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ABSTRACT 
 

 

The three-dimensional microarchitecture of the mammalian kidney is of keen 

interest in the fields of cell biology and biomedical engineering as it plays a 

crucial role in renal function. This study presents a novel approach to the 

automatic tracking of individual nephrons through three-dimensional histological 

image sets of mouse and rat kidneys. The image database forms part of a previous 

study carried out at the University of Aarhus, Denmark. The previous study 

involved manually tracking a few hundred nephrons through the image sets in 

order to explore the renal microarchitecture, the results of which forms the gold 

standard for this study. The purpose of the current research is to develop methods 

which contribute towards creating an automated, intelligent system as a standard 

tool for such image sets. This would reduce the excessive time and human effort 

previously required for the tracking task, enabling a larger sample of nephrons to 

be tracked. It would also be desirable, in future, to explore the renal 

microstructure of various species and diseased specimens. 

The developed algorithm is robust, able to isolate closely packed nephrons 

and track their convoluted paths despite a number of non-ideal conditions such 

as local image distortions, artefacts and connective tissue interference. The 

system consists of initial image pre-processing steps such as background removal, 

adaptive histogram equalisation and image segmentation. A feature extraction 

stage achieves data abstraction and information concentration by extracting shape 
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descriptors, radial shape profiles and key coordinates for each nephron cross-

section. A custom graph-based tracking algorithm is implemented to track the 

nephrons using the extracted coordinates. A rule-base and machine learning 

algorithms including an Artificial Neural Network and Support Vector Machine 

are used to evaluate the shape features and other information to validate the 

algorithm’s results through each of its iterations. 

The validation steps prove to be highly effective in rejecting incorrect tracking 

moves, with the rule-base having greater than 90% accuracy and the Artificial 

Neural Network and Support Vector Machine both producing 93% classification 

accuracies. Comparison of a selection of automatically and manually tracked 

nephrons yielded results of 95% accuracy and 98% tracking extent for the 

proximal convoluted tubule, proximal straight tubule and ascending thick limb of 

the loop of Henle. The ascending and descending thin limbs of the loop of Henle 

pose a challenge, having low accuracy and low tracking extent due to the low 

resolution, narrow diameter and high density of cross-sections in the inner 

medulla. Limited manual intervention is proposed as a solution to these 

limitations, enabling full nephron paths to be obtained with an average of 17 

manual corrections per mouse nephron and 58 manual corrections per rat nephron. 

The developed semi-automatic system saves a considerable amount of time and 

effort in comparison with the manual task. Furthermore, the developed 

methodology forms a foundation for future development towards a fully 

automated tracking system for nephrons. 
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CHAPTER 1 

Introduction 
 

The kidney performs the vital bodily functions of water and solute exchange, 

blood pressure regulation and urine concentration through the functional unit of 

the nephron. Approximately one million nephrons intricately populate each 

human kidney, producing distinct regions with differing functionalities [1] [2]. 

The spatial distribution of nephrons within the kidney forms its microarchitecture. 

The microarchitecture of the kidney has recently been the focus of a number of 

studies [3] [4] [5]. In particular, the functional implications of the renal 

microstructure on the underlying physiological mechanisms involved are of great 

interest [6] [7] [8]. Nephrons are the target for many drugs which regulate blood 

pressure and solute concentrations and hence important bodily functions [2]. A 

deeper understanding of its anatomy may lead to a better understanding of 

physiological function and disease, which may be beneficial to drug development, 

disease diagnosis and treatment. 

A deeper characterisation of the microarchitecture also enables further 

development of models and simulations that accurately describe the functionality 

of the nephron and the kidney. This is a fundamental step towards the 

development of an artificial kidney or dialysis device. For researchers studying 

and modelling kidney function, some of the most useful statistics are the ratio of 

long-looped nephrons to short-looped nephrons and the change of this ratio across 

different individuals and species, the distribution in lengths within these 

categories, and the relative lengths of different parts of the nephron [7] [9].  

A previous study carried out by the Department of Biomedicine at the University 

of Aarhus, Denmark, involved manually tracking the paths taken by a few 

hundred nephrons through histological image sets of mouse and rat kidneys, and 

thereafter performing an in-depth analysis of the findings [9] [10] . The manual 

tracking task required an exhaustive amount of time and effort per dataset, which 
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posed a limit on the amount of data that could be acquired. This created the need 

for an automatic tracking tool which could be used as a standard tool on 

multiple datasets. This would allow the renal characterisation of multiple species 

as well as diseased specimens. Since the microstructure of nephrons can vary in 

the same kidney, it is important to obtain large samples when taking 

measurements such as nephron lengths, in order to render the findings more 

statistically accurate and representative of a variety of kidney specimens. 

The image database [11] has been made available for use through collaboration 

between the University of Aarhus, Denmark, and the University of the 

Witwatersrand, Johannesburg. This study attempts to aid and improve the process 

of modelling the renal microstructure by creating an automatic software tool to 

track nephrons through the image sets. The manually tracked nephrons form the 

gold standard comparison for this study.  

Various potential methodologies have been investigated and tested. The system 

developed in this dissertation comprises three main stages; image pre-processing, 

feature extraction and nephron tracking. Machine learning algorithms have been 

employed to accurately guide the tracking algorithm. The final system is semi-

automated, occasionally requiring user input for tracking in the inner medulla 

where the small size, dense nephron cross-sections prove to be difficult to track 

automatically. 

Chapter 2 introduces basic concepts of the kidney on both macroscopic and 

microscopic scales in order to highlight details that are relevant to the problem. 

An overview of existing methodologies in related fields is also discussed. The 

aims, objectives, rationale and scope of the study are presented in Chapter 3. 

Particular characteristics of the images which make the tracking task complex and 

introduce a number of non-ideal factors are explored in Chapter 4. A brief 

overview of the system is included in Chapter 5, and the developed methodology 

consisting of the stages of image pre-processing, feature extraction and tracking is 

detailed in Chapters 6, 7 and 8, respectively. Chapter 9 is dedicated to the 

machine learning aspects of the system. Results are presented in Chapter 10, 

followed by a detailed analysis and discussion in Chapter 11. Final conclusions 

are drawn and recommendations made in Chapter 12. 
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CHAPTER 2 

Background 
 

This chapter serves to provide background knowledge on concepts and fields 

relevant to this study, and to explore existing solutions, methodologies and 

applications.  

2.1 An Overview of Renal Histology 

A basic understanding of the anatomy and histology of the kidney is required in 

order to correctly model the problem, identify structures in the images and 

interpret results of the study in light of their biological implications.  

The kidneys are a pair of bean-shaped organs lying posteriorly in the abdominal 

cavity [12]. From a high-level perspective, one of the main functions of the 

kidneys is to take in unfiltered blood, and produce urine and filtered blood as 

outputs. This filtering and reabsorption function is performed by the kidney‟s 

functional unit called the nephron. Approximately 1 million nephrons populate 

each human kidney [13]. 

A nephron is a long, tortuous, unbranched tubular structure, varying in diameter 

along its length [1]. Its length is broken up into seven parts, namely the proximal 

convoluted tubule (PCT), proximal straight tubule (PST), descending thin limb 

(DTL), ascending thin limb, (ATL), thick ascending limb (TAL) and distal 

convoluted tubule (DCT) [1]. The nephrons are arranged such that the PCT, PST, 

TAL and DCT occur in the outer part of the kidney called the cortex, while the 

DTL and ATL form loops of Henle in the inner region called the medulla [1], as 

illustrated in Figure 2.1. Water and various solutes are exchanged between the 

filtrate and the blood along the length of the nephron [14]. 

A glomerulus and Bowman‟s capsule (making up a renal corpuscle) occurs at the 

start of each PCT; this is the site at which blood is filtered to form the renal 
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filtrate which fills the nephron tubule lumen. The renal corpuscle has a vascular 

pole at which the glomerulus meets blood vessels (afferent and efferent arterioles) 

and a urinary pole where the Bowman‟s capsule fuses with the nephron tubule [1]. 

The glomeruli are clearly visible in the image sets. 

At its distal end, each DCT joins a collecting duct which is a common structure 

collecting the filtrate from a family of nephrons [1]. This is the only site at which 

branching will be seen in the nephron network [1]. The collecting ducts drain into 

the minor and major calyces of the kidney, which then empty into the ureters and 

subsequently the bladder. 

 

Figure 2.1: Basic anatomy of the nephron. Adapted from [1]. 

Toluidine blue is the dye used in preparation of the image sets. It is a basic stain 

commonly used in renal pathology [15]. It has a high affinity for acidic tissues, 

producing a bluish purple stain [16]. It also increases the sharpness of histological 

images [16]. In a typical Haematoxylin and Eosin (H&E) stained kidney 

specimen, the various parts of the nephrons can be distinguished by the number of 

nuclei, diameter, thickness of the wall and types of cells making up the tubule [1]. 

The given images stained with toluidine blue results in the diameter and wall 

thickness being the only differentiating features. 

Glomerulus 

Collecting Duct (CD) 
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Thick Ascending Limb (TAL) 
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The nephrons are in close contact with the renal blood supply in order to perform 

the filtering and solute exchange functions [1]. The arteries, veins and capillary 

networks are seen in the image sets, having varying sizes and are more irregularly 

shaped compared to the nephrons. However, many blood vessels, especially those 

emerging to and from the glomeruli, are very similar in appearance to the 

nephrons and may be confused. 

The presence of loops of Henle in the inner medulla and the convolutions in the 

cortex are high-level examples of structure influencing renal function [14]. 

Looking closer, there are cortical nephrons with short loops and juxtamedullary 

nephrons with long loops. These have differing filtering rates [10]. Deeper 

characterisation of the renal microarchitecture may reveal additional structural 

aspects which have important functional implications. 

2.2 Existing Solutions 

2.2.1 Nephron Tracking and Three-Dimensional Reconstruction 

The spatial distribution of nephrons has been explored in previous studies 

although all instances of tracking were performed manually and therefore the 

resulting statistics were based on a limited number of nephrons. The mouse or rat 

kidney is commonly used as it is small enough to fit on microscopic slides while 

adequately representing the structure of mammalian kidneys.  

One of the previous studies carried out at the University of Aarhus, Denmark 

(from which the image sets were obtained) involved reconstructing 151 complete 

nephrons from the manually tracked data of a mouse kidney [10]. The tracking 

was done on 30 families of nephrons, where a family refers to all nephrons 

emptying into a common collecting duct [10]. The glomeruli were used as starting 

points. A number of statistics were calculated and the spatial interrelations of each 

part of the nephrons were thoroughly discussed, revealing some important 

features of the kidney [10]. A later study involved manually tracking 56 nephrons 

of a rat kidney and taking a variety of measurements such as the lengths of 

different parts of the nephron and glomerular volumes [9]. Computer-aided 3D 

reconstruction was also carried out for visualisation purposes. 
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In a different set of studies by Pannabecker and Dantzler [4] [5], the 3D 

architecture of the rat kidney was investigated. Various cross-sections of rat 

nephrons were physically labelled using differential 

staining/immunocytochemistry techniques. Immunofluorescence allowed visual 

differentiation between parts of the nephron by means of distinct fluorescence 

during microscopy. The digitised images were used to manually track the TDL 

and TAL near the papillary tip. 3D reconstruction involved creating a mesh of 

three-dimensional cylinder-like objects which were created for each individual 

nephron cross-section in each image. Existing imaging software called Amira 

visualisation was used. Although immunofluorescence aided the tracking process, 

the tracking procedure was not automated in any obvious manner.  

Both these sets of studies involved manually tracking nephron cross-sections in 

different areas of interest in the kidney. The tracking processes were computer-

aided in the sense that the software provided a user-interface; the tracking was not 

automated or predictive and no machine learning was used.  

2.2.2 Glomeruli Detection  

The glomeruli need to be detected as they serve as good starting points for 

tracking. Automated glomerulus detection is an important step during computer-

aided diagnosis of kidney disease during a biopsy [17]. The change in size and 

shape of glomeruli is an indicator of the degree of damage in the kidney [17]. The 

biggest challenge for accurate detection is the fact that the surrounding contours 

are not continuous [18] and that other surrounding tissue produce strong noise 

levels [17]. The shape and size of the glomeruli also vary. 

A set of papers [19] [20] document using a log edge detector and wavelet 

transform to produce a low resolution image with enhanced glomeruli edges. 

Spline curve fitting is applied through a genetic algorithm to obtain an accurate 

closed curve around the glomeruli. Another study [17] has shown that the 

watershed algorithm can produce a more accurate closed glomerulus edge. 

These methods often require a starting seed and are not suitable for purely 

automated glomeruli detection. The images in this study differ widely from those 

used in other studies (usually H&E images). In contrast to images in previous 
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studies, the nephrons produce stronger edges than glomeruli. Also, accurate 

closed curves around the glomeruli are not necessarily needed, merely indicate 

coordinates. A custom glomerulus detection method is therefore devised for this 

study. 

2.2.3 Automated Tracking of other Biological Structures 

It is important to note the difference between automatic tracking and automatic 

segmentation. Automatic segmentation is the isolation of independent structures 

in images, such as the separation of organs in CT and MRI images [21] [22], or 

the differentiation between tissue types in histological images, mostly for 

purposes of visualisation or further processing. The segmentation can be pixel 

(2D) or voxel (3D) based. Commonly employed techniques for segmentation 

include edge detectors [23], histogram-based methods, the watershed transform, 

region growing [21], morphological operations and active contour modelling [22].  

In contrast, automatic tracking utilises segmentation results to create an abstract 

computational reconstruction of the structure for purposes of accurate 

measurement. Currently, there exists no method for the automatic tracking of 

nephrons through serial slices. However, methods for the automatic tracking of 

other biological structures do currently exist, although these are for one or a few 

objects in a single image. 

A common example is the tracking of blood vessels in retinal images [23]. One 

study [24] makes use of a Kalman filter as the basis for tracking, using the 

position and orientation of vessel fragments as states. Gradient information and 

expected vessel structure are used to estimate the next state during tracking. 

System noise is also taken into account. A number of verification or correctness 

checks specific to the problem are used to improve results [24]. Another study 

[25] uses correlations with rotated templates to track vessels iteratively in local 

pixel areas, in order to avoid image-wide operations which are generally slow. 

The portal and hepatic venous trees of the liver has also been automatically 

tracked. One approach uses Laplacian-based contraction to obtain a skeleton of 

the vessel system [26], which is then broken up into nodes. Tracking consists of 
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using orientation and diameter consistency metrics to model continuity between 

nodes. Maximisation of the continuity function provides the best candidate. 

2.3 The Nephron Tracking Problem 

The methods from the aforementioned applications cannot be directly applied to 

the current nephron tracking problem due to a number of factors. The nephrons 

are sectioned transversely, enabling one to track individual nephron cross-sections 

from image to image. In contrast, retinal images and CT images of the hepatic 

venous tree capture a single longitudinal view of the entire structure in question. 

Another crucial difference is the vast number of independent nephrons needing 

tracking versus one or a few structures in other applications. Moreover, the 

tortuosity of the nephrons poses a major challenge. The vast amount of data (700-

3000 high resolution sections through the kidney per dataset) also poses a 

limitation on how the data is to be processed in an efficient manner.  

Although existing methodologies cannot be used directly and completely to fulfil 

the requirements of the automated nephron tracking problem, several of the 

methods have been adopted and combined in the current approach. This includes 

graph-based tracking, various metrics to indicate confidence per iteration and a set 

of validation rules to eliminate error. In addition to this analytic heuristic 

technique, the high modelling capability of machine learning is employed for path 

validation. Machine learning is highly appropriate for such a problem as it can 

automatically model the complex system with high accuracy through training. The 

machine learning component is discussed in greater detail in Section 2.5. 

2.4 Graph Theory 

The primary structure of the designed tracking algorithm in this study adopts basic 

concepts used in graph theory as described by [39] and is summarised below.   

A graph (G) consists of a collection of nodes (V) interconnected through edges 

(E). In general, a node is an object which possesses certain attributes. An edge 

connects two nodes, establishing a relationship between them, i.e. G = (V, E) and 

E = (V1, V2). An edge can be undirected or directed where the edge points from a 

parent node to a child node. Each node has a potential to have 0-1 parent/s and 0-
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n children. In terms of nephron tracking, each individual nephron cross-section 

can be seen as a node. The „nodes‟ are then progressively linked, or tracked, to 

form a list of parent-child pairs. 

A walk is a sequence of nodes and edges as shown in Figure 2.2. Given a set of 

directed edges, a walk can be reconstructed through inference of the parent-child 

pairs. The resultant nephron path can be seen as a bidirectional walk in 3D space 

through the nodes making up a nephron, starting at some initial seed and ideally 

ending at the glomerulus and collecting duct. 

 

Figure 2.2:  A nephron‟s path can be seen as a walk through a set of nodes in 3D 

space.  The walk occurs in two directions from a starting seed (green) towards 

endpoints (blue) which should be a glomerulus and collecting duct.  

 

2.5 Machine Learning 

2.5.1 An Overview of Basic Machine Learning Principles 

A machine learning algorithm forms a hypothesis, or a prediction function, based 

on experience through given inputs and outputs [27], i.e. a training set {X,Y}. 

Once a learning algorithm has been trained, it can be used to predict new unseen 

examples. The process is summarised in Figure 2.3. 

x 

y 

z 
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Figure 2.3: The general process followed when using machine learning 

algorithms. hθ(x) is the prediction function. 

The weights (θ) of the generalised polynomial function hθ(x) as in equation (2.1) 

are adjusted with each example, such that some cost/error objective function as in 

equation (2.2) is minimised [27]. This is done through methods such as gradient 

descent and back-propagation [27], and is termed „learning‟. Popular learning 

algorithms include Logistic Regression, Decision Trees, Bayesian Classifiers and 

many more [28].  
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where x
i
 and y

i
 are the input features and output of the ith example, respectively. 

m is the number of examples and n is the number of features.  

Learning can be supervised, where the correct outputs are provided [29], or 

unsupervised, where intrinsic patterns are sought for within the given data [29]. A 

supervised problem may be of a regression type, where there is a continuous 

valued output, or a classification type, where the output is a discrete label [27]. 

Randomisation and normalisation (feature scaling) of the input is essential for 

good results during training [28]. Once the machine learning algorithm is well-

trained, it can be used to classify new, unseen examples. 

An underfit hypothesis is one that is too simple or of a low order [28]. It has high 

bias and cannot even represent the training set well. An overfit hypothesis is one 

that has too high an order. It works very well for the training set but cannot 
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accurately predict new examples [28]. It is said to have high variance as it 

captures noise and outliers [28]. The regularisation parameter of a machine 

learning algorithm controls the level of generalisation of the hypothesis and can 

be adjusted to address under- or over- fitting [28]. Additional features or 

polynomial features can also solve a high bias problem, while decreasing features 

and adding more training examples can resolve overfitting. In addition to the 

training set, a validation and test set is also used during training to prevent bias 

towards the training set.  

Additional theory on machine learning can be found at [27] and [28]. 

2.5.2 Application to Medical Imaging  

Artificial intelligence, or machine learning, has found application in the medical 

imaging field. It is particularly advantageous because biological structures cannot 

usually be described with high accuracy through simple predictive equations. 

Large modelling capacity combined with flexible input and output choices make 

these algorithms highly desirable.  

Feature-based machine learning (FML) involves computing features of objects in 

the images which are then used as inputs to the machine learning algorithm. The 

output is typically not in the image space but rather a classification or numerical 

value [30]. One such application involved using a multi-layer perceptron neural 

network to classify breast lesions as either malignant, fibroadenoma, fibrocystic 

disease or benign [31]. Features such as cellularity, cohesiveness, clump thickness 

and uniformity were computed from images of fine needle aspirate smears [31]. 

Pixel, or voxel, based machine learning (PML) uses image pixels as direct inputs, 

or features. PML can automatically infer features and hence reduces error and data 

loss that occurs through feature extraction [30]. The output can be a classification 

or a processed image containing, for example, a detected coordinate, boundary 

curve or enhanced object [30]. For example, a feed-forward neural network has 

been used to aid detection of boundaries during automatic segmentation of the 

colon in CT images [32]. Using a processed binary image as an input, the network 

is able to extract fluid filled regions of the colon [32]. The training time and 
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computational power required for PML is very large due to the high 

dimensionality produced by image inputs.  

2.5.3 Application to the Nephron Tracking Problem 

The nephron tracking problem has a large number of inputs (either raw or 

processed images, or features such as shape, colour, position, size) and complex 

unknown functions. A non-linear, high dimensional machine learning algorithm is 

able to model these functions through supervised learning on the datasets. 

For this study, two supervised classifiers are chosen for performance comparison. 

These are an Artificial Neural Network (ANN) and a Support Vector Machine 

(SVM), which are the most popular and powerful non-linear machine learning 

algorithms [28]. Both ANNs and SVMs are capable of modelling complex 

systems with high accuracy through supervised learning. 

An ANN is a biologically inspired non-linear machine learning algorithm. It 

consists of multiple calculating units called neurons, each of which outputs a 

weighted sum of its inputs [27]. The neurons are arranged into multiple 

interconnected layers. Propagation of the input through the layers results in an 

intricate interrelation of the inputs dependant on the weighting factors at each 

neuron [27]. ANNs are capable of representing highly complex hypotheses, as the 

input features are progressively mapped into more complex features by the deeper 

layers [27]. It mimics the notion of the brain‟s plasticity, using „one algorithm for 

all learning‟ [28]. 

An SVM is one of the most powerful machine learning algorithms available [28]. 

It is sometimes cleaner than logistic regression and ANN for complex hypotheses 

[28]. It is also known as a large margin classifier as it maximises the distance of 

the boundary from the examples. It uses computed features called landmarks, 

which can be computed with or without a variety of kernels.  

For each of the algorithms, regularisation, the chosen features, the number of 

examples and the degree of the hypothesis need to be carefully chosen to optimise 

performance. It has been shown that most algorithms in the same class seem to 
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perform equally well, provided that there are a large number of training examples 

(>10000) [28]. 

The large amount of data available (3 sets of mouse kidneys of ≈1000 images/set 

and 3 sets of rat kidneys of ≈4000images/set) means that sufficient training can 

occur in order to optimise a highly complex hypothesis function. Some sets can be 

used for training and others for independent testing. Multiple datasets will result 

in an algorithm that is not an over-fit to one particular set of images.   

Feature-based learning is chosen as image-based outputs are not required 

(nephron detections are more easily obtained through other methods due to the 

homogenous, easily identifiable nature of the cross-sections). The approach is to 

use the machine learning classification as a validation step post-tracking. This also 

reduces the dimensionality of the problem.  

ANNs have low transparency – the optimised weightings cannot be easily 

interpreted to infer a model of the system. SVMs are slightly more transparent as 

the landmarks and margins can be interpreted [28]. However, transparency is not 

an issue, as this problem does not require an understanding of the underlying 

mathematical model. The algorithm simply relies on an output of tracking 

accuracy for purposes of path validation.  
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CHAPTER 3  

Project Framework 
 

3.1 Research Question 

The work presented in this study forms part of a larger research goal, which aims 

to aid the process of exploring the spatial microstructure of the kidney in order to 

advance research findings in the fields of renal physiology and pathology. It also 

aims to verify the existing conclusions drawn from the small sample of nephrons 

in the previous study, on a larger more representative sample set.  

In terms of this study, the research aims to: 

 Determine how 3D structures, or representations, of individual nephrons 

can be automatically extracted from serial slices of the kidney. 

 Develop methodologies towards an automated nephron tracking system. 

 Determine how effectively and accurately an automated approach to 

tracking can be compared to the manual method. 

 Quantify how much manual intervention is necessary in the automatic 

approach to obtain the paths of entire nephrons. 

Once tracked, the results can be processed to extract useful statistics or reconstruct 

a 3D representation of the renal microstructure.  

3.2 Rationale 

Why does software need to be developed? 

The manual tracking problem requires an exhaustive amount of effort per dataset. 

Each mouse and rat dataset has on average 1000 and 3000 images, respectively. 

Manually tracking one long-looped mouse nephron requires tracking about 1800 

nephron cross-sections. This poses a limit on the amount of data that can be 

acquired (the number of nephrons and kidneys analysed). This creates the need for 

an automatic tracking algorithm which could be used as a standard tool on 
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multiple datasets, requiring little to no human effort apart from operation and 

occasional human intervention in the tracking process, although this should be 

minimised. Larger sets of results are needed in order for the extracted 

characteristics to be statistically representative of all kidney specimens. 

Methods for 3D reconstruction from 2D images have been widely established, 

such as in 3D magnetic resonance (MRI) and computed tomography (CT) scans. 

However, these tools are not suitable to this problem due to a number of reasons: 

 The problem is not limited to visualisation, but requires accurate measurements 

to be made per nephron, which requires accurate tracking of each individual 

nephron‟s cross-sections through the images. 

 Existing tools are adapted to isolating only a few objects with relatively simple 

shapes/contours, e.g. the gross structure of the liver or heart, whereas the 

kidney has thousands of densely packed, intertwined nephrons, each of which 

takes a tortuous path in 3D space. 

 MRI/CT image sets are not typically as large in volume (hundreds to thousands 

of high resolution images for the kidney data sets). This poses a challenge in 

terms of memory. 

 Due to the large number of intertwined nephrons surrounded by interstitial 

tissue, generic algorithms could very easily incorrectly link nephrons or 

misjudge the correct path. 

Existing software packages could perhaps be used on the results of the tracking 

algorithm rather than the raw images for purposes of visualisation. This research 

focuses on the development of the methods required for automated tracking rather 

than research on aspects of nephrology. Developing these methods is an essential 

step towards fully automated nephron tracking.  

The resources that were required for this research project include the image sets 

and software development tools both of which were readily available. In 

particular, MATLAB Version R2012a [33], the Image Processing Toolbox, 

Neural Network Toolbox and Statistics Toolbox were used. 
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3.3 Objectives 

The designed system needs to be: 

 Automated to a high degree: Minimal effort must be required for setup and 

calibration, and user input must be minimised during tracking. 

 Robust: It is able to track the convolutions in the tortuous path of nephrons and 

is capable of handling a wide range of cases, accommodating variability in the 

input data.  

 Intelligent: The system makes use of modern techniques and makes informed 

decisions through computed models rather than depending on hard-coded rules. 

 Practical: The code is reasonably efficient and user interaction is made easy. 

3.4 Assumptions 

 For purposes of verification, the assumption is made that the manually tracked 

data is absolutely correct. The accuracy of the algorithm will be measured 

against this gold standard. Visual inspection can also be used to verify results 

on nephrons which have not been previously tracked. 

 The algorithm is only expected to work for datasets with reasonably clear data, 

which follows the constraints outlined in Section 12.1.2. 

 A few parameters can be adjusted at the start of automated tracking in order to 

optimise the code for a particular dataset, i.e. calibrate the system to the input. 

3.5 Success Criteria 

The solution will be deemed successful if: 

 The algorithm is able to track large portions of the paths of the manually 

tracked nephrons in an automatic manner. 

 Complete nephron paths can be obtained using limited manual intervention. 

 The algorithm works with a variety of datasets, with a minimal number of 

parameters needing to be adjusted. 

 The algorithm has high specificity and sensitivity.  

 The results can be used to provide a visual representation of the spatial 

distribution of the nephrons. 

 The developed methodologies contribute to future work in this field. 
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CHAPTER 4 

Analysis of the Problem Domain 
 

In order to construct a working solution to the problem, the available data must 

first be analysed to identify requirements, constraints and limitations posed by the 

images.  

4.1 The Image Sets Acquired from the University of Aarhus  

The image sets acquired from the University of Aarhus, Denmark consist of 

images from three mouse kidney specimens and three rat kidney specimens. 

According to their previous studies [9] [10], tissue blocks were cut from each of 

the six kidneys perpendicular to the longitudinal axis extending from the cortical 

capsule to the papillary tip [10]. The tissue blocks were then fixed with 

glutaraldehyde, post-fixed with OsO4, stained én bloc with uranyl acetate, and 

embedded in flat molds in Epon [9] [10]. The blocks were then sliced transversely 

into consecutive sections using a microtome equipped with a Diatome histoknife 

[9]. Each slice was then stained with toluidine blue [9], digitised using a 

microscope and digital camera and labelled sequentially. A custom software 

interface was used for the manual tracking and labelling task; which is discussed 

in detail in [9] [10]. 

The animal experiments were carried out in accordance with the animal care 

license provided by the Danish National Animal Experiments Inspectorate [9] 

[34] (ethics clearance number 2004/561-818). Due to the work being purely 

computational, additional ethics clearance was not required on part of the 

University of Witwatersrand. 

Some noteworthy characteristics of the datasets are tabulated in Table 4.1. 
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Table 4.1: Characteristics of the average mouse and rat dataset [9] [10] [11] 

 Mouse data Rat data 

Isotropic scale factor (x-y) 1.16 μm per pixel 1.53 μm per pixel 

Slice thickness 
2.5 μm x 0.5=5 μm 

(every 2
nd

 slice present) 
2.5 μm 

Average no. of images 984 4392 

Resolution 2500 x 1675 pixels 2750 x 2500 pixels 

 

A nephron cross-section is defined as a cross-section through a single nephron at 

one location in an image. As one proceeds through an image set, it can be seen 

that the microstructure or morphology changes drastically from the cortex to the 

medulla. The Appendix contains a reconstructed view of the entire specimen in a 

longitudinal plane in order to illustrate the regions and the changes between them. 

Figure 4.1 displays examples of images in the cortex and medulla [11]. 

 Rat 1 Mouse 1 Mouse 3 
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Figure 4.1: Examples of images in the cortex (left) versus the medulla (right) [11] 

are shown at equal magnification. A change in nephron characteristics, 

particularly wall intensity, tubule density and decreasing diameter can be seen. 

Histological Variations 

Nephrons belonging to the same collecting duct family have their loops running 

together in the medulla [10]. Cortical nephrons have shorter loops of Henle while 

juxtamedullary nephrons extend deeper into the medulla, have longer loops of 
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Henle and larger glomeruli [1] [10]. Different cross-sections of the nephron may 

stain with different intensities as the cell composition varies. The DTL in 

particular has very thin, lightly stained walls as can be seen in images of the 

medulla in Figures 4.1 and 4.2.  

Cortex  

The renal cortex is composed primarily of the PCT, DCT and glomeruli, which 

are relatively large in diameter (Glomeruli: 150-240μm, PCT: 40-50μm, DCT: 20-

50μm [2]) as seen in Figure 4.2. Large blood vessels (arcuate arteries and veins) 

and smaller capillaries are also present. While most nephron cross-sections appear 

circular, there are many elliptical and elongated cross-sections in the cortex due to 

the turning and winding of the PCT and DCT. The PCT is longer, larger in 

diameter and more convoluted than the DCT [10], making up the majority of 

cross-sections in the cortex. The PCT also has a fuzzier border. The glomerulus, 

PCT and DCT related to the same nephron are found in the same vicinity in the 

cortex [10]. The glomeruli are randomly dispersed throughout the cortex and are 

easily distinguishable by eye on the microscopic images as large circles 

containing a ball of convoluted blood vessels. From observation, the TAL and 

initial DCT cross-sections are much smaller in diameter than PCT and distal DCT 

cross-sections and are dispersed in between these larger tubules. 

Medulla 

The outer medulla contains a mixture of large PCT and DCT cross-sections as 

well as small DTL and ATL cross-sections. Deeper in the outer medulla, the PST 

with an outer diameter of about 60μm, suddenly narrows to about 10-15μm and 

continues as the DTL into the inner medulla [1] [2].  

The inner medulla primarily consists of the thin limbs of the loop of Henle. These 

are seen as densely packed circular structures. The descending limb has a much 

thinner wall than the ascending limb. All cross-sections are circular except for 

small elongated cross-sections at the bends of the loop of Henle. From 

observation, the surrounding capillary networks called the vasa recta are difficult 

to distinguish from nephron cross-sections as they are very similar in appearance.  
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Figure 4.2: A section of an image through the cortex (top) and inner medulla 

(bottom) showing numerous structures [11]. 

The varying structure from the cortex to medulla means that processing 

parameters will have to change progressively through the image set in order to 

accommodate the varying intensities, sizes of objects and the amount of unwanted 

objects such as blood vessels, the interstitial connective tissue, the background, 

and artefacts.  

Analysis of the images from the medulla poses a greater challenge compared with 

the cortex because the cross-sections are much smaller and concentrated, making 

it more difficult to isolate them accurately. Even though tracking in this area 

would be more prone to error (as the probability of mistakenly jumping onto the 

wrong cross-section is higher), the fact that the paths are mostly straight and 

unidirectional in this region can be used as a criterion for error checking. Other 

known information can also be used for guidance or error checking, e.g. slices 1-

300 may consist primarily of the cortex, or a diameter of 5-10 pixels indicates a 

thin limb of the loop of Henle in the medulla.   

Glomeruli 

Circular and elongated 

tubules of the PCT 

Blood vessel  

(artery/vein) 

Small circular tubules of the TAL 

Thin walled tubules of the DTL 

Thick walled tubules of the ATL 
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 4.2 An Ideal Solution 

An ideal solution would consist of aligning the images and producing binary 

images using the required conditioning steps. A 3D segmentation algorithm such 

as region-growing, Watershed segmentation or the flood-fill algorithm could then 

be applied to the entire 3D volume, ideally isolating a particular nephron given a 

starting seed. Each isolated volume could then be independently analysed.  

However, the data presents many complexities which do not make such a solution 

viable. Image misalignment, local distortions and missing data (or tissue) between 

adjacent images produces a definite discontinuity from image to image. This, in 

combination with interference from connective tissue cross-sections and other 

non-ideal factors result in multiple nephrons being linked using these techniques. 

Since there is not continuity between adjacent images (in contrast to the x-y image 

planes), linkage of the nephron cross-sections merely by pixel connectivity is not 

reliable and is error prone as it requires only a few pixels to be incorrectly 

connected from different nephrons. This is especially true for the inner medulla 

where tubule density is high. Such a solution would also not be capable of 

intelligently handling distorted images and artefacts. Additionally, these 

algorithms require the whole volume to be actively processed, which is difficult to 

carry out as it requires a massive amount of physical memory on the order of 

25GB. 

4.3 The Complexities of the Problem 

Broadly speaking, the complications are firstly due to features of the specimens 

themselves, and secondly due to the large amount of data per dataset. The 

designed system must be able to counteract these complexities while accurately 

tracking the path of each nephron through the 3D image space.  

4.3.1 Artefacts 

Physical artefacts are structures, or processes, which contaminate or distort the 

original tissue, causing reduced visibility or complete obscuration of the tissue. 

They are induced during tissue preparation. An image artefact is an anomaly 

caused during the image capturing process. 
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Large physical artefacts seen in the images include tissue cuts, folds and external 

matter, which affect all the nephron cross-sections in the vicinity. Some artefacts 

only affect single nephron cross-sections, such as the presence of external matter 

in the lumen. A number of examples are displayed in Figure 4.3. Artefacts hinder 

tracking if they occur in a number of successive images. This is typically where 

user-input is then required. 

   

 
  

   

Figure 4.3: Examples of interfering physical artefacts in the image sets [11]. 

These include cuts, folds, external matter, blurring effects, bright spots and 

occluding matter in the lumens. 

Some images also have areas of sharp non-uniform intensities, particularly large 

bright spots which could be a result of both non-ideal tissue preparation and 

image capturing. These cause incorrect merging of cross-sections or elimination 

of a large number of nephron cross-sections during pre-processing. These images 



23 
 

cannot simply be excluded as the frequency of images with artefacts is too high 

(one in every 5-10 images). Also, the artefacts do not affect all of the nephron 

cross-sections in the image and the defective images are useful for the most part. 

The presence of these vastly different artefacts require each image to be evaluated 

and processed individually during tracking so that the artefact can be bypassed 

automatically or by the user. This is another reason why a generic three-

dimensional tracking algorithm such as flood-fill cannot be used. 

Another anomaly is the misalignment between images. This is due to local tissue 

distortions (a physical artefact causing non-rigid deformation) as well as capturing 

slides which were not aligned (an image artefact causing translation and rotation). 

This is discussed in more detail in Sections 6.1 and 8.1. In addition to the 

nephrons, interstitial connective tissue and blood vessels are present. Although 

these are not artefacts, they do cause interference during tracking. Blood vessels 

link the glomeruli of multiple nephrons, while connective tissue causes the 

incorrect linking of multiple nephrons during tracking. 

4.3.2 Memory 

Each image set occupies about 700MB and 2GB for the mice and rat datasets, 

respectively when stored in a compressed form (JPEG images). In order to be 

processed in MATLAB (or any software), the images must be decompressed into 

a matrix form, where each matrix entry is a pixel value occupying at least four 

bytes. This then equates to a decompressed size of about 
               

     
 = 14GB 

for a mouse dataset and 
                

     
 = 64GB for a rat dataset. 

This implies that it is not possible to process the whole volume at once 

considering typical physical memory limitations of 8-16GB. Rather, smaller 

batches of images should be processed in a more intelligent, controlled manner, as 

is required for the complex nephron path tracking problem.  
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CHAPTER 5 

System Overview 

The task of manually tracking nephrons through an image stack is a seemingly 

trivial one for a human being. However, transferring the vision, interpretation and 

decision making abilities of the human operator into software is a very complex 

task. Obtaining results that are as accurate as manual tracking results is even more 

difficult. In order to attempt to do so, the system developed in this study uses a 

combination of techniques from the domains of computer vision, feature 

computation, graph theory and machine learning. 

Although the purpose of this system is not to make an “end-diagnosis”, from a 

methodological perspective, the problem fits the generic architecture of a 

Computer Aided Diagnosis (CAD) system [35]. CAD systems assist medical 

practitioners in interpreting microscope, x-ray, MRI and ultrasound images by 

automatically marking, measuring or detecting certain regions of interest [29]. 

These systems use a combination of image processing and artificial intelligence 

techniques. The architecture of a CAD system can be generalised as [29] [35]: 

1. Image Pre-processing: Involves steps such as image registration, noise 

reduction, edge enhancement and intensity equalisation in order to increase 

quality or amplify visibility of features [29]. 

2. Definition of Regions of Interest: Separating or detecting the objects of interest 

using methods such as image segmentation or contour matching [29]. 

3. Feature Extraction and Selection: Computing features by measuring 

characteristics such as size, shape and colour [29] [36]. 

4. Classification: Involves pattern recognition through supervised classifiers such 

as a Decision Tree, Artificial Neural Network or Bayesian Network classifier, 

or unsupervised methods such as clustering.  
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A number of factors affect the accuracy of these systems, for example image 

quality, noise and complexity of the target objects [11]. Figure 5.1 describes the 

architecture of the designed nephron tracking system. 

 

Figure 5.1: A high level overview of the nephron tracking system, showing the 

main sub-systems and the flow of information between them. 

The system is implemented in MATLAB [33] as a series of independent modules 

where structures of information are progressively passed on from one stage to the 

next. This framework is related to an object-orientated approach in that the major 

functions are decomposed into independent, reusable blocks. The development of 

the system is incremental, involving continuous reiteration through the three main 

stages to achieve optimal performance. 

There are a number of parameters in each stage which need to be calibrated to 

each image set. These are discussed in their relevant sections. In order to easily do 

so, a single settings file must be initialised prior to execution, which contains all 

of the information needed to automatically adjust and vary the parameters 

involved.  
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CHAPTER 6 

Image Processing 

Computer vision aims to mimic the capabilities of human vision by processing, 

analysing and transforming raw images into a form that can be more easily and 

accurately interpreted by a machine [36]. It forms a crucial component of many 

automated processes in the real world [37] including the current nephron tracking 

task.  

The image processing steps prepare the images for subsequent stages by creating 

uniformity among all nephron cross-sections and counteracting non-ideal factors 

described in Section 4.3. The images are processed such that required features 

(nephron cross-sections) are enhanced while unwanted features (such as 

interstitial connective tissue (ICT) cross-sections, large blood vessels, background 

pixels and large artefacts) are filtered out or reduced. The final product of image 

pre-processing is a binary image of the lumens of the nephrons as shown in Figure 

6.1. 

 

Figure 6.1: Each colour image is processed into a binary image containing 

nephron cross-sections of all sizes. Each raw image [11] undergoes conversion to 

grayscale, background removal, histogram equalisation and binarisation. 

6.1 Image Registration 

Image alignment was carried out on the datasets [11] during the previous study in 

order to ease the manual tracking process [9] [10]. The procedure involved 

iteratively estimating the translational and rotational offsets between adjacent 

images and applying the rigid transformation using custom software written in C 
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[9]. This alignment was apparently not sufficient due to the local distortions 

induced during the sectioning process [9]. The distortions have the effect of 

pinching, compressing or stretching local regions of tissue. The rat image sets 

were then further aligned using five manually placed landmarks which divided 

each image into four polygons, each of which then underwent a non-rigid 

transformation [9].  

These processes have resulted in the images being sufficiently aligned from a 

global perspective. However, local distortions in the mouse datasets were still not 

fully compensated for, especially since only every second slice of the dataset [11] 

is present. This is shown in Figure 6.2, where one local area can be aligned while 

a nearby area is misaligned.  

 

Figure 6.2: A pair of superimposed adjacent sub-images (binarised) from a mouse 

dataset is shown (derived from [11]). The bottom right area is well-aligned while 

the top areas are misaligned. This cannot be corrected using a translation and 

rotation only as the misalignment is due to localised stretching/compression. 

Misalignment due to local distortions in the rat datasets was minimal as they were 

compensated for by the four-quadrant alignment method. However, this had 

resulted in nephron cross-sections incorrectly merging at the junctions of the four 

polygons, as shown in Figure 6.3. This resulted in multiple nephrons being linked 

during tracking. The nephrons around these junctions were therefore excluded 

from the study as the merge cannot be reversed. 



28 
 

The images were not further aligned during the pre-processing stage, although 

further alignment is performed during the tracking process as the local distortions 

require the areas around each cross-section to be handled locally and 

independently. This local alignment is discussed in Section 8.1 as part of the 

tracking system. Advanced non-linear image registration techniques such as 

RANSAC [37] were not applied as: 

- Cropped local regions can be aligned using simpler methods. Non-linear 

alignment usually makes use of six more parameters in addition to the two 

employed (x and y translation), which increasing the order of the process.  

- Large cumulative transforms over the image set must be avoided as they may 

over-morph the images. 

- A small amount of the misalignment is due to the progressive change in 

morphology and not only due to induced distortions. A non-linear registration 

would counteract this change in morphology, which is undesirable as the 

characteristic nature of the nephrons must remain unchanged. 

 

 

Figure 6.3:  The arrows indicate the junctions of the polygons created during the 

four-polygon alignment method, which results in the merging of cross-sections 

from different nephrons. In the labelled image (below) the merge between cross-

sections from nephrons 40 and 41 can be seen [11]. 
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6.2 Image Processing Procedure 

Each nephron tubule consists of a lumen enclosed by the tubule wall, which 

differs in thickness depending on its location, i.e. the PCT, PST and DCT have 

thick walls while the DTL, ATL and TAL have very thin walls. It would be ideal 

to extract both the wall and lumen of each tubule but this is a difficult task due to 

the walls of adjacent tubules touching one another. One potential method which 

could be applied is spline curve fitting using a genetic algorithm, which has been 

used to isolate different types of tissue in histological images [19]. However, the 

vast number of single nephron cross-sections per image that would need 

separation is too large (≈ 8000 per image in the cortex to ≈ 36000 per image in the 

medulla) and the problem becomes unnecessarily complex for current purposes.  

It was decided that the lumen of a nephron cross-section alone contains sufficient 

amount of information to represent the original structure in the colour image, i.e. 

location, size and shape of the nephron cross-section is provided by the lumen 

alone. The lumens are also more easily and accurately isolated juxtaposed to the 

walls of the nephrons and are thus chosen as the objects to be isolated. Each 

image undergoes the following procedures:  

6.2.1. Conversion to Grayscale  

The staining used on the specimens (toluidine blue [10]) results in all structures 

being monochrome. The colour information is thus discarded by conversion to a 

grayscale image by retaining the value component (or luminance) of the hue-

saturation-value (HSV) image. The colour information could however be useful 

(e.g. if a more differentiating stain is used in future image sets) and this would 

require the pre-processing stage to be modified accordingly.  

6.2.2. Background Removal  

The tissue slice is isolated by removing the white background space. First, the 

image is thresholded at the image‟s average intensity value plus some constant C.  

       
      (  )    (6.1) 
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This is chosen instead of a constant value only as each image differs in intensity, 

some by a large amount. Furthermore, this value results in a sharp contrast 

between the background (BG) and the tissue. The C value must be chosen to suite 

each image set. For example, the images in one rat dataset have a very large bright 

tissue centre. A C value that is too low causes the nephron cross-sections to merge 

into one large binary element when binarised. The large component could then be 

mistaken for the background. Another mouse dataset has a darker background 

with lots of matter, and a C value that is too high results in large chunks of the 

background not being removed. This value must be chosen once-off during 

system calibration by a trial-and-error approach.  

 

Figure 6.4: The procedure for background removal is shown. The raw image [11] 

is binarised. The background mask is formed by morphological closing and 

inversion of the largest components in the binary image. Finally the mask is 

multiplied with the image. 

The binary image is segmented (using simple 8-neighbour connectivity), 

thereafter obtaining the largest cross-sections which then form a background 

mask. The mask first undergoes morphological image closing using a 20x20 

circular kernel in order to remove small objects occurring in the background. The 

Tbgrnd=190+10

Original Image Background Mask 

Image with 
background removed 
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mask is then inverted and applied to the original image by multiplication. These 

steps are shown in Figure 6.4. Background removal must occur prior to (and 

without any) image equalisation so as not to amplify the intensity or texture of 

matter occurring in the background.  

6.2.3. Histogram Equalisation  

Histogram equalisation involves normalising the histogram of an image such that 

all intensity values are equally distributed among the pixels in the image. It is the 

most crucial image processing step and is required in order to counteract uneven 

intensities on both a local and global scale as illustrated in Figure 6.5. 

1. „Globally‟: Uneven intensity may occur across large areas in the image, such as 

random large bright spots or a brighter centre as a result of the image acquisition 

process. Furthermore, some images are irregularly bright or dark in comparison to 

the rest of the image set. Global equalisation is achieved by using a large 

equalisation window [36], about a tenth of the size of the image.  

2. „Locally‟: Uneven intensities may occur in small local areas (especially in the 

inner medulla) as a result of narrow diameter nephron cross-sections having a 

much lighter wall. Local equalisation is applied by using a much smaller 

equalisation window of about 5 times the size of the average nephron cross-

section in the image. 

The sizes of the equalisation windows must be suited to each image per dataset. 

Images of the cortex require a large local equalisation window (≈ 40 pixels), as 

the nephron cross-sections are larger than in the medulla. Too small a window 

results in „hyper-equalisation‟, where large white areas (such as large nephrons) 

acquire a rough, broken texture. The nephron cross-sections in the inner medulla 

are much smaller and have very thin, light tubule walls, and are thus much more 

dependent on good equalisation. This requires a smaller local equalisation 

window (≈ 20 pixels). A window that is too large will not adequately equalise the 

intensity of these nephron walls, resulting in the cross-sections being removed or 

merged when binarisation occurs. 
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Figure 6.5: Top: There are large regions of uneven intensity (shown in green) 

which require equalisation with a large window. There are also much smaller, 

local uneven intensities due to thin walled cross-sections. If not equalised locally, 

these groups of nephrons will merge into large binary cross-sections and would 

not be able to be differentiated. Middle: After global equalisation, the image 

intensity is uniform over large areas as seen in the real and conceptual histograms. 

Bottom: After local equalisation, uniform intensity is achieved across small areas 

as well. Images adapted from [11]. 

6.2.4. Thresholding  

The image is thresholded at a constant value T to create a binary image. Adaptive 

thresholding is not used as uniformity was achieved through the equalisation 

steps. The threshold value is chosen such that it does not allow independent 

lumens to merge while also not letting small nephron cross-sections disappear. It 

After global eq. 

Original Image 

After global & local eq. 
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also varies through the image set such that the inner medulla images have a 

slightly higher value to prevent the dense, thin-walled cross-sections from 

merging, while the cortex has a lower value to prevent segmentation of large 

nephron cross-sections. 

6.2.5. Removal of Unwanted Cross-Sections  

Unwanted cross-sections include those of the blood vessels and connective tissue. 

Connective tissue cross-sections appear between nephron cross-sections in the 

cortex. They are characteristically irregularly shaped, fragmented and typically 

small and thin, as shown in Figure 6.6. It is difficult to remove these cross-

sections without also removing some nephron cross-sections which are similar in 

appearance (particularly cross-sections of the TAL and DCT). It is important not 

to remove these nephron cross-sections as the TAL and DCT will otherwise not 

be able to be tracked. 

 

Figure 6.6: Connective tissue cross-sections have been manually marked in green 

in images of the cortex from a rat (left) and a mouse (right) image set (adapted 

from [11]). The irregularly shape connective tissue cross-sections are distinct, 

although there are some nephron binary cross-sections which have similar 

characteristics. 

Size-based component exclusion: Binary components that are very small (<10 

pixels) and very large (> 100 000 pixels) can be confidently identified not to be 

nephron cross-sections and are removed. Large components are normally large 

blood vessels while small components are small connective tissue cross-sections 

or noise from the equalisation.  
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Morphological erode/dilate cycles: Performing morphological eroding p times, 

followed by a dilation p times results in the elimination of larger connective tissue 

cross-sections. While this works well, it is applied very sparingly as it also results 

in the removal of small nephron cross-sections. This cannot be done in the inner 

medulla where the cross-sections are only a few pixels wide.  

Shape-based clustering: Clustering the cross-sections based on their shape 

factors is another possible way to eliminate unwanted cross-sections.  

Morphological operations and clustering invariably results in the loss of some 

nephron cross-sections as well (usually elongated or C-shaped cross-sections). 

This is highly undesirable, as the tracking process depends on each cross-section 

along the nephron‟s path to be present, especially elongated ones. It is therefore 

decided to include all possible data (including unwanted ICT) rather than to have 

missing data. 

Obtaining the final binary image is one of the most important tasks, as the 

accuracy of following stages depends on how well cross-sections are isolated 

from one another. A compromise must be made between the number of 

connective tissue cross-sections present and the number of small nephron cross-

sections which do not get eliminated.  

Further pre-processing involves the removal of highly distorted images and 

replacing them with the image above or below. An average of 4 images per 

dataset had to be been manually replaced. However, an automatic method can be 

devised if a larger number of images are defective, for example by analysing the 

mean intensity of each image in the image set.  

6.3 Image Segmentation  

Connected component segmentation [36] (using a 4-connected neighbourhood) is 

used to segment the image into independent nephron cross-sections. Although this 

is the simplest segmentation technique, it produces satisfactory results because a 

good binary image was obtained in the previous steps. A labelled binary image is 

formed, where all the pixels belonging to one component have a unique value. 
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Watershed segmentation or region-growing on the equalised image are other 

possible segmentation techniques, which could perform better in cases where 

independent lumens incorrectly merge through a few connected pixels. However, 

they do tend to over-segment the image [17], resulting in the division of elongated 

nephron cross-sections.  

6.4 Automatic Parameter Variation 

A very important factor during pre-processing is accommodating for the change in 

morphology from the cortex to the medulla. The cortico-medullary boundary is an 

area where the proximal straight tubule (≈ 60μm in diameter) suddenly narrows to 

a diameter of 10-15μm to form the thin descending limb of the loop of Henle [1] 

[2]. This change requires almost all parameters of the pre-processing steps to vary 

accordingly to ensure that cross-sections of all sizes are extracted.  

In order to accommodate for this relatively sudden change, the parameters are 

made to vary along the image set according to a modified sigmoid function  ( ) 

(also known as a generalised logistic function [38]) as in equation 6.2, which has 

its inflection point set at the transition zone. This transition zone must be chosen 

empirically through observation during system calibration. 

  ( )  
     

   
   
 

    (6.2) 

Where z is the image number, UL is the upper limit, LL is the lower limit, k is the 

z value at which the inflection point occurs and δ is a steepness coefficient [38].  

The steepness coefficient is chosen by the best outcome during experimentation 

on a few images. The sigmoid function allows relatively constant parameter 

values in the cortex and inner medulla as shown in Figure 6.7. Some parameters 

of the tracking algorithm, such as the tracking radius, also make use of this 

function. 

The suitability of this function can be validated by examining the change in 

certain characteristics along the image set, such as the number of cross-sections 

and average nephron cross-section width. As shown in Figure 6.8, these 
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characteristics have an inherent sigmoidal shape; hence the function models the 

change well. The curve seen near the initial images is due to the tissue slices 

progressively growing from the edge and is not due to differing tubule 

characteristics, and is therefore not modelled. 

 

Figure 6.7: The equalisation window size and threshold value are made to vary 

according to custom sigmoid functions. The equalisation window is quantised. 

The parameters are for a mouse dataset with its inflection point at the 350
th

 image.  

     

Figure 6.8: Features of the datasets (black) such as the average nephron cross-

sectional width (right) and number of cross-sections per image (left) have an 

inherent sigmoidal characteristic, as shown in red. The graphs are of a rat dataset. 

Modelling the processing parameters using tailored sigmoid functions for each 

image set results in uniform results (quality and accuracy of binary images) across 

all datasets, i.e. it serves as a calibration mechanism. Subsequent stages therefore 

do not have to cater for any particular dataset and can be designed in a generalised 

manner for standard input data. 
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CHAPTER 7 

Feature Extraction 

Feature extraction aims to simplify and concentrate useful information from raw 

data. It forms an intrinsic image of the input data, which is an array of information 

representing important physical characteristics of the objects involved [37]. Within 

the images, large amounts of the data are not useful, for example the large number 

of pixels making up the background. The pixel information can instead be 

condensed into a set of features per nephron cross-section, which represent the 

problem to a sufficient degree. Intuitively, the most useful information about a 

nephron cross-section is its size, shape, colour and location.  

7.1 Node Allocation 

A node is defined as a point coordinate in the 3D image space. The pixel locations 

per cross-section can be reduced into a set of nodes allocated along the cross-

section, hence modelling their location. For example, a circular nephron cross-

section can be represented by one central coordinate, instead of a few hundred 

pixel locations, and an elongated cross-section can have multiple nodes allocated 

along its length. This abstraction greatly simplifies the problem, reduces the size 

of the data, decreases the computational load on subsequent stages and 

concentrates significant information.  

Node allocation was first achieved by using the circular Hough transform [37] to 

locate circles occurring within a certain radius range in the binary images. At first 

glance the results seemed good, but deeper inspection revealed that many cross-

sections were not allocated a node, and elongated cross-sections were not handled 

adequately. This method was computationally expensive due to its iterative, 

analytical nature and offered no control over how many nodes would get allocated 

per cross-section. 

Finally, K-means clustering was used to allocate nodes. K-means clustering is an 

unsupervised learning method which groups m observations into k clusters [39]. 
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Each cluster is defined by its centroid, which is the mean of all the observations 

assigned to it. These centroids are used as the nodes and are found by solving the 

optimisation problem in equation 7.1. 

          ∑ ∑ ‖    ‖
  

    
 
    (7.1) 

Where x is the observations, S is the observations partitioned into k sets 

{S1,S2,…Sk}, μi is the mean of the observations in Si and C = {c1,c2,…ck} is the set 

of k centroids [39]. 

Each non-zero pixel on an isolated binary cross-section is made an observation. 

Shape criteria (area and circularity, which are discussed in Section 7.2.1) are used 

to decide on the number of nodes (K) to allocate to a cross-section. Cross-sections 

with an area below 5 pixels are ignored (K=0) as these are typically pixels due to 

equalisation noise. If the cross-section is circular (circularity>0.95) or small 

(area<300), one centroid is requested (K=1). For elongated cross-sections, the 

requested K value begins at 2 and is incremented until the average pairwise 

distance between adjacent nodes is less than a desired minimum value. This value 

is chosen to be close to the average cross-sectional width in the current image (≈ 

20 pixels in the cortex and ≈ 8 pixels in the medulla). This ensures that an 

adequate number of nodes are allocated per cross-section depending on its size 

and shape. Figure 7.1 displays examples of allocated nodes on cross-sections of 

various shapes and sizes. 

A characteristic of the K-means clustering method is that it groups data into 

Voronoi cells [39], which is suitable to the node allocation problem. Some 

disadvantages are the susceptibility to local minima and varying results due to 

randomised initial conditions [28]. This is overcome by running the clustering 

multiple times per cross-section until certain conditions are met. An important 

advantage of the method is that a desired number of centroids can be requested. 
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Figure 7.1: K-means clustering divides cross-sections into similarly sized Voronoi 

cells. The centroids from K-means clustering are used as nodes for the cross-

sections. A suitable number of nodes are allocated automatically per cross-section. 

7.2 Shape Measurements 

Tracking of a nephron using only the 3D set of nodes results in the linkage of 

multiple nephrons, blood vessels and connective tissue due to the close proximity 

of the intertwining nephrons. By only considering the point cloud, the algorithm is 

blind to a large amount of available information. Shape information about each 

cross-section is thus also captured. The idea behind incorporating shape 

information into the tracking is to retain information about the original cross-

sections so that the algorithm can make intelligent, confident and informed 

decisions at each incremental step of the process.  

7.2.1 Shape Factors 

A shape factor, or metric, refers to a dimensionless value that is dependent on an 

object's shape but is independent of its size [40]. It usually indicates the degree to 

which an object deviates from an ideal shape, such as a square or circle [40]. 

Various shape factors are calculated per cross-section to capture abstract 

information about each cross-section along with its nodes.  

Shape metrics are calculated using various measurements of an object. Primary 

measurements include the object‟s area, perimeter and chord lengths [40]. 

Secondary measurements which are useful include the convex area (the area of a 

polygon of the lowest degree which covers the object), equivalent diameter, 

centroid and moments of the object about the centroid [37] [40]. The first moment 

is the mean and the second is the variance. Moments are used to calculate an 

equivalent ellipse which has the same variance as that of the object [37]. The 
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minor and major axes are then the perpendicular axes of the aforementioned 

ellipse, and the orientation is the angle that the major axis makes with the 

horizontal axis [37]. 

Shape metrics combine these measurements to describe a number of shape 

characteristics. Circularity, eccentricity, solidity and aspect ratio were chosen as 

useful descriptors for the cross-sections. Area and minor axis length are also 

captured as absolute valued descriptors. These values are extracted using the 

MATLAB regionprops function [33]. The shape factors are briefly described: 

The aspect ratio is the ratio of the major axis to the minor axis and indicates 

the length and symmetry of an object [36]. For a circle or bisymmetric object, the 

aspect ratio is 1 while it is >1 for an elongated object. 

Circularity measures how close an object‟s shape is to a circle [36] and is 

given by equation 7.2. A value close to 1 indicates a very circular object while an 

elongated object has a value near 0. 

       
      

          
  (7.2) 

Solidity is the ratio of the area to the convex area of an object, and measures 

its virtual hardness or density [36]. Generally, this area is larger than or equal to 

the area of the object. Objects with holes and multiple concave areas have a low 

solidity. Waviness is also sometimes used, where the perimeters of the object and 

polygon are used instead of the areas [36]. Waviness does not take holes into 

account. 

Eccentricity is typically associated with an ellipse, being defined as the ratio 

of the distance between the foci of the ellipse and its major axis length [37]. Using 

moments, an equivalent ellipse can be calculated for an arbitrary shape, hence an 

eccentricity value. Eccentricity is a value between 0 and 1, with 0 indicating a 

circular shape and 1 indicating an elongated shape.  

The extent is an area ratio between the object‟s area and the region area, 

where the region is the bounding box of the object [37]. It generally describes the 

degree to which the object fills the bounding box. Extent can give a combined 
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indication of elongation, orientation and solidity [37]. It is useful for detecting 

highly irregularly shaped objects. Note that this metric is orientation sensitive, e.g. 

an elongated object lying horizontally or vertically will have high extent, while it 

would have low extent if lying at 60⁰. 

7.2.2 Shape Profile 

The shape factors are useful for cross-sections that are round and elliptical, but 

they do not adequately describe cross-sections that are more irregularly shaped, 

such as glomeruli or connective tissue cross-sections. Also, a move from one 

cross-section to another cannot be adequately described by merely comparing 

shape factors. As an additional feature the shape profile around each node is 

calculated. 

The shape profile of an object is a polar plot of the distance to its boundaries with 

respect to a reference point [36]. It is commonly used to compare the structure of 

two objects. It transforms a 2D shape representation into a 1D plot [36], hence 

reducing computational effort during matching. It allows shape comparison of 

objects of different sizes by normalisation of the distance.  

First, the edge of the cross-section is obtained using a Sobel edge detector [37]. 

This method produces a well-defined closed curve around the cross-section. The 

edge pixels are then processed into an ordered set of points. The angles and radii 

relative to the reference point are calculated as in equations 7.3 and 7.4. 

          (
     ( )     ( )

     ( )     ( )
) (7.3) 

  ( )  ‖          ‖ (7.4) 

where Pedge is the vector of edge coordinates, Pref is the reference coordinate, θ is 

the vector of angles and r(θ) is the vector of radial distances.  

If the object is concave, the plot will be multivalued [36]. This redundancy 

increases the order of the matching procedure back to 2D. This problem is solved 

by simply taking the nearest r value for a given θ, and is called unwinding [36]. In 

order to produce a consistent feature set, the radius at constant angle increments is 
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interpolated. The degree of abstraction is dependent on the chosen angle 

increment δ [36]. The unwinding and interpolation is shown in Figure 7.2. 

 

Figure 7.2: The shape profile of the cross-section on the left is shown, with the 

reference point indicated by the green dot. The original shape profile, shown in 

black, is unwound to form the plot in blue. This is then interpolated to acquire the 

distances at desired angle increments (15º), forming the final shape profile shown 

in red. 

 

Figure 7.3: The shape profiles relative to nodes on the cross-sections [11] (green 

dots) are shown. 15 degree increments were chosen. 
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Another problem is pixel quantisation leading to discontinuous angles in small 

sized cross-sections. This problem is solved by scaling each cross-section up to 

50x50 pixels prior to shape profile calculation. The final r vector is then down 

scaled. Examples of shape profiles are shown in Figure 7.3 

The shape profile of a given object will be different depending on the chosen 

reference point. The centroid is commonly selected [36], but the allocated nodes 

have been chosen instead as they are more relevant to the problem and allow an 

accurate relative comparison of shape profiles between linked nodes. This is 

illustrated in Figure 7.4. 

        

Figure 7.4: If a tracking iteration attempted to move from cross-section 1 (top left) 

to cross-section 2 (top right), the shape profile of the nodes involved would need 

to be compared, rather than the profiles around the centroids. As can be seen, 

when the respective nodes are used, the shape profile is similar for a large range 

of the angles and can hence be compared. The move shown is a legitimate move 

between nephron cross-sections of the same nephron. Images adapted from [11]. 

Correlation of the shape profiles (equation 7.5) and a measure depending on their 

absolute difference (equation 7.6) are two similarity measures which can be used 

to compare a pair of shape profiles. 

            (  ( )   ( )) (7.5) 

            
   

 
      (|  ( )    ( )|   )  (7.6) 
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Where       is the similarity measure between profiles r1(θ) and r2(θ), corr is the 

correlation function, count is a function returning the number of elements 

satisfying the condition in its argument and δ is the angle increment. 

7.3 Data Structures 

Each cross-section gets assigned a group of nodes and shape metrics with a shape 

profile per node as shown in Figure 7.5. Ideally, all the information belonging to a 

node should be stored along with it. However, the nodes, shape factors and shape 

profile occupy different amounts of memory and require different access speeds.  

 

Figure 7.5: A clip of a raw image is shown [11]. The extracted cross-sections after 

pre-processing are highlighted in green and the allocated nodes are shown as 

black dots. Each cross-section will have k nodes, 6 shape factors and k shape 

profiles. As can be seen, many cross-sections in the cortex are not of actual 

nephrons but rather of the connective tissue between them. The glomeruli are also 

highly segmented. 

The nodes need to be constantly and quickly accessed during tracking. Since they 

simply consist of x-y-z coordinates, they can be stored in working memory 

(RAM) for efficient access. In order to link the nodes with the other information, 

each cross-section is allocated an identity number, and each node is allocated an 

identity number relative to the cross-section it lies on. The nodes are stored in a 

cell array with each cell containing a fixed array for the node data for one image. 

Each row in the fixed array contains information about one node. Nodes lying on 

a common cross-section have the same identity number (ID), hence allowing for 

easy detection of elongated cross-sections during tracking. 

1. Area 

2. Minor axis length  

     ≈ diameter 

3. Circularity 

4. Eccentricity 

5. Aspect Ratio 

6. Solidity 

Cross-section i in image n 

6 shape descriptors 

k=2 nodes 

k=2 shape profiles (1 

per node) = 24x2x2 

elements 

120
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The shape factors are accessed often and consume moderate memory. It is thus 

stored in working memory in the same manner as the nodes. Each row of the fixed 

arrays corresponds to the row for the nodes and is hence implicitly linked. 

The shape profiles occupy a massive amount of memory as they consist of 50 

elements per node (24 angles, 24 distances, 1 cross-section ID, 1 node ID). The 

shape profiles of an average rat dataset would occupy                  
     

     
 

  
        

    
  

     

       
         if stored uncompressed in working memory. Since 

they are only accessed during machine learning validation, they are stored on hard 

disk and only the required elements are accessed using an input-output matfile 

structure in MATLAB.  

The chosen storage format together with custom-coded utility functions (see 

Appendix) provides ease of access and complete traceability of information 

related to any particular nephron cross-section.  

7.4 Glomeruli Detection 

The glomeruli can be distinctly located by eye and possess unique characteristics 

which can distinguish them from other tissue. The glomeruli have a characteristic 

rough texture from the clump of tiny entangled blood vessels. A C-shaped white 

space is present in most glomeruli. This is the urinary pole which is often seen 

fusing with the nephron tubule in the span of 1-3 images. A glomerulus spans 15-

30 images in the mouse datasets and 50-70 images in the rat datasets, depending 

on the depth into the kidney (cortical glomeruli are smaller while juxtamedullary 

glomeruli are larger [1]). 

In order to fully model a glomerulus, an ellipsoid should be fitted in the 3D image 

space to cover its full volume. For purposes of tracking, the presence of a 

glomerulus must be detected when the nephron tubule merges with the urinary 

pole, so that tracking can be terminated. This termination is critical as it has been 

seen that the afferent/efferent arterioles are sometimes tracked out of the 

glomerulus, through connecting vessels and to the glomeruli of other nephrons. 
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This linking of multiple nephrons is highly undesirable. Two methods suitable to 

the given image sets have been devised for glomeruli detection. 

The first method involves measuring the peak densities of an edge image. A log 

edge detector is applied to the binary image. In the edge image, the glomeruli 

have more edge pixels than the surrounding nephrons due to the numerous small 

binary fragments making up the glomerulus. Therefore, the average pixel density 

at the glomeruli is higher than elsewhere. An averaging filter is applied after 

which the peaks are extracted. Distance-based clustering is then used to obtain 

single point representations of the glomeruli.  

The second method involves grouping alike cross-sections using shape factors as 

features during unsupervised learning. K-means clustering is used. If 5 clusters 

are chosen, clustering groups the cross-sections into those that are: 

1. very circular – high circularity 

2. slightly elliptical - low eccentricity and circularity 

3. very elongated – high eccentricity and aspect ratio 

4. very small in size – small area 

5. concave, C-shaped structures – low solidity 

The last class distinctly contains most of the C-shaped urinary poles of the 

glomeruli, along with some C-shaped nephron cross-sections.  

An example of the results produced using these two methods is shown in Figure 

7.6. Both methods have false positives and negatives but could perhaps be 

combined to improve accuracy. Issues with these methods include: 

1. Nephrons become smaller deeper into the image set and hence their mean edge 

values go up as well, producing false positives. Connective tissue also 

sometimes looks like glomeruli. Parameters of the algorithm need to be varied 

per image to get accurate results. 

2. Some glomeruli are missed (false negatives) as their edges are not pronounced 

or the C-shape is not present. 
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The glomeruli coordinates found from the union of the results of the two methods 

can be used as starting seeds for tracking. Another method was found to be more 

suitable for glomeruli termination during tracking. The method forms part of the 

validation and machine learning stages of the system and is discussed in Chapter 

9. It basically involves detecting the fragments making up the glomerulus during 

tracking through a trained classifier. 

 

Figure 7.6: The glomeruli detection using the edge image density is shown by the 

black dots. The detection using shape clustering is shown by the cross-sections 

highlighted in white. True glomeruli locations were manually marked in green. 

Both methods can detect a large number of glomeruli and could be used to cross 

validate the results. Image from [11]. 
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CHAPTER 8 

Tracking Algorithm 

When a nephron is manually tracked by eye, an intuitive process is used by the 

brain. Once a nephron cross-section has been fixated on, a nephron cross-section 

within the same vicinity is searched for in the next image. Size, shape and colour 

are also subconsciously compared. The tracking algorithm uses a similar process, 

with a number of generalised rules to accommodate the tortuous paths taken by 

the many nephrons. The algorithm is highly dependent on the quality of pre-

processing and accuracy of feature extraction stages. The major processes of the 

tracking algorithm are shown in Figure 8.1. Each activity is discussed in its 

respective section in this chapter. 

 

Figure 8.1: An activity diagram of the tracking algorithm. Each iteration explores 

possible child nodes from one parent node. Once the open list is empty, manual 

intervention is requested at the end points. Once the nephron is complete, the 

closed list is reconstructed into an ordered path. 
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Figure 8.2: An example of a manually tracked rat nephron is shown [11]. The 

spatial dimensions of the x-y-z image space are illustrated. Note that the positive z 

direction extends from the cortex to the medulla as shown. Colour is used to 

highlight the different parts of the nephron as shown by the colormap on the right. 

This convention will be used for all 3D plots. 

An example of a manually tracked nephron is shown in Figure 8.2. The tracking 

algorithm aims to produce such a result in an automatic manner. The z-dimension 

of the 3D image space refers to the dimension along the image set, where z=1 is 

the first image in the cortex. Note that „upwards‟ (z+1) refers to movement 

towards the medulla while „downward‟ (z-1) refers to movement towards the 

cortex. This is contrary to the standard orientation where the cortex is positioned 

superiorly and the loop of Henle is drawn extending downwards. Prior to 

proceeding, a few symbols are defined: 

   Image z 

   The set of all nodes in image z 
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8.1 Local Image Registration 

Local alignment is needed (in addition to the previous alignments [9] discussed in 

Section 6.1) due to the presence of local image distortions and progressive change 

in morphology. The procedure followed involves cropping images Iz, Iz+1 and Iz-1 

around the current node location.  

Image Iz is multiplied by a Gaussian function in order to give the centre of the 

image (the area around the current location) a higher weight than the 

surroundings. This is particularly useful when tissue folds occur, where two areas 

of the same sub-image can be aligned differently, such as in Figure 8.4. The 

preference is then given to the choice which best aligns the current node. 

The sub images in Iz+1 and Iz-1 are cross-correlated against sub-image Iz, in order to 

obtain two pairs of translational offsets (xoff, yoff) between the images [41]. The 

offset is obtained by extracting the peak coordinate (global maximum) of the 

correlation result. The transform in equation 8.1 is applied to each pixel and each 

node in images Iz+1 and Iz-1. This local alignment only takes translation into 

account; it is assumed that local rotational offsets are minimal as the previous 

alignment had largely compensated for rotational offsets. 

     

   
   

         
   (8.1) 

The offsets are typically only a few pixels, but they have a large impact on the 

accuracy of tracking since some nephron cross-sections are also just a few pixels 

wide. The example in Figure 8.3 shows how a small alignment can increase 

tracking accuracy.  

After alignment, vertical tracking is attempted. The alignment is not cumulative; it 

is only with respect to the three images for the current iteration, so that accurate 

links can be made to the cross-sections above and below. After tracking, the 

newly found nodes (now in the transformed axes) are mapped back to the original 

axes using the inverse transform T
-1

. The transformation must be reversed because 

each sub-image has a different transform which is not valid for other areas in the 

same image or other images. 
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Figure 8.3: Although prior image registration was performed, there still exists an 

offset between adjacent images as shown on the left. After basic translational 

alignment (xoff=2, yoff=9) in the local region, the cross-sections are much better 

aligned (on the right), allowing more accurate tracking. Original image from [11]. 

 

The transform is also applied to the sub-images themselves in order to obtain an 

alignment measure. This value is used to flag images which are highly misaligned 

even after the alignment procedure. This occurs when artefacts and tissue folds 

produce missing tissue and non-linear distortion such as in Figure 8.4. 

 

Figure 8.4: Some images cannot be aligned accurately due to artefacts. Such 

images can be flagged and thus ignored by measuring an alignment metric. If 

these images are not bypassed, tracking mistakes can easily occur as shown by the 

red dots. The green arrows indicate corresponding areas. Images from [11]. 

 

 

 

 

427 426
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8.2 Graph-based Tracking 

Initial tracking attempts made use of hard-coded rules to handle bends and turns 

and explicitly controlled the tracking direction. Rules for a number of cases were 

created but these resulted in an inflexible system which was only capable of 

handling ideal turns and bends (which were modelled by the rules) and tracked 

only small pieces of the nephron. Inspection of the results showed that the 

majority of errors occurred when the tracking direction was not chosen correctly. 

The final tracking algorithm abandoned the concept of direction decision making. 

Instead, all directions are explored at each node and the final direction is 

implicitly determined in the reconstructed path.  

A graph-based approach is employed for tracking that is similar to the structure of 

path finding algorithms [42]. The algorithm forms a graph in 3D space by 

establishing edges between the nodes previously allocated during feature 

extraction. Edge formation is described in Section 8.3. 

The algorithm processes one node per iteration and continuously updates an open 

and closed list. It is given a starting seed, or node. Once the current node has been 

explored, it is added to a closed list, which contains all explored nodes. The new 

found nodes (child nodes of the current node) are added to an open list, which 

consists of all unexplored nodes. A new current node is selected from the open list 

at each iteration of the algorithm. This continues until the open list is empty. 

Ideally, given a starting seed, edges should be formed such that all nodes 

belonging to the nephron being tracked are collected in the closed list. Each node 

is stored along with its parent node, forming a linked list. The trajectory can then 

be reconstructed post-tracking. 

By using linked lists and exploring all possible routes, the direction of tracking 

does not have to be explicitly controlled or limited in any way. The direction can 

be arbitrary, enabling the tracking of highly convoluted curves in variable 

directions, as well as branched structures. This accommodates for increased 

variability in the plane in which the nephrons are sliced, whereas previous 

methods did not have any tolerance for tissue that was not sliced in cross-section. 
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8.3 Edge Formation  

The edges are established through a controlled set of criteria. Given a particular 

node    
  in image   , it has the potential to connect to three other nodes through 

two types of edges as shown in Figure 8.3.  

Vertical edge – Includes potential connections to cross-sections in the image 

above (Iz-1) and below (Iz+1) the current cross-section. Nodes are searched for 

which lie within some tracking radius around the current node, i.e. a node 

satisfying equation 8.2 will become a child node of the current node. The tracking 

radius varies from the cortex to medulla according to a sigmoidal function. 

    (‖        
 ‖        ) (8.2) 

Only one node is allowed to be formed in each direction. If multiple nodes satisfy 

the condition, the one with the smallest Euclidean distance is used. The 

confidence of a vertical edge is <1, as the possibility of linking to an incorrect 

cross-section exists due to the large number of closely packed nephrons in the 

presence of image distortions and misalignments. 

 

Figure 8.5: Each node in image z has the potential to connect to 2 nodes vertically 

(in images z+1 and z-1) within some tracking radius and 1 node horizontally on 

the same cross-section as itself. This allows cross-sections to easily be linked 

through turns and bends.   

Horizontal edge – This involves linking together all nodes that lie on the same 

cross-section as the current node, i.e.   
 . The current node is termed the „entering‟ 

node. The pairwise distances between all nodes are used to establish the linkage 

from the entering node towards the outermost nodes. Only the outermost nodes 

Cross-section in Iz at 

coordinate P 

z 

x 

y 

Cross-sections in 

Iz+1 near P 
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are added to the open list for exploration. The intermediate nodes are not explored 

above and below, i.e. they are „locked‟. This prevents incorrect linking. 

8.4 Skipping Images 

An image may be termed defective if it has a large amount of interfering artefacts 

or distortion, which obscures cross-sections of the nephron at hand. These images 

can safely be skipped while tracking the nephron. However, a maximum of 5 μm 

of the specimen may be skipped at a time (1 image for the mouse and 2 images for 

the rat datasets), as the morphology can change vastly in this span and would 

introduce too large a probability of error in tracking (e.g. jumping onto another 

nephron).  

Since the tracking algorithm makes use of nodes rather than the images 

themselves, it is unaware of the presence of an image artefact. Skipping is thus 

attempted whenever tracking in the upward or downward direction is not 

successful. This results in skip attempts occurring too frequently at every dead 

end, for example on the last cross-section of a U-shaped bend. A set of skipping 

criteria are established to prevent skip attempts from occurring too frequently. A 

direction buffer is used to ensure that skips occur only on straight cross-sections, 

by checking if there have been recent successful tracking iterations in a particular 

direction. A refractory period is also used, which is the time (in number of 

iterations) after a successful skip during which other skips cannot occur. 

8.5 Validation Steps 

Tracking using the nodes alone would work if the images were exactly aligned 

and the data only contained information of the nephron cross-sections. However, 

many of the cross-sections actually belong to connective tissue (ICT) and blood 

vessels (BV), which are randomly dispersed between the nephron cross-sections 

and lie in close proximity to the nephrons. Even though the correct nephron path 

may be found, much interference is caused by connective tissue cross-sections, 

causing the path to branch from the nephron‟s path and even link onto other 

nephrons.  A rule-base of three validation steps is incorporated in order to 

eliminate incorrect moves from one cross-section to another. 
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a. Distance Validation – The Euclidean distance (in x, y space) between a parent 

and potential child node must be less than the sum of their radii, as in equation 

8.3. A coefficient Dcoeff allows some leeway on this rule. This ensures that even if 

a cross-section lies within the tracking radius, consistency in terms of size and 

relative displacement is maintained. Many cases of ICT cross-sections linking to 

nephrons are eliminated by this rule as shown in Figure 8.6.  

 ‖     ‖         
       

 
 (8.3) 

Where cp and cc are the parent and child nodes and MAp and MAc are the minor 

axes of the parent and child node. The radii are approximated as half the minor 

axes lengths. 

          

Figure 8.6: Examples of moves blocked by the distance validation rule. Images 

from [11]. 

b. Bidirectional Movement Validation – If a move is made from node A in image 

Iz to node B in image Iz+1, then an attempted move from node B into image Iz must 

lead back to node A (i.e. bi-directionality must be maintained). If not, the move is 

discarded. Moves between ICT cross-sections and glomeruli are typically not 

bidirectional and are hence largely eliminated as in Figure 8.7. 

         

Figure 8.7: Examples of moves blocked by the bidirectional validation rule. 

Images from [11]. 
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c. Skipping Validation – This ensures that a move involving a skip is only allowed 

if the shape of the cross-section remains relatively constant during the skip 

according to equation 8.4. This is so that skips are not allowed on turns and bends, 

as this presents a high chance of error.  

     
   

 
∑

|  
 
   

 |

    ( 
 
 
   
 )

 
    (8.4) 

Where     is the overall change in shape factors,   
 
 and   

  are the i
th

 shape 

factors of the parent and child cross-sections, respectively. For a skip to be valid, 

    must be less than 30%. Figure 8.8 displays two invalid skip attempts. 

            

Figure 8.8: Examples of moves blocked by the skipping validation rule. Images 

from [11]. 

8.6 Region Control 

Certain control variables of the tracking algorithm are altered when a transition is 

made between the cortex and medulla, in order to make the algorithm more 

suitable to tracking in the respective regions. For example, once the PST narrows 

into the DTL, horizontal edge formation and vertical edge formation in the 

downward direction (from Iz to Iz-1) is disabled. This is so that only an upward, 

unidirectional path is allowed to be formed up to the loop of Henle. Using this 

known information about the nephrons structure prevents tracking errors in the 

inner medulla, which are common due to small nephron cross-sections merging 

(when separating walls are too thin) and being very close to one another. This of 

course assumes that no large bends occur in the medulla. The conditions activated 

for different regions are tabulated in Table 8.1. 

124 126124 126 156 158156 158
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Table 8.1: Different modes of tracking are created by altering conditions at 

transitions between different parts of the nephron. 

Conditions 
Cortex 

(PCT) 

Cortex→Medulla 

(PST→DTL) 

loop of Henle 

(DTL→ATL) 

Medulla→Cortex 

(ATL→TAL) 

Upward vertical 

tracking 
Enabled Enabled Disabled Enabled 

Downward vertical 

tracking 
Enabled Disabled Enabled Enabled 

Horizontal tracking Enabled Disabled Disabled Enabled 

Size of cropping 

window for 

alignment  

Initialised 

to 80 
Reduce to 50 Stay at 50 Increase to 80 

 

The transitions are detected using the 5
th

 output of a machine learning classifier 

(discussed in Section 9.2) that produces a continuous valued output with „0‟ being 

a move in the cortex and „1‟ being a move in the medulla. A vector of this output 

along the tracking iterations produces a real-time „region signal‟ which is used to 

indicate the transition from the cortex to the medulla. The signal is smoothed 

through a running average filter with an m sized window to produce a signal as in 

Figure 8.9. Hysteresis thresholding (with an upper medulla threshold and a lower 

cortex threshold) is applied to the signal to activate different modes of tracking. 

This method prevents a rapid fluctuation of activations.  

 

Figure 8.9: The output of the region classifier (black) is smoothed to form a 

region signal (blue). It is thresholded with hysteresis (red) to produce a binary 

decision for the activation of different conditions during tracking. The graph 

shown is for tracking of a whole mouse nephron from the glomerulus to the DCT. 
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8.7 Reconstruction 

Once tracking is completed, the final path is reconstructed through inference of 

the parent-child node pairs. The longest path forms the nephron path, while 

shorter branches are eliminated as they are most likely ambiguous nephron paths 

near turns or pieces of connective tissue that were mistakenly linked. This 

reconstructed graph is a skeleton structure of the tracked nephron. Each 

coordinate in the skeleton can be linked to the original cross-section in the binary 

image as well as its shape factors, either of which can be used to reconstruct a 3D 

rendering of the tracked nephron. 

Lastly, the automatically tracked path must be evaluated in 3D space. At this 

stage, known information about the kidney can be used, e.g. the proximal and 

distal convoluted tubules intertwine and must thus be in the same vicinity in the 

cortex [10], or the PCT is longer and more convoluted than the DCT [10]. If the 

results do not adhere to one or more of these expectations, it could then be that the 

result is incorrect. 

Since each vertical move has some associated uncertainty, the reconstructed path 

can be seen as having weighted edges. The path can then be broken at points with 

a high uncertainty. In this way, multiple nephrons may be able to be separated if 

incorrectly linked during tracking. 

8.8 Manual Intervention 

Premature termination of tracking (due to non-ideal/inadequate pre-processing, 

feature extraction, image artefacts and distortions) commonly occurs in the inner 

medulla. One way to overcome premature termination during tracking without 

introducing error is to allow the user to manually link the end point/s of the 

automatically tracked path onto the correct path. This of course steers away from 

a purely automated system, but it still dramatically reduces the time and effort 

required for the manual tracking task. The degree of automation can be controlled 

by sensitivity of the validation stages as shown in Figure 8.10. 
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Figure 8.10: The number of false positives increases with increasing validation 

sensitivity, resulting in premature termination of tracking. This means only a 

portion of the nephron is tracked, but with a low error, where error refers to the 

deviation onto an incorrect path. If manual correction is used, the number of 

corrections required for continuation of tracking will increase with sensitivity (up 

to LN, the length of the nephron). This means a decreased level of automation but 

also a decreased chance of error. Note that this graph is merely conceptual. 

More than two endpoints are sometimes detected as the last cross-section making 

up a bend is usually seen as an endpoint. Manual corrections are implemented by 

displaying to the user the main endpoints of the automatically tracked path, along 

with 2-3 cropped images before and after the problematic cross-section. The user 

then simply clicks on the cross-sections which should have been linked by the 

algorithm. These are added to the open list and the algorithm continues from those 

points. Correct endpoints (termination at the glomerulus) can simply be ignored. 
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CHAPTER 9 

Machine Learning Validation 

Tracking nephrons using the rule-base for validation results in some nephrons 

being correctly tracked while others are incorrectly linked to other nephrons, ICT 

cross-sections or blood vessel networks. A large amount of information is not yet 

taken into account, such as the shape profile and some shape metrics.  

The purpose of the machine learning (ML) stage is to incorporate some form of 

intelligent decision making when linking one node to another during tracking. 

Machine learning is a suitable technique for this application, as it can 

automatically amalgamate the large amount of information into a generalised rule 

through training. The formed rule, or hypothesis, may be unintuitive to a human 

being and too complex to model using hard-coded logic or inflexible heuristics.  

The rule-base eliminates invalid moves between pairs of cross-sections. Likewise, 

machine learning is incorporated such that a trained learning algorithm assesses 

the shape descriptors and other features of the cross-sections and classifies the 

move into one of five classes. This classification result is used by the tracking 

algorithm to make decisions during tracking. A supervised ANN and SVM are the 

chosen classifiers as they are non-linear and able to form complex hypotheses. 

9.1 Feature Selection 

The chosen features must fully characterise a move from one cross-section to 

another and provide a good degree of distinction between different types of 

examples. Since two cross-sections are being compared, it is useful to look at their 

combined features. A total of 67 features are formulated which include: 

 x1-x6: the difference in the shape factors of area, eccentricity, solidity, aspect 

ratio, minor axis and circularity 

 x7-x12: the mean of the shape factors of area, eccentricity, solidity, aspect 

ratio, minor axis and circularity  

 x13: the minimum area between the two cross-sections 
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 x14: the Euclidean distance between the two nodes in the x-y plane 

 x15: the image difference, which is normally 1 but can be 2 or 3 if images 

have been skipped  

 x16: the magnitude of image alignment offset – a high offset coupled with 

other odd features may be a flag for an invalid move 

 x17: the position of the pair (average z coordinate) relative to the image set, 

which indicates depth into the kidney, i.e. cortex, outer medulla, inner 

medulla 

 x18: the correlation coefficient between the two shape profiles 

 x19: a correlation coefficient between the two sub-images around the location 

of the move 

 x20-x43: shape profile at 15 degree intervals of cross-section 1  

 x44-x67: shape profile at 15 degree intervals of cross-section 2 

9.2 Training Set Formation 

The training set is created by capturing moves, or pairs of nodes, during 

unsupervised tracking (without any machine learning validation) of a chosen set 

of nephrons. Five classes are chosen for classification as described in Table 9.1. 

Each parent-child pair is assigned a label as shown in the examples in Figure 9.1.  

Table 9.1: The intermediate output classes of the learning functions and their 

combination into final classes 

Final Class Intermediate Class  

Nephron 

(Valid) 

1. A normal move between circular cross-sections 

2. A normal move involving elongated cross-section/s 

Non-nephron 

(Invalid) 

3. An abnormal move typically involving ICT or blood vessel 

cross-sections 

4. A move involving a glomerulus cross-section 

x 5. A move in the inner medulla 
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Normal Elongated Abnormal Glomeruli Inner Medulla 

     

     
Figure 9.1: The moves attempted by the unregulated tracking algorithm are 

captured, displayed and labelled to form training examples for the machine 

learning algorithms. Two examples of moves from each of the five classes are 

shown. Images from [11]. 

A voting scheme [29] between the five classes is then used to determine the final 

classification as valid or invalid. Class 4 is used to terminate tracking at the 

glomerulus while class 5 is used as a region signal to change the mode of tracking 

(parameters of the algorithm) from the cortex to inner medulla (as in Section 8.4). 

The shape factors and descriptors belonging to each cross-section in the pair can 

be extracted as required and the 67 features are then combined to form the input 

matrix. A multi-class classifier is produced using the one-vs.-all approach. 

9.3 Training 

The training set consisted of 9424 examples, with a ratio of 

0.58 : 0.10 : 0.11 : 0.07 : 0.13 for classes 1 to 5, respectively. Although the types 
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of examples are skewed, there are a sufficient number of examples per class (at 

least 650). The input is randomised and each feature is normalised. The labelled 

data set was split into training, validation and test sets with a 0.7:0.15:0.15 ratio, 

respectively. Training of the ANN and SVM was carried out using built in 

MATLAB functions [33]. 

A threshold is applied to the continuous output of the ANN in order to deem the 

result positive or negative. This threshold has an impact on the sensitivity of 

invalid move rejection. For the SVM, the width of a radial basis function (RBF) 

kernel has the analogous effect. It is critical that false positives are minimised as a 

false positive would halt the tracking process by blocking a valid move along the 

path of the nephron, hence preventing the rest of the nephron from being tracked. 

A false negative on the other hand, would allow an incorrect path to be formed, 

but the incorrect branch is typically halted due to the presence of many invalid 

moves through connective tissue, and is therefore not as critical as a false 

positives. 

9.4 Reinforced Learning 

In addition to manual selection of examples, a method involving feedback from 

the tracking algorithm and the training process was used in order to collect a 

sufficient number of examples per output class. This reinforced learning 

procedure prevented the formation of a skewed dataset or the under-representation 

of a certain class, which may have affected classification accuracy. This feedback 

process is illustrated in Figure 9.2. 

 
Figure 9.2: A schematic showing the method employed for reinforced learning, 

which aims to decrease skewness among the five output classes. 
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9.5 Feature Analysis 

A number of the features may be redundant or irrelevant. A subset of the most 

useful features can be determined through various feature selection techniques. 

The RELIEFF feature selection method [43] has been used which ranks each 

feature by its importance. The analysis shows that shape profile correlation, 

average solidity, the pair‟s z-position and average eccentricity are the most useful 

features. The raw shape profiles have a medium importance, while the image 

difference, difference in area and difference in minor axis length have the least 

impact on classification and could be removed. However, the number of features 

is not too excessive (only 18 features and 2 shape profiles) and so all features are 

included. 

 

Figure 9.3: The RELIEFF feature selection method allocates a weight to each of 

the 67 features indicating its importance during classification of a move. 

It is also useful to visualise the separability of the five classes and the impact of 

the features on the five classes of examples. One could simply view plots of two 
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or three features at a time and try to deduce their relationship and their impact on 

classification. However, this is limiting and does not represent the overall effect of 

all features on the classification problem. 

Principal Component Analysis (PCA) is a dimensionality reduction technique, 

useful for visualising high dimensional data. It uses Single Value Decomposition 

(SVD) to obtain eigenvectors and eigenvalues. A training set of 9424 examples 

and 67 features was reduced to 2 dimensions yielding the plot in Figure 9.4. 

 

Figure 9.4: The scatter plot displays 9400 examples in terms of reduced features 

z1 and z2, which were projected from the first 2 eigenvectors of the data. Moves 

that are normal (blue), involving elongated cross-sections (green), connective 

tissue (red), glomeruli (yellow) and moves in the inner medulla (cyan) are shown. 

Figure 9.4 shows that there are large overlaps between the different classes of 

moves especially between connective tissue and glomeruli types. However, this is 

expected as the cross-sections in these two classes are very similar. Despite 

overlapping, separating lines can be visualised between the other classes. 

Additionally, a machine learning algorithm using all 67 features will have better 

resolving ability between the classes than that seen in the plot. The PCA plot uses 

only two principal features which do not retain variance. That is, the number of 

eigenvectors (K) needed to adequately represent the original data should satisfy 

equation 9.1.  
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∑   
 
   

∑   
 
   

      (9.1) 

Where Si is the ith eigenvalue. Additional feature analysis plots can be found in 

the Appendix. For K=2 and n=67, the value is only 0.4677, therefore variance is 

not retained and the two reduced features do not represent the information offered 

by all 67 features. 

An SVM with an RBF kernel is well suited to creating the arbitrarily shaped 

hypothesis function required. A neural network with a large number of neurons 

could also form a complex hypothesis function. 

9.6 Optimisation 

Initially, the training data was categorised into valid and invalid moves (instead of 

the five intermediate classes). This resulted in low classification accuracy even 

with an increasing number of training examples and hidden units of the ANN. 

This was because there are different types of valid and invalid moves (as indicated 

by the five final classes), each of which has its own unique characteristics. The 

different types could not accurately be modelled into one hypothesis function and 

hence a multi-class classifier had to be used. This resulted in improved 

classification accuracy. 

Under certain conditions, obtaining more training examples improves 

performance significantly. If the features provide sufficient information to 

accurately predict the output, and if the learning algorithm can fit a complex 

function (so that underfitting is addressed), then a large training set will optimise 

performance as it will minimise overfitting [28]. 

From the Principal Component Analysis of the features, it can be seen that the 

features do adequately model a move from one nephron cross-section to another. 

The features are also informative enough for a human operator to correctly 

classify a move. Both an ANN with a large number of hidden layers (50) and an 

SVM are capable of forming complex, non-linear hypotheses. The number of 

training examples was thus increased until there was no longer an increase in 

performance as shown in Figure 9.5. 
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Figure 9.5: Five performance indices were measured on a test set after training the 

SVM (using an RBF kernel of a width of 5) with a varying number of randomised 

training examples. The performance converges around a 1000 examples. 
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CHAPTER 10 

Results 

The accuracy of each stage is dependent on the accuracy of previous stages as 

each stage‟s output is an input for the following stage. The results of each stage 

are analysed and discussed. 

10.1 Pre-Tracking Stages 

The pre-tracking stages include the pre-processing and feature extraction stages. 

10.1.1 Pre-Processing  

The goal of the pre-processing stage was to produce binary images in which each 

binary component represents one nephron cross-section. This has been achieved 

in the majority of cross-sections in each image by careful selection and variation 

of the pre-processing parameters using sigmoid functions.  

These automatically varying parameters are suitable to the majority of images in 

the set but may not be suitable for a few outlying images resulting in the 

occasional merging of binary components which were meant to be independent. 

This is termed „under-segmentation‟. Also, the compromise between the 

equalisation window size and the threshold value sometimes results in the over-

segmentation of some binary components which were meant to be whole. These 

two cases are depicted in Figure 10.1.  

The performance of the pre-processing stage is thus evaluated by measuring 

segmentation accuracy, which is defined as the percentage of binary components 

correctly representing the nephron cross-sections. Due to the impracticality of 

manually evaluating each cross-section in any one image, 12 samples were 

selected from different datasets for evaluation. The samples were chosen such that 

the cross-sections contained were representative of all cross-sections in the 

respective area. Table 10.1 presents the results. 
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Figure 10.1: A clip of an image in the medulla of a rat dataset is shown with its 

binary image superimposed. Binary components correctly produced are shown in 

white. Purple components are those which were over-segmented, producing 

multiple binary components per nephron cross-section. Components in blue are 

those which have been incorrectly merged into single components. Red dots 

indicate nephrons which have no overlying binary components, thus producing 

missing data. Nodes allocated subsequent to binary image formation are shown by 

the „+‟ symbols. Original image from [11]. 

Table 10.1: The segmentation accuracy of samples from 4 datasets in the cortex, 

outer and inner medulla.  

 Segmentation Accuracy (%) 

 Cortex Outer Medulla Inner Medulla 

Mouse 1 98.59 98.75 97.24 

Mouse 2 98.48 96.62 95.01 

Rat 5 95.13 82.92 88.86 

Rat 4 96.01 93.61 90.30 

 

The majority of extracted binary components correctly represents the structures in 

the original image. Under-segmentation occurs when groups of nephrons have 

very thin walls in comparison to surrounding nephrons (such as in the DTL) 

causing independent cross-sections to merge. Over- and under-segmentation 

Correctly segmented 

Under-segmented 

Over-segmented 

Missing data 
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mostly occurs in images of the medulla of the rat datasets because the centre of 

the images is much brighter than the periphery.  

10.1.2 Feature Extraction 

K-means clustering in combination with the shape criteria has resulted in a highly 

flexible and adaptive node allocation method. The majority (>99%) of cross-

sections receive an ideal number of nodes, especially since the randomly 

initialised K-means is repeated if the adjacent node criterion is not met. Even on 

under-segmented binary components (such as the large blue components in Figure 

10.1), a node is correctly allocated at the location of each nephron cross-section. 

On incorrectly segmented binary components, nodes are not allocated per nephron 

cross-section as each binary component undergoes independent node allocation.  

The degree to which the shape factors and shape profiles represent the original 

nephron cross-section in the colour image is dependent on the extracted binary 

components during pre-processing. Accuracy of feature extraction stage is thus 

dependant on the pre-processing stage or segmentation accuracy. Given ideal 

binary components, the measured shape factors and shape profiles are ideal (100% 

accurate).  

10.2 Measuring Similarity between Paths 

In order to evaluate the outcome of a tracking instance, the automatically tracked 

path must be compared to the corresponding manually tracked nephron. Single 

number evaluation metrics are used to indicate performance and similarity.  

The accuracy of an automatically tracked nephron is measured against the 

manually tracked data, which forms the gold standard. The following is defined 

for ease of description:  

    The manually tracked path of nephron f 

    The automatically tracked path of nephron f 

where a path is a set of coordinates in 3D space.  
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When the result has a low degree of correctness, it is either because tracking 

terminated prematurely or the path deviates onto an incorrect one (linkage with 

another nephron, blood vessel, or ICT cross-sections), or a combination of these. 

The outcome of tracking a particular nephron is hence evaluated using two 

measures: 

1.    = % of    that is correct – „accuracy‟ 

2.    = % of   , that   covers – „extent‟ 

These are calculated by obtaining the per image residuals as in equations 10.1-2.  

    ( )     .‖        
‖/      *      + (10.1) 

Where    is the ith coordinate in the automatically tracked path  ,    is the 

number of coordinates in  ,    
is the z coordinate (image number) of the ith 

coordinate,      
is the subset of the manually tracked path containing all 

coordinates in image    
 and     is the per image residual of   with respect to  . 

Similarly the residual of   with respect to Ψ is: 

   ( )     .‖        
‖/      *      + (10.2) 

The residual indicates the minimum distance of each node in one set to nodes in 

the same image of the other set. It provides a measure of the discrepancy between 

the two paths on a per coordinate basis. In order to obtain a single valued 

similarity measure between whole paths, the residuals are thresholded at some 

tolerance. This is to allow for differences due to slight image misalignments and 

differing node positions (the manually placed coordinates may not be in the centre 

whereas the automatically allocated nodes are more towards the centre), as they 

should not technically contribute to the error. Accuracy and extent are then 

defined as in equations 10.3 and 10.4. 

   
   

  
     (       ) (10.3) 

   
   

  
     (       )  (10.4) 
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Where tol is the tolerance in pixels and count is a function returning the number 

of elements satisfying the condition in its argument. 

10.3 Possible Outcomes 

The outcome of a tracking instance can be one (or a combination) of four types of 

cases as shown in Figure 10.2. 

Case 1: ↑α, ↑β

 

Case 2: ↑α, ↓β 

 

Case 3: ↓α, ↑β

 

Case 4: ↓α, ↓β

 

Figure 10.2: The target nephron‟s path is shown in blue while the path of other 

structures is indicated by the grey line. Solid lines indicate tracked paths and 

broken lines indicate untracked paths. The circles and crosses indicate the 

beginning and end of tracking, respectively. 

Case 1: Ideally, the tracking algorithm should track the full length of the target 

nephron without mistakenly tracking the path of any other nephron or blood 

vessel (case 1). This would lead to a high α value (the tracked path is well 

correlated to the target path) and a high β value (a large percentage of the target 

path has been tracked). However, this is not achieved due to a number of 

hindering factors. 

Case 2: Most often, only a portion of the target path is correctly tracked with no 

incorrect paths being formed (case 2). This produces a high α value but a low to 

medium β value depending on where along the path premature termination had 

occurred. This premature termination is usually caused by artefact interference 

and large local distortions, which trigger one of the validation steps, causing 

tracking to terminate. Examples can be seen in the middle column of Figure 10.5. 

Cases 3 and 4: Sometimes incorrect links are made to one or more structures other 

than the target nephron (cases 3 and 4). This is caused by artefacts and distortions 

End Start Target Nephron 

Other structure 

Incorrect Link 
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as shown by examples in Figure 10.3. This leads to a low α value as the tracked 

path does not fully correlate to the target path. The β value can vary depending on 

how much of the target path has been found in addition to the incorrect paths. 

 

Figure 10.3: Three examples of incorrect linkage to multiple structures are shown. 

The numbers indicate the order of moves/iterations during tracking, while their 

colours indicate analogous structures. In the first example (left), the horizontal 

edges of the large cross-section created by the artefact results in the target nephron 

being linked to another nephron and an unrelated glomerulus. This move passes 

all validation stages, with the ANN output of (0.384 0.015 0.277 0.531 0.001) for 

the five classes. In the other two examples (middle and right), a tissue fold 

obscures the cross-section of the target nephron and brings a cross-section of 

another nephron directly beneath the current nephron cross-section. The algorithm 

sees these as valid moves and incorrect links are made. Images from [11]. 

It is difficult to correct cases 3 and 4 as it cannot be detected without the use of 

manual data (there are no α or β measurements for unseen data) or manually 

inspecting the tracked path. Therefore, the algorithm has been designed to 

minimise the possibility of these cases by establishing the four validation steps. 

Despite these preventative measures, there are still some incidents of incorrect 

linking as it is difficult to model each of a variety of cases without hindering 

normal tracking. Also, some of the invalid moves appear to be valid according to 
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the model for each validation step, especially incorrect links made to other 

nephrons. 

As a result of the „strictness‟ imposed by the validation steps, there is a higher 

occurrence of premature termination (as opposed to tracking without the 

validation steps). If the problematic areas are not bypassed, the extent of tracking 

remains low (as only a portion of the nephron is tracked) even though the 

algorithm is capable of tracking the rest of the nephron. Manual intervention is 

used to manually bypass such points so that tracking can continue.  

10.4 Tracking Results 

The tracking algorithm successfully tracks large portions of the nephrons 

automatically, occasionally requiring manual correction in order to obtain full 

nephron paths. Different parts of the nephrons were tracked with varying 

accuracies and extents as shown in Tables 10.1 and 10.2 due to differing tubule 

characteristics. In particular, the PCT and PST were tracked well, while the DTL 

and ATL were more problematic in both the mouse and rat datasets.  

16 nephrons from 2 mouse datasets and 11 nephrons from 2 rat datasets were 

chosen to form a test set to test the tracking algorithm. Only short-looped 

nephrons were chosen as the long-looped nephrons proved to be too error prone to 

track as the cross-sections become increasingly difficult to track deeper in the 

inner medulla. The chosen nephrons were ones for which manual tracking had 

been performed and ones that were not used to form the training set for the 

machine learning algorithms. The nephrons were tracked automatically to various 

points, i.e. some nephrons were only tracked to the DTL while others were 

tracked to the DCT, etc. This is because a number of consecutive cross-sections of 

some nephrons became so small that corresponding binary components were not 

extracted and tracking (without extensive manual intervention) could not proceed 

as a result. 

The path of each tracked nephron was broken up into the six components (PCT, 

PST, DTL, ATL, TAL and DCT). α and β values were measured in isolation for 
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each component, along with the number of manual corrections required in each 

component. The Appendix contains a spreadsheet of the detailed results. 

Summarised results are presented in Tables 10.2 and 10.3. 

Table 10.2: Test results on a chosen set of 16 mouse nephrons. The number of 

manual corrections is given as the mean ± 1 standard deviation.  

Area of 

Nephron 

MOUSE 

Accuracy 

- αMEAN 

(%) 

βMEAN (%) 
βIDEAL (%) 

[9] 

Extent -

βMEAN/ 

βIDEAL 

(%) 

Average 

Number of 

Manual 

Corrections 

PCT  95.14 27.36 25 109.44 1.20 ± 1.11 

PST  98.24 16.33 18 90.72 0.50 ± 0.71 

DTL  80.57 13.90 19 73.16 5.44 ± 1.69 

ATL  85.67 14.94 14 106.71 2.46 ± 1.87 

TAL  96.32 13.19 14 94.21 3.64 ± 1.55 

DCT  72.13 14.29 10 142.90 5.86 ± 3.00 

Full 87.49 100 100 100 19.09 ± 1.65 

PCT to DTL  57.59 62  7.67 ± 1.25 

PCT to TAL  87.38 90  13.25 ± 2.00 

 

Table 10.3: Test results on a chosen set of 11 rat nephrons. The number of manual 

corrections is given as the mean ± 1 standard deviation.  

Area of 

Nephron 

RAT 

Accuracy 

- αMEAN 

(%) 

βMEAN (%) 
βIDEAL (%) 

[9] 

Extent -

βMEAN/ 

βIDEAL 

(%) 

Average 

Number of 

Manual 

Corrections 

PCT 96.32 28.48 25 113.92 5.20 ± 4.70 

PST 90.17 14.64 18 81.33 5.00 ± 2.75 

DTL  84.63 15.83 19 83.32 24.00 ± 8.19 

ATL  88.47 15.63 14 111.64 13.50 ± 6.95 

TAL  97.48 11.50 14 82.14 6.67 ± 3.09 

DCT  95.23 13.91 10 139.10 4.33 ± 2.49 

Full 80.85 100 100 100 58.70 ± 4.70 
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α indicates how much of the tracked nephron is correct by measuring similarity to 

the manually tracked nephron. It is low if the path deviates onto other structures 

and is high if the tracked path contains data of only the target nephron, be it a 

small or large portion. β measures how much of the target nephron is tracked; it is 

low (relative to the ideal β value per segment) if only a small portion is tracked. It 

can still be high if the path branches onto incorrect structures, as long as a large 

part of the target nephron is found. 

Note that α and β are measured by comparing individual coordinates of the 

manual and automatically tracked nephrons. The automatically traced path 

typically contains more coordinates since the algorithm tracks all cross-sections 

related to the nephron rather than just those required, i.e. all 3-4 elongated cross-

sections making up a bend are automatically tracked, while the manual path will 

label only 1-2 of the elongated cross-sections at a bend. The algorithm also tracks 

glomeruli cross-sections, whereas the manual path terminates on the last PCT 

cross-section. This has the overall effect of producing a higher than ideal β value.  

The indistinct locations of some transitions (e.g. PCT to PST, or the end of the 

DCT) also results in the measured beta values being higher than the ideal values. 

Note that the beta values are relative to the entire nephron length and not the 

segment in question, for example the PST makes up 25% of the total length, and 

hence a measured beta value of 24% means that 96% of the PST was tracked. 

The number of manual corrections varies with the sensitivity of the validation 

steps. For example, decreasing the ANN threshold, increasing the coefficient of 

the distance validation or turning bidirectional validation off will decrease the 

number of requests for manual correction by the algorithm. However, this 

increases the chance of branching onto incorrect structures (decreases α) as shown 

conceptually in Figure 8.10. The settings/conditions for the validation steps were 

therefore chosen such that the algorithm tracks with high accuracy while also not 

requesting for manual intervention at unnecessary/unreasonable points. 

The frequency of manual intervention is dependent on the number of image 

artefacts and distortions encountered along the path of the nephron, and the 
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visibility of the cross-sections. Examples of manual corrections are shown in 

Figure 10.5. A longer path (in terms of the number of moves) requires more 

corrections, e.g. the rat nephrons are on average 4.7 times longer than mouse 

nephrons and long-looped nephrons are at least 1.5 times longer than short-looped 

nephrons from observation of the manual data. The cross-sections of the DCT in 

the mouse are very small and hence harder to track than the larger cross-sections 

in the rat. The number of corrections required in each area of the nephron in the 

mouse and rat is compared in Figure 10.4, where the rat data is normalised 

(divided by 4.7) in order to highlight differences other than the image set size. 

 

 

Figure 10.4: The number of manual corrections required for mouse and rat 

nephrons is shown. The rat data is normalised by the ratio of a mouse and rat 

dataset (1:4.7) in order to make a better comparison unrelated to image set size. 
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Matter in 

lumen results 

in ML rejection 

due to 

inconsisent 

shape 

 

 

Fragmented 

cross-section 

seems 

abnormal to the 

ML algorithm 

Figure 10.5: Examples of premature termination during tracking requiring manual 

intervention. The reasons summarised on the right are indicative of the variety of 

non-ideal situations encountered. Original images from [11]. 

A number of examples of automatically tracked nephrons compared to their 

manually tracked versions are shown in Figures 10.6 to 10.9. The slight 

discrepancies seen between the automatic and manual paths are due to different 

image alignments and different point coordinates used by the two methods.  
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Figure 10.6: Examples of labelled images are shown with the red numbers 

indicating manually tracked nephrons. The automatically tracked nephrons are 

superimposed, shown in white with black crosses at the nodes. The automatically 

tracked cross-sections correspond to the manually labelled cross-sections of the 

PCT of nephron 41 (left) and nephron 10 (right). The cross-sections of 41 that are 

not highlighted are of the DCT. Original images from [11]. 

Figure 10.7: A manually tracked nephron (nephron 0 from mouse 1) is shown on 

the left. The same nephron is successfully tracked automatically by the tracking 

system. This nephron in particular was only manually tracked to the PST due to 

low visibility of the DTL cross-sections. The automatic tracking algorithm also 

experiences difficulty in tracking the DTL. The tracking terminates automatically 

at the glomerulus. α0=97%; β0>100% 
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Figure 10.8: A manually tracked mouse nephron is shown on the top left. The 

PCT and PST are successfully tracked automatically as shown on the top right but 

the path terminates prematurely due to the presence of an artefact. A complete 

path is obtained with 5 manual corrections on the DTL and 3 on the ATL, as 

shown in the bottom image. This is minimal when considering a total of 1222 

coordinates making up the path. αAUTO=97.13%; βAUTO=39.84%; αSEMI-

AUTO=98.77%; βSEMI-AUTO=90.23% 
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Figure 10.9: A manually tracked rat nephron is shown on the left. The same 

nephron is successfully tracked automatically by the tracking system with 56 

manual corrections in the DTL and ATL. The paths can be seen to be almost 

identical.

10.5 Efficacy of Validation Steps 

Although the types of invalid moves are diverse, the rule-base attempts to model 

the majority through hard-coded, direct rules while the machine learning 

validation attempts to model them in a more generalised, less rigid manner. 

The validation steps for a particular move are carried out in a set sequence with 

the least computationally expensive step being first. This is so that if an invalid 

move is detected, it does not have to go through all of the subsequent stages. 

However, for testing, all validation steps were carried out. The rejection rates and 

accuracies are detailed in Table 10.4. The „accuracy‟ of a validation step refers to 

the percentage of true positives (moves flagged as invalid that were actually 

invalid). 
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Table 10.4: The invalid move rejection rate by the various validation steps and 

their accuracy is shown. A total of 8017 moves were flagged as invalid in the test 

set of nephrons. 

Validation Step 

% of total 

invalid moves 

flagged 

% of captured 

moves that are 

unique 

% Accuracy 

Distance Val. 40.21 25.94 99.67 

Skip Val. 
Total 38.59 

25.38 90.01 
Skips 98.97 

Bidirectional Val. 29.92 18.94 92.05 

ML Shape Val. 57.61 42.46 93.62 

 

All four rules have produced accuracies above 90% with the distance validation 

rule being the most accurate (99.67%) and the machine learning validation being 

the most highly triggered (captures 57.61% of all invalid moves). Given a large 

set of detected invalid moves, certain fractions are uniquely captured by each of 

the validation steps as shown in Table 10.4. Of the 8017 invalid moves, 49.65% 

are captured by more than one rule.  

Ideally, the machine learning validation stage should be able to perform the tasks 

of distance and skipping validation, as the rules should be spontaneously 

integrated into the learnt hypothesis. Since 57.54% of moves captured by the 

machine learning step are those captured by other rules, it can be said that it does 

perform the tasks of the rule-base to some degree. It can also be said that the rule-

base models the abnormalities to a good degree since the majority of invalid 

moves are eliminated even without the machine learning component.  

10.6 Machine Learning Classification  

The trained machine learning algorithms eliminate a large number of invalid 

moves which would have otherwise resulted in multiple nephrons, ICT and blood 

vessels being linked (42.46% of its detections are not captured by the rule-base). 

Both the ANN and SVM were capable of forming complex hypotheses and have 

performed similarly, producing classification accuracies of approximately 93% on 

the test set. The confusion matrices are contained in Table 10.5.  
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Table 10.5: The confusion matrix and classification accuracies of the ANN and 

SVM on a test set of 712 examples. The examples were classified into one of the 

five classes. Combined results for classes 1 and 2 (valid moves) and classes 3 and 

4 (invalid moves) are shown in bold.  

 
 

Predicted 

Class 

Target Class   

 y1 y2 y3 y4 y5 Accuracy (%) 

  
  

  
  

  
 C

la
ss

if
ic

a
ti

o
n

 A
lg

o
ri

th
m

 A
N

N
 

(t
h
re

sh
o

ld
=

0
.7

) y1 

y2 

384 

23 

28 

36 

14 

4 

7 

1 

0 

0 

88.7 
94.8 

56.3 

y3 

y4 

7 

7 

3 

0 

48 

13 

6 

32 

0 

0 

75.0 
85.3 

61.5 

y5 1 0 1 0 97 98.0 98.0 

           Accuracy 

 (%) 

91.0 53.7 60.0 69.6 100.0 83.8  

96.3 78.6 100.0  93.7 

 

        

  y1 y2 y3 y4 y5  

S
V

M
 (

R
B

F
 k

er
n
el

 

o
f 

w
id

th
 5

) 

y1 

y2 

372 

32 

18 

48 

11 

6 

7 

0 

0 

0 

91.2 
95.1 

55.8 

y3 

y4 

17 

1 

0 

1 

63 

0 

26 

13 

7 

0 

55.8 
79.7 

86.7 
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Accuracy 

 (%) 

88.2 71.6 78.8 28.3 92.8 82.3  

 96.1 80.9 100.0  93.0 

The class 5 output of both classifiers is highly accurate and is successfully used as 

the region signal. The classification accuracies of the first 4 output classes are 

variable between the ANN and SVM. For example, the ANN is better at predicted 

y4 while the SVM is better at predicted y2. For purposes of final classification, 

many false positives and negatives are irrelevant, as long as they belong to 

another acceptable class, e.g. a move involving elongated cross-sections (y2) can 

be classified as y1 and a glomerular move (y4) can be classified as abnormal (y3). 

The first four output classes (y1-y4) are thus combined into a final decision Y 

according to equation 10.1. 

    

 
(         (     )   ) (10.1)  

Y ranges from 0 (an invalid move) to 1 (a valid/normal move). The threshold 

applied to Y determines the binary decision on validity of a move.  
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The ANN was made purposely less sensitive and more precise by selecting a high 

threshold (0.7) in order to substantially minimise false positives. The width of the 

RBF kernel of the SVM was also chosen to minimise false positives, but it was 

not as flexible as the threshold of the ANN in manipulating the achieved 

sensitivity and precision. The confusion matrix and performances of this final 

classification are detailed in Tables 10.6 and 10.7.  

Table 10.6: The confusion matrix of the final classification of the test set. 

Classification 

Algorithm 
Predicted 

Class 

Target Class 

Valid Invalid 

ANN 

(threshold=0.7) 

Valid  

Invalid 

444 

19 

34 

120 

SVM with RBF 

kernel (width=5) 

Valid  

Invalid  

439 

2 

39 

137 

 

Table 10.7: Various performance indicators for the ANN and SVM. The SVM 

shows slightly superior behaviour. Equations from [28]. 

Indicator Equation 

Performance (%) 

ANN 

(threshold=0.7) 

SVM with RBF kernel 

(width=5) 

Accuracy (     )       91.41 93.35 

Precision    (     ) 95.90 99.55 

Sensitivity    (     ) 92.89 91.84 

Specificity    (     ) 86.33 98.56 

F1 Score     (         ) 94.37 95.54 

 

From the indices in Table 10.7, the SVM shows slightly better performance than 

the ANN. It produces fewer false positives on the test set. However, it is less 

flexible for use than the ANN due to its binary valued output. The continuous 

valued output of the ANN is advantageous as the four class outputs can be 

weighed against one another to produce a more accurate final classification. 

Examples of true and false positives and negatives produced by the ANN are 

shown in Figure 10.10. 



86 
 

True Negatives  True Positives 

  

  

  

  
False Positives False Negatives 

  

  

  

  

Figure 10.10: Examples of true and false positives and negatives produced by the 

ANN are shown.  False negatives typically involve connective tissue cross-

sections. False positives involve nephron cross-sections which have unusual 

characteristics. 

Most false positives seem to consist of nephron cross-sections that were 

fragmented due to matter in the lumen or non-ideal pre-processing. Moves 

involving C-shaped, elongated nephron cross-sections were also sometimes 

mistaken for invalid moves due to their low solidity which is normally a 

characteristic of glomeruli cross-sections. False negatives typically involved ICT 

cross-sections which were similar in appearance to nephrons. These occur most 

frequently when skips are made at the last few cross-sections of a bend. 
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10.7 Monitoring Runtime Output 

It is useful to monitor various variables and flags during the tracking process. For 

purposes of prototyping, verification and testing a live output log is created by the 

algorithm. The log is useful when analysing a path post-tracking. Figure 10.11 

displays a snippet of an output log while tracking a nephron. 

 

Figure 10.11: An example of an output log during the tracking of a nephron is 

shown. Each row is the output for one iteration of the tracking code. The left-most 

number is the size of the open list which indicates how many nodes are yet to be 

explored. The image number of the current node is then output. A number of 

strings representing the findings and validations at the current node are then 

shown.  

The size of the open list is a useful indicator of the stability of the tracking 

instance, i.e. if the size diverges at a high rate (grows large very quickly), it is 

likely that the path has deviated onto another nephron or blood vessel. If many 

validation steps are being activated over a long period, it is likely that the 

glomerulus has been reached.  

10.8 Processing Times 

The main aim of this research was to develop the techniques required for 

automated tracking rather than to optimise efficiency for a user-end application. 

Nevertheless, good programming practices have been followed, such as the use of 
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functions, pre-allocation of memory and efficient use of available memory. 

Parallel processing was used for the pre-processing and feature extraction stages 

in order to decrease execution time (by using a MATLAB pool [33], or cluster, 

operating on a parfor loop). However, the current implementation can be made 

more efficient. Computational bottlenecks include the convolution (which uses a 

2D FFT) required for image alignment, continuous calling of the ANN structure 

and reading in three images per iteration (which processes one node) of the 

algorithm. Specifications of the computer that was used are detailed in the 

Appendix. Using this computer, the algorithm processed 3 nodes per second. 

MATLAB‟s high level language and built-in toolboxes enabled rapid prototyping 

and testing. However, it is generally slow at run-time in comparison to a possible 

implementation in C++ or another lower level language. Further parallelisation 

and use of a GPU for imaging operations would also improve speed. The 

execution times taken by various parts of the tracking code were measured using 

the MATLAB Profiler, the details of which are presented in Table 10.8.  

Table 10.8: The distribution of time among the main components of the code is 

shown for the automatic tracking of the PCT and PST of a short-looped mouse 

nephron (no manual interventions). 

Piece of Code (MATLAB function name) Time (%) Time (sec) 

Reading in 1-3 images (imread) 21.52 95.31 

Image alignment (conv2) 20.62 91.29 

Machine learning validation (nnet) 24.13 106.84 

Reading shape profiles (iomatfile) 19.30 85.47 

Rest of tracking code 14.43 63.92 

Total 100 442.83 
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Figure 10.12: A pie chart of the distribution of time among the main components 

of the code is shown. 

The times taken by the high level stages per mouse and rat image were also 

measured and are presented in Table 10.9. The timings are proportional to the 

number of cross-sections in the image, hence the longer processing times for inner 

medullary images (see Figure 6.8). While most operations in the pre-processing 

stage are image-wide (and therefore less dependent on the number of cross-

sections), the feature extraction stage is highly dependent on the number of cross-

sections as each cross-section is individually processed. 

Table 10.9: The times taken to process cortical and medullary images of the 

mouse and rat datasets by the three stages of the nephron tracking system. 

Process 
Average Time (sec/image)  

Mouse Rat 

Pre-processing 
Cortex 2.31 3.64 

Medulla 3.94 6.21 

Feature Extraction 

(using 8 parallel cores) 

Cortex 7.68 14.20 

Medulla 13.08 55.28 

Tracking one short-looped nephron  15 min/nephron 30 min/nephron 
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CHAPTER 11 

Analysis & Discussion 
 

The validation steps generally increase α (accuracy, or similarity to manually 

tracked nephron) while manual intervention increases β (the extent to which a 

nephron is tracked). Just as the validation steps eliminate invalid moves, they also 

block valid moves in the presence of artefacts, image distortions and 

misalignments, which cause normal morphology to appear abnormal. This is 

further described in Table 11.1. 

Table 11.1: A summary of the implications and effects of different types of 

artefacts on the tracking process. 

Artefact Implication Effect on Tracking 

Bright 

centre 

Stronger histogram equalisation 

needed, which over-segments larger 

nephron cross-sections, producing 

numerous independent binary 

components for a single nephron 

cross-section. 

Bidirectional validation triggers 

which results in premature 

termination = more manual 

interventions 

Tissue folds, 

Stretching, 

compression 

Missing tissue and large 

misalignment which cannot be 

corrected is produced. 

Jumping onto a cross-section of 

another structure as the fold 

brings other tissue directly 

underneath. 

External 

matter 

Obscures the nephron cross-sections 

either completely (missing cross-

sections) or partially (change in 

shape of cross-sections) 

Premature termination if 

obscuration is complete or shape 

validation is triggered and blocks 

movement for partial obscuration. 

Bright spots Under-segmentation (merging) of a 

small group of cross-sections 

Other structures are linked to the 

nephron being tracked through 

the merged cross-sections 
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11.1 Performance per Area of the Nephron 

Each portion of the nephron is discussed with reference to the results in Tables 

10.1 and 10.2. A statement applies to both the mouse and rat datasets if it is not 

explicitly stated. 

The majority of the cortical labyrinth is composed of the PCT and PST, which 

form 43% of a nephron‟s length (from measured β values). The algorithm is able 

to track the full length of the PCT and PST in the mouse and rat with averages of 

2 and 10 manual corrections, respectively. The manual corrections are only 

required when large distortions and artefacts are encountered. Although the PCT 

was predicted to be the most challenging part to track due to its convoluted nature, 

it is tracked with high accuracy (95.14% in the mouse and 96.34 in the rat) as: 

- The cross-sections are well isolated as they are large in diameter (15-30 pixels 

wide) and well-defined (they have thick walls). 

- The average distance between neighbouring cross-sections (≈ 25 pixels) is 

larger than the average image misalignment of 4 pixels. 

A class 2 move is successfully detected by the ML algorithms when the PCT of a 

nephron joins the glomerulus at its urinary pole, thus terminating the tracking. 

Without this, fragments in the glomerulus would be tracked towards the vascular 

pole, and tracking would continue through the adjoining blood vessel 

(afferent/efferent arterioles), which then joins blood vessel systems and other 

glomeruli, which is undesirable. 

The PST of the mouse is also tracked well with 98.24% accuracy as the cross-

sections are well isolated and defined, and the paths have a relatively straight 

course. In comparison, tracking of the rat PST produced a lower accuracy of 

90.17% due to a higher frequency of tissue folds leading to incorrect linking with 

other nephrons. 

As the PST narrows into the DTL, class 5 moves are successfully registered by 

the machine learning algorithm. The level of the class 5 output is used as a region 

signal to change the mode of tracking into a unidirectional one for the inner 

medulla. This reduces error in the inner medulla tremendously as ambiguity 
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decreases when only one unidirectional path is allowed to be formed. Without 

this, incorrect links are easily made to DTL cross-sections of other nephrons, 

especially where cross-sections incorrectly merge when bright spots are present in 

the image. 

The DTL in the mouse and rat are tracked with moderate accuracies of 80.57% 

and 84.63%, respectively, as the cross-sections are very small in diameter (3-8 

pixels) and very dense (≈ 6 pixels between neighbouring cross-sections). This 

results in a higher error probability during tracking as these values are comparable 

to the average misalignment of 4 pixels. Confusion is more likely among 

identical, closely packed nephrons which are not ideally aligned.  

The DTL of the rat requires many manual corrections (≈ 24) to produce high 

tracking extent. Frequent premature termination occurs because over- and under- 

segmentation in the binary image cause the cross-sections to appear abnormal to 

the ANN, thus blocking many moves. Similarly, the cross-sections in the mouse 

are less well defined than in the cortex, making it more difficult to isolate them. 

The ATL faces the same challenges as the DTL. However, these cross-sections 

are slightly larger (6-12 pixels) and have thicker walls, and are thus tracked more 

accurately in comparison to the DTL. It requires about half the number of manual 

corrections in both the mouse and rat datasets.  

The TAL is tracked well (with 96.32% and 97.48% accuracies in the mouse and 

rat, respectively) as its cross-sections are well isolated and relatively large (8-12 

in the mouse and 13-20 in the rat), and the path is straight.  

The DCT differs vastly in the mouse and rat datasets. In the mouse, the DCT 

remains narrow as it progresses from the TAL. The small cross-sections making 

up a convoluted path are difficult to track. Fast changes in morphology (due to 

only having every second slice) combined with small-sized cross-sections trigger 

the distance validation rule. An average of 5 corrections is required in the mouse 

DCT. 

The rat DCT is tracked well as its characteristics are comparable to the rat PCT. 

The cross-sections are much larger than in the mouse. Although the DCT is longer 

in the rat, it also requires an average of 5 corrections. Branching is correctly 



93 
 

handled when the DCT of multiple nephrons join through a common collecting 

duct.  

Manual intervention is useful when the path terminates prematurely (usually due 

to image artefacts), as the user simply bypasses the problematic cross-section. In 

cases where incorrect links are made between different nephrons, manual 

intervention is not useful. The latter case is difficult to identify and correct 

without comparison to the manually tracked data or manual inspection. 

In principle the automatically generated path could be more correct than the 

manually tracked path (due to the potential for human error especially in the inner 

medulla), but it was assumed that the manually tracked path is absolutely correct. 

11.2 Effect of Image Properties on Performance 

In general, the results are highly dependent on the quality of the images, the size 

of the nephron cross-sections and the amount of interfering connective tissue 

cross-sections. A larger slice thickness (e.g. every second slice in the mouse (5 

μm) compared to 2.5 μm in the rat) produces less accurate results as the change in 

morphology is more abrupt from image to image. As shown in Figure 11.1, a 

certain slice thickness may be sufficient in the cortex where the nephron cross-

sectional diameter is large, but it may cause too much of ambiguity for smaller 

cross sections in the inner medulla. 

 

Figure 11.1: A chosen slice thickness has different implications for tracking in the 

cortex and inner medulla due to the different size of the structures. In the inner 

medulla, a larger change in morphology per image is perceived. This, along with 

misalignment and distortion, introduces tracking error. 

 

 

Inner Medulla Cortex 
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This increased rate of change in morphology from the cortex to medulla can be 

measured by a simple ratio of the number of non-overlapping white pixels to the 

total number of white pixels in each pair of adjacent binary images. The 

measurements, as shown in Figure 11.2, indicate an increase of 20-25% in the 

change rate from the cortex to the inner medulla. This simple measure does, 

however, include the effects of misalignment and can therefore be seen as a 

perceived change in morphology. This is a large contributing factor to the high 

tracking error in the inner medulla.  

 

Figure 11.2: The changes in morphology for three image sets were measured. In 

each case, there is a noticeable increase in the morphology change rate during the 

transition from the cortex to inner medulla (indicated by arrows).  

A high frequency of images containing artefacts and tissue folds decreases the 

accuracy of the findings tremendously, as it only requires a single incorrect move 

to cause the path to deviate from the nephron at hand onto another structure (i.e. 

the tracking process is chaotic or stability is completely dependent on results of 

the current iteration). This is especially applicable for tracking in the inner 

medulla, where the high tubule density coupled with an artefact may result in two 

nephron cross-sections joining incorrectly and the turn being mistaken for a loop 

of Henle. In conclusion, the amount of local image distortions, spatial resolution 

and slice thickness of images in the inner medulla are the main determining 

factors of the accuracy and extent of automated tracking in the inner medulla. 
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11.1 Ceiling Analysis 

A ceiling analysis estimates the error due to each component of a pipeline system. 

It can provide a good idea on which modules of the system are worth expending 

additional time and effort on [28]. A singe real number evaluation metric 

representing the overall system performance is measured by progressively 

simulating the ground truth for the previous stages to artificially produce 100% 

accuracy. Table 11.2 contains the ceiling analysis for the nephron tracking system 

based on measured performances and projections. 

Table 11.2: A high-level ceiling analysis of the system. These values have been 

determined through careful observation and assessment of the results of the three 

stages as well as the images themselves. 

Component 

Overall accuracy 

with error 

carried over 

Accuracy of 

stage given ideal 

previous stages 

Overall accuracy 

given ideal 

previous stages 

(%) 

Image Quality 75 75 75 

Image Pre-processing 73 95 90 

Feature Extraction 70 99 94 

Tracking Algorithm 63 90 95 

Overall 63 63 100 

 

The analysis shows that the quality and resolution of the images themselves are 

the main limiting upper bound on the accuracy and extent of the overall system. If 

high quality images are to be used, the systems accuracy goes up to 90%. 

Thereafter, improving the tracking algorithm would improve accuracy by about 

5%.  
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CHAPTER 12 

Recommendations & Future Work 
 

12.1 Recommendations for Future Image Sets 

Creating image sets that have minimal distortions and artefacts is essential if 

complete automation is to be achieved. Attaining an ideal image set of thousands 

of images may be impractical; however, the images can be artificially manipulated 

by manually removing and replacing defective images, or specially pre-processing 

a few images that have outlying characteristics. 

The inner medulla poses the biggest challenge. Even by eye, tracking the small, 

thin-walled, lightly stained nephron cross-sections of the DTL in the midst of 

hundreds of identical cross-sections proves to be confusing and challenging. A 

thinner slice thickness (increased resolution in the z-direction) would improve 

tracking in the inner medulla as the change in position at turns and bends could be 

better resolved.  

Higher resolution images would also offer improved accuracy in isolation and 

tracking of cross-sections in the inner medulla. An example of a higher resolution 

image is shown in Figure 12.1, where there are additional features that would be 

useful that were not visible on the lower resolution images, such as the tubule 

walls and brush borders. This of course would require more time and effort in 

capturing the images, as well as massive processing and memory resources if each 

image is to be at such a high resolution. Another useful addition would be using 

physical markers on the slides to aid automatic image alignment. 
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Figure 12.1: A clip of a slide from one of the mouse datasets taken at a much 

higher resolution is shown. Compared to the image sets used, the nephron cross-

sections as well as the connective tissue could be better isolated on higher 

resolution images. Image from [11]. 

12.1.1 Staining Choice 

The toluidine blue stain seems to have been ideal for the purpose of tracking as it 

leaves the lumens open (white in appearance), making it easy to isolate one 

nephron cross-section from another both by eye and automatically in software. 

The suitability of this stain for the tracking purpose may be emphasised by 

comparison with differently stained kidney specimens (such as H&E) where the 

lumens appear cloudy and nuclei are darkly stained [1] (which would then have to 

be compensated for during pre-processing).  

One disadvantage of the toluidine blue stain is that different parts of the nephron 

cannot be easily distinguished. Techniques employed in the studies by 

Pannabecker and Dantzler [4] [5] on manually reconstructing the rat nephron may 

be advantageous in this regard. Immunohistochemistry techniques (using 

antibodies which bind to segment specific proteins) were used to stain various 

parts of the nephron differentially. This resulted in the DTL, ATL, collecting duct 

and blood vessels fluorescing with different colours. Using such staining methods 

would provide differentiating colour information and features to the tracking and 

machine learning algorithms, respectively. The confidence of results would 

increase as different types of cross-sections could be easily distinguished from 

one another and ICT interference would be virtually eliminated as only cross-
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sections of interest would be highlighted. Fluorescent dyes which still leave the 

lumens open could therefore be the best staining choice for the tracking purpose. 

12.1.2 Image Constraints 

If the designed system is to be used on a new image set, the images must conform 

to the following constraints: 

 All images must have the same resolution and a uniform scaling factor. 

 The images must be a serial stack labelled sequentially. 

 The resolution must be high enough such that nephron cross-sections can be 

easily distinguished, e.g. a DTL cross-section must be at least 5 pixels in 

diameter. 

 At least every 5μm of the specimen (or preferably a slice thickness less than 

the diameter of the DTL) must be included in the dataset to adequately 

represent the change in morphology of the nephrons. 

 Transverse sections through the kidney must be used (i.e. such that nephron 

cross-sections appear mostly circular). Sections producing longitudinally sliced 

cross-sections will not be accurately tracked, as the appearance of the cross-

sections is then completely as shown in Figure 12.2. Tracking longitudinal 

sections even by eye is difficult and error prone. Also, this type of data is not 

available, and so training, testing and verifying an algorithm on longitudinal 

sections cannot be done. Due to inadequate training and tuning, the algorithm 

would not handle such cases with high accuracy. 

  

Figure 12.2: Examples of a longitudinal (left) and transverse (right) slice of the 

kidney. Images from [11]. 
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12.2 Future Work 

The current approach looks at properties of the current cross-section and potential 

cross-sections in images above and below; it does not analyse patterns or 

properties of the local neighbourhood around it apart from using a local window 

for alignment. Looking at the surrounding area may be the key to solving 

problems especially in the inner medulla. Also, a machine learning algorithm that 

operates along a length of the detected path rather than only on a cross-section to 

cross-section basis may lead to more accurate results, especially in the DTL where 

the small cross-section diameter causes ambiguity.  

The colour or intensity information from the original or equalised image may be 

used to compute additional features for machine learning algorithms. The colour 

images in combination with a full six-parameter homography could be used for a 

more accurate image registration, which may improve the tracking results.  

Additional properties of the path around the current node, such as a 3D direction 

vector, can also be modelled and used for tracking conditions and validations. 

Even though the current algorithm can track nephrons orientated in various 

directions, the system still only has three degrees of freedom, for example a 

nephron segment that is angled 45° to the x-y plane will be tracked as a 

combination of horizontal and vertical edges rather than directly at 45° in the 3D 

image space. Future approaches for tracking could perhaps use more degrees of 

freedom. 

This study focused on developing the methods required for (semi-) automated 

tracking. In order for the system to be used practically on a large number of 

nephrons, a more efficient version should be implemented in a language such as 

C++ using neural network and image processing libraries, many of which are 

open source. A user interface for system calibration, tracking (including manual 

intervention) and viewing of results should be included. 
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CHAPTER 13 

Conclusion 

The aim of the present study was to develop an automated system for the 

tracking of nephrons. A proposed methodology involving image processing and a 

custom tracking algorithm supervised by machine learning algorithms was 

presented.  A number of features were extracted in order to retain shape 

information during the data abstraction process. The ANN and SVM have high 

classification accuracies of ≈ 93% and eliminate invalid moves caused by a 

number of hindering factors such as artefacts and distortions.  

The system is successfully able to track large portions of the nephrons 

automatically through both highly convoluted and straight paths. Particularly, the 

PCT, PST and TAL (which form more than half of the nephron length) are 

tracked with high extents and accuracies in both the mouse and rat datasets. The 

DTL and ATL prove to be problematic due to image artefacts in combination with 

the small nephron cross-section size, thin walls and high tubule density in the 

inner medulla. These are tracked with good accuracy but require many manual 

corrections to achieve high extent. The DCT is tracked well in the rat but not in 

the mouse. 

While only portions of the paths can be obtained automatically from the 

starting seed, full nephron paths can be obtained with an average of 17 and 62 

manual corrections in the mouse and rat datasets, respectively. This is reasonable 

considering the thousands of coordinates making up a nephron path, each of 

which had to be previously manually tracked. Although complete automation is 

still elusive, the system saves a considerable amount of time and effort compared 
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with the manual tracking task as it performs 99% of the task automatically. 

Minimising image defects is crucial in improving performance and decreasing the 

amount of manual intervention required.  

The developed system thus serves as a semi-automatic tool to aid the tracking 

process, decreasing the number of user interactions from 1100 to 17 per mouse 

nephron and 5000 to 62 per rat nephron. The methods developed during this study 

form a foundation for further development towards a fully automated nephron 

tracking system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 
 

REFERENCES 

[1] L. C. Junqueira and J. Carneiro, "Basic Histology - Text & Atlas," in The Urinary 

System.: McGraw-Hill, 2005. 

[2] William A. Beresford. Histology Full-Text, Chapter 23 Urinary System, Anatomy 

Department, West Virginia University, Morgantown, USA. [Online]. 

http://wberesford.hsc.wvu.edu/histolch23.htm 

[3] Pannabecker TL, Dantzler WH, Layton HE Layton AT, "Functional implications of 

the three dimensional architecture of the rat renal inner medulla," 2010. 

[4] Thomas L. Pannabecker and William H. Dantzler, "Three-dimensional architecture 

of collecting ducts, loops of Henle, and blood vessels in the renal papilla," 

University of Arizona Health Sciences Center, Department of Physiology, Tucson, 

Arizona, American Physiological Society, 2007. 

[5] Thomas L. Pannabecker, Diane E. Abbott, and William H. Dantzler, "Three-

dimensional functional reconstruction of inner medullary thin limbs of Henle‟s 

loop," Department of Physiology, College of Medicine, University of Arizona, 

Tucson, Arizona, American Physiological Society, 85724-5051, 2003. 

[6] W. Kriz, "The architectonic and functional structure of the rat kidney," Z Zellforsch 

Mikrosk Anat, 1967. 

[7] Pannabecker Thomas L., "Comparative physiology and architecture associated with 

the mammalian urine concentrating mechanism: role of inner medullary water and 

urea transport pathways in the rodent medulla," Am J Physiol Regul Integr Comp 

Physiol, 2013. 

[8] H Ren et al., "Direct Physical Contact between Intercalated Cells in the Distal 

Convoluted Tubule and the Afferent Arteriole in Mouse Kidneys," PLoS One, 2013. 

[9] Erik I. Christensen et al., "Three-dimensional reconstruction of the rat nephron," Am 

J Physiol Renal Physiol, Department of Biomedicine, Anatomy, Aarhus University, 

Denmark, 2013. 

[10] Xiao-Yue Zhai et al., "Three-Dimensional Reconstruction of the Mouse Nephron," 

Departments of Cell Biology, Connective Tissue Biology, and Neurobiology, 

Institute of Anatomy, University of Aarhus, Denmark, American Society of 

Nephrology, ISSN: 1046-6673/1701-0077, 2006. 

[11] Image Sets of 3 Mouse and 3 Rat Kidneys, 2013, Departments of Cell Biology, 

Connective Tissue Biology, and Neurobiology, Institute of Anatomy, University of 

Aarhus, Denmark. 

[12] Keith L. Moore, Arthur F. Dalley, and Anne M. R. Agur, Clinically Orientated 

Anatomy, 6th ed.: Lippincott Williams & Wilkins, ISBN 978-1-60547-652-0, 2010. 

http://wberesford.hsc.wvu.edu/histolch23.htm


103 
 

[13] RN Douglas-Denton, B Diouf, MD Hughson, WE Hoy, and JF Bertram, "Human 

nephron number: implications for health and disease," 

http://www.ncbi.nlm.nih.gov/pubmed/21604189, 2011. 

[14] Arthur C. Guyton and John E. Hall, Textbook of Medical Physiology, 11th ed. 

Philadelphia, Pennsylvania: Elsevier, ISBN 0-7216-0240-1, 2006. 

[15] SB. Nicholas, JM. Basgen, and S. Sinha, "Using stereologic techniques for podocyte 

counting in the mouse: shifting the paradigm.," Am J Nephrol, California, USA, 

2011. 

[16] Gokul Sridharan and Akhil A Shankar, "Toluidine blue: A review of its chemistry 

and clinical utility," J Oral Maxillofac Pathol, Department of Oral Pathology and 

Microbiology, YMT Dental College and Hospital, Maharashtra, India 2012. 

[17] Jun Zhang and Jiulun Fan, "Medical Image Segmentation Based on Wavelet 

Transformation and Watershed Algorithm," Department of Information and Control, 

Xi 'an Institute of Post and Telecommunications, , Weihai, Shandong, China, IEEE, 

2006. 

[18] Cathy Merritt, Tony Kasvand Hiromitsu Yamada, "Recognition of Kidney 

Glomerulus by Dynamic Programming Matching Method," 1988. 

[19] Hong Zhu, XueMing Qian, Tao Huang Jun Zhang, "Genetic Algorithm for Edge 

Extraction of Glomerulus Area," Department of System Integration, Institute of 

Information and Automation Engineering, Xi‟an, Shannxi Province, China, 2004. 

[20] Jun Zhang, Jinglu Hu Jiaxin Ma, "Glomerulus Extraction by Using Genetic 

Algorithm for Edge Patching," School of Information, Production and Systems, 

WASEDA University, Kitakyshu, Fukuoka, Japan, 2009. 

[21] Paola Campadelli, Elena Casiraghi, and Stella Pratissoli, "Automatic segmentation 

of abdominal organs from CT scans," Universita‟ degli Studi di Milano, Department 

of Computer Science, Milano, IEEE, 2007. 

[22] Hae-Yeoun Lee, Noel C. F. Codella, Matthew D. Cham, Jonathan W. Weinsaft, and 

Yi Wang, "Automatic Left Ventricle Segmentation Using Iterative Thresholding and 

an Active Contour Model With Adaptation on Short-Axis Cardiac MRI," IEEE, vol. 

57, no. 4, 2010. 

[23] Bahadir Karasulu, "Automatic Extraction of Retinal Blood Vessels: A Software 

Implementation," vol. 8, no. 30. 

[24] Tamir Yedidya and Richard Hartley, "Tracking of Blood Vessels in Retinal Images 

Using Kalman Filter," The Australian National University and National ICT 

Australia, Australia,. 

[25] Ali Can, Hong Shen, James N. Turner, Howard L. Tanenbaum, and Badrinath 

Roysam, "Rapid Automated Tracing and Feature Extraction from Retinal Fundus 

Images Using Direct Exploratory Algorithms," IEEE Transactions on Information 



104 
 

Technology in Biomedicine, New York, vol. 3, no. 2, 1999. 

[26] Xin Kang et al., "Automatic Labelling of Liver Veins in CT by Probabilistic 

Backward Tracing," Children‟s National Medical Center, DC, USA, IEEE, 978-1-

4673-1961-4, 2014. 

[27] Michael A. Nielsen, "Neural Networks and Deep Learning," in CHAPTER 2: How 

the backpropagation algorithm works.: Determination Press, 2014. [Online]. 

http://neuralnetworksanddeeplearning.com/chap2.html 

[28] Andrew NG. (2014, April) Coursera Online Courses: Machine Learning Course. 

[Online]. https://class.coursera.org/ml-005 

[29] Ioannis Valavanisa, Stavroula G. Mougiakakoua, Spyretta Golematia, Alexandra 

Nikita, Konstantina S. Nikita John Stoitsisa, "Computer aided diagnosis based on 

medical image processing and artificial intelligence methods," School of Electrical 

and Computer Engineering & Medical School, National Technical University of 

Athens, Athens, Greece, 2006. [Online]. 

http://www.sciencedirect.com/science/article/pii/S0168900206015415 

[30] Kenji Suzuki, "Pixel-Based Machine Learning in Medical Imaging," International 

Journal of Biomedical Imaging, vol. Department of Radiology, The University of 

Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, IL 60637, USA, 

November 2011. 

[31] Mashor M.Y., Esugasini S., Mat Isa N.A., and Othman N.H., "Classification of 

Breast Lesions Using Artificial Neural Network," Proceedings of International 

Conference on Man-Machine Systems , 2006. 

[32] K Gayathri Devi and R Radhakrishnan, "Automatic Segmentation of Colon in 3D 

CT images and removal of opacified fluid using cascade feed forward neural 

network," Institute of Technology, India. 

[33] MATLAB Version R2012a, MathWorks, Image Processing Toolbox; Neural 

Network Toolbox; Statistics Toolbox. 

[34] Prof. Henrik Birn, "The Danish Ministry of Food, Agriculture and Fisheries; 

Ministeriet for Fødevarer," Institute of Anatomy/Biomedicine 2004/561-818. 

[35] K. Wagholikar, "Modeling Paradigms for Medical Diagnostic Decision Support: A 

Survey and Future Directions," Journal of Medical Systems, Aug. 2012. 

[36] E. R. Davies, Computer & Machine Vision: Theory, Algorithms, Practicalities. 

Egham, UK, Surrey: Elsevier, 2012. 

[37] Dana H. Ballard and Christopher M. Brown, Computer Vision. Rochester, New 

York: Prentice Hall, 1982. 

[38] Peter Henderson, Richard Seaby, and Robin Somes, "Growth II," in Types of growth 

curve - Logistic curve. Penington, Lymington, Hampshire: Pisces Conservation Ltd, 

http://neuralnetworksanddeeplearning.com/chap2.html
https://class.coursera.org/ml-005
http://www.sciencedirect.com/science/article/pii/S0168900206015415


105 
 

2006. 

[39] Guojun Gan, Chaoqun Ma, and Wu Jianhong, "Data Clustering Theory, Algorithms 

and Applications," in Chapter 9: Center-based Clustering Algorithms. Philadelphia, 

ASA, Alexandria, VA: ASA-SIAM Series on Statistics and Applied Probability, 

2007. 

[40] L. Wojnar and K.J. Kurzydłowski, Practical Guide to Image Analysis.: ASM 

International, 2000. 

[41] Barbara Zitova and Jan Flusser, "Image registration methods: a survey," Elsevier: 

Image and Vision Computing, Department of Image Processing, Institute of 

Information Theory and Automation, Academy of Sciences of the Czech Republic 

2003. 

[42] Amit Patel. (2014) Stanford Theory Group. [Online]. 

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html 

[43] Kenji Kira and Larry Rendell, "The Feature Selection Problem: Traditional Methods 

and a New Algorithm," 1992. 

 

 

 

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

	Introduction
	Background
	2.1 An Overview of Renal Histology
	2.2 Existing Solutions
	2.2.1 Nephron Tracking and Three-Dimensional Reconstruction
	2.2.2 Glomeruli Detection
	2.2.3 Automated Tracking of other Biological Structures

	2.3 The Nephron Tracking Problem
	2.4 Graph Theory
	2.5 Machine Learning
	2.5.1 An Overview of Basic Machine Learning Principles
	2.5.2 Application to Medical Imaging
	2.5.3 Application to the Nephron Tracking Problem


	Project Framework
	3.1 Research Question
	3.2 Rationale
	3.3 Objectives
	3.4 Assumptions
	3.5 Success Criteria

	Analysis of the Problem Domain
	4.1 The Image Sets Acquired from the University of Aarhus
	4.2 An Ideal Solution
	4.3 The Complexities of the Problem
	4.3.1 Artefacts
	4.3.2 Memory


	System Overview
	Image Processing
	6.1 Image Registration
	6.2 Image Processing Procedure
	6.2.1. Conversion to Grayscale
	6.2.2. Background Removal
	6.2.3. Histogram Equalisation
	6.2.4. Thresholding
	6.2.5. Removal of Unwanted Cross-Sections

	6.3 Image Segmentation
	6.4 Automatic Parameter Variation

	Feature Extraction
	7.1 Node Allocation
	7.2 Shape Measurements
	7.2.1 Shape Factors
	7.2.2 Shape Profile

	7.3 Data Structures
	7.4 Glomeruli Detection

	Tracking Algorithm
	8.1 Local Image Registration
	8.2 Graph-based Tracking
	8.3 Edge Formation
	8.4 Skipping Images
	8.5 Validation Steps
	8.6 Region Control
	8.7 Reconstruction
	8.8 Manual Intervention

	Machine Learning Validation
	9.1 Feature Selection
	9.2 Training Set Formation
	9.3 Training
	9.4 Reinforced Learning
	9.5 Feature Analysis
	9.6 Optimisation

	Results
	10.1 Pre-Tracking Stages
	10.1.1 Pre-Processing

	10.2 Measuring Similarity between Paths
	10.3 Possible Outcomes
	10.4 Tracking Results
	10.5 Efficacy of Validation Steps
	10.6 Machine Learning Classification
	10.7 Monitoring Runtime Output
	10.8 Processing Times

	Analysis & Discussion
	11.1 Performance per Area of the Nephron
	11.2 Effect of Image Properties on Performance

	Recommendations & Future Work
	12.1 Recommendations for Future Image Sets
	12.1.1 Staining Choice
	12.1.2 Image Constraints

	12.2 Future Work

	Conclusion
	References

