MOLECULAR CHARACTERIZATION OF MULTIDRUG-RESISTANT Salmonella Isangi IN HOSPITALIZED PATIENTS IN SOUTH AFRICA

Tersia Kruger

A dissertation submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree Master of Science in Medicine

> 2007 Johannesburg

DECLARATION

I, Tersia Kruger, declare that this dissertation is my own work. It is being submitted for the degree of Master of Science in Medicine at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

Signature of candidate

13th day of JUNE, 2007

PUBLICATION

Kruger, T., Szabo, D., Keddy, K.H., Deeley, K., Marsh, J.W., Hujer, A.M., Bonomo, R.A., Paterson, D.L. 2004. Infections with non-typhoidal *Salmonella species* producing TEM-63 or a novel TEM Enzyme, TEM-131, in South Africa. Antimicrobial Agents and Chemotherapy **48**:4263-4270. (Appendix Four)

PRESENTATIONS

Kruger, T., Keddy, K.H., Sooka, A. Incidence of an extended-spectrum beta-lactamase producing *Salmonella* Isangi in South Africa. Presented at the Joint Congress: HIV Clinicians, Infectious Diseases, Infection Control, Travel Medicine, Sexually Transmitted Diseases Societies and Veterinary and Human Public Health, Stellenbosch, Cape Town, South Africa, 2-6 December 2001.

Wadula, J., Von Gottberg, A., Kilner, D., **Kruger, T.**, Sooka, A., de Jong, G., Cohen, C., Meyers, T., Khoosal, M., Keddy, K.H., Crewe-Brown, H. A Nosocomial outbreak in Pediatric Wards of *Salmonella* Isangi producing extended-spectrum beta-lactamases. Presented at the Joint Congress: HIV Clinicians, Infectious Diseases, Infection Control, Travel Medicine, Sexually Transmitted Diseases Societies and Veterinary and Human Public Health, Stellenbosch, Cape Town, South Africa, 2-6 December 2001.

Kruger, T., Keddy, K.H., Sooka, A. Incidence of an extended-spectrum beta-lactamase producing *Salmonella* Isangi in South Africa: An update, March 2000 – February 2002. Presented at the International Conference on Emerging Infectious Diseases (ICEID), Atlanta, Georgia, USA, 24-27 March 2002.

Kruger, T., Keddy, K.H. Evaluation of the ESBL Etest to identify extended spectrum beta-lactamase production in a nosocomial outbreak of *Salmonella* serotype Isangi. Presented at the 23 rd International Congress of Chemotherapy, Durban, South Africa, 7-9 June 2003.

ABSTRACT

Extended-spectrum beta-lactamase (ESBL)-producing *Salmonella enterica* serotype Isangi has emerged as a common *Salmonella* serotype affecting mainly children in hospitals throughout South Africa. Between 2000 and 2002, 279 *S*. Isangi isolates from single infection episodes were referred from 21 hospitals in 5 provinces to the Enteric Diseases Reference Unit of the National Institute for Communicable Diseases of South Africa. All isolates were subjected to antibiotic susceptibility testing and three disk-diffusion methods confirmed ESBL-production in 273 isolates. PCR and nucleotide sequencing of 101 isolates identified TEM-1 (2%), TEM-63 (91%), a novel TEM-131 (7%), and SHV-5 (2%), but CTX-M was not found. Plasmid profiling produced types with 1 to 6 plasmids, 7.4kb to 166kb in size, which were neither serotype nor ESBL-type specific. Pulsed-field gel electrophoresis revealed four major clusters while subclusters with identical, or near identical banding patterns suggested extensive intrahospital transmission and clonal spread between hospitals and provinces in South Africa.

ACKNOWLEDGEMENTS

All praise to God, who inspired me with will and courage, through the angels of friends and family to believe in myself and have faith and determination; despite the obstacles I had to endure in the last two years.

I would like to gratefully acknowledge my supervisor Professor Hendrik Koornhof for his insight, expert advice, guidance, gentle encouragement, as well as courage to take on this task at a fairly late stage and despite being extremely busy, always made time to engage in interesting discussions. It is an honour. Thank you to my co-supervisor, Dr. Anthony Smith for his technical advice and review of the three molecular chapters and Dr. Karen Keddy for her support during the initiation of this project.

The biggest thanks to my colleagues and friends: Sandrama Nadan, Chantel le Roux, Lorraine Arntzen, Leigh Dini, Dr. Jenny Rossouw, Irma Latsky, Debbie van der Sandt and Dr. Nicola Page for putting up with me. Thank you to Sandrama and Jenny for your technical help and advice. I am indebted to each and every one of you for your understanding, support, endless patience and encouragement when it was most needed.

I am also grateful to the following laboratories and individuals for their contributions:

A very special and huge thank-you to Dr. David Paterson and the staff of the Division of Infectious Diseases at the University of Pittsburgh, with special thanks to my kind and patient friend Dr. Dora Szabó. Thank you for sharing your valuable technical knowledge in a 6-week crash course that enabled me to complete the experimental work in this dissertation;

The Respiratory and Meningeal Pathogens Research Unit (RMPRU) for the sharing of laboratory equipment, especially Dr. Mignon du Plessis for her technical advice;

The Vector Control Reference Unit (VCRU) for welcoming me into their "home" for a while. Thank you for your enthusiasm, support and willingness to help;

The Group for Enteric, Respiratory and Meningeal Disease Surveillance in South Africa (GERMS-SA), the coordinators and all laboratory and hospital staff who contribute to the national and "enhanced" surveillance program in South Africa;

Dr. Nelesh Govender, pathologist for The National Microbiology Surveillance Unit (NMSU) of the NICD, for the updated clinical information on *S*. Isangi in South Africa for 2005;

Greg Duncan-Traill and Tony Chaplin at Davies Diagnostics (PTY Ltd) for providing the ESBL Etests[®]; The National Health Laboratory Service (NHLS) for the 3-year grant.

Dr. Linda Meyer from the University of Pretoria for the E. coli (CTX-M-14) strain;

To my parents, especially my mother, who has always supported my dreams and aspirations. Thank you for all that you are and all you have done for me.

CONTENTS

	Page
Declaration	ii
Publications and presentations	iii
Abstract	iv
Acknowledgements	v
Table of Contents	vi
List of Figures	xiii
List of Tables	xvi
Nomenclature	xviii

Chapter 1 THE GLOBAL PROBLEM OF SALMONELLOSIS AND THE EMERGENCE OF MULTIPLE-DRUG RESISTANCE

1

1.1	THE '	THREAT OF INFECTIOUS DISEASES	1
1.2	SALN	MONELLAE AS PATHOGENS	1
	1.2.1	Structure and classification of salmonellae	2
	1.2.2	Antigenic composition and nomenclature	3
	1.2.3	Pathogenesis	4
	1.2.4	Clinical manifestations	6
	1.2.5	Treatment	7
		1.2.5.1 Appropriate antimicrobial agents	7
		1.2.5.2 Indications and treatment options	8
1.3	GLOI	BAL SIGNIFICANCE OF SALMONELLAE	9
	1.3.1	Increasing trend of salmonellosis	9
	1.3.2	Impact of HIV/AIDS on salmonellae infection	9
	1.3.3	Invasive salmonellosis in Africa	11
	1.3.4	Outbreaks involving drug-resistant salmonellae	11
	1.3.5	The role of nosocomial infections	12

1.4	EMEF	RGENCE OF DRUG RESISTANCE IN SALMONELLAE	13
	1.4.1	Selection pressure of antimicrobial agent usage	13
	1.4.2	Extent of drug resistance in salmonellae	14
1.5	MOLI	ECULAR INTERACTION BETWEEN FLUOROQUINOLONES	
	AND	SALMONELLAE	16
	1.5.1	Target alterations	16
	1.5.2	The efflux system	16
	1.5.3	Outer membrane permeability	17
1.6	MOLI	ECULAR INTERACTION BETWEEN β-LACTAM ANTIBIOTI	CS
	AND	SALMONELLAE	17
	1.6.1	Mechanism of action of β -lactam agents	17
	1.6.2	Genetic basis of resistance to β -lactam agents	18
1.7	EXTE	ENDED-SPECTRUM BETA (β)-LACTAMASES (ESBLs)	19
	1.7.1	Nature and function of β -lactamases	19
	1.7.2	Definition of extended-spectrum β -lactamases	19
	1.7.3	Evolution of ESBLs	20
		1.7.3.1 Point mutations in the <i>bla</i> gene	20
		1.7.3.2 Spread of ESBLs by plasmids and integrons	21
	1.7.4	Types of ESBLs	21
	1.7.5	Global distribution of ESBLs	23
		1.7.5.1 Geographical variation and type distribution	23
		1.7.5.2 ESBLs identified in Africa and South Africa	24
1.8	Salmo	mella enterica subspecies enterica serotype Isangi	25
	1.8.1	History and global distribution	25
	1.8.2	Emergence of Salmonella Isangi in South Africa	29
1.9	MOLI	ECULAR CHARACTERISATION OF SALMONELLAE	30
	1.9.1	Molecular typing of Salmonella species	30
	1.9.2	Molecular detection of ESBLs	31

Chapter 2		SUSCEPTIBILITY OF Salmonella Isangi BY MINIMAL INHIBITORY CONCENTRATION (MIC) DETERMINATION USING Etest [®]		
		TECHNOLOGY	33	
2.1	ANTI	MICROBIAL SUSCEPTIBILITY TESTING: INTRODUCTION	33	
2.2	METH	HODS FOR MIC DETERMINATION	34	
	2.2.1	Conventional routinely used methods	34	
	2.2.2	The Etest [®]	35	
	2.2.3	Standardization of MIC methodology	35	
2.3	MATI	ERIALS AND METHODS	36	
	2.3.1	Bacterial strains for MIC testing	36	
		3.3.1.1 Control strains	36	
		3.3.1.2 Test isolates	37	
	2.3.2	Antimicrobial agents and CLSI breakpoints	38	
	2.3.3	Preparation of the inoculum for MIC testing	38	
2.4	RESU	ILTS	39	
	3.4.1	Species and serotype confirmation of isolates	39	
	3.4.2	MIC status of all isolates	39	
2.5	DISC	USSION	46	
	2.5.1	Species and serotype confirmation of isolates	46	
	2.5.2	Age distribution of patients and rate of extra-intestinal		
		infection	46	
	2.5.3	MICs	47	
	2.5.4	Quinolone resistance	48	

Chapter 3		PERFORMANCE OF METHODS FOR SCREENING AND CONFIRMATION OF ESBL EXPRESSION IN		
		Salmonella Isangi	50	
3.1	REQU	JISITES FOR ESBL DETECTION	50	
3.2	PHEN	NOTYPIC TESTS FOR ESBL DETECTION	51	
	3.2.1	Recommended methods	51	
	3.2.2	CLSI recommendations	51	
		3.2.2.1 MIC-based methods	51	
		3.2.2.2 Disc-diffusion-based methods	52	
3.3	PERF	ORMANCE OF DISC-DIFFUSION-BASED METHODS	52	
	3.3.1	Overview of screening and confirmatory tests to determine		
		ESBL production	53	
3.4	MAT	ERIALS AND METHODS	56	
	3.4.1	Bacterial strains for ESBL testing	56	
		3.4.1.1 Control strains	56	
		3.4.1.2 Test isolates	56	
	3.4.2	Antimicrobial agents	57	
	3.4.3	Methods applied for demonstration of ESBL expression	57	
		3.4.3.1 Double-disc diffusion (DDD) method	58	
		3.4.3.2 MAST ID™ ESBL disc method	59	
		3.4.3.3 Etest [®] ESBL strips	59	
3.5	RESU	JLTS	60	
	3.5.1	Double-disc diffusion (DDD) method	60	
	3.5.2	MAST ID [™] ESBL disc method	61	
	3.5.3	Etest [®] ESBL strips	62	
3.6	DISC	USSION	65	
	3.6.1	DDD method	65	

	3.6.2	MAST ID [™] ESBL disc method	66
	3.6.3	Etest [®] ESBL strips	67
Chap	oter 4	CHARACTERIZATION OF EXTENDED- SPECTRUM β-LACTAMASES BY THE POLYMERASE CHAIN REACTION (PCR)	69
4.1	INTR	ODUCTION	69
4.2	MOL	ECULAR METHODS FOR ESBL DETECTION	69
4.3	MAT	ERIALS AND METHODS	73
	4.3.1	Bacterial strains for β -lactamase characterization	73
		4.3.1.1 Control strains	73
		4.3.1.2 Test isolates	73
	4.3.2	Detection of bla_{TEM} , bla_{SHV} and $bla_{\text{CTX-M}}$ genes by PCR	75
		4.3.2.1 Genomic DNA extraction	75
		4.3.2.2 Amplification of bla_{TEM} , bla_{SHV} and $bla_{\text{CTX-M}}$ genes	75
		4.3.2.3 Isolation and detection of amplified PCR product	76
	4.3.3	Nucleotide Sequencing of <i>bla</i> genes	77
4.4	RESU	ILTS	78
	4.4.1	Polymerase chain reaction	78
	4.4.2	Nucleotide sequencing	79
4.5	DISC	USSION	85
	4.5.1	The hospital setting in South Africa	85
	4.5.2	Extended-spectrum β-lactamases	86
	4.5.3	Emergence of CTX-M type β -lactamases	88
Chap	oter 5	STRAIN DIFFERENTIATION OF Salmonella Isangi BY PLASMID TYPING	89
5.1	DISSI	EMINATION OF RESISTANCE	89

5.2	THE R	COLE OF PLASMID TYPING	90
5.3	MATE	ERIALS AND METHODS	92
	5.3.1	Bacterial strains for plasmid typing	92
		5.3.1.1 Control strain and molecular weight marker	92
		5.3.1.2 Test isolates	92
	5.3.2	Preparation of cultures	92
	5.3.3	Isolation of plasmid DNA	92
	5.3.4	Detection of plasmid DNA	93
	5.3.5	Designation of plasmid profiles	94
5.4	RESU	LTS	94
	5.4.1	Isolation of large plasmids carried by Salmonella Isangi	94
	5.4.2	Correlation between plasmid profile, β -lactamase and PFGE types	96
	5.4.3	Plasmid profile and PFGE data from S. Isangi isolated from	
		different hospitals	97
5.5	DISCU	JSSION	101
Chap	ter 6	STRAIN DIFFERENTIATION OF Salmonella Isangi BY PULSED-FIELD GEL ELECTROPHORESIS (PFGE)	104
6.1	INTRO	DDUCTION	104
6.2	METH	IODS FOR STRAIN TYPING	104
6.3	TYPIN	IG BY PULSED-FIELD GEL ELECTROPHORESIS	106
6.4	MATE	ERIALS AND METHODS	107
	6.4.1	Bacterial strains for PFGE	107
	6.4.2	Preparation of plugs from agar cultures	107
	6.4.3	Lysis of cells in agarose plugs	109

	6.4.5	Restriction digestion of DNA	109
	6.4.6	Casting, loading and running of agarose gel	109
	6.4.7	Data capturing and analysis	110
6.5	RESU	П Т.S.	111
0.3			
	6.5.1	Analysis of pulsed-field gel electrophoresis patterns	111
	6.5.2	Clusters produced by PFGE with XbaI restriction	113
	6.5.3	Patients with more than one infection episode	122
	6.5.4	Analysis of PFGE patterns by year	123
	6.5.5	Evidence of persistence ("endemicity") of clones in hospitals	129
6.6	DISC	USSION	131
Chap	oter 7 (CONCLUSION	135
APP	ENDE	X One: Materials used for PCR gel electrophoresis	143
APP	ENDE	X Two: Materials used in plasmid isolation	144
APP	ENDE	X Three: Materials used for PFGE	147
APP	ENDE	X Four: Publication	149
APP	APPENDIX Five: Ethics certificate		150

REFERENCE LIST151

LIST OF FIGURES

Figure	Title	Page
1.1	Electron micrograph of Salmonella showing the flagella	2
1.2	Colour-enhanced scanning electron micrograph showing	
	Salmonella Typhimurium invading cultured human cells	6
1.3	The gram-negative bacterial envelope and the peptidoglycan	
	structure showing the polysaccharide chains, tetrapeptide side	
	chains, and peptide interbridges	18
1.4	Occurrence of Salmonella Isangi worldwide, 1946 to 2006	26
2.1	Increase in MIC levels of (a) nalidixic acid and (b) ciprofloxacin	
	of Salmonella Isangi isolates during the period 2000 to 2002	45
3.1	Demonstration of ESBL production with the double-disc	
	diffusion (DDD) test	60
3.2	Demonstration of ESBL production with the MAST ID^{TM}	
	ESBL disc test	61
3.3	Demonstration of non-determinable (ND) results with the	
	MAST ID [™] ESBL disc test	62
3.4	Growth-inhibition patterns of the Etest [®] ESBL strips of	
	cefotaxime (CT), ceftazidime (TZ) and cefepime (PM)	63
4.1	Geographical distribution of Salmonella Isangi isolates identified	1
	between 2000 and 2002 in the provinces of South Africa	74
4.2	A 1% (w/v) agarose gel depicting PCR amplified bla_{TEM} and	
	<i>bla</i> _{SHV} ESBL genes	78
4.3	A 1% (w/v) agarose gel depicting PCR amplified $bla_{\text{CTX-M}}$	
	ESBL genes	79

4.4	Partial nucleotide and amino acid sequences of TEM-1,	
	TEM-63 and TEM-131 depicting the point mutations at	
	amino acid positions 21, 104, 164, 182 and 237	81
4.5	Partial nucleotide and amino acid sequences of SHV-1 and	
	SHV-5 depicting the point mutations at amino acid positions	
	238 and 240	83
5.1	Plasmid banding patterns of isolates expressing different	
	β-lactamases	95
5.2	Plasmid banding patterns of isolates from Helen Joseph	
	(Lanes 3 to 6) and Tembisa hospitals (Lanes 7 to 10)	97
5.3	Plasmid banding patterns of isolates from ten hospitals	99
5.4	Plasmid banding patterns of isolates from Tambo Memorial	
	Hospital	100
5.5	Plasmid banding patterns of the six ESBL-negative isolates	101
6.1	PFGE of XbaI digested genomic DNA of Salmonella. Isangi	
	depicting the 2 major types of patterns (XP1 and XP2)	111
6.2	Dendrogram representing the six major clusters A to D of the	
	total (265) Salmonella Isangi isolates produced by PFGE with	
	XbaI restriction	112
6.3	Partial dendrogram depicting Cluster A (n=126)	115
6.4	Partial dendrogram depicting Cluster B (n=103)	119
6.5	Partial dendrogram depicting Cluster C (n=15)	120
6.6	Partial dendrogram depicting Cluster D (<i>n</i> =12)	121
6.7	Distribution of clinical isolates from major clusters during the	
	years 2000, 2001 and 2002 respectively	124
6.8	Dendrogram of PFGE with XbaI restriction depicting	
	Salmonella Isangi isolates from 2000	126
6.9	Dendrogram of PFGE with XbaI restriction depicting	
	Salmonella Isangi isolates from 2001	128

6.10	Dendrogram of PFGE with XbaI restriction depicting	
	Salmonella Isangi isolates from 2002	131

LIST OF TABLES

Table	Title	Page
2.1	Number of S. Isangi isolated from clinical specimens	37
2.2	List of Etest [®] strips used to determine minimal inhibitory	
	concentrations of Salmonella Isangi isolates and interpretive	
	standards for MIC breakpoints	38
2.3	Minimal inhibitory concentrations (MICs) of the ESBL-negative	
	Salmonella Isangi isolates determined by Etest [®] strips	41
2.4	Minimal inhibitory concentrations (MICs) of ESBL-positive	
	Salmonella Isangi isolates, determined by the Etest [®] strips	42
2.5	Susceptibility of Salmonella Isangi to nalidixic acid,	
	ciprofloxacin and imipenem, 2000 to 2002	44
3.1	Comparison of clinical microbiology techniques for ESBL	
	detection	53
3.2	Antimicrobial agents used to evaluate the three ESBL screening	
	methods	58
3.3	Summary of the DDD method with each cephalosporin tested	
	for synergy against Augmentin	61
3.4	Summary of the results of the MAST $ID^{TM}ESBL$ disc method	62
3.5	Summary of the results of the Etest [®] ESBL strip method	64
3.6	Comparative performance of the three methods for ESBL	
	detection in Salmonella Isangi	64
4.1	Comparison of molecular techniques for ESBL detection	72
4.2	Number of non-typhoidal Salmonella (NTS) and percentage	
	of Salmonella Isangi isolates submitted from provinces in	
	South Africa, 2000-2002	75

4.3	Oligonucleotide primers used for amplification and sequencing		
	of <i>bla</i> genes	77	
4.4	Nucleotide and amino acid changes of the TEM-63, TEM-131		
	and SHV-5 β -lactamases as compared to TEM-1	80	
4.5	Minimal inhibitory concentrations (MICs) of TEM-1, TEM-131,		
	TEM-131 + SHV-5 and TEM-63 + SHV-5 Salmonella Isangi		
	isolates	84	
5.1	Summary of plasmids isolated from S. Isangi in Figure 5.1	96	
5.2	Summary of plasmids isolated from S. Isangi in Figure 5.2	97	
5.3	Summary of plasmids isolated from S. Isangi in Figure 5.3	99	
5.4	Summary of plasmids isolated from S. Isangi in Figure 5.4	100	
6.1	Clinical isolates of S. Isangi collected and tested by PFGE between		
	2000 and 2002 from five of the nine provinces in South Africa	108	
6.2	Description of large clusters (\geq 5 isolates) at 100% similarity	116	
6.3	Comparison of clusters with isolates at 100% similarity	117	
6.4	Clustering by PFGE typing involving ESBL-negative isolates	122	
6.5	Persistent ("endemic") clones in hospitals	129	

NOMENCLATURE

°C	degrees Celcius
А	adenine
aa	amino acid
Ag	antigen
AIDS	acquired immune deficiency syndrome
APA	amino-penicillanic acid
ATCC	American Type Culture Collection
AUG	clavulanic acid
β	beta
bp	base pair
BSAC	British Society for Antimicrobial Chemotherapy
С	cytosine
CAZ	ceftazidime
CARL	Carletonville Hospital
CHB	Chris Hani Baragwanath Hospital
CIP	ciprofloxacin
CLSI	Clinical Laboratory Standards Institute
CPD	cefpodoxime
CT	cefotaxime Etest
CTL	cefotaxime + clavulanic acid Etest
CTX	cefotaxime
DDD	double disk diffusion
DNA	deoxyribonucleic acid
dNTPs	deoxynucleoside triphosphate
DRC	Democratic Republic of Congo
EC	Eastern Cape Province
EDRU	Enteric diseases reference unit
EDTA	ethylenediaminetetraacetic acid
ESBL(s)	extended-spectrum beta-lactamase(s)
ESC	extended-spectrum cephalosporins
et al.	and others
EtBr	ethidium bromide
FEP	cefepime
FS	Free State Province
g	gram
G	guanine

GA	Gauteng Province
GERMS-SA	Group for Enteric, Respiratory and Meningeal Disease Surveillance in South Africa
GM	gentamicin
GRAHAM	Grahamstown Hospital
GRNPT	Green Point Hospital
GSH	Grootte Schuur Hospital
h	hour
HIV	Human Immunodeficiency Virus
HJ	Helen Joseph Hospital
HPA	Health Protection Agency
IMI	imipenem
kb	kilobase
KZN	KwaZulu Natal Province
L	liters
LB	Luria-Bertani broth
LIV	Livingstone Hospital
MC-207,110	Phe-Arg-napthylamide dihydrochloride
MDa	megaDalton
MDR	multiple-drug resistance
MgCl ₂	magnesium chloride
mg/ml	milligrams per milliliter
MIC	minimum inhibitory concentration
MILP	Milpark Hospital
min	minute
ml	milliliter
MLST	multi-locus sequence typing
MLVA	multi-locus variable nucleotide tandem repeat analysis
mM	millimolar
MP	Mpumulanga Province
MW	molecular weight
NA	nalidixic acid
N/A	not applicable
NaCl	sodium chloride
NCCLS	National Committee on Clinical Laboratory Standards
NCTC	National Collection of Type Cultures
ND	non-determinable
NHLS	National Health Laboratory Service

NICD	National Institute of Communicable Diseases
NJH	Johannesburg General Hospital
NMSU	National Microbiology Surveillance Unit
NP	Northern Province
nt	nucleotide
NT	not tested
NTS	non-typhoidal Salmonella
NW	North West Province
OXA	oxacillin
PBP(s)	penicillin-binding protein(s)
PCR	polymerase chain reaction
PC	Pathcare, Cape Town
PE	Port Elizabeth Hospital
PFGE	pulsed-field gel electrophoresis
pН	percentage hydrogen
PI	Pathogenicity island
PIE	Pietersburg Hospital
PML	cefepime + clavulanic acid Etest
RED	Red Cross Childrens Hospital
RNA	ribonucleic acid
RNase	ribonuclease
rmp	revolutions per minute
RSA	Republic of South Africa
RT	room temperature
RUS	Rustenburg Hospital
SDS	sodium-dodecyl sulphate
SHV	Sulfhydryl Variable
SPI	Salmonella pathogenicity island
SS	single stranded
SOU	South Rand Hospital
Т	thymine
TAE	Tris-acetate-EDTA buffer
TAMB	Tambo Memorial Hospital
TBE	Tris-borate-EDTA buffer
TDA	Tryptophane-deaminase
TE	Tris-EDTA buffer
TEM	Temoniera

TEMB	Tembisa Hospital
TEMED	N,N,N',N'-tetramethyl-ethylenediamine
TET	tetracycline
Tris	Tris-(hydroxymethyl)-aminomethane
TSE	Tsepong Hospital
µg/ml	micrograms per milliliter
μl	microliters
U	uracil
UPGMA	unweighted pair group method with arithmetic averages
URE	urea
USA	United States of America
UV	ultraviolet
VNTR	variable number tandem repeat analysis
VP	Voges Proskauer
v/v	volume per volume
WC	Western Cape Province
WHO	World Health Organization
w/v	weight per volume
ХР	pulsed-field gel electrophoresis banding pattern