (2.20)

⇒ εν =aν + wµνx
µ + bνx

2 − 2b · xxν + λxν .

In d dimensions the conformal transformation has (d+1)(d+2)
2 transformation

parameters, given by

x′µ =xµ + aµ, Translations has (d+ 1) parameters (2.21)

x′µ =xµ + λxµ, Dilatations has 1 parameter

x′µ =xµ + ωµνx
ν ,Lorentz has

d(d− 1)

2
parameters

x′µ =xµ + 2(bαx
α)xµ − x2bµ Special Conformal Transformation (SCT) has d parameters.
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There is one transformation missing which is not connected to the identity

of the conformal group. It is a discrete transformation. This is the Inversion

transformation and is denoted as follows

I : x′µ =
xµ
x2
. (2.22)

The special conformal transformation can also be obtained by performing a

sequence of inversion, translation and inversion transformation. This is easily

demostrated as follows

x′µ =(Ieib·P I)xµ (2.23)

=I(
xµ
x2

+ bµ)

=
xµ
x2 + bµ

(
xµ
x2 + bµ)2

=
xµ + bµx2

1 + 2b · x+ b2x2
.

Consider the conformal group element g = e(iaµPµ+ i
2
wµνMµν+iλD+ibµKµ), ob-

tained by taking the exponential of the conformal generators, Pµ,Mµν , D and

Kµ. The conformal group element g, when it acts infinitesimally on the space-

time vector xα it transforms the vector in the following way

gxα =e(iaµPµ+ i
2
wµνMµν+iλD+ibµKµ)xα (2.24)

=xα + δxα

=xα + (iaµPµ +
i

2
wµνMµν + iλD + ibµKµ)xα

=xα + aα + wαβxβ + λxα + x2bα − 2b · xxα.

We can get the explicit expression of generators from the equation above by

comparing the terms in the last line with 3rd line terms. The comparison is

from the equation

aα + wαβxβ + λxα + x2bα − 2b · xxα = (iaµPµ +
i

2
wµνMµν + iλD + ibµKµ)xα.

(2.25)
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Comparing the terms we find,

aα =iaµPµx
α (2.26)

=iaµδαµ

=i

(
− iaµ ∂

∂xµ

)
xα,

which implies that Pµ = −i ∂
∂xµ . Comparing the terms that involve Lorentz

transformation we see that

wαβxβ =
i

2
wµνMµνx

α (2.27)

=
i

2
wµν

(
δαµxν − δαν xµ

)
=
i

2
wµν

(
xν

∂

∂xµ
− xµ

∂

∂xν

)
xα

⇒Mµν =i

(
xµ

∂

∂xν
− xν

∂

∂xµ

)
.

For the Dilatation operator we have,

λxα =iλDxα (2.28)

=iλxµδαµ

=iλ

(
xµ

∂

∂xµ

)
xα

=iλ(x · ∂)xα

⇒ D =− ix · ∂.

For the Special Conformal operator Kµ we have

x2bα − b · xxα = ibµKµx
α. (2.29)

The special conformal operator is

Kµ = xµ + bµx2 − 2xµb · x. (2.30)
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In d = 2, the Killing vector equation (2.2) becomes

∂µεν + ∂νεµ = gµν(∂αε
α). (2.31)

We take the coordinates as (x1, x2). When µ = 1 and ν = 1, the metric

gµν = 1 and the Killing vector becomes

∂1ε2 + ∂2ε1 = 0 (2.32)

⇒ ∂ε2
∂x1

= − ∂ε1
∂x2

.

This equation is one of the Cauchy-Riemann equations. Similarly when µ = ν

we obtain

∂ε1
∂x1

=
∂ε2
∂x2

. (2.33)

A function that satisfies the Cauchy-Riemann equations is an analytic func-

tion. Going to complex co-ordinates (z, z̄), the conformal transformations in

two dimension are represented by analytic reparametrizations of the form

z → f(z) z̄ → f̄(z̄). (2.34)

Analytic functions satisfy the Cauchy-Riemann equations, which can com-

pactly be written as

∂

∂z̄
f(z) = 0. (2.35)

To obtain a basis for the conformal transformations, we consider co-ordinate

transformations of the form

z → z′ =z − εnzn+1 and z̄ → z̄′ = z̄ − εnz̄n+1 (2.36)

=z + δz = z̄ + δz̄

The generators of the transformation are specified by

lnz = δz and l̄nz̄ = δz̄ (2.37)

14



so that we identify the generators as ln = −zn+1∂z and l̄n = −z̄n+1∂z̄. These

generators satisfy the well known Virasoro algebra

[lm, ln] = (m− n)lm+n. (2.38)

2.2 Conformal Algebra

The generators of the conformal group SO(d, 2) satisfy certain commutation

relations which give the conformal algebra of the group. The conformal group

algebra is (for d > 2)

[Mµν , Pρ] =i(δνρPµ − δµρPν) (2.39)

[Mµν ,Kρ] =i(δνρKµ − δµρKν) (2.40)

[Mµν ,Mρσ] =i(δνρMµσ − δµρMνσ + δνσMµρ − δµσMρν) (2.41)

[D,Pµ] =iPµ (2.42)

[D,Kµ] =− iKµ (2.43)

[Kµ, Pν ] =− 2i(δµνD −Mµν). (2.44)

The first three commutation relations show that the operators Mµν generate

rotations in SO(d) and the operators Kµ and Pµ transforms as vectors. The

fourth and fifth commutation relations shows that the operator Pµ can be

viewed as the raising operator and the operator Kµ can be viewed as lowering

operator. For d = 2 the generators close the Virasoro algebra as commented

in the last section.

2.2.1 Primary Operators

The representations of the conformal algebra we are interested in, are those in

terms of local fields. Each irreducible representation of the conformal algebra

has a unique primary field. The conformal algebra of the generators on the

field O∆(x) with dimension ∆ is
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[Pµ,O∆(x)] =− i∂µO∆(x) (2.45)

[D,O∆(x)] =− i(∆ + xµ∂µ)O∆(x) (2.46)

[Mµν ,O∆(x)] =i(xµ∂ν − xν∂µ +MR
µν)O∆(x) (2.47)

[Kµ,O∆(x)] =i(2xµ∆ + 2xαMR
µα + 2xµx · ∂ − x2∂µ)O∆(x). (2.48)

The action of the special conformal generator lowers the dimension of the

operator, since

DKµO∆(x) =[D,Kµ]O∆(x) + iKµDO∆(x) (2.49)

=− iKµO∆(x) + ∆KµO∆(x)

=i(∆− 1)KµO∆(x).

If we keep on acting with the operator Kµ on the operator O∆(x), the dimen-

sion of the operator will keep on decreasing. Since dimensions are bounded

from below in physically sensible theories, the process of acting with Kµ’s

should terminate at some point. Operators that are annihilated by the action

of the conformal generator Kµ are called primary operators. They are defined

by the property

[Kµ,O∆(0)] = 0. (2.50)

This is the standard defining property of a primary operator. We create the

descendents of the primary operator O∆ by acting with the momentum gen-

erator on the operator O∆(x), which increases the dimension of the operator

since

DPµO∆(x) =[D,Pµ]O∆(x) + PµO∆(x) (2.51)

=iPµO∆(x) + i∆PµO∆(x)

=iPµ(∆ + 1)O∆(x).

We can fill out the multiplet of the representation of the primary operator

O∆(x) with its descendents. Schematically
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O∆(x)

Pµ︷︸︸︷−→O∆+1(x)

Pµ︷︸︸︷−→O∆+2(x) −→ · · ·
Pµ︷︸︸︷−→O∆+n(x). (2.52)

This representation is analogous to an irreducible representation of SU(2),

where we raise the weight of the state by acting with the angular momentum

raising operator. In our case the raising operator is represented by the mo-

mentum operator Pµ and, the lowering operator is represented by the special

conformal operator Kµ.

It is straightforward to argue that invariance under the action of Pµ, Mµν ,

D constrain the two point correlation function of primary operators O∆(x) to

be

〈O∆1(x1)O∆2(x2)〉〉 =
c

|x1 − x2|∆1+∆2
. (2.53)

We have not accounted for the constraint imposed by the special conformal

transformation (SCT) operator Kµ. We can apply the SCT to constrain c.

The action of the special conformal operator on spacetime co-ordinate x is

xµ → x̃µ =
xµ

x · x
. (2.54)

A useful identity is

1

|x1 − x2|
=

x̃2
1x̃

2
2

|x̃2
1 − x̃2

2|
. (2.55)

The primary operator transforms as follows under a conformal transformation

Õ∆(x̃) =
1

(x̃)∆
O∆(x). (2.56)

Therefore the action of the SCT generator on the two point function is
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〈Õ∆1(x̃1)Õ∆2(x̃2)〉 =
1

(x̃2
1)∆1

1

(x̃2
2)∆2

〈O∆1(x1)O∆2(x2)〉 (2.57)

⇒ 1

|x̃1 − x̃2|∆1+∆2
=

1

(x̃2
1)∆1

1

(x̃2
2)∆2

1

|x1 − x2|∆1+∆2
.

The last line implies that

1

|x1 − x2|∆1+∆2
=

(x̃2
1)∆1(x̃2

2)∆2

|x̃1 − x̃2|∆1+∆2
(2.58)

⇒ ∆1 =∆2.

Since ∆1 = ∆2 this shows that c = δ∆1,∆2 , and consequently the two point

function becomes

〈O∆1(x1)O∆2(x2)〉 =
δ∆1,∆2

|x1 − x2|∆1+∆2
. (2.59)

Following a similar procedure for the three point function, conformal invari-

ance constrains the three point function to be

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 =
λOOO

|x1 − x2|∆1+∆3−∆2 |x1 − x3|∆1+∆3−∆2 |x2 − x3|∆2+∆3−∆1
.

(2.60)

A conformally symmetric 4 point function is constructed as follows

〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 = F (u, v)
4∏
i<j

|xij |2γij (2.61)

where γij = γji,
∑
i 6=j γij = −2∆i and F (u, v) is an arbitrary function of

variables u and v,

u =
|x12||x34|
|x13||x24|

v =
|x12||x34|
|x23||x14|

, (2.62)

where xij = xi− xj . These variables, called conformal cross ratios, are invari-

ant under conformal transformation. We can decompose the 4-point correla-
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tion function by using conformal blocks,

〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉 =
∑
Ō

(λOŌŌ)2CO(x14∂4)CO(x23, ∂2)〈Ō∆O(x2)Ō∆O(x4)〉

(2.63)

=
∑
Ō

(λŌŌÕ)2 GO(u, v)

x2∆O
12 x2∆O

34

where GO(u, v) is a conformal block λOŌŌ is an operator product coefficient

and

CO(x, ∂y) =
1

|x|∆1+∆2−∆O
(1 + σxµ∂µ + αxµxν∂µ∂ν + βx2∂2 + · · · ) (2.64)

where σ, α and β are fixed by conformal invariance. The conformal block

GO(u, v) collects the contribution from the primary O and all of its descen-

dents, to the four point function.

2.3 Radial Quantization and State Operator Corre-

spondence

The Hilbert space in QFT can be constructed by foliating spacetime in d

dimensions with d − 1 dimensional spacelike surfaces. Each surface has its

own Hilbert space and these surfaces are all equivalent since they are related

by a unitary transformation. States are created on these surfaces by inserting

local operators. Usually the foliation is choosen to respect the symmetry of

the theory. In a system with Poincare symmetry, the spacetime is foliated

with surfaces of equal time and the states |ψin〉 are defined in the past of the

surface and |ψout〉 are states defined in the future of the surface. An overlap

of these states living on the same surface is

〈ψin|ψout〉. (2.65)

The unitarity evolution operator U is used to write the overlap as
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〈ψin|U |ψout〉 = 〈ψin|eiH∆t|ψout〉, (2.66)

where H = P 0 is the Hamiltonian and ∆t is the time. In a Poincare invariant

theory, states can be characterized by their energy and momenta,

Pµ|p〉 = pµ|p〉. (2.67)

In CFT we apply a foliation process called radial quantization. In d-dimensional

CFT we foliate spacetime with Sd−1 surfaces. This is related to a more con-

ventional quantization by a conformal transformation from Rd to R × Sd−1.

In radial quantization, the dilatation operator D is used to move between the

Sd−1 surfaces and the evolution operator is

U = eiDτ (2.68)

with τ = log(r) where τ is the time. States living on these spheres can be

characterised in terms of their scaling dimensions

D|∆〉 = i∆|∆〉, (2.69)

and the SO(d) spin l

Mµν |∆, l〉 = MR
µν |∆, l〉. (2.70)

In the context of radial quantization we have a correspondence named the

state operator correspondence, which asserts that for each state there is local

operator corresponding to the state and the converse is true. Assume in radial

quantization there are no operator insertions. This correspond to the vacuum

state |0〉, invariant under all global conformal transformation. The dilatation

operator gives

D|0〉 = 0. (2.71)
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Inserting the spinless local operator O∆(x = 0) at the origin creates the state

O∆(0)|0〉 = |∆〉 (2.72)

since

DO∆(0)|0〉 =∆O∆(0)|0〉 (2.73)

⇒ O∆(0)|0〉 =|∆〉.

Inserting the operator O∆(x) at the position x, we obtain the states

O∆(x)|0〉 =eiPxO∆(0)e−iPx (2.74)

=eiPxO∆(0)|0〉

=eiPx|∆〉

=
∑
n

(iPx)n

n!
|∆〉,

which is a superposition of states with different eigenvalues. Therefore local

operator O∆(x) is not an eigenstate of operator D.

2.3.1 Unitarity

Unitarity requires that all states in the Hilbert space have positive norm,

which leads to a bound on the scaling dimensions of the operators of the

theory. This means that the scaling dimension of the operators must be above

a certain value. Consider the kets |{s}〉, where {s} = {s1, s2 · · · , sn} are SO(d)

weights and n = d
2 . The kets |{s}〉 represent the irreducible representation

that contains the lowest weight state. We will impose unitarity on the states

|{s}〉 = |l,4〉, where l is the spin representation and 4 is the dimension of

the primary state. The action of the dilatation operator D on these states is

iD|{s}〉 = iD|l,4〉 (2.75)

= 4|l,4〉.
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The state Pµ|l,4〉 has dimension 4 + 1. Since P †µ = Kµ, the requirement of

unitarity is equivalent to

〈{s}|KµPν |{s}〉 =〈4, l|KµPν |l,4〉 ≥ 0 (2.76)

=〈4, l|i(δµνD −Mµν)|l,4〉 ≥ 0

=〈4, l|(4δµν − iMµν)|l,4〉 ≥ 0.

For a positive norm state,

4δµν ≥ 〈4, l|iMµν |l,4〉. (2.77)

The task that is left is to determine when the condition above is satisfied.

To compute 〈4, l|iMµν |l,4〉, we will use methods usually used to treat the

spin-orbit interaction. Towards this end, we write iMµν as follows,

iMµν =
1

2
i(δµαδνβ − δµβδνα)Mαβ (2.78)

=(V ·M)µν ,

where (Vαβ)µν = −i(δµαδνβ − δµβδνα) are the SO(d) generators in the vector

representation. (V ·M)µν is a tensor product of two representation spaces, the

vector space and the spin representation space. We manipulate the operator

(V ·M)µν as follows

V ·M =
1

2

(
(V +M) · (V +M)− V · V −M ·M

)
. (2.79)

This is an analogue of a spin-orbit interaction in quantum mechanics

L · S =
1

2

(
(L+ S)2 − L2 − S2

)
. (2.80)

The operator L in quantum mechanics is an analogue of Vαβ and the operator

S in quantum mechanics is an analogue of Mαβ. We know that the operators

S2 and L2 are Casimirs and their eigenvalues are

s(s+ 1)

2
and

l(l + 1)

2
(2.81)
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respectively. We also know that the operator (L + S)2 has Casimirs in the

tensor product l ⊗ s and the eigenvalues are

j(j + 1)

2
, (2.82)

where j = |l − s|, · · · , l + s. The same treatment applies for the operator

V ·M =
1

2

(
(V +M) · (V +M)− V · V −M ·M

)
, (2.83)

if we move to a Clebsch Gordon coupled basis in the tensor product space. On

this basis, (V +M)2, V 2, M2 are good quantum numbers. If M transforms in

the representation R, then V 2 and M2 have Casimirs c2(V ) and c2(R = l) and

the operator (V +M)2 has Casimir in the tensor product V ×R. Denote by R′

(R′ ∈ V ⊗R) the representation with smallest quadratic Casimir. We choose

the Casimir c2(R′) so that the we obtain the strictest bound. The equation

(2.77) becomes

4 >
1

2

(
c2(R) + c2(V )− c2(R′)

)
(2.84)

From [20], in an arbitrary dimension d, special representations obey

4 > 0 scalar

4 >
1

2
(d− 1) spinor

4 > (d− 1) vector.

The results found above are sensible since, the identity is a scalar representa-

tion with 4 = 0. For the spinors, the bound is saturated by the free Dirac

field, since

[γµP
µ, ψ] = 0

gives the smallest Dirac representation and the scaling dimension bound 4 >
1
2(d − 1) has the canonical dimension of the Dirac field. For the vector field,

the vector operators that saturate the bound above satisfy

[Pµ, ψµ] = 0.

An example of operators which satisfy this condition are conserved currents.

The vector field Aµ from Maxwell theory is not constrained to have positive
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norm, because it is not gauge invariant. Its canonical dimension violates the

bound on the scaling dimension of vector fields.

Equation (2.84) can be phrased in terms of spin l and scaling dimension ∆ as

4 >
1

2

(
c2(R) + c2(V )− c2(R′)

)
(2.85)

>
1

2

(
(d− 1) + l(l + d− 2)− (l − 1)(l − 1 + d− 2)

)
> d− 2 + l.

So far the bounds we have found are from the norm of states which are de-

scendents of the primary. We can find new bounds which are from second

descendents by computing

〈4, l|KµKνPαPσ|4, l〉,

and demanding that we get positve norm states as follows,

0 ≤ 〈4, l|KµKνPαPσ|4, l〉 (2.86)

= 〈4, l|Kµ
(
[Kν , Pα]Pσ + Pα[Kν , Pσ]

)
|l,4〉

= 〈4, l|2iKµ(δναD −Mνα)Pσ + 2iKµPα(δνσD −Mνσ)|l,4〉.

We will compute results for l = 0. For l = 0, Mµν |l,4〉 = 0. Therefore

0 ≤ 2(4+ 1)δνα〈4|KµPσ|4〉 − 2i〈4|KµMναPσ|4〉+ 24δνσ〈4|KµPα|4〉
(2.87)

= 2(4+ 1)δνα〈4|2i(δµσD −Mµσ)|4〉+ 24δνσ〈4|2i(δµαD −Mµα)|4〉

− 2i〈4|Kµ[Mνα, Pσ]|4〉

= 44(4+ 1)δναδµσ + 442δνσδµα − 2i〈4|Kµ(−i(δσαPν − δσνPα))|4〉

= 44(4+ 1)δναδµσ + 442δνσδµα + 44δσαδµν − 44δσνδµα,

taking the trace by setting µ = ν and α = σ, we obtain

0 ≤ 44(4+ 1)d+ 442d− 44d2 + 44d (2.88)

≤ 24+ 2− d

⇒4 ≥ d− 2

2
.
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This is a sensible bound for a spinless operator or state. It correspond to the

dimension of the free scalar.

We have seen that unitarity bounds of the scaling dimensions ∆ in terms of

the spin s of the primary operator. Primary operators with scaling dimension

below the unitarity bound will have negative norm states, which violates uni-

tarity.

In radial quantization, overlaps and states can be interpreted in a quantum

mechanical sense, where states evolve using a unitary operator U . Further,

overlaps of states map to correlation functions of operators. This implies

useful parallel between CFT and Quantum mechanics. This completes our

introduction to CFT. In the next chapter we develop some of the ideas behind

the AdS/CFT correspondence.
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Chapter 3

Basic Introduction to

AdS/CFT

In this chapter we will unpack and discuss the idea of AdS/CFT duality and

the AdS/CFT dictionary. We begin by discussing the geometry of AdS space-

time. Since the AdS gravity and the CFT theories live in different dimensions,

it is not obvious that the two describe the same degrees of freedom. We show

how the number of degrees of freedom are matched by relating the entropies

between the two theories. In order to illustrate the AdS/CFT dictionary we

discuss the well studied example of the AdS/CFT correspondence between the

N = 4 super Yang Mills theory and the type IIB string theory on AdS5×S5.

We will discuss the matching of parameters between these two theories

3.0.1 AdS/CFT

The AdS/CFT correspondence states that a Quantum field theory which is

a Conformal Field Theory living in d spacetime dimensions can be described

by a quantum gravity theory on d+ 1 dimensional AdS spacetime. This CFT

lives on the boundary of the bulk gravity theory. The duality between these

theories is a weak/strong relation. When the CFT is strongly coupled, the

gravity side is weakly coupled and the converse is also true. This implies that

the correspondence relates strongly coupled QFT to a classical description of

gravity on the AdSd+1 spacetime. The duality can also be used to handle a

generic strongly coupled conformal field theory living on the boundary of a

classical AdSd+1 bulk. The most well studied example of this correspondence
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is between N = 4 SYM with gauge group SU(N), in the large N and type

IIB superstring theory on AdS5 × S5.

3.1 Anti-de Sitter space

Finding the dual geometry associated with the given QFT is not trivial in

general. But if the theory is at a fixed point, the β- function vanishes and the

theory enjoys conformal invariance, which means at the fixed point the QFT

becomes a CFT and thanks to the extra symmetry we can now easily find

the metric for the theory. For a QFT in d-dimensional spacetime, the most

general Poincare invariance metric is

ds2 = Ω2(z)(−dt2 + d~x2 + dz2) (3.1)

where (~x = x1, x2, · · · , xd−1), z is the coordinate of the holographic-dimension

and Ω(z) is determined by enforcing conformal invariance. When the theory is

conformally invariant, under the transformation (t, ~x) → λ(t, ~x) and z → λz,

Ω(z) transform as

Ω(z)→ λ−1Ω(z), (3.2)

which fixes

Ω(z) =
L

z
, (3.3)

where L is a constant. Thus, the metric becomes

ds2 =
L2

z2
(−dt2 + d~x2 + dz2). (3.4)

This is the line element of AdS in (d+1)-spacetime dimensions, which is de-

noted as AdSd+1, The constant L is the Anti-de Sitter radius. In (3.4) the

conformal boundary of the AdS space is at z = 0. The metric is singular

at this point, which means we will have to introduce a regularization scheme

in order to physically define the observable quantities in the boundary of the

AdS. The AdS metric is a solution to the equation of motion of a gravity

theory with action
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S =
1

16πGN

∫
dd+1x

√
−g
(
− 2Λ +R+ aR2 + bR3 + · · ·

)
, (3.5)

where GN is the Newton constant, a, b are constants, and g = det{gµν}. R
is the Ricci scalar (R = gµνRµν) and Λ is the cosmological constant. When

a = b = · · · = 0, the action in (3.5) becomes the Einstein-Hilbert action of

general relativity with a cosmological constant. In this scenario the equations

of motion are just the Einstein equations,

Rµν −
1

2
gµνR = Λgµν (3.6)

where Rµν is the Rici tensor. AdS is a special case of the known maximally

symmetric spacetimes for which

Rαβγρ = − 1

L2
(gαγgβρ − gαρgβγ). (3.7)

The reason for why the underlying spacetime of the dual bulk gravity theory

is Anti de-Sitter is hidden in the symmetry structure of the spacetime. To see

the isometries it is useful to construct the AdSd+1 spacetime by embedding it

in Rd,2 with the metric

ds2 = −dy2
0 +

d∑
i=1

dy2
i − dy2

d+1, (3.8)

where gαβ = diag[−,+, · · · ,+,−] and the AdSd+1 spacetime is described by

the surface

−y2
0 +

d∑
i=1

dyi − y2
d+1 = −L2. (3.9)

Using this metric different forms of the AdS metric can be obtained by us-

ing particular transformations. For example, we can obtain a global AdS by

making the following transformations
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y0 = L(1 + r2)1/2 cos(τ), yd+1 = L(1 + r2)1/2 sin(τ), yi = LrΩ2
d−1

(3.10)

where r ∈ (0,∞) and τ ∈ [0, 2π].

3.1.1 AdS and CFT Degrees of Freedom

The gauge/gravity duality raises many conceptual questions, including the

matching of the number of degrees of freedom on both sides of the corre-

spondence. The number of degrees of freedom in a system is measured by

its entropy. On the QFT side in d-spacetime dimensions, the entropy is an

extensive quantity, proportional to the volume of the system. If Rd−1 is a

(d-1)-dimensional spatial region of the QFT at a fixed time, the entropy is

SQFT ∝ V ol(Rd−1). (3.11)

On the gravity side, the theory lives in a (d+1)-dimensional spacetime. It

sounds a bit absurb that a theory in (d+1)-dimension contains the same en-

tropy as its dual with a lower dimension. The entropies are the same because

the entropy of the gravity theory is subextensive. On the gravity side, the

entropy in a volume is bounded by the entropy of a black hole that fits inside

that volume and, the entropy is proportional to the area of the surface of the

blackhole horizon. According to the Bekenstein-Hawking formula

S =
A

4GN
, (3.12)

where A is the area of the event horizon and GN is the Newton constant. We

now want to explain how to match the entropy in (3.11) and (3.12). Let Rd be

a spatial region in the (d+1) dimensional space time where the gravity theory

lives. Then Rd is bounded by a (d-1)-dimensional manifold Rd−1 (Rd−1 =

∂Rd). From (3.12) the gravity entropy is proportional to

S(Rd) ∝ Area(∂Rd) ∝ V ol(Rd−1) (3.13)

which roughly agrees with the entropy result of QFT in (3.11).
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More concretely, on the QFT side, we can regulate the theory by putting

in both a UV and an Infrared (IR) regulator. We place the theory in a spatial

box, which serves as an IR regulator. We then descretize the system by putting

it on a lattice with spacing ε, which serves as a UV regulator. In d-spacetime

dimensions the system has
(
R
ε

)d−1
cells. If we identify cQFT to be the number

of degrees of freedom per lattice site, where cQFT is the central charge, then

the total number of degrees of freedom is

SQFT =

(
R

ε

)d−1

cQFT . (3.14)

The number of degrees of freedom on the gravity side, which is AdSd+1 is

given by the Bekenstein-Hawking formula,

SAdS =
A∂

4GN
, (3.15)

where A∂ is the area of the region of AdSd+1 at the boundary when z → 0. A∂

is found by integrating the volume element corresponding to the AdS metric,

ds2 = L2

z2 (−dt2 + d~x2 + dz2) sliced at z = ε→ 0,

A∂ =

∫
Rd−1,z=ε

dd−1x
√
g =

(
L

ε

)d−1 ∫
Rd−1,z=ε

dd−1x. (3.16)

The integral on the RHS is the volume element of R, and it is infinite. We

regulate the infinity by placing the system in a box of size R, the same way

we did on the QFT side, so that

∫
dd−1x = Rd−1. (3.17)

Therefore

A∂ =

(
L

ε

)d−1

Rd−1. (3.18)

If we introduce the Planck length lP and the Planck mass MP for a gravity
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theory in d+ 1 spacetime dimesnions, and identify

GN = (lP )d−1 =
1

(MP )d−1
, (3.19)

then the number of degrees of freedom in an AdSd+1 space is

SAdS =
1

4

(
R

ε

)d−1( L
lP

)
. (3.20)

Comparing the entropy of the QFT (3.20) and AdS (3.14) side we conclude

that

cQFT =
1

4

(
L

lP

)d−1

, (3.21)

which shows that SAdS and SQFT scale in the same way with the IR and UV

cutoffs R and ε.

This is the matching condition between gravity and QFT. The action of the

gravity in the AdSd+1 space of radius L, has a factor of Ld−1

GN
=
(
L
lP

)d−1

multiplying it. We know that a theory is semi-classical when the coefficient

multiplying its action is large, so that the theory is dominated by a saddle

point. This means that the classical gravity theory is reliable when

→
(
L

lP

)d−1

� 1. (3.22)

This happens when the AdS radius is large compared to the Planck length lP

and, since the scalar curvature goes like 1/L2, the curvature is small compared

to the Planck length. This means QFT has a gravity dual when the central

charge cQFT is large, so that the number of degrees of freedom per unit volume

is huge.
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3.2 Large N Limit

The dual stringy description of a gauge theory can be perfectly illustrated by

looking at a U(N) Yang-Mills theory with Lagrangian

L = − 1

g2
YM

FµνaF
aµν , (3.23)

where F aµν is the non-Abelian gauge field strength written as follows

F aµν = ∂µA
a
ν − ∂νAaµ + ifabc[A

b
µ, A

c
ν ] (3.24)

Aaµ → A′aµ = U †AaµU − iU †∂µU, (3.25)

where fabc is a structure constant of the SU(N) group and Aaµ, a = 1, · · · , N2 is

the gauge field. It can also be written as an N×N matrix [Aµ]αβ. Introducing

the ’t Hooft coupling λ = g2
YMN , the Lagrangian is written as

L = −N
λ
Tr[FµνF

µν ]. (3.26)

Perfoming a ’t Hooft expansion [21], λ is kept fixed and the expansion of the

amplitudes is a double expansion in powers of N−2 and λ. Using the double

line notation (Feynman rules), each Feynman diagram triangulates a surface

and different powers of N corresponds to different topologies of the surface.

Computing Feynman diagrams for a matrix model we realise that every index

loop contributes with a power of N to the diagram amplitude. In general the

amplitude is given by

Aamplitude ∼
(
λ

N

)E(N
V

)V
NF , (3.27)

where E is the number of propagators (edges), F is the number of loops (faces)

and, V is the number of vertices. The sum of terms

F − E + V = χ, (3.28)

is called the Euler characteristic, and it depends only on the topology of the

surface associated to the Feynman diagram. For diagrams which triangulate
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a surface with h handles

χ = 2− 2h. (3.29)

The perturbative expansion (genus expansion) of a generic amplitude takes

the form

FN (λ) =
∑
h,f

Ch,fN
2−2hλ2h−2+f (3.30)

=
∞∑
h=0

N2−2hfh(λ),

where fh(λ) =
∑
λ2h−2+fCh,f and fh(λ) is the sum of all the diagrams with

h handles. In summary, correlation functions of gauge invariant operators can

be arranged as an expansion in 1
N .

3.3 Dictionary of AdS/CFT

The most well studied version of the correspondence is between N = 4 SYM

and IIB string theory on AdS5 × S5. The action for the CFT is

L =tr

(
− 1

2g2
YM

FµνFµν +
iθ

8π2
FµνF̃

µν − iψ̄iα(σµDµ)αβψ
i
β −

6∑
M=1

(Dµφ
M )(DµφM )

(3.31)

+ gYMC
ij
Mψi[φ

M , ψj ] +
1

2
g2
YM

∑
M,N

[φM , φN ]2
)

where ψ̄iα and ψiβ are Weyl fermions CijM are the structure constants of the R-

symmetry group SU(4), φM are the scalar fields and Fµν is the non-Abelian

field strength. We can often use the supergravity approximation to string

theory. The action for supergravity is

SIIB =
1

16πG

∫
d10x
√
g

(
R− 1

2(Imτ)2

∂µτ

∂µτ
− 1

4
|F1|2 − |G3|2 −

1

2
|F5|2

)
(3.32)

− 1

32πiG

∫
d10xA4 ∧ Ḡ3 ∧G3 + fermions.
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G3 is a 3 form field strength, F1 is a 1 form field strength, F5 is a self dual 5

form field strength, Ḡ3 is a 3 form field strength which is dual to G3, R is the

Ricci scalar and τ is a complex scalar field. The dictionary of the correspon-

dence is partly determined by matching

1. Parametrs

2. Spectrum

3. Correlators.

Each of these three aspect will be discussed below.

3.3.1 Parameters

The CFT living on the boundary has two parameters, λ and N . λ determines

the strength of the interactions. This parameter translate as follows[1, 22, 23]

λ = g2
YMN =

(
L

ls

)4

, (3.33)

where ls is the string length and L is the radius of curvature of the AdS

spacetime. The above equation can be rewritten as[1, 22, 23]

l2s
L2

=
1√
λ
. (3.34)

When

λ� 1⇒ L� ls, (3.35)

and string corrections can be neglected since curvatures are small. The clas-

sical supergravity action can be used. The 10-dimensional Newton constant

will now be related to string parameters as follows

16πG = (2π)7g2
s l

2
s , (3.36)

with g2
YM = 4πgs, where gs is the string coupling strength. Using this the

equation above becomes[1, 22, 23]
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G = l8p =
π4

2
g4
YM l

8
s . (3.37)

Finally the relation between the Planck length lp and the radius of the AdS

space is given by[1, 22, 23]

(
lp
L

)8

=
π4

2N2
. (3.38)

Spectrum

In gauge theory the observables are gauge invariant operators which can be

both single trace and multi traces. Consider local single trace operators of the

form

tr[φM (x)φN (x)], tr[φM1(x) · · ·φMn(x)]. (3.39)

These single trace local operators correspond to the fields on the gravity side[2,

24]. Any field in 10 dimensional supergravity on the AdS5 × S5 background

can be decomposed into an infinite set of fields on AdS5. This technique is

referred to as Kaluza-Klein decomposition. Compactification on S5 creates a

discrete set of modes in the spectrum with only the zeroth mode surviving

in the low energy effective action. Here is an example of the correspondence

between operators in the CFT and fields in string theory [2, 24]

Tµν(x) (Stress energy tensor)↔ gµν(x) (3.40)

J ijµ (x)(Conserved current)↔ Aijµ (x) (Gauge field in AdS).

3.3.2 Correlators

The boundary of AdSd+1 spacetime is a conformally flat d-dimensional space-

time on which the CFT is formulated. String fields in the bulk spacetime are

fixed to value J at the boundary of AdSd+1. The boundary values J behave

as sources for the CFT operators. This is possible because for every string

observable at the boundary of AdSd+1 there is a corresponding observable in
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the CFT. More concretely the CFT Lagrangian with the source term J(x) is

L → L+ J(x)O(x) = L+ LJ , (3.41)

where O(x) is the CFT operator and the corresponding generating function is

ZCFT [J ] = 〈exp[
∫
LJ ]〉CFT . (3.42)

The connected correlators are obtained from (3.42), by taking derivatives of

the logarithmic of ZCFT as follows

〈
∏
i

O(xi)〉 =
∏
i

δ

δJ(xi)
logZQFT [J ]

∣∣∣∣
J=0

. (3.43)

On the gravity side we have a bulk field φ(z, x) fluctuating in AdS with φ0(x)

being the boundary value of φ(z, x),

φ0(x) =φ(z → 0, x) (3.44)

=φ
∣∣
∂ADS

(x).

As mentioned earlier, the φ0 field is related to a source J(x) for the dual oper-

ator O in the CFT. The AdS/CFT correspondence implies that the generating

function is given by [25][26],

ZCFT [φ0] = 〈exp[
∫
φ0O]〉CFT = Zgravity[φ→ φ0] (3.45)

The most important take away from this chapter is the AdS/CFT dictionary.

A correspondence was formulated using the parameters between the two the-

ories. With this correspondence we can now see clearly the interplay between

weak and strong coupling. In the next chapter we will consider higher spin

theory and its duality to the free O(N) vector model. This is the example of

AdS/CFT of most relevance for this thesis.
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Chapter 4

Lightning Review of Higher

Spin Theories

In this chapter we explain the relevance of studying higher spin theories for

understanding AdS/CFT. We will review relevant work that has contributed

in the field of higher spin theories. We will then discuss some interesting re-

sults that have been achieved in the free field CFT. Through the discussion

we will see what kind of higher spin operators have been constructed thus far.

This chapter connects the objective of this project with higher spin theories

and more generally with AdS/CFT. It clarifies the purpose of this project.

4.0.1 Higher Spin/CFT duality

Since the AdS/CFT duality was proposed by Juan Maldacena, there has been

no formal mathematical proof for the duality. A significant task is left to

prove and understand the duality at a mathematicaly rigorous level. Study-

ing Higher Spin (HS) gravitational theories might lead us to a better under-

standing of how the AdS/CFT duality works. The higher spin theories are

favourable in helping understand the duality because they have the right struc-

ture to be dual to a free vector model CFT at the boundary of AdS.

Higher spin theories were conjectured to be dual to a vector O(N) model

by Klebanov and Polyakov [27]. This conjecture was followed by a N = 1

supersymmetric generalization by E. Sezgin and P. Sundell [28] and [29]. This

was then followed by conjectures relevant to Chern-Simons gauge theories cou-
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pled to vector models [30, 31], and the 3d bosonization duality [32, 33] relating

scalar and fermionic theories coupled to Chern-Simons. Before AdS/CFT was

conjectured, a Russian Physicist, Vasiliev, constructed a fully non-linear the-

ory of interacting higher spins in AdS [34] and exact non-linear equations of

motion for the theory. In higher spin theory, the interactions are in the form

of higher derivatives and the spectrum contains gauge fields starting with spin

s = 2 followed by an infinite tower of HS fields. Since HS theory always con-

tain gravitons s = 2, this means that they are a theory of quantum gravity.

The higher derivative (interactions) are in inverse powers of a cosmological

constant. Because of their infinite dimensional HS symmetry, the theory can

be identified as a UV complete theory of quantum gravity.

4.0.2 Free Field CFT with Higher Spin Currents

[35] studied a simple free field CFT with the action

S =
1

2

∫
ddx(∂µφ)2. (4.1)

From ordinary standard QFT we know that the theory has a symmetric trace-

less conserved stress-energy tensor

Tµν = 4(d− 1)∂µφ∂νφ− ((d− 2)∂µ∂ν + gµν∂
2)φ2. (4.2)

This stress energy tensor has spin s = 2 and, dimension 4 = 2(d2 − 1) + s = d.

The above CFT has a much larger symmetry than just conformal invariance

which is realised through the construction of the conserved HS currents that

are bilinear in scalar fields and have spin s [35],

Js = (z · (∂1 + ∂2))sCd/2−3/2
s

(
z · (∂1 − ∂2)

z · (∂1 + ∂2)

)
φ(x1)φ(x2)

∣∣∣∣
xx,x2→x

. (4.3)

C
d/2−3/2
s (x) is a Gegenbauer polynomial and z is a polarization vector. This

tower of higher spin currents is conserved ∂µJµµ2···µs = 0, symmetric and

traceless which corresponds to an irreducible representation of SO(d) of spin
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s. In the SO(d) representation the spin operators satisfy the unitary bound

4 ≤ d− 2 + s, (4.4)

which means that for the currents above the unitary boundary is saturated.

For s = 2 spin currents, we can verify that Jµν is equal to the stress energy

tensor (4.2). The conformal algebra for a s = 2 theory is the normal conformal

algebra with the conformal generators of the group being

Pµ, Mµν , Kµ, D, (4.5)

where Pµ is the translation generator, Mµν Lorentz generator, Kµ special con-

formal generator and D is the dilatation generator. These generators can be

recovered from a CFT argument. For a CFT with a conformal Killing vector

ζµ, satisfying the conformal Killing vector equation ∂µζν +∂νζµ = 2
dgµν(∂ρζ

ρ),

we can construct a conserved current Jζµ = Tµνζ
ν from Tµν (stress-energy ten-

sor). Using standard QFT techniques we can obtain the conserved charges

from the conserved currents. The conserved charges are the generators of the

symmetries of the theory. The Killing vectors are in one-to-one correspon-

dence with the generators.

When we go to higher spin theory, since the theory (CFT) has conserved

higher spins currents, the theory has infinte dimensional extension of the con-

formal algebra, which is called the HS algebra. One needs an infinte tower of

charges to close the algebra.

4.1 O(N) Vector Model

We will now consider a free O(N) vector model with N massless fields. The

model has a global O(N) symmetry where φi transforms in the fundamental

representation. The O(N) vector model action is given as

S =
1

2

∫
ddx∂µφ

i∂µφi i = 1, · · · , N, (4.6)

the equation of motion is pretty much the same as in the free scalar case,
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∂µ∂
µφi = 0. (4.7)

The model has the same conserved higher spin (HS) currents, but now with

additional O(N) indices

J ij(x, ε) =
s∑

k=0

csk((z · ∂)kφi(z · ∂)s−kφj (4.8)

=φi
s∑

k=0

(−1)k(z ·
←
∂ )k(z ·

→
∂ )s−k

k!(k + d−4
2 )!(s− k + d−4

2 )!(s− k)!
φj .

These operators can be be decomposed into irreducible representations of

O(N)

J ijs = Js + J (ij)
s + J [ij]

s (4.9)

where Js are O(N) singlets, J
(ij)
s are symmetric traceless and J

[ij]
s are anti-

symmetric representation operators. Consider truncating to the O(N) sin-

glet sector which corresponds to taking the single and multi-trace opera-

tors. In the AdS/CFT correspondence, these single trace operators φi∂sφ
i

correspond to the single-particle states in AdS and the multi-trace operators

(φi1∂s1φ
i1)(φi2∂s1φ

i2) · · · (φin∂snφin) correspond to the multi-particle states in

AdS. Single trace operators are bilinears in the fields φi. The full list of these

single trace operators Js includes s = 0, 2, 4, 6, · · · . The operator J0 = φiφi

and its dimension ∆ and spin s are (∆, s) = (d− 2, 0). The singlet operators

Js have dimension ∆ and spin s, being (∆, s) = (d−2 + s, s). The CFT single

trace spectrum (∆, s) should match the single particle spectrum of the bulk

dual, and also the multi-trace operators spectrum ((∆, s)) should match the

multi-particle spectrum in the bulk dual (AdS). The conserved currents in the

CFT correspond to the massless gauge fields in the AdS. A familiar example

is the spin 1 conserved current in CFT corresponding to a gauge field in AdS,

and the spin 2 stress energy tensor in CFT correspond to the graviton in AdS,

∂ · Js = 0 ⇔ Massless HS gauge fields (4.10)
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When interactions are switched on, the current operators are not conserved

anymore and they now correspond to a massive gauge field ψs in AdS. Consider

the scalar current operator J0 = φiφi. Even though it appears in the free CFT,

it is dual to the bulk scalar field ψ with mass m2,

J0 ⇔ Scalar field ψ with m2 = ∆(∆− d)/l2AdS , (4.11)

where ∆ is the scaling dimesion of the operator J0, so thatm2 = −2(d−2)/l2AdS
in the free CFT where ∆ = d− 2. The global HS spin symmetry on the CFT

side correspond to the HS gauge symmetry on the AdS side, generated by s−1

gauge parameters. This will be discussed in more detail in the next section,

when we talk about the Fronsdal equations in AdS. The spectrum in (4.10)

and (4.11) correspond to the minimal bosonic higher spin theory in AdSd+1

[36]. After matching the CFT operators with the bulk gauge fields, the next

thing to do is to compute the correlators on both the CFT and AdS side. The

CFT correlators are computed using Js singlet current operators. As usual

we sum the Wick contractions between the fields in these Js currents. The

results from the three point function computed in [24, 2, 37] for a normalized

current Js ∼ 1√
N
φi∂sφ

i give

〈Js1Js2Js3〉 ∼
1√
N
. (4.12)

These correlators can be represented by a triangular diagram as shown below

Figure 4.1: 3 point function of higher spin operators in CFT

In the diagram above each line represents a scalar propagator and the vertices
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contain appropriate derivatives. These derivatives of the AdS Vasiliev theory

are linked to the interactions between the bulk dual fields. The correlator in

(4.12) should be matched to the dual Witten diagrams [24, 2, 37] which are

Figure 4.2: Holographic 3 point function

Here the factor 1√
N

sets the coupling of the higher spin gravity

gbulk ∼
1√
N
. (4.13)

Now the action in the bulk is written as follows

1

GN

∫
dd+1Lbulk =

1

g2
bulk

∫
dd+1xLbulk (4.14)

with the Newton’s constant GN ∼ N−1, showing that the 1
N expansion on

the CFT side is mapped to the pertubative expansion on the AdS gravity

side, as powers of GN . This non-trivial computation [24, 2, 37] shows that

the free O(N) vector model (singlet sector) is dual to the HS gravity in AdS,

sometimes referred to as higher spin/vector model duality. One can generalize

the O(N) vector model to the U(N) vector model by working with complex

scalar fields and develop the same ideas and computations [35].

4.2 Fronsdal Higher Spins Equations in AdS

We now focus on the AdS side. We will discuss what has been achieved for

the massless higher spin fields. These are the fields related to CFT conserved
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HS spin primary operators. We will first discuss the Frondal equations in

flat spacetime. We start by discussing the dynamics (equations of motion) of

the familiar spin s = 1 and s = 2 cases of HS fields, before considering the

dynamics of general HS fields. Consider the gauge field Aµ that has spin s = 1

with gauge symmetry

δAµ = ∂µε (4.15)

where ε is the gauge parameter. The Lagrangian for this field Aµ is the known

Maxwell Lagrangian with the action

S = −1

4

∫
ddxFµνF

µν Fµν = ∂µAν − ∂νAµ, (4.16)

and the Maxwell equation of motion follows,

∂µF
µν = 0 or ∂α∂

αAµ − ∂µ∂νAν = 0. (4.17)

For s = 2 we have the Einstein equation of motion with zero cosmological

constant

Rµν −
1

2
gµνR = 0. (4.18)

Expanding around the flat metric gµν = ηµν + hµν , the linearized equations

for hµν is

∂α∂
αhµν − ∂µ∂ρhρν − ∂ν∂ρhρµ + ∂µ∂νh

ρ
ρ = 0. (4.19)

This is invariant under the gauge transformation

δhµν = ∂µεν + ∂νεµ. (4.20)

We now want to generalize this to the massless HS fields ψµ1µ2···µs . The HS

field ψµ1µ2···µs is required to be totally symmetric and double traceless
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ψµ ν
µ νµ5···µs = 0. (4.21)

The gauge transformation of the HS field is

δψµ1···µs = ∂(µ1
εµ2···µs), (4.22)

where the closed brackets on the indices symmetrize the enclosed indices. For

the HS field in (4.21) to be gauge invariant, the spin s − 1 gauge parameter

εµ1µ2···µs−1 needs to obey the traceless constraint

εµµµ3···µs−1
= 0. (4.23)

Then, the general equation of motion for a HS gauge fields is

Fµ1···µs = ∂α∂
αψµ1···µs − s∂(µ1

∂µψµ2···µs)µ +
s(s− 1)

2
∂(µ1

∂µ2ψ
µ

µ3···µs)µ = 0s.

(4.24)

These equations generalize the previous s = 1 and s = 2 cases. The Lagrangian

for these HS gauge fields is

S =

∫
ddx(ψµ1···µsFµ1···µs −

1

4
s(s− 1)ψ µµ3···µs

µ Fννµ3···µs). (4.25)

To remove unphysical degrees of freedom from the HS gauge fields, the gauge

is fixed by choosing ψµ1···µs to be transverse and traceless. The equation of

motion in (4.24) will reduce to the Fierz-Pauli equations

∂α∂αψµ1···µs = 0 (4.26)

∂µψµµ2···µs = 0

ψµµµ3···µs = 0.

To completely fix the gauge, there are also gauge parameters εµ1···µs−1 that

need to be gauge fixed. They satisfy similar Fierz-Pauli equations
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∂α∂
αεµ1···µs−1 = 0 (4.27)

∂µεµµ2···µs−1 = 0

εµµµ3···µs−1
= 0.

These are constraints on the Fronsdal field in flat spacetime. Next we will

look at the Fronsdal equation in curved space.

4.2.1 HS gauge fields in AdS

To generalize the Fronsdal equation from flat to a curved space it is not straight

forward. Simply replacing spacetime derivatives with covariant derivatives

only works for minimally coupled (to gravity) HS fields. For a general curved

background this procedure doesn’t work since the covariant derivatives do not

commute and the Fronsdal equations are not gauge invariant. A maximally

symmetric background [38] with the Riemann tensor

Rµνρσ = − 1

l2AdS
(gµρgνσ − gµσgνρ), (4.28)

solves this problem. The gauge invariant Fronsdal equation of motion in AdS

is

∇2ψµ1···µs − s∇(µ1
∇µψµ2···µs)µ +

s(s− 1)

2
∇(µ1

∇µ2ψ
µ

µ3···µs)µ (4.29)

− 1

l2AdS

(
((s− 2)(s+ d− 3)− s)ψµ1···µs +

s(s− 1)

4
g(µ1µ2

ψµ3···µs)µ

)
= 0,

where the second term in the second line is the compensating term needed to

make the equation of motion gauge invariant. The equation above is invariant

under the gauge transformation

δψµ1···µs = ∇(µ1
εµ2···µs). (4.30)

Applying the gauge fixing by requiring the field ψµ1···µs to be transverse and

traceless, the equation of motion then reduces to
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(
∇2 − (s− 2)(s+ d− 3)− s

l2AdS

)
ψµ1···µs = 0 (4.31)

∇µψµµ2···µs = 0

ψµµµ3···µs = 0,

which are the Fierz-Pauli equations on a curved space. To completely fix the

gauge, the gauge parameter εµ1···µs−1 should satisfy the equations

(
∇2 − (s− 1)(s+ d− 3)

l2AdS

)
εµ1···µs−1 = 0 (4.32)

∇µεµµ2···µs−1 = 0

εµµµ3···µs−1
= 0.

Fronsdal equations are linear and are based on a metric-like formulation. Next

we will discuss HS gauge fields in the frame-like formulation. This is relevant

for introducing interactions, as shown by Vasilliev.

4.2.2 HS Gauge Fields in Frame-Like Formulation

Vasiliev’s non-linear HS theory is based on the frame-like formulation and gen-

eralizes the vielbein approach to gravity using the differential forms language.

In gravity we can introduce respectively the vielbein and spin connection

eaµ wabµ . (4.33)

The vielbein is related to the metric by

gµν = ηabe
a
µe
b
ν . (4.34)

Here the spin connection wabµ correspond to a gauge field with the local Lorentz

rotations acting as gauge symmetries. The vielbein eaµ and spin connection wabµ

can be combined as components of the one-forms,

ea = eaµdx
µ wab = wabµ dx

µ. (4.35)
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These forms obey the Cartan structure equations

dea + wab ∧ eb = T a (4.36)

dwab + wac ∧ wcd = Rab Rab =
1

2
Rabµνdx

µ ∧ dxν ,

where T a is the torsion two-form and Rab is the Riemann tensor two-form.

When T a = 0 we have

Rµνρσ = Rabµνeρaeσb. (4.37)

Since wab is a gauge field of local Lorentz transformations and εa transforms

as a vector under Lorentz transformations, the Lie algebra is of the form

[Mab,Mcd] = i(ηbcMad − ηbdMca − ηacMbd + ηadMcb) (4.38)

[Mab, Pc] = i(ηbcPa − ηacPb)

[Pa, Pb] =
i

l2AdS
Mab,

where Pa corresponds to the generators of local translations. This is the AdS

algebra SO(d, 2). We can build a one form W as follows

W = −i(eaPa +
1

2
wabMab), (4.39)

which is intepreted as the gauge field of the Lie algebra in (4.38). The curvature

of W is

dW +W ∧W =− i(dea + wab ∧ eb)Pa +
1

2
(dwab + wac ∧ wcb +

1

l2AdS
ea ∧ eb)Mab)

(4.40)

=− i(T aPa +
1

2
(Rab +

1

l2AdS
ea ∧ eb)Mab).

For a flat connection on W the above equation becomes

dW +W ∧W = 0. (4.41)
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The solution to this equation is

T a = 0 and Rab = − 1

l2AdS
ea ∧ eb ⇒ Rµνρσ = − 1

l2AdS
(gµρgνσ − gµσgνρ).

(4.42)

This shows that the flat connection is related to a maximally symmetric back-

ground. The gauge transformation for W is

δW = dε+ [W, ε] (4.43)

ε = −i(εaPa +
1

2
εabMab),

where εa and εab are the gauge parameters for local translations and local

Lorentz transformations respectively. The generators Pa, Mab are combined

into d(d+1)
2 generators TAB, where A,B = 0, · · · , d and W = −iwABTAB [39].

Generalizing to higher spins, the vielbein is given by the one-form

ea1,··· ,as−1 = ea1···as−1
µ dxµ, (4.44)

where ea1···as−1 is totally symmetric and traceless in the indices a1 · · · as−1,

ηabe
aba3···as−1 = 0. (4.45)

We will use the Young tableau notation [n1, n2, n3, · · · , nk] where ni is the

number of boxes in the ith row. The tensor ea1···as−1 is in a reducible SO(d)

representation and it decomposes as follows

[1, 0, 0, · · · ]⊗ [s− 1, 0, · · · ] = [s, 0, · · · ] + [s− 2, 0, · · · ] + [s− 1, 1, 0, · · · ]
(4.46)

where the first two representation on the RHS represent a symmetric and

double traceless HS field, which is the Fronsdal field (ψµ1···µs). The third

representation on the RHS is a hook Young diagram representation which

corresponds to gauge redundancies, so the corresponding gauge field has to be

of the form w
a1···as−1,b
µ . This is the general spin connection in HS field theory.

Unlike the s = 2 case, solving the analog of (4.41) in HS theory does not give
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a unique spin connection w
a1···as−1,b
µ . Rather a tower of HS spin connections

are required to fix this gauge redundancy. Therefore HS fields in the framelike

description have the following vielbein and spin connections [39],

ea1···as
µ (4.47)

wa1···as,b1···bt
µ t = 1, 2, · · · , s− 1.

The HS analog of (4.41), which will allow the HS spin connection to be solved

in terms of an HS vielbein is given by the equations

Ra1···as−1 =0 (4.48)

Ra1···as−1,b =0

...

Ra1,···as−1,b1···bs−1 =e(0)c ∧ e(0)dC
a1···as−1c,b1···bs−1d

where Ra1···as−1,b1···bs−1 are curvature two-forms that generalize (4.36) and

Ca1···as−1c,b1···bs−1d is the HS generalized Weyl tensor. It is built out of s deriva-

tives of the Fronsdal field, and ea(0) is the tree level vielbein field from the fluc-

tuation eaµ = ea(0)µ + êaµ. Just as in the s = 2 case, ea1···as−1 and wa1···as−1,b1···bt

can be combined into a gauge field wA1···As−1,B1···Bs−1 where A,B = 0, · · · , d.

This gauge field is now in the representation [s − 1, s − 1, 0, · · · ] of the AdS

algebra. Each gauge field can be associated to a generator TA1···As−1,B1···Bs−1

in the same representation. These HS fields can be combined into one field

W = −i
∑
s

wA1···As−1,B1···Bs−1TA1···As−1,B1···Bs−1 . (4.49)

The generators TA1···As−1,B1···Bs−1 are the same generators from the CFT HS

algebra constructed in terms of Killing vectors. These generators on the AdS

side form the gauge algebra. To linearize (4.49), expand around the AdS

background to linear order in the fluctuations w = w0 + w1, to obtain

W = −iwAB0 TAB − i
∑
s

w
A1···As−1,B1···Bs−1

1 TA1···As−1,B1···Bs−1 . (4.50)
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The linearized gauge transformation becomes

δw1 = dε+ [w0, ε] (4.51)

where w0 = wAB0 TAB and ε =
∑
s ε
A1···As−1,B1···Bs−1TA1···As−1,B1···Bs−1 . The

linearized curvature in (4.48) becomes

dW +W ∧W = dw1 + [w0, w1]. (4.52)

The Vasiliev HS gauge theory is non-linear. Its non-linear gauge symmetry is

given by

δW = dε+ [W, ε]. (4.53)

This is the extent to which we will discuss the HS gauge theory. If we are

ever to reproduce the full non-linear structure of this theory from CFT, it is

clear that we need a good understanding of the free CFT. This is a major

motivation for this PhD.

We have seen that the free scalar field CFT has a tower of higher spins primary

operators packaged in a Gegenbauer polynomial. These higher spin primary

operators are constructed using bilinears (2 copies of) of the scalar fields. This

does not exhaust the spectrum of primaries of the CFT. Indeed, as we will see

in the next chapter, even the spectrum of a single free scalar field theory is

much richer than this.
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Chapter 5

Primary Fields in Free Scalar

Conformal Field Theory in

4-dimensions

This long chapter will contain the work of the papers that were published in

[19][40]. This work contains novel results for the free conformal field theory of

a scalar field in 4 dimensions (CFT4). Using representation theory a general

generating function for the number of primary operators constructed from

n copies of the free scalar field is derived. The generating function yields

the correct counting for the primary fields. The counting is then specialised

to counting primaries which obey extremality conditions defined in terms of

the dimensions and left or right spins (i.e. in terms of relations between

the charges under the Cartan subgroup of SO(4, 2)). The construction of

primary fields for scalar field theory is mapped to a problem of determining

multi-variable polynomials subject to a system of algebraic and differential

constraints. For the extremal primaries, we give a construction in terms of

holomorphic polynomial functions on permutation orbifolds, which are shown

to be Calabi-Yau spaces.

5.1 Introduction

In [41] we showed that free scalar four dimensional conformal field theory

can be formulated as an infinite dimensional associative algebra, admitting

a decomposition into linear representations of SO(4,2), and equipped with a

bilinear product satisfying a non-degeneracy condition. This algebraic struc-
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ture gives a formulation of the CFT4 as a two dimensional topological field

theory (TFT2) with SO(4,2) invariance, where crossing symmetry is expressed

as associativity of the algebra. TFT2 structure had previously been identified

as a unifying structure in the study of combinatorics and correlators in BPS

sectors of N = 4 SYM, quiver gauge theories, matrix models, tensor models,

and in Feynman graph combinatorics [42, 43, 44, 45]. The theme of TFT2

as a powerful unifying structure for QFT combinatorics was also developed

in [41] in the context of counting primary fields. In this chapter we return

to a systematic study of primaries in free field theories in four dimensions.

We consider scalar, vector and matrix models. Another motivation for the

detailed construction of primary fields in four dimensional scalar QFT is that

free field calculations have been found to be useful in calculating the anoma-

lous dimensions of operators at the Wilson-Fischer fixed point in the epsilon

expansion [18, 46, 47, 48, 49].

We start by developing some explicit formulae for the counting of primary

fields, using characters of representations of so(4, 2). This makes extensive

use of previous literature on the subject, notably [17]. This is followed by

considering the problem of constructing the primary fields. A useful remark

is that the algebraic problem of finding composite fields of the form

(∂ · · · ∂φ)(∂ · · · ∂φ) · · · (∂ · · · ∂φ) (5.1)

where there are n φ fields involved, can be conveniently rephrased in terms of

a question about multi-variable polynomial functions of 4n variables : Ψ(xµ)

where µ runs over the space-time coordinates and I runs from 1 to n. This re-

lies on a function space realisation of the conformal algebra. We explain how

this function space realisation arises naturally in radial quantization. The

question of constructing primaries, when phrased in terms of the functions

Ψ(xµ) can viewed as a many-body quantum mechanics problem, where F is

a many-body wavefunction of n particles moving on R4. These many-body

wavefunctions have to obey three simple conditions :

• They have to obey Laplace’s equation in each of the variables xIµ for I =

1 · · ·n.

• They have to be invariant under the simultaneous translation xIµ → xIµ+aµ,

for µ = 1 . . . 4.

• They have to be invariant under permutations xIµ → x
σ(I)
µ for any permuta-

tion σ ∈ Sn.
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An infinite class of solutions of the Laplacian condition are obtained by choos-

ing a complex structure to identify R4 = C2 so that xµ → (z, w, z̄, w̄) and

considering holomorphic functions of z, w. These primaries correspond to

holomorphic polynomial functions on

(C2)n/(C2 × Sn) (5.2)

which can also be written as

(Cn/C× Cn/C)/Sn. (5.3)

The modding out by C2 is the condition of invariance under the shift while

the Sn invariance comes from the permutation symmetry. A special class of

these primary fields correspond to functions of z only i.e functions on

(Cn)/(C× Sn). (5.4)

These primaries were constructed in [50] using an oscillator realization of the

conformal algebra, which is close to the differential realization used here. An

extensive study of the representation of so(4, 2) on function spaces with em-

phasis on relations to quarternions, is developed in [51].

The association of primaries to functions on the orbifold has several inter-

esting consequences. Since the holomorphic polynomial functions form a ring,

and a class of primaries are in 1− 1 correspondence with these functions, we

are finding a ring structure on this subspace of primary operators. This ring

structure is different from the algebra structure related to the operator prod-

uct expansion. The interplay between this product and the OPE would be an

interesting subject for future study. The Hilbert series of the polynomial ring

(5.2) has a very interesting palindromy property which we prove. The proof

relies on an interesting algebraic structure based on symmetric groups in the

problem. For fixed number of primaries n, this is
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∞⊕
k,l=0

C(Sn)⊗ C(Sn)⊗ C(Sk)⊗ C(Sl) (5.5)

where C(Sn) is the group algebra of the symmetric group Sn. As recently

discussed in the context of Hilbert series for moduli spaces of supersymmetric

vacua of gauge theories [52, 53], the palindromy property of Hilbert series is

indicative that the ring being enumerated is Calabi-Yau. The precise math-

ematical statement is due to Stanley [54]. We show that the orbifold (5.2)

indeed admits a unique non-singular nowhere-vanishing top-dimensional holo-

morphic form, which is inherited from the covering space.

Our work involves an interesting interplay between representations of so(4, 2)

and representations of symmetric groups. Let V+ be the lowest weight repre-

sentation corresponding to local operators built from derivatives acting on the

field φ. The construction of primaries built from derivatives acting on n copies

of φ, amounts to finding explicit formulae for the lowest weight states of irre-

ducible representations in the symmetrized tensor product Symn(V+). If we

consider the primaries which arise at dimension n+ k, of the class associated

to the geometry (5.4) this can be mapped to a problem about multiplicities of

Sn×Sk irreps in V ×kH where VH is the n− 1 dimensional representation of Sn.

A formula for these multiplicities, derived in [50], is found to be useful in the

study of the geometry of (5.2). The connection between representation theory

of symmetric groups and that of non-compact groups has also been discussed

in [55] in the context of higher spin theories.

We extend this approch to primary fields to the case of vector fields in four

dimensions. The underlying orbifold geometry for holomorphic primaries in

this case is

(C2n/C× C2n/C)/Sn[S2]. (5.6)

The group Sn[S2] is the group of Sn which is generated by the n pairwise

permutations (1, 2), (3, 4), · · · , (2n− 1, 2n) along with the n! permutations of

these pairs. It is called the wreath product of Sn with S2. We establish the

palindromy property of the Hilbert series in this case. For the case of primary
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fields in the free theory of matrices in four dimensions, we again find the

underlying orbifold geometry

((C2)n × Sn)/(C2 × Sn) = (Cn/C× Cn/C× Sn)/Sn (5.7)

with a palindromic Hilbert series.

The chapter is organised as follows. In section 2 we describe a realisation

of the conformal algebra so(4, 2) in terms of differential operators acting on

polynomial functions of spacetime coordinates xµ in R4. This is related, by a

duality which we explain, to the standard realization of the conformal algebra

in terms of derivatives acting on a scalar field. In section 3 we obtain a number

of useful general formulae for the counting of primary fields. The first step is

to start from the character of the irrep V+ of so(4, 2) which contains all the

local operators consisting of derivatives acting on a single scalar field. This

is a function of variables s, x, y which keep track of dimension, left spin and

right spin i.e eigenvalues of D (the scaling operator) and JL, JR ( the Cartan

generators for the two SU(2)’s in SO(4) = SU(2) × SU(2)). We then derive

a generating function for the Cauchy identity. We describe a specialisation

of these formulae relevant to what we call extremal primaries. These include

the leading twist primaries studied in the context of deep inelastic scattering

in QCD. Taylor expansion of the generating function leads to explicit results

for n = 3, 4 which take the form of rational functions of s, x, y. In section 4

we describe the construction of the primary fields using the polynomials rep-

resentations. A new counting formula for the extremal primaries is obtained

by exploiting the permutation group algebras C(Sn)⊗ C(Sn)⊗ C(Sk)⊗ C(Sl)

in the problem of building primaries from n fields φ and corresponding to

polynomials of degree k in one holomorphic variable and degree l in the other.

This is shown to be consistent with the derivation based on the Taylor ex-

pansion method of the previous section. These primary fields form a ring and

the counting is recognised as a Hilbert series, which encodes aspects of the

generators and relations of the ring. This is a ring of functions of an orbifold

which we identify. The counting formula based on Sn × Sk × Sl symmetry

for the extremal sector is shown to have a palindromy property indicative of

a Calabi-Yau nature of the orbifold. As further support for the Calabi-Yau

nature of the orbifold, we construct the explicit top-dimensional holomorphic

form. In section 5 we extend the results on counting and construction of pri-
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maries, and the underlying Calabi-Yau orbifold geometries, to the case of a

four dimensional vector model. In section 6 we develop the story for the case

of free four dimensional 1-matrix theory.

5.2 Representation of so(4, 2) on multi-variable poly-

nomials

The generators of SO(4, 2) form the algebra

[Kµ, Pν ] = 2Mµν − 2Dδµν (5.8)

[D,Pµ] = Pµ

[D,Kµ] = −Kµ

[Mµν ,Kα] = δναKµ − δµαKν

[Mµν ,Kα] = δναPµ − δµαPν

The representations of this algebra play a central role when the constraints

that conformal invariance places on the dynamics of a CFT are developed.

To develop the representation theory, one uses the fact that there is a unique

primary operator O for each irrep, formed by taking products of the funda-

mental fields of the theory and derivatives of these fields, with each other. The

primary operator is distinguished because its dimension can not be lowered.

Consequently, primaries are annihilated by the generator of special conformal

transformations

[Kµ,O] = 0. (5.9)

The complete irrep is then formed by acting on the primary O with traceless

symmetric polynomials in the momenta Pµ. The spectrum of dimensions of

the primaries and their OPE coefficients provide a list of data that completely

determines the correlation functions of local operators. Clearly then, it is

interesting to determine the spectrum of primary operators of a conformal

field theory. Our goal is to determine this list for the free bosonic field φ

in four dimensions. The states corresponding to φ and its derivatives in the

operator-state correspondence consists of a lowest weight state |v+〉
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D|v+〉 = |v+〉 (5.10)

Kα|v+〉 = 0

This state obeys

Kα(PµPµ)|0〉) = 0 (5.11)

which means that PµPµ|0〉 can be set to zero to give an irreducible represen-

tation. The states in this representation are of the form

(S(l))ν1,µ2,··· ,νl
µ1,µ2,··· ,µlPµ1Pµ2 · · ·Pµl |v+〉 (5.12)

where (S(l))ν1,µ2,··· ,νl
µ1,µ2,··· ,µl is symmetric and traceless in both upper and lower in-

dices.

Solving for primaries O is a representation theory problem of finding the de-

composition of the symmetrized tensor product Symn(V+) into irreducible rep-

resentations. A particular convenient realization of V+ is in terms of harmonic

polynomials. Indeed polynomials of the form

(S(l))ν1,µ2,··· ,νl
µ1,µ2,··· ,µlxµ1 · · ·xµl (5.13)

are annihilated by the Laplacian

∂

∂xα

∂

∂xα
(5.14)

and hence are harmonic. The algebra so(4, 2) is realised on these polynomials

as [41]

Kµ =
∂

∂xµ
(5.15)

Pµ = (x2∂µ − 2xµx · ∂ − 2xµ)

D = (x · ∂ + 1)

Mµν = xµ∂ν − xν∂µ

Note that in radial quantization (Pµ)† = −Kµ and (Kµ)† = −Pµ. Thinking
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of xµ as the co-ordinate of a particle, this is a single particle representation.

The tensor product V ⊗n+ can be realized on a many-particle space of functions

Ψ(xIµ), where 1 ≤ I ≤ n labels the particle number. The generators of so(4, 2)

now include

Kµ =
n∑
I=1

∂

∂xIµ
(5.16)

Pµ =
n∑
I=1

(
xIρxIρ

∂

∂xµ
− 2xIµx

I
ρ

∂

∂xIρ
− 2xIµ

)

along with the many-particle versions of D,Mµν of (5.15). In this polynomial

representation, the state of the scalar field lim|x|→0 φ(x)|0〉 corresponds to the

harmonic function (5.1).

This polynomial representation is naturally understood in the context of radial

quantization. Towards this end, consider the mode expansion of the field

φ(xµ) =
∞∑
l=0

∑
m∈Vl

a†l;mYl,m(x) +
∞∑
l=0

∑
m∈Vl

al;m|x|−2Yl,m(x′) (5.17)

The sum over m is over the states of the symmetric traceless tensor irrep Vl

of SO(4). Acting on the vacuum, which is annihilated by the al;m’s, we have

the usual operator-state correspondence. For example, we find

lim
x→0

φ(x)|0〉 = a†0;0|0〉 ≡ |φ〉 (5.18)

lim
x→0

∂µφ(x)|0〉 = a†1;µ|0〉 ≡ |∂µφ〉

lim
x→0

∂µ∂µφ(x)|0〉 = 0

The last equation above is expected because the free scalar field is a represen-

tation with null states. It expresses the free equation of motion. The scalar

field and all its derivatives as x → 0 lead to states in an irreducible lowest

weight representation V of SO(4, 2), consisting of a lowest weight state of di-

mension ∆ = 1 along with states with higher dimension.

Let us rewrite the positive part of the radial mode expansion
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φ+(x)|0〉 =
∞∑
l=0

a†l;µ1,··· ,µl(S
l)µ1,··· ,µl
ν1,··· ,νl x

ν1 · · ·xνl |0〉 (5.19)

where S(l) is a projector, projecting to symmetric traceless tensors. We take

a†l;µ1,···µl to be symmetric and traceless in the µ indices. S(l) is symmetric and

traceless in the µ as well as the ν indices. The operator state map identifies

lim
x→0

∂µ1 · · · ∂µlφ(x)|0〉 =(S(l))ν1,··· ,νl
µ1,··· ,µla

†
l;ν1,··· ,νl |0〉 (5.20)

Note that we have a duality

((
(S(l))ν1,··· ,νl

µ1,··· ,µla
†
l;ν1,···νl |0〉

)†
, φ(x)|0〉

)
=〈0|al;ν1,··· ,νl(S

(l))ν1,··· ,νl
µ1,··· ,µlφ(x)|0〉 (5.21)

=(S(l))α1,··· ,αl
µ1,··· ,µlxα1 · · ·xαl

where we have used the projector property of S(l). Unpacking this a little, if

we apply ∂µ to the local operator, go to zero to get the corresponding state

and then do the duality, we will get new polynomial as the outcome

lim
x→0

∂µ∂µ1 · · · ∂µlφ(x)|0〉 = (S(l))ν,ν1,··· ,νl
µ,µ1,··· ,µla

†
l+1;ν,ν1···νl |0〉 (5.22)

If we take the overlap of this with φ(x)|0〉 then we get

(S(l))ν,ν1,··· ,νl
µ,µ1,··· ,µlxνxν1 · · · ννl (5.23)

This polynomial of degree one higher is related to the previous polynomial by

applying Pµ = (x2∂µ − 2xµ(x · ∂ + 1)). We have the following identifications

between operators and states, and then states and polynomials

O → |O〉 → PO(x) (5.24)

∂µO → |∂µO〉 → PµPO(x)

This provides a concrete correspondence between applying ∂µ to local opera-

59



tors made from a scalar, and applying Pµ as the dual differential operator on

dual polynomials.

Primaries in the free theory are given by acting with traceless symmetric poly-

nomials in momenta on the scalar field. Tracelessness is often implemented

[56, 57] by using variables z · xI = zµxIµ with zµ a null vector, i.e. zµzµ = 0.

Thanks to the fact that zµ is null, any polynomial in z ·xI automatically gives

a traceless symmetric polynomials in xIµ after the zµs are stripped away. In

what follows we will solve the algebraic primary problem, to obtain a polyno-

mial that corresponds to the primary. To obtain the primary operator written

in terms of the original scalar field, we need to translate between the poly-

nomials and operators. For the current polynomials, the translation between

polynomials and operators is

(z · ∂)k ↔ (−1)k2kk!(z · x)k (5.25)

The construction is convenient because of its simplicity. However, it is not

completely general, since there are primary operators that are not symmetric

in their indices and hence can’t be represented as a polynomial in z · x. The

general discussion makes use of projectors that project from symmetric tensors

to traceless symmetric tensors. It is useful to consider a concrete example. The

tensors of ranks 2 and 3 are given by

(S(2))αβµν = δαµδ
β
ν −

1

4
δµνδ

αβ (5.26)

(S(3))αβγµνρ = δαµδ
β
ν δ

γ
ρ −

1

6
(δµνδ

αβδγρ + δµρδ
αγδβν + δαµδ

βγδνρ)

These operators are projectors in the Brauer algebra of tensor operators that

commute with SO(4)[58]

S(2) = 1− C12

4
(5.27)

S(3) = 1− 1

6
(C12 + C13 + C23)

The terms correcting the 1 above subtract off the trace of the tensors they act

on. They satisfy

60



(S(n))2Pn = S(n)Pn (5.28)

where Pn projects onto the totally symmetric polynomials of degree n

Pn =
1

n!

∑
σ∈Sn

σ (5.29)

The multiplication (5.28) is in the Brauer algebra, where loops are assigned the

value of 4. These elements of the Brauer algebra are completely determined

by the projector property (5.28) and the property that they start with 1. In

general

Pµ1 · · ·Pµk · 1 = (−1)k2kk!(S(k))ν1...νk
µ1···µkxν1 · · ·xνk (5.30)

The above factor is easily obtained by deriving a recursion formula. Note that

the term x2∂µ does not raise the rank of the tensor. The other two terms both

raise the rank by one, which then leads to the recursion relation. In the many-

particle realization such a traceless polynomial made of the I’th coordinates

corresponds to derivatives acting on the I’th copy of φ in a sequence of n of

these.

To construct primaries using n scalar fields we consider a multi-particle system

with xIµ the coordinates of the n particles. Primaries at dimension n + k are

obtained by allowing k derivatives to act on the n fields. In the dual polynomial

language, states at dimension n + k in V ⊗n correspond to polynomials in xIµ

of degree k. Primaries at dimension n+ k correspond to degree k polynomials

Ψ(xIµ) that obey the conditions

KµΨ =
∑
I

∂

∂xIµ
Ψ = 0 (5.31)

LIΨ =
∑
µ

∂

∂xIµ

∂

∂xIµ
Ψ = 0

Ψ(xIµ) = Ψ(xσ(I)
µ )

The first condition above is the familiar condition that the special conformal

generator annihilates primary operators. The second condition implements
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the free scalar equation of motion which implies that the image of states like

PµPµ, with only µ summed, in the Fock space, is zero. This null state appears

because the dimension of free scalar field saturates a unitarity bound. To see

that the second constraint is indeed implementing the equation of motion,

note that with the second of (5.15) we can calculate

PµPµ = x4∂µ∂µ (5.32)

Simplifying the product of differential operators, it is simple to verify that

terms like x2, x2x ·∂ and x2xµxν∂µ∂ν cancel out. The final condition in (5.31)

above ensures that our polynomials are Sn invariant. By constructing Sn in-

variant polynomials, we are implementing the bosonic statistics of the scalar

field.

In what follows we will focus on primaries (and hence polynomials) that trans-

form in a definite representation of the SO(4) = SU(2)× SU(2) subgroup of

SO(4, 2). To make the SO(4) transformation properties of the polynomials

more transparent, our construction makes use of the complex coordinates

z = x1 + ix2 w = x3 + ix4 (5.33)

z̄ = x1 − ix2 w̄ = x3 − ix4

This amounts to choosing an isomorphism between R4 and C2 = C×C. In our

conventions, these coordinates have the following (j3
L, j

3
R) charge assignments

z ↔
(

1

2
,
1

2

)
z̄ ↔

(
− 1

2
,
1

2

)
(5.34)

w ↔
(

1

2
,−1

2

)
w̄ ↔

(
1

2
,−1

2

)

We will construct a class of primaries corresponding to holomorphic polyno-

mial functions on the orbifold

(C2)n/(C2 × Sn) (5.35)

The division by C2 is a consequence of the first of (5.31). These will not form
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the complete set of primaries but a well-defined subspace of primaries, which

we will call extremal. Before explaining this construction in more detail we

show, in the next section, how characters of so(4, 2) representations can be

used to get a complete counting of general primaries built from n fields. We

will then specialize to the extremal primaries.

5.3 Counting with so(4,2) characters

In this section our goal is to enumerate the SO(4, 2) irreducible representations

appearing among the composite fields made out of n = 2, 3, · · · fundamental

fields. These multiplicities will, for example compute the spectrum of primary

operators in the free CFT4. This enumeration entails decomposing, into ir-

reducible representations, the symmetrized tensor product Symn(V+), where

V+ = D[1,0,0] in the notion of [17]. The three integer labels in D[∆,jL,jR] are the

dimension and two SO(4) spins. After obtaining a general formula in terms

of an infinite product, we specialize to primaries that obey extremality con-

ditions, that relate their dimensions to their spin. For these primaries using

results from [59], we find simple explicit formulas for the counting.

5.3.1 General Counting Formula

Consider a matrix M belonging to any matrix representation R of SO(4, 2).

A key result for the analysis of this section is

1

det(1− tM)
=
∞∑
n=0

tnχSymn(R)(M) (5.36)

This is a special case of the Cauchy identity which states that

N∏
i=1

M∏
j=1

1

(1− txiyj)
=
∞∑
n=0

∑
R`n

tnχR(x)χR(y) (5.37)

where χR is a Schur polynomial in the N variables xi and the M variables

yi, labelled by a Young diagram R with n boxes and height no larger than

the minimum of M,N . When one of these variables is 1, then we sum over

single-row Young diagrams. This formula (5.36) is easily proved by using the

identity (this is just Wick’s theorem)
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(In)j1···jni1···in =
1

πN

∫ N∏
i=1

dzidz̄ie
−
∑

k
zk z̄

k 1

n!
zi1 · · · zin z̄j1 · · · z̄jn (5.38)

=
1

n!

∑
σ∈Sn

δj1iσ(1)δ
j2
iσ(2) · · · δ

jn
iσ(n)

to evaluate

1

πN

∫ N∏
i=1

dzkdz̄ke
−
∑

i,j
zi(δ

j
i−tM)z̄j

=
1

det(1− tM)
(5.39)

Now, apply (5.36) to the case that

M = sDxJ3,LyJ3,R (5.40)

and specialize to the representation V+ spanned by the free scalar and all the

derivatives acting on it. Here we have chosen D,J3,L, J3,R to span the Cartan

subalgebra of SO(4, 2). It is straight forward to see that

1

det(1− tM)
=
∞∏
q=0

q
2∏

a=− q
2

q
2∏

b=− q
2

1

1− tsq+1xayb
(5.41)

This generating function of the characters of the symmetrized tensor products

of the free scalar representation will be denoted by Z(t, s, x.y). So we have

Z(t, s, x, y) =
∞∏
q=0

q
2∏

a=− q
2

q
2∏

b=− q
2

1

1− tsq+1xayb
=
∞∑
n=0

tnχSymn(V+)(s, x, y) (5.42)

where we have denoted χSymn(V+)(M) by χSymn(V+)(s, x, y). The characters

for Symn(V+) follow by developing the infinite product above in a Taylor series

in t. The decomposition of Symn(V+) into irreps is now achieved by writing

χSymn(V+)(s, x, y) as a sum of characters χ[∆,j1,j2](s, x, y) of M , in the irrep of

dimension ∆ and spins j1, j2

χSymn(V+)(s, x, y) =
∑

[∆,j1,j2]

N[∆,j1,j2]χ[∆,j1,j2](s, x, y) (5.43)
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The coefficients N[∆,j1,j2] are non-negative integers, counting the number of

times irrep A[∆,j1,j2] (in the notation of [17]) appears in Symn(V+). If we

restrict to the case that n ≥ 3, the only characters χ[∆,j1,j2](s, x, y) which

contribute are labeled by dimension ∆ that do not saturate the unitarity

bound and hence do not have any null states. In this case we have [17]

χ[∆,j1,j2](s, x, y) =
s∆χj1(x)χj2(y)

(1− s√xy)(1− s
√

x
y )(1− s

√
y
x)(1− s√

xy )
(5.44)

It is useful to define

Zn(s, x, y) ≡
∑

[∆,j1,j2]

N[∆,j1,j2]s
∆χj1(x)χj2(y) (5.45)

It follows that

Zn(s, x, y) = (1− s√xy)(1− s
√
x

y
)(1− s

√
y

x
)(1− s

√
xy

)χSymn(V )(s, x, y)

(5.46)

The right hand side of this last equation is precisely a sum of (products of)

SU(2) characters, so we can treat this, following [60], using the orthogonality of

SU(2) characters. The result is mostly easily stated in terms of the generating

function

Gn(s, x, y) =
∞∑
d=0

∑
j1,j2

N[n+d,j1,j2]s
n+dxj1yj2 (5.47)

which is given by

Gn(s, x, y) =

[(
1− 1

x

)(
1− 1

y

)
Zn(s, x, y)

]
≥

(5.48)

where the subscript ≥ is a notation to indicate that the above function should

first be expanded as a Laurent series in both x and y, and then negative pow-

ers of x and y should be discarded. The infinite product in the above formula

makes it difficult to evaluate Gn(s, x, y) in closed form. For that reason, in

65



the next section, we focus on specific classes of primaries for which Gn(s, x, y)

can be evaluated.

To end this section let us explain how the above derivation is generalised when

irreps that include null states appear in the tensor product Symn(V+). This

is the case when n = 2. Naively computing G2(s, x, y) using (5.48), we obtain

the following terms

G2(s, x, y) = s2 + s4xy − s5√x√y + s6x2y2 − s7x3/2y3/2 + · · · (5.49)

The negative coefficients in the above expansion show this answer is manifestly

wrong. The problem is that we have some null states that have not been

removed correctly. There are two types of primaries that appear in the above

sum. We have a primary with ∆ = 2 and j1 = j2 = 0 and primaries with

∆ = 2 + 2j and j1 = i2 = j for j = 1, 2, 3 · · · . The condition for a short

multiplet[50] is that ∆ = f(j1)+f(j2) with f(j) = 0 if j = 0 or f(j) = j+1 if

j > 0. The primary with ∆ = 2 and j1 = j2 = 0 is not short and nothing needs

to be subtracted. The primaries with ∆ = 2 + 2j and j1 = j2 = j are short

irreps and hence have null states. These null states (and their descendants)

must be removed. To understand how this is done, note that the primary with

∆ = 2 + 2j and j1 = j2 = j is a conserved higher spin current Jµ1µ2···µj and

the null state is nothing but the conservation law

∂µJ
µµ2···µj = 0 (5.50)

The null state thus has ∆ = 3 + 2j and j1 = j − 1
2 and so the subraction

of null states is achieved by removing the primary that does not need to be

subtracted, dividing by 1−s/√xy and then putting the original primary back

in. In the end we have

G2(s, x, y) =

[(
1− 1

x

)(
1− 1

y

)
(Z2(s, x, y)− s2)

1

1− s√
xy

]
+ s2 (5.51)

=
∞∑
j=0

s2+2jxjyj

This is indeed the correct result.
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5.3.2 Counting the Leading Twist Primaries

Consider the leading twist primaries, which have quantum numbers [∆, j1, j2] =

[n + q, q2 ,
q
2 ]. Each such primary operator comes in a complete spin multiplet

of (q+ 1)2 operators. Choosing the operator with highest spin corresponds to

studying polynomials constructed using only the single complex variable z, as

we can see from (5.34). This corresponds to the fact that all primaries are con-

structed using a single component Pz of the momentum four vector operator.

We will now count the leading twist primaries by counting this highest spin

operator in each multiplet. Denote the corresponding generating function by

Gmax
n (s, x, y). To determine this generating function we will modify the above

results in three ways:

1. We modify the formula (5.42) by replacing χSymn(V )(s, x, y) with a new

function χmax
n (s, x, y) and we keep only the highest spin state in the product

∞∏
q=0

1

1− tsq+1x
q
2 y

q
2

=
∞∑
n=0

tnχmax
n (s, x, y) (5.52)

2. The leading twist primaries are all constructed using a single component

of the momentum, that raises both the left and right spin maximally. Conse-

quently in (5.48) we keep only the factor that corresponds to this component

of the momentum, which amounts to replacing(
1− s√xy

)(
1− s

√
x

y

)(
1− s

√
y

x

)(
1− s
√
xy

)
→ (1− s√xy) (5.53)

3. For each spin multiplet we keep only 1 state so there is no longer any need

to replace the multiplet of spin states by a single state when we count. Thus

in (5.48) we replace (
1− 1

x

)(
1− 1

y

)
→ 1 (5.54)

The final result is

Gmax
n (s, x, y) = χmax

n (s, x, y)(1− s√xy) (5.55)
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In this formula we don’t need to track the dependence on x and y since for

this class of primaries, once n and the dimension of the operator is specified,

the spins are determined. For simplicity then, we will study

∞∑
n=0

tnGmax
n (s) =

∞∑
n=0

tn(1− s)χmax
n (s) (5.56)

=(1− s)
∞∏
q=0

1

1− tsq+1
.

To extract Gmax
n (s) we need to develop the infinite product above in a Taylor

series in t. To do this we introduce the functions

F (t, s) =
∞∏
q=0

1

1− tsq+1

∂F

∂t
= f1F fk =

∂k−1f1

∂tk−1
(5.57)

It is straightforward to find F (0, s) = 1 and

fk(t, s) = (k − 1)!
∞∑
a=0

ska+k

(1− tsa+1)k
fk(0, s) = (k − 1)!

sk

1− sk
(5.58)

Using these quantities, we have

∂nF

∂tn
=

∑
n1,··· ,nq

∑
k1,··· ,kq

(n1k1 + · · ·+ nqkq)!

n1! · · ·nq!(k1!)n1 · · · (kq!)nq
fn1
k1
· · · fnqkq δn,n1k1+···+nqkqF

(5.59)

Inserting the formulas for the f ′ks we have

∂nF

∂tn

∣∣∣∣
t=0

=
∑

n1,··· ,nq

∑
k1,··· ,kq

(n1k1 + · · ·+ nqkq)!

n1! · · ·nq!kn1
1 · · · k

nq
q

(
sk1

1− sk1

)n1

· · ·
(

skq

1− skq

)nq
δn,n1k1+···+nqkq

(5.60)

=
∑

n1,··· ,nq

∑
k1,··· ,kq

n!sn

n1! · · ·nq!kn1
1 · · · k

nq
q

(
sk1

1− sk1

)n1

· · ·
(

skq

1− skq

)nq
δn,n1k1+···+nqkq

Notice that this is a sum over conjugacy classes of Sn. The conjugacy class

collects permutations with nqkq-cycles. This interpretation follows because
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the coefficient

n!

n1! · · ·nq!kn1
1 · · · k

nq
q

(5.61)

is the order of the conjugacy class. There is a factor of (1 − sk)−1 for each

k-cycle in the permutation. Here are a few motivational examples

∂F

∂t

∣∣∣∣
t=0

=
s

1− s
(5.62)

∂2F

∂t2

∣∣∣∣
t=0

=
s2

(1− s)2
+

s2

1− s2
=

2s2

(1− s)(1− s2)

∂3F

∂t3

∣∣∣∣
t=0

=
s3

(1− s)3
+ 3

s3

(1− s)(1− s2)
+

2s3

1− s3
=

6s3

(1− s)(1− s2)(1− s3)

It is easy to identify the above expressions: Recall the lowest weight discrete

series irrep of SL(2), denoted V1, has character

χ1(s) = TrV1(sL0) =
s

1− s
(5.63)

It then follows that (P[n] projects onto the symmetric irrep i.e. a single row

of n boxes)

∂F

∂t

∣∣∣∣
t=0

=
s

1− s
(5.64)

=χ1(s)

1

2!

∂2F

∂t2

∣∣∣∣
t=0

=
s2

2(1− s)2
+

s2

2(1− s2)
= Tr(P[2]s

L0) (5.65)

=TrSym(V ⊗2
1 )(s

L0)

1

3!

∂3F

∂t3

∣∣∣∣
t=0

=
s3

3!(1− s)3
+

3s2

3!(1− s)(1− s2)
+

2s3

(1− s3)
= Tr(P[3]s

L0) (5.66)

=TrSym(V ⊗3
1 )(s

L0)
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This interpretation follows for general n as proved in (5.60). Thus the general

formula is

1

n!

∂nF

∂tn

∣∣∣∣
t=0

= Tr(P[n]s
L0) =

sn

(1− s)(1− s2)(1− s3) · · · (1− sn)
(5.67)

where the last equality follows from (5.46) of [61], where these SL(2) sector

primaries were studied in the language of oscillators. Consequently we have

Gmax
n (s) =

(1− s)
n!

∂nF

∂tn

∣∣∣∣
t=0

=
sn

(1− s2)(1− s3) · · · (1− sn)
(5.68)

Note the close connection between counting leading twist primaries and the

multiplicities of V
SL(2)
λ=n+k ⊗ V

Sn
[n] , which is given by the coefficient of qk in

n∏
i=2

1

1− qi
(5.69)

The result (5.68) was also recently obtained in [62].

There are three other sectors of primaries that are closely related to this

one: polynomials in z̄ corresponds to primaries of the form [n + q,−q,−q],
polynomials in w to primaries of the form [n+ q, q,−q] and polynomials in w̄

to primaries of the form [n+ q,−q, q].

5.3.3 Extremal Primaries

We now come to a more general class of primaries with charges

∆ = n+ q ; JL3 =
q

2
(5.70)

The charge JR3 , which is part of SU(2)R, is not constrained. These primary

operators belong to complete multiplets of SU(2)R. They correspond to poly-

nomials constructed using the pair of complex variables zI , wI . This is clear

from inspection of the charges in (5.34). Translating from the polynomial

representation back to the usual scalar field representation, this corresponds

to the fact that all primaries are constructed using only two components of

the momentum four vector operator. The two components are complex linear

combinations of the (hermitian) Pµ. Arguing as we did in the previous section,

70



we introduce a generating function Gz,wn (s, x, y), which is now given by

Gz,wn (s, x, y) =

[(
1− 1

y

)
Zz,wn (s, x, y)

]
≥

(5.71)

where Zn(s, x, y) is obtained from

∞∏
q=0

q∏
m=0

1

(1− tsq+1x
q
2 ym−

q
2 )

=
∞∑
n=0

tnχn(s, x, y) (5.72)

Zz,wn (s, x, y) = (1− s√xy)(1− s
√
x/y)χn(s, x, y) (5.73)

The two brackets multiplying Zn(s, x, y) in (5.73) is a consequence of the fact

that two components of the momentum four vector are used when construct-

ing the primaries. From (5.72) it is clear that we are selecting the state from

the J3,L multiplet (recorded using the variable x) with the highest spin. The

product over m in (5.72) indicates that all the states in the J3,R multiplet are

counted. The factor of (1 − 1
y ) as well as the instruction (indicate with the

subscript ≥ in (5.71)) to keep only positive powers of y ensures that we count

each SU(2)R spin multiplet once. It is clear that the expansion of (5.71) has

only positive powers of x. This is a consequence of the fact that we kept only

one state from each SU(2)L multiplet.

It is again possible to derive closed expressions for the generating functions

Zz,wn (s, x, y) and Gz,wn (s, x, y). Introduce the functions

F2(t, s, x, y) =
∞∏
q=0

q∏
m=0

1

1− tsq+1x
q
2 ym−

q
2

=
∞∑
n=0

tnχn(s, x, y) (5.74)
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∂

∂t
F2(t, s, x, y) =

∞∑
q=0

q∑
m=0

sq+1x
q
2 ym−

q
2

1− tsq+1x
q
2 ym−

q
2

F2(t, s, x, y) (5.75)

≡ f1(t, s, x, y)F2(t, s, x, y)

fk(t, s, x, y) ≡ ∂k−1f1

∂tk−1
=(k − 1)!

∞∑
q=0

q∑
m=0

skq+kx
qk
2 ykm−

kq
2

(1− tsq+1x
q
2 ym−

q
2 )k

(5.76)

It is simple to establish that F2(0, s, x, y) = 1 and

fk(0, s, x, y) = sk(k − 1)!
1

1− skx
k
2 y

k
2

1

1− skx
k
2 y−

k
2

(5.77)

Exactly as above we have

∂nF

∂tn
=

∑
n1,··· ,nq

∑
k1,··· ,kq

(n1k1 + · · ·+ nqkq)!

n1! · · ·nq!(k1!)n1 · · · (kq!)nq
fn1
k1
· · · fnqkq δn,n1k1+···+nqkq

(5.78)

Inserting the formulas for the fk’s and streamlining the notation by using

a = s
√
xy and b = s

√
x
y , we find

1

n!

∂nF2

∂tn

∣∣∣∣
t=0

=
∑

n1,··· ,nq

∑
k1,··· ,kq

sn

n1! · · ·nq!kn1
1 · · · k

nq
q

(
1

(1− ak1)(1− bk1)

)n1

(5.79)

· · ·
(

1

(1− akq)(1− bkq)

)
δn,n1k1+···+nqkq

=χn(s, x, y)

The expression for Zn(s, x, y) now follows from (5.73).

It is not easy to proceed for general n, but it is straight forwards to obtain

explicit formulas once a specific n is chosen. For example, the final result for
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n = 3 fields is

Zz,w3 (z, w) =

s3

(
s6x3 + s4x2 + x2x+ 1 + s3x

3
2

(
√
y + 1√

y

))
(1− s2xy)(1− s3(xy)

3
2 )(1− s2 x

y )(1− s3(xy )
3
2 )

(5.80)

To extract spin multiplets, we need to compute

Gz,w3 (z, w) =

[
Z3(s, x, y)

(
1− 1

y

)]
≥

=
1

2πi

∮
C
dz

(1− 1
z2 )Z3(s, x, z2)

z −√y
(5.81)

The contour C must have a radius larger than
√
y. We assume that s, x and

y are all less than one so that the expansion of Zz,w3 (s, x, y) converges. Thus,

we can take C to be the unit cicle. The integrand has poles at z = ±s
√
x,

z =
√
y, z = ± 1

s
√
x
, z = − s

√
x

2 (1 ± i
√

3) and z = − (1±i
√

3)
2s
√
x

. To compute the

integral we need to pick up the residues from poles at z = ±s
√
x, z =

√
y,

and z = − s
√
x

2 (1± i
√

3). We obtain

Gz,w3 (z, w) =
s3(1− s10x5y3)

(1− s4x2)(1− s3
√
x3y3)(1− s2xy)(1− s5x

5
2 y

5
2 )

(5.82)

It is easy to check, using mathematica, that this expression has the correct

expansion. The check tests that the expansion, as a polynomial about s = 0,

of the above generating function matches the counting following from the ex-

pansion of the function appearing in (5.48).

Consider next the final result for n = 4 fields, which is

Zz,w4 (s, x, y) =
1

4!

∂4F2

∂t4

∣∣∣∣
t=0

(5.83)

=
s4Q(s, x, y)

(s2x− y)2(1− s2xy)2(s2x+ y)(−s3x
3
2 + y

3
2 )(1 + s2xy)(1− s3x

3
2 y

3
2 )

Q(s, x, y) =y
7
2 (y + s2xy + s10x5y + s12x6y + s3x

3
2 y

1
2 (1 + y) (5.84)

+ s5x
5
2 y

1
2 (1 + y) + s7x

7
2 y

1
2 (1 + y) + s9x

9
2 y

1
2 (1 + y) + s4x2(1 + y)2

+ s6x3(1 + y)2 + s8x4(1 + y)2)
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To extract spin multiplets, we again need to compute

Gz,w4 (s, x, y) =

[
Zz,w4 (s, x, y)

(
1− 1

y

)]
≥

=
1

2πi

∮
C
dz

(1− 1
z2 )Zz,w4 (s, x, z2)

z −√y
(5.85)

The contour C must again have a radius larger than
√
y, so we again choose the

unit circle |z| = 1. The integrand has poles at z = ±s
√
x, z =

√
y, z = ± 1

s
√
x
,

z = ±isx, z = − s
√
x

2 i(1 ± i
√

3), z = ± i
sx and z = − (1±i

√
3)

2s
√
x

. The integral

above recieves contributions from poles at z = ±s
√
x, z =

√
y, z = ±isx, and

z = − s
√
x

2 i(1± i
√

3). We obtain

Gz,w4 (s, x, y) =
s4R(s, x, y)

(1− s2xy)(1− s3x
3
2 y

3
2 )(1− s4x2y2)(1− s4x2)(1− s6x3)(1− s8x4)

(5.86)

where

R(s, x, y) =1 + s5x
5
2 (
√
y + s3x

3
2 y + s5x

5
2 y + y3 − s6x3y

5
2 − s8x4y

5
2 − s16x8y

7
2

(5.87)

− s11x
11
2 y2(1 + y) + s7x

7
2 (1− y2) + s4x2y

3
2 (1− y2) + s2x

√
y(1 + y2)

− s9x
9
2 y(1 + y2)− s10x5y

3
2 (1 + y − y2)− s

√
x(1− y − y2))

It is again easy to check, using mathematica, that this expression does indeed

have the correct expansion.

There are other sectors of primaries that are slight variations of the extremal

sector studied in this section. Polynomials in z, w̄I correspond to primaries

with (∆ = n+ q, JR3 = q). Polynomials in z̄I , wI correspond to primaries with

(∆ = n + q, JR3 = −q). Polynomials in z̄I , w̄I correspond to primaries with

(∆ = n+ q, JL3 = −q).

5.4 Construction with symmetric group

In this section we would like to provide construction formulae for the extremal

primaries have counted in section 3. To accomplish this the polynomial rep-
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resentation of SO(4, 2) introduced in section 2 will play a central role. These

polynomials are constructed using the coordinates xIµ, I = 1, · · · , n which

admit a natural action of Sn. Constructing primaries then amounts to con-

structing polynomials that are consistent with (5.31). The first of (5.31) can be

satisfied by constructing n− 1 translationaly invariant ”relative coordinates”

out of the xIµ. This construction is not unique. Following [50], a particular

convenient choice makes use of the variables

X(a)
µ =

1√
a(a+ 1)

(x1
µ + · · ·+ xaµ − axa+1

µ ) (5.88)

These variables are in the [n − 1, 1] irrep of Sn. To satisfy the second of

(5.31) we need to build polynomials that are harmonic. In terms of complex

coordinates the Laplacian is

∑
µ

∂

∂xIµ

∂

∂xIµ
=

∂

∂zI
∂

∂z̄I
+

∂

∂wI
∂

∂w̄I
(5.89)

It is clear that we can build harmonic polynomials by considering polynomials

that are functions only of the zI , which gives the leading twist primaries,

or that are functions of the zI and wI , which gives the leading left twist

primaries. Notice that the harmonic constraint is not a first order differential

constraint. By replacing this with a holomorphic constraint, which are first

order equations, the resulting problem entails finding families of polynomials

that obey first order equations. This imploies that the problem will now have

a natural ring structure, something which will be visible in our construction.

The final constraint that needs to be obeyed is that the polynomials are Sn

invariants. The counting formulas we derived in the previous section will give

valuable insight into how to handle this final constraint.

5.4.1 Leading Twist Primaries

Specializing to n = 3 and employing complex variables, we have

Z(1) =
z1 − z2

√
2

Z(2) =
z1 + z2 − 2z3

√
6

(5.90)

plus the obvious formulas for Z̄(a), W̄ (a). The nice thing about these variables

is that Sn acts on these variables with Young’s orthogonal representation of

[n− 1, 1], i.e. for n = 3 we have[63],
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Γ ((12)) =

[
−1 0

0 1

]
Γ((23)) =

[
1
2

√
3

2√
3

2 −1
2

]
(5.91)

The remaining elements of the group can be generated using these two. When

acting on a product of variables, say Z(a1)Z(a2) · · ·Z(ak) we have

Γk(σ) = Γ (σ)× · · · × Γ (σ) (5.92)

Where we take a tensor product (the usual Kronecker product) of k copies of

the matrices of the hook irrep. Any polynomial in the hook variables automat-

ically obeys (5.31). Thus, all that is left is to project to Sn invariants in V ⊗kH

. We can build these by acting with the projector from the tensor product of

k copies of the hook onto the trivial irrep

P =
1

3!

∑
σ∈S3

Γk(σ) (5.93)

Acting on Z⊗k we obtain an expression of the form
∑
i n̂iPi(z) where n̂i are

unit vectors inside the carrier space of ⊗k and Pi(z) are the polynomials

that can be translated into primary operators.

It is useful to consider a few examples. Acting with the projector (5.93) on

the tensor product of k copies of the hook, we find

Pa1a2···ak =
∑
σ∈S3

Γk(σ)a1a2···ak,b1b2···bkZ
(b1)Z(b2) · · ·Z(bk) (5.94)

It is simple to implement this projector in mathematica. For k = 1 we find

Pa1 = 0. For k = 2 the projector is

Pa1a2 = ((z1 − z2))2 + (z1 − z3)2 + (z2 − z3)2)


1
6

0

0
1
6

 (5.95)

so the invariant polynomial is
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P (z) = ((z1 − z2))2 + (z1 − z3)2 + (z2 − z3)2) (5.96)

By inspection, this obviously obeys (5.31). For k = 3 the projector is

Pa1a2a3 = (z1 + z2 − 2z3)(z1 + z3 − 2z2)(z2 + z3 − 2z1)



0

− 1
6
√

6

− 1
6
√

6

0

− 1
6
√

6

0

0
1

6
√

6



(5.97)

so the invariant polynomial is

Pa1a2a3 = (z1 + z2 − 2z3)(z1 + z3 − 2z2)(z2 + z3 − 2z1) (5.98)

This polynomial again obeys (5.31). Finally, for k = 4 the projector is

Pa1a2a3a4 = ((z1 − z2)4 + (z1 − z3)4 + (z2 − z3)4)



1
12

0

0
1
36

0
1
36
1
36

0

0
1
36
1
36

0

0
1
12



(5.99)

so the invariant polynomial is
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P (z) = ((z1 − z2)4 + (z1 − z3)4 + (z2 − z3)4) (5.100)

This clearly obeys (5.31), so this is again the correct answer.

The polynomials we constructed in this way will obey the conditions spelled

out in (5.31). In fact, they obey an even stronger linear condition

∂z̄IP (z) = 0 = ∂w̄I (z) (5.101)

which imply the Laplacian constraint. As a result, taking all possible values

of k we find that the polynomials constructed exhibit a highly non-trivial

structure enjoyed by the leading twist primaries: the polynomials Pi(z) are

a finitely generated polynomial ring. The counting formula (5.68) gives the

Hilbert series for holomorphic functions on (Cn/C)/Sn. The quotient by C

sets the center of mass momentum of the many body wave function to zero

as dictated by the first of (5.31). The orbifold by Sn implements the last of

(5.31). The counting formula (5.68) implies that the ring has n−1 generators.

These generators are given by constructing the n− 1 possible independent Sn

invariants out of the hook variables introduced in (5.88). For example, for

n = 2 fields the polynomials are generated by (z1 − z2)2. The polynomials

corresponding to primaries are

(z1 − z2)2k (5.102)

Using (5.25) it is easy to see that (these vanish if s is odd)

Os =(z1 − z2)s (5.103)

↔ s!

2s

s∑
k=0

(−1)k

(k!(s− k)!)2
∂s−kz φ∂kzφ

reproducing the higher spin currents, given for example in[35]. For n = 3 fields

the ring of polynomials that correspond to primary operators is generated by
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(z1 − z2)2 + (z1 − z3)2 + (z2 − z3)2 (5.104)

and

(z1 + z2 − 2z3)(z3 + z2 − 2z1)(z1 + z3 − 2z2) (5.105)

In general, the generators of the ring are a product of the variables Z(a) in-

troduced above, such that the product is Sn invariant. For n = 4 the ring is

generated by (z1− z2)2 + · · · , (z1 + z2 + 2z3)(z3 + z2−2z1)(z1 + z3−2z2) + · · ·
and (z1 +z2 +z3−3z4)(z3 +z2 +z4−3z1)(z1 +z3 +z4−3z2)(z1 +z2 +z4−3z3),

where · · · stand for terms that must be summed to obtain an S4 invariant.

The ring structure that has appeared is rather interesting. The product on

the ring is simply multiplication of polynomials. This is a natural product

in the polynomial language, but is highly non-trivial in the original CFT de-

scription. A natural guess would be that this is somehow connected to the

OPE of primaries, which is the natural product on the primaries of the CFT.

However, this cannot be correct because the polynomial ring exists for a fixed

number n. Thus, in terms of the CFT language, the ring multiplication is

a product between two primaries, each of which has n fields, and the result

is again a primary with n fields. The operator product of two local opera-

tors, each containing n fields, is a sum of operators containing 2n − 2k fields

with k = 0, 1, · · · , n. For odd n the product of elements of the ring gives

an operator with an even number of fields. This product can therefore not

even be a subalgebra of the CFT operator product algebra. This product and

the associated ring structure of primary fields in free CFT4 appears to be a

genuinely new structure, not previously noticed. A natural question to ask is

whether or not these primary operators are orthogonal. We can translate any

polynomial into an operator and then compute the two point function of the

operator. The computation can also be carried out by a judicious choice of an

inner product for the polynomial. For example, consider the correlator

〈∂kzφ(x)∂lz′φ(x′)〉 = (−1)k(k + l)!
(z̄ − z̄′)k+l

(|z − z′|2 + |w − w′|2)k+l+1
(5.106)

Everything in the above result is determined by conformal invariance, except

the overall number = (−1)k(k + l)!. Recalling that zn translates into 1
n!∂

n
z ,
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this number can be computed if we use the following inner product for the

polynomials

〈zkz′l〉 = (−1)k
(k + l)!

k!l!
(5.107)

Notice that the norm following from this inner product is not positive definite.

For n fields we have polynomials in zk for the primary at x and in z′k for the

primary at x′ , with k = 1, · · · , n. In this more general setting, the inner

product is

〈
n∏
k=1

zpkk

n∏
l=1

z′qll 〉p =
n∏
k=1

(−1)pk
(pk + qk)!

pk!qk!
(5.108)

In addition, due to Wick’s theorem, there are a total of n! Wick contractions

contributing, which introduces a factor of n!. In the end, if polynomials Pi of

degree ki in n variables translate into primaries Oi constructed from n fields

with dimension n+ ki , then we have

〈Oi(x)Oj(x′)〉 =
cij(z̄ − z̄′)ki+kj

(|z − z′|2 + |w − w′|2)ki+kj+n
(5.109)

with

cij = n!〈Pi(zk)Pj(z′k)〉p (5.110)

Using the above formulas, it is easy to check that primary operators with

different dimensions are orthogonal, as they must be. Further, we also see

that although our ring of primaries is a basis, the operators in the basis are

not orthogonal.

5.4.2 Extremal Primaries

The above construction is easily extended to the other classes of extremal

primaries we have counted. The leading left or right twist class is provided by

polynomials in two holomorphic coordinates, z and w. Consider polynomials of

degree k in Z and of degree l in W , with Z, W the hook variables transforming

in the hook representation VH of Sn , described by a Young diagram with row
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lengths [n − 1, 1]. These polynomials belong to a subspace of V ⊗kH ⊗ V ⊗lH of

Sn . To characterize this subspace using representation theory, start with the

decompositions in terms of Sn × Sk irreps

V ⊗kH =
⊕

Λ1`n,Λ2`k
V

(Sn)
Λ1

⊗ V (Sk)
Λ2
⊗ V Com(Sn×Sk)

Λ1,Λ2
(5.111)

V ⊗lH =
⊕

Λ3`n,Λ4`l
V

(Sn)
Λ3

⊗ V (Sk)
Λ4
⊗ V Com(Sn×Sl)

Λ3,Λ4

Com(Sn × Sk) is the algebra of linear operators on V ⊗kH which commute with

Sn × Sk. The tensor product V ⊗kH ⊗ V ⊗lH is a representation of

C(Sn)⊗ C(Sk)⊗ C(Sn)⊗ C(Sl) (5.112)

These decompositions (5.111) have been studied in detail in [50] where they

were used to construct BPS states of N = 4 SYM. In the application we

consider here, the Z and W variables are commuting which implies that they

are in the trivial rep Λ2 ⊗ Λ4 = [k] ⊗ [l] of Sk × Sl. The multiplicity with

which a given Sn × Sk irrep (Λ1,Λ2) appears is given by the diemension of

the irrep of the commutants Com(Sn × Sk) in V ⊗kH . We want to project

to states in V ⊗kH ⊗ V ⊗lH which are invariant under the diagonal C(Sn) in the

algebra (5.112). This constrains Λ3 = Λ1. Thus we find that the number of

Sk × Sl × Sn invariants is

∑
Λ1`n

Mult(Λ1, [k];Sn × Sk)Mult(Λ1, [l];Sn × Sl) (5.113)

The generating functions for these multiplicities have been derived in [61].

Mult(Λ1, [k];Sn × Sk) is the coefficient of qk in

ZSH(q; Λ1) =(1− q)q
∑

i
ci(ci−1)

2

∏
b

1

(1− qhb)
(5.114)

=
∑
k

qkZkSH(λ1)

Here ci is the length of the i’th column in Λ1, b runs over boxes in the Young

diagram Λ1 and hb is the hook length of the box b. Thus, for the number of
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primaries constructed from zi, wi we get

∑
Λ1`n

ZkSH(Λ1)Z lSH(Λ1) (5.115)

The above integer gives the number of primaries in the free scalar theory, of

weight n+ k+ l, with spin (JL3 , J
R
3 ) = (k+l

2 , k−l2 ). For the generating function

Zz,wn (s, x, y) which encodes all k, l, we have

Zz,wn (s, x, y) = sn
∑

Λ1`n
ZSH(s

√
xy,Λ1)ZSH(s

√
x

y
,Λ1) (5.116)

where Λ1 is a partition of n and we can use the formula (5.114).

We can in fact see that the above discussion is consistent with the Taylor

expansion formula (5.79). We can recognise this formula as Tr(P[n]a
L0bL0)

where the trace is being taken in

∞⊕
k,l=0

Symk+l(VH) (5.117)

which can be identified with a tensor product of discrete irreps of SL(2), which

we may denote as V ⊗nSL(2) ⊗ V
⊗n
SL(2); one factor corresponds to the z variables

and another to the w variables. P[n] is the projector for the symmetric irrep

of Sn. Factor out the trace into the separate SL(2) factors to get (see (5.73))

1

n!

∂nF2

∂tn

∣∣∣∣
t=0

=Tr(P[n]a
L0bL0) (5.118)

=
∑

Λ1`n
Tr(PΛ1a

L0)Tr(PΛ1b
L0) (5.119)

Note also that

1

1− a
ZSH(a,Λ) = Tr(PΛa

L0) (5.120)

which follows by recognising that the raising operators of the SL(2) represen-

tation on z1 · · · zn can be separated into a weight one centre of mass coordinate

and the differences which span the hook representation of Sn . This demon-
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strates the equivalence between the Taylor expansion formula (5.79) and the

Sn× Sk × Sl formula (5.114). It is important to note that this is a non-trivial

equivalence: both formulae are self-contained ways of calculating the multi-

plicities.

We have thus re-expressed our earlier Taylor expansion in a way that makes

the representation theory content of the counting manifest. This structure in

the counting problem can be used to provide an explicit construction formula.

First we need to decompose the Z and W polynomials into definite Sn irreps.

The projector onto irrep r from the tensor product of k copies of the hook is

P r,k =
1

n!

∑
σ∈Sn

χr(σ)Γk(σ) (5.121)

We also need the projection onto the symmetric irrep

P k+l =
1

n!

∑
σ∈Sn

Γk+l(σ) (5.122)

Using these two projectors, the polynomials corresponding to primaries con-

structed using two holomorphic variables are now given by

∑
A

PA(z, w)~nA = P k+l
∑
r`n

(P r,l × P r,k)Z⊗kW⊗l (5.123)

where ~nA are unit vectors inside the carrier space of ⊗k+l and PA(z, w) are

the polynomials we want. In fact, the construction formula given in (5.123)

constructs a larger class of polynomials than those counted in (5.71). This is

because the polynomials counted in (5.71) are extremal and hence they are

annihilated by JR+ . We will return to this point in the discussion below. The

construction formula that has been sketched above can easily be implemented

numerically. To implement (5.123), we need the projector onto irrep r in the

space obtained by taking the tensor product of k copies of the hook

P ra1···ak,b1···bk =
1

n!

∑
σ∈Sn

χr(σ)Γk(σ)a1a2···ak,b1b2···bk (5.124)
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and we need the projection onto the symmetric irrep

Pa1···an,b1···bn =
1

n!

∑
σ∈Sn

Γk(σ)a1···an,b1···bn (5.125)

We find that (5.123) is now given by

∑
A

PA(z, w)~nAe1···ek+l
= Pe1···ek+l,a1···ak,c1···clP

r
a1···ak,b1···bkP

r
c1···cl,d1···dlZ

(b1) · · ·Z(bk)W (d1) · · ·W (dl)

(5.126)

where ~nA are unit vectors and PA(z, w) are the polynomials we want. To start,

consider k = l = 1. We find

P̃e1e2 = (−w3(z1 + z2 − 2z3) + w1(2z1 − z2 − z3)− w2(z1 − 2z2 + z3))


1

0

0

1


(5.127)

so that the invariant polynomial is

P (z, w) = −w3(z1 + z2 − 2z3) + w1(2z1 − z2 − z3)− w2(z1 − 2z2 + z3)

(5.128)

This polynomial is not extremal. This is easily verified by computing

−JR+P (z, w) = zi
∂

∂wi
P (z, w) = (z1 − z2)2 + (z1 − z3)2 + (z2 − z3)2 (5.129)

so that this is another state in the multiplet of the k = 2 primary we built in

the last section.

To focus on the extremal polynomials counted in (5.71) we must implement

the constraint that these polynomials are annihilated by JR+ . Towards this

end, note that the polynomials in Z, W carry a representation of SU(2)R,

so that we can further decompose the polynomials according to their SU(2)R
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quantum numbers. Z, W form an SU(2) doublet with Z the +1
2 state and W

the −1
2 state. There is an action of Sk+l on these polynomials that commutes

with SU(2)R. This Sk+l action acts to permute the W (a) and Z(a) factors.

Denote the matrix representing σ ∈ Sk+l by Γ(σ). This rep is generated by the

adjacent permutations which are easy to build. Towards this end, note that

swapping two factors in the tensor product is accomplished by the permutation

P which obeys Px⊗ y = y ⊗ x, i.e. we have

P


x1y1

x1y2

x2y1

x2y2

 =


x1y1

x2y1

x1y2

x2y2

 ⇒ P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (5.130)

Using the adjacent permutations we can construct any Γ(σ) and then any

projector

KR =
1

(k + l)!

∑
σ∈Sk+l

χR(σ)Γ(σ) (5.131)

with χR(σ) a symmetric group character. The label R is a Young diagram

with at most 2 rows. The spin of the SU(2) irrep that KR projects to is given

by (R1 − R2)/2 where R1 and R2 are the lengths of the rows of R. As an

example, consider k = 2 = l. The rep of S4 we need is generated by (1 is the

2× 2 identity)

Γ((12)) = P ⊗ 1⊗ 1 Γ((23)) = 1⊗ P ⊗ 1 Γ((34)) = 1⊗ 1⊗ P (5.132)

To construct the primary corresponding to s7x2 we need to project on the

SU(2)R irrep with spin zero. This is accomplished by using the projector

Ka1a2a3a4,b1b2b3b4 =
1

4!

∑
σ∈S4

χ (σ)Γa1a2a3a4,b1b2b3b4(σ) (5.133)

It is simple to compute
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Ka1a2a3a4,b1b2b3b4P̃b1b2b3b4 = (w1(z2 − z3) + w2(z3 − z1) + w3(z1 − z2))2



0

0

0
4
3

0

−2
3

−2
3

0

0

−2
3

−2
3

0
4
3

0

0

0


(5.134)

Thus the invariant polynomial is

P (z, w) = (w1(z2 − z3) + w2(z3 − z1) + w3(z1 − z2))2 (5.135)

By inspection it is obvious that this polynomial obeys the conditions (5.31)

and further that it is a highest weight of SU(2)R, i.e JR+ (z, w) = 0. The

above polynomial suggests a natural generalization: consider the family of

polynomials indexed by the integer n

Ψn =

(
w(3)(z̄(2) − z̄(1)) + w(2)(z̄(1) − z̄(3)) + w(1)(z̄(3) − z̄(2))

)2n

(5.136)

It is obvious that they obey (5.31) and hence that these polynomials do cor-

respond to primary operators. It is also clear that they are extremal, i.e.

J+Ψn = 0. These primaries have spin [2n, 0] and dimension ∆ = 3 + 4n. The

translation into the free field language is
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O∆=4n+3
[2n,0] =

2n∑
r=0

2n−r∑
s=0

r∑
t=0

s∑
u=0

2n−r−s∑
v=0

(2n)!(−1)t+u+v

(r − t)!t!(s− u)!u!(2n− r − s− v)!v!
×

(5.137)

(P 2n−r−s
w P t+s−uz̄ φ)(P swP

r−t+v
z̄ φ)(P rwP

2nu−r−s−v
z̄ φ)

The polynomials we have constructed in (5.123) obey all of the conditions

spelled out in (5.31). In fact, they again obey an even stronger linear condition

∂z̄IP (~z, ~w) = 0 = ∂wIP (~z, ~w) (5.138)

which imply the Laplacian constraint. As a result, taking all possible values

of k, l we find that the polynomials PA(z, w) are again a finitely generated

polynomial ring. This is a consequence of the Leibnitz rule for the derivatives

of a product of functions. The ring of polynomials that correspond to extremal

primaries is the polynomial ring of holomorphic functions for

(C2)n/(C2 × Sn) (5.139)

In (5.82), we have computed the Hilbert series for the polynomials in two

holomorphic variables, that correspond to extremal primary operators built

using two scalar fields. Using generalities about Hilbert series for algebraic

varieties (see [52, 53] for applications in the context of moduli spaces of SUSY

gauge theories), we know that if the ring is generated by h homogeneous

elements of positive degrees d1, · · · dh, then the Hilbert series is a rational

fraction

HS(t) =
Q(t)∏h

i=1(1− tdi)
(5.140)

where Q is a polynomial with integer coefficients. Thus, we see from (5.82)

that for n = 3 the polynomials PA(z, w) are a finitely generated polynomial

ring with 4 generators and one relation and that this space of polynomials

is a complete intersection and it is 3 dimensional. Using this Hilbert series

and the explicit constructions described above, we can identify the generators

(zij = zi − zj)
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G1 = (z12)2 + (z13)2 + (z23)2 ↔ s2xy (5.141)

G2 = (z13 + z23)(z31 + z21)(z12 + z32)↔ s3
√
x3y3 (5.142)

G3 =

∣∣∣∣∣∣∣∣
w1 w2 w3

z1 z2 z3

1 1 1

∣∣∣∣∣∣∣∣
2

↔ s4x2 (5.143)

G4 =

∣∣∣∣∣∣∣∣
z2

1 z2
2 z2

3

z1 z2 z3

1 1 1

∣∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣∣
w1 w2 w3

z1 z2 z3

1 1 1

∣∣∣∣∣∣∣∣↔ s5x
5
2 y

3
2 (5.144)

of this ring. Consider the last generator above: either of the determinants

being multiplied is antisymmetric under permuting 1, 2 or 1, 3 or 2, 3 so that

the product is symmetric. The relation obeyed by these generators is easily

identified

27(G4)2 +G3

(
(G2)2 − 1

2
(G1)3

)
= 0 (5.145)

Once again the ring structure exhibited by the polynomials implies a genuinely

new structure for the extremal primary operators that was not previously rec-

ognized. The Hilbert series in more complicated situations encodes detailed

information about the generators of the ring, relations between these genera-

tors, relations between the relations and so on. An example of this structure

is given in Appendix I.

The Hilbert series we have computed so far exhibit a palindromic property

of the numerators. This can be verified for Zz,w3 (s, x, y) and Zz,w4 (s, x, y). A

general property of the numerators
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Qn(s, x, y) =
D∑
k=0

ak(x, y)sk (5.146)

is that aD−k(x, y) = ak(x.y). A theorem due to Stanley[54] suggests that this

palindromic property of the numerators implies the Calabi-Yau property of the

underlying orbifolds. It is fascinating that non-trivial properties of the combi-

natorics of primary fields in four dimensional scalar field theory is related to

the geometry of Calabi-Yau orbifolds (5.139). Motivated by this connection,

we will prove this palindromic property of the numerators in the next section.

To obtain Gz,wn (s, x, y) from Zn(s, x, y), we have kept only the highest weight

operator (under SU(2)) from a complete spin multiplet of primary operators.

Geometrically, this can be viewed as modding out by the action of G+, gen-

erated by the SU(2) raising operator J+ , i.e. G+ is the unipotent group of

upper triangular 2 × 2 matrices with 1 on the diagonal. Consequently, the

Hilbert series Gn(s, x, y) is the polynomial ring of functions for

(C2)n

(C2 ×G+ × Sn)
(5.147)

5.4.3 Palindromy properties

The palindromic property of the Hilbert series can be stated as follows

Zz,wn (q−1
1 , q−1

2 ) = (q1q2)n−1Zz,wn (q1, q2) (5.148)

In this section we will prove that our Hilbert series Zz,wn (q1, q2) do indeed enjoy

this transformation property.

Our starting point is the formula

Zz,wn (q1, q2) = sn
∑
Λ`n

ZSH(q1,Λ)ZSH(q2,Λ) (5.149)

where q1 = s
√
xy, q2 = s

√
x
y . This has the property Zz,wn (q1, q2) = Zz,wn (q2, q1).
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The exchange of q1, q2 amounts to the inversions of y. Now, observe that

ZSH(q−1,Λ) = (−q)n−1ZSH(q,ΛT ) (5.150)

This is easily demonstrated using the explicit formula (5.114) and the identity

∑
b

hb =
1

2

(∑
i

ci(ci + 1) +
∑
i

ri(ri + 1)

)
− n (5.151)

=
1

2

(∑
i

c2
i −

∑
i

r2
i

)

Here ci is the length of the i’th column and ri is the length of i’th row. Also

note that the row lengths of ΛT are the column lengths of Λ and vice versa.

The identity can be understood as follows. As we sum over hook lengths, for

each column of length ci we have a contribution to the sum of 1+2+ · · ·+ci as

we start from the bottom and go up to the top. For each row, we can similarly

sum 1 + 2 + · · ·+ ri, but this over counts 1 for each box. Hence the identity.

Using this result

Zz,wn (q−1
1 , q−1

2 ) =sn(q1q2)n−1
∑
Λ`n

ZSH(q1,Λ
T )ZSH(q2,Λ

T ) (5.152)

=sn(q1q2)n−1
∑
Λ`n

ZSH(q1,Λ)ZSH(q2,Λ)

=(q1q2)n−1Zz,wn (q1, q2)

In the last step, we used the fact that transposition is a symmetry of the set

of Young diagrams. Summing over ΛT is the same as summing over Λ.

The Hilbert series Gz,wn (s, x, y) also exhibit the palindromy property. We know

Zz,wn (s−1, x−1, y−1) = s2n−2xn−1Zz,wn (s, x, y) (5.153)

Also (CCW for counterclockwise and CW for clockwise)

Gz,wn (s, x, y) =
1

2πi

∮
CCW

dz

(
1− 1

z2

)
Zz,wn (s, x, z2)

1

z −√y
(5.154)
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We will study
√
yGz,wn (s, x, y) which can be written in two equivalent ways

√
yGz,wn (s, x, y) =

1

2πi

∮
CCW

dz

(
1− 1

z2

)
Zz,wn (s, x, z2)

√
y

z −√y
, (5.155)

since the integrand doesn’t have a simple pole at z = 0, we perform the

following manipulation,

√
yGz,wn (s, x, y) =

1

2πi

∮
CCW

dz

(
1− 1

z2

)
Zz,wn (s, x, z2)

√
y

z −√y
, (5.156)

=
1

2πi

∮
CCW

dz

(
1− 1

z2

)
Zz,wn (s, x, z2)

z

z −√y

Both of the representations will be needed below. Now, study

1
√
y
Gz,wn (s−1, x−1, y−1) =

1

2πi

∮
CCW

dz

(
1− 1

z2

)
Zz,wn (s−1, x−1, z2)

1√
y

z − 1√
y

(5.157)

=
1

2πi

∮
CCW

dz

(
1− 1

z2

)
Zz,wn (s−1, x−1, z2)

1

z
√
y − 1

Now change integration variables from z to w = 1
z to find

1
√
y
Gz,wn (s−1, x−1, y−1) =

1

2πi

∮
CCW

dw

w2

(
1− w2)Zz,wn (s−1, x−1, w−2)

w
√
y − w
(5.158)

=
s2n−2xn−1

2πi

∮
CCW

dw

w2

(
1− w2)Zz,wn (s, x, w)

w

w −√y

=s2n−2xn−1√yGz,wn (s, x, y)

5.4.4 Gorenstein, Calabi-Yau and top-forms

In this section we would like to return to the issue of the Calabi-Yau property

for the permutation orbifolds relevant for the combinatorics of the primaries.

Stanley’s theorem[54] tells us that a Cohen Macauly ring that is an integral

domain and has a palindromic Hilbert series, is a Gorenstein ring. Further,

since our rings are defined over an affine space the canonical bundle in this

case is trivial, establishing the Calabi-Yau property. According to [64], the
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rings that we consider are Cohen Macaulay because they are the quotient of a

Noetherian ring (C2)n/C2 by a reductive group Sn. However, in general, the

relevant rings are not an integral domain. It is therefore not clear that we

can apply Stanley’s theorem to conclude that our permutation orbifolds are

Calabi-Yau.

An alternative approach to demonstrating the Calabi-Yau property, is to con-

struct a nowhere vanishing top form. To motivate the general formula, it is

useful to start with some simple cases. For n = 2 the top form

Ω(n−1)(dz) = dz12 = dz1 − dz2 (5.159)

is clearly a translation invariant form on C2 so it is clearly a top form on the

quotient C2/C. It is odd under S2 . For n = 3, a translation invariant, Sn-odd

top form is given by

Ω(n−1)(dz) = dz12 ∧ d23 = dz1 ∧ dz2 − dz1 ∧ dz3 + dz2 ∧ dz3 (5.160)

For general n, we have

Ω(n−1)(dz) =dz12 ∧ dz23 ∧ · · · ∧ dzn−1,n =
n∑
k=1

I∂kdz1 ∧ dz2 ∧ · · · ∧ dzn

(5.161)

The operator I∂k removes the dzk in the n-form and leaves an (n − 1)-form,

with a sign (−1)k−1. In terms of these, the top forms for the orbifolds relevant

for the extremal primary primary are

Ω(n−1)(dz) ∧ Ω(n−1)(dw) (5.162)

5.5 Vector Model Primaries: Symmetry breaking

S2n → Sn[S2]

Up to now we have considered a single real scalar field. However, the methods

we have developed readily apply in more general settings. For applications to

holography[27], it is natural to consider the free gauged O(N) vector model,

conjectured to be dual to higher spin gravity[65]. The scalar field is now an
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O(N) vector and primaries must be O(N) gauge invariants. In this section

we will explain how the techniques we have developed in this chapter apply to

the counting and construction of primaries in the gauged O(N) vector model.

To obtain a gauge invariant, all vector indices must be contracted. Thus, to

construct a primary, we now distribute the derivatives among

φI1φI1φI2φI2 · · ·φInφIn (5.163)

where the vector indices I are summed from 1 to N . We no longer have an

S2n symmetry acting to swap the bosonic fields. The symmetry is broken to

a smaller group which can swap the fields in a given contracted pair, or it can

swap the pairs. This symmetry group is the wreath product Sn[S2]. Thus,

we don’t want to project V ×2n
+ onto the trivial of S2n (i.e. Sym(V ⊗2n

+ )), we

rather want to project onto the trivial of Sn[S2]. We will restrict attention

to the case where 2n < N . This avoids subtleties due to finite N relations,

associated with the stringy exclusion principle in the context of matrix invari-

ants. These can be dealt with using a Young diagram basis, which is left for

a future discussion.

We know the character for the fundamental representation V+ of SO(4, 2). To

repeat the analysis we carried out for the free scalar, we need the character for

the tensor product of 2n fields, after projecting to the trivial of Sn[S2]. This

gives

χHn(s, x, y) =
1

2nn!

∑
σ∈Sn[S2]

TrV ⊗2n(σM⊗2n) (5.164)

where M is again given by s∆xJ
L
3 yJ

R
3 . This is equal to

χHn(s, x, y) =
∑
p`2n

ZSn[S2]
p

∏
i=1

(TrM i)pi (5.165)

=
∑
p`2n

ZSn[S2]
p

∏
i=1

(∑
a

mi
a

)pi

where ma are the eigenvalues of M and Z
Sn[S2]
p is the cycle index, which gives

the number of permutations in Sn[S2] with cycle structure specified by pi. The

generating function for these cycle indices is known (see e.g. [59]) and can be
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used to find the following generating function for the characters

∞∑
n=0

tnTrHn(M) =
∏
a

1√
1− tm2

a

∏
a6=b

1√
(1− tmamb)

(5.166)

=
∏
a

1√
1− tm2

a

∏
a>b

1

(1− tmamb)

We can now argue as we did in section 3. Using the known eigenvalues of M

the generalization of (5.42) is given by

Z(s, x, y) =
∞∑
n=0

tnχHn(s, x, y) (5.167)

=
∞∏
q=0

q
2∏

a=− q
2

q
2∏

b=− q
2

1√
1− ts2q+2x2ay2b

×
∞∏
q2=0

q2
2∏

a2=− q2
2

q2
2∏

b2=− q2
2

∏
(q1,a1,b1)<(q2,a2,b2)

1

(1− tsq1+q2+2xa1+a2yb1+b2)

This can be simplified further. We can order the triples (q, a, b) as follows:

The inequality (q1, a1, b1) < (q2, a2, b2) means: q1 < q2 or q1 = q2, a1 < a2 or

q1 = q2, a1 = a2, b1 < b2. Alternatively, we can write

Z(s, x, y) =
∞∏
q=0

q
2∏

a=− q
2

q
2∏

b=− q
2

1√
1− ts2q+2x2ay2b

(5.168)

×
∞∏
q2=0

q2
2∏

a2=− q2
2

q2
2∏

b2=− q2
2

∞∏
q1=0

q2
2∏

a1=− q2
2

q2
2∏

b1=− q2
2

1

(1− tsq1+q2+2xa1+a2yb1+b2)

We can now define the generating function (here we take n > 1 to avoid

complications with null states)

G
O(N)
2n (s, x, y) =

∞∑
d=0

∑
j1,j2

N
O(N)
[2n+d,j1,j2]s

2n+dxj1xj1 (5.169)

which is given by
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G
O(N)
2n (s, x, y) =

[(
1− 1

x

)(
1− 1

y

)
Z2n(s, x, y)

]
≥

(5.170)

where

Z2n(s, x, y) =χHn(s, x, y)

(
1− s√xy

)(
1− s

√
x

y

)(
1− s

√
y

x

)(
1− s
√
xy

)
(5.171)

=
∞∑
d=0

∑
j1,j2

N
O(N)
[2n+d,j1,j2]s

2n+dχj1(x)χj2(y)

For n = 1 we need to subtract out the null states that are present since the

primaries being counted include conserved higher spin currents.

We can again specialize to the counting of extremal primaries. For example,

the leading twist primaries are counted by G
O(N),max
2n (s, x, y) where

∞∑
n=0

tnG
O(N),max
2n (s, x, y) =

∞∑
n=0

tn(1− s√xy)χ
O(N),max
2n (s, x, y) (5.172)

∞∑
n=0

χ
O(N),max
2n (s, x, y)tn =

∞∏
q=0

1√
1− ts2q+2xqyq

∞∏
q1,q2

1√
1− tsq1+q2+2x

q1+q2
2 y

q1+q2
2

(5.173)

It is now straightforward to obtain the Hilbert series for leading twist primaries

built using 4 fields

G
O(N),max
4 (s, x, y) =

s4(1− s6x3y3)

(1− s2xy)2(1− s3x
3
2 y

3
2 )(1− s4x2y2)

(5.174)

This shows that there are 4 generators and a single relation, that this space of

operators is a complete intersection and it is 3 dimensional. In a similar way

we have
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G
O(N),max
6 (s, x, y) =

s6(1− s√xy + s3x
3
2 − s7x

7
2 y

7
2 + s9x

9
2 y

9
2 − s10x5y5)

(1− s√xy)(1− s2xy)2(1− s3x
3
2 y

3
2 )(1− s4x2y2)(1− s6x3y3)

(5.175)

The Hilbert series for these primaries are again plindromic. For the case of

one-complex variable that we are discussing, we have

G
O(N),max
2n (q) = s2n

∑
Λ`2n,Λeven

ZSH(q,Λ) (5.176)

Using this formula and (5.150) we find

G
O(N),max
2n (q−1) =s2n

∑
Λ`2n,Λeven

ZSH(q−1,Λ) (5.177)

=− q2n−1s2n
∑

Λ`2n,Λeven

ZSH(q,ΛT )

=− (q)2n−1G
O(N),max
2n (q)

This demonstrates the palidromy property for the Hilbert series associated to

the orbifold

(C)2n/(C× Sn[S2]) (5.178)

Now consider the two complex variable case

Z(s, x, y) =
∞∏
q=0

1√
1− ts2q+2xqyq

∞∏
q1,q2

1√
1− tsq1+q2+2x

q1+q2
2 y

q1+q2
2

(5.179)

=
∞∑
t=0

tnχz,wHn (s, x, y)

It is natural to consider the generating functions

ZO(N),zw
n (s, x, y) = (1− s√xy)

(
1− s

√
x

y

)
χz,wHn (s, x, y) (5.180)
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and

GO(N),zw
n =

[(
1− 1

y

)
ZO(N),zw
n (s, x, y)

]
≥

(5.181)

A straightforward computation gives

Z
O(N),zw
4 (s, x, y) =

g(s, x, y)

(1− s
√

x
y )4(1− s√xy)4(1 + s

√
x
y )2(1 + s

√
xy)2(1 + s2 x

y )(1 + s2xy)

(5.182)

where

g(s, x, y) =s4
(

1− (s
√
x+ s3x

3
2 + s5x

5
2 + s7x

7
2 )(
√
y +

1
√
y

) (5.183)

+ (s8x4 + s4x2 + 2s2x+ 2s6x3) + (s4x2 + s2x+ s6x3)(y + 1 +
1

y
)

)

This result can be recovered by using the generating function

s4
∑

Λ1,Λ2

(C( ,Λ1,Λ2) + C( ,Λ1,Λ2))ZSH(Λ1, s
√
xy)ZSH(Λ2, s

√
x

y
)

(5.184)

Recall that

ZSH(Λ, q) = (1− q)q
∑

i

ci(ci−1)

2

∏
b

1

(1− qhb)
(5.185)

Formula (5.184) is a consequence of the fact that an irrep Λ of S2n contains

the trivial of Sn[S2] with multiplicity 1. For the example given above, using

the fact that the non-zero terms are
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C( ,Λ1,Λ2) = λΛ1,Λ2 (5.186)

C
(

, ,
)

= C
(

, ,
)

= 1

C
(

, ,
)

= C
(

, ,
)

= 1

C
(

, ,
)

= C
(

, ,
)

= 1

C
(
, ,

)
= C

(
, ,

)
= 1

C
(

, ,
)

= 1

we obtain complete agreement between (5.182) and (5.180). The geometries

associated to Z
O(N),zw
2n (s, x, y) are

(C2)n

(C2 × Sn[S2])
(5.187)

and, after we impose the G+ condition, the geometries for G
O(N),zw
2n (s, x, y)

are

(C2)2n

(G+ × Sn[S2])
(5.188)

G+ is the unipotent group of upper trianglar 2 × 2 matrices with 1 on the

diagonal. For the 2-complex variables case, we have the Hilbert series

ZO(N),zw
n (q1, q2) = s2n

∑
Λ1,Λ2`2n

∑
Λ`2n,Λeven

C(Λ1,Λ2,Λ)ZSH(q1,Λ1)ZSH(q2,Λ2)

(5.189)

where C(R,S, T ) is the Kronecker coefficient giving the number of Sn invari-

ants in the tensor product of three irreps R,S, T of Sn. Applying the inversion
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Z
O(N),zw
2n (q−1

1 , q−1
2 ) =s2n

∑
Λ1,Λ2`2n

∑
Λ`2n,Λeven

C(Λ1,Λ2,Λ)ZSH(q−1
1 ,Λ1)ZSH(q−1

2 ,Λ2)

(5.190)

=s2n(q1q2)2n−1
∑

Λ1,Λ2`2n

∑
Λ`2n,Λeven

C(Λ1,Λ2,Λ)ZSH(q−1
1 ,ΛT1 )ZSH(q−1

2 ,ΛT2 )

=s2n(q1q2)2n−1
∑

Λ1,Λ2`2n

∑
Λ`2n,Λeven

C(ΛT1 ,Λ
T
2 ,Λ)ZSH(q−1

1 ,Λ1)ZSH(q−1
2 ,Λ2)

=s2n(q1q2)2n−1
∑

Λ1,Λ2`2n

∑
Λ`2n,Λeven

C(Λ1,Λ2,Λ)ZSH(q1,Λ1)ZSH(q2,Λ2)

=(q1q2)2n−1ZO(N),zw
n (q1, q2)

In going from the second to third line, we renamed Λ1 → ΛT1 , Λ2 → ΛT2 . In

going from the third to fourth line, we used an invariance of the Kronecker

multiplicity

C(Λ1,Λ2,Λ) = C(ΛT1 ,Λ
T
2 ,Λ) (5.191)

which follows from

C(Λ1,Λ2,Λ) =
1

(2n)!

∑
σ∈S2n

χΛ1(σ)χΛ2(σ)χΛ(σ) (5.192)

and

χΛT (σ) = (−1)σχΛ(σ) (5.193)

where (−1)σ is the parity of σ. The formula (5.190) demonstrates that the

palindromy property of the Hilbert series for the counting of vector model

primaries.

5.6 Matrix Model Primaries

Another interesting generalization of the single real scalar field, is to a matrix

scalar. We gauge the free theory. The net effect is that we look for primary

operators with all indices contracted. There are many ways that the indices
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can be contracted, corresponding to the different possible multitrace structures

that can be written down. Thus, generalizing to the matrix scalar introduces

an interesting non-trivial structure to the problem.

The large N counting of gauge invariant functions of a single matrix, is

achieved by integrating[66]

Z(x) =

∫
dUe

∑
i
xi

i
(trU i)(trU†i) =

∞∏
i=1

1

(1− xi)
(5.194)

For multi-matrices, the large N counting is [66]

Z(xi) =

∫
dUe

∑
i

(
∑

a
xia)

i
(trU i)(trU†i) =

∞∏
i=1

1

(1−
∑M
a=1 x

i
a)

(5.195)

where M is the number of matrices in the model. Specializing to the 2-matrix

case, this is

Z(x, y) =
∞∏
i=1

1

(1− xi − yi)
(5.196)

For the matrix scalar, we have matrix fields

∂l,mφ
i
j (5.197)

l denotes a symmetric traceless irrep of SO(4) and m runs over the states in

this irrep. There are known methods that can be used to write diagonal bases

for the local operators of this theory[50, 67]. For the large N counting of gauge

invariants built from derivatives of a single matrix, we have [68]

Z(t, s, x, y) =

∫
dUe

∑∞
i

∑∞
q=0

∑ q
2
aq,bq=− q2

(ts(1+q)xaq ybq )i

i
(trU i)(trU†i)

(5.198)

Note that this can also be written as

Z(t, s, x, y) =

∫
dUe

∑
i
ti

i
χV+ (si,xi,yi)(trU i)(trU†i) (5.199)
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By repeating steps similar to the ones we did for the integral encountered in

case of multi-matrices, we get

Z(t, s, x, y) =
∞∏
i=1

1

(1−
∑∞
q=0

∑ q
2

aq ,bq=− q2
si+qixiaqyibq)

(5.200)

To simplify this further, we will derive an identity quoted in [66]. The state

space of a single scalar V+ is obtained by acting on the ground state with

products of the operators Pµ . This is a 4D irrep of SO(4) = SU(2)× SU(2)

with spins (1/2, 1/2). The equation of motion says that PµPµ acting on the

ground state is zero. An immediate consequence is that the independent states

in V+ generated by q copies of P transform as the symmetric traceless irrep

of SO(4), corresponding to the Young diagram with a single row of length q.

This irrep of SO(4) is the (q/2, q/2) irrep of SU(2)× SU(2). It immediately

follows that

χV+(s, x, y) =trV+(sDxJLyJR) (5.201)

=s
∞∑
q=0

sqχq/2(x)χq/2(y)

=s
∞∑
q=0

sq

q
2∑

aq=− q2

xaq

q
2∑

bq=− q2

ybq

This character was used above in (5.198). The state space obtained by acting

with all the Pµ’s, without setting PµPµ = 0 has character

χṼ+
(s, x, y) = trV+(sDxJLyJR) = s

∞∑
p=0

∞∑
q=0

s2p+qχq/2(x)χq/2(y) (5.202)

The p summation is over the number of powers of P 2. A basis in Ṽ+ can be

given by multiplying powers of P 2 with traceless products. Doing the sum

over p, we find

χṼ+
(s, x, y) = s(1− s2)−1χV +(s, x, y) (5.203)

so that
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χV +(s, x, y) = s−1(1− s2)χṼ+
(s, x, y) (5.204)

Now by thinking about Ṽ+ as isomorphic to the Fock space generated by four

oscillators Pµ (which transform in the (1/2, 1/2) of SU(2)×SU(2)) it is evident

that

χṼ+
(s, x, y) =

s

(1− s√xy)(1− s
√

x
y )(1− s√

xy )(1− s
√

y
x)
≡ sP (s, x, y)

(5.205)

and so we find

χV +(s, x, y) = (1− s2)P (s, x, y) = s
∞∑
q=0

sq

q
2∑

aq=− q2

xaq

q
2∑

bq=− q2

ybq (5.206)

Thus, we have the identity

∞∑
q=0

sq

q
2∑

aq=− q2

xaq

q
2∑

bq=− q2

ybq =
−(s− s−1)

(1− s√xy)(1− s
√

x
y )(1− s√

xy )(1− s
√

y
x)

(5.207)

Using this identity, we can now rewrite (5.200) as

Z(s, x, y) =
∞∏
i=1

(
1 +

(ts)i(si − s−i)

(1− si
√
xiyi)(1− si

√
xi

yi
)(1− si√

xiyi
)(1− si

√
yi

xi
)

)−1

(5.208)

=
∞∑
n=0

tnχn(s, x, y)

As we did above, we can define two primary generating functions as follows
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Zn(s, x, y) =
∑
∆

∑
j1,j2

N (n)
[∆,j1,j2]s

∆χj1(x)χj2(y) (5.209)

=χn(s, x, y)

(
1− s√xy

)(
1− sx

y

)(
1− sy

x

)(
1− s
√
xy

)

and

Gn(s, x, y) =
∑
∆

∑
j1,j2

N (n)
[∆,j1,j2]s

∆xj1yj2 (5.210)

=

[(
1− 1

x

)(
1− 1

y

)
Zn(s, x, y)

]
≥

HereN (n)
[∆,j1,j2] counts the number of primaries of dimension ∆ and spins (j1, j2)

that can be constructed using n matrix fields. We can again specialize the

counting to counting leading twist primaries, or to count extremal primaries.

The relevant generating function for the counting of extremal primaries is

given by

Zzwn (s, x, y) = sn
∑

Λ1,Λ2`n

∑
R,Λ`n

ZSH(s
√
xy,Λ1)ZSH(s

√
x

y
,Λ2)C(Λ1,Λ2,Λ)C(R,R,Λ)

(5.211)

This follows from the general counting of matrix gauge invariants in the case

where the matrices Xa transform under some global symmetry group G, given

in [50]. The resulting Hilbert series, for n = 3, is

Zz,w3 =
s3Y (s, x, y)

(1− s
√

x
y )2(1 + s

√
x
y )(−1 + s

√
xy)2(1 + s

√
xy)(s2 x

y + s
√

x
y + 1)(1 + s

√
xy + s2xy)

(5.212)

Y (s, x, y) =3 + 3s6x3 + (s
√
x+ s5x

5
2 )

(
1
√
y

+
√
y

)
+ (s2x+ s4x2)

(
1

y
+ 5 + y

)
(5.213)

+ s3x
3
2

(
1

y
3
2

+
5
√
y

+ 5
√
y + y

3
2

)
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This counts the total number of primaries we can build from 3 matrix fields.

We can refine this counting by specifying the trace structure. Schematically,

the primaries we study have the form

O =
∑
~n,~m

c~n,~m∂
n1
z1 ∂

m1
w1
φi1iσ(1)

∂n2
z2 ∂

m2
w2
φi2iσ(2)

∂n3
z3 ∂

m3
w3
φi3iσ(3)

∣∣∣∣
zk=z,wk=w

(5.214)

i.e. they are specified by allowing derivatives to act on some gauge invariant

operator specified by the permutation σ ∈ Sn . After we translate to the

polynomial language, primaries are specified by polynomials in n variables zi

and wi, as well as by the trace structure, i.e. they are functions on the space

(C2)n

C2
× Sn (5.215)

These functions have to be invariant under an action of γ ∈ Sn

γ : (wI , zJ , σ)→ (wγ(I), Zγ(I), γ
−1σγ) γ ∈ Sn (5.216)

Modding out by this symmetry we find the primaries are functions on the

space

((C2)n × Sn)

(C2 × Sn)
(5.217)

We can also obtain a description by fixing a specific permutation, and then

dividing by those permutations γ that fix σ. Lets work out this description

for n = 3. For primaries obtained by acting with derivatives on Tr(φ)3, σ =

(1)(2)(3) which is left invariant by γ ∈ S3. Thus, we need to consider

(C2)3

(C2 × S3)
(5.218)

We need to project to the trivial of S3 and hence
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ZzwTr(φ)3 = s3
∑
Λ`3

ZSH(s
√
xy,Λ)ZSH(s

√
x

y
,Λ) (5.219)

=

s3

(
1 + s2x+ s4x2 + s6x3 + s3x

3
2

(
1√
y +
√
y

))
(1− s√xy)2(1 + s

√
xy)2(−1 + s

√
xy)2(s2 x

y + s
√

x
y + 1)(1 + s

√
xy + s2xy)

For primaries obtained by acting with derivatives on Tr(φ2)Tr(φ), we can

choose σ = (12)(3) which is left invariant by S2 × S1. Thus we need to

consider

(C2)3

(C2 × S2 × S1
(5.220)

where S2 contains permutations of (z1, w1) and (z2, w2). Thus, we need to

project to the trivial ( , ) of the S2 × S1 subgroup. This representation is

subduced once by and once by . Thus

ZzwTr(φ2)Tr(φ) =s3ZSH(s
√
xy, ZSH(s

√
x

y
, ) + 2s3ZSH(s

√
xy, )ZSH(s

√
x

y
, )

(5.221)

+ s3ZSH(s
√
xy, ZSH(s

√
x

y
, ) + s3ZSH(s

√
xy, ZSH(s

√
x

y
, )

+ s3ZSH(s
√
xy, ZSH(s

√
x

y
, ) + s3ZSH(s

√
xy, ZSH(s

√
x

y
, )

+ s3ZSH(s
√
xy, ZSH(s

√
x

y
, )

=
s3(1 + s2x)

(1− s√xy)2(1 + s
√
xy)(1 + s

√
xy)2(1 + s

√
xy)

For primaries obtained by acting with derivatives on Tr(φ3), we can take

σ = (123) which is left invariant by Z3. Thus, we need to consider

(C2)3

(C2 × Z3)
(5.222)

where Z3 is the group comprising {1, (123), (132)}. We need to project to the

trivial of Z3. The trivial of Z3 is subduced once by and once by, . Thus
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Zzw(Trφ3) =s3ZSH(s
√
xy, ZSH(s

√
x

y
, ) + 2s3ZSH(s

√
xy, )ZSH(s

√
x

y
, )

(5.223)

+ s3ZSH(s
√
xy, ZSH(s

√
x

y
, ) + s3ZSH(s

√
xy, )ZSH(s

√
x

y
, )

+ s3ZSH(s
√
xy, ZSH(s

√
x

y
, )

=

s3

(
1 + s4x2 − (s

√
x+ s3x

3
2 )( 1√

y +
√
y) + s2x( 1

y + 3 + y)

)
(1− s

√
x
y )2(1− s√xy)2(s2 x

y + s
√

x
y + 1)(1 + s

√
xy + s2xy)

Note that

Zzw3 = ZzwTr(φ)3 + ZzwTr(φ2)Tr(φ) + ZzwTr(φ3) (5.224)

as it must be. The permutation quotient geometry which includes all trace

structures is

(C2)n × Sn
(C2 × Sn)

(5.225)

This has an SU(2) action. We can again look at functions which are anni-

hilated by J+. Let G+ be the subalgebra of GL(2,C) generated by J+. The

Hilbert series in this case is Gzwn . The algebra of functions annihilated by J+

corresponds to functions on

(C2)n × Sn
(C2 × Sn ×G+)

(5.226)

It is again possible to establish the palidromic property for the Hilbert series

relevant for the matrix case. In the matrix case, we have the counting function

Zzwn (q1, q2) = sn
∑

Λ1,Λ2`n

∑
R`n

C(Λ1,Λ2,Λ)C(R,R,Λ)ZSH(q1,Λ1)ZSH(q2,Λ2)

(5.227)

The symmetry under q1 ↔ q2, equivalently x → x, y → y−1 is clear. Now
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apply inversion

Zzwn (q−1
1 , q−1

2 ) =sn
∑

Λ1,Λ1`n

∑
R`n

C(Λ1,Λ2,Λ)C(R,R,Λ)ZSH(q−1
1 ,Λ1)ZSH(q−1

2 ,Λ2)

(5.228)

=sn(q1q2)n−1
∑

Λ1,Λ2`n

∑
R`n

C(Λ1,Λ2,Λ)C(R,R,Λ)ZSH(q1,Λ
T
1 )ZSH(q2,Λ

T
2 )

=sn(q1q2)n−1
∑

Λ1,Λ2`n

∑
R`n

C(ΛT1 ,Λ
T
2 ,Λ)C(R,R,Λ)ZSH(q1,Λ1)ZSH(q2,Λ2)

=sn(q1q2)n−1
∑

Λ1,Λ2`n

∑
R`n

C(Λ1,Λ2,Λ)C(R,R,Λ)ZSH(q1,Λ1)ZSH(q2,Λ2)

=(q1q2)n−1Zzwn (q1, q2).

5.7 Summary and Outlook

We mapped the algebraic problem of constructing primary fields in the quan-

tum field theory of a free scalar field φ in four dimensions to one of finding

polynomial functions on (R4)n subject to constraints involving Laplace’s equa-

tion on each factor, a condition of invariance under translations by the diagonal

R4 and an Sn symmetry related to the bosonic statistics of the elementary field

(5.31). By considering holomophic solutions to the Laplacian conditions, we

mapped the primary fields to functions on the complex orbifold

(C2)n/(C2 × Sn) (5.229)

We showed that this space has a palindromic Hilbert series and is Calabi-Yau.

We generalized the discussion to the quantum field theory of free vector fields

φji (x) in the large N limit and found that the orbifold

(C2)2n/(C2 × Sn[S2]) (5.230)

plays an analogous role. We established the palindromy property. We then

considered the free matrix scalar in four dimensions φji (x) again in the large

N limit. The orbifold is now
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((C2)n × Sn)/(C2 × Sn) (5.231)

We established the palindromy of the Hilbert series.

In this chapter we have focused on the explicit construction of extremal pri-

mary fields. However, the formulation of the problem of constructing gen-

eral primary fields given in (5.31), as a system of equations for harmonic

polynomal functions on (R4)n , should be useful beyond the extremal sector.

In this more general case, we have to include non-holomorphic solutions to

the harmonic constraints-solving this simultaneously with the symmetry and

translation constraints proves surprisingly tricky. In this case, we do not ex-

pect the ring structure of the extremal primaries to survive. Our preliminary

investigations indicate that this most general problem has a graph-theoretic

formulation, which will be interesting to exploit. At the level of counting

these primaries, we still have the full expressions for the so(4, 2) characters of

Symn(V+) which, once expanded in terms of irreducible representations, will

in principle yield the counting for the general case. However finding explicit

expressions analogous to (5.82) or (5.86) looks challenging. It would very

interesting to explore the possible application of the higher spin symmetries

and twistor space variables of [69, 70] in shedding light on this problem. It

is interesting to note that symmetric group representation theoretic questions

close to (but not identical) to the ones we have used have played a role in the

discussion of higher spin symmetries in [55]. Some recent mathematical results

on these symmetric group multiplicities are in [71]. A number of immediate

generalizations of the current work are: free fermions, gauge fields, the free

limit of QCD and supersymmetric theories. Some of the early constructions

of primary fields - in the SL(2) sector which is a special case of the extremal

operators we considered were done in the context of deep inelastic scattering

in QCD (see for example the review [72]). It will be fascinating to explore

QCD applications of the holomorphic primaries considered here. The explicit

enumeration and construction of superconformal primary fields in N = 4 SYM

will give a better understanding of the dual AdS5×S5 background. While the

map between branes and geometries in the half-BPS sector of the bulk and

the half-BPS states in N = 4 SYM[73, 74, 75] is reasonably well understood,

there are important open problems, most notably in the sector of sixteenth

BPS states [76] but also in the quarter and eighth-BPS sectors (some progress
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on branes states in these sectors is in [77, 78, 61, 79, 80, 81, 82, 83]). A

better understanding of operators with derivatives is a step in the direction

of a more complete picture of the duality map in general. The construc-

tion of holomorphic primaries for the 1-matrix case should admit, without

much diffculty, generalization to multi-matrix systems and more generally to

quiver theories by combining the methods of the present chapter with those of

[43, 50, 84, 85, 86, 87, 88]. Another natural direction is to consider correlators

involving the extremal primary fields and the determination of anomalous di-

mensions for these fields at the Wilson-Fischer fixed point using the techniques

of [18].
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Chapter 6

Counting and Construction of

Free Fermion Primary

Operators in CFT4

This chapter is basically an extension of the previous chapter. We extend

the analysis of the previous chapter to the fermion CFT. We follow the same

approach, using representation theory to derive a general generating function

for the number of primary operators constructed from using n-copies of the

left hand or right hand spinors. We use this generating function to obtain

the correct counting of primary operators. We then translate the problem of

constructing primary operators from n-copies of the fundamental spinor, into

a problem of determining a multi-variable polynomial that obeys a number

of algebraic and differential constraints. Focussing on extremal primaries we

find that these primary operators display the same Calabi-Yau geometries as

in the free field scalar operator case. The work carried out in this chapter has

been submitted for publication in [89].

6.1 Introduction

The remarkable success of the conformal bootstrap[90, 91, 92, 93] suggests that

algebraic structures present in conformal field theory (CFT) can profitably be

exploited to extract highly nontrivial information about the CFT. In the pa-

pers [41, 94] a systematic approach towards manifesting and exploiting some

of these algebraic structures was outlined. The key result is that the algebraic

structure of CFT defines a two dimensional topological field theory (TFT2)
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with SO(4, 2) invariance. Crossing symmetry is expressed as associativity of

the algebra of local CFT operators. A basic observation which is at the heart

of this result, is that the free four dimensional CFT of a scalar field can be

formulated as an infinite dimensional associative algebra. This algebra admits

a decomposition into linear representations of SO(4, 2), and is equipped with

a non-degenerate bilinear product. A concrete application of these ideas has

enabled a systematic study of primaries in bosonic free field theories in four

dimensions, for scalar, vector and matrix models[40, 19]. For closely related

ideas see [95].

We know from the AdS/CFT correspondence[1, 26, 25] that strongly cou-

pled CFTs have a dual holographic gravitational description. The combi-

natorics of the matrix model Feynman diagrams plays an important role in

holography. In this setting the TFT2 structure also appears as a powerful

organizing structure, explicating algebraic structures that were not previously

appreciated[42, 43, 44, 45]. Thus, it seems that the TFT2 idea is rich enough

to incorporate the algebraic structure emerging both from the conformal sym-

metry, and from the color combinatorics.

In this chapter we extend the study of [40, 19] by carrying out a system-

atic study of primaries in free fermion field theories in four dimensions. In

section 6.2 we obtain formulae for the counting of primary fields constructed

from n copies of the fundamental fermion, using the characters of represen-

tations of so(4, 2). For a beautiful discussion of these characters, see [17].

By specializing the particular classes of primaries, we can make the counting

formulae very explicit. These special classes of primaries obey extremality

conditions stated using relations between the charges under the Cartan sub-

group of SO(4, 2)). The construction of primary fields is then mapped to a

problem of determining multi-variable polynomials subject to a system of al-

gebraic and differential constraints. This relies on a function space realization

of the conformal algebra, which is explained in section 6.3. We give concrete

examples of polynomials obeying the constraints and the associated primary

operators. Finally, in the last section we verify that the Hilbert series for the

counting of extremal primaries are palindromic. The palindromy property of

Hilbert series is indicative that the ring being enumerated is Calabi-Yau. It

it interesting that palindromic Hilbert series also arise for moduli spaces of

supersymmetric vacua of gauge theories, as found in [52, 53].
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6.2 Counting Primaries

We enumerate the SO(4, 2) irreducible representations appearing among the

composite fields made out of n = 2, 3, · · · copies of a free chiral fermion field.

The fermions are Grassman fields, so there is a sign change when two fields are

swapped. Consequently, we should be taking the antisymmetric product of the

SO(4, 2) representations. Enumerating the primaries entails decomposing, the

antisymmetrized tensor product Asymn(W+) into irreducible representations,

where W+ = D[ 1
2
,0]+ in the notation of [17]. After obtaining a general formula

in terms of an infinite product, we specialize to primaries that obey extremality

conditions, that relate their dimension to their spin. For these primaries using

results from [50], we find simple explicit formulas for the counting.

6.2.1 Generalities

The basic formula we use in this section states

det(1 + tM) =
∞∑
n=0

tnχ(1n)(M) (6.1)

where χ(1n)(M) is the trace over the antisymmetrized product of n copies of

M . From formula (3.44) of [17] we know the character of a left handed Weyl

fermion is

χW+(s, x, y) =s
3
2 (χ 1

2
(x)− sχ 1

2
(y))P (s, x, y)

=s
3
2

∞∑
q=0

sqχ q+1
2

(x)χ q
2
(y)

=TrW+(M) (6.2)

with M = sDxJ3,LyJ3,R . It is straightforward to verify that

det(1 + tM) =
∞∏
q=0

q+1
2∏

a=− q+1
2

q
2∏

b=− q
2

(1 + ts
3
2

+qxayb) (6.3)

Applying (6.1) we find the generating function of the characters of the anti-

symmetrized tensor products of the free Weyl fermion representation

Z(t, s, x, y) =
∞∏
q=0

q+1
2∏

a=− q+1
2

q
2∏

b=− q
2

(1 + ts
3
2

+qxayb) =
∞∑
n=0

tnχ(1n)(s, x, y) (6.4)
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By expanding Z(t, s, x, y) as a series in t we can easily read off the character

of the antisymmetrized tensor products of n copies of the free Weyl fermion

representation χ(1n)(s, x, y), as the coefficient of tn. To be completely clear,

χ(1n)(s, x, y) is the character of M in the representation given by the antisym-

metrized tensor product Asymn(W+). The next step is to decompose this into

a sum of SO(4, 2) characters, for irreps of dimension ∆ and spins jL, jR

χ(1n)(s, x, y) =
∑

[∆,jL,jR]

N[∆,jL,jR]χ[∆,jL,jR](s, x, y) (6.5)

The coefficients N[∆,j1,j2] count how many times irrepA[∆,j1,j2] (in the notation

of [17]) appears in Asymn(W+). Hence, N[∆,j1,j2] are non-negative integers.

The case that n = 2 is subtle because some of irreps appearing in the above

decomposition are short. We will consider n = 2 separately in detail below.

For n ≥ 3 we have[17]

χ[∆,j1,j2](s, x, y) =
s∆χj1(x)χj2(y)

(1− s√xy)(1− s
√

x
y )(1− s

√
y
x)(1− s√

xy )
(6.6)

It is useful to define

Zn(s, x, y) ≡
∑

∆,j1,j2

N[∆,j1,j2]s
∆χj1(x)χj2(y) (6.7)

so that

Zn(s, x, y) = (1− s√xy)(1− s
√
x

y
)(1− s

√
y

x
)(1− s

√
xy

) χ(1n)(s, x, y) (6.8)

The right hand side of (6.7) is a sum of (products of) SU(2) characters. Fol-

lowing [60], it can be simplified by using the orthogonality of SU(2) characters.

The result is most easily stated in terms of the generating function

Gn(s, x, y) =

[
(1− 1

x
)(1− 1

y
)Zn(s, x, y)

]
≥

=
∑

∆,j1,j2

N[∆,j1,j2]s
∆xj1yj2 (6.9)

The subscript ≥ is an instruction to keep only non negative powers of x and

y.

It is easy to check that this agrees with standard character computations.
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For example, the expansion

G3(s, x, y) =s
11
2 x
√
y + s

13
2 x

5
2 + s

13
2 x

3
2 y + s

15
2 y

3
2 + s

15
2 x3y

3
2 + s

15
2 x2y

3
2 + s

17
2 x

7
2 y

+ s
17
2 x

3
2 y2 + s

17
2 x

5
2 y2 + s

19
2 x4y

3
2 + s

19
2 xy

5
2 + 2s

19
2 x3y

5
2 + s

19
2 x4y

5
2 + ....

(6.10)

can be reproduced using characters. The relevant Schur polynomial for this

case is calculated as follows

χ(13)(s, x, y) =
1

6

[
(χL(s, x, y))3 − 3χL(s2, x2, y2)χL(s, x, y) + 2χL(s3, x3, y3)

]
(6.11)

Using Mathematica, we find the following terms

χ(13)(s, x, y) = A[ 11
2
,1, 1

2
] +A[ 13

2
, 5
2
,0] +A[ 13

2
, 3
2
,1] (6.12)

+A[ 15
2
,0, 3

2
] +A[ 15

2
,2, 3

2
] +A[ 15

2
,3, 3

2
]

+A[ 17
2
, 7
2
,1] +A[ 17

2
, 3
2
,2] +A[ 17

2
, 5
2
,2]

+A[ 19
2
,4, 3

2
] + +A[ 19

2
,1, 5

2
] + 2A[ 19

2
,3, 5

2
] +A[ 19

2
,4, 5

2
]

+A[ 21
2
, 9
2
,0] +A[ 21

2
, 9
2
,2] +A[ 21

2
, 3
2
,3] +A[ 21

2
, 5
2
,3] +A[ 21

2
, 7
2
,3]

+A[ 21
2
, 9
2
,3] + ....

in complete agreement with (6.10).

The case that n = 2 is complicated by the fact that representations that

include null states appear in the decomposition. The condition for a short

multiplet[20] is ∆ = f(j1) + f(j2) with f(j) = 0 if j = 0 or f(j) = j + 1

if j > 0. For n = 2 the decomposition includes a primary with ∆ = 3 and

j1 = j2 = 0 which is not short, as well as primaries with ∆ = 2j j1 = (2j−1)/2

and j2 = (2j−3)/2 which are short representations and hence have null states.

These null states (and their descendants) must be removed. These short rep-

resentations arise because their primary operators are conserved higher spin

currents

∂µJ
µµ2···µj = 0 (6.13)
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The subtraction of null states is achieved by removing the ∆ = 3 primary that

does not need to be subtracted, dividing by 1− s/√xy which removes the null

descendents and then putting the original primary back in. In the end we have

G2(s, x, y) =

[
(1− 1

x
)(1− 1

y
)
(
Z2(s, x, y)− s3

) 1

1− s√
xy

]
≥

+ s3

=
∞∑
j=0

s3+2jx
3
2

+jy
1
2

+j (6.14)

This is indeed the correct result[96].

6.2.2 Leading Twist Primaries

By restricting to well defined classes of primaries, we can significantly simplify

the counting formulas of the previous section. The biggest simplification comes

from focusing on the leading twist primaries, which have quantum numbers

[∆, j1, j2] = [n(n+2)
2 + q, n(n+1)

4 + q
2 ,

n(n−1)
4 + q

2 ]. Each such primary opera-

tor comes in a complete spin multiplet of (n(n+1)
2 + q + 1)(n(n−1)

2 + q + 1)

operators. Choosing the operator with highest spin corresponds to studying

primaries constructed using a single component Pz of the momentum four

vector operator. To count the leading twist primaries we can count this high-

est spin operator in each multiplet. The corresponding generating function is

Gmax
n (s, x, y). This generating function is obtained after a simple modification

of the results of the previous section. First, we replace χAsymn(V )(s, x, y) with

a new function χmax
n (s, x, y), by keeping only the highest spin state from each

multiplet in the product

∞∏
q=0

(1 + ts
3
2

+qxq+
1
2 yq) =

∞∑
n=0

tnχmax
n (s, x, y) (6.15)

The leading twist primaries are constructed using a single component of the

momentum, that raises left and right spin maximally. Consequently in (6.8)

we replace

(1− s√xy)(1− s
√
x

y
)(1− s

√
y

x
)(1− s

√
xy

)→ (1− s√xy) (6.16)

Finally, for each spin multiplet we keep only 1 state so there is no longer any

need to replace the multiplet of spin states by a single state when we count.
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The final result is

Gmax
n (s, x, y) =(1− s√xy)χmax

n (s, x, y)

=
∑

∆,j1,j2

Nmax
[∆,j1,j2]s

∆xj1yj2 (6.17)

where Nmax
[∆,j1,j2] is the number of leading twist primaries of dimension ∆ and

spin (j1, j2). For the leading twist primaries, once n and the dimension of the

operator is specified, the spin of the primary is fixed. Consequently, we need

not track the x and y dependence. This leads to the formula

∞∑
n=0

tnGmax
n (s) = (1− s)

∞∏
q=0

(1 + ts
3
2

+q) ≡ (1− s)F (t, s) (6.18)

We can obtain explicit expressions for Gmax
n (s) by developing F (t, s) in a

Taylor series. Define

fq(t, s) =
∂q

∂tq
logF (t, s) (6.19)

Straight forward computation gives

fq(t, s) =
∞∑
k=0

(−1)q+1(q − 1)!s
3q
2

+kq

(1 + tsk+ 3
2 )q

(6.20)

so that, after reinstating x and y, we have

fk(0, s, x, y) = (k − 1)!(−1)k−1 s
3k
2 x

k
2

1− skx
k
2 y

k
2

(6.21)

Explicit expressions for Gmax
n are now easily obtained. For example

Gmax
3 (s, x, y) =

1

3!
(1− s√xy)

∂3F

∂t3

∣∣∣
t=0

=
1

3!
(1− s√xy)(f3 + 3f1f2 + f3

1 )

=
s

15
2 x3y

3
2

(1− s2xy)(1− s3x
3
2 y

3
2 )

(6.22)

Similarly

Gmax
4 (s, x, y) =

s12x5y3

(1− s2xy)(1− s3x
3
2 y

3
2 )(1− s4x2y2)

(6.23)
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It is possible to obtain a general closed formula for Gmax
n (s). To make the

argument as transparent as possible, again set x = 1 = y. Evaluate the

derivative

∂nF

∂tn
=

∑
n1,··· ,nq

∑
k1,··· ,kq

(n1k1 + · · ·+ nqkq)!

n1! · · ·nq!(k1!)n1 · · · (kq!)nq
fn1
k1
· · · fnqkq δn,n1k1+···nqkq F

(6.24)

and use the formulas for the fk’s to find

∂nF

∂tn

∣∣∣
t=0

=
∑

n1,··· ,nq

∑
k1,··· ,kq

(−1)n−
∑

i
nin!s

3n
2

n1! · · ·nq! kn1
1 · · · k

nq
q

( s
3k1
2

1− sk1

)n1 · · ·
( s

3kq
2

1− skq
)nqδn,n1k1+···nqkq

(6.25)

Notice that this is a sum over conjugacy classes of Sn. The conjugacy class

collects permutations with nq kq-cycles. This interpretation follows because

the coefficient

n!

n1! · · ·nq! kn1
1 · · · k

nq
q

(6.26)

is the order of the conjugacy class. Each conjugacy class is weighted by the

factor (−1)n−
∑

i
ni which is the signature of the permutation with nq kq-cycles.

There is a factor of s
3k
2

1−sk for each k-cycle in the permutation. The lowest weight

discrete series irrep of SL(2), built on a ground state with dimension 3
2 has

character

χ1(s) = TrV1(sL0) =
s

3
2

1− s
(6.27)

Denote this irrep by W1. It then follows that (P[1n] projects onto the antisym-

metric irrep i.e. a single column of n boxes)

1

n!

∂nF

∂tn

∣∣∣
t=0

= TrW1(P[1n]s
L0) =

s
n
2

(n+2)

(1− s)(1− s2)(1− s3) · · · (1− sn)
(6.28)
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where the last equality follows from eqn (49) of [50], where these SL(2) sector

primaries were studied in the language of oscillators. We now easily find

Gmax
n (s, x, y) = (s

√
xy)

n(n−1)
2 (s

3
2
√
x)n

n∏
k=2

1

1− (s
√
xy)k

(6.29)

6.2.3 Extremal Primaries

We now consider the class of primaries with charges

∆ =
3n

2
+ q ; JL3 =

n

2
+
q

2
(6.30)

The charge JR3 , which is part of SU(2)R, is not constrained. These primaries

fill out complete multiplets of SU(2)R. They are constructed using two com-

ponents of the momentum four vector operator which are complex linear com-

binations of the (hermitian) Pµ. Introduce a generating function Gz,wn (s, x, y),

given by

Gz,wn (s, x, y) =

[(
1− 1

y

)
Zz,wn (s, x, y)

]
≥

(6.31)

where Zn(s, x, y) is defined by

Zz,wn (s, x, y) = (1− s√xy)(1− s
√
x/y)χn(s, x, y) (6.32)

with

∞∑
n=0

tnχn(s, x, y) =
∞∏
q=0

q
2∏

b=− q
2

(1 + ts
3
2

+qx
q+1

2 yb) ≡ F2(t, s, x, y) (6.33)

It is again possible to derive closed expressions for the generating functions

Zz,wn (s, x, y) and Gz,wn (s, x, y). Introduce the functions

fk(t, s, x, y) ≡ ∂k−1

∂tk−1
logF2

=(−1)k−1(k − 1)!
∞∑
q=0

q
2∑

m=− q
2

skq+
3k
2 x

(q+1)k
2 ykm

(1 + tsq+
3
2x

q+1
2 ym)k

(6.34)
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It is simple to establish that

fk(0, s, x, y) = (−1)k−1(k − 1)!
s

3k
2 x

k
2

(1− skx
k
2 y

k
2 )(1− skx

k
2 y−

k
2 )

(6.35)

Exactly as above we have

∂nF2

∂tn

∣∣∣
t=0

=
∑

n1,··· ,nq

∑
k1,··· ,kq

(n1k1 + · · ·+ nqkq)!

n1! · · ·nq!(k1!)n1 · · · (kq!)nq
fn1
k1
· · · fnqkq δn,n1k1+···nqkq

(6.36)

Inserting the formulas for the fk’s expressions for the Zn(s, x, y) now follows

from (6.32). To extract spin multiplets, we need to compute

Gz,wn (z, w) =

[
Zn(s, x, y)

(
1− 1

y

)]
≥

=
1

2πi

∮
C
dz

(
1− 1

z2

)
Zn(s, x, z2)

z −√y
(6.37)

As an example, the generating functions counting the extremal primaries con-

structed from 3 fields are given by

Zz,w3 (s, x, y) = s
9
2x

3
2

s3x
3
2 y

3
2 (1 + s

√
x
y + s2 x

y ) + s3 x
3
2

y
3
2

(1 + s
√
xy + s2xy)

(1− s2xy)(1− s3x
3
2 y

3
2 )(1− s2x

y )(1− s3x
3
2

y
3
2

)

(6.38)

Gz,w3 (s, x, y) =
s

13
2 x

5
2 (1 + s

√
xy

3
2 )

(1− s4x2)(1− s2xy)(1− s3x
3
2 y

3
2 )

=s
13
2 x

5
2 + s

15
2 x3y

3
2 + s

17
2 x

7
2 y + s

19
2 x4y

3
2 + s

19
2 x4y

5
2 + s

21
2 x

9
2

+ s
21
2 x

9
2 y2 + s

21
2 x

9
2 y3 + · · · (6.39)

6.3 Construction

In this section we will explain how the counting of the previous section can be

used to provide concrete formulas for the construction of the primary opera-

tors in the free fermion CFT. For the leading twist counting this is manifest.
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For the counting of extremal primaries, we will argue that our formulas can

naturally be phrased as counting the multiplicities of the symmetric groups

representations. The quantities being counted are then easily constructed

using projectors onto these representations. In this analysis, a polynomial

representation of SO(4, 2) will play an important role. This representation is

described in the next subsection, after which we describe the construction of

leading twist primaries and then extremal primaries.

6.3.1 Polynomial rep

We use the following representation of SO(4, 2)

Kµ =
∂

∂xµ
(6.40)

D =
(
x · ∂

∂x
− 3

2

)
(6.41)

Mµν = xµ
∂

∂xν
− xν

∂

∂xµ
+Mµν (6.42)

Pµ = (x2 ∂

∂xµ
− 2xµx ·

∂

∂x
+ 3xµ + 2xνMµν) (6.43)

In the formula above we should replaceMµν by the relevant matrix represent-

ing the spin part of the conformal group. In Minkowski spacetime we have

(the two possibilities correspond to taking either a left handed (1
2 , 0) or a right

handed (0, 1
2) spinor)

Mµν = σµν or σ̄µν (6.44)

where

(σµν)α
β =

1

4
(σµσ̄ν − σν σ̄µ)α

β (6.45)

(σ̄µν)α̇β̇ =
1

4
(σ̄µσν − σ̄νσµ)α̇ β̇ (6.46)
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and

σµαβ̇ = (1, ~σ) σ̄µβ̇α = (1,−~σ) (6.47)

In Euclidean space we have

Mµν = σµν ≡ 1

4
(σµσ̄ν − σν σ̄µ) (6.48)

or

Mµν = σ̄µν ≡ 1

4
(σ̄µσν − σ̄νσµ) (6.49)

where now

σµ = (−i~σ,1) σ̄µ = (i~σ,1) (6.50)

The generators in Minkowski space close the algebra

[Mρσ,Mφθ] = ηθρMφσ + ηφσMθρ − ηθσMφρ − ηφρMθσ

[Pµ, Pν ] = 0 = [Kµ,Kν ] [Pβ,Kα] = 2ηαβD − 2Mαβ

[Mβρ,Kα] = ηαρKβ − ηαβKρ [Mβρ, Pα] = ηαρPβ − ηαβPρ

[D,Pµ] = Pµ [D,Kµ] = −Kµ [D,Mµν ] = 0 (6.51)

The Euclidean generators obey the same algebra with ηµν replaced with δµν .

States in this representation correspond to polynomials in the spacetime co-

ordinates xµ times a constant spinor ζα, which transforms in the (1
2 , 0) if we

study the theory of a left handed fermion, or in the (0, 1
2) if we study a right

handed fermion. The 2×2 matrix Mµν acts on this constant spinor. Further,

ζα is Grassman valued to account for the fact that the fermions are anticom-

muting fields. Concretely, each operator corresponds to a state (by the state

operator correspondence) and each state corresponds to a polynomial times

the spinor (thanks to the representation we have just described)

xµ1 · · ·xµkζα (6.52)
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To deal with operators constructed from a product of n copies of the basic

fermion field, we consider a “multiparticle system”. When we move to the

multiparticle system, we have polynomials on the n particle coordinates xIµ,

times the n particle spinor, obtained by taking the tensor product of n copies

of ζα

(ζ ⊗ ζ ⊗ · · · ⊗ ζ)α1α2···αn (6.53)

To write the generator of the conformal group, for the multiparticle system,

we need the matrices

M(I)
µν = 1⊗ · · · ⊗ 1⊗Mµν ⊗ 1⊗ · · · ⊗ 1 (6.54)

where the matrixMµν on the right hand side is the 2×2 matrix we introduced

above and it appears as the Ith factor on the right hand side. In total M(I)
µν

has n factors. The n-particle representation of SO(4, 2) includes

Kµ =
n∑
I=1

∂

∂xIµ
(6.55)

Pµ =
n∑
I=1

((xIρxIρ
∂

∂xIµ
− 2xIµx

I · ∂

∂xI
+ 3xIµ + 2xI νM(I)

µν ) (6.56)

The representations introduced above all have null states. This is to be ex-

pected, since the dimension of the free fermion field saturates the unitarity

bound. For the (1
2 , 0) field in Minkowski space, for example, the null state is

exhibited by verifying that

σ̄µPµζ = 0 (6.57)

for any choice of ζ. Let us now spell out the conditions that the polynomial

PO corresponding to an operator O must obey if the operator O is a primary

operator. The general polynomial PO will have spinor indices (it is constructed

from a tensor product of copies of ζ) as well as four vector indices inherited

from the spacetime coordinates. There are three conditions that must be

imposed: Primaries are annihilated by the special conformal generator Kµ

[Kµ,O] = 0 (6.58)
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This implies that the corresponding polynomial is translation invariant

n∑
I=1

∂

∂xIµ
PO = 0 (6.59)

Secondly, the equation of motion must be obeyed by each fermionic field. Fi-

nally, we require that the polynomials are in the antisymmetric representation

of Sn. Since the ζs are Grassman variables, we must impose this condition if

we are to get a non-zero primary upon translating back to the language of the

fermion field theory.

The above set of constraints on the polynomials corresponding to primaries is

not yet very useful. To obtain a more manageable set of constraints, we will

motivate replacing the constraint coming from the equation of motion with

a constraint that simply requires that each polynomial is holomorphic. Our

first observation is that the operator σ̄µPµ, known as the Cauchy-Fueter op-

erator, has been used to define regular functions of a quarternionic variable.

This theory of regular functions is well developed[97]. An important result,

is Fueters Theorem[98], which gives a method for constructing Cauchy-Fueter

regular functions in terms of holomorphic functions. In view of Fueter’s theo-

rem, we will replace the equation of motion constraint with the constraint that

the polynomials are holomorphic. Thus, in the end we search for translation

invariant, holomorphic polynomials that are in the antisymmetric representa-

tion of Sn. We will manage to test that the counting of these polynomials

matches the counting of primaries in complete generality, and for a number of

examples, we will construct the primary corresponding to a given polynomial

and explicitly verify that it is annihilated by Kµ.

6.3.2 Leading Twist

The leading twist primaries are given by polynomials in a single complex

variable zI , I = 1, 2, ..., n. Any such polynomial is automatically holomorphic,

so we need not worry about the equation of motion constraint. To solve

the translation invariance condition, we work with the hook variables Za,

a = 1, 2, ..., n− 1 defined by

Za =
1√

a(a+ 1)
(z(1) + z(2) + · · ·+ z(a) − az(a+1)) (6.60)
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Our problem is now reduced to constructing antisymmetric polynomials from

the hook variables. By construction, it is clear that the degree k polynomials

belong to a subspace of V ⊗kH of Sn. We can characterize the antisymmetric

subspace, that we want to extract, using representation theory. Towards this

end, consider the following decomposition in terms of Sn × Sk irreps

V ⊗kH =
⊕

Λ1`n, Λ2`k
V

(Sn)
Λ1

⊗ V (Sk)
Λ2
⊗ V Com(Sn×Sk)

Λ1,Λ2
(6.61)

In the above expression, Com(Sn×Sk) is the algebra of linear operators on V ⊗kH

that commute with Sn × Sk. This decompositions has been studied in detail

in [50]. The Z variables are commuting so that we need to consider the case

that Λ2 = [k] the symmetric representation given by a Young diagram with a

single row of k boxes. The resulting multiplicity is given by the coefficient of

qk in

ZSH(q; Λ1) = (1− q) q
∑

i
ci(ci−1)

2

∏
b

1

(1− qhb)
=

∑
k

qkZkSH(Λ1) (6.62)

Here ci is the length of the i’th column in Λ1, b runs over boxes in the Young

diagram Λ1 and hb is the hook length of the box b. Evaluating this formula for

the antisymmetric representations, for which Λ1 is a single column, gives[50]

q
n
2

(n−1)

(1− q2) · · · (1− qn)
(6.63)

After accounting for the dimension of n elementary fermion fields, this is in

complete agreement with (6.28).

Now that we have verified that the number of translation invariant, holo-

morphic polynomials in the antisymmetric representation of Sn agrees with

the counting of leading twist primaries, we can move on to a construction

formulas for these primaries. Indeed, the relevant polynomials are given by

acting with a projector onto the antisymmetric representation, on the hook

variables. This polynomial multiplies an anticommuting tensor product of

Grassman valued constant spinors. The projector from the tensor product of
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k copies of the hook onto the antisymmetric representation of Sn is

P(1n) =
1

n!

∑
σ∈Sn

sgn(σ)Γk(σ) (6.64)

where sgn(σ) is the signature of permutation σ. When acting on a product of

variables, say Z(a1)Z(a2) · · ·Z(ak) we have

Γk(σ) = Γ(n−1,1)(σ)⊗ · · · ⊗ Γ(n−1,1)(σ) (6.65)

where on the right hand side we take a tensor product (the usual Kronecker

product) of k copies of the matrices of the hook representation of Sn, labeled

by a Young diagram with n− 1 boxes in the first row and 1 box in the second

row. Our construction formula is

1

n!

∑
σ∈Sn

sgn(σ)Γk(σ)a1a2···ak,b1b2···bkZ
b1Zb2 · · ·Zbk(ζ1 ⊗ ζ2 · · · ⊗ ζn)α1···αn

(6.66)

The above formula produces an expression of the form
∑
i n̂iPi(Z) where n̂i are

unit vectors inside the carrier space of V ⊗kH and Pi(Z) are the polynomials that

correspond to primary operators. To translate polynomials into momenta, the

formula [40]

zk ↔ (−1)kP k

2kk!
(6.67)

is very useful. We will now gives some examples of polynomials obtained from

formula (6.66). We will also translate these polynomials into primary opera-

tors.

If we consider n = 2 fields, there is a single hook variable given by Z = z1−z2.

To find a polynomial that is antisymmetric under swapping 1 ↔ 2, we must

raise Z to an odd power. Thus, we predict that primaries for the fermion fields

correspond to the polynomials

(z1 − z2)2s+1 =
2s+1∑
k=0

(2s+ 1)!

k!(2s− k + 1)!
(−1)kz2s−k+1

1 zk2 (6.68)
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Translating the polynomial variables into momenta we find the following pri-

mary

|ψ〉 =
2s+1∑
k=0

(−1)k

((2s− k + 1)!k!)2
P k|3

2
,
1

2
, 0〉 ⊗ P 2s−k+1|3

2
,
1

2
, 0〉 (6.69)

where, because our fields are fermions, we have

|3
2
,
1

2
, 0〉1 ⊗ |

3

2
,
1

2
, 0〉2 = −|3

2
,
1

2
, 0〉2 ⊗ |

3

2
,
1

2
, 0〉1 (6.70)

Thus, our expression for the fermionic primaries built from two fields are

2s+1∑
k=0

(−1)k

((2s− k + 1)!k!)2
(∂1 + i∂2)kψ(x)(∂1 + i∂2)2s−k+1ψ(x) (6.71)

which exactly matches the form of the higher spin currents[99, 100].

For n = 3 fields it is easy to see that

(z1 − z2)(z1 − z3)(z2 − z3) (6.72)

is holomorphic, translation invariant and in the antisymmetric representation

of S3. The corresponding primary operator can be simplified to

ψ(x)(∂1 + i∂2)ψ(x)(∂1 + i∂2)2ψ(x) (6.73)

It is not difficult to see that this operator is indeed annihilated by Kµ.

6.3.3 Extremal Primaries

In this section we will consider the construction of extremal primaries, which

correspond to polynomials in two holomorphic coordinates, z and w. We

will characterize these polynomials by two degrees, one for Z and one for W .

Polynomials of degree k in Z and of degree l in W belong to a subspace of

V ⊗kH ⊗V ⊗lH of Sn. The relevant decompositions in terms of Sn×Sk irreducible

representations are

V ⊗kH =
⊕

Λ1`n,Λ2`k
V

(Sn)
Λ1

⊗ V (Sk)
Λ2
⊗ V Com(Sn×Sk)

Λ1,Λ2

V ⊗lH =
⊕

Λ3`n,Λ4`l
V

(Sn)
Λ3

⊗ V (Sl)
Λ4
⊗ V Com(Sn×Sl)

Λ3,Λ4
(6.74)
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The tensor product V ⊗kH ⊗ V ⊗lH is a representation of

C(Sn)⊗ C(Sk)⊗ C(Sn)⊗ C(Sl) (6.75)

The Z and W variables are commuting so that Λ2⊗Λ4 = [k]⊗ [l] is the trivial

representation of Sk × Sl. The multiplicity with which a given Sn × Sk irrep

(Λ1,Λ2) appears is given by the dimension of the irreducible representation

of the commutants Com(Sn × Sl) in V ⊗kH . Since our polynomials multiply

a product of anticommuting Grassman spinors, we want to project to states

in V ⊗kH ⊗ V ⊗lH which are in the totally antisymmetric irreducible representa-

tion of the diagonal C(Sn) in the algebra (6.75). This constrains Λ3 = ΛT1 .

Thus we find that the number of Sk × Sl invariants and Sn antisymmetric

representations is

∑
Λ1`n

Mult(ΛT1 , [k];Sn × Sk) Mult(Λ1, [l];Sn × Sl) (6.76)

Thus, for the number of primaries constructed from zi, wi we get

∑
Λ1`n

ZkSH(Λ1)Z lSH(ΛT1 ) (6.77)

The above integer gives the number of primaries in the free fermion CFT, of

weight 3n
2 + k+ l, with spin (JL3 , J

R
3 ) = (k+l+n

2 , k−l2 ). The generating function

Zz,wn (s, x, y) which encodes all k, l is given by

Zz,wn (s, x, y) = s
3n
2 x

n
2

∑
Λ`n

ZSH(s
√
xy,Λ)ZSH(s

√
x

y
,ΛT ) (6.78)

where Λ is a partition of n and we can use the formula (6.62). It is straight

forwards to check, for example, that

Zz,wn (s, x, y) =s
9
2x

3
2

(
ZSH(s

√
xy, )ZSH(s

√
x

y
, ) + ZSH(s

√
xy, )ZSH(s

√
x

y
, )

+ZSH(s
√
xy, )ZSH(s

√
x

y
, )

)
(6.79)

reproduces (6.38).

For n = 3 fields, it is easy to see that the polynomials

w3(z2 − z1) + w2(z1 − z3) + w1(z3 − z2) (6.80)
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and

2w1w2z
2
1 − w2

2z
2
1 − 2w1w3z

2
1 + w2

3z
2
1 − 2w2

1z1z2 + 2w2
2z1z2 + 4w1w3z1z2

− 4w2w3z1z2 + w2
1z

2
2 − 2w1w2z

2
2 + 2w2w3z

2
2 − w2

3z
2
2 + 2w2

1z1z3 − 4w1w2z1z3

+ 4w2w3z1z3 − 2w2
3z1z3 + 4w1w2z2z3 − 2w2

2z2z3 − 4w1w3z2z3 + 2w2
3z2z3

− w2
1z

2
3 + w2

2z
2
3 + 2w1w3z

2
3 − 2w2w3z

2
3

(6.81)

are holomorphic, translation invariant and in the antisymmetric representation

of S3. To translate these polynomials into primary operators, we use the

dictionary

zk ↔ (−1)kP kz
2kk!

wk ↔ (−1)kP kw
2kk!

(6.82)

where we have set Pz = P1 − iP2 and Pw = P3 − iP4. After a little work we

finally obtain the following two primary operators

ψ(x)Pzψ(x)Pwψ(x) (6.83)

and

2PwP
2
z ψ(x)Pwψ(x)ψ(x) + 2Pzψ(x)P 2

wPzψ(x)ψ(x)

+P 2
wψ(x)P 2

z ψ(x)ψ(x) + 4PwPzψ(x)Pzψ(x)Pwψ(x) (6.84)

6.4 Geometry

In this section we comment on the permutation orbifolds relevant for the com-

binatorics of the fermion primaries. The leading twist primaries are holomor-

phic polynomials in n complex variables. We mod out by translations and

restrict to the antisymmetric representation of Sn, so that the leading twist

primaries correspond to holomorphic polynomial functions on

(C)n/(C× Sn) (6.85)
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A very similar argument shows that extremal primaries correspond to holo-

morphic polynomial functions on

(C)2n/(C2 × Sn) (6.86)

We will now argue that the Hilbert series of the fermionic primaries are counted

by palindromic Hilbert series, suggesting that they are Calabi-Yau. We leave

a more detailed study of these issues for the future. A palindromic Hilbert

series obeys

Zz,wn (q−1
1 , q−1

2 ) = (q1q2)n−1Zz,wn (q1, q2) (6.87)

Our Hilbert series Zz,wn (q1, q2) enjoy this transformation property. To demon-

strate this, our starting point is the formula

Zz,wn (q1, q2) = s
3n
2 x

n
2

∑
Λ`n

ZSH(q1,Λ)ZSH(q2,Λ
T ) (6.88)

where we have introduced the variables q1 = s
√
xy, q2 = s

√
x/y. This has the

property Zz,wn (q1, q2) = Zz,wn (q2, q1). This follows because exchange of q1, q2

amounts to the inversion of y, and by using the identity [40]

ZSH(q−1,Λ) = (−q)n−1ZSH(q,ΛT ) (6.89)

Using this result

Zz,wn (q−1
1 , q−1

2 ) =sn(q1q2)n−1
∑
Λ`n

ZSH(q1,Λ
T )ZSH(q2,Λ)

=sn(q1q2)n−1
∑
Λ`n

ZSH(q1,Λ)ZSH(q2,Λ
T )

=(q1q2)n−1Zz,wn (q1, q2) (6.90)

The results of section (4.3) of [40] now imply that the Hilbert seriesGz,wn (s, x, y)

also exhibit the palindromy property.

6.5 Summary and Outlook

Previous studies [40] have explained how to map the algebraic problem of con-

structing primary fields in the quantum field theory of a free scalar field φ in

four dimensions to one of finding polynomial functions on (R4)n that are har-
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monic, translation invariant and which are in the trivial representation of Sn.

In this chapter, we have extended this construction to describe primary fields

in the free quantum field theory of a single Weyl fermion. Concrete results

achieved with this new point of view include a complete counting formula for

the complete set primary fields, explicit counting formulas (Hilbert series) for

counting special classes of primaries, as well as detailed construction formulas

for these primary operators. We have also established the palindromy of the

Hilbert series.

One weak point in our analysis, that warrants further study, is the treatment

of the constraint coming from the equation of motion. Motivated by results

for Cauchy-Fueter regular functions, we simply stated that we will consider

holomorphic polynomials. This has been verified explicitly, by checking that

this leads to the correct number of primaries and further that when the poly-

nomials are translated back into the operator language, that we do indeed

obtain operators annihilated by Kµ. It would however be nice to perform a

detailed analysis of the equation of motion constraint, which has to be carried

out before the complete class of primaries can be treated.

Immediate generalizations of the current work include studies of CFTs which

include gauge fields. The free limit of QCD and supersymmetric theories

would be good starting points. Indeed, early constructions of primary fields

in the SL(2) sector (leading twist primaries) were performed in the context

of deep inelastic scattering in QCD (see for example the review [72]). Do the

holomorphic primaries considered here have QCD applications? Explicit enu-

meration and construction of superconformal primary fields in N = 4 SYM

will give a better understanding of the dual AdS5 × S5 background. Finally,

another natural direction is to consider correlators involving the extremal pri-

mary fields and the determination of anomalous dimensions for these fields at

the Wilson-Fischer fixed point using the techniques of [18, 46, 47, 48, 49].
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Chapter 7

Conclusions

The thesis was motivated by the AdS/CFT correspondence. It focuses on the

correspondence that relates a free conformal field theory in 4 dimensions to a

quantum gravity (higher spin) theory in 5 dimensions, in a negatively curved

spacetime. We preferred to study the CFT4 side of the correspondence since

it is free and hence a solvable theory. Computations carried out in [2, 17] gave

insight into how we should formulate the CFT4 problem. We begin with a

counting of primary operators followed by the construction of primary opera-

tors. The construction translates a problem of constructing primary operators

into a problem of constructing a mult-variable polynomial obeying algebraic

and symmetry constraints.

For the counting, we start by writing the character of the free scalar field

as a representation of SO(4, 2)[17]. We start by taking the SO(4, 2) charac-

ter of n of the fields and symmetrizing to get the Symn(V+) representation.

This is done because the scalar fields obey bosonic statistics. Expanding this

character as a sum of characters of irreducible representations, we obtain the

counting for the primary operators. Analysing the spectrum of 2 copies of the

scalar field, shows no degeneracies. However the spectrum of n > 2 copies of

scalar fields contain primary operators which are degenerate. The degeneracy

is between primary operators having the same scaling dimension, left and right

hand spins. This indicates that the spectrum of n > 2 copies of the scalar

field is much richer than that of n = 2 copies of the scalar field.

Focussing on the extremal or leading twist primaries, in (5.116) we obtained a

symmetric group interpretation of the counting and demonstrated agreement

with the group representation theory results. The generating function of the
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leading twist primaries forms a palindromic Hilbert series. The relevant pri-

mary operators with their corresponding harmonic and translation invariant

functions, are functions on the Calabi-Yau orbifolds

(Cn/C× Cn/C)/Sn = (C2)n/(C2 × Sn). (7.1)

It becomes difficult to obtain the whole counting of primary operators from

(5.48) as n increases, especially when n is beyond n = 5. This could be at-

tributed to the lack of effective mathematica code.

Employing the same counting and construction strategy developed for scalar

fields to the vector models ΦIi , we find similar results. The generating func-

tion for the vector model primaries again form a palindromic Hilbert series

and the primary operator polynomial function is a function on the Calabi-Yau

orbifold

(C2)2n/(C2 × Sn[S2]) = (C2n/C× C2n/C)/Sn[S2]. (7.2)

Employing the same counting and construction to matrix models φji we again

find a palindromic Hilbert series. The primary operator polynomial functions

are functions on a geometric Calabi-Yau orbifold of the form

(Cn/C× Cn/C× Sn)/Sn = ((C2)× Sn)/(C2 × Sn). (7.3)

In the last chapter we extended these methods of counting and construction

to the Weyl spinors. We formulate the counting problem by taking a tensor

product of n copies of Weyl spinors. We then map these products of n copies

into a totally antisymmetric subspace Antisymn(V+). This is done because

the Weyl spinors obey fermi statistics. Decomposing in terms of irreducible

representations produces the counting for the primary operators. Restricting

ourselves to the extremal or leading twist primaries, in (6.78) we managed

to again interpret the counting in terms of permutation algebras. Again we

observe that the generating functions of the leading twist primaries form a
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palindromic Hilbert series. For the construction of the fermionic primaries,

the algebraic constraints require the primary polynomial to be translation in-

variant and holomorphic. The holomorphic requirement is motivated by the

Cauchy-Feuter Theorem[98]. The primary polynomial functions of the Weyl

spinor CFT has a geometric Calabi-Yau structure given by

(C)2n/(C2 × Sn). (7.4)

The weak part of this construction is that the general constraint implied by

the equation of motion has not been understood. Further exploration of this

point is needed. Translating the primary polynomial back to the operator

language, the primary operator is indeed annihilated by the special conformal

operator Kµ, which confirms the construction is correct.

The future direction of this work is to extend it to superconformal field theo-

ries (N = 4 SYM) that is, to theories that contain gauge fields. By considering

gauge theories such as N = 4 SYM we will be moving closer to studying the-

ories of nature and AdS/CFT. We can also extend this work to study gauge

theories with interactions at the zero of the beta function where the theory will

be conformal invariant. We could also extend this work to theories such as the

UV fixed point of the Gross-Neveu model in 2 + ε dimensions. Another good

example of an interacting theory that we could consider is to consider correla-

tors involving the extremal primary operators and determining the anomalous

dimensions for these fields at the Wilson-Fischer fixed point using techniques

of [18, 46, 47, 48, 49]. A more challenging future direction for this work is to

consider these computation in general d dimension instead of 4 dimensions.
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Appendix A

Introduction to Hilbert Series

Since Hilbert series may not be familiar to a physics audience, we will in this

section introduce the basic ideas in a series of examples.

A.1 Hilbert Series

Define the polynomial ring R[X], in X over the field R as the set of the poly-

nomials

P (X) = p0 + p1X + p2X
2 + · · ·+ pqX

q + · · · ; (A.1)

where pa ∈ R, a = 0, 1, · · · , q · · · . If we take the variables X to be any mth

root of unity, we know that

X = e
2πi
m m ∈ Z. (A.2)

Thus Xm = 1. This relation severly limits the independent monomials we can

form. Indeed, the complete set is given by

{1, X,X2, · · · , Xm−1}. (A.3)

In this example we say the ring is generated by a single generator X subjected

to a single relation Xm = 1. The Hilbert series of a graded ring is a function

that counts the number of independent monomials that can be formed. For

the free conformal field theory we have graded using dimension and the two
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Lorentz spins. Here our grading is the degree of the monomial. The Hilbert

series is given by a rational function whose numerator encodes constraints and

whose denominator encodes the generators. For the case at hand

Hs(t) =
1− tm

1− t
(A.4)

=
∞∑
n=0

cnt
n,

where cn counts the number of monomials of degree n. In our example

Hs(t) = 1 + t+ · · ·+ tm−1 (A.5)

corresponding to the fact that there is a single monomial for each degree

starting from 0 to m− 1.

A.2 Hilbert series on S1 and S2

Functions defined on S1 are functions of θ that are periodic

h(θ) = h(θ + 2π), (A.6)

We can embed S1 in R2 by using the co-ordinates

x = cos θ y = sin θ. (A.7)

Equivalently that we can work on R2 as long as we impose the constraint

x2 + y2 = 1. Noting that

hm = (x± iy)m = e±imθ, (A.8)

we see that a complete set of monomials is given by

1, (x± iy), (x± iy)2, (x± iy)3, · · · , (x± iy)m, · · · . (A.9)
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The generators of the ring are x and y, and they obey a single constraint

(relation) which says

x2 + y2 = 1. (A.10)

We will again grade the ring by the degree of the polynomial. Since we have

two generators x and y, and one relation of degree 2, our Hilbert series in this

case is

Hs(t) =
1− t2

(1− t)2
(A.11)

=1 + 2t+ 2t2 + 2t3 + 2t4 + · · ·

The coefficients of 2’s in the above expansion of the Hilbert series indicates

that there are 2 independent monomials at each degree above zero. These

monomials take the form

(x+ iy)m (x− iy)m. (A.12)

We will now determine the Hilbert series on a two sphere S2. Functions

defined on S2 are functions of θ and φ that are periodic

f(θ, φ) = f(θ + 2π, φ). (A.13)

We embed the sphere in R3 with co-ordinates

x = sinφ cos θ, y = sinφ sin θ, z = cosφ. (A.14)

that obey the constraint x2 + y2 + z2 = 1. A basis for functions on the sphere

is given by the spherical harmonics Yml(θ, φ),
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Yml(θ, φ) =

√
(2l + 1)

4π

(l − 1)!

(l + 1)!
Pml (cos θ)eimφ (A.15)

where for each value of l, m = −l, l+ 1, · · · , l−1, l. The generators of the ring

are x, y and z. The equation that constrains these generators is

x2 + y2 + z2 = 1, (A.16)

which is of degree 2. Since our ring is generated by 3 generators with a single

degree 2 relation, therefore the graded ring Hilbert series is

Hs(t) =
1− t2

(1− t)3
(A.17)

=1 + 3t+ 5t2 + 7t3 + 9t4 + · · · .

We have anticipated this counting in our discussion of the spherical harmonics

(Yml). We know that for each degree l there are (2l+1) independent monomials

we can construct. The table below shows, for finite l, the different kinds of

monomials we can get.

Monomial degree l = 0 l = 1 l = 2 l = 3

Number of monomials (2l + 1) 1 3 5 7

Types of monomials Y00 Y11, Y10, Y22 ,Y21 , Y33, Y32,

Y1−1 Y20, Y2−1, Y31, Y30,

Y2−2 Y3−1, Y3−2,

Y3−3

A.3 Hilbert series on S3

Considering the polynomial ring defined on S3. There are (λ+ 1)2 monomials

for each degree λ. We can understand where the multiplicity (λ + 1)2 comes

from, by counting the number of components of a symmetric traceless tensor

Tµ1···µλ of degree λ in d = 4 dimensions. We use the Young diagrams to

compute the number of components;
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Number of components =

4 4+1 · · · · · · 4+λ−1

λ λ−1 · · · · · · 1

−
4 4+1 · · · · · · 4+λ−3

λ−2 λ−3 · · · · · · 1

(A.18)

=
(4 + λ− 1)!

(4− 1)!λ!
− (4 + λ− 3)!

(4− 1)!(λ− 2)!

=
4(4 + 1)(4 + 2) · · · (4 + λ− 3)

3!(λ− 2)!

(
(2 + λ)(3 + λ)

λ(λ− 1)
− 1

)
=(λ+ 1)2.

We can embed S3 in R4 as follows

x1 = sin θ2 sin θ1 cosφ (A.19)

x2 = sin θ2 sin θ1 sinφ

x3 = sin θ2 cosφ

x4 = cos θ2.

These coordinates obey the constraint

x2
1 + x2

2 + x2
3 + x2

4 = 1. (A.20)

The ring is generated by 4 generators x1, x2, x3 and x4, and these generators

have a single degree 2 relation. Taking this into account, the Hilbert series is

Hs(t) =
1− t2

(1− t)4
(A.21)

=1 + 4t+ 9t2 + 16t3 + 25t4 + 36t5 + · · · .

The counting for the different kinds of monomials implied by the Hilbert series

is the same counting that we obtained by counting the number of components

in a symmetric traceless tensor.

We can now infer the Hilbert series in Sd. In Sd we have coordinates in
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Rd+1 that obey the constrain

x2
1 + x2

2 + · · ·+ x2
d + x2

d+1 = 1. (A.22)

The ring is generated by d + 1 generators x1, x2, · · · , xd+1. Since the ring is

generated by d+1 generators with a single degree 2 relation, the Hilbert series

Hs(t) =
1− t2

(1− t)d
. (A.23)

The number of monomials are determined from computing the number of

components of a symmetric traceless tensor Tµ1µ2···µλ in d+ 1 dimensions,

Number of components =
(d+ λ)!

d!λ!
− (d+ λ− 2)!

d!(λ− 2)!
(A.24)

=
(d+ λ− 2)!

(d− 1)!λ!

(
d+ 2λ− 1

)
Hence

Hs(t) =
1− t2

(1− t)d
(A.25)

=1 + (d+ 1)t+
d

2
(d+ 3)t2 + · · · .
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Appendix B

Unpacking the Counting

Formula Z
z,w
n (s, x, y)

In this appendix we are going to show how to compute (5.116) from chapter

5. Consider the equation

Zz,wn (s, x, y) =
∑

Λ1`n
ZSH(s

√
xy,Λ1)ZSH(s

√
x

y
,Λ1), (B.1)

where

ZSH(q,Λ1) = (1− q)q
∑

i

ci(ci−1)

2

∏
b

1

1− qhb
, (B.2)

and ci is the length of the Young diagram column, hb is the hook length of the

box number b in a Young diagram. For n = 3 (B.1) becomes

Zz,w3 (s, x, y) =ZSH(
√
xy, )ZSH(

√
x

y
, ) + ZSH(

√
xy, )ZSH(

√
x

y
, ) (B.3)

+ ZSH(
√
xy, )ZSH(

√
x

y
, ).
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Let q1 = s
√
xy and q2 = s

√
x
y , then

ZSH(q1, ) = (1− q1)q
3(3−1)

2
1

∏
b

1

1− qhb1

(B.4)

= (1− q1)q3
1

1

1− q3
1

1

1− q2
1

1

1− q1

=
q3

1

1− q3
1

1

1− q2
1

,

and

ZSH(q1, ) =(1− q1)q1

∏
b

1

1− qhb
(B.5)

=(1− q1)q1
1

1− q3
1

(
1

1− q1

)2

=
q1

1− q3
1

1

1− q1

=
q1(q1 + 1)

1− q3
1

1

1− q2
.

Then

ZSH(q1, ) =(1− q1)
∏
b

1

1− qhb1

(B.6)

=(1− q1)
1

1− q3
1

1

1− q2
1

1

1− q1

=
1

1− q3
1

1

1− q2
1

.

Therefore

Zz,w3 (s, x, y) =

(
q3

1

1− q3
1

1

1− q2
1

)(
q3

2

1− q3
2

1

1− q2
2

)
+

(
q1(q1 + 1)

1− q3
1

1

1− q2
1

)(
q2(q2 + 1)

1− q3
2

1

1− q2
2

)
(B.7)

+

(
1

1− q3
1

1

1− q2
1

)(
1

1− q3
2

1

1− q2
2

)

=
(s6x3 + s4x2 + s2x+ 1 + s3x

3
2 (
√
y + 1√

y ))

(1− s2xy)(1− s3(xy)
3
2 )(1− s2 x

y )(1− s3(xy )3/2)
.

Finally, we should multiply by s3 to account for the fact that φ3 has ∆ = 3.
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Appendix C

Review of Characters

Methods

In this Appendix we give a quick review of some background from the theory

of characters. This will help to orient the reader for our counting methods in

free CFT.

C.1 Example using SU(2) characters

To illustrate the idea involved in computing the CFT characters we begin by

deriving the usual rules for the addition of angular momentum in quantum

mechanics. In non-relativistic quantum mechanics we know that the product

of a wave function with spin j1 with a wave function with spin j2, gives a wave

function with possible spins j in the range |j1 − j2| ≤ j ≤ j1 + j2,

j1 ⊗ j2 = ⊕j1+j2
|j1−j2| j

Rotations are generated by the three components of angular momentum. We

call these the generators of angular momentum and we call the commutator

algebra the Lie algebra of rotations

[Ji, Jj ] = i~εijkJk.

We obtain the elements of the group by exponentiating the group generators.

Denote g = eiθJ3 with J3 ∈ su(2) and denote x = eiθ. From our knowledge of

angular momentum in quantum mechanics, the character for the spin j irrep
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is

χj(g) = Tr(eiθJ) (C.1)

=
j∑

m=−j
〈m|eiθJ |m〉 (C.2)

=
j∑

m=−j
〈m|eiθm|m〉 (C.3)

= xj + xj−1 + · · ·+ x−j+1 + x−j

=
xj+

1
2 − x−j−

1
2

x
1
2 − x−

1
2

(C.4)

The product of two characters assuming j2 > j1, is given by

χj1(x)χj2(x) =(xj1 + xj1−1 + · · ·+ x−j1+1 + x−j1)
xj2+ 1

2 − x−j2−
1
2

x
1
2 − x−

1
2

=
j1∑

k=−j1

xj2+k+ 1
2 − x−j2+k− 1

2

x
1
2 − x−

1
2

=
j1∑

k=−j1

xj2+k+ 1
2 − x−j2−k−

1
2

x
1
2 − x−

1
2

=
j2+j1∑

k=j2−j1

xk+ 1
2 − x−k−

1
2

x
1
2 − x−

1
2

=
j2+j1∑

k=j2−j1
χk(x) (C.5)

This illustrates the approach we will adopt to compute characters in a CFT. If

we have the characters of SO(4, 2) we can easily compute the products of irreps

in the CFT. In particular, denoting the representation that the free scalar field

belongs to by V , we want to decompose the character for χSym(V ⊗n) into a

sum over characters of irreps. Here we have the symmetric product Sym(V ⊗n)

because we must respect the bosonic statistics of the field. We will project to

the symmetric product by employing Young projectors. The projector to the

symmetric product of n copies of V is

P =
1

n!

∑
σ∈Sn

σ

where σ acts on V ⊗n by permuting the factors in the tensor product and we

have used the fact that the character for the symmetric representation is 1 for

all group elements.
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C.2 Characters of SO(4, 2)

In the paper [17] Dolan has computed the characters we need. The basic result

we will use is given by

χV (s, x, y) = s(1− s2)
∞∑

p,q=0

s2p+qχ q
2
(x)χ q

2
(y) (C.6)

The character is a trace of some group element. Lets start by spelling out what

group element is being traced. Inside SO(4, 2) we have the maximal compact

subgroup SO(2)×SO(4). The generator of SO(2) is the dilatation operator D.

We can decompose SO(4) into SU(2)L×SU(2)R. Extract J3,L ∈ SU(2)L and

J3,R ∈ SU(2)R. Using the generators D,J3,L, J3,R define the group element

g = etD+iθLJ3,L+iθRJ3,R , (C.7)

every irrep of SO(4, 2) is built on a primary field and we label the irrep by the

quantum numbers of the primary. The scalar field has [D,J3,L, J3,R] = [1, 0, 0].

The character quoted in (C.6) is for group element g (C.7). An extra point to

be aware of is that since SO(4, 2) is not compact, it can have null states. The

free scalar has a null state since ∂µ∂µφ = 0. The factor (1− s2) subtracts this

null state and its descendants out. Towards this end we show the maximal

compact subgroup of SO(4, 2) is SO(2)×SO(4), and we can decompose SO(4)

into SU(2)L × SU(2)R.

Consider the interval

ds2 = dt21 + dt22 − (dx2
1 + dx2

2 + dx2
3 + dx2

4), (C.8)

which is invariant under SO(4, 2). Since we boost to frames with v < c, any

transformations (boosts) that mixes time components with spatial components

will not form a compact subgroup of SO(4, 2). However, transformations that

mix only time (or space) components will form compact subgroups. In partic-

ular, SO(2) (which mixes the time components) and SO(4) (which mixes the

spatial components) will form compact subgroups. Therefore, the maximal

compact subgroup of SO(4, 2) will be a direct product of these two subgroups.
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We can decompose group elements in SO(4) into group elements of SU(2)×
SU(2). First, note that we can write any group element g in SU(2) as

g = e−iθ̄·J̄ , (C.9)

where θ̄ stands for three parameters and J1 = σ1
2 , J2 = σ2

2 , and J3 = σ3
2 (σi

are the Pauli matrices). These generators close the Lie algebra

[Ji, Jj ] = iεijkJk. (C.10)

Now, we can parametrize SO(4) using the following six parameters and six

generators:

r = e−iā·Ā−ib̄·B̄ (C.11)

where

A1 =
1

2


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , A2 =
1

2


0 0 i 0

0 0 0 −i
−i 0 0 0

0 i 0 0

 (C.12)

A3 =
1

2


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

 , B1 =
1

2


0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0

 (C.13)

B2 =
1

2


0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0

 , B3 =
1

2


0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0

 . (C.14)

The benefit of using these generators is in their commutation relations:

[Ai, Aj ] = iεijkAk, [Bi, Bj ] = iεijkBk, [Ai, Bj ] = 0. (C.15)

These are the same commutation relations as SU(2). Therefore, Ā and B̄

generates subgroups of SO(4) that are equivalent to SU(2). Ā, B̄ are 4 di-

mensional representations (where as Ji is 2 dimensional). Through a change
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of basis using

S =
1√
2


1 0 0 −1

i 0 0 i

0 −1 −1 0

0 −i i 0

 , S−1 =
1√
2


1 −i 0 0

0 0 −1 i

0 0 −1 i

−1 −i 0 0

 (C.16)

observe that

S−1ĀS = J̄ ⊗ 1, S−1B̄S = 1⊗ J̄ , (C.17)

where 1 ∈ SO(4). We can therefore rewrite r as

S−1rS = e−iā·J̄ ⊗ e−ib̄·J̄ ,

where e−iā·J̄ , e−ib̄·J̄ ∈ SU(2).

The character is a trace of the group element g of the group. Thus it can be

written as

Tr(etD+iθLJ3,L+iθRJ3,R) =
∑
i

〈i|etD+iθLJ3,L+iθRJ3,R |i〉 (C.18)

=s(1− s2)
∞∑

p,q=0

s2p+qχ q
2
(x)χ q

2
(y) (C.19)

One of the states appearing in the sum over i is the primary operator. The

remaining states are from the descendents in the representation.

Expanding the character (C.18) by writing the sum out and expanding LHS

and RHS up to order s3, we can illustrate the equivalence of both equations.

Begin by expansion on the RHS,
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χV (s, x, y) =s(1− s2)
∞∑
p,q

s2p+qχ q
2
(x)χ q

2
(y) (C.20)

=s
∞∑
q

sqχ q
2
(x)χ q

2
(y)

=s(1 + sχ 1
2
(x)χ 1

2
(y) + s2χ1(x)χ1(y) + s3χ 3

2
(x)χ 3

2
(y) + · · · )

=s

(
1 + s(x

1
2 + x−

1
2 )(y

1
2 + y−

1
2 ) + s2(x1 + 1 + x−1)(y1 + 1 + y−1)

+ s3(x
3
2 + x

1
2 + x−

1
2 + x−

3
2 )(y

3
2 + y

1
2 + y−

1
2 + y−

3
2 ) + · · ·

)
.

Moving to the LHS equation we are now aware that the character is a trace

over the group element g = etD+iθLJ3,L+iθRJ3,R . It is written as follows

Tr(etD+iθLJ3,L+iθRJ3,R) =
∑
i

〈i|etD+iθLJ3,L+iθRJ3,R |i〉 (C.21)

where i is a sum over states. Using the group element to act on the state of a

primary field and its descendents, we can recover equation (C.20). The states

of a primary field and its descendents are represented bythe quantum numbers

[D,J3,L , J3,R ]. The primary field has quantum numbers, [D,J3,L , J3,R ] =

[1, 0, 0], which we represent as a state, |1, 0, 0〉. If we let s = et, x = eiθL and

y = eiθR , for the primary field state we have,

g|φ〉 =etD+iθLJ3,L+iθRJ3,R |1, 0, 0〉 (C.22)

= et|φ〉

= s|φ〉

The state for the descendent ∂µφ is a combination of the states,

|∂µφ〉 ↔
{∣∣∣∣2, 1

2
,
1

2

〉
,

∣∣∣∣2, 1

2
,−1

2

〉
,

∣∣∣∣2,−1

2
,
1

2

〉
,

∣∣∣∣2,−1

2
,−1

2

〉}
. (C.23)

147



Therefore

{g|∂µφ〉} =

{
etD+iθLJ3,L+iθRJ3,R

∣∣∣∣2, 1

2
,
1

2

〉
, etD+iθLJ3,L+iθRJ3,R

∣∣∣∣2, 1

2
,−1

2

〉
,

(C.24)

etD+iθLJ3,L+iθRJ3,R

∣∣∣∣2,−1

2
,
1

2

〉
, etD+iθLJ3,L+iθRJ3,R

∣∣∣∣2,−1

2
,−1

2

〉}
=

{
e2t+

iθL
2

+
iθR

2

∣∣∣∣2, 1

2
,
1

2

〉
, e2t+

iθL
2
− iθR

2

∣∣∣∣2, 1

2
,−1

2

〉
, e2t− iθL

2
+
iθR

2

∣∣∣∣2,−1

2
,
1

2

〉
,

e2t− iθL
2
− iθR

2

∣∣∣∣2,−1

2
,−1

2

〉}
=

{
s2x1/2y1/2

∣∣∣∣2, 1

2
,
1

2

〉
, s2x1/2y−1/2

∣∣∣∣2, 1

2
,−1

2

〉
, s2x−1/2y1/2

∣∣∣∣2,−1

2
,
1

2

〉
,

s2x−1/2y−1/2

∣∣∣∣2,−1

2
,−1

2

〉}

Taking the trace we end up with

〈∂µφ|g|∂µφ〉 = s2(x
1
2 + x−

1
2 )(y

1
2 + y−

1
2 ) = s2χ 1

2
(x)χ 1

2
(y). (C.25)

For the descendent state ∂µ∂νφ we have,

{g|∂µ∂νφ〉} ={g|3, 1, 1〉, g|3, 1, 0〉, g|3, 1,−1〉, g|3, 0, 1〉, g|3, 0,−1〉, g|3, 0, 0〉,
(C.26)

g|3,−1, 1〉, g|3,−1, 0〉, g|3,−1,−1〉}

={s3xy|3, 1, 1〉, s3x|3, 1, 0〉, s3xy−1|3, 1,−1〉, s3y|3, 0, 1〉, s3y−1|3, 0,−1〉,

s3|3, 0, 0〉, s3x−1y|3,−1, 1〉, s3x−1|3,−1, 0〉, s3x−1y−1|3,−1,−1〉}

Taking trace we end up with

〈∂µ∂νφ|g|∂µ∂νφ〉 =s3(xy + x+ xy−1 + y + y−1 + 1 + x−1y + x−1 + x−1y−1)

(C.27)

=s3χ1(x)χ1(y).

Continuing in this way to higher descendents we learn that

Tr(etD+iθLJ3,L+iθRJ3,R) =
∑
i

〈i|etD+iθLJ3,L+iθRJ3,R |i〉 = χV (s, x, y) (C.28)
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C.3 Product of Two copies of scalar Operators

Now we want to take a product of two copies of the representation that the free

scalar field belongs to. By decomposing this into irreducible representations,

we will learn what primary operators we can construct from a product of two

scalar fields. The character we want to compute is

χSym(V ⊗2) =
∑
i,j

〈i| ⊗ 〈j|g ⊗ g P |i〉 ⊗ |j〉 (C.29)

where P = 1
2!

∑
σ∈Sn σ projects us onto the symmetric subspace

P |i〉 ⊗ |j〉 =
1

2
[|i〉 ⊗ |j〉+ |j〉 ⊗ |i〉] (C.30)

Thus

χSym(V ⊗2) =
1

2

(
Tr(g)2 + Tr(g2)

)
(C.31)

We can argue the equation above as follows: Denote the matrix representation

M on the basis |i〉, for the group element g belonging to the group G as

〈i|M |j〉 = Mij . (C.32)

The trace of this matrix is

∑
i

〈i|M |i〉 =
∑
i

Mii (C.33)

The tensor product has matrix elements

〈i1i2|M ⊗M |j1j2〉 = Mi1j1Mi2j2 . (C.34)

Thus, for example
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Tr(M⊗2) =
∑
i1,i2

〈i1, i2|MM |i1, i2〉 (C.35)

=
∑
i1,i2

Mi1i1Mi2i2

=Tr(M)2.

The symmetric character is defined as

χSym(V ⊗2) =Tr

(
M⊗2 1

2!

∑
σεS2

σ

)
(C.36)

=
∑
i1,i2

〈
i1, i2

∣∣∣∣(M ⊗M 1

2!

∑
σεS2

σ

)∣∣∣∣i1, i2〉,
where S2 is the symmetric group of order 2. Since we are summing over the

group elements we have

χSym(V ⊗2) =
∑
i1,i2

〈
i1, i2

∣∣∣∣M ⊗M 1

2!

(
1 + (12)

)∣∣∣∣i1, i2〉. (C.37)

The identity element leaves the state unchanged and the element (12) swaps

the states i1 and i2. Therefore

χSym(V ⊗2) =
1

2

∑
i1,i2

(Mi1i1Mi2i2 +Mi1i2Mi1i2) (C.38)

=
1

2
(Tr(M)2 + Tr(M2)).

We can also compute

χSym(V ⊗3) =Tr

(
1

3!

∑
σεS3

σM⊗3
)

(C.39)

=
1

3!

∑
i1,i2,i3

〈
i1, i2, i3

∣∣∣∣M⊗3
(

1 + (12) + (23) + (13) + (123) + (132)

)∣∣∣∣i1, i2, i3〉

=
1

3!

∑
i1,i2,i3

(
Mi1i1Mi2i2Mi3i3 +Mi1i2Mi2i1Mi3i3 +Mi1i1Mi2i3Mi3i2

+Mi1i3Mi2i2Mi3i1 +Mi1i2Mi2i3Mi3i1 +Mi1i3Mi2i1Mi3i2

)
=

1

3!

(
Tr(M)3 + 3Tr(M2)Tr(M) + 2Tr(M3)

)
.

150



We can generalise the computation above to

χSym(V ⊗n) =Tr

(
1

n!

∑
σεSn

σM⊗n
)
. (C.40)

Now using the fact that Tr(g) = χV (s, x, y) we can show that Tr(g2) =

χV (s2, x2, y2).

We know that

Tr(g) = Tr(etD+iθLJ3,L+iθRJ3,R) =
∑
i

〈i|etD+iθLJ3,L+iθRJ3,R |i〉. (C.41)

Therefore

Tr(g2) = Tr(e2tD+2iθLJ3,L+2iθRJ3,R) =
∑
i

〈i|e2tD+2iθLJ3,L+2iθRJ3,R |i〉. (C.42)

We continue the same way as in the previous computation. We do an expansion

on the states i containing a scalar primary and its descendents. We begin with

the primary state

g2|φ〉 = e2tD+2iθLJ3,L+2iθRJ3,R |1, 0, 0〉 (C.43)

= s2|1, 0, 0〉.
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Now consider the first descendent state ∂µφ,

{g2|∂µφ〉} =

{
e2tD+2iθLJ3,L+2iθRJ3,R

∣∣∣∣2, 1

2
,
1

2

〉
, etD+iθLJ3,L+iθRJ3,R

∣∣∣∣2, 1

2
,−1

2

〉
,

(C.44)

etD+iθLJ3,L+iθRJ3,R

∣∣∣∣2,−1

2
,
1

2

〉
, etD+iθLJ3,L+iθRJ3,R

∣∣∣∣2,−1

2
,−1

2

〉}
=

{
e4t+

2iθL
2

+
2iθR

2

∣∣∣∣2, 1

2
,
1

2

〉
, e4t+

2iθL
2
− 2iθR

2

∣∣∣∣2, 1

2
,−1

2

〉
, e4t− 2iθL

2
+

2iθR
2

∣∣∣∣2,−1

2
,
1

2

〉
,

e4t− iθL
2
− iθR

2

∣∣∣∣2,−1

2
,−1

2

〉}
=

{
s4x1y1

∣∣∣∣2, 1

2
,
1

2

〉
, s4x1y−1

∣∣∣∣2, 1

2
,−1

2

〉
, s4x−1y1

∣∣∣∣2,−1

2
,
1

2

〉
,

s4x−1y−1

∣∣∣∣2,−1

2
,−1

2

〉}
.

Taking the trace we obtain

〈∂µφ|g|∂µφ〉 = s4(xy + xy−1 + x−1y + x−1y−1) (C.45)

= s4(x+ x−1)(y + y−1)

= s4χ 1
2
(x2)χ 1

2
(y2).

Carrying on this way to higher descendents we will learn that

Tr(g2) = Tr(e2tD+2iθLJ3,L+2iθRJ3,R) =
∑
i

〈i|e2tD+2iθLJ3,L+2iθRJ3,R |i〉 = χV (s2, x2, y2)

Thus, the character for the representation obtained by taking the product of

two copies of the representation that the free scalar field belongs to is

χSym(V ⊗2) =
1

2

(
(χV (s, x, y))2 + χV (s2, x2, y2)

)
(C.46)

Now how do we compute the LHS of (C.46). We begin by defining

P (s, x, y) =
1

(1− sx1/2y1/2)(1− sx1/2y−1/2)(1− sx−1/2y1/2)(1− sx−1/2y−1/2)

(C.47)
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By expanding P (s, x, y), we find that

P (s, x, y) =
∞∑

p,q=0

s2p+qχ q
2
(x)χ q

2
(y). (C.48)

Using the identity

1

1− t2
=

1

1− t
1

1 + t
, (C.49)

for each of the four factors in P (s, x, y), we find

P (s2, x2, y2) = P (s, x, y)P (−s, x, y) (C.50)

=
∞∑

p,q=0

(−s)2p+qχ q
2
(x)χ q

2
(y)P (s, x, y). (C.51)

Thus,

χV (s2, x2, y2) = s2(1− s4)P (s2, x2, y2)

= s2(1− s4)P (s, x, y)P (−s, x, y)

= s2(1− s4)P (s, x, y)
∞∑

p,q=0

(−s)2p+qχ q
2
(x)χ q

2
(y)

= s2(1 + s2)P (s, x, y)
∞∑
q=0

(−s)qχ q
2
(x)χ q

2
(y)

= s2P (s, x, y)−
∞∑
q=0

(−1)q
[
s3+qχ q+1

2
(x)χ q+1

2
(y)− s4+qχ q

2
(x)χ q

2
(y)
]
P (s, x, y)

= s2P (s, x, y)−
∞∑
d=3

(−1)d+1
[
sdχ d−2

2
(x)χ d−2

2
(y)− sd+1χ d−3

2
(x)χ d−3

2
(y)
]
P (s, x, y)

. (C.52)
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Note also that

(χV (s, x, y))2 =χ[1,0,0] × χ[1,0,0]

=
∞∑
q=0

sq+1χ q
2
(x)χ q

2
(y)× s(1− s2)P (s, x, y)

=s2P (s, x, y) +
∞∑
q=0

[
s3+qχ q+1

2
(x)χ q+1

2
(y)− s4+qχ q

2
(x)χ q

2
(y)
]
P (s, x, y)

=s2P (s, x, y) +
∞∑
d=3

[
sdχ d−2

2
(x)χ d−2

2
(y)− sd+1χ d−3

2
(x)χ d−3

2
(y)
]
P (s, x, y)

(C.53)

Thus,

χSym(V ⊗2) =
1

2

(
(χV (s, x, y))2 + χV (s2, x2, y2)

)
=s2P (s, x, y) +

∞∑
d=1

[
s2d+2χ 2d

2
(x)χ 2d

2
(y)− s2d+3χ 2d−1

2
(x)χ 2d−1

2
(y)
]
P (s, x, y)

(C.54)

Thus, we have

Sym(D[100] ⊗D[100]) = A[200] +
∑
k1=1

D
[2k1+2,

2k1
2
,
2k1
2

]
(C.55)

The term A[200] is the representation for a spinless scalar of dimension 2 -

the corresponding primary is φ2. This rep has no null states. The terms

D
[2k1+2,

2k1
2
,
2k1
2

]
are conserved currents. These reps have null states.

In the work [35] solving the conservation equation

∂µDµOs(z, x) = 0.

they gave the result

αsCγs (
β

α
) = Os (C.56)

=

√
πΓ(d/2 + s− 1)Γ(d+ s− 3)

2d−4Γ(d−3
2 )

s∑
k=0

(−1)k(z · ∂1)s−k(z · ∂2)k

k!(s− k)!Γ(k + d/2− 1)Γ(s− k + d/2− 1)
,

where Os is a conserved spin current with spin s and dimension s+ d− 2 and,
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the function Cγs (βα) is a Gegenbauer polynomial. In 4 dimension

Os =(Γ(s+ 1))2
s∑

k=0

(−1)k(z · ∂)s−kφ(z · ∂)kφ

k!(s− k)Γ(k + 1)Γ(s− k + 1)
(C.57)

=(s!)2
s∑

k=0

(−1)k(z · ∂)s−kφ(z · ∂)kφ

(k!(s− k)!)2
.

The term A[2,0,0] is the representation for the term φ2, which is a primary.

Each Os from above is in representation D[s+2, s
2
, s
2

]. If s is odd, Os = 0 so we

have a primary for each representation on the right hand side of ((C.55)).

C.4 Character For Product of Many Scalar Field

Operators

The character relevant for a product of three fields is

χSym(V ⊗3) =
1

6

(
(χV (s, x, y))3 + 3χV (s, x, y)χV (s2, x2, y2) + 2χV (s3, x3, y3)

)
(C.58)

The character relevant for a product of four fields is

χSym(V ⊗4) =
1

24

(
(χV (s, x, y))4 + 6(χV (s, x, y))2χV (s2, x2, y2) (C.59)

+ 8χV (s3, x3, y3)χV (s, x, y) + 3(χV (s2, x2, y2))2

+ 6χV (s4, x4, y4)
)

The character relevant for a product of five fields is

χSym(V ⊗5) =
1

120

(
(χV (s, x, y))5 + 10(χV (s, x, y))3χV (s2, x2, y2) (C.60)

+ 20χV (s3, x3, y3)(χV (s, x, y))2 + 30χV (s4, x4, y4)χV (s, x, y)

+ 15(χV (s2, x2, y2))2χV (s, x, y) + 20χV (s2, x2, y2)χV (s3, x3, y3)

+ 24χV (s5, x5, y5)
)

Using the above characters, we can compute the products

Sym(D[100] ⊗D[100] ⊗D[100]) (C.61)
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which correspond the product of 3 scalar operators, φ ⊗ φ ⊗ φ = φ3 together

with the descendents obtained from acting with the spacetime derivatives ∂µ.

We also look at products

Sym(D[100] ⊗D[100] ⊗D[100] ⊗D[100]) (C.62)

which correspond to the scalar operator product φ⊗φ⊗φ⊗φ = φ4. And also

Sym(D[100] ⊗D[100] ⊗D[100] ⊗D[100] ⊗D[100]) (C.63)

To be able to calculate these products we first revert back to the idea of a

characters in quantum mechanics. Consider the character of spin j

χj(x) = xj + xj−1 + · · ·+ x−j+1 + x−j (C.64)

=
xj+

1
2 − x−j−

1
2

x
1
2 − x−

1
2

Using this we find

χ k
2
(xn) = x

nk
2 + x

n(k−2)
2 + · · ·+ x−

n(k−2)
2 + x−

nk
2 (C.65)

=

xnk2 + x
n(k−2)

2 + · · ·+ x−
n(k−2)

2 + x−
nk
2

x
1
2 − x−

1
2

 (x
1
2 − x−

1
2 )

=

bk/2c∑
l=0,1,...

χ kn
2
−nl(x)−

b(k−1)/2c∑
l=0,1,...

χ kn
2
−nl−1(x)

To obtain the last line, multiply the numerator out and collect terms.
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Using the formulas for χ q
2
(xn) that we have just derived, we find

P (sn, xn, yn) =
∞∑

p,q=0

s2np+nqχ q
2
(xn)χ q

2
(yn) (C.66)

=
1

1− s2n

∞∑
q=0

snqχ q
2
(xn)χ q

2
(yn)

=
1

1− s2n

∞∑
q=0

snq

 bq/2c∑
l=0,1,...

χ qn
2
−nl(x)−

b(q−1)/2c∑
l=0,1,...

χ qn
2
−nl−1(x)


×

 bq/2c∑
l=0,1,...

χ qn
2
−nl(y)−

b(q−1)/2c∑
l=0,1,...

χ qn
2
−nl−1(y)


Thus,

χV +(sn, xn, yn) = P (sn, xn, yn)sn(1− s2n) (C.67)

= sn
∞∑
q=0

snq

 bq/2c∑
l=0,1,...

χ qn
2
−nl(x)−

b(q−1)/2c∑
l=0,1,...

χ qn
2
−nl−1(x)


×

 bq/2c∑
l=0,1,...

χ qn
2
−nl(y)−

b(q−1)/2c∑
l=0,1,...

χ qn
2
−nl−1(y)


We also need an identity which rewrites χV +(sn, xn, yn) as SU(2) characters

multiplied by P (s, x, y); these can very easily be translated into A[·,·,·]s. To-

wards this end, note that

1 = P (s, x, y)(1− sx1/2y1/2)(1− sx1/2y−1/2)(1− sx−1/2y1/2)(1− sx−1/2y−1/2)

(C.68)

= P (s, x, y)
[
1 + s4 − s(1 + s2)χ 1

2
(x)χ 1

2
(y) + s2(χ1(x) + χ1(y))

]
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A straight forward computation now gives

χV +(sn, xn, yn) = P (sn, xn, yn)sn(1− s2n) (C.69)

= sn
[
(1 + s4)

∞∑
q=0

snq

 bq/2c∑
l1=0,1,...

χ qn
2
−nl1(x)−

b(q−1)/2c∑
l1=0,1,...

χ qn
2
−nl1−1(x)


×

 bq/2c∑
l2=0,1,...

χ qn
2
−nl2(y)−

b(q−1)/2c∑
l2=0,1,...

χ qn
2
−nl2−1(y)


− s(1 + s2)

∞∑
q=0

snq

 bq/2c∑
l1=0,1,...

χ qn+1
2
−nl1(x)−

b(q−1)/2c∑
l1=0,1,...

χ qn−1
2
−nl1−1(x) +

bq/2c∑
l1=0,1,...

χ qn−1
2
−nl1(x)

−
b(q−1)/2c∑
l1=0,1,...

χ qn+1
2
−nl1−1(x)

×
 bq/2c∑
l2=0,1,...

χ qn+1
2
−nl2(y)−

b(q−1)/2c∑
l2=0,1,...

χ qn−1
2
−nl2−1(y)

+

bq/2c∑
l2=0,1,...

χ qn−1
2
−nl2(y)−

b(q−1)/2c∑
l2=0,1,...

χ qn+1
2
−nl2−1(y)


+ s2

∞∑
q=0

snq

 bq/2c∑
l1=0,1,...

χ qn
2
−nl1(x)−

b(q−1)/2c∑
l1=0,1,...

χ qn
2
−nl1−1(x)


×

 bq/2c∑
l2=0,1,...

χ qn
2
−nl2+1(y)−

b(q−1)/2c∑
l2=0,1,...

χ qn
2
−nl2(y) +

bq/2c∑
l2=0,1,...

χ qn
2
−nl2(y)

−
b(q−1)/2c∑
l2=0,1,...

χ qn
2
−nl2−1(y) +

bq/2c∑
l2=0,1,...

χ qn
2
−nl2−1(y)−

b(q−1)/2c∑
l2=0,1,...

χ qn
2
−nl2−2(y)


+ s2

∞∑
q=0

snq

 bq/2c∑
l1=0,1,...

χ qn
2
−nl1(y)−

b(q−1)/2c∑
l1=0,1,...

χ qn
2
−nl1−1(y)


×

 bq/2c∑
l2=0,1,...

χ qn
2
−nl2+1(x)−

b(q−1)/2c∑
l2=0,1,...

χ qn
2
−nl2(x) +

bq/2c∑
l2=0,1,...

χ qn
2
−nl2(x)

−
b(q−1)/2c∑
l2=0,1,...

χ qn
2
−nl2−1(x) +

bq/2c∑
l2=0,1,...

χ qn
2
−nl2−1(x)−

b(q−1)/2c∑
l2=0,1,...

χ qn
2
−nl2−2(x)

]P (s, x, y)

Return to

χSym(V ⊗3) =
1

6

(
(χV+(s, x, y))3 + 3χV+(s, x, y)χV+(s2, x2, y2) + 2χV+(s3, x3, y3)

)
(C.70)

We know the decomposition of (χV+(s, x, y))3 into irreducible characters - all
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we need for this is the SU(2) character product rule. For χV+(s, x, y)χV+(s2, x2, y2)

use (C.67) to evaluate χV+(s2, x2, y2) and use the known formula for χV+(s, x, y).

For χV+(s3, x3, y3) use (C.69). The result is (each term in square brackets col-

lects all reps of a given dimension; I have tried to indicate the origin of each

term by keeping the coefficients 2 and 3 that appear in (C.70))

χSym(V ⊗3) =
1

6

[ [
A[3,0,0] + 3×A[3,0,0] + 2×A[3,0,0]

]
(C.71)

+
[
2A[4, 1

2
, 1
2

] + 3× 0 + 2× (−A[4, 1
2
, 1
2

])
]

+
[
3A[5,1,1] +A[5,0,1] +A[5,1,0] + 3× (−A[5,0,1] −A[5,1,0] +A[5,1,1]) + 2(A[5,0,1] +A[5,1,0])

]
+
[
4A[6, 3

2
, 3
2

] + 2A[6, 1
2
, 3
2

] + 2A[6, 3
2
, 1
2

] + 3× 0 + 2× (A[6, 3
2
, 3
2

] −A[6, 3
2
, 1
2

] −A[6, 1
2
, 3
2

])
]

+
[
5A[7,2,2] +A[7,0,2] +A[7,2,0] + 3A[7,1,2] + 3A[7,2,1]

+3× (A[7,2,2] +A[7,0,2] +A[7,2,0] −A[7,2,1] −A[7,1,2]) + 2× (−A[7,2,2] +A[7,2,0] +A[7,0,2])
]

+
[
6A[8, 5

2
, 5
2

] + 4A[8, 3
2
, 5
2

] + 4A[8, 5
2
, 3
2

] + 2A[8, 1
2
, 5
2

] + 2A[8, 5
2
, 1
2

]

+3× 0 + 2× (A[8, 5
2
, 3
2

] −A[8, 1
2
, 5
2

] −A[8, 5
2
, 1
2

] +A[8, 3
2
, 5
2

])
]

+ [7A[9,3,3] + 5A[9,2,3] + 5A[9,3,2] + 3A[9,1,3] + 3A[9,3,1] +A[9,0,3] +A[9,3,0]

+ 3× (A[9,1,3] +A[9,3,1] −A[9,0,3] −A[9,2,3] −A[9,3,0] −A[9,3,2] +A[9,3,3])

+ 2× (A[9,3,3] +A[9,3,0] −A[9,3,2] +A[9,0,3] −A[9,2,3])]

+ [8A[10, 7
2
, 7
2

] + 6A[10, 5
2
, 7
2

] + 6A[10, 7
2
, 5
2

] + 4A[10, 7
2
, 3
2

] + 4A[10, 3
2
, 7
2

] + 2A[10, 7
2
, 1
2

] + 2A[10, 1
2
, 7
2

]

+ 3× 0 + 2× (A[10, 7
2
, 3
2

] +A[10, 3
2
, 7
2

] −A[10, 7
2
, 7
2

] −A[10, 7
2
, 1
2

] −A[10, 1
2
, 7
2

])]

+ ...

= A[3,0,0] +A[5,1,1] +A[6, 3
2
, 3
2

] +A[7,2,2] +A[7,0,2] +A[7,2,0]

+A[8, 5
2
, 5
2

] +A[8, 3
2
, 5
2

] +A[8, 5
2
, 3
2

] + 2A[9,3,3] +A[9,1,3] +A[9,3,1]

+A[10, 7
2
, 7
2

] +A[10, 7
2
, 5
2

] +A[10, 5
2
, 7
2

] +A[10, 7
2
, 3
2

] +A[10, 3
2
, 7
2

] + ...

In a similar way we find

χSym(V ⊗4) = A[4,0,0] +A[6,1,1] +A[7, 3
2
, 3
2

] +A[8,0,0] +A[8,0,2] +A[8,2,0] +A[8,1,1] + 2A[8,2,2]

(C.72)

+A[9, 3
2
, 1
2

] +A[9, 5
2
, 1
2

] +A[9, 1
2
, 3
2

] +A[9, 5
2
, 3
2

] +A[9, 1
2
, 5
2

] +A[9, 3
2
, 5
2

] +A[9, 5
2
, 5
2

]

A[10,0,0] + 2A[10,1,1] +A[10,2,1] + 2A[10,3,1] +A[10,1,2] + 2A[10,2,2] +A[10,3,2]

+ 2A[10,1,3] +A[10,2,3] + 3A[10,3,3] + ...
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χSym(V ⊗5) = A[5,0,0] +A[7,1,1] +A[8, 3
2
, 3
2

] +A[9,0,0] +A[9,1,1] +A[9,2,0] +A[9,0,2] + 2A[9,2,2]

(C.73)

+A[10, 1
2
, 1
2

] +A[10, 3
2
, 1
2

] +A[10, 1
2
, 3
2

] +A[10, 3
2
, 3
2

] +A[10, 1
2
, 5
2

] +A[10, 5
2
, 1
2

] +A[10, 5
2
, 3
2

]

+A[10, 3
2
, 5
2

] + 2A[10, 5
2
, 5
2

] + ...

C.5 Generating Functions for Primary Operators

Here we will derive the generating function for the primary operators by first

showing the basic idea with the matrix

M =

[
a 0

0 b

]
(C.74)

From here we can verify that

χ (M) = a+ b (C.75)

χ (M) = a2 + ab+ b2 (C.76)

χ (M) = a3 + a2b+ ab2 + b3 (C.77)

χ (M) = a4 + a3b+ a2b2 + ab3 + b4 (C.78)

We can continue this way to higher order terms. We introduce a formula which

can easily compute the characters χn. This formula contains a parameter tn

which collects terms belonging to the character χn,

1

det(1− tM)
=

1

(1− ta)(1− tb)
(C.79)

=
∑
n

tnχ(n)(M) (C.80)

where M is a matrix, a and b are the eigenvalues of M . We verify this formula

by simply expanding the RHS as follows
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1

(1− ta)(1− tb)
=(1 + ta+ t2a2 + t3a3 + · · · )(1 + tb+ t2b2 + t3b3 + · · · )

(C.81)

=1 + (a+ b)t+ (a2 + ab+ b2)t2 + (a3 + a2b+ ab2 + b3)t3 + · · ·

=1 + χ1t+ χ2t
2 + χ3t

3 + · · ·

=
∑
n

tnχ(n)(M)

We will now motivate how the term

1

det(1− tM)

in (C.81) comes from considering the Guassian integral

(In)j1···jni1···in =
1

πN

∫ N∏
i=1

dzidz̄ie
−
∑

k
zk z̄

k 1

n!
zi1 · · · zin z̄j1 · · · z̄jn (C.82)

To evaluate the integral above, we study the generating function below

I =
1

πN

∫ N∏
i=1

dzidz̄ie
−
∑

k
zk z̄

k+
∑

k
(j̄kzk+jk z̄

k) (C.83)

We can evaluate this integral by completing the square. After that we obtain

In in (C.82) by taking derivatives of I and setting ji = j̄i = 0. This is carried

out as follows:

Start with the I integral,

I =
1

πN

∫ N∏
i=1

dzidz̄ie
−
∑

k
zk z̄

k+
∑

k
(j̄kzk+jk z̄

k) (C.84)

We shift z → z + j and z̄ → z̄ + j̄ and end up with

I =
1

πN

∫
dzidz̄ie

−
∑

zk z̄
k+
∑

j̄kjk . (C.85)

Performing the Guassian integral, we are left with

I = e
∑

k
j̄kjk . (C.86)
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Applying the derivatives with respect to j̄ and j as follows

δ

δjj1
· · · δ

δjin

δ

δj̄i1
δ

δj̄i2
· · · δ

δj̄jn
(I) =

δ

δjj1
· · · δ

δjin

δ

δj̄i1
δ

δj̄i2
· · · δ

δj̄jn
e
∑

k
j̄kjk

(C.87)

(In)j1···jni1···in =
1

n!

δ

δjj1
· · · δ

δjin

δ

δj̄i1
δ

δj̄i2
· · · δ

δj̄jn
(j̄k1 · · · j̄knjk1 · · · jkn)

=
1

n!

∑
σεSn

δj1iσ(1) · · · δ
j1
iσ(n),

where Sn is the symmetric group and σ is an element of a group. This shows

that

(In)j1···jni1···in =
1

n!

∑
σ∈Sn

δj1iσ(1)
δj2iσ(2)

· · · δjniσ(n)
(C.88)

From here we will argue that

M i1
j1
M i2
j2
· · ·M in

jn
(In)j1···jni1···in = χR(M) (C.89)

where R is a Young diagram with one row of n boxes. We argue this as follows,

(In)j1···jni1···inM
i1
j1
M i2
j2
· · ·M in

jn
=

1

n!

∑
σεSn

δj1iσ(1) · · · δ
j1
iσ(n)M

i1
j1
M i2
j2
· · ·M in

jn
(C.90)

=
1

n!

∑
σεSn

M i1
iσ(1)
· · ·M in

iσ(n)

=
1

n!

∑
σεSn

Tr(σM⊗n)

=χR(M).

In the above R is a Young diagram with a single row of n boxes.

Now, consider the integral

Z =
1

πN

∫ N∏
i=1

dzkdz̄ke
−
∑

i,j
ziO

i
j z̄
j

=
1

πN

∫ N∏
i=1

dzkdz̄ke
−
∑

i,j
zi(δ

i
j−tM

i
j)z̄

j

(C.91)
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We know that this integral evaluates to

1

πN

∫ N∏
i=1

dzkdz̄ke
−
∑

i,j
ziO

i
j z̄
j

=
1

detO
(C.92)

Thus, we have

Z =
1

det(1− tM)
(C.93)

Now compute Z by expanding in t

Z =
1

πN

∫ N∏
i=1

dxidyie
−
∑

i
ziz̄

i
∞∑
n=0

tnM i1
j1
M i2
j2
· · ·M in

jn
zi1 · · · zin z̄j1 · · · z̄jn

=
∑
n

tnχ(n)(M)

(C.94)

Comparing (C.93) and (C.94) now proves (C.79). For our character problem,

we are interested in the case that

M = sDxJ3,LyJ3,R (C.95)

Looking at (C.6), we can see that

1

det(1− tM)
=
∞∏
q=0

q
2∏

a=− q
2

q
2∏

b=− q
2

1

1− tsq+1xayb
(C.96)

The remaining task is to decompose this into SO(4, 2) representations, then

we will be able to generate the spectrum of primary operators for n copies of

the scalar field.

C.5.1 Partition functions

Consider a partition function that is a sum of SU(2 characters [60]

Z(x) = Tr
(
xJ3

)
=
∑
j

Njχj(x) = Z0 +
∞∑
k=1

Zk(x
k + x−k) (C.97)

Since all characters are invariant under the transformation x→ 1
x Z(x) must

also be invariant under this transformation. The last equality manifests that
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symmetry. Nj counts the number of times the spin j rep appears. To deter-

mine Nj we make use of the orthogonality of characters.

If we set x = eiθ, the results in (C.1) already imply that

χj(x) =
sin
(
(j + 1

2)θ
)

sin
(
θ
2

) . (C.98)

We can verify character orthogonality

∫ 4π

0
dθ

sin2 θ
2

2π
χj(x)χk(x) = δjk (C.99)

as follows

∫ 4π

0
dθ

sin2 θ
2

2π
χj(x)χk(x) =

∫ 4π

0
sin

sin2 θ
2

2π

(
sin((j + 1/2)θ)

sin θ
2

)(
sin((k + 1/2)θ)

sin θ
2

)
(C.100)

=

∫ 4π

0
dθ

sin((j + 1/2)θ)

2π
sin((k + 1/2)θ)

=

∫ 4π

0

dθ

2π

(
ei(j+

1
2

)θ − e−i(j+
1
2

)θ

2i

)(
ei(k+ 1

2
)θ − e−i(k+ 1

2
)θ

2i

)
=−

∫ 4π

0

dθ

8π

(
ei(j+k+1)θ − ei(j−k)θ − ei(k−j)θ + e−(j+k+1)θ

)
=− 1

8π

(
4πδj+1,−k − 4πδj,k − 4πδj,k + 4πδ−j−1,k

)
=− 1

8π

(
− 4πδj,k − 4πδj,k

)
=δj,k,

We can also show that∫ 4π

0
dθ

sin2 θ
2

2π
χj(x)(xk + x−k) =δj,k − δj+1,k (C.101)∫ 4π

0
dθ

sin2 θ
2

2π
χj(x) =δj,0

as follows:
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∫ 4π

0
dθ

sin2( θ2)

2π
χj(x)(xk + x−k) =

∫ 4π

0
dθ

sin2( θ2)

2π

sin((j + 1/2)θ)

sin
(
θ
2

) (eikθ + e−ikθ)

(C.102)

=

∫ 4π

0

dθ

2π
sin

θ

2
sin

(
(j +

1

2
)θ

)
eikθ +

∫ 4π

0

dθ

2π
sin

θ

2
sin

(
(j +

1

2
)θ

)
e−ikθ

=

∫ 4π

0

dθ

2π

(
e−iθ/2 − e−iθ/2

2i

)(
ei(j+1/2)θ − e−i(j+1/2)θ

2i

)
eikθ

+

∫ 4π

0

dθ

2π

(
e−iθ/2 − e−iθ/2

2i

)(
ei(j+1/2)θ − e−i(j+1/2)θ

2i

)
e−ikθ.

Multiply out the exponentials to obtain

∫ 4π

0
dθ

sin2( θ2)

2π
χj(x)(xk + x−k) = −

∫ 4π

0

dθ

8π

(
ei(j+k+1)θ − ei(k−j)θ − ei(k+j)θ + e−i(j−k+1)θ

)
(C.103)

−
∫ 4π

0

dθ

8π

(
ei(j−k+1)θ − e−i(k+j)θ − ei(k−j)θ + e−i(j+k+1)θ

)
=− 1

8π

(
4πδj+1,−k − 4πδj,k − 4πδj,−k + 4πδj+1,k

)
− 1

8π

(
4πδj+1,k − 4πδj,−k − 4πδj,k + 4πδj+k,−k

)
=δj,k − δj+1,k,

Finally,

∫ 4π

0
dθ

sin2( θ2)

2π
χj(x) =

∫ 4π

0

dθ

2π
sin

θ

2
sin((j + 1/2)θ) (C.104)

=
1

2

∫ 4π

0

dθ

2π

(
cos(jθ)− cos((j + 1)θ)

)
=δj,0.

Using the orthogonality of the characters we can see that

∫ 4π

0
dθ

sin2 θ
2

2π
χj(x)Z(x) =

∫ 4π

0
dθ

sin2 θ
2

2π
χj(x)

∑
k

Nkχk(x)

= Nj (C.105)
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We also have∫ 4π

0
dθ

sin2 θ
2

2π
χj(x)Z(x) =

∫ 4π

0
dθ

sin2 θ
2

2π
χj(x)

(
Z0 +

∞∑
k=1

Zk(x
k + x−k)

)
= Zj − Zj+1 (j > 0)

= Z0 (j = 0)

(C.106)

If we define the generating function

G(x) =
∑
j

xjNj

and the “regular part of a function” as[∑
n

anx
n

]
≥

=
∞∑
n=0

anx
n

we remove the negative powers of x by writing Z(x) as

G(x) =

[
(1− 1

x
)Z(x)

]
≥

(C.107)

where the multiplication with the factor (− 1
x) removes negative powers.

Now, considering the SO(4, 2) group. In our case, the partition function

Zn(s, x, y) is given by χSym(V ⊗n)(s, x, y), where we have

Zn(s, x, y) = χSym(V ⊗n)(s, x, y) =
∑

∆,j1,j2

N[∆,j1,j2]χ[∆,j1,j2](s, x, y) (C.108)

We will restrict to the case that n ≥ 3. In this case, we know that the

only characters χ[∆,j1,j2](s, x, y) which contribute do not saturate the unitarity

bound and hence do not have any null states. In this case we have

χ[∆,j1,j2](s, x, y) =
s∆χj1(x)χj2(y)

(1− s√xy)(1− s
√

x
y )(1− s

√
y
x)(1− s√

xy )
(C.109)
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Thus,

Zn(s, x, y)(1− s√xy)(1− s
√
x

y
)(1− s

√
y

x
)(1− s

√
xy

) =
∑

∆,j1,j2

N[∆,j1,j2]s
∆χj1(x)χj2(y)

.

(C.110)

The right hand side of this last equation is a sum of (products of) SU(2)

characters, so we can treat this using our SU(2) method derived above. To

remove terms with negative powers we multiply both the expansions above

with the factors (1− 1
x)(1− 1

y ). This results in

Gn(s, x, y) =

[
(1− 1

x
)(1− 1

y
)Zn(s, x, y)(1− s√xy)(1− s

√
x

y
)(1− s

√
y

x
)(1− s

√
xy

)

]
≥

(C.111)

=
∑
n,j1,j2

N[n,j1,j2]s
nxj1yj2 (C.112)

where Gn(s, x, y) is the generating function for primary operators. Recall that

∞∏
q=0

q
2∏

a=− q
2

q
2∏

b=− q
2

1

1− tsq+1xayb
=
∞∑
n=0

tnZn(s, x, y).

Expansion of Gn(s, x, y) for n = 3, 4, 5 we find

G3(s, x, y) =s3 + s5xy + s6x
3
2 y

3
2 + s7x2y2 + s7x2 + s7y2 + s8x

5
2 y

5
2 (C.113)

+ s8x
3
2 y

5
2 + s8x

5
2 y

3
2 + 2s9x3y3 + s9xy3 + s9x3y + s10x

7
2 y

7
2

+ s10x
7
2 y

5
2 + s10x

5
2 y

7
2 + s10x

7
2 y

3
2 + s10x

3
2 y

7
2 + ...

G4(s, x, y) = s4 + s6xy + s7x
3
2 y

3
2 + 2s8x2y2 + s8x2 + s8xy + s8y2 (C.114)

+ s9x
5
2 y

5
2 + s9x

5
2 y

3
2 + s9x

5
2 y

1
2 + s9x

3
2 y

5
2 + s9x

3
2 y

1
2 + s9x

1
2 y

5
2 +

+ s9x
1
2 y

3
2 + ....
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G5(s, x, y) = s5 + s7xy + s8x
3
2 y

3
2 + 2s9x2y2 + s9x2 + s9y2 + s9xy (C.115)

+ s10x
3
2 y

3
2 + s10x

3
2 y

5
2 + s10x

3
2 y

1
2 + s10x

5
2 y

3
2 + 2s10x

5
2 y

5
2

+ s10x
5
2 y

1
2 + s10x

1
2 y

3
2 + s10x

1
2 y

5
2 + s10x

1
2 y

1
2 + ....

C.6 Generating Function for free fermion

When considering the generating function for the free fermions, we should

bare in mind that the fields are Grassman fields, they anticommute. Conse-

quently, instead of taking the symmetric product of representations, we should

be taking the antisymmetric product. Consider the matrix

M =


a 0 0

0 b 0

0 0 c

 (C.116)

The relevant Schur polynomials are

χ (M) = a+ b+ c

χ (M) = ab+ ac+ bc

χ (M) = abc

This gives the formula

det(1 + tM) = (1 + ta)(1 + tb)(1 + tc) =
∞∑
n=0

tnχ(1n)(M) (C.117)

We can prove the formula quoted above in (C.117) by starting from the integral

∫ N∏
i=1

dψidψ̄
ie
−
∑

i,j
ψi(δ

i
j+tM

i
j)ψ̄

j

which runs over the Grassman variables ψi, ψ̄
i. Consider the integral
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∫ N∏
i=1

dψidψ
ie
−
∑N

i,j=1
ψi(δ

i
j+tM

i
j)ψ̄

j

(C.118)

We will evaluate this integral with N = 3 and comment on the general case.

We convert the summation in the exponential to a matrix multiplication,

3∑
i,j=1

ψi(δ
i
j + tM i

j)ψ̄
j =

[
ψ1 ψ2 ψ3

] (
1 0 0

0 1 0

0 0 1

+ t


a 0 0

0 b 0

0 0 c

)

ψ̄1

ψ̄2

ψ̄3


(C.119)

=ψ(1 + tM)ψ̄.

The index i in the products run from 1 to 3. We expand the exponential as

follows,

∫ N∏
i=1

dψidψ
ie
−
∑N

i,j=1
ψi(δ

i
j+tM

i
j)ψ̄

j

=

∫
dψ1dψ̄1dψ2dψ̄2dψ3dψ̄3

(
1− ψ(1 + tM)ψ̄

(C.120)

+
1

2!
(ψ(1 + tM)ψ̄)2 − 1

3!
(ψ(1 + tM)ψ̄)3 + · · ·

)
.

Only the fourth term yields a non-zero integral, therefore

∫ N∏
i=1

dψidψ
ie
−
∑N

i,j=1
ψi(δ

i
j+tM

i
j)ψ̄

j

= −
∫
dψ1dψ̄1dψ2dψ̄2dψ3dψ̄3

1

3!
(ψ(1 + tM)ψ̄)3

=−
∫
dψ1dψ̄1dψ2dψ̄2dψ3dψ̄3

1

3!

(
ψ1(1 + ta)ψ̄1 + ψ2(1 + tb)ψ̄2 + ψ3(1 + tb)ψ̄3

)3

=−
∫
dψ1dψ̄1dψ2dψ̄2dψ3dψ̄3

(
(1 + ta)(1 + tb)(1 + tc)

)
ψ1ψ̄1ψ2ψ̄2ψ3ψ̄3

=(1 + ta)(1 + tb)(1 + tc)

=1 + (a+ b+ c)t+ (ab+ ac+ bc)t2 + (abc)t3

=
∞∑
n=0

tnχ(1n)(M)

= det(1 + tM)

In general, only the term of the form − 1
N !(ψ(1 + tM)ψ̄)N would contribute.
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For the case that M = sDxJ3,LyJ3,R we have

det(1 + tM) =
∞∏
t=0

q+1
2∏

a=− q+1
2

q
2∏

b=− q
2

(1 + ts
3
2

+qxayb).

From [14] the character of a left handed Weyl spinor is

χL(s, x, y) = s
3
2 (χ 1

2
(x)− sχ 1

2
(y))P (s, x, y)

This formula can be simplified into

χL(s, x, y) = s
3
2

∞∑
q=0

sqχ q+1
2

(x)χ q
2
(y).

The simplification is carried out as follows:

s3/2(χ 1
2
(x)− sχ 1

2
(y)
)
P (s, x, y) = s3/2(χ 1

2
(x)− sχ 1

2
(y)
) ∞∑
p,q=0

s2p+qχ q
2
(x)χ q

2
(x)

(C.121)

Using the formula

χj⊗j′(x) = χj(x)χj′(x) =
j+j′∑

k=|j−j′|
χ
k
(x), (C.122)

we obtain

χL(s, x, y) = s3/2
∞∑

p,q=0

s2p+q
( q

2
+ 1

2∑
k=| q

2
− 1

2
|

χk(x)χ q
2
(y)− s

q
2

+ 1
2∑

k=| q
2
− 1

2
|

χ q
2
(x)χk(y)

)
(C.123)

=s
3
2

∞∑
p,q=0

s2p+q
(
χ q

2
− 1

2
(x)χ q

2
(y) + χ q

2
+ 1

2
(x)χ q

2
(y)− sχ q

2
(x)χ q

2
− 1

2
(y)− sχ q

2
(x)χ q

2
+ 1

2
(y)

)
.

If we shift q → 1 on the first and third term, the first term then cancels with

the last term and, the second and third terms simplify into

χL(s, x, y) = s3/2(1− s2)
∞∑

p,q=0

s2p+qχ q
2

+ 1
2
(x)χ q

2
(y). (C.124)
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Summing over the p terms we obtain

χL(s, x, y) =
∞∑
q=0

s
3
2

+qχ q
2

+ 1
2
(x)χ q

2
(y) (C.125)

The generating function for primary operators in the free fermion CFT is given

by

Gn(s, x, y) =

[
(1− 1

x
)(1− 1

y
)Zn(s, x, y)(1− s√xy)(1− s

√
x

y
)(1− s

√
y

x
)(1− s

√
xy

)

]
≥

where now Zn(s, x, y) is defined by

det(1 + tM) =
∞∏
t=0

q+1
2∏

a=− q+1
2

q
2∏

b=− q
2

(1 + ts
3
2

+qxayb) =
∞∑
n=0

tnZn(s, x, y)

An expansion of Gn(s, x, y) for n = 3 yields

G3(s, x, y) = s
11
2 x
√
y + s

13
2 x

5
2 + s

15
2 y

3
2 + s

15
2 x3y

3
2 + ....

C.7 Generating function of O(N) vector model char-

acters

To count the primaries in the O(N) vector model, we needed explicit expres-

sions for the characters of V ⊗+ projected to the trivial of Sn[S2]. Here we will

derive

Z(t, Q) =
∞∑
n=0

tnχHn(Q) (C.126)

The generating function of characters for Hn, the Sn[S2] invariant subspace of

V ⊗n, is
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Z(t, Q) =
∞∑
n=0

tn

2nn!

∑
σ∈Sn[S2]

trV ⊗2n(σQ⊗2n) (C.127)

=
∞∑
n=0

tn
∑
p`2n

ZSn[S2]
~p

∏
i

(trQi)pi

=
∞∑
n=0

tn
∑
p`2n

ZSn[S2]
~p

∏
i

(
∑
a

qia)
pi

where ZSn[S2]
~p is the number of permutations in Sn[S2] with cycle structure ~p,

divided by the order of Sn[S2]. The cycle polynomials are

ZSn[S2](~x) =
∑
p`2n

ZSn[S2]
~p

∏
i

xpii (C.128)

The generating function of the cycle polynomial is given by

Z(t, ~x) =
∞∑
n=0

tnZSn[S2](~x) (C.129)

=e
∑∞

i=1
ti

2i
(x2i+x

2
i )

Comparing (C.127) and (C.129) we see that

Z(t, Q) =Z(t, xi →
∑
a

qia) (C.130)

=e
∑∞

i=1
ti

2i
((
∑

a
qia)2+

∑
a
q2i
a )

=e
∑∞

i=1
ti

2i
(
∑

a

∑
b
qiaq

i
b+
∑

a
q2i
a )

=e
∑

a,b

∑∞
i=1

tiqiaq
i
b

2i
+
∑

a

∑
i
ti

2i
q2i
a

=e
− 1

2

∑
a,b

log(1−tqaqb)− 1
2

∑
a

log(1−tq2
a)

=
∏
a

1√
1− q2

a

∏
a,b

1√
(1− tqaqb)

=
∏
a

1√
1− q2

a

∏
a<b

1√
(1− tqaqb)

.
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Appendix D

Counting Primaries from

State Counting

In this appendix we will explain how (5.85) was derived. Consider the equation

[
Z3(s, x, y)(1− 1

y
)

]
≥

=
1

2πi

∮
(1− 1

z2 )Z3(s, x, z2)

z −√y
. (D.1)

This equation can be represented in a more simple form as follows,

[(1− 1

a
)Z(a)]a≥0 =

1

2π

∮
(1− 1

z2 )

z −
√
a
Z(z2). (D.2)

The LHS of this equation is obtained by performing a Laurent expansion which

is truncated by removing terms with negative powers of a. The RHS is equal

to the LHS since we can consider a Cauchy integral

1

2πi

∮
C

zn

z − a
dz (D.3)

where n is an integer and C is a contour around a circle with radius |a|. From

Cauchy integrals we know that for n < 0 the integral is zero and, for n ≥ 0

the results is an. Therefore we can conclude that

[Z(a)]a≥0 =

∮
Z(z)

z − a
dz. (D.4)

If Z(z) is a Laurent expansion

Z(z) =
∞∑
−∞

cnz
n. (D.5)
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This integral ∮
Z(z)

z − a
dz (D.6)

will only keep terms with positive powers. This analysis only works for function

Z(z) with positive integer powers. In our case where we are dealing with

the SU(2) partition function Z(z), half integer powers arise. We avoid this

problem by taking a → a2 before we compute the contour integral and then

we take a→
√
a afterwards. Mathematically it is implemented as follows

[Z(a)]a≥0 =
1

2πi

∮
C

Z(z2)

z −
√
z
. (D.7)

Therefore

[(1− 1

a
)]≥0 =

1

2πi

∮
(1− 1

z2 )Z(z2)

z −
√
a

. (D.8)

In our case we have[
Z3(s, x, y)(1− 1

y
)

]
≥0

=

∮
dz

(1− 1
z2 )Z3(s, x, y)

z −
√
a

, (D.9)

which performs Laurent expansion of Z(s, x, y)(1 − 1
y ) and keeps only terms

with positive powers of y.
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Appendix E

Constructing Primary

Operators

In this appendix we will describe the construction of some non-trivial pri-

maries.

E.1 Higher Spin Operators

To construct higher spin primary operators for a n scalar fields, the operators

must obey the condition

KµO =
n∑
i

∂

∂xµi
O (E.1)

=0,

where Kµ is the generator of special conformal transformations. The condition

above shows that the polynomial should be translational invariant. From these

operators we need to remove null states set by the equation of motion,

∑
µ

∂

∂xµi

∂

∂xµi
O = 0. (E.2)

This shows that O is a harmonic polynomial. We can move into the complex

plane and write the xµ as follows

zi = x1
i + ix2

i , wi = x3
i + ix4

i . (E.3)
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The translational invariants we can use to build the polynomial are

z1 − z2√
2

,
z1 + z2 − 2z3√

6
,

z1 + z2 + z3 − 3z4√
12

, (E.4)

which are in the hook representation of S4. Any polynomial built using these

invariants are harmonic since

∑
µ

∂

∂xµi

∂

∂xµi
O(z1, z2, z3, z4) =4(

∂2

∂zi∂z̄i
+

∂2

∂wi∂w̄i
)O(z1, z2, z3, z4) (E.5)

=0.

The polynomial we want to build is constructed from scalar fields, so we have

to enforce bosonic statistics. We achieve this by acting with a projector

PR =
dR
4!

∑
σεS4

χR(σ) · σ (E.6)

where R = . In the representation space this projector is given as

PR =
dR
4!

∑
σεS4

χR(σ) · ΓS(σ), (E.7)

where

S = ⊗ · · · ⊗︸ ︷︷ ︸
k times

(E.8)

= ⊗k,

and ΓS(σ) is the matrix representation of group element σ and is given as

ΓS(σ) = Γ (σ)⊗ · · · ⊗ Γ (σ)︸ ︷︷ ︸
k times

(E.9)

=
(
Γ (σ)

)⊗k
.

We let the projector PR act on the polynomial,

176




e1

e2

e3

⊗ · · · ⊗

e1

e2

e3


︸ ︷︷ ︸

k times

=


z1−z2√

2
z1+z2−2z3√

6
z1+z2+z3−3z4√

12

⊗ · · · ⊗


z1−z2√
2

z1+z2−2z3√
6

z1+z2+z3−3z4√
12


︸ ︷︷ ︸

k times

(E.10)


e1

e2

e3


⊗k

=


z1−z2√

2
z1+z2−2z3√

6
z1+z2+z3−3z4√

12


⊗k

,

where


e1

e2

e3

 =


z1−z2√

2
z1+z2−2z3√

6
z1+z2+z3−3z4√

12

 . (E.11)

The polynomials e1, e2 and e3 are harmonic and correspond to the Young-

Yamanouchi states

e1 ↔ 1 3 4
2

e2 ↔ 1 2 4
3

e3 ↔ 1 2 3
4

,

and further more the monomial z1 corresponds to the Young diagram box

labelled 1 on each Young-Yamanouchi state, z2 corresponds to the box la-

belled 2, z3 corresponds to the box labelled 3 and z4 to the box labeled 4.

This irreducible representation has dimension d = 3, and the basis for this

representation are given by the Young-Yamanouchi states,

e1 =


1

0

0

 e2 =


0

1

0

 e3 =


0

0

1

 . (E.12)

We obtain the matrix representation ΓS(σ) by acting with permutation group

elements on the Young-Yamanouchi states (polynomials). Consider the action
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of the permutation group element (23) on the Young-Yamanouchi state e1,

(23)e1 = (23)

(
z1 − z2√

2

)
(E.13)

this action exchanges the position of z2 and z3, therefore

(23)e1 =(23)

(
z1 − z2√

2

)
(E.14)

=
z1 − z3√

2

=
1

2

(
z1 − z2√

2

)
+

√
3

2

(
z1 + z2 − 2z3√

6

)
=

1

2
e1 +

√
3

2
e2.

The action of the group element (23) on e2 is

(23)e2 =(23)
(z1 + z2 − 2z3)√

6
(E.15)

=
z1 + z3 − 2z2√

6

=

√
3

2

(
z1 − z2√

2

)
− 1

2

(
z1 + z2 − 2z3√

6

)
=

√
3

2
e1 −

1

2
e2.

Lastly the action of the permutation group element (23) on e3 is

(23)e3 =(12)

(
z1 + z2 + z3 − 3z4√

12

)
(E.16)

=
z1 + z2 + z3 − 3z4√

12

=e3.

Therefore the matrix representation for the group element (23) is

ΓQ((23))


e1

e2

e3

 =


−1

2

√
3

2 0
√

3
2 −1

2 0

0 0 1



e1

e2

e3

 . (E.17)

One finds the matrix representation ΓQ((12)) by following the same procedure
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as above. We act with the group element (12) on the states e1, e2 and e3, this

time the group element (12) interchanges the position of z1 and z2. We find

the matrix representation

ΓQ((12))


e1

e2

e3

 =


−1 0 0

0 1 0

0 0 1



e1

e2

e3

 . (E.18)

The matrix representation for the group element (34) is obtained by inter-

changing the positions of z3 and z4 on the states e1, e2 and e3. The result

is

ΓQ((34))


e1

e2

e3

 =


1 0 0

0 1
3

√
8

3

0
√

8
3 −1

3



e1

e2

e3

 . (E.19)

The identity is

ΓQ((1)) =


1 0 0

0 1 0

0 0 1

 . (E.20)

We can find the matrix representation of the remaining group elements of S4

by multiplying the matrices above. When k = 2 we have the projector acting

on the polynomial as follows

PR2 =
d

4!

∑
σεS4

χ (σ)Γ(σ)⊗ Γ(σ) ·


1 3 4
2

1 2 3
4

1 2 3
4


⊗2

, (E.21)

where dR = 1 and χR(σ) = 1. Using mathematica we find the following result
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for PR2

PR2 =
d

4!

∑
σεS4

χ (σ)Γ(σ)⊗ Γ(σ) ·


1 3 4
2

1 2 3
4

1 2 3
4


⊗2

(E.22)

=



1
12P

0

0

0
1
12P

0

0

0
1
12P


where

P =(z1 − z2)2 + (z1 − z3)2 + (z1 − z4)2 + (z2 − z3)2 + (z2 − z4)2 + (z3 − z4)2

(E.23)

=
4∑
i<j

(zi − zj)2,

and i, j = 1, · · · 4. The results for PR3 are

PR3 =
1

24
=
∑
σεS4

χ (σ)Γ(σ)⊗ Γ(σ)⊗ Γ(σ) ·


1 3 4
2

1 2 3
4

1 2 3
4


⊗3

(E.24)

=P3

(
0,

1

4
√

6
,

1

8
√

3
,

1

4
√

6
, 0, 0,

1

8
√

3
, 0, 0,

1

4
√

6
, 0, 0, 0,− 1

4
√

6
,

1

8
√

3
, 0,

1

8
√

3
,

0,
1

8
√

3
, 0, 0, 0,

1

8
√

3
, 0, 0, 0,− 1

4
√

6

)
,
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where

P3 =(z4 + z2 − 2z3)(z4 + z3 − 2z2)(z2 + z3 − 2z4) (E.25)

+ (z1 + z4 − 2z3)(z1 + z3 − 2z4)(z4 + z3 − 2z1)

+ (z1 + z2 − 2z4)(z1 + z4 − 2z2)(z2 + z4 − 2z1)

+ (z1 + z2 − 2z3)(z1 + z3 − 2z2)(z2 + z3 − 2z1)

=
4∑

i<j<k

(zi + zj − zk)(zj + zk − zi)(zk + zi − zj).

The construction for both PR2 and PR3 give one solution which shows that

there is only one invariant symmetric subspace. This can also be seen from

the eigenvalue spectrum of both PR2 and PR3 projectors, where their spectrum

contains a single eigenvalue of 1 and the rest of the eigenvalues are 0. This

means there is only one possible way to write a symmetric invariant polyno-

mial.

For the case of PR4 , the eigenvalue spectrum of the projector contains 4 eigen-

values of 1 and the rest are 0. And the results of the PR4 projector contain

4 different solutions, which implies that there are 4 possible ways to write a

symmetric invariant polynomial. This way of counting is related to the num-

ber of times the representation r (r = ) appears in a tensor product ⊗k.

We know that the matrices with the same cycle structure have the same trace

and the character of tensor product is equal to the product of the characters

of each representation. Therefore

χ ((1)) = 3, χ ((..)) = 1 for 2 cycles, χ ((...)) = 0 for 3 cycles,

(E.26)

χ ((..)(..)) = −1 for 2 2 cycles, χ ((....)) = 1 for 4 cycles,

and the character of the tensor product is

χ ⊗2
((1)) = 32, χ ⊗2

((..)) = 1 for 2 cycles, χ ⊗2
((...)) = 0 for 3 cycles,

(E.27)

χ ⊗2
((..)(..)) = (−1)2 for 2 2 cycles, χ ⊗2

((....)) = 1 for 4 cycles.
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The formula for the number of times nr(k) the represenatation r (r = )

appears in a tensor product S = ⊗2 is given as

nr =
1

24

∑
σεS4

χr(σ)χS(σ) (E.28)

=
1

24

∑
σεS4

χ (σ)χ ⊗2
(σ)

=
1

24

(
χ ((1))χ ⊗2

((1)) + 6χ ((..))χ ⊗2
((..)) + 8χ ((...))χ ⊗2

((...))

3χ ((..)(..))χ ⊗2
((..)(..)) + 6χ ((....))χ ⊗2

((....))

)
=

1

24

(
(1)(3)2 + 6(1)(1)2 + 3(1)(0) + 3(1)(−1)2 + 6(1)(−1)2

)
=1

and for S = ⊗3 we have

nr =
1

24

∑
σεS4

χ (σ)χ ⊗3
(σ)

=
1

24
(1(3)3 + 6(1)(1)3 + 8(1)(0) + 3(1)(−1)3 + 6(1)(−1)3

)
=1,

and for S = ⊗4 we obtain

nr =
1

24

∑
σεS4

χ (σ)χ ⊗4
(σ) (E.29)

=4.

In general nr(k) is

n (k) =
3k + 6(1)k + 9(−1)k

24
k > 1. (E.30)
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E.1.1 Primary Operators built with z and w operators

Note that the operators z, z̄, w and w̄ have the spin or charge assignments

(jL, jR) given as

z ↔ (
1

2
,
1

2
)

z̄ ↔ (−1

2
,−1

2
)

w ↔ (
1

2
,−1

2
)

w̄ ↔ (−1

2
,
1

2
).

Primary operators built above using the projector PR and the translation

invariants given above have spin or charge assignments

(j
k
2
L , j

k
2
R).

We can also build another set of primary operators from using the monomials

zi = x1
i + ix2

i , wi = x3
i + ix4

i . (E.31)

The translational invariant states we use to build these primary operators are


e1

e2

e3

 =


z1−z2√

2
z1+z2−2z3√

6
z1+z2+z3−3z4√

12

 , (E.32)

from the complex z subspace and, for the w complex subspace the translational

invariants monomials are


c1

c2

c3

 =


w1−w2√

2
w1+w2−2w3√

6
w1+w2+w3−3w4√

12

 . (E.33)

We combine these by forming a tensor product as follows


e1

e2

e3


⊗k

⊗


c1

c2

c3


⊗l

=


z1−z2√

2
z1+z2−2z3√

6
z1+z2+z3−3z4√

12


⊗k

⊗


w1−w2√

2
w1+w2−2w3√

6
w1+w2+w3−3w4√

12


⊗l

. (E.34)
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We project these states onto a symmetric subspace by acting with a projector

PRzw , where we have projector ΓSz(σ) acting on the state
e1

e2

e3

 (E.35)

and, projector ΓSw acting on the state


c1

c2

c3

 , (E.36)

as follows

PRzw


e1

e2

e3


⊗k

⊗


c1

c2

c3


⊗l

=
d

4!

∑
σεS4

χ (σ)(ΓSz(σ))⊗k ·


e1

e2

e3


⊗k

⊗ (ΓSw(σ))⊗l ·


c1

c2

c3


⊗l

(E.37)

=
1

4!

∑
σεS4

(ΓSz(σ))⊗k ⊗ (ΓSw(σ))⊗l ·


e1

e2

e3


⊗k

⊗


c1

c2

c3


⊗l

.

The primary operators built using z and w co-ordinates have the spin or charge

assignments (
j
l+k
2

L , j
l−k

2
R

)
. (E.38)

We can build another set of primary operators using z and w̄ co-ordinates in

the same way,

PRzw̄


e1

e2

e3


⊗k

⊗


c̄1

c̄2

c̄3


⊗l

=
1

4!

∑
σεS4

(ΓSz(σ))⊗k ⊗ (ΓSw̄(σ))⊗l ·


e1

e2

e3


⊗k

⊗


c̄1

c̄2

c̄3


⊗l

.

(E.39)
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These operators will have the charge assignments(
j
l−k

2
L , j

l+k
2

R

)
. (E.40)

The number of times Nr= (k, l) the representation r = appears in the

tensor product ⊗(k+l) is

Nr(k, l) =
3k+l + 6(1)k+l + 9(−1)k+l

24
k, l > 1. (E.41)

Using (E.37), k = 1 and l = 1 we obtain that

PRzw


e1

e2

e3

⊗

c1

c2

c3

 = O(k=1,l=1)(z, w)

(
1

12
, 0, 0, 0,

1

12
, 0, 0, 0,

1

12

)
, (E.42)

where O(k=1,l=1)(z, w) is

O(1,1)(z, w) =(z1 − z2)(w1 − w2) + (z1 − z3)(w1 − w3) + (z1 − z4)(w1 − w4)

(E.43)

+ (z2 − z3)(w2 − w3) + (z2 − z4)(w2 − w4) + (z3 − z4)(w3 − w4)

=
4∑
i<j

(zi − zj)(wi − wj).

The projector PRzw maps the translational invariant state


e1

e2

e3

⊗

c1

c2

c3

 (E.44)

into a symmetric subspace , where the polynomial is made up of the

invariants (zi − zj) and (wi − wj). These invariants combine into a product

(zi− zj)(wi−wj), and all the possible combinations of i, j of this product are

summed with the restriction that i > j. Hence

O(1,1)(z, w) =
4∑
i<j

(zi − zj)(wi − wj). (E.45)
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When k = 0 and l = 2 we find

PRzw


c1

c2

c3


⊗2

= O(k=0,l=2(w)

(
1

12
, 0, 0, 0,

1

12
, 0, 0, 0,

1

12

)
, (E.46)

where O(k=0,l=2)(w) is

O(0,2)(w) =(w1 − w2)2 + (w1 − w3)2 + (w1 − w4)2 + (w2 − w3)2 + (w2 − w4)2

(E.47)

+ (w3 − w4)2

=
4∑
i<j

(wi − wj)2.

Here the operator PRzw maps the translational invariant polynomial


c1

c2

c3


⊗2

into a symmetric subspace where the polynomial is made up of the invariants

(wi − wj)2 and, all the possible combinations of (wi − wj)2 are summed with

a restriction that i < j.

When k = 2 and l = 1 we obtain

PRzw


e1

e2

e3


⊗2

⊗


c1

c2

c3

 =O(2,1)(z, w)

(
0,− 1

72
√

6
,− 1

144
√

3
,

1

72
√

6
, 0, 0,− 1

144
√

3
,

(E.48)

0, 0,− 1

72
√

6
, 0, 0, 0,

1

72
√

6
,− 1

144
√

3
, 0,− 1

144
√

3
, 0,

− 1

144
√

3
, 0, 0, 0,− 1

144
√

3
, 0, 0, 0,

1

72
√

3

)
,

where O(2,1)(z, w) is

186



O(2,1)(z, w) =(z1 + z4 − 2z3)(z1 + z3 − 2z4)(w4 + w3 − 2w1) (E.49)

+ (z1 + z4 − 2z3)(w1 + w3 − 2w4)(z4 + z3 − 2z1)

+ (w1 + w4 − 2w3)(z1 + z3 − 2z4)(z4 + z3 − 2z1)

+ (w1 + w2 − 2w4)(z1 + z4 − 2z2)(z2 + z4 − 2z1)

+ (z1 + z2 − 2z4)(w1 + w4 − 2w2)(z2 + z4 − 2z1)

+ (z1 + z2 − 2z4)(z1 + z4 − 2z2)(w2 + w4 − 2w1)

+ (w1 + w2 − 2w3)(z1 + z3 − 2z2)(z2 + z3 − 2z1)

+ (z1 + z2 − 2z3)(w1 + w3 − 2w2)(z2 + z3 − 2z1)

+ (z1 + z2 − 2z3)(z1 + z3 − 2z2)(w2 + w3 − 2w1)

+ (w4 + w2 − 2w3)(z4 + z3 − 2z2)(z2 + z3 − 2z4)

+ (z4 + z2 − 2z3)(w4 + w3 − 2w2)(z2 + z3 − 2z4)

+ (z4 + z2 − 2z3)(z4 + z3 − 2z2)(w2 + w3 − 2w4)

=
4∑

i<j<k

[
(zi + zj − zk)(zj + zk − zi)(wk + wi − wj)

+(zi + zj − zk)(wj + wk − wi)(zk + zi − zj)

+(wi + wj − wk)(zj + zk − zi)(zk + zi − zj)
]
.

Here the projector produces a symmetric polynomial O(2,1)(z, w) which is

composed of invariants (zi + zj − 2zk) and (wi + wj − 2wk). The polynomial

O(2,1) contains a sum of all the possible distinct products of

(zi + zj − 2zk)(zj + zk − zi)(wk + wi − wj).
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E.1.2 Primary operators for 3 scalar fields

Consider the projection operator for 3 scalar fields

PRzw ·
[
e1

e2

]⊗k
⊗
[
c1

c2

]⊗l
=

1

6

∑
σεS3

χ (σ)(ΓSz(σ))⊗k ⊗ (ΓSw(σ))⊗l ·
[
e1

e2

]⊗k
⊗
[
c1

c2

]⊗l
,

(E.50)

where [
e1

e2

]
=

 z1−z2√
2

z1+z2−2z3√
6

 [
c1

c2

]
=

 w1−w2√
2

w1+w2−2w3√
6

 ,
and

(ΓSz(σ))⊗k = Γ (σ)⊗ · · · ⊗ Γ (σ)︸ ︷︷ ︸
k times

. (E.51)

From equation (E.50) above the representation appears N (k, l) times,

N (k, l) =
2k+1 + 2(−1)k+l

6
, (E.52)

in the tensor product ⊗(k+l). This integer counts the number of different

solutions equation (E.50) can have. When k = 3 and l = 1, this equation will

have 3 solutions since

N (k, l) =
2k+l + 2(−1)k+l

6
(E.53)

=
23+1 + 2(−1)3+1

6

=3.

Which means there are 3 different subspaces carrying the representation .

To obtain a single solution we act with the projector P on equation (E.50),

given as

P =
d

24

∑
σεS4

χ (σ)Γ(σ), (E.54)
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where d = 2 and

Γ((12)) =P4×4 ⊗ I2×2 ⊗ I2×2 Γ((23)) = I2×2 ⊗ P4×4 ⊗ I2×2 (E.55)

Γ((34)) =I2×2 ⊗ I2×2 ⊗ P4×4 (E.56)

and

P4×4 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (E.57)

The matrix representation Γ (σ) corresponding to the character χ (σ) is

Γ((12)) =

[
1 0

0 −1

]
Γ((23)) =

[
−1

2

√
3

2√
3

2
1
2

]
Γ((34)) =

[
1 0

0 −1

]
.

(E.58)

Therefore

χ ((··)) = 0, χ ((··)(··)) = 2, χ ((· · ·)) = −1 χ ((· · ··)) = 0.

(E.59)

The projection operator P · PRzw has eigenvalues

Eigenvalues[P · PRzw] =

(
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
, (E.60)

and it projects the state

[
e1

e2

]⊗3

⊗
[
c1

c2

]⊗1

.

This results in the formula

P · PRzw

[
e1

e2

]⊗3

⊗
[
c1

c2

]⊗1

= P ·
[

1

6

∑
σεS3

χ (σ)(ΓSz(σ))⊗3 ⊗ (ΓSw(σ))⊗1 ·
[
e1

e2

]⊗3

⊗
[
c1

c2

]⊗1 ]
(E.61)
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Appendix F

Testing the Primary

Condition

F.1 Primary Operators

In this appendix we will illustrate that the many-body polynomials we have

constructed are indeed primary operators once we transform back to the CFT

language. We will make use of the conformal group algebra

[Kµ, Pν ] = 2Mµν − 2Dδµν (F.1)

[D,Pµ] = Pµ

[D,Kµ] = −Kµ

[Mµν ,Kα] = δναKµ − δµαKν

[Mµν ,Kα] = δναPµ − δµαPν

Consider the polynomial

Ψ = (w(3)(z̄(2) − z̄(1)) + w(2)(z̄(1) − z̄(3)) + w(1)(z̄(3) − z̄(2)))2n, (F.2)

A simple case we will take is n = 2. We will make the translation

zk1w
l
1z
q
2w

r
2z
t
3w

v
3 ↔

(
P kz P

l
w

k!l!
φ

)(
P qz P

r
w

q!r!
φ

)(
P tzP

v
w

t!v!
φ

)
(F.3)

to obtain
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Ψ =
1

4
φP 2

z̄ φP
2
wφ−

1

2
P 2
z̄ φ(Pwφ)2 − φ(Pz̄Pwφ)2 − 1

2
(Pz̄φ)2P 2

wφ+ 2(Pz̄Pwφ)(Pwφ)(Pz̄φ)

(F.4)

where Pz̄ = P1 − iP2 and Pw = P3 + iP4. Acting with the special conformal

operator Kµ on Ψ, the operator Ψ should be annihilated if it is a primary

operator. Action of Kµ on Ψ gives

Kµψ =
1

4
φKµP

2
z̄ φP

2
wφ+

1

4
φP 2

z̄ φKµP
2
wφ (F.5)

− 1

2
KµP

2
z̄ φPwφPwφ−

1

2
P 2
z̄ φKµPwφPwφ−

1

2
P 2
z̄ φPwφKµPwφ

− φKµPz̄PwφPz̄Pwφ− φPz̄PwφKµPz̄Pwφ (F.6)

− 1

2
KµPz̄φPz̄φP

2
wφ−

1

2
Pz̄φKµPz̄φP

2
wφ−

1

2
Pz̄φPz̄φKµP

2
wφ

+ 2KµPz̄PwφPwφPz̄φ+ 2Pz̄PwφKµPwφPz̄φ+ 2Pz̄PwφPwφKµPz̄φ

First consider the term

KµP
m
z̄ φ =

m−1∑
r=0

P rz̄ [Kµ, Pz̄]P
m−1−r
z̄ φ (F.7)

=
m−1∑
r=0

P rz̄ [Kµ, P1 − iP2]Pm−1−r
z̄ φ

=
m−1∑
r=0

P rz̄

(
2Mµ1 − 2Dδµ1 − 2iMµ2 + 2iDδµ2

)
Pm−1−r
z̄ φ

=
m−1∑
r=0

P rz̄

(
− 2(δµ1 − iδµ2)D + (Mµ1 − iMµ2

)
Pm−1−r
z̄ φ. (F.8)

Using the formula
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2
m−1∑
r=0

P rz̄Mµ1P
m−1−r
z̄ φ = 2

m−1∑
r=0

m−r−2∑
s=0

P rz̄ P
s
z̄ [Mµ1, Pz̄]P

m−r−s−2
z̄ φ (F.9)

=2
m−1∑
r=0

m−r−2∑
s=0

P rz̄ P
s
z̄ [Mµ1, P1 − iP2]Pm−r−s−2

z̄ φ

=2
m−1∑
r=0

m−r−2∑
s=0

P rz̄ P
s
z̄

(
δ11Pµ − δµ1P1 − iδ12Pµ + iδµ2P1

)
Pm−r−s−2
z̄ φ

=
m−1∑
r=0

m−r−2∑
s=0

(
Pµ − δµ1P1 + iδµ2P1

)
Pm−1
z̄ φ

=− 2(δµ1 − iδµ2)
m−1∑
r=0

(m− r − 1)P1P
m−2
z̄ φ+ 2

m−1∑
r=0

(m− r − 1)PµP
m−2
z̄ φ

=− 2(δµ1 − iδµ2)

(
m2 − m(m− 1)

2
−m

)
P1P

m−2
z̄ φ

+ 2

(
m2 − m(m− 1)

2
−m

)
PµP

m−2
z̄ φ,

it follows that

2
m−1∑
r=0

P rz̄Mµ1P
m−1−r
z̄ φ = 2i(δµ1 − iδµ2)

(
m2 − m(m− 1)

2
−m

)
P2P

m−2
z̄ φ

(F.10)

− 2

(
m2 − m(m− 1)

2
−m

)
PµP

m−2
z̄ φ.

Note that in the computation above we have used the fact that Mµνφ = 0.

We also know that

DPz̄φ
m−r−1φ = (m− r)Pm−r−1

z̄ φ. (F.11)

Plugging (F.9), (F.10), (F.11) back into (F.7) into we obtain

KµP
m
z̄ φ = −2m2(δµ1 − iδµ2)Pm−1

z̄ φ. (F.12)

For m = 2
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KµP
2
z̄ φ = −8(δµ1 − iδµ2)Pz̄φ (F.13)

Using the same idea to treat the term KµPz̄Pwφ we find

KµPz̄Pwφ = −4(δµ1 − iδµ2)Pwφ− 4(δµ3 + iδµ4)Pz̄φ. (F.14)

Denoting A = −(δµ1 − iδµ2) and B = −(δµ3 + iδµ4) and plugging back the

above results back in (F.5) we find

KµΨ = 0. (F.15)

This shows that the operator Ψ is indeed a primary operator.

Lets consider another set of primary operators that are constructed from tak-

ing a determinant of the coordinates variables. Consider the operator

Q = det


z(1) z(2) z(3) z(4)

(z(1))2 (z(2))2 (z(3))2 (z(4))2

z̄(1) z̄(2) z̄(3) z̄(4)

1 1 1 1

 (F.16)

,

For odd powers of Q acting on the scalar field φ(z1)φ(z2)φ(z3)φ(z4)
∣∣
z1···z4=z

yield zero operators and even powers of Q give non-zero primary operators.

Consider Q acting on φ(z1)φ(z2)φ(z3)φ(z4)
∣∣
z1···z4=z

,
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Q[φ(z1)φ(z2)φ(z3)φ(z4)]

∣∣∣∣
z1···z4=z

=

(
z(1)(z(2))2z̄(3) − z(1)(z(2))2z̄(4) − z(1)(z(3))2z̄(2)

(F.17)

+ z(1)(z(3))2z̄(4) + z(1)(z(4))2z̄(2) − z(1)(z(4))2z̄(3)

− z(2)(z(1))2z̄(3) + z(2)(z(1))2z̄(4) + z(2)(z(3))2z̄(1)

− z(2)(z(3))2z̄(4) − z(2)(z(4))2z̄(1) + z(2)(z(4))2z̄(3)

+ z(3)(z(1))2z̄(2) − z(3)(z(1))2z̄(4) − z(3)(z(2))2z̄(1)

+ z(3)(z(2))2z̄(4) + z(3)(z(4))2z̄(1) − z(3)(z(4))2z̄(2)

− z(4)(z(1))2z̄(2) + z(4)(z(1))2z̄(3) + z(4)(z(2))2z̄(1)

− z(4)(z(2))2z̄(3) − z(4)(z(3))2z̄(1) + z(4)(z(3))2z̄(2)
)

× [φ(z1)φ(z2)φ(z3)φ(z4)]

∣∣∣∣
z1···z4=z

.

Making the transformation xk → Pk

k! we obtain

Q[φ(z1)φ(z2)φ(z3)φ(z4)]

∣∣∣∣
z1···z4=z

=Pzφ
P 2
z

2!
φPz̄φφ− Pzφ

P 2
z

2!
φφPz̄φ− Pzφ

P 2
z

2!
φPz̄φφ

(F.18)

+ Pzφφ
P 2
z

2!
φPz̄φ+ Pzφ

P 2
z

2!
φPz̄φφ− Pzφ

P 2
z

2!
φPz̄φφ

− P 2
z

2!
φPzφPz̄φφ+

P 2
z

2!
φPzφφPz̄φ+ z̄φPzφ

P 2
z

2!
φφ

− φPzφ
P 2
z

2!
φPz̄φ− Pz̄φPzφφ

P 2
z

2!
φ+ φPzφPz̄φ

P 2
z

2!
φ

+
P 2
z

2!
φPz̄φPzφφ−

P 2
z

2!
φφPzφPz̄φ− Pz̄φ

P 2
z

2!
Pzφφ

+ φ
P 2
z

2!
φPzφPz̄φ+ φPz̄φPzφ

P 2
z

2!
φ− φPz̄φPzφ

Pz
2!
φ

− P 2
z

2!
φPz̄φφPzφ+

P 2
z

2!
φφPz̄φPzφ+ Pz̄φ

P 2
z

2!
φφPzφ

− φP
2
z

2!
φPz̄φPzφ− Pz̄φφ

P 2
z

2!
φPzφ+ φPz̄φ

P 2
z

2!
φPzφ

=0

For even powers of Q we get non-zero results. For Q2 we get
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Q2 = det


z(1) z(2) z(3) z(4)

(z(1))2 (z(2))2 (z(3))2 (z(4))2

z̄(1) z̄(2) z̄(3) z̄(4)

1 1 1 1

× det


z(1) z(2) z(3) z(4)

(z(1))2 (z(2))2 (z(3))2 (z(4))2

z̄(1) z̄(2) z̄(3) z̄(4)

1 1 1 1


(F.19)

Note that when the derivatives act on the fields, the cross terms are equal and

we add them together. The non-cross terms are also equal and we add these

together too. Therefore we have

Q2 = 4(z(1))2

∣∣∣∣∣∣∣∣
(z2)2 (z3)2 (z4)2

z̄2 z̄3 z̄4

1 1 1

∣∣∣∣∣∣∣∣
2

− 12z1z2

∣∣∣∣∣∣∣∣
(z2)2 (z3)2 (z4)2

z̄2 z̄3 z̄4

1 1 1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(z1)2 (z3)2 (z4)2

z̄1 z̄3 z̄4

1 1 1

∣∣∣∣∣∣∣∣ ,
(F.20)

and

Q2[φ(z1)φ(z2)φ(z3)φ(z4)]

∣∣∣∣
z1,··· ,z4=z

= 4z2
1

(
(z2)2(z̄3 − z̄4)− (z3)2(z̄2 − z̄4) + (z4)2(z̄2 − z̄3)

)2

(F.21)

− 12z2z1

(
(z2)2(z̄3 − z̄4)− (z3)2(z̄2 − z̄4) + (z4)2(z̄2 − z̄3)

)2

× φ(z1)φ(z2)φ(z3)φ(z4)

∣∣∣∣
z1,··· ,z4=z

,

these becomes at z1, · · · , z4 = z
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Q2φ4(z) =− 1

2
P 2
z φP

4
z φPz̄φPz̄φ− 2P 2

z φP
2
z φP

2
z Pz̄φPz̄φ− P 2

z φP
2
z Pz̄φP

2
z Pz̄φφ

(F.22)

− 3

2
P 2
z φP

2
z̄ φP

2
z φP

2φ+ 4P 2
z φPz̄φP

2
z Pz̄φP

2
z φ− 2P 2

z φP
2
z Pz̄φP

2Pz̄φφ

+
1

4
P 2
z φP

4
z φP

2
z̄ φφ−

1

3
P 3
z φP

3
z φP

2
z̄ φφ+

2

3
P 3
z φP

3
z φPz̄φPz̄φ

− PzPz̄φPzPz̄φP 4
z φφ+ 2PzφPzPz̄φP

4
z φPz̄φ−

1

2
PzφPzφP

4
z φP

2
z̄ φ

+ 6PzPz̄φPzPz̄φP
2
z φP

2
z φ− 12PzφPzPz̄φP

2Pz̄φP
2
z φ

+ 6PzφPzφP
2
z Pz̄φP

2
z Pz̄φ+ 4PzPz̄φP

3
z φP

2
z Pz̄φφ− 4PzφP

3
z φP

2
z Pz̄φPz̄φ

− 4PzPz̄φP
3
z φP

2
z φPz̄φ+

1

3
PzφP

3φP 2
z φP

2
z̄ φ.

We can verify that Q2φ4(z) is a Primary operator by acting with a special

conformal operator Kµ. We will first act on each term on (F.22) by Kµ then

add up the terms together. Let A = δ1µ − iδ2µ and B = δ3µ + iδ4µ. Then

Kµ(P 2
z φP

4
z φPz̄φPz̄φ) =8BPzφP

4
z φPz̄φPz̄φ+ 32BP 2

z φP
3
z φPz̄φPz̄φ+ 4AP 2

z φP
4
z φPz̄φφ

(F.23)

=O1

Kµ(P 2
z φP

2
z φP

2
z Pz̄φPz̄φ) =16BPzφP

2
z φP

2
z Pz̄φPz̄φ+ 8BP 2

z φP
2
z φPzPz̄φPz̄φ

(F.24)

2AP 2
z φP

2
z φP

2
z φPz̄φ+ 2AP 2

z φP
2
z φP

2
z Pz̄φφ

=O2,

Kµ(P 2
z φP

2
z Pz̄φP

2
z Pz̄φφ) =8BPzφP

2
z Pz̄φP

2
z Pz̄φφ+ 16BP 2

z φPzPz̄φP
2
z Pz̄φφ

(F.25)

+ 4AP 2
z φP

2
z Pz̄φP

2
z φφ

=O3,

Kµ(P 2
z φP

2
z̄ φP

2
z φP

2φ) =24BPzφP
2
z̄ φP

2
z φP

2φ+ 8AP 2
z φPz̄φP

2
z φP

2φ (F.26)

=O4,
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Kµ(P 2
z φPz̄φP

2
z Pz̄φP

2
z φ) =16BPzφPz̄φP

2
z Pz̄φP

2
z φ+ 2AP 2

z φP
2
z Pz̄φP

2
z φφ

(F.27)

+BP 2
z φPz̄φPzPz̄φP

2
z φ+ 2AP 2

z φPz̄φP
2
z φP

2
z φ

=O5,

Kµ(P 2
z φP

2
z Pz̄φP

2Pz̄φφ) =8BPzφP
2
z Pz̄φP

2Pz̄φφ+ 16BP 2
z φPzPz̄φP

2Pz̄φφ

(F.28)

+ 4AP 2
z φP

2
z φP

2Pz̄φφ

=O6,

Kµ(P 2
z φP

4
z φP

2
z̄ φφ) =8BPzφP

4
z φP

2
z̄ φφ+ 32BP 2

z φP
3
z φP

2
z̄ φφ (F.29)

+ 8AP 2
z φP

4
z φPz̄φφ

=O7,

Kµ(P 3
z φP

3
z φP

2
z̄ φφ) =36BP 2

z φP
3
z φP

2
z̄ φφ+ 8AP 3

z φP
3
z φPz̄φφ (F.30)

=O8,

Kµ(P 3
z φP

3
z φPz̄φPz̄φ) =36BP 2

z φP
3
z φPz̄φPz̄φ+ 4AP 3

z φP
3
z φPz̄φφ (F.31)

=O9,

Kµ(PzPz̄φPzPz̄φP
4
z φφ) =4BPz̄φPzPz̄φP

4
z φφ+ 4APzφPzPz̄φP

4
z φφ (F.32)

+ 32BPzPz̄φPzPz̄φP
3
z φφ

=O10,

Kµ(PzφPzPz̄φP
4
z φPz̄φ) =2BφPzPz̄φP

4
z φPz̄φ+ 2BPzφPz̄φP

4
z φPz̄φ (F.33)

+ 2APzφPzφP
4
z φPz̄φ+ 32BPzφPzPz̄φP

3
z φPz̄φ

+ 2APzφPzPz̄φP
4
z φφ

=O11,
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Kµ(PzφPzφP
4
z φP

2
z̄ φ) =4BφPzφP

4
z φP

2
z̄ φ+ 32BPzφPzφP

3
z φP

2
z̄ φ (F.34)

+ 8APzφPzφP
4
z φPz̄φ

=O12,

Kµ(PzPz̄φPzPz̄φP
2
z φP

2
z φ) =4BPz̄φPzPz̄φP

2
z φP

2
z φ+ 4APzφPzPz̄φP

2
z φP

2
z φ

(F.35)

+ 16BPzPz̄φPzPz̄φPzφP
2
z φ

=O13,

Kµ(PzφPzPz̄φP
2
z Pz̄φP

2
z φ) =2BφPzPz̄φP

2
z Pz̄φP

2
z φ+ 2BPzφPz̄φP

2
z Pz̄φP

2
z φ

(F.36)

+ 2APzφPzφP
2
z Pz̄φP

2
z φ+ 8BPzφPzPz̄φPzPz̄φP

2
z φ

+ 2APzφPzPz̄φP
2
z φP

2
z φ+ 8BPzφPzPz̄φP

2
z Pz̄φPzφ

=O14,

Kµ(PzφPzφP
2
z Pz̄φP

2
z Pz̄φ) =4BφPzφP

2
z Pz̄φP

2
z Pz̄φ+ 16BPzφPzφPzPz̄φP

2
z Pz̄φ

(F.37)

+ 4APzφPzφP
2
z φP

2
z Pz̄φ

=O15,

Kµ(PzPz̄φP
3
z φP

2
z Pz̄φφ) =2BPz̄φP

3
z φP

2
z Pz̄φφ+ 2APzφP

3
z φP

2
z Pz̄φφ (F.38)

+ 18BPzPz̄φP
2
z φP

2
z Pz̄φφ+ 8BPzPz̄φP

3
z φPzPz̄φφ

+ 2APzPz̄φP
3
z φP

2
z φφ

=O16,

Kµ(PzφP
3
z φP

2
z Pz̄φPz̄φ) =2BφP 3

z φP
2
z Pz̄φPz̄φ+ 18BPzφP

2
z φP

2
z Pz̄φPz̄φ

(F.39)

+ 8BPzφP
3
z φPzPz̄φPz̄φ+ 2APzφP

3
z φP

2
z φPz̄φ

+ 2APzφP
3
z φP

2
z Pz̄φφ

=O17,
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Kµ(PzPz̄φP
3
z φP

2
z φPz̄φ) =2BPz̄φP

3
z φP

2
z φPz̄φ+ 2APzφP

3
z φP

2
z φPz̄φ (F.40)

+ 18BPzPz̄φP
2
z φP

2
z φPz̄φ+ 8BPzPz̄φP

3
z φPzφPz̄φ

+ 2APzPz̄φP
3
z φP

2
z φφ

=O18,

Kµ(PzφP
3φP 2

z φP
2
z̄ φ) =2BφP 3φP 2

z φP
2
z̄ φ+ 18BPzφP

2φP 2
z φP

2
z̄ φ (F.41)

8BPzφP
3φPzφP

2
z̄ φ+ 8APzφP

3φP 2
z φPz̄φ

=O19.

Summing these terms we find

Kµ(Q2φ4(z)) =− 1

2
O1 − 2O2 −O3 −

3

2
O4 + 4O5 − 2O6 +

1

4
O7 −

1

3
O8 +

2

3
O9

(F.42)

−O10 + 2O11 −
1

2
O12 + 6O13 − 12O14 − 6O15 + 4O16 − 4O17

− 4O18 +
1

3
O19

=0.

This shows that (Q2φ4(z)) is a primary.

F.2 Transformation between coordinates variables

and spacetime derivarives

We can translate polynomials back to momentum operators by using the fol-

lowing transformation

P kz̄ = akz̄
k (F.43)

where z̄ = x1 − ix2 and Pz̄ = P1 − iP2. We determine ak as follows,

P k+1
z̄ = ak+1z̄

k+1 (F.44)
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and

ak+1z̄
k+1 = Pz̄(akz̄

k) (F.45)

=ak(P1 − iP2)z̄k

using the expression Pµ = x2∂µ − 2xµx · ∂ − 2xµ for the momentum operator.

We can further simplify the expression above,

ak(P1 − iP2)z̄k =ak(kx
2 − 2kx1(x1 − ix2)− 2x1z̄)z̄

k−1 (F.46)

− iak(−ikx2 + 2ikx2(x1 − ix2)− 2x2z̄)z̄
k−1

=− 2ak(k + 1)z̄k+1.

Thus

ak+1 = −2(k + 1)ak, (F.47)

which implies that

ak = (−1)k2kk!. (F.48)

Similar reasoning shows that

P kw →bkwk (F.49)

bk →(−1)k2kk!, (F.50)

where w = x3 + ix4 and Pw = P3 + iP4. Therefore the transformation of a z̄

and w polynomial is as follows,

z̄k → P kz̄
(−1)k2kk!

wl → P lw
(−1)l2ll!

. (F.51)
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Appendix G

Formulas for Fermions

Consider the character generating function for the fermions

F (t, s, x, y) =
∞∏
q=0

(1 + tsq+
3
2x

q+1
2 y

q
2 ). (G.1)

Before making an expansion we will drop the terms x
q+1

2 and y
q
2 since it is

easy to reinsert these variables after expansion. Therefore

F (t, s) =
∞∏
q=0

(1 + tsq+
3
2 ). (G.2)

The derivative with respect to the parameter t yield

∂F

∂t
=
∞∑
a=0

s
3
2

+a

(1 + ts
3
2

+a)

∞∏
q=0

(1 + tsq+
3
2 ) (G.3)

=f1F

where

fk(t, s) = (−1)k−1(k − 1)!
∞∑
a

sk(a+ 3
2

)

(1 + ts( 3
2

+a))k
and f1(t, s) =

∞∑
a

sa+ 3
2

1 + tsa+ 3
2

,

(G.4)

The 2nd, 3rd and 4th t-derivatives of F give us
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∂2F

∂t2
=

(
−
∑
a

s2( 3
2

+a)

(1 + ts
3
2

+a)2
+
∑
a,b

s( 3
2

+a)s( 3
2

+b)

(1 + ts
3
2

+a)(1 + ts
3
2

+b)

) ∞∏
q=0

(1 + ts
3
2

+q)

(G.5)

=(f2
1 + f2)F,

∂3F

∂t3
=

(
2
∑
a

s3( 3
2

+a)

(1 + ts
3
2

+a)3
− 3

∑
a,b

s2( 3
2

+a)s( 3
2

+b)

(1 + ts
3
2

+a)2(1 + ts
3
2

+b)
(G.6)

+
∑
a,b,c

s( 3
2

+a)s( 3
2

+b)s( 3
2

+c)

(1 + ts
3
2

+a)(1 + ts
3
2

+b)(1 + ts
3
2

+c)

) ∞∏
q=0

(1 + ts
3
2

+q)

=(f3 + 3f2f1 + f3
1 )F,

and lastly

∂4F

∂t4
= (f4 + 4f3f1 + 3f2f2 + 6f2f1f1 + f4

1 )F. (G.7)

In general

∂n

∂tn
F (t, s) =

∑
n1,··· ,nq

∑
k1,··· ,kq

(n1k1 + · · ·+ nqkq)!

n1! · · ·nq!(k1!)n1 · · · (kq!)nq
fn1
k1 · · · f

nq
kq
δn,n1k1+···+nqkqF (t, s).

(G.8)

We can see that F (0, s) = 1 and

fk(0, s) =(−1)k−1(k − 1)!
∞∑
a=0

sk( 3
2

+a) (G.9)

=(−1)k−1(k − 1)!
s

3
2
k

(1− sk)
.

Plugging the simplification of fk(0, s) into equation (G.8) we obtain
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∂nF

∂tn

∣∣∣∣
t=0

=
∑

n1,··· ,nq

∑
k1,··· ,kq

(n1k1 + · · ·+ nqkq)!

n1! · · ·nq!(k1)n1 · · · (kq)nq

(
s

3
2
k1

1− sk1

)n1

· · ·
(

s
3
2
kq

1− skq

)nq
×

(G.10)

(−1)k1−1 × · · · × (−1)kq−1δn,n1k1+···+nqkq

=
∑

n1,··· ,nq

∑
k1,··· ,kq

n!s
3
2
n

n1! · · ·nq!(k1)n1 · · · (kq)nq

(
s

3
2
k1

1− sk1

)n1

· · ·
(

s
3
2
kq

1− skq

)nq
×

(−1)k1−1 × · · · × (−1)kq−1δn,n1k1+···+nqkq .

In the end we have

1

n!

∂nF

∂tn
=χn(s, x, y) (G.11)

=s
n
2 Tr(P[1n]s

L0).

Using the general formula in (G.10) for finite n cases we obtain

1

2!

∂2

∂t2
F (t, s)

∣∣∣∣
t=0

=
s3

(1− s)(1− s2)
− s3

(1− s)2
(G.12)

=
s4

(1− s)(1− s2)

=sTr(P[12]s
L0),

1

3!

∂3

∂t3
F (t, s)

∣∣∣∣
t=0

=
2s

9
2

3!(1− s3)
− 3s

9
2

3!(1− s2)(1− s)
+

s
9
2

3!(1− s)3
(G.13)

=
s

15
2

(1− s)(1− s2)(1− s3)

=s
3
2 Tr(P[13]s

L0),

and

203



1

4!

∂4

∂t4
F (t, s)

∣∣∣∣
t=0

=− 6s6

4!(1− s4)
+

8s6

4!(1− s3)(1− s)
+

3s6

4!(1− s2)(1− s2)
− 6s6

4!(1− s2)(1− s)2

(G.14)

+
s6

4!(1− s)4

=
s12

(1− s)(1− s2)(1− s3)(1− s4)

=s2Tr(P[14]s
L0).

From the cases above we can infer that in general we have

1

n!

∂nF

∂tn
=s

n
2 Tr(P[1n]s

L0) (G.15)

=
n∏
i=1

s
n
2

(n+2)

(1− si)
.

Reinstating x and y we have

F (t, s, x, y) =
∞∏
q=0

(1 + tsq+
3
2x

1
2

(q+1)y
q
2 ) (G.16)

and

∂F (t, s, x, y)

∂t
=
∞∑
a=0

sa+ 3
2x

1
2

(a+1)y
a
2

(1 + tsa+ 3
2x

1
2

(a+1)y
a
2 )
F (t, s, x, y) (G.17)

fk(t, s, x, y) = (−1)k−1(k − 1)!
∞∑
a=0

sk(a+ 3
2

)x
k
2

(a+1)y
ka
2

(1 + tsa+ 3
2x

1
2

(a+1)y
a
2 )k

.

Therefore

fk(t, s, x, y) = (−1)k−1(k − 1)!
s

3
2
kx

k
2

(1− skx
k
2 y

k
2 )
, (G.18)

and hence
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1

n!

∂F

∂t

∣∣∣∣
t=0

=
∑

n1,··· ,nq

∑
k1,··· ,kq

s
3
2
nx

n
2

n1! · · ·nq!(k1)n1 · · · (kq)nq

(
1

1− sk1x
k1
2 y

k1
2

)n1

· · ·
(

1

1− skqx
kq
2 y

kq
2

)nq
×

(G.19)

(−1)k1−1 × · · · × (−1)kq−1δn,n1k1+···+nqkq

Using the equation (G.19), we find

1

2!

∂F

∂t2

∣∣∣∣
t=0

=
s4x

3
2 y

1
2

(1− s2xy)(1− sx
1
2 y

1
2 )
, (G.20)

1

3!

∂F

∂t3

∣∣∣∣
t=0

=
s

15
2 x3y

3
2

(1− s3x
3
2 y

3
2 )(1− s2xy)(1− sx

1
2 y

1
2 )
, (G.21)

and

1

4!

∂F

∂t4

∣∣∣∣
t=0

=
s12x5y3

(1− s4x2y2)(1− s3x
3
2 y

3
2 )(1− s2xy)(1− sx

1
2 y

1
2 )
. (G.22)

In general

1

n!

∂nF

∂tn

∣∣∣∣
t=0

= x
n(n+1)

4 y
n(n−1)

4 s
n
2

(n+2)
n∏
i=1

1

(1− six
i
2 y

i
2 )
. (G.23)

The generating function Gz,wn (s, x, y) for the extremal primary operators with

dimension and charges respectively,

∆ = n+ q J = (JL3 , J
R
3 ) = (

1

2
+ q,

q

2
−m), (G.24)

is given as
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Gz,wn (s, x, y) =(1−√xy)
1

n!

∂nF

∂tn

∣∣∣∣
t=0

(G.25)

=(1− s√xy)χn(s, x, y)

=Zn(s, x, y),

where Zn = (1 − s
√
xy)χn(s, x, y). From the numerical computation, the

expansion of G3(s, x, y) is

G3(s, x, y) = s
15
2 x3y

3
2 + s

19
2 x4y

5
2 + s

21
2 x

9
2 y3 + s

23
2 x5y

7
2 + s

25
2 x

11
2 y4 + · · · .

(G.26)

From here we will consider another set of extremal operators. We consider the

set of extremal operators with dimension ∆ = n+q and JL3 = 3
2 +q maximum

spin. We begin by studying the character generating function

F2(t, s, x, y) =
∞∏
q=0

q∏
m=0

(1 + tsq+
3
2x

q+1
2 ym−

q
2 ). (G.27)

The derivatives with respect to parameter t yields

∂

∂t
F2(t, s, x, y) =

∞∑
a=0

a∑
m=0

sa+ 3
2x

a+1
2 ym−

a
2

(1 + tsa+ 3
2x

a+1
2 ym−

a
2 )

(G.28)

=f1(t, s, x, y)F2(t, s, x, y),

where

fk(t, s, x, y) =
∂k−1

∂tk−1
F1(t, s, x, y) = (−1)k−1(k − 1)!

∞∑
a=0

a∑
m=0

sk(a+ 3
2

)xk(a+1
2

)yk(m−a
2

)

(1 + tsa+ 3
2x

a+1
2 ym−

a
2 )k

.

(G.29)

We know that F2(t, s, x, y) = 1 and
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fk(0, s, x, y) =(−1)k−1(k − 1)!
∞∑
a=0

a∑
m=0

sk(a+ 3
2

)xk(a+1
2

)yk(m−a
2

) (G.30)

=(−1)k−1(k − 1)!
s

3
2
kx

1
2
k

(1− skx
k
2 y

k
2 )(1− skx

k
2 y−

k
2 )
.

Thus

1

n!

∂n

∂tn
F2(t, s, x, y)

∣∣∣∣
t=0

=
∑

n1,··· ,nq

∑
k1,··· ,kq

n!x
1
2
ns

3
2
n

n1! · · ·nq!(k1)n1 · · · (kq)nq

(
1

1− sk1xk1yk1/2

)n1

×

(G.31)

· · ·
(

1

1− skqxkqy−kq/2

)nq
(−1)k1−1 × · · · × (−1)kq−1

× δn,n1k1+···+nqkq

=χn(s, x, y).

The generating function for the primaries with dimension ∆ = n + q and

maximum spin JL3 = 3
2 + q is given as

Gz,wn (s, x, y) =

[(
1− 1

y

)
Zz,wn (s, x, y)

]
≥0

, (G.32)

where Zn(s, x, y) is given as

Zn(s, x, y) =

(
1− s√xy

)(
1− s

√
x

y

)
χn(s, x, y). (G.33)

The expansion of Gz,w3 (s, x, y) is

Gz,w3 (s, x, y) =s
13
2 x

5
2 + s

15
2 x3y

3
2 + s

17
2 x

7
2 y + s

19
2 x4y

3
2 + s

19
2 x4y

5
2 + s

21
2 x

9
2

(G.34)

+ s
21
2 x

9
2 y2 + s

21
2 x

9
2 y3 + · · · .
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G.1 Fermion Projectors

Using the formula (G.31), for n = 2 we find that

χ2(s, x, y) = s3x

( s
√
xy + s

√
x
y

(1− s2xy)(1− s2 x
y )(1− s√xy)(1− s

√
x
y )

)
, (G.35)

and consequently

Z2(s, x, y) = s3x

( (
1− s√xy

)(
1− s

√
x
y

)
(s
√
xy + s

√
x
y )

(1− s2xy)(1− s2 x
y )(1− s√xy)(1− s

√
x
y )

)
. (G.36)

The generating functions used to construct Z2(s, x, y) are

Z2(s, x, y) =s3x

(
ZSH(q1, )ZSH(q2, ) + ZSH(q1, )ZSH(q2, )

)
(G.37)

=
s3x

(
1− s√xy

)(
1− s

√
x
y

)
(s
√
xy + s

√
x
y )

(1− s2xy)(1− s2 x
y )(1− s√xy)(1− s

√
x
y )
,

where q1 = s
√
xy, q2 = s

√
x
y and

ZSH(q,Λ) = (1− q)q
∑

i

ci(ci−1)

2

∏
b

1

1− qhb
. (G.38)

For n = 3 we obtain

χ3(s, x, y) =s
9
2x

3
2

(
q3

1 + q3
2 + q3

1(1 + q2)q2 + q3
2(1 + q1)q1

(1− q1)(1− q2)(1− q2
1)(1− q2

2)(1− q3
1)(1− q3

2)

)
(G.39)

Z3(s, x, y) =s
9
2x

3
2 (1− q1)(1− q2)

(
q3

1 + q3
2 + q3

1(1 + q2)q2 + q3
2(1 + q1)q1

(1− q1)(1− q2)(1− q2
1)(1− q2

2)(1− q3
1)(1− q3

2)

)

We can construct Z3(s, x, y) using the generating functions below
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Z3(s, x, y) =s
9
2x

3
2

(
ZSH(q1, )ZSH(q2, ) + ZSH(q1, )ZSH(q2, ) + ZSH(q1, )ZSH(q2, )

)
(G.40)

=s
9
2x

3
2 (1− q1)(1− q2)

(
q3

1 + q3
2 + q3

1(1 + q2)q2 + q3
2(1 + q1)q1

(1− q1)(1− q2)(1− q2
1)(1− q2

2)(1− q3
1)(1− q3

2)

)
.

Performing a power series expansion of Z3(s, x, y) we find

Z3(s, x, y) =(q2 + q3 + q5
2 + · · · ) + q1(1 + q2

2 + q4
2 + q6

2 + · · · ) + q2
1(q2 + q3

2 + q5
2 + · · · )

(G.41)

+ q3
1(1 + q2

2 + q4
2 + · · · ) + q4

1(q2 + q3
2 + q5

2 + · · · ) + q5
1(1 + q3

2 + q5
2 + · · · ) + · · ·

=
∞∑
n=0

∞∑
m=0

(q2n+1
2 q2m

1 + q2n
2 q2m+1

1 )

=
∞∑
n=0

∞∑
m=0

((
s

√
x

y

)2n+1

(s
√
xy)2m +

(
s

√
x

y

)2n

(s
√
xy)2m+1

)
=sx

1
2 y

1
2 + sx

1
2 y−

1
2 + s3sx

3
2 y−

3
2 + s3x

3
2 y−

1
2 + s3sx

3
2 y

1
2 + s3sx

3
2 y

3
2 + s5x

5
2 y−

5
2

+ s5x
5
2 y−

3
2 + s3x

5
2 y−

1
2 + s5x

5
2 y

1
2 + s5x

5
2 y

3
2 + s5x

5
2 y

5
2 + · · · .

From the last line of (G.41) we observe that Z3(s, x, y) contains primary op-

erators with negative spin (momentum) powers. To eliminate these primary

operators, we have to compute

G3(s, x, y) =

[(
1− 1

y

)
Z2(s, x, y)

]
≥0

. (G.42)

We also note that the primary operators generated by Z3(s, x, y) at each di-

mension sd, is a series of primary operators with an extremum jL spin (xjL).

This series is of a particular form

s2jL

jL∑
m=−jL

xjLyjL−2m, (G.43)

where jL is the maximum left spin.
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For n = 4 we find

χ4(s, x, y) =
s6x2Q

(1− q4
1)(1− q4

2)(1− q3
1)(1− q3

2)(1− q2
1)(1− q2

2)(1− q1)(1− q2)

(G.44)

Z4(s, x, y) =s6x2 (1− q1)(1− q2)Q

(1− q4
1)(1− q4

2)(1− q3
1)(1− q3

2)(1− q2
1)(1− q2

2)(1− q1)(1− q2)

where

Q =q6
1 + q6

2 + q5
1q2(1 + q2 + q2

2) + q1q
3
2(1 + q2 + q2

2) + q4
1q2(1 + 2q2 + q2

2 + q3
2)

(G.45)

+ q2
1q

2
2(1 + q2 + 2q2

2 + q3
2) + q3

2q1(1 + q2 + 2q2 + q3
2 + q4

2)).

We construct Z4(s, x, y) using the projectors

Z4(s, x, y) =s6x2
(
ZSH(q1, )ZSH(q2, ) + ZSH(q1, )ZSH(q2, ) (G.46)

+ ZSH(q1, )ZSH(q2, ) + ZSH(q1, )ZSH(q2, )

+ ZSH(q1, )ZSH(q2, )

)
,

to find

Z4(s, x, y) = s6x2 (1− q1)(1− q2)Q

(1− q4
1)(1− q4

2)(1− q3
1)(1− q3

2)(1− q2
1)(1− q2

2)(1− q1)(1− q2)
,

(G.47)

where Q is the same as in (G.45). One more last check for n = 5 before we

give a generic formula for counting. From Taylor expansion we find χ5(s, x, y)
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and Z5(s, x, y) to be

χ5(s, x, y) =
s

15
2 x

5
2P

(1− q5
1)(1− q5

2)(1− q4
1)(1− q4

2)(1− q3
1)(1− q3

2)(1− q2
1)(1− q2

2)(1− q1)(1− q2)

(G.48)

Z5(s, x, y) =
s

15
2 x

5
2 (1− q1)(1− q2)P

(1− q5
1)(1− q5

2)(1− q4
1)(1− q4

2)(1− q3
1)(1− q3

2)(1− q2
1)(1− q2

2)(1− q1)(1− q2)
,

where P is

P =q10
1 + q10

2 + q9
1q2(1 + q2 + q2

2 + q3
2) + q1q

6
2(1 + q2 + q2

2 + q3
2) (G.49)

+ q8
1q2(1 + 2q2 + 2q2

2 + 2q3
2 + q4

2 + q5
2) + q2

1q
4
2(1 + q2 + 2q2

2 + 2q3
2 + 2q4

2 + q5
2)

+ q7
1q2(1 + 2q2 + 3q2

2 + 3q3
2 + 3q4

2 + 2q5
2 + q6

2) + q3
1q

3
2(1 + 2q2 + 3q2

2 + 3q3
2 + 3q4

2 + 2q5
2 + q6

2)

+ q5
1q

2
2(1 + 3q2 + 4q2

2 + 6q3
2 + 4q4

2 + 3q5
2 + q6

2) + q6
1q2(1 + 2q2 + 3q2

2 + 4q3
2 + 4q4

2 + 3q5
2 + 2q6

2 + q7
2)

+ q4
1q

2
2(1 + 2q2 + 3q2

2 + 4q3
2 + 3q5

2 + 2q6
2 + q7

2).

Using the generating functions we construct Z5(s, x, y) as follows

Z5(s, x, y) =s
15
2 x

5
2

(
ZSH(q1, )ZSH(q2, ) + ZSH(q1, )ZSH(q2, )

(G.50)

+ ZSH(q1, )ZSH(q2, ) + ZSH(q1, )ZSH(q2, ) + ZSH(q1, )ZSH(q2, )

+ ZSH(q1, )ZSH(q2, ) + ZSH(q1, )ZSH(q2, )

)

=
s

15
2 x

5
2 (1− q1)(1− q2)P

(1− q5
1)(1− q5

2)(1− q4
1)(1− q4

2)(1− q3
1)(1− q3

2)(1− q2
1)(1− q2

2)(1− q1)(1− q2)
.

The general formula for counting primaries constructed using n fermions is

Zn(s, x, y) = s
3
2
nx

n
2

∑
Λ`n

ZSH(q1,Λ)ZSH(q2,Λ
T ). (G.51)

Note that the coefficient s
3
2
nx

n
2 originates from the dimension and spin of n
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Weyl spinors. A left handed Weyl spinor is in the following representation∣∣∣∣∆, J3
L, j

3
R

〉
=

∣∣∣∣32 , 1

2
, 0

〉
(G.52)

.

The product of n left handed Weyl spinors is an s
3
2
nx

n
2 irrep. As we can see

from the example of the Zn(s, x, y) generating functions, we pair ZSH(q1,Λ)

with ZSH(q2,Λ
T ). Note that by the transpose of Young diagram we mean,

T

=

T

=
T

= . (G.53)

G.1.1 How Zn(s, x, y) Fermion Generating Functions Work

Consider the Z3(s, x, y) in (G.40). The product of generating functions for Z3

are

ZSH(q1, )ZSH(q2, ), ZSH(q1, )ZSH(q2, ), ZSH(q1, )ZSH(q2, ).

(G.54)

These products are actually counting for a tensor product of Young diagram

representation space. The tensor product of these Young diagrams yields the

following subspaces

⊗ = (G.55)

⊗ = ⊕ ⊕

⊗ = .

We see that from the tensor product of Young diagrams above, every sum

of the representation subspaces obtained on the left hand side contains an

antisymmetric subspace representation,

. (G.56)

Further, the antisymmetric representation always occurs with multiplicity 1.

Thus the product of these generating functions count the antisymmeytric sub-
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space representation, which is the kind of representation we want to project

to, since we are dealing with Fermions.

The product of generating functions contained in Z4(s, x, y) in (G.46) have

a tensor product that gives the following sum of subspaces

⊗ = (G.57)

⊗ = ⊕ ⊕ ⊕

⊗ = ⊕ ⊕ ⊕

⊗ = ⊕ ⊕

⊗ = .

One can check whether the sum of Young diagrams appearing on the RHS are

correct by computing the sum of the dimensions of Young diagrams on the

RHS and, compare the answer with the dimension on the LHS. We can see

that every tensor product contains an antisymmetric representation. Which

means that these tensor products do contain the antisymmetric subspace. In

a nutshell a tensor product of a Young diagram with its transposed Young

diagram will contain an antisymmetric representation with multiplicity 1.
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Appendix H

Total Spin Operators

In this appendix we will compute the total spin of the polynomials we con-

structed in chapter 5. The total spin is given by

J · JO(z, w) = s(s+ 1)O(z, w), (H.1)

where s is the spin of the polynomial and J ·J is the total spin operator given

as

JR · JR = (JR1 )2 + (JR2 )2 + (JR3 )2, (H.2)

or

JL · JL = (JL1 )2 + (JL2 )2 + (JL3 )2. (H.3)

The SO(4) generators are given as

JR3 = zi
∂

∂zi
− z̄i

∂

∂z̄i
+ wi

∂

∂wi
− w̄i

∂

∂w̄i

JR+ = wi
∂

∂z̄i
− zi

∂

∂w̄i
JR− = z̄i

∂

∂wi
− w̄i

∂

∂zi

JL3 = zi
∂

∂zi
− z̄i

∂

∂z̄i
− wi

∂

∂wi
+ w̄i

∂

∂w̄i

JL+ = w̄i
∂

∂z̄i
− zi

∂

∂wi
JL− = z̄i

∂

∂w̄i
− wi

∂

∂zi
.

Using the SO(4) generators given above we can find the generators JL1 , JL2 ,
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JR1 and JR2 , since

JR+ =
1

2
(JR1 + iJR2 ) and JR− =

1

2
(JR1 − iJR2 ) (H.4)

JL+ =
1

2
(JL1 + iJL2 ) and JL− =

1

2
(JL1 − iJL2 ).

Hence we find the generators are

JR1 = z̄i
∂

∂wi
− zi

∂

∂w̄i
+ wi

∂

∂z̄i
− w̄i

∂

∂zi
(H.5)

JR2 = i

(
zi

∂

∂w̄i
+ z̄i

∂

∂wi
− w̄i

∂

∂zi
− wi

∂

∂z̄i

)
(H.6)

JL1 = w̄i
∂

∂z̄i
− zi

∂

∂wi
+ z̄i

∂

∂w̄i
− wi

∂

∂zi
(H.7)

JL2 = i

(
zi

∂

∂wi
− w̄i

∂

∂z̄i
+ z̄i

∂

∂w̄i
− wi

∂

∂zi

)
. (H.8)

The total spin operators become

JR · JR = zizj
∂

∂zi

∂

∂zj
+ 2ziwj

∂

∂zi

∂

wj
+ wiwj

∂

∂wi

∂

∂wj
, (H.9)

and

JL · JL = zizj
∂

∂zi

∂

∂zj
− 2ziwj

∂

∂zi

∂

wj
+ 4wizj

∂

∂zi

∂

∂wj
+ wiwj

∂

∂wi

∂

∂wj
.

(H.10)

Now we can compute the spin of the polynomial in Oφφφ constructed from 3
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scalar fields,

JR · JROφφφ(z, w) =JR · JR(z1 − z2)(z1 − z3)(z2 − z3)× (H.11)

(w3(z1 − z2) + w1(z2 − z3) + w2(z3 − z1))

=20O(4,1)
φφφ (z, w)

=4(4 + 1)O(4,1)
φφφ (z, w),

therefore the operator Oφφφ(z, w) has right spin s = 4. The left hand spin is

computed as follows

JL · JLOφφφ(z, w) =JL · JL(z1 − z2)(z1 − z3)(z2 − z3)× (H.12)

(w3(z1 − z2) + w1(z2 − z3) + w2(z3 − z1))

=30O(4,1)
φφφ (z, w)

=5(5 + 1)O(4,1)
φφφ (z, w),

so that s = 5 for the left hand spin.
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Appendix I

The Hilbert Series for

Z3(s, x, y)

Here we consider the Hilbert series Z3(s, x, y) for counting of extremal pri-

maries built using 3 scalar fields. This Hilbert series has a non-trivial numer-

ator

Zz,w3 =
s3(1− s5x

5
2 (
√
y + 1√

y )− s6x3( 1
y + 1 + y)− s14x7 + s8x4(y + 1 + 1

y ) + s9x
9
2 (
√
y + 1√

y )

(1− sxy)(1− s2x)(1− s
x
y )(1− s3x

3
2 y

3
2 )(1− s3x

3
2 y

1
2 )(1− s3x

3
2 y
−1
2 )(1− s3x

3
2 y
−3
2 )

(I.1)

Our goal is to explain how the numerator of Z3(s, x, y) encodes relations be-

tween the generators of the ring as well as relations between those relations.

From the denominator of the Hilbert series, we have 7 generators. We can

easily identify them as follows

G1 = (z12)2 + (z13)2 + (z23)2 ↔ s2xy

G2 = z12w12 + z13w13 + z23w23 ↔ x2x

G3 = (w12)2 + (w13)2 + (w23)2 ↔ s2xy−1

G4 = (z13 + z23)(z31 + z21)(z12 + z32)↔ s3x
3
2 y

3
2
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G5 =(w13 + w23)(z31 + z21)(z12 + z32) (I.2)

+ (z13 + z23)(w31 + w21)(z12 + z32)

+ (z13 + z23)(z31 + z12)(w12 + w32)↔ s3x
3
2 y

1
2

G6 =(w13 + w23)(w31 + w21)(z12 + z32) (I.3)

+ (z13 + z23)(w31 + w21)(w12 + w32)

+ (w13 + w23)(z31 + z12)(w12 + w32)↔ s3x
3
2 y
−3
2

From the numerator of the Hilbert series, the terms with a negative sign

should correspond to relations between the generators of the degree given by

the monomial. From −s5x
5
2 (
√
y + 1√

y ) − s6x3( 1
y + 1 + y) − s14x7 we have 6

relations. They are

χ1 = 3G3G4 − 2G2G5 +G1G6 = 0↔ s5x
5
2
√
y

χ2 = G3G5 − 2G2G6 + 3G1G7 = 0↔ s5x
5
2 y

1
2

χ3 = 4G1G
2
2 −G2

1G3 = 0↔ s6x3y

χ4 = 4G3
2 −G1G2G3 = 0↔ s6x3

χ5 = 4G2
2G3 −G1G

2
3 = 0↔ s6x3y−1

χ6 = G7
2 −G1G

5
2G3 +

1

9
G4

2G5G6 −G4
2G4G7 = 0↔ s14x7

Again from the numerator of the Hilbert series, the terms with positive sign

should corresponds to relations between the relations, again of the degree given

by the monomial. From s8x4(y+ 1 + 1
y ) + s9x

9
2 (
√
y+ 1√

y ) we have 5 relations

among the relations. They are

4χ5G2 + χ4G3 = 0↔ s8x4y−1 (I.4)

χ5G1 − χ3G3 = 0↔ s8x4
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χ4G1 + 4χ3G2 = 0↔ s8x4y (I.5)

χ2G
2
2 −

1

4
χ2G1G3 − χ5G5 −

1

2
χ4G6 − 3χ3G7 = 0↔ s9x

9
2 y
−1
2

−4χ1G
2
2 + χ1G1G3 + 12χ5G4 + 2χ4G5 + 4χ3G6 = 0↔ s9x

9
2 y

1
2
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