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Abstract

Aim: The design and implementation of a wearable training device to improve cardiopulmonary resuscitation (CPR) is presented.

Methods: The MYO contains both Electromyography (EMG) and Inertial Measurement Unit (IMU) sensors which are used to detect effective CPR, and

the four common incorrect hand and arm positions viz. relaxed fingers; hands too low on the sternum; patient too close; or patient too far. The device

determines the rate and depth of compressions calculated using a Fourier transform and dual-quaternions respectively. In addition, common positional

mistakes are determined using classification algorithms (six machine learning algorithms are considered and tested). Feedback via Graphical User

Interface (GUI) and audio is integrated.

Results: The system is tested by performing CPR on a mannequin and comparing real-time results to theoretical values. Tests show that although the

classification algorithm performed well in testing (98%), in real time, it had low accuracy for certain categories (60%), which are attributable to the MYO

calibration, sampling rate and misclassification of similar hand positions. Combining these similar incorrect positions into more general categories

significantly improves accuracy, and produces the same improved outcome of improved CPR. The rate and depth measures have a general accuracy of

97%.

Conclusion: The system allows for portable, real-time feedback for use in training and in the field, and shows promise toward classifying and improving

the administration of CPR.

Keywords: Cardiopulmonary resuscitation (CPR), Quality, Dual-quaternions, Electromyogram (EMG), Inertial Measurement Unit (IMU), MYO,

Machine learning

1 Introduction

Improving the quality of CPR improves survival outcomes.1 To
achieve improved quality, researchers have considered various
measurements, interventions and methods, including techniques for
use in training and for use at scene, in transport, and in-hospital.2–4

It is estimated that a significant proportion of CPR is performed with
poor technique,5 with substantial clinical consequence.6,7 This is, in

part, attributable to high student-trainer ratios often encountered in
CPR training, and training and awareness is a critical aspect of
CPR.8,9 In the field, defibrillation survival rates would be improved if
the CPR process could be committed to muscle memory so that a
care-giver is capable of performing effective CPR even under stress or
in the field.10,11

The CPR standards set by the American Heart Association12

provide a baseline by which to judge the effectiveness of CPR in terms
of rate and depth of compressions as well as ensuring sufficient recoil
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to allow the heart to refill.12,13 Incorrect rate and depth significantly
reduce the chances of survival of the patient.14,15

Training intervention systems have shown promise in improving
training,16 but require specialised equipment, and the translation of
improvement into the field is only through applying the techniques.
Real-time feedback is shown to be useful in the field, and is an active
area of research.3,17,18,2 However, these promising CPR quality
interventions cannot be easily translated into the field context due to
the equipment not being field appropriate, or the setup taking too long
in a time critical context.

We propose a novel CPR quality measurement system which uses
a wearable device, wireless transmission, classification of the CPR
quality through machine learning, and real-time feedback. This
system may be used both in training and in the field to train, assess,
and improve quality of CPR. Through this feedback, we can improve
quality similarly to the results in 17. This significantly extends the
variety of measurements and portability of the work proposed by Aase

and Myklebust19 and González-Otero et al.,2 which are most similar in
principle to this work.

2 Methods

CPR position and most common positional mistakes are presented
with photographs in Table 1 as determined through consultation with
an expert from emergency medicine. Correcting these can result in
improved outcomes.20 We attempt to address these by using a real-
time non-intrusive measurement system which can be used both in
training and in the field.

We do so by providing real-time feedback through acquisition
of real-time data from a wearable device comprising an
accelerometer and electromyogram (EMG), worn by the practi-
tioner, to which machine learning is applied to classify the quality
of CPR delivery.

Table 1 – Correct and incorrect CPR hand and arm positions and the resulting effects. (Photographs by authors.)

Figure Position Result

Palm flat on patient with fingers flexed Correct CPR

Fingers curled Shallow compressions

Palm facing sideways due to the hands being
too low on the chest

Fractured ribs

Arms perpendicular to the chest of the patient Correct CPR

Angle between the arms and the patient
<90� due to having the patient too close

Insufficient recoil

Angle between the arms and the patient
>90� due to having the patient too far away

Shallow compressions and
rapid fatigue
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2.1 Approach

Our CPR quality measurement system uses the MyoTM armband
which is worn on the forearm and transmits wireless information to a
portable computer. The computer provides real-time audio (or visual)
feedback.

The system utilises signal processing techniques including root
mean squared (RMS) values, Fourier transforms, and zero-crossing
to extract important features of the CPR to determine the rate and
depth of the compressions. Furthermore machine learning techniques
are used to identify common mistakes in hand and arm positioning on
the patient.

2.2 Equipment/hardware

The Myo contains eight EMG sensors spaced evenly around the
forearm.21 An electromyogram (EMG) is a device that measures the
strength of electric signals within muscle groups: contracted
muscles result in more electrical activity than relaxed muscles.22

The EMG sensors allow identification of which muscle groups are
activated in the forearm and hand, particularly in the flexor and
extensor groups. The Myo also has a nine-axis IMU sensor
comprising three accelerometers (for the X, Y, and Z planes), three
gyroscopes (for roll pitch and yaw), and three magnetometers to
assess positions.

The Myo has been used extensively for sample applications due to
the availability of a free software development kit.23 Currently, most
work done with the Myo has involved gaming and computer control
applications.23 Potential for medical applications are numerous, and
to date include interfacing with a prosthetic arm.24 The Myo was
chosen for use in this project as it is easily transportable, non-invasive,
has no wires to interfere with CPR application (non-intrusive), and

allows CPR to be performed without attaching any equipment to the
patient. A standard spring-based CPR mannequin is also used.

2.3 Software

The software subsystem can be divided into three main sections: the
user interface; a signal processing component; and a machine learning
component. All code for signal processing and machine learning is written
in C++ due to its computation speed. The Graphical User Interface (GUI)
is a Windows Forms application with a python server. An overview of how
these three components interact is provided in Fig. 1. The components
and actions performed by the system are split into three threads that are
required to run all necessary simultaneous tasks. Thread 1 manages
visual feedback in the form of updates to the GUI; thread 2 runs feature
extraction and the classification algorithm; and thread 3 plays audible
feedback. Data is encrypted using the SHA2 algorithm.

2.3.1 GUI

A simple GUI allows for interaction and feedback. This displays data in
real-time relating to the user's CPR performance and provides audible
feedback by sounding descriptions of the incorrect positions. The
practitioner will thus be verbally informed of incorrect hand positions
without the distraction of having to look at a display, thus allowing the
user to correct their technique while continuing to focus on the patient
to align to desired compression rate and form.

2.3.2 Signal processing

Supplementary documentation is included for more detail on the
mathematical methods used in this work.

The signal processing comprises four tasks: Calculating the root
mean squared (RMS) values of the EMG channels (which is generally
proportional to the force of muscle contraction); and from the IMU;

Fig. 1 – System overview.
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extracting and calculating the roll, pitch and yaw; determining depth;
and obtaining rate. RMS values and orientation data are used for
machine learning. Rate and depth factors are independent of the
machine learning. The RMS values are calculated for each of the eight
EMG channels on the Myo. The ratio between each pair of channels is
determined and is particularly important as it renders the magnitude of
the EMG signals independent of the muscle strength of the user. The
RMS produces a total of 36 values which form part of the machine
learning feature vector. Another set of features is extracted as the
orientation.

2.3.3 Rate

Compression direction/displacement during CPR are directed down
the forearm into the palm, the rate of which is determined along this
axis which corresponds to the x-axis acceleration of the Myo.
Associated engineering detail is provided in supplemental material
(http://dept.eie.wits.ac.za/�pantanowitz/research/cpr-quality/data).

2.3.4 Depth

Depth is calculated using dual-quaternions which are formulated by
the Myo SDK, and more information is included in the supplemental
material.

2.3.5 Machine learning algorithm selection

Machine learning is a general term for the iterative process of building
up a model by experimentation, starting with a preliminary model,
followed by iterative model refinement,25 without explicit program-
ming. Machine learning is often used in classification type problems.
The algorithm is designed to learn to distinguish between correct and
incorrectly-performed CPR from a set of training examples, using data
which was collected from correctly and incorrectly performed CPR on
the mannequin. Thereafter, unseen test examples are used to analyse
the accuracy of the developed model.

Accuracy is selected as the metric by which to benchmark the
machine learning algorithms.

Algorithms tested for this application include Random Forest,26,27

Boosted Forest,28 Multilayer Perceptron,29 K-Nearest Neighbours,30

Normal Bayes,31 and Support Vector Machines.32 Further information
on these algorithms is provided in the additional material.

To determine the best-suited classification model, algorithms are
trained and tested offline (with data split 80:20) using the feature
vector of 47 features (IMU, EMG data) extracted across over 4800
CPR measurements. The Boosted Forest is found to be the most
accurate algorithm with 98.7% accuracy on testing data with the
specified data ratio.

A validation process is used to identify model parameters and
prevent overfitting by ensuring that the model's accuracy is not
restricted to the test set. Thus the data is split into three sets,
namely the training, validation, and test sets in a ratio of 60:20:20.
A grid search of the parameter values is then used with the
algorithm being trained and tested on the validation set with each
combination of parameters. The model is then verified on the test
set in order to ensure that it has not been overfit. The parameters
that are tuned are the depth of the decision trees (i.e. how many
decisions are in each tree), the number of trees used, and the trim
rate (i.e. how many of the least accurate trees are removed from
the model). Using this process, an accuracy of 99.2% was
achieved on the test set with a depth of 5 decisions, 50 decision
trees, and a trim rate of 0.8. The output of validation can be found
in the additional documentation.

The specified boosted forest classifier is thus selected for
deployment as an online model for real-time classification due to
the time-sensitive nature of CPR.

The GUI updates every five seconds and classification occurs
approximately every half a second. Thus the most common
classification over the five second interval is displayed when the
GUI updates. This has the secondary effect of improving accuracy as it
eliminates rare classifications within a time interval and results in the
most significant mistake being identified while transient mistakes are
disregarded.

3 Results

CPR measurements were taken on six hours of CPR activity over
several days. The measurements were taken on two different CPR-
trained practitioners in an attempt to obtain a better measure of
general accuracy. A summary of the results are provided below.

In order to test the system, data were recorded for the various
correct/incorrect hand positions and labelled accordingly. Accuracy of
the system is defined as the fractional value of correctly classified
hand positions. Hand positions that are mislabelled/misclassified
lower the accuracy measured for the system. While there are other
potential metrics to determine classification of the system, accuracy is
deemed to be the most intuitive and relevant metric, as it is a critical
metric of each class classification (for example, “hands too low on
sternum” and “resting fingers on the patient” each constitute their own
class, rather than being bundled into “effective” or “poor” CPR. This
gives more insight into what is going wrong in the CPR process. As
such, we are less interested in precision and recall, than in selecting a
classifier that determines each class optimally. Accuracy is defined as
the proportion of correctly classified data instances, relative to the total
number of samples considered, and is defined mathematically in the
supplemental material.

3.1 Rate and depth

Rate measurements were taken by performing CPR in time with a
metronome and comparing the calculated rate to the actual rate
determined by the metronome. From these results the accuracy,
repeatability (in terms of variance), resolution, range, span, and
hysteresis (in terms of percentage change when approaching a point
from above versus from below) were determined. In addition the
accuracy at the top and bottom of the accepted range was calculated.
These are summarised in Table 2 .

The rate measurements are accurate across the entire range. In
addition the repeatability of 0 indicates that there is no variance

Table 2 – Summary of rate measurement.

Measurand Result

Range (bpm) 95–125
Span (bpm) 30
Resolution (bpm) 3
Repeatability (bpm) 0
Accuracy – centre of range (%) 100
Accuracy – top of range (%) 97.60
Accuracy – bottom of range (%) 96.85
Hysteresis (%) 3.28
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between rate measurements at the same rate and repeatability is
consistently high. Although hysteresis is present, its effect is not
significant as it is below 5% of the actual rate value.

Depth measurements were taken by moving the Myo exactly 5cm
between two fixed objects and recording the calculated depth.
Measurements were also taken at the limits of the accepted rate range
and the accuracy calculated. Table 4 summarises the results of the
measurements.

Although the accuracy of the depth measurement is very high in the
centre of the rate range, it rapidly declines as the rate tends towards
the limits of the accepted range. This shows an undesirable
dependence on rate. In addition the standard deviation is 0.8cm
which is 40% of the range of the measurements (2cm) indicating that
repeatability is not ideal.

3.2 Classification algorithm

In order to assess the accuracy of the classification algorithms, the
accuracy on the test set was measured. This provides the off-line test
accuracy calculated on data collected for training and testing
purposes. The most accurate algorithm was boosted trees with an
off-line test accuracy of 99.2%.

Real-time accuracy is determined by performing CPR using the
developed system and comparing predicted classification to actual
hand and arm positions. The real-time accuracy is 60%. Three classes
are classified 100% correctly, but reduced real-time accuracy arises
as two classes are consistently classified incorrectly. CPR performed
while too far from the patient is classified as “hands too low on the
sternum”, and CPR performed while leaning too far over the patient is
classified as “resting fingers on the patient”. The incorrect classi-
fications are understandable, as placing hands too low on the sternum
often results in a bent elbow, producing an angle at the wrist that is
similar to that found when too far from the patient. In addition, being too
close to the patient often results in resting fingers on the patient's chest
to help the CPR practitioner balance. Combining these incorrectly
classified classes significantly drives up the real-time accuracy.

A confusion matrix on the off-line test data is used to determine
the true positive (TP), false positive (FP), true negative (TN), and
false negative (FN) classifications for each class in the test set (850
data points). This is then further used to calculate the accuracy,
specificity and precision for each class. The results are summarised
in Table 3 .

4 Discussion

As a trainer is not able to observe all trainees at once, a CPR training
device that provides constant accurate feedback to the CPR
practitioner even without a trainer's supervision is useful to ensure
that only correct technique is committed to muscle memory (similar to
work in 16,19,2). Our proposed solution is less invasive, less costly,
and wearable on the body of the practitioner rather than being built into
the training mannequin, facilitating its use on less expensive, non-
specialised mannequins. A quantitative study of performance would
be useful for future work.

Given the findings in 1 regarding debriefing, it may be interesting to
consider a post-CPR debriefing via the GUI, potentially with motion
playback, to augment the debriefing process.

Uniquely, the proposed system is fully portable and can to be used
both for training and in the field in emergency situations, without
interfering with the performance of the practitioner. Both a graphical
user interface (GUI) and audio feedback provide results of CPR
performance, allowing the user to focus on performing CPR without
distraction. This is similar in concept to 18, but our system does not
require the setup of the equipment in advance.

The system provides verbal and visual feedback on CPR rate and
depth, and classifies hand and arm position, successfully providing
feedback of real-time CPR quality. The rate measurement is very
accurate. However, the system suffers from some accuracy issues
with respect to the depth measurement and the hand position
classification. Possible causes and solutions for this lack of accuracy,
and possible improvements are discussed below. Future work would
allow for better characterisation of the system.

It is important to note that should the real-time incorrect
classification of hand positions persist, these can be combined into
a single error class (in the field), to improve classification accuracy to
approximately the same as the offline accuracy. The system thus
shows promise in the contexts of both training and emergency field
use.

The depth measurement inaccuracy is caused by oversensitivity of
the IMU readings. This causes the values to vary noticeably even
when no movement is occurring. The Myo currently places many
restrictions on the system since it has a low sampling rate and high
sensitivity.

Table 3 – Classification confusion matrix and performance analytics.

Effective Too Far Too Forward Fingers on patient Too low on sternum

TP 159 156 125 144 230
FP 19 4 0 6 7
TN 669 688 720 688 599
FN 3 2 5 2 14
Accuracy (%) 97.41 99.29 99.41 99.10 97.53
Specificity (%) 99.55 99.71 99.31 99.71 97.72
Precision (%) 89.33 97.50 100.00 96.00 97.05

Table 4 – Summary of depth measurement.

Measurand Result

Range (cm) 4–6
Span (cm) 2
Repeatability (cm) 0.8
Accuracy – range centre (%) 97.00
Accuracy – range max (120bpm) (%) 71.80
Accuracy – range min (100 bpm) (%) 76.15

R E S U S C I T A T I O N 1 3 7 ( 2 0 1 9 ) 1 8 3 – 1 8 9 187



By performing numerous experiments with the Myo placed in
slightly different positions on the forearm, and by removing the Myo
between measurements, two possible reasons for the low classifica-
tion accuracy in real time were revealed. Moving the Myo as little as
half a centimetre up or down the forearm, or rotating it by half a
centimetre causes the relative magnitude of EMG readings on each
channel to change significantly. In addition, removing the Myo and
putting it back in the same position still results in a slight shift in the
relative EMG readings. Thus the source of the inaccuracy is in the
placement of the Myo and the calibration when the Myo is removed
and then replaced.

Greater research in characterising the device and establishing
measurement errors, is required for future work. In order to improve
system positioning and calibration, a program that helps position the
Myo in exactly the same place on the forearm could be implemented,
or alternatively, an external calibration system such as 18 could be
used. In addition a custom calibration algorithm could be implemented
to remove the inaccuracy due to poor calibration and to normalise the
EMG values. The fact that two hand positions are always misclassified
as similar positions suggests that the choice of the positions requiring
classification may need to be reconsidered, as if these are combined
into a single error class, the results would be significantly higher (in the
order of the off-line test data).

Aside from correcting the inaccuracy for real-time (or combin-
ing error classes), we proposed other improvements including:
allowing input of patient details (age, height range, and weight
range) so that more precise feedback can be given; storing
historical data in a database so that CPR performance can be
tracked over weeks or months; developing a mobile version of the
application to improve portability when being utilised in a real
emergency situation.

The design could be improved by using a different device with a
sampling rate of over 1 kHz, with Kalman filtering to create the
quaternions and RSSI smoothing for the EMG in order to reduce the
effects of the sensitivity of the device.

5 Conclusion

The system described in this paper offers a solution to improve CPR
quality in both training and in the field. This is achieved by providing
real-time feedback, and accurately measuring the depth of com-
pressions. Depth and classification inaccuracy can be resolved by
implementing a Kalman filter or integration with other devices as
suggested, and by creating a custom positioning and calibration
algorithm for the Myo. The system has nearly perfect accuracy in
classifying proper vs improper CPR, however greater characterisation
of this is required.
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